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Abstract

This thesis introduces a method to combine static and dynamic features in a

convolutional neural network (CNN) to produce a motion and object boundary

prediction map. This approach provides the CNN with dynamic and static

cues and information, thus improving its predictions. The spatial stream of

the CNN learns to compute an object boundary prediction map from a single

RGB frame, while the temporal stream learns to compute a motion boundary

prediction map from the corresponding optical flow map. The streams are

then combined through an encoder-decoder architecture, where the decoder

learns to fuse the features from both streams to obtain a task specific output.

The proposed method yields state-of-the-art results on a motion boundaries

benchmark, and systematic improvements in object boundaries benchmarks

over methods that solely rely on static features extracted from a single RGB

frame.
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Chapter 1

Introduction

Historically, the edge detection problem has been at the center of computer

vision with multiple approaches, from basic operators [8] to complex machine

learning models [52, 28, 34], attempting to find a solution to this low-level

task.

Edge detection is a classic computer vision problem that aims to label the

discontinuities between objects in the scene as boundary pixels. The signifi-

cance of this problem is that edges are important for feature detection in image

processing for tasks such as segmentation [16, 49], and optical flow estimation

[40, 31]. There are several types of edges that researchers have attempted to

extract from various scenes, namely: object boundaries, motion boundaries,

and material boundaries. This thesis focuses on the tasks of detecting object

and motion boundaries in consecutive images.

The object boundaries detection task garners the most notable attention

out of all edge detection tasks due to the significance of edge-like features

with tasks targeting objects in a scene. An object boundary is defined as the

subset of contours affiliated with objects in the scene. The object boundaries
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Figure 1.1: An example of object and motion boundary in a scene. The first

image (left) is the raw input frame. The second image (center) includes the

object boundaries in the scene, where the edges include the static objects in

the scene such as the door and table in the upper left corner of the image.

The final image (right) depicts the motion boundaries in the scene, where the

boundaries are a subset of the object boundaries image (center) highlighting

the dynamic objects in the scene. Source: VSB100 Dataset

in the scene are those of the subjects in the scene absent of any boundaries

pertaining to materials such as clothing and other textures. This can be seen

in Figure 1.1, where the groundtruth object boundaries are drawn around all

the objects in the scene, static or otherwise.

On the other hand, motion boundaries are a subset of object boundaries

specific to dynamic or moving entities in a scene. While object boundaries pro-

vide important cues for static tasks, motion boundaries provide cues around

boundaries for tasks such as motion segmentation and optical flow detection.

In an example image, the motion boundaries in the scene are those of the mov-

ing subjects in the scene, absent of any boundaries pertaining to static objects.

This can be seen in Figure 1.1, where the groundtruth motion boundaries are

a subset of the object boundaries and are specific to the moving objects in the

scene, specifically the dominoes and person.

With the introduction of convolutional neural networks, current object

boundary detection methods [28, 34] have achieved and surpassed human per-
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formance on certain real world datasets such as the BSDS500 Dataset[1], being

able to produce an accurate object boundary map in milliseconds. These con-

volutional neural networks, or ConvNets, learn to extract edges at the earlier

levels and abstractions at higher levels, mimicking human perception. This is

shown in the VGG-16 network trained on the ImageNet dataset [11], and other

convolutional neural networks trained on real image datasets. Illustrated in

Figure 1.2, the convolutional layer side outputs throughout the network show

edge maps that progressively become coarser and broader as the network grows

deeper.

While these approaches produce impressive results on standard bench-

marks, these models are limited to analyzing static imagery and forgo the

additional rich information in temporal imagery. This thesis introduces a dy-

namic ConvNet stream in conjunction with the static ConvNet stream to fuse

learned features from both streams to produce more accurate object and mo-

tion boundary prediction maps.

1.1 Motivation

While the state-of-the-art boundary detection approaches have been quite im-

pressive [28, 34], the approaches proposed still suffer from issues arising from

the absence of integrating dynamic cues. Presently, learning static cues re-

lies on the assumption that world is static and the objects in the scene are

not moving. These assumptions are problematic when it comes to issues such

as occlusion, where the object may be present in a frame and then occluded

in the next. This may cause the network to assume that the non-occluded

parts of the object are part of the background or part of a separate entity.

Another problem is the scenario where the object textures blend in with the

3



Figure 1.2: An illustration of the VGG16 network. The different colours in

the image correspond to the different convolution layers in the VGG16 net-

work. The side outputs are produced by convolving the features of the final

convolution operation in each convolution layer. As the number of layers in

the network grows, the representations grow more abstract.
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background, where the lack of dynamic cues will likely fool the network into

believing that the object is part of the background. With this in mind, this

thesis proposes a method to alleviate the performance issues that arise from

relying solely on static, single images to extract boundaries.

This thesis proposes a method to integrate dynamic cues along with static

cues to produce a more refined boundary detection output. The method com-

bines the learned static features from the raw input frame and dynamic fea-

tures from the raw frame’s corresponding optical flow field prediction. This is

achieved through a fusion mechanism that refines the boundary detection out-

put. Specifically, the method is comprised of a two-stream, encoder-decoder

edge detection network that learns static and dynamic features to detect task-

dependent boundaries, and fuses the features to produce a more refined, task-

dependent boundary output. The encoder network is comprised of a static

and dynamic stream, where the network learns to produce boundaries around

all objects (object boundaries) from raw input frame, and boundaries around

moving objects (motion boundaries) from optical flow respectively. In this

case, the proposed method is learning to fuse static and dynamic cues to im-

prove the results of a boundary detection network that would have access to

an exclusive set of cues only.

1.2 Contributions

This thesis makes the following three contributions:

1. Optical flow to motion boundaries. An end-to-end trainable convo-

lutional network that learns to produce motion boundaries from optical

flow. This is enabled by a “curriculum learning” [4, 23] training scheme
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designed to gradually train the network on increasingly difficult exam-

ples.

2. Feature fusion methodology. An ablative study on three fusion meth-

ods that combine spatial and dynamic features in latent space and image

space to produce a more refined boundary detection output.

3. Static and dynamic encoder-decoder architecture. The state-of-

the-art, end-to-end motion boundary detection convolutional network

architecture, and a convolutional neural network architecture that pro-

duces systematic improvements over object boundary detection methods.

While the evaluations presented in this thesis are exclusively boundary detec-

tion related, the method and architecture proposed may provide improvements

on tasks that rely on static and dynamic cues, such as motion and object seg-

mentation.

1.3 Outline of thesis

The thesis is organized as follows:

• Chapter 2 provides the background knowledge on convolutional networks

and their components.

• Chapter 3 summarizes different approaches closely related to this the-

sis: object boundaries, motion boundaries, fusion methodologies, and

curriculum learning.

• Chapter 4 introduces the components of the approach to produce static

and dynamic cues from the input. The chapter then presents the fusion

6



method to combine the cues produced from both streams. The chapter

concludes with the loss function and implementation details that enable

the network to produce the edge detection maps.

• Chapter 5 presents empirical evaluations. Quantitative and qualitative

results for both the motion boundary and object boundary detection

tasks are presented, including evaluation of the different dynamic stream

inputs, fusion methodologies, and training schemes.

• Chapter 6 provides a summary of the contributions and results, and

explores different possibilities for future work.
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Chapter 2

Technical Background

This chapter is made up of three sections: convolution operator, architectures,

and learning. While the depth of knowledge entailed in convolutional network

theory cannot be conveyed in this thesis alone, the following sections provide a

brief overview of the core components of convolutional networks that are most

significant to this body of work. The first section defines the “convolution op-

erator” in ConvNets (Sec. 2.1). The next section (Sec. 2.2), “architectures”,

provides an overview of how layers interact with one another to produce a

desired output from the input. The chapter concludes with the “learning”

subsection (Sec. 2.3) that clarifies how learning occurs in a convolutional net-

work.

2.1 Convolution operator

A convolutional network is comprised of several convolution operations that

process patches of the input [29]. Mathematically, a convolution is an op-

eration on two functions to provide a third function, in which the operation

8



Figure 2.1: An example of a convolution operation where the input image is

convolved (*) with a filter in order to produce an output.

amplifies certain parts of the function and suppresses other parts of the func-

tion. This is demonstrated in Figure 2.1, where a handcrafted Sobel filter is

applied to an input image.

In the context of computer vision, a convolution is a correlation operation

between features and input patch. The convolution operation is made up of

two tunable parameters: the filter (also known as the features or weights) and

bias. The filter is small spatially but deep in volume. For example, if the

input image was an RGB image, the depth of the filter to transform the input

to an output volume would be H ×W × 3 for the three color channels, and

the output volume depth channel could be H ×W ×D of any arbitrary size

D, depending on the desired size of the output volume.

To perform the convolution operation, each of the filters in the convolu-

tion operation slide across the input map and produces a two-dimensional

activation map with responses at each spatial location:

F ∗G =
K∑

u=−K

K∑
v=−K

F [x+ u, y + v]G[u, v] (2.1)

Where the window size is (2K + 1) × (2K + 1), the spatial location is (x, y),

F is the input, and G is the filter.

9



2.2 Architectures

Convolutional networks are comprised of convolution, sub-sampling, and non-

linearity layers. The purpose of the convolution layer is to apply convolution

filters to inputs and produce activation maps. The sub-sampling layer reduces

the input size to increase the receptive field of the convolution window. Finally,

the non-linearity layer introduces non-linearity to the network solution since

the solution to a complex function such as learning to detect edges in an image

is likely not a linear combination. Different architectures employ different

combinations of the layers mentioned above depending on the task at hand.

Convolutional network architectures are designed depending on the task

they are attempting to address. Their depth is tailored depending on the

task difficulty and the input size. For example, a simpler task, such as digit

classification, may require a shallow ConvNet architecture, while an object

classification network may require a much deeper architecture. Depending on

the network output, the architecture may incorporate a fully connected layer

to produce a classification score output, or a fully convolutional output to

produce a prediction map.

Several architectures in the field of machine learning and computer vi-

sion are modifications of other notable architectures, such as VGG16 [43] or

AlexNet [29]. These architectures are often adopted due to the availability

of the weights associated with the network that has been trained on different

datasets, such as ImageNet. Training these networks anew would be notori-

ously difficulty as they are very sensitive to the weight initialization as well as

the training methodology to achieve the results on datasets, such as ImageNet.

Adopting available weights and architectures also reduces the required size of
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the training set on the target task.

2.3 Learning

For a network to “learn” to transform a given input to a desired output, it

must be provided with a signal to identify how precise the network output is.

In supervised training, the network is provided with numerous examples that

include the input and groundtruth to compare the network output with the

intended output.

To measure the difference between the groundtruth and the output of the

network, the network employs a loss or energy function. Depending on the loss

function output, the network will tune the weights of the ConvNet significantly

or minimally to improve the accuracy of the network. For example, a network

may utilize an L2 or square difference loss function:

L(x, y) =
N∑
i=0

(yi − xi)2, (2.2)

where L is the loss associated with the output of the network x and the

groundtruth y.

Depending on the gradient of the loss, the network will then update the

weights either drastically if the loss is large or minimally if loss is small. This

weight update function is done through the process of backpropagation. Back-

propagation [41] applies the chain rule and computes the partial derivative

with respect to all the parameters in the network. This allows the network to

shift the parameters of the network towards the negative gradient and thus

minimize the loss. It is important to note that the loss will likely not converge

to the global minimum but rather a local minimum, and this is due to the

greedy nature of the gradient descent algorithm and the non-convex nature of

11



the error surface.

While the network may not converge to the global minimum, there are

methods to ensure that the network is not gridlocked in a local minimum.

Namely, manually adjusting hyperparameters that are set when the network

is training, specifically the learning rate and momentum.

The learning rate and momentum of a neural network dictate the speed

at which the network “learns”. The learning rate is a scalar value that is

multiplied with the gradient computed from the backpropagation step. A high

learning rate value will not find an acceptable solution, while a low learning

rate value will prolong the learning process of the neural network. Momentum

dictates the velocity of the “learning” process, meaning that if the gradients

computed in consecutive iterations are in the same direction, the network

weights will shift more favourably in that direction, thus allowing the network

to reach a local minimum faster.

12



Chapter 3

Related Work

This chapter provides an overview of the closely related topics to this thesis:

Motion boundaries (Sec. 3.1), object boundaries (Sec. 3.2), network fusion

(Sec. 3.3), and curriculum learning (Sec. 3.4).

3.1 Motion boundaries

Motion boundaries have played a vital role in several computer vision applica-

tions varying from optical flow estimation [40] to improving motion segmenta-

tion detection prediction maps [24]. Sundberg et al. [47] improved upon their

previously introduced static edge detector [35] through the incorporation of

motion cues. Their approach computes motion boundaries from optical flow

patches, using the norm of the optical flow gradient, in the vicinity of the edge

detection output of a static image, thus removing edges related to background

clutter in the scene.

The task of predicting motion boundaries has relied on hand-crafted fea-

tures since its inception. The work of Weinzaepfel et al. [51] relies on producing
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a feature vector for each patch, consisting of the color and color gradient, op-

tical flow and flow gradients, image warping errors, and the backwards flow

along with its gradients. The structured random forest then predicts whether

or not each patch matches a boundary template from the set of hand crafted

boundary templates. While this approach has yielded the state-of-the-art mo-

tion boundary estimation method, it relies on too many inputs that are costly

to compute as well as hand-crafted features to produce an output.

An analogous task to motion boundary estimation is the task of motion

segmentation in videos where a subset of objects, particularly those in motion,

are segmented. Fragkiadaki et al. [16] utilized optical flow and static frames in

a video sequence to propose a set of regions in the video to produce accurate

video segmentations. This set of regions acted as a filter to the static back-

ground that is not found in the set of regions in the motion stream. Tsai et al.

[49] set out to improve the boundaries around optical flow estimations through

a method that jointly optimized both optical flow estimation and video seg-

mentation. This was achieved through employing the optical flow prediction

output of the network as an input cue for the video segmentation task, and

vice-versa employing the video segmentation output to compute the optical

flow independently in the segmented regions, thus improving results for both

tasks.

Most closely related is the work of Jain et al. [24] which uses a fusion

network that learns to fuse motion segmentation prediction maps from the

motion and static streams to produce a final prediction map for a given frame.

While this approach is similar to ours, both streams of their network have

identical tasks in predicting motion segmentation, while each stream in our

network has a task corresponding to its input. Another difference is the fusion

methodology, where their late fusion method fuses prediction maps in image

14



space, while our approach learns to fuse features from both streams in latent

space and produce a final, task-dependent output.

3.2 Object boundaries

One of the first tasks that the computer vision community set out to address

since its inception was edge detection. Earlier approaches utilized color inten-

sity and other hand-crafted features such as thresholding the gradient map of

an image in the case of the Sobel operator [44], and later on applying Gaus-

sian smoothing and bi-thresholding as an extension in the Canny approach [8].

While these approaches yielded some promising results, their performance is

poor compared to modern approaches that utilize data and deep learning.

Later works utilized machine learning along with hand-crafted features to

produce object boundary prediction maps. Their limitations are due to their

hand-crafted features that may not be optimal for the object boundary de-

tection task. Martin et al. [36] used brightness, color and texture to produce

a probability map of boundaries and their orientations. Lim et al. [32] in-

corporated local learned features of hand drawn edges to use as patch-based

templates to detect local edges in images. Dollar et al. [12] utilized random

decision forests to predict local edge maps in images.

Bertasius et al. [5] inverted the edge detection pipeline by utilizing the

output from the Canny edge detector [8] as input to the network. The net-

work takes as input the Canny [8] edge map output and extracts patches, at

four different scales, around each candidate point as input to the network to

output a pixel-wise classification of edge/non-edge, as well as the confidence

in the edge prediction. Hwang et al. [22] produced a simpler approach to the

edge detection problem by simply extracting features from [21] as input to

15



a binary-SVM to produce a per-pixel edge detection output. This approach

inspired Xie et al. Holistically-Nested Edge Detection (HED) approach, [52]

consisting of a deeply supervised convolutional network that produces an ob-

ject boundary map from an input image. The HED approach modifies the

VGG16 architecture [43] to produce side outputs at each convolution layer

which are later on fused to produce a final object boundary prediction output.

Several of the recent deep learning edge detection approaches are variants

of the HED network, for example Kokkinos [28] uses a variant of the network

that incorporates a multi-resolution architecture inspired by [5]. Kokkinos [28]

also introduces Multiple Instance Learning (MIL) to improve upon annotation

inconsistencies among the groundtruth training set examples by labeling pixels

in a local vicinity around the edge pixel as edges, and the Graduated Deep Su-

pervision Network (G-DSN) training approach which temporally decreases the

weight of the intermediate loss layers. Liu et al. [34] utilized the representa-

tions from each convolution output in each layer to produce each side output,

improving results with a simple modification to the HED network architecture.

Other approaches to the edge detection problem include an unsupervised

approach to edge detection from Li et al. [31]. Accurately labeled edge data

is very expensive to generate on a large scale, with this mind Li et al. [31]

produced an unsupervised pipeline to extract edges from consecutive frame

dense matches [50]. The network learns to compute motion edges from optical

flow as a form of supervision, and in turn improves the optical flow estimation

and edge map output. The work Liu et al. [33] approaches the edge detection

problem from a different angle: the input data. Liu et al. [33] combines edge

maps predicted from the Canny edge detector output [8] to the labeled edge

groundtruth data as a form of relaxed supervision. As training progresses, the

network gradually increases the loss associated with labeling the edges from
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[8] as groundtruth edges.

This static stream of this thesis is based on the HED network architec-

ture and incorporates the G-DSN training scheme to produce object boundary

maps. However, the approaches in relation to this thesis do not utilize dynamic

input in producing an object boundary but rather solely rely on static cues to

produce edge maps. This in turn can be seen in the results of the approaches

above, where edges relating to textures and materials are found in the output.

3.3 Network fusion

There are various representations of raw imagery that highlight different infor-

mation to a ConvNet. Some of these examples include optical flow for motion

between two frames in a video sequence, or a RGB image for spatial informa-

tion about a scene. There have been several notable works on the fusion of

these different sensory data types to produce accurate task-dependent outputs.

These works have looked into the type of data to combine, how to combine the

information in latent space or otherwise, and when to combine the features

learned in the network.

Ji et al. [25] introduced the 3D convolution operator in their work, enabling

a ConvNet to learn features spatially and temporally. This operation allowed

the network to fuse information, both static and dynamic cues in a volumetric

input of a video sequence. Karpathy et al. [27] built upon the work from [25]

by applying 3D convolutions to the action recognition problem. The work from

[27] produced a study on the multiple approaches for spatiotemporal fusion

techniques, including early fusion, and late fusion. Sun et al. [46] separated

the 3D convolution operator into a 2D spatial kernel and a 1D temporal kernel

in order to alleviate the need of large quantities of training data.
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Concatenating input frames and applying a 3D convolution is not the only

method of fusion. Simonyan et al. [42] considered a two-stream convolutional

network for action recognition in videos, in which they trained a two-stream

network for action recognition. Their network included a spatial stream and a

temporal stream which fused features in the deeper layers of the network archi-

tecture. Similarily, Cheron et al. [10] fused human pose information along with

spatial information to produce more accurate video action recognition results.

Cheron et al. [10] included a spatial stream that learned appearance infor-

mation, and a dynamic stream that learned motion information from flow.

The features produced by both streams are then aggregated and fully con-

nected layer predicted action. In contrast to Cheron etl a. [10], the work from

Gkioxari et al. [18] included a dynamic stream that learned motion features

from kinematic cues extracted from optical flow.

A follow up from Simonyan et al. [42] was later published by Feichtenhofer

et al. [15] which presented an ablative study on fusion methods and trade-offs

in layer selection to fuse the temporal and spatial streams. Results from Fe-

ichtenhofer et al. [15] found that fusing features from both streams at a later

convolution layer allows for a reduction in parameter size without sacrificing

network accuracy performance. Jain et al. [24] applied the fusion methodology

from [15] on the semantic segmentation problem. The method from [24] learns

to combine spatial and dynamic information to produce pixel level segmen-

tation masks for objects through a series of atrous convolution and pooling

layers.

This thesis draws inspiration from the works above in the fusion of both

static and dynamic streams to produce a task-dependent boundary map. Specif-

ically, learning motion cues from optical flow similar to the approach from

Cheron et al. [10], and incorporating a two-stream convolutional network ar-
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chitecture to fuse both static and dynamic streams in latent space from Si-

monyan et al. [42]. This work however differs from Jain et al. [24] in which

each stream has a different task, and the fusion methodology fuses the streams

in both latent space and image space, as opposed to image space only. This

thesis differs from the work from Feichtenhofer et al. [15] in terms of tasks and

the multiple fusion points as opposed to a single point of fusion.

3.4 Curriculum learning

Various computer vision and machine learning approaches and ideas are in-

spired by biology and psychology, e.g., curriculum learning. The idea of cur-

riculum learning originates from cognitive development psychology and was

first introduced to machine learning by Elman et al. [14]. Elman et al. studied

the effects of complexity of training data on training an artificial intelligence

model by attempting to train a recurrent neural network (RNN) on complex

sentences and on examples gradually increasing in difficulty. The results of the

experiments suggested that gradually increasing complexity of training exam-

ples throughout the training phase preconditions the model to be able to solve

more complex problems.

Bengio et al. [4] presented an ablative study on the effects of gradually

increasing the amount of concepts as well as the complexity of concepts in

the context of machine learning. The experimental results showed that imple-

menting curriculum learning in the training phase significantly improved the

speed of convergence as well as the accuracy of the machine learning model.

Krueger et al. [30] examined the role of decomposing tasks into various sub-

tasks to ease the complexity of learning the task in the context of training

neural networks. Their findings showed that further decomposing tasks into
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subtasks improved the performance of the model and decreased the training

time.

While the focus of curriculum learning has been on the ordering of training

data, the hyperparameter selections in training the network also play a vital

role in its success. Bengio [3] considered different hyperparameters involved in

training a neural network and the best practices when fine-tuning on different

input data. Some of these best practices include adjusting the learning rate

when fine-tuning a network on different data, selecting the optimal batch size

input, and the number of epochs to train the network on each dataset. These

practices were applied by Simonyan et al. [43] to train the VGG16 and VGG19

networks, where shallow networks were used to initialize deeper networks thus

allowing the deeper layers to learn higher level features while fixing the lower

level features.

Recently, Gülçhere et al. [19] built on the work from [4] and posed the ques-

tion of introducing prior information to aid the network in the training phase.

In [19], a two-tiered multilayer perceptron (MLP) is trained on a dataset con-

sisting of images of a shape from three distinct viewpoints and the network

must output whether or not the images are of the same shape. Standard neural

networks training techniques have failed at the task, however introducing an

intermediate supervisory signal allowed the MLP to produce accurate results.

This thesis incorporates curriculum learning and considers the various prac-

tices presented by Bengio [3] when training the dynamic stream network on

optical flow input. In contrast to the works listed above, this thesis also pro-

vides an ablative study on the effects of different data input types, such as

synthetic and realistic data, to improve upon the accuracy of the networks.
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Chapter 4

Technical Approach

This chapter presents the technical components of the thesis. The first section

(Sec. 4.1) focuses on the encoder networks and their implementation details,

while the second section (Sec. 4.2) focuses on the decoder network, along with

the different fusion implementations, as well as the implementation details.

The final section (Sec. 4.3) includes a short summary of the technical approach

of this thesis.

4.1 Encoder network

This section introduces the encoder streams: the spatial encoder network (Sec.

4.1.1), and the dynamic encoder network (Sec. 4.1.2). Each subsection will

introduce the general architecture as well as the implementation details of the

encoder network.
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Figure 4.1: The Holistically-Nested Edge Detection network. The network is

a modification of the VGG16 architecture, where each convolution layer (C)

corresponds to the VGG16 convolution layers. The side outputs (E) take in

as input the features volume produced from the final convolution operation in

each layer, and transforms the feature volume into a prediction map through

a bilinear interpolation and convolution step to calculate the loss (L). Each of

the side outputs of the five layers are then concatenated and fused to produce

a final prediction output (F).
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4.1.1 Spatial stream

Given an input RGB colour channel image, the goal of the spatial stream

network is to produce an object boundary edge map as output. The spatial

stream convolutional network architecture was chosen to be the HED [52]

network architecture, since it is the underlying architecture of state-of-the-art

approaches in the object boundary detection task.

The HED network is comprised of the VGG16 [43] architecture with the

exception of the fully connected layers and final pooling layer, as seen in Figure

4.1. The reason behind trimming the network is twofold: A stride of size 32 is

too small to produce a meaningful prediction map after interpolation, and the

network architecture is fully convolutional and thus does not require a fully

connected layer.

The network is modified with the addition of side output layers at the

last convolutional layer in each stage; specifically, conv1 2, conv2 2, con3 3,

conv4 3, and conv5 3. These side output layers are comprised of a 1× 1 con-

volution, followed by a bilinear interpolation, and a sigmoid cross entropy loss

function, and produce prediction maps at each receptive field level. The fi-

nal fusion stage of the network architecture consolidates the prediction maps

produced from the side output layers into a final prediction through a con-

catenation operation and a 1× 1 convolution layer.

The loss function employed by the network to learn to produce object

boundaries is a variation of the sigmoid cross entropy loss function. This

variation of the sigmoid cross entropy loss function is modified so that the

ratio of boundary to non-boundary pixels is reflected in the loss calculation:
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L = −β
∑
jεY +

log σ(yj = 1|Xj)− (1− β)
∑
jεY −

log σ(yj = 0|Xj), (4.1)

where β = {Y−}/{Y } and 1 − β = {Y+}/{Y }. Y− and Y+ denote the non-

boundary and boundary pixels in the groundtruth image respectively, Xj de-

notes the prediction map, and σ(yj = 1|Xj) is the sigmoid function on the

activation value at pixel location j.

The only modification to the spatial stream network is the addition of

Graduated Deep Supervised Network [28] (or Graduated DSN) loss weight

term during the training phase. Graduated DSN decreases the significance of

the side loss functions as the training progresses over the predefined number

of epochs and shifts the focus of the network on minimizing the loss associated

with the fusion output temporally. Graduated DSN training is defined as:

L = (1− t/T )Lside + Lfusion, (4.2)

where t is the current epoch and T is the total number of epochs.

4.1.2 Dynamic stream

The dynamic stream is identical to the spatial stream in terms of architecture,

loss function, and the use of Graduated DSN training; however, due to the na-

ture of the input being optical flow, the dynamic network cannot be initialized

with the VGG16 network weights trained on the ImageNet [11] dataset.

To train the network to predict motion boundaries from optical flow, the

curriculum learning [4] training scheme must be utilized. In particular, the

dynamic stream network training begins with the “easy” task of mapping

groundtruth optical flow to motion boundaries, where the motion boundaries
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groundtruth is extracted from the groundtruth optical flow by thresholding

the norm of the optical flow. Gradually, as training progresses and saturates,

the groundtruth optical flow is replaced with optical flow estimations that

are less accurate, specifically FlowNet2 [23], then EpicFlow [40], and finally

the Classic+NL optical flow estimation method [45] in the motion boundary

estimation experiments. This form of curriculum learning is illustrated in

Figure 4.2.

When training the convolutional network to detect object boundaries, the

curriculum learning took the form of gradually training on increasingly difficult

datasets as illustrated in Figure 4.3. Specifically, training on groundtruth op-

tical flow for rigid motions in synthetic data, FlowNet2 optical flow prediction

for rigid motions in synthetic data, FlowNet2 optical flow prediction for non-

rigid motion in synthetic data, and finally FlowNet2 optical flow prediction

for non-rigid motion in real data.

A method to circumvent having to train a network on optical flow from

scratch, is to map the optical flow map to a RGB image using the method

from [2]. In the method from [2], the optical flow map is normalized based

on the maximum flow in both u and v directions, and the colour is extracted

from the corresponding coordinate in a colour wheel. This enables the use of

the VGG16 weights trained on the ImageNet [11] dataset since the number of

channels in the input is now also three.

4.2 Decoder network

Different forms of input provide different signals that may aide in producing

a better result than a network relying on a single form of input. An image

provides information about textures, colours, and other important signals,
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Figure 4.2: An illustration of the curriculum learning training scheme for the

dynamic stream. The network first learns to map groundtruth optical flow

to motion boundaries, then FlowNet2 optical flow estimation, followed by

EpicFlow optical flow estimation, and finally ClassicNL optical flow estima-

tion.
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Figure 4.3: An illustration of the curriculum learning training scheme for the

spatial stream. The network first learns 2D rigid motions from the synthetic

FlyingChairs dataset, then 3D rigid motions from the synthetic FlyingTh-

ings3D dataset, following by 3D non-rigid motions from the synthetic Monkaa

dataset, and finally 3D non-rigid motions from the real-world VSB100 dataset.
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Figure 4.4: The two-stream network consists of two HED networks, where

C is a convolution block, E is a side output block, and F is a fusion block

(each producing dynamic and static features, respectively). The features from

the convolution blocks (C) of each stream are fused together in a series of

convolutions and concatenation (D). The final step in the network (green F) is

to produce a fusion output. The fusion output can be one of three variations:

vanilla fusion, selection fusion, or residual fusion.

while optical flow provides motion-related information. In comparison to the

encoder networks mentioned earlier in the chapter, the decoder network learns

to fuse the features from each convolutional layer in the encoder networks and

fuses them in latent space to produce a more refined object or motion boundary

output map. This is shown in Figure 4.4, where the encoder networks provide

input to the decoder network and the features of both streams are fused.

Feature fusion in the decoder network is done by concatenating features
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Figure 4.5: The fusion variation. (A) is a representation of the vanilla fusion

technique which convolves the input to produce a final output. (B) is the

selection fusion which selectively masks out the outputs of the encoder network

to produce a final output. (C) is the residual fusion method which combines

a learned residual map with the output of the encoder network to produce an

output.

produced at the same convolution layer level from both streams, convolving

the concatenated feature volume by a 1× 1 convolution, and applying a non-

linearity to the output of the convolution operation. This method of feature

fusion is inspired by previous work [15]. There are three different fusion meth-

ods that were experimented with: vanilla fusion, selective fusion, and residual

fusion. These fusion methods are illustrated in Figure 4.5 and replace the

Fusion placeholder in Figure 4.4.

29



4.2.1 Vanilla fusion

The vanilla fusion method is the simplest form of fusion, where the decoder

network concatenates the feature volumes from previous encoder layers and

convolves the concatenated output to produce the final prediction edge map.

This method of fusion is similar to a U-Net [48] ConvNet architecture, where

features are repeatedly upsampled and concatenated with feature volumes of

similar size from previous encoder layers to produce the input volume to the

next convolution layer. The final convolution layer outputs a H ×W motion

or object boundary map depending on the task.

The vanilla fusion method takes the output of the final interpolation ap-

plied to the feature volume as input, and applies a 1×1 convolution to produce

a H ×W activation map output. In the case of training, a sigmoid cross en-

tropy loss is applied on the prediction map output to calculate the loss; while

in the case of testing, a sigmoid function is applied on the prediction map to

produce the edge map output.

4.2.2 Selection fusion

The second fusion method is selective fusion. Selective fusion is inspired by

domain knowledge, specifically that motion boundaries are a subset of object

boundaries (i.e. motion boundaries are the object boundaries of the moving

objects in the scene). The selective fusion method enables the decoder network

to learn to produce two masks, a static stream mask and dynamic stream mask,

to selectively mask out edges from each of the predictions, object boundary

and motion boundary, produced from the encoder networks. These masked out

predictions are then combined to produce a refined object or motion boundary

map depending on the task.
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In the case of selection fusion, the input is also the final interpolation

applied to the feature volume. This fusion method, however, applies a 1 × 1

convolution to produce a H ×W × 2 output volume. This output volume is

sliced along the depth, producing two separate, H×W masks, where each mask

corresponds to the a stream in the encoder network. Each mask is multiplied in

element-wise fashion to the corresponding boundary map prediction generated

earlier in each encoder network. This operation selectively masks out the edges

that do not correspond to the desired output boundary prediction map. The

products of the mask and boundary prediction element-wise multiplications

are then overlayed and an element-wise maximum operation is performed over

the overlayed products, producing the activation map of the decoder network.

This activation map is then inputed to a sigmoid cross entropy function in the

case of training, and a sigmoid function in the case of testing, to produce the

final prediction map.

4.2.3 Residual fusion

The final fusion method is the residual fusion method. Inspired by the residual

network (ResNet) [20], the decoder network learns to predict a residual map

to amplify or suppress certain edge predictions in the encoder predicted edge

map. Similar to the vanilla fusion method, the decoder network fuses features

from both encoder streams and produces a residual map that is then combined

with the object or motion boundary map produced from the encoder stream

in a pixel-wise manner.

Similar to the other fusion operations, the residual fusion technique takes

as input the final, interpolated feature volume of the decoder network. A

1 × 1 convolution is applied to the input to produce a H ×W residual map,
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filling in the gaps of the encoder network output with predictions produced

from the combination of dynamic and static features. This residual map is

then combined in an element-wise addition operation with the motion or ob-

ject boundary prediction map produced in the encoder network to output an

activation map. This activation map is used as an input to the sigmoid cross

entropy loss function in the training phase, and to the sigmoid function in the

testing phase.

4.2.4 Implementation details

This section delves into the implementation details of the thesis. All three

fusion methods are placed at the final layer of the decoder network. The archi-

tecture of the decoder network is comprised of five concatenation, convolution,

and ReLU layers. The input to the first layer is the feature volume output

of conv5 3 layer in both the spatial and dynamic encoder networks. These

features are then concatenated to produce a H ×W × 2D volume, where H is

the height, W is the width, and D is the dimension of the volume respectively.

The concatenation output is then used as input to a convolution layer, with

a window size of 3 × 3, to produce an output of size H ×W ×D. Finally, a

non-linear activation function is applied to the output of the convolution, and

the output volume is upsampled using the bilinear interpolation method. This

process is repeated for the subsequent layers with the output of the interpola-

tion as an additional feature volume to be concatenated with the convolution

features from the encoder network.
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4.3 Summary

This chapter provided the proposed technical approach for object and mo-

tion boundary prediction. The encoder network is comprised of a spatial and

dynamic stream. The spatial encoder stream learns to produce an object

boundary map from a static image input, while the dynamic stream learns

to produce motion boundaries from an optical flow map input. The learned

features in the encoder network are then combined at each convolution level

in the decoder network. The decoder network then predicts the final output

by improving upon previous predictions through suppressing or amplifying

certain predicted edge pixels.
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Chapter 5

Experiments

This chapter presents the empirical evaluation of the proposed approach. The

first section (Sec. 5.1) introduces the datasets and metrics used in the empirical

evaluation. The second section (Sec. 5.2) presents a quantitative ablative

study. The final section (Sec. 5.3) provides a discussion of the results.

5.1 Overview

This section (Sec. 5.1.1) introduces the datasets and the metrics (Sec. 5.1.2)

used in the quantitative evaluation of the thesis.

5.1.1 Datasets

This subsection (Sec. 5.1.1) is divided into two categories: motion boundaries

and object boundaries. The motion boundaries category provides an overview

of the datasets employed in the motion boundaries experiments, while the

object boundaries category provides an overview of the datasets employed in

the object boundaries experiments.
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Motion boundaries

Two motion boundaries datasets were used in the motion boundaries experi-

ments: Sintel [7] and Youtube Motion Boundaries (YMB) [51]. The reason for

the selection of the datasets is for comparability purposes with the state-of-

the-art approach in producing motion boundaries. Examples of the datasets

are found in Figure 5.1.

Sintel is a dataset composed of synthetic frame sequences generated using

computer graphics. The dataset includes the clean RGB image, final RGB

image (containing motion blur and noise), and ground truth optical flow for

each frame in the sequences. While the optical flow test set is not available

for use, the training set along with augmentations [13] is sufficient to train the

dynamic encoder network. The training set contains 1064 720 × 1080 RGB

frames and groundtruth optical flow vector maps, capturing 23 different scenes.

While the groundtruth motion boundaries are not included in the dataset,

similar to [51] they are created by thresholding the norm of the optical flow.

Youtube Motion Boundaries (YMB) dataset is composed of 60 real-

world videos frames sequences randomly sampled from the YouTube Objects

dataset [39, 6], and the Sports1M dataset [27]. The frame sequences contain

moderate to large amounts of noise and include a wide range of subjects in the

sequences. The underlying assumptions of optical flow are not met, e.g. bright-

ness constancy, making it particularly challenging for optical flow estimation.

For each video frame sequence, the middle frame is manually annotated with

motion boundaries by three independent annotators.
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Figure 5.1: The top three rows are from the Sintel dataset. The motion

boundaries are extracted from the groundtruth optical flow by thresholding

the norm of the optical flow. The bottom three rows are from the YMB

dataset. The motion boundaries are provided by annotators, while the optical

flow is estimated using the Classic+NL optical flow method.
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Object boundaries

Four object boundaries datasets used in the object boundaries experiments:

FlyingChairs [13], FlyingThings3D [38], Monkaa [38], and VSB100 [17]. The

selection of the stated datasets is due to their gradual increase in difficulty.

FlyingChairs provides synthetic, rigid 2D training examples, FlyingThings3D

provides synthetic, rigid 3D training and testing examples, Monkaa provides

synthetic, non-rigid 3D training and testing examples, and VSB100 provides

realistic, non-rigid 3D training examples. Samples of each dataset are found

in Figure 5.2.

FlyingChairs is a synthetic dataset made up of 22872 image pairs of

chairs in front of random background images. The dataset was generated

by applying an affine transformations to images collected from Flickr and a

publicly available set of 3D chair renderings. The backgrounds are comprised

of 964 images from Flickr from various categories including: ‘city’, ‘landscape’,

and ‘mountain’. These images are then cut into four quadrants and used as

background, while the foreground is made up of chair renderings. Motion

between the image pairs is generated through randomly sampling a 2D affine

transformation matrix for the background images and the chair renderings.

The dataset includes the image pairs and the optical flow field between the

two image pairs.

FlyingThings3D is a dataset made up of 21818 synthetic frame sequences,

ground truth optical flow, ground truth motion boundaries, and ground truth

object boundaries. The background of each frame sequence is a large textured

plane, made up of 200 generated static objects with shapes that were randomly

chosen from cuboids and deformed cylinders that are randomly scaled, rotated,

and textured. The foreground objects are comprised of objects from the 35927
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Figure 5.2: The top two rows are from FlyingThings3D dataset which is used to

train the dynamic encoder network on optical flow to produce motion bound-

aries. The middle two rows are from the Monkaa dataset, which provides the

network with non-rigid synthetic training examples. The bottom two rows

are from the VSB100 training dataset. The ground truth optical flow and

annotations are provided by the dataset creators.
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3D models from Stanford’s ShapeNet6 [9] database. To achieve the 3D aspect

of the dataset, the camera and foreground objects were translated and rotated

along linear 3D trajectories.

Monkaa is a dataset made up of open source Blender assets of the ani-

mated short film Monkaa10. Unlike FlyingThings3D, Monkaa contains non-

rigid motion, meaning objects in the scene are not bound to be in the same

shape throughout the sequence and can move parts of their bodies. Unlike the

Sintel dataset, Monkaa includes 8591 readily available labeled motion and ob-

ject boundaries along with the raw frame sequences and ground truth optical

flow.

VSB100 is a real-world dataset consisting of 102 image sequences contain-

ing different scenes and subjects. The dataset is an extension of the BSDS500

dataset, including motion and object boundary annotations for every 20th

frame in the sequence done by different, independent annotators. The train

and test set are available in full resolution (1280 × 720) and half resolution

(640× 360), and are divided into 200 training images and 300 test images.

5.1.2 Data augmentation

This section describes the online data augmentations performed on the input

types: RGB frames and optical flow. These augmentations allow the network

to have additional training examples that are randomly generated, improving

generalization and avoiding overfitting.

RGB frames

To create additional RGB images for training, a geometric and photometric

augmentation layer [13] is created to perform online augmentations when the
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network is training. The geometric augmentation layer operation is randomly

chosen from the following list: rotation between [-17◦, 17◦], scaling between

[0.9, 1.5], translation between [-20%, 20%], and left-right flipping. Any geomet-

ric change performed on the input image is also performed on the groundtruth

boundary image as well. The photometric augmentation layer include: addi-

tive Gaussian noise with a sigma randomly sampled from [0, 0.04], additive

brightness using Gaussian with sigma of 0.2, contrast randomly sampled from

[-0.8, 0.4], gamma randomly sampled from [0.7, 1.5], and multiplicative colour

channel changes randomly sampled from [0.5, 2.0]. These online augmenta-

tions are performed on the CPU.

Optical flow

Creating additional optical flow input data is also crucial to improving the

performance of the work presented in this thesis. Online geometric augmen-

tations, similar to those mentioned above, are performed on the optical flow

input as well. For experiments where RGB optical flow is required as an input,

the optical flow is mapped to an RGB image using the method from [2] after

augmentation.

5.1.3 Metrics

The performance measure for both motion boundary and object boundary

experiments is the mean average precision (mAP). The average precision is

calculated for each boundary annotation in the test set and averaged to pro-

duce the mAP.

The output of the network is a prediction map of size H ×W , where each

pixel is a probability of the pixel being labeled a boundary. With this in mind,

40



the prediction map must be thresholded by a sequence of values to produce

edge maps. The thresholds are increments of 0.01 from 0.00 to 1.00.

For every thresholded prediction map, the precision and recall are calcu-

lated against the groundtruth boundary map. The precision is the fraction

of correctly labeled boundary pixels; The recall is the fraction of retrieved

boundary pixels:

Precision =
TP

(TP + FP )
, (5.1)

where TP is the number of pixels labeled as boundary in both the groundtruth

and the thresholded output, and FP is the number of pixels labeled as non-

boundary in the groundtruth and boundary in the thresholded output.

Recall =
TP

(TP + FN)
, (5.2)

where TP is the number of pixels labeled as boundary in both the groundtruth

and the thresholded output, and FN is the number of pixels labeled as bound-

ary in the groundtruth and non-boundary in the thresholded output.

The average precision is then calculated as the sum, over all the thersholds,

of the product of the precision and the change in recall:

AP =
1.00∑
i=0.01

Pi ∗ (Ri −Ri−0.01), (5.3)

where Pi is the precision calculated at threshold i, Ri is the recall calculated at

threshold i, and Ri−0.01 is the recall calculated at the previous threshold. The

average precision is calculated for each set of annotations, and the mean of

those average precision are calculated to produce the mean average precision:

mAP =
1

N

N∑
i=1

APi, (5.4)
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where N is the number of different annotators, and APi is the average precision

of annotations i.

5.1.4 Training details

This subsection (Sec. 5.1.4) details the training procedure for each of the net-

works: spatial encoder network, dynamic encoder network, and the decoder

network. The subsection is split into two parts: motion boundaries experi-

ments, and the object boundaries experiments.

Motion boundaries

Due to the sensitivity of the weight initialization and the training scheme of

the original VGG16 architecture on the ImageNet dataset, training the spatial

encoder network in the motion boundaries experiments from scratch would

be extremely time consuming and difficult; Therefore the set of weights in

the network were initialized from the weights learned in the HED project.

The spatial encoder network was then trained on the Sintel dataset with a

learning rate of 1e−7 for 30,000 iterations, and dividing the learning rate by 10

whenever the validation loss appeared to converge. The other hyperparameters

set were: a momentum of 0.9, and a mini-batch size of 10. The input data

was geometrically and photometrically augmented once.

In contrast, the dynamic encoder network required to be trained from

scratch due to the absence of ConvNet weights trained to produce motion

boundaries from an optical flow input. To do so, curriculum learning in the

form of optical flow training data had to be heavily relied on throughout the

training process. The network weights were first initialized with Xavier initial-

ization, and trained on groundtruth optical flow from the Sintel dataset. The
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network was trained for 50,000 iterations with Graduated-DSN, and a learning

rate initially set to 1e− 8 that was divided by 10 whenever the validation loss

appeared to converge. Next, the network was fine-tuned on FlowNet2 [23],

then EpicFlow [40], and then Classic+NL [45] optical flow prediction of the

Sintel dataset due to the gradually increasing difficulty with noisier optical

flow predictions. The network trained for 50,0000 iterations with an initial

learning rate of 1e − 8 that was divided by 10 whenever the validation loss

appeared to converge for each optical flow prediction set. The momentum was

0.9, and the mini-batch size was 10. The input optical flow was geometrically

augmented once during the training phase.

As for the motion boundaries experiments that utilized the RGB mapping

of optical flow, the dynamic encoder network weights are initialized from the

weights learned in the HED project. Since the input is a three channel image

(RGB), it can be initialized and trained in a similar manner as the spatial

encoder network. The only difference between the dynamic encoder trained

on the RGBFlow data and the spatial encoder is the augmentation of the

input data. The optical flow input is geometrically augmented once and then

mapped to a RGB image map.

After both encoder networks are trained, the decoder network training can

begin. The decoder network weights were initialized with Xavier initialization.

Since the network task is to produce motion boundaries, the spatial encoder

weights are fixed, while the dynamic encoder weights were fine-tuned through-

out the training phase of the decoder network on the Classic+NL optical flow

prediction and RGB input frame of the Sintel training set. The learning rate

was set at 1e−8, with a momentum of 0.9, and a mini-batch size of 10. Train-

ing was performed over 30,000 iterations, and the learning rate was divided by

10 when the validation loss appeared to converge.
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Object boundaries

The object boundaries spatial encoder was trained similar to the motion

boundaries spatial encoder, with the only difference being the dataset used

in training. The spatial encoder was initialized with the weights from the

HED project and fine-tuned on the VSB100 dataset, a real-world dataset.

As for the dynamic encoder, the network must be trained from scratch.

The network is initialized with Xavier initialization and trained with the

groundtruth optical flow of FlyingChairs dataset for 30,000 iterations, a learn-

ing rate of 1e − 7, a momentum of 0.9, and a mini-batch size of 10. The

network is then fine-tuned on FlowNet2 [23] optical flow predictions of the

FlyingChairs training dataset, followed by FlowNet2 optical flow predictions

of the FlyingThings3D training dataset, FlowNet2 optical flow predictions of

the Monkaa training dataset, and finally FlowNet2 optical flow predictions of

the VSB100 training dataset. The learning rate in the fine-tuning process on

the FlowNet2 datasets were all initialized as 1e− 8, and the learning rate was

divided by 10 as the validation loss appeared to converge.

As for the RGBFlow experiments, the method used to train the network

was similar to the dynamic encoder method with the exception being the

network initialization being the weights from HED [52].

After the encoder networks training was completed, the decoder network

weights were initialized with the weights from the encoder networks and trained

on the RGB input frame and FlowNet2 optical flow predictions of the VSB100

dataset. The decoder network was trained in a similar manner as the motion

boundaries experiment decoder network, with the differences being fixing the

dynamic encoder weights and the iteration size reduced to 10,000 due to the

size of the training dataset.
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5.2 Evaluation

This section discusses the results produced from the motion and object bound-

aries experiments.

Given the binary ground truth edge map and the sigmoid boundary pre-

diction map, we first apply a non-maximum suppression step on the boundary

prediction map. We use the BSDS edge detection code benchmark [37] to cal-

culate the precision and recall for each threshold on the boundary prediction

map. A higher threshold retrieves fewer predicted pixels, implying that the

recall will be low and the precision will be high. A lower threshold retrieves

most pixels in the prediction map, meaning that the recall will be high and

the precision will be low. To recover the mean average precision, the aver-

age precision for each annotator is calculated and the PR curves for all the

annotators are averaged.

The section first details the results of using optical flow vs RGB Flow

(Sec. 5.2.1), the effects of using different optical flow estimation methods (Sec.

5.2.2), the the different fusion methods (Sec. 5.2.3), and the effects of fusing

dynamic and spatial data to improve object boundaries prediction (Sec. 5.2.4).

5.2.1 Optical flow vs RGB flow

The first evaluation is on the trade-off between using optical flow and RG-

BFlow as input to the dynamic encoder. The trade-off between using optical

flow over the RGBFlow is the length of the training phase. The use of opti-

cal flow is dependent on the highly sensitive initialization, and increases the

difficulty in training the network as described earlier in the thesis.

As seen in Table 5.1 and Table 5.3, the mAP performance of the networks
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Figure 5.3: The averaged precision-recall curves of the motion boundaries ap-

proaches on the Youtube Motion Boundaries dataset. The number in parenthe-

sis indicates the mAP result associated with the approach. HED, represented

by [52], indicates the result of the spatial stream with a single RGB frame

input. Flow indicates the input was an optical flow prediction, and RGBFlow

indicates the input was a colour-mapped optical flow prediction. The FlowMB

result was the different thresholds applied on the normalized output using the

method from [51]. VF, SF, and RF represent vanilla fusion, selection fusion,

residual fusion respectively. The baseline is the result reported by [51], using

a RGB image, optical flow, backward optical flow, and the error result from

warping the image onto the optical flow.
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Method ClassicNL (mAP)

FlowMB 0.594

INRIA (Baseline) [51] 0.722

HED (RGB) [52] 0.386

Ours (Flow) 0.573

Ours (RGBFlow) 0.552

Ours (VF RGBFlow + RGB) 0.701

Ours (VF Flow + RGB) 0.708

Ours (SF RGBFlow + RGB) 0.723

Ours (SF Flow + RGB) 0.731

Ours (RF RGBFlow + RGB) 0.738

Ours (RF Flow + RGB) 0.744

Table 5.1: Mean average precision results for YouTube Motion Boundaries

(YMB) dataset. The test set is comprised of 60 examples, where each test

example is made up of three groundtruth annotations done by three different,

independent annotators. RGBFlow indicates that the dynamic stream input

was a colorized optical flow image. VF, SF, and RF represent vanilla fusion,

selection fusion, and residual fusion respectively from Figure 4.2. All inputs

to the networks are RGB frames on the spatial stream and Classic+NL flow

on the dynamic stream. The output is the merged result from [52]
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Optical Flow Method mAP

Classic+NL [45] 0.744

EpicFlow [40] 0.778

FlowNet2 [23] 0.791

Table 5.2: Mean average precision for YouTube Motion Boundaries (YMB)

dataset using different optical flow input. The optical flow methods compared

are: FlowNet2 [23], EpicFlow [40], and Classic+NL [45]. The model used is

the decoder network with residual fusion trained on the Sintel Clean dataset

[7].

that use optical flow as input rather than RGBFlow sees an improvement

of ≈ 0.02 mAP. The mAP quantitative results are also summarized in the

form of a PR curve in Figure 5.3 and Figure 5.4. This is consistent in all

experiments performed: motion boundaries from the dynamic decoder, and

motion boundaries from the decoder networks with all fusion methods.

5.2.2 Optical flow estimation methods

The second evaluation to consider is the effect of the optical flow input on

the output accuracy; Specifically, the use of better performing optical flow es-

timation methods (lower endpoint error (EPE)). The optical flow estimation

methods that were considered are FlowNet2 [23] (3.959 EPE), EpicFlow [40]

(4.115 EPE), and Classic+NL [45] (7.961 EPE). Due to the time and resource

cost to prepare the datasets and train the models, this experiment was per-

formed on the YouTube Motion Boundaries [51] dataset after training on the

Sintel estimated optical flow dataset [7].

As seen in Table 5.2, the mAP results on the YMB dataset improved
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Method FlyingThings3D Monkaa VSB100

HED (Baseline) [52] 0.796 0.748 0.708

HED (FC+VSB100) - - 0.643

Ours (RF RGBFlow + RGB) 0.774 0.748 0.692

Ours (RF Flow + RGB) 0.827 0.783 0.731

Table 5.3: Mean average precision results for Object Boundaries. The datasets

tested on are: FlyingChairs (FC), FlyingThings3D, Monkaa, and VSB100.

Similar to Table 5.1, the fusion method used was Residual Fusion (RF). The

training method used was fine-tuning the dynamic stream on FlyingChairs,

FlyingThings3D, then Monkaa, and then VSB100 for all networks apart from

the second row. HED (FC+VSB100) was fine-tuned only on VSB100.

as the optical flow prediction improved in accuracy. While the difference in

EPE between FlowNet2 and EpicFlow for the Sintel dataset is insignificant,

the FlowNet2 optical flow predictions on the YMB dataset are more accurate

around the boundaries of the moving objects due to the FlowNet2 model archi-

tecture specializing in small displacements [23]. Despite Classic+NL optical

predictions having an EPE difference of ≈ 4, the mAP difference when com-

pared to the other methods was only ≈ 0.03. This is due to the fact that the

YMB dataset contains test samples that do not obey the underlying optical

flow assumptions, such as brightness constancy.

5.2.3 Fusion methods

The next evaluation to consider is the different fusion techniques used in the

decoder network. This evaluation was performed exclusively on the motion

boundaries experiment, as seen in Table 5.1. Due to the time and resource
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cost of having to train the decoder network on each fusion technique, the

object boundary experiments were only performed using the residual fusion

technique.

Referring back to Table 5.1, it is shown that the fusion methods rank as-

cendantly in terms of mAP performance as: vanilla fusion, selection fusion,

and residual fusion. Residual fusion and selection fusion both achieve better

scores than the baseline, with 0.744 and 0.722 mAP respectively. It is impor-

tant to note that the baseline input includes the backward optical flow and the

warping error associated with the input optical flow in addition to the inputs

used in this thesis.

5.2.4 Dynamic and static fusion

The concept of using dynamic and static input to detect motion boundaries is

not new. The work from [51] did so with the use of the random forest decision

trees model. The ultimate purpose of this evaluation is analyzing the effects of

introducing a dynamic input in addition to a static input to produce a static

output with the detection of object boundaries.

Summarized in Table 5.3, it is clearly shown that introducing a dynamic

signal in addition to a static signal improves the results of the experiment.

Introducing optical flow in addition to the raw frame input improved results

by ≈ 0.03 mAP. This demonstrates that different signals provide information

that cannot be gathered from static signals and fusing them translates into

improvements in static output tasks.
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Figure 5.4: The averaged precision-recall curves of the object boundaries ap-

proaches on the VSB100 dataset. The baseline HED is the spatial stream

fine-tuned on all the datasets: FlyingChairs, FlyingThings3D, Monkaa, and

VSB100. HED (FC+VSB100) represents the mAP of the HED network fine-

tuned on the FlyingChairs dataset and VSB100 dataset only. RF indicates

that residual fusion was used in the model. Flow indicates that the dynamic

stream input was optical flow, while RGBFlow indicates the dynamic stream

input was a colour-mapped optical flow prediction.
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5.3 Discussion

The purpose of this section is to delve deeper into the evaluations that were

provided above. The section first discusses the implications of optical flow per-

forming better than RGB flow, then moves on to discuss the results associated

with the fusion methods, and finally describes the improvements associated

with fusing dynamic and static inputs to produce object boundaries.

As seen earlier in Section 5.2.1, the network produced better results when

the input was optical flow rather than RGB flow input. The reason behind this

performance boost is the information lost when optical flow is mapped to a

RGB image. Specifically, the boundaries of moving objects and discontinuities

in optical flow become colours. Depending on the optical flow vector direction

and intensity, the colours produced blend together despite that the vectors

may belong to different moving objects in the scene.

In Section 5.2.2, the motion boundary estimation results improved as the

optical flow prediction input improved. This outcome is due to the increase in

accuracy of the optical flow prediction which directly translates to an increase

in the detection of objects in motion in the scene. The degree of improvement

in mAP is highly contingent on the data obeying the underlying optical flow

assumptions, which can be seen in Figure 5.5.

In Section 5.2.3, the evaluations using the different fusion methods showed

that residual fusion and selection fusion far outperformed vanilla fusion. This

result can be attributed to the difficulty in training a deep network to fuse

learned features in earlier layers together to produce a more refined result.

In comparison, the selection fusion method produced better results than the

vanilla fusion method and outperformed the state-of-the-art method. Selection

52



fusion uses the domain knowledge that motion boundaries are a subset of

object boundaries, and produces masks that selectively amplify and suppress

pixels in the previously predicted motion and object boundaries. Selection

fusion fails when the optical flow assumption is not satisfied in the input

optical flow, predicting edges despite the optical flow input being incorrect.

The incorrectly predicted edges are then selected due to the max operation,

which forces the network to assume that the edge prediction in the dynamic

encoder to be the correct edge pixels.

On the other hand, residual fusion seems to alleviate issues that arise from

inputs where the optical flow assumptions are violated. With the residual

fusion method, the network learns a residual map to be combined with the

previously predicted edge map, which suppresses or amplifies certain edge pre-

dictions. The absence of the max operation enables a “softer” fusion, allowing

the network to increase the probabilities of edge pixels in certain areas rather

than enforcing a maximum operation over the entire edge prediction map.

Finally, the dynamic and static fusion section (Sec. 5.2.4) demonstrated the

impact of fusing dynamic features and static features in the decoder network

to produce improved object boundaries. A dynamic input alongside a static

input aides the network in suppressing edges that may be related to textures,

and increasing the edge probability of pixels related to moving objects in the

scene. This is evident in the examples provided in Figure 5.6.
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Figure 5.5: Examples of the test set output of the motion boundaries exper-

iments. The first example demonstrates the importance of the static output

when the optical flow fails. The second examples illustrates the importance

of optical flow when a static input alone would not suffice to produce the cor-

rect motion boundaries. The third example illustrates the combination of the

static and dynamic stream in order to produce a refined motion boundary.
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Figure 5.6: Examples of the object boundary VSB100 test set. In all the

examples provided, the output is produced through a residual fusion decoder

network. The addition of the dynamic stream suppresses the edge probabilities

found within the objects.
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Chapter 6

Conclusion

This chapter summarizes the work presented in this thesis (Sec. 6.1) and pro-

vides a brief overview of directions for future work (Sec. 6.2).

6.1 Thesis summary

This thesis presented the fusion of static and dynamic features to produce

motion and object boundaries through three major contributions. Firstly,

training a dynamic encoder network which learns, using curriculum learning,

to produce a motion boundary prediction map output from an optical flow

input. Secondly, an ablative study for different feature fusion techniques that

includes a vanilla fusion, selection fusion, and residual fusion method. Thirdly,

an encoder and decoder network architecture which learns to fuse dynamic and

static features to produce a more refined object or motion boundary prediction

map, depending on the target task.

This work addresses the issue of feature fusion to produce object and mo-

tion boundaries. Compared to the state-of-the-art approaches, the motion
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boundary approach presented in this thesis produced better results and re-

quired less inputs. In terms of the object boundary approach presented, the

results are systematically higher than those presented in [52] due to the incor-

poration of the dynamic and static fusion.

The results revealed that fusing dynamic and static features through resid-

ual fusion provides improved results compared to those based on a single signal.

Another important finding is that the optical flow encoded as a 2D feature map

rather than RGB produces better results despite being more difficult to train.

The contributions from this thesis are implemented in the Caffe [26] deep

learning framework.

6.2 Future work

There are multiple directions to expand on the current work for different tasks

as well as potential improvements on the technical approach.

In terms of technical approach, the state-of-the-art ConvNet architecture

[28] employs multiple, multi-scale copies of the HED network and fuses the

outputs of the networks to produce a more precise object boundaries prediction

map. This approach still relies on single, static images, and would likely benefit

from using dynamic inputs along with static inputs to produce more refined

outputs and improve on the benchmark.

Another improvement of the technical approach is incorporating side out-

puts in the decoder network similar to the encoder network side outputs. These

side outputs may refine the decoder network outputs further and allow the net-

work to train faster and potentially produce more accurate results.

The work in this thesis experimented with the object and motion bound-

aries detection task. While this approach provided improvements in these
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tasks, the approach may be used to potentially improve tasks that deal with

static and dynamic inputs. An example of such tasks is the motion and object

segmentation tasks, where motion segmentation is a subset of object segmen-

tation and motion segmentation is a function of dynamic input while object

segmentation is a function of static input.
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