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Abstract

Instability of inclined fluid-film flow with substrate filtration

Master of Science 2014

Hom Nath Kandel

Applied Mathematics

Ryerson University

Gravity-driven flows of thin fluid films with a free surface along a porous substrate occur in many

important circumstances found in industry and natural settings. In this thesis a model for such flows is

derived by coupling the Navier-Stokes equations governing the clear flow in the fluid film with Darcy’s

law for the filtration of fluid through the porous medium. A linear stability analysis is conducted and

the effect of various parameters on the state of neutral stability is investigated. A simplified model is

developed by reducing the dimensionality of the problem, which is then employed in order to determine

the nonlinear effects on the stability of the equilibrium flow.
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Chapter 1

Introduction

1.1 Background

Fluid films with a free surface flowing down an inclined plane are relevant in many natural and industrial

settings. These flows are subject to hydrodynamic instability resulting in interfacial waves exhibiting

interesting and complicated dynamical behaviour. The study of this problem has fascinated many

researchers due to its conceptual simplicity, rich dynamical phenomenology and technological relevance

[1-5].

The pioneering experiments simulating the development of interfacial waves in film flow over an

inclined plane were performed by Kapitza in 1948 [5], and additional work was then done by Kapitza

and Kapitza in 1949. These investigations opened a new horizon for systematic study in this field.

Kapitza and Kapitza performed experimental as well as theoretical investigations and their theory was

built upon the intuitive concept of balancing work and energy supply. They identified a dimensionless

number combining surface tension, kinematic viscosity and gravitation. This parameter is known as the

Kapitza number and is useful in the study of the formation of interfacial waves.

More detailed theoretical investigations were later carried out by Benjamin [6] and Yih [7] who

investigated the long wave instability of a falling film on an inclined plane. Resorting to linear stability

analysis, Yih employed the Orr-Sommerfeld equation to determine the critical conditions for the onset

of instability.

Research on inclined flow usually assumes smooth impermeable substrates, thus the no-slip and

no-penetration conditions are applied. However in many realistic situations the substrate is porous or

rough. Examples are found in food manufacturing, coating of photographic emulsions, the application

of protective paints and so on. Consequently, the stability analysis of a falling film on an inclined porous

plane is currently a developing subject. A theoretical model can be developed based on the assumption

of slow filtration flow due to low permeability. This allows for the decoupling of the dynamics of the clear

fluid from that of the fluid filtration through the porous medium. The result is what is referred to as a

“one-sided” model which consists of flow equations for the clear fluid with the effect of substrate perme-
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CHAPTER 1. INTRODUCTION 1.1. BACKGROUND

ability being incorporated by means of boundary conditions at the bottom with parameters describing

the permeability and porosity of the porous medium. The first such implementation was accomplished

by Pascal [8] who examined the linear stability of a thin Newtonian flow down a porous incline. He em-

ployed a slip condition at the fluid-porous medium interface based on the relation proposed by Beavers

and Joseph [9] under an assumption of low permeability resulting in negligible filtration velocity. In

another work Pascal [10] investigated the instability of a non-Newtonian flow down a porous incline by a

one-sided method. A one-dimensional model was obtained by depth integrating the long-wave equations

of motion. The onset of instability was determined by means of linear theory, and a nonlinear analysis

was used to study the roll waves that the instability generates.

Sadiq and Usha [11] extended the one-sided approach taken by Pascal to include the effect of surface

tension on Newtonian flow. They obtained a Benny-type equation governing the thickness of the fluid

layer. They carried out a weakly-nonlinear analysis and investigated how the permeability of the porous

medium affects the shape, amplitude and propagation speed of the interfacial waves. Samanta et al. [12]

implemented a weighted-residual method to eliminate the explicit dependence on the depth coordinate

and construct a one-dimensional model for liquid film on a slippery inclined plane. They investigated

the influence of slip length on the development of waves in linear and nonlinear regimes and found that

a slippery substrate hastens the onset of instability, and under supercritical conditions it contributes to

the increase in the amplitude of waves. Pascal and D’Alessio [13] have investigated the instability in

gravity-driven flow over uneven permeable surfaces with periodic undulations. A linear stability analysis

and nonlinear simulations of the evolution of perturbed steady flow were conducted to determine the

critical conditions. It is shown that the destabilizing role of bottom topography is strongly dependent

on the surface tension, inclination of the bottom and the wavelength of the undulations.

One-sided models have also been used to investigate non-isothermal flows along porous inclines.

A study of the influence of thermocapillary effects on the flow of a film along a uniformly heated

permeable incline was undertaken by Sadiq et al. [3] within the framework of long-wave linear stability

analysis. An Orr-Sommerfeld system was obtained and solved asymptotically as well as numerically. The

effect of heating and bottom permeability on the phase speed and the growth rate of perturbations was

investigated. This problem was also considered by Ogden et al. [14], but they in addition include bottom

topography in the form of periodic undulations. Furthermore, they implement a weighted-residual

method to gain reduction in space dimensionality and perform nonlinear numerical simulations of the

resulting equations. They found that increasing the bottom permeability monotonically destabilizes the

flow. Bottom waviness stabilizes the flow if surface tension is weak but it is a destabilizing factor for

strong surface tension.

In order to accurately describe cases with significant substrate permeability, a theoretical model

must include the flow thorough the porous medium and couple it with that of the overlying film. This

problem has received considerable attention in the study of Poiseuille flow through closed channels with

porous walls. Several models have been proposed and utilised. A summary of these methods can be

found, for example, in [15]. It turns out that some sort of criticism can be levelled at each of the

current methodologies regarding the validity of the assumptions made, and the problem of modelling

flow at a porous boundary remains open. In the absence of a clear consensus, different investigations of

2



CHAPTER 1. INTRODUCTION 1.1. BACKGROUND

free-surface flows with a permeable substrate have resorted to various models.

Liu and Liu [16] in their investigation of flow down an inclined porous medium, have considered

a coupled system consisting of the Navier-Stokes equations for the clear fluid and Darcy’s law for the

filtration flow in the porous medium. At the interface the Beavers-Joseph [9] condition is prescribed. In

connection with linear stability theory, they obtain the corresponding Orr-Sommerfeld type equations,

which are solved numerically by a Chebyshev collocation method. Conclusions are drawn regarding the

significant influence of the permeability and thickness of the porous layer, as well as the Beavers-Joseph

constant.

Thiele et al. [17] examined the influence of a heated porous substrate on the stability of the liquid film.

Their coupled clear-filtration flow model involves the Darcy-Brinkman equation for the filtration. This

equation extends Darcy’s law by including an additional viscous term and thus achieving second order

in spatial derivatives. Thiele et al. proceed by reducing the full system to a Benney-type equation for

the evolution of the film thickness which captures the interplay between convective and thermocapillary

instabilities. An important conclusion resulting from this study is that the accuracy of a one-sided model

is restricted to sufficiently low permeability levels or sufficiently thin porous substrates.

Goyal et al. [18] explored the different instability modes of a pressure-driven two-layer Newtonian

flow confined between a rigid wall and a porous layer. They employed the Darcy-Brinkman equation

to govern the flow through the porous medium. Kumar et al. [19] also studied the instabilities of a

two-layer flow over a porous substrate, but assumed a Couette flow generated by the motion of the rigid

wall above the fluid layers.

Recently, Samanta et al. [4] investigated the stability of a falling film on a saturated porous inclined

plane by using a continuum approach. As such, they applied a composite formulation to describe

the entire clear fluid-porous medium system. This consists of a single set of equations with an assumed

vertical variation of the properties of the medium. They used a weighted-residual technique and obtained

equations governing the flow rate and the entire flow thickness. The results of a linear stability analysis

of these equations have been compared with the results from the Orr-Sommerfeld problem. A nonlinear

analysis focused on periodic waves and solitary waves was also carried out. The effect of the porous

medium on the stability of the film has been found to be strongly dependent on the choice of the control

parameter.

In this thesis we examine the surface instability of fluid-film flow down a porous incline, and focus on

cases where the inclination is sufficiently steep for the instability to be associated with low to moderate

Reynolds numbers. We model the filtration flow in the substrate by Darcy’s law and couple it to the film

flow by prescribing the variant of the Beavers-Joseph condition proposed by Jones [20]. In chapter 2 we

set up the governing equations. In chapter 3 we carry out a linear stability analysis of the full equations.

In chapter 4 we develop a simplified model based on reduction in the space dimensionality and verify

its accuracy by comparing the results of the linear stability analysis with those from the full equations.

We perform numerical simulations on the reduced model and investigate how nonlinear effects impact

the stability of the flow. This work has been reported in [21].
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Figure 1.1: Problem setup.

1.2 Description of the problem

Figure 1.1 illustrates the physical model of our target study. We consider the gravity-driven two-

dimensional laminar flow of an incompressible Newtonian fluid down an infinitely long porous slab with

planar surfaces and thickness d∗. The porous slab is saturated with the fluid and inclined at an angle θ

with respect to the horizontal. An (x∗, z∗) coordinate system is employed with the fluid-porous medium

interface located at z∗ = 0. The x∗−axis points in the downhill direction and the z∗−axis points upward.

The porous medium is assumed homogeneous, the flow is isothermal and the bottom surface of the porous

layer is assumed to be impermeable. The thickness of the falling film is denoted by h∗(x∗, t∗). The fluid

velocity is denoted by u∗ = (u∗, w∗)T , with the subscript p marking the filtration velocity in the porous

medium. We use the asterisk superscript to indicate the dimensioned variables, and then discard it for

the nondimensional variables scaled as described in the next chapter.
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Chapter 2

Governing Equations

2.1 Dimensional equations

Equations of motion for the clear fluid flow shown in Figure 1.1 are obtained from conservation of

mass which yields the continuity equation, and conservation of momentum given by the Navier-Stokes

equations. The x−momentum equation is given by

∂u∗

∂t∗
+ u∗

∂u∗

∂x∗
+ w∗ ∂u

∗

∂z∗
= −1

ρ

∂p∗

∂x∗
+ g sin θ +

µ

ρ

(
∂2u∗

∂x∗2
+
∂2u∗

∂z∗2

)
, (2.1)

while the z− momentum equation is expressed as

∂w∗

∂t∗
+ u∗

∂w∗

∂x∗
+ w∗ ∂w

∗

∂z∗
= −1

ρ

∂p∗

∂z∗
− g cos θ +

µ

ρ

(
∂2w∗

∂x∗2
+
∂2w∗

∂z∗2

)
. (2.2)

Here p∗ is the pressure, g is the acceleration due to gravity, ρ is the density of the fluid and µ is the

viscosity. The continuity equation can be written as

∂u∗

∂x∗
+
∂w∗

∂z∗
= 0. (2.3)

We describe momentum balance in the filtration flow through the porous medium by Darcy’s law.

This model is based on the intrinsic assumption of a proportionality between flow rate and applied

pressure. For the inclined filtration flow referred to in Figure 1.1 Darcy’s law is expressed as

ρ

φ

∂u∗p
∂t∗

= −
∂p∗p
∂x∗
− µ

κ
u∗p + gρ sin θ (2.4)

ρ

φ

∂w∗
p

∂t∗
= −

∂p∗p
∂z∗
− µ

κ
w∗
p − gρ cos θ, (2.5)

5



CHAPTER 2. GOVERNING EQUATIONS 2.1. DIMENSIONAL EQUATIONS

where p∗p∗ is the intrinsic volume averaged pressure, φ is the porosity of the porous medium and κ denotes

its permeability.

The continuity equation for the filtration flow is given by

∂u∗p
∂x∗

+
∂w∗

p

∂z∗
= 0. (2.6)

Conditions at the free surface of the fluid film are obtained from continuity of force and conservation

of mass. Now, the total stress tensor associated with the flow is given by
−→−→s = −p∗

−→−→
I +
−→−→τ , where

−→−→τ = µ

[
2∂u

∗

∂x∗
∂u∗

∂z∗ + ∂w∗

∂x∗

∂u∗

∂z∗ + ∂w∗

∂x∗ 2∂w
∗

∂z∗

]
and

−→−→
I =

[
1 0

0 1

]
.

The stress vector acting on surface z∗ = h∗(x∗, t∗) is then
−→−→s n̂, where

n̂ =
1√

1 +
(
∂h∗

∂x∗

)2
[
−∂h

∗

∂x∗

1

]

is the unit normal vector. We assume the ambient gas above the clear fluid film to be dynamically

passive. Consequently, the normal force exerted by the flow on the surface is balanced by surface tension

with no contribution from the ambient gas. This is expressed mathematically as
(−→−→s n̂) · n̂ = γC, where

γ is the surface tension and C measures the mean curvature of the surface. Expanding this condition we

obtain

−p∗ +
2µ

1 +
(
∂h∗

∂x∗

)2
[(

∂h∗

∂x∗

)2
∂u∗

∂x∗
+
∂w∗

∂z∗
− ∂h∗

∂x∗

(
∂u∗

∂z∗
+
∂w∗

∂x∗

)]

=
γ ∂

2h∗

∂x∗2(
1 +

(
∂h∗

∂x∗

)2) 3
2

at z∗ = h∗. (2.7)

If we further assume that the surface tension is constant, then the tangential component of the force

exerted by the flow on the surface must equal zero, and we have
(−→−→s n̂) · t̂ = 0, where

t̂ =
1√

1 +
(
∂h∗

∂x∗

)2
[

1
∂h∗

∂x∗

]

is the unit tangent vector to the surface. It then follows that

µ

1 +
(
∂h∗

∂x∗

)2
[
−4

∂h∗

∂x∗
∂u∗

∂x∗
+

(
1−

(
∂h∗

∂x∗

)2
)(

∂u∗

∂z∗
+
∂w∗

∂x∗

)]
= 0 at z∗ = h∗. (2.8)

To obtain a kinematic condition for the surface, we assume that evaporation is negligible. Conser-
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CHAPTER 2. GOVERNING EQUATIONS 2.2. NON-DIMENSIONAL EQUATIONS

vation of mass then dictates that fluid particles on the surface of the fluid layer stay on the surface as

the layer flows. Consequently, the vertical component of the fluid velocity at the surface must equal the

material derivative of the height of the surface. This condition is expressed as

w∗ =
Dh∗

Dt∗
≡ ∂h∗

∂t∗
+
∂h∗

∂x∗
u∗ at z∗ = h∗. (2.9)

At the fluid-porous medium interface, located at z∗ = 0, we assume continuity of normal stress which

is expressed as

−p∗ + 2µ
∂w∗

∂z∗
= −p∗p + 2µ

∂w∗
p

∂z∗
at z∗ = 0. (2.10)

Here we also impose continuity of vertical velocity

w∗ = w∗
p at z∗ = 0. (2.11)

The slip-velocity condition at a fluid-porous medium interface originally proposed by Beavers and Joseph

[9] stipulates a proportionality between velocity shear and the difference between the clear fluid velocity

and filtration velocity at the interface. For our problem we will employ the modified version proposed

by Jones [20] which replaces the velocity shear by shear stress and is expressed as

∂u∗

∂z∗
+
∂w∗

∂x∗
=
αBJ√
κ

(
u∗ − u∗p

)
at z∗ = 0, (2.12)

where αBJ is the Beaver-Joseph parameter, an empirical quantity dependent on the pore-space geometry

of the porous medium. Experimental results [9] indicate that this parameter should be assigned values

between 0.1 and 4.

At the bottom of the porous layer we assume an impermeable surface and consequently the appro-

priate boundary condition is

w∗
p = 0 at z∗ = −d∗, (2.13)

where d∗ is the thickness of porous medium.

2.2 Non-dimensional equations

The steady and laterally-uniform solution to our model can be expressed as a relation between the

discharge and thickness of the clear film, involving the properties of the fluid and the inclination and

permeability of the porous substrate. The possibilities therefore are to regard the discharge as the

prescribed quantity, or to consider the thickness as being given. In the latter case, the prescribed film

thickness can be used as the vertical length scale. However, in this study we choose to assume that

a discharge is prescribed. In this case, the resulting film thickness of the steady and uniform flow

depends on the permeability of the substrate, and as a result it would not be an appropriate choice for

a length scale. This is due to the fact that it would then be difficult to determine the actual effect of

7



CHAPTER 2. GOVERNING EQUATIONS 2.2. NON-DIMENSIONAL EQUATIONS

the permeability on the results. For the vertical length scale we instead employ

H =

(
3µQ

ρg sin θ

)1/3

,

where Q is the prescribed discharge. We point out that H coincides with the Nusselt thickness of flow

over an impermeable surface. For the cases considered in our study, this quantity is of the same order

of magnitude as the thickness of the uniform film flowing over a permeable substrate. Consequently,

H is a characteristic film thickness for our problem. Another possibility for the vertical length scale is

the thickness of the porous slab. However, this length may not be of the same order of magnitude as

the clear film thickness and consequently, when scaled this variable may be equal to large values which

would complicate the analysis. The velocity scale will consequently be U = Q/H, with the pressure

being scale by ρU2. In the horizontal direction we employ a different length scale and use δ to denote

the aspect ratio of vertical to horizontal length scales. Dividing by the velocity scale gives us the time

scale H/(Uδ). The use of different length scales will be relevant when we make approximations based

on a long-wave assumption.

We employ the scaling described above to non-dimensionalize the equations governing the film flow

and use the notation without the asterisk to denote the scaled variables. As such, the continuity equation

becomes

∂(Uu)

∂(Hδ x)
+
∂(δUw)

∂(Hz)
= 0

which, when simplified becomes

∂u

∂x
+
∂w

∂z
= 0. (2.14)

The momentum equations in the x and z directions transform into respectively

∂(Uu)

∂( HUδ t)
+ (Uu)

∂(Uu)

∂(Hδ x)
+ (δUw)

∂(Uu)

∂(Hz)
= −1

ρ

∂(ρU2p)

∂(Hδ x)
+ g sin θ +

µ

ρ

(
∂2(Uu)

∂(Hδ x)2
+
∂2(Uu)

∂(Hz)2

)

and

∂(δUw)

∂( HUδ t)
+ (Uu)

∂(δUw)

∂(Hδ x)
+ (δUw)

∂(δUw)

∂(Hz)
= −1

ρ

∂(ρU2p)

∂(Hz)
− g cos θ +

µ

ρ

(
∂2(δUw)

∂(Hδ x)2
+
∂2(δUw)

∂(Hz)2

)
.

These simplify to become

δRe

(
∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z

)
= −δRe∂p

∂x
+ 3 + δ2

∂2u

∂x2
+
∂2u

∂z2
(2.15)

8
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δ2Re

(
∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z

)
= −Re∂p

∂z
− 3 cotθ + δ3

∂2w

∂x2
+ δ

∂2w

∂z2
, (2.16)

where Re is the Reynolds number defined as Re = ρQ
µ .

In the filtration flow through the porous substrate we scale the filtration velocity by Up = κU
H2 and

the pressure by Pp = ρU2

Reδ . Scaling the conservation of mass equation for the filtration flow gives

∂(Upup)

∂(Hδ x)
+
∂(δUpwp)

∂(Hz)
= 0

which reduces to

∂up
∂x

+
∂wp
∂z

= 0. (2.17)

Applying the scaling to the x−momentum equation for the filtration flow gives

ρ

φ

∂(Upup)

∂( HUδ t)
= −∂(Pppp)

∂(Hδ x)
− µ

κ
(Upup) + gρ sin θ

which simplifies to

Da2Reδ

φ

∂up
∂t

= −∂pp
∂x
− up + 3, (2.18)

where Da =
√
κ/H is the Darcy number which measures the permeability of the porous medium to fluid

filtration. And the scaled z−momentum equation in the porous substrate is given by

ρ

φ

∂(δUpwp)

∂( HUδ t)
= −∂(Pppp)

∂(Hz)
− µ

κ
(δUpwp)− gρ cos θ

from which we obtain

Da2Reδ3

φ

∂wp
∂t

= −∂pp
∂z
− δ2wp − 3δ cot θ. (2.19)

Scaling the condition of continuity of normal force at the surface we obtain

ρU2p − 2µ(
1 +

(
∂(Hh)

∂(Hδ x)

)2)
(∂(Hh)

∂(Hδ x)

)2
∂(Uu)

∂(Hδ x)
+
∂(δUw)

∂(Hz)
− ∂(Hh)

∂(Hδ x)

(
∂(Uu)

∂(Hz)
+
∂(δUw)

∂(Hδ x)

)

+
γ ∂

2(Hh)

∂(Hδ x)
2(

1 +
(
∂(Hh)

∂(Hδ x)

)2) 3
2

= 0 at z = h(x, t).

9
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Simplified, this equation can be written as

p =
2δ

Re
[
1 + δ2

(
∂h
∂x

)2]
[
δ2
(
∂h

∂x

)2
∂u

∂x
+
∂w

∂z
− ∂h

∂x

∂u

∂z
− δ2 ∂h

∂x

∂w

∂x

]

− δ2We[
1 + δ2

(
∂h
∂x

)2]3/2 ∂2h∂x2
at z = h(x, t), (2.20)

where We =
(

3
Re5 sinθ

)1/3
Ka and Ka denotes the Kapitza number which is the scaled surface tension

given by Ka = γ/(g1/3ρν4/3), with γ being the surface tension and ν the kinematic viscosity, which

equals µ/ρ.

Scaling the tangential component of the continuity of force condition at the surface yields

µ

1 +
(
∂(Hh)

∂(Hδ x)

)2
−4

∂(Hh)

∂(Hδ x)

∂(Uu)

∂(Hδ x)
+

1−

(
∂(Hh)

∂(Hδ x)

)2
(∂(Uu)

∂(Hz)
+
∂(δUw)

∂(Hδ x)

) = 0 at z = h(x, t),

which then gives[
1− δ2

(
∂h

∂x

)2
](

∂u

∂z
+ δ2

∂w

∂x

)
− 4δ2

∂h

∂x

∂u

∂x
= 0 at z = h(x, t). (2.21)

The kinematic condition becomes

δUw =
∂(Hh)

∂( HUδ t)
+
∂(Hh)

∂(Hδ x)
(Uu) at z = h.

This, upon simplifying, gives

w =
∂h

∂t
+ u

∂h

∂x
at z = h. (2.22)

Scaling the continuity of normal stress condition at the fluid-porous interface leads to

−ρU2p+ 2µ
∂(δUw)

∂(Hz)
= −ρU

2

δRe
pp + 2µ

∂(δUpwp)

∂(Hz)
at z = 0,

and simplifying results in

δRep− 2δ2
∂w

∂z
= pp − 2Da2δ2

∂wp
∂z

. (2.23)

The scaled continuity of vertical velocity condition is

w = Da2wp at z = 0. (2.24)

10
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And the shear stress condition at z = 0 is

∂(Uu)

∂(Hz)
+
∂(δUw)

∂(Hδ x)
=
αBJ√
κ

(Uu− Upup)

which gives

∂u

∂z
+ δ2

∂w

∂x
=
αBJ
Da

(u−Da2up) (2.25)

At the bottom of the porous substrate, i.e. at z = −d,

wp = 0, (2.26)

where d = d∗/H and is thus the ratio of the thickness of the porous medium and a characteristic thickness

of the clear fluid film.

As it will become apparent in the later chapters, qualitative changes occur in the results of our

analysis for sufficiently large values of the Darcy number. It is thus important to specify, at least in

terms of magnitude, the upper limit of the range of realistic values of this parameter. Now, as stated

above, Da =
√
κ/H, so we first determine how small the characteristic film thickness, H, can be. It

turns out that inertial instability, which is the focus of our investigation, can be important even in very

thin film flows, with the thickness being significantly smaller than a millimetre [5]. Next, regarding

large permeability values, we point out that fibrous materials can display high levels of hydrodynamic

conductivity. The observations from several experimental investigations involving fibrous porous media,

as tabulated by Jackson and James [22], indicate that such materials can have permeabilities of order of

magnitude as large as that of 1 mm2. Therefore, with H =1 mm for example, realistic Darcy numbers

extend up to values of the same order of magnitude as 1.

11



Chapter 3

Linear Stability Analysis

The equations of motion (2.14) - (2.19) together with the boundary conditions (2.20) - (2.26) provide

a mathematical model for film flow with substrate filtration. The model admits a simple equilibrium

solution which corresponds to the steady flow of a fluid film with uniform thickness. The question

is, however, whether this flow can persist or if it is hydrodynamically unstable. In this chapter we

investigate the stability of the steady flow by means of a linear stability analysis. This theory determines

the temporal growth rate of infinitesimal perturbations imposed on the flow and thus predicts under

what conditions these are amplified in time.

3.1 Equilibrium solution

If we set the t and x derivatives to zero in our governing equations, (2.14) - (2.26), it becomes evident

that the problem is satisfied by w ≡ 0, wp ≡ 0, up ≡ 3, and the remaining dependent variables satisfying

the differential equations

∂2u

∂z2
= −3,

∂p

∂z
= −3

cot θ

Re
and

∂pp
∂z

= −3δ cot θ

with conditions at z = hs given by

∂u

∂z
= 0 and p = 0,

where hs is a constant to be determined and corresponds to the uniform thickness of the equilibrium

flow. At z = 0 the conditions reduce to

∂u

∂z
=
αBJ
Da

(
u− 3Da2

)
and δRe p = pp.

12



CHAPTER 3. LINEAR STABILITY ANALYSIS 3.2. LINEAR STABILITY THEORY

Solving this problem we obtain

p = ps(z) ≡ 3
cot θ

Re
(hs − z) (3.1)

pp = pps(z) ≡ 3δ cot θ(hs − z) (3.2)

and

u = us(z) ≡ 3hsz −
3

2
z2 + 3

Da

αBJ
hs + 3Da2. (3.3)

To determine the value of hs we use the fact that our scaling is based on the prescribed flow rate.

This requires the scaled flow rate to be unity, i.e.∫ hs

0

us(z)dz = 1.

This leads to

h3s + 3
Da

αBJ
h2s + 3Da2hs − 1 = 0, (3.4)

which can be solved for hs to give

hs =
1

2rαBJ
(r2 − 2rDa+ 4Da2 − 4Da2α2

BJ),

where

r =

(
12 Da3αBJ

2 + 4αBJ
3 − 8 Da3 + 4αBJ

3/2

√
4 Da6αBJ3 − 3 Da6αBJ + 6 Da3αBJ2 + αBJ3 − 4 Da3

)1/3

.

In the next section we study the stability of the equilibrium solution given by w ≡ 0, wp ≡ 0, up ≡ 3,

u = us(z), p = ps(z), pp = pps(z) and h = hs.

3.2 Linear stability theory

We consider the perturbed equilibrium solution expressed as

h = hs + η(x, t), u = us(z) + ũ(x, z, t), w = w̃(x, z, t), p = ps(z) + p̃(x, z, t),

up = 3 + ũp(x, z, t), wp = w̃p(x, z, t) and pp = pps(z) + p̃p(x, z, t),

where η and the quantities with the tildes are the added infinitesimal perturbations. Introducing this per-

turbed state into equations (2.14) - (2.26) and linearizing with respect to the infinitesimal disturbances,

13
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we obtain

∂ũ

∂x
+
∂w̃

∂z
= 0 (3.5)

δRe

(
∂ũ

∂t
+ us

∂ũ

∂x
+ w̃

∂us
∂z

)
= −δRe∂p̃

∂x
+ δ2

∂2ũ

∂x2
+
∂2ũ

∂z2
(3.6)

δ2Re

(
∂w̃

∂t
+ us

∂w̃

∂x

)
= −Re∂p̃

∂z
+ δ3

∂2w̃

∂x2
+ δ

∂2w̃

∂z2
(3.7)

∂ũp
∂x

+
∂w̃p
∂z

= 0 (3.8)

Da2Reδ

φ

∂ũp
∂t

= −∂p̃p
∂x
− ũp (3.9)

and

Da2Reδ3

φ

∂w̃p
∂t

= −∂p̃p
∂z
− δ2w̃p. (3.10)

The boundary conditions for these perturbation equations, evaluated at z = hs, are

p̃− 3

Re
cot θη − 2δ

Re

∂w̃

∂z
+ δ2We

∂2η

∂x2
= 0 (3.11)

−3η +
∂ũ

∂z
+ δ2

∂w̃

∂x
= 0 (3.12)

and

w̃ =
∂η

∂t
+ us

∂η

∂x
. (3.13)

At z = 0 the conditions are

δRep̃− 2δ2
∂w̃

∂z
= p̃p − 2Da2δ2

∂w̃p
∂z

(3.14)

∂ũ

∂z
+ δ2

∂w̃

∂x
=
αBJ
Da

(
ũ−Da2ũp

)
(3.15)

14
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and

w̃ = Da2w̃p. (3.16)

And finally, at z = −d the boundary condition is

w̃p = 0. (3.17)

Into the linearized perturbation equations we introduce normal modes according to

(ũ, ũp, w̃, w̃p, p̃, p̃p, η) = (û(z), ûp(z), ŵ(z), ŵp(z), p̂(z), p̂p(z), η̂) eik(x−ct),

where k is a real positive quantity representing the wavenumber of the perturbation and c is a complex

quantity whose real part is the phase speed of the perturbation while the imaginary part multiplied by

k is the temporal growth rate. The equations governing the amplitudes of the normal modes are

Dŵ + ikû = 0 (3.18)

δRe[ik(us − c)û+Dusŵ] = −ikδRep̂+D2û− k2δ2û (3.19)

ikδ2Re(us − c)ŵ = −ReDp̂+ δD2ŵ − k2δ3ŵ (3.20)

Dŵp + ikûp = 0 (3.21)

(
ikc

Da2Reδ

φ
− 1

)
ûp = ikp̂p (3.22)

(
ikc

Da2Reδ3

φ
− δ2ŵp

)
= Dp̂p, (3.23)

where D is a differential operator denoting differentiation with respect to z. Accompanying these equa-

tions we have boundary conditions evaluated at z = hs expressed as

p̂− 3

Re
cot θη̂ − 2δ

Re
Dŵ − k2δ2Weη̂ = 0 (3.24)

−3η̂ +Dû+ ikδ2ŵ = 0 (3.25)

ŵ = ikη̂(us − c). (3.26)
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The boundary conditions at z = 0 are

δRep̂− 2δ2Dŵ = p̂p − 2Da2δ2Dŵp (3.27)

Dûp + δ2ikŵp =
αBJ
Da

(
û−Da2ûp

)
(3.28)

and

ŵ = Da2ŵp. (3.29)

At z = −d we have

ŵp = 0. (3.30)

Eliminating p̂ from equations (3.19) and (3.20) we obtain

ikδReDusû+
[
ikδRe(us − c) + k2δ2

]
Dû+ReδDusDŵ +ReδD2usŵ −D3û

= −k2δ3Re(us − c)ŵ − ikδ2D2ŵ + ik3δ4ŵ. (3.31)

Similarly, eliminating p̂p from equations (3.22) and (3.23) yields(
1− ikcReδ

φ

)
Dûp = ik

(
ikcRe

δ3

φ
+ δ2

)
ŵp. (3.32)

Eliminating p̂ and p̂p from the boundary conditions gives

D2û− δ2k2û− 3iδk cot θη̂ − 2iδ2kDŵ − iδ3k3ReWeη̂ −

Reδ [ik(us − c)û−Dusŵ] = 0 at z = hs, (3.33)

D2û− δk2û−Reδ [ik(us − c)û+Dusŵ]− 2iδ2kDŵ

=
Reδ

φ
ickûp − ûp − 2iδ2kDa2Dŵ at z = 0. (3.34)

Equations (3.18) and (3.21) can be eliminated by expressing the velocity disturbances in terms of

the stream function as

ũ =
∂ψ

∂z
, w̃ = −∂ψ

∂x
, ũp =

∂ψp
∂z

, w̃p = −∂ψp
∂x

.

Introducing the normal modes for the stream functions expressed as

(ψ,ψp) = (Ψ(z),Ψp(z)) e
ik(x−ct) ,
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leads to the following Orr-Sommerfeld type equations

D4Ψ−
[
iKRe(us − c) + 2K2

]
D2Ψ +

[
iK3Re(us − c) + iKReD2us +K4

]
Ψ = 0 , (3.35)

D2Ψp −K2Ψp = 0 , (3.36)

where K = kδ. Boundary conditions for these equations evaluated at z = hs are

D3Ψ−
[
iKRe(us − c) + 3K2

]
DΨ +

3iK cotθ + iK3ReWe

us − c
Ψ = 0 , (3.37)

D2Ψ +
3Ψ

us − c
+K2Ψ = 0 . (3.38)

At z = 0 the boundary conditions are

D3Ψ−
[
iKRe(us − c) + 3K2

]
DΨ + iKReDusΨ =

(
icKDa2Re

φ
− 1− 2K2Da2

)
DΨp , (3.39)

DΨ−Da2DΨp =
Da

αBJ
(D2Ψ +K2Ψ) , (3.40)

Ψ = Da2Ψp , (3.41)

while at z = −d we have

Ψp = 0 . (3.42)

We now proceed by eliminating Ψp(z) from this system as follows. Solving equation (3.36) we get

Ψp(z) = c1 cosh(Kz) + c2 sinh(Kz), (3.43)

where c1 and c2 are arbitrary constants. From (3.41) and (3.42) we obtained

c1 = −Ψp(0)

Da2
and c2 =

Ψp(0)

Da2
coth(Kd), (3.44)

and we therefore have

DΨp(0) =
K coth(Kd)

Da2
Ψ(0). (3.45)

This can be used to eliminate Ψp(z) from (3.39) and (3.40). As a result, we then have the following

problem for Ψ(z)

D4Ψ−
[
iKRe(us − c) + 2K2

]
D2Ψ +

[
iK3Re(us − c) + iKReD2us +K4

]
Ψ = 0 , (3.46)

D3Ψ−
[
iKRe(us − c) + 3K2

]
DΨ +

3iK cotθ + iK3ReWe

us − c
Ψ = 0 at z = hs (3.47)

D2Ψ +
3Ψ

us − c
+K2Ψ = 0 at z = hs (3.48)
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D3Ψ−
[
iKRe(us − c) + 3K2

]
DΨ+[

iKReDus −
(
icKDa2Re

φ
− 1− 2K2Da2

)
K

Da2
coth(Kd)

]
Ψ = 0 at z = 0 (3.49)

Da

αBJ
D2Ψ−DΨ +

(
Da

αBJ
K2 +K coth(Kd)

)
Ψ = 0 at z = 0. (3.50)

In order to carry out our stability analysis we must, for a given set of flow parameters (Re, Ka, Da, φ,

αBJ , d, cot θ), determine the growth rate of a particular perturbation distinguished by its wavenumber.

More specifically, we must obtain the corresponding value of c. If =(c) is negative the perturbation is

damped, while if =(c) is positive the perturbation is amplified. So, in dealing with the system given by

equations (3.46) - (3.50) c is also an unknown. We determine c by requiring that nontrivial solutions exist

for Ψ. Therefore, equations (3.46) - (3.50) comprise an eigenvalue problem with c being the parameter

to which characteristic values must be assigned.

3.3 Numerical solution

To calculate eigenvalues for the problem (3.46)-(3.50) we implement a Chebyshev collocation method.

We first transform the domain z ∈ (0, hs) to ξ ∈ (−1, 1) by employing the transformation

ξ =
2

hs
z − 1.

Consequently, the differential equation becomes

16

h4s
D4
ξΦ−

4

h2s

[
iKRe(us − c) + 2K2

]
D2
ξΦ +

[
iK3Re(us − c) + iKReD2

ξus +K4
]

Φ = 0 , (3.51)

where Dξ is a differential operator denoting differentiation with respect to ξ, Φ(ξ) denotes Ψ(z) in terms

of ξ and the equilibrium velocity in terms of ξ is given by

us =

(
−3

8
ξ2 +

3

4
ξ +

9

8

)
h2s + 3

Da

αBJ
hs + 3Da2. (3.52)

The boundary conditions at ξ = 1 are

8

h3s
D3
ξΦ−

2

hs

[
iKRe(us − c) + 3K2

]
DξΦ +

3iK cotθ + iK3ReWe

us − c
Φ = 0 , (3.53)

4

h2s
D2
ξΦ +

3Φ

us − c
+K2Φ = 0, (3.54)
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and at ξ = −1 the boundary conditions are

8

h3s
D3
ξΦ−

2

hs

[
iKRe(us − c) + 3K2

]
DξΦ

+

[
iKReDξus −

(
icKDa2Re

φ
− 1− 2K2Da2

)
K

Da2
coth(Kd)

]
Φ = 0, (3.55)

4

h2s

Da

αBJ
D2
ξΦ−

2

hs
DξΦ +

(
Da

αBJ
K2 +K coth(Kd)

)
Φ = 0. (3.56)

We now expand the dependent variable in terms of Chebyshev polynomials as Φ(ξ) =
∑N
j=1 ajTj−1(ξ)

where Tn(ξ) = cos(n arccos ξ), n = 0, 1, 2, . . . , N − 1. We discretise the ξ interval and evaluate the

differential equation at the interior grid points, and the boundary conditions at the end points. This

yields an N ×N algebraic system for the coefficients in the expansion, −→a = [a1, a2, . . . aN ]T , which can

be expressed in the form −→−→
L−→a = c

−→−→
M−→a ,

where
−→−→
L and

−→−→
M are N × N matrices which do not contain c. Characteristic values for the parameter

c were obtained numerically using the Matlab subroutine eig. However, this approach, i.e. solving the

algebraic eigensystem, provides N values for c, whereas the original system, (3.46) - (3.50) should have

a single value. More specifically, a particular perturbation should have a single growth rate for a given

set of flow parameters. To remedy this issue we proceed as follows. We calculate the eigenvalues of the

algebraic system for different values of N and find that for sufficiently large values, as N is increased

only one eigenvalue remains approximately constant. We select this value as the appropriate solution

for c. In all the cases that we considered this technique was successful, with N values between 10 and

15 proving to be sufficiently large.

To obtain results, for a given set of flow parameters, we iterate over the wavenumber and use our

numerical method to calculate the temporal growth rate. A useful illustration of the results is given by

the neutral stability curve in the Re−k plane which indicates the wavenumber with zero growth rate as a

function of the Reynolds number. This curve delineates the regions in the Re−k plane corresponding to

amplified or damped infinitesimal perturbations. The onset of instability for the flow corresponds to the

critical Reynolds number, Recrit, such that for smaller Re values all wavenumbers have a non-positive

growth rate, while for larger values there are wavenumbers with a positive growth rate indicating that

the flow is unstable.

It is evident from the formulation of the problem (3.46) - (3.50) that the only effect of the length

scale ratio, δ, is to stretch the neutral stability curve in the Re − k plane and thus does not affect the

critical Reynolds number for the onset of instability. We thus present curves for K = kδ as a function

of Re. We point out that 2π/K is the wavelength of the perturbation scaled with the characteristic film

thickness, H. In Figure 3.1 we present neutral stability curves for different Darcy numbers, including

Da = 0 which corresponds to the impermeable substrate case. It can be seen that for the smaller Da

values Recrit coincides with Re0 which denotes the intercept with the Re-axis and corresponds to the
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Figure 3.1: Neutral stability for different values of Da with cotθ = 1, Ka = 100, φ = 0.01, αBJ = 2, d =
1.

onset of instability of infinitely long perturbations (K = 0). However, for the larger Da values Recrit is

smaller than Re0. In other words, for sufficiently large permeability the onset of instability occurs by

means of a perturbation of finite length. The possibility of unstable positive wavenumbers at the onset

of surface instability has also been pointed out by Liu and Liu [16]. In the present work we investigate in

detail how this phenomenon is related to various parameters, including surface tension, and to nonlinear

effects.

As a verification of the numerical results we find that for the case Da = 0 the obtained value for

Recrit is a very close approximation of the accepted theoretical result 5
6 cotθ [6,7]. We have also obtained

an asymptotic solution of the eigenvalue problem as K → 0. More specifically, we consider perturbation

expansions in the equations (3.46)-(3.50) of the form

Ψ(z) = Ψ0(z) +KΨ1(z)

c = c0 +Kc1 ,

and obtain a hierarchy of problems for the different orders of K. For the O(1) problem, we get

D4Ψ0(z) = 0
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with boundary conditions

D3Ψ0(hs) = 0, (us(hs)− c0)D2Ψ0(hs) + 3Ψ0(hs) = 0

D3Ψ0(0) = 0,
Da

αBJ
D2Ψ0(0)−DΨ0(0) = 0

Solving this problem we get

Ψ0(z) = z2 + 2Da1z and c0 = 3h2s + 2Da2 + 6Da1hs, (3.57)

where Da1 = Da
αBJ

.

Now, collecting the terms in K gives us

D4Ψ1(z)− iRe (us(z)− c0)D2Ψ0(z) + iReD2us(z)Ψ0(z) = 0,

with boundary conditions

D3Ψ1(hs)− iRe (us(hs)− c0)DΨ0(hs) +
3i cot θ

us(hs)− c0
Ψ0(hs) = 0

D2Ψ1(hs) +
3

us(hs)− c0
Ψ1(hs) +

3c1

(us(hs)− c0)
2 Ψ0(hs) = 0

D3Ψ1(0)− iRe (us(0)− c0)DΨ0(0) +

[
iReDus(0) +

1

dDa2

]
Ψ0(0) = 0

Da1D
2Ψ1(0)−DΨ1(0) +

1

d
Ψ0(0) = 0.

Solving this problem leads to the following expression for c1

c1 = i

[
9Reh3sDa1

3 + 15Reh4sDa1
2 − 1

5
(15h2s cotθ − 36Reh5s)Da1

−1

5
(15hs cotθ + 15d cotθ)Da2 − 1

5

(
5h3s cotθ − 6Reh6s

)]
.

Now, neutral stability is given by =(c) = 0. Since =(c0) = 0, neutral stability is described by

=(c1) = 0. Solving for Re we obtain an expression that is independent of K. The prediction of this

analysis, therefore, is that the neutral stability curve is a vertical line in the Re−K plane. However, it

must be pointed out that this result is valid as K → 0. Therefore, we can only expect this threshold to

be valid for small values of K. In other words, it is an approximation for the intercept of the neutral

stability curve with the Re-axis. So, the asymptotic solution gives the following approximation for Re0

Re0 =
5 cotθ

(
3 hs Da2αBJ + 3 hs

2Da + hs
3αBJ + 3 Da2αBJd

)
αBJ

2

3hs
3
(
2 hs

3αBJ3 + 12 hs
2Da αBJ2 + 25 hs Da2αBJ + 15 Da3

) . (3.58)
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Figure 3.2: Recrit and Re0 as functions of Da with cotθ = 1, Ka = 100, φ = 0.01, αBJ = 2, d = 1.

This expression is in excellent agreement with the numerical results for Re0. Figure 3.2 contains the

numerically obtained critical Reynolds number as a function Da together with the asymptotic expression

for Re0. The deviation of Recrit from Re0 occurs for Da values large enough for the onset of instability

to be due to the amplification of a perturbation with positive wavenumber instead of the one with zero

wavenumber. As it can be seen, in this range Re0 is larger than Recrit with the difference increasing with

Da. The indication thus is that the effect of bottom filtration is to stabilize the very long perturbations

relative to the moderately long ones.

In Figure 3.3 we illustrate the effect of d, the scaled thickness of the porous substrate, on neutral

stability. From these results we conclude that increasing the thickness of the substrate stabilizes the flow.

Furthermore, it is evident that there is also a critical value of d such that for smaller values infinitely

long perturbations are unstable at the onset, while for larger values the onset of instability is related to

a perturbation of finite wavelength.

Neutral stability curves for different Kapitza numbers are included in Figure 3.4. The curves have a

common intercept with the Re-axis which is to be expected since the expression for Re0 given in (3.58)

is independent of Ka. For the smaller Kapitza numbers Recrit is less than Re0, however, it increases

with Ka and beyond a certain value Recrit = Re0. For low to moderate surface tension Recrit < Re0

and the onset of instability is due to the amplification of a perturbation of finite wavelength. Surface

tension affects waves of finite length, so it impacts the threshold for instability of the flow. In particular,

increasing surface tension in this range of Ka values increases Recrit and thus acts to stabilize the
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Figure 3.3: Neutral stability for different values of d with cotθ = 1, Ka = 100, φ = 0.01, αBJ =
0.1, Da = 0.2.

equilibrium flow. It is also apparent that the wavenumber of the most unstable mode at the onset is

decreased with increasing surface tension. For strong surface tension Recrit = Re0, so infinitely long

perturbations are more unstable and the onset of instability is independent of surface tension.

As it can be seen in Figure 3.5, varying φ has a similar effect to varying Ka. Specifically, increasing

φ stabilizes the flow when finite perturbations are amplified at the onset, and for sufficiently large φ

values Recrit coincides with Re0 in which case porosity does not affect the onset of instability. This is

consistent with the asymptotic formula for Re0 which is independent of φ.

In Figures 3.6 - 3.8 we display the dependence of the critical Reynolds number on the permeability of

the substrate for different values of the other flow parameters. Liu and Liu [16], in considering very low

permeability, have found it to destabilize the surface of the film for small values of αBJ . We considered

a wider range of Darcy numbers and have found that, depending on the value of other parameters, an

increase in bottom permeability can also stabilize the flow. Figure 3.6 shows the graphs of Recrit as a

function of Da for different values of αBJ . It can be seen that for a given Da value Recrit increases with

αBJ . This fact is also evident in the results obtained by Liu and Liu [16]. An increase in αBJ means

less slip at the bottom of the fluid film resulting in a slower flow rate thus stabilizing the flow. It is also

interesting to note that there is a critical value of αBJ such that for larger αBJ values Recrit changes

from a decreasing function to an increasing function of Da. Figures 3.7 and 3.8 illustrate the effect of φ

and d on the variation of Recrit with Da. It is apparent that sufficiently large values of these parameters

result in non-monotonic variations of Recrit with Da.
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Figure 3.4: Neutral stability for different values of Ka with cotθ = 1, d = 1, φ = 0.01, αBJ = 1, Da =
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Figure 3.6: The critical Reynolds number as a function of Da for different values of αBJ with cotθ =
1, d = 0.5, φ = 0.01, Ka = 100.
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Figure 3.8: The critical Reynolds number as a function of Da for different values of d with cotθ = 1, φ =
0.01, αBJ = 0.3, Ka = 100.

In Figures 3.9 and 3.10 we show the temporal growth rate and phase speed of perturbations as

functions of the scaled wavenumber, K, for supercritical Reynolds numbers close to the critical value

for the onset of instability. The results in Figure 3.9 correspond to the impermeable bottom case, while

in Figure 3.10 we have a case with bottom filtration. The growth rate distributions with K for the

case with filtration reveal that just beyond criticality a band of moderately long perturbations are being

amplified while all other wavelengths, including the very long ones, are being damped. As the Reynolds

number is increased, eventually the very long perturbations also become unstable and the growth rate

curve resembles that for the impermeable substrate case. In both cases the wavenumber with the fastest

growth rate increases with Re.

In the impermeable bottom case the phase speed decreases with K, while if filtration is present

the phase speed is a non-monotonic function attaining a maximum value on the range of unstable

wavenumbers. It appears that the wavenumber corresponding to the maximum phase speed does not

coincide with the one where the maximum growth rate is attained. In fact, the maximum phase speed

decreases with Re, as does the K value at which it is attained.
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Figure 3.9: The temporal growth rate and phase speed as functions of K for the impermeable bottom
case (Da = 0), with cotθ = 1, Ka = 100. In this case Recrit = 5/6.
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Figure 3.10: The temporal growth rate and phase speed as functions of K for Da = 0.3, cotθ = 1, φ =
0.01, d = 1, αBJ = 2, Ka = 100. In this case Recrit ≈ 1.286.

28



Chapter 4

Nonlinear Effects

Our goal in this chapter is to include nonlinear effects into solutions obtained for our governing equations.

To accomplish this we employ certain appropriate approximations that simplify the equations. We first

obtain what is referred to as the long-wave equations by discarding terms based on the assumed smallness

of the length to thickness aspect ratio, δ. These equations can be further simplified by applying a

weighted-residual method. Numerical solutions can be effectively obtained for the resulting “reduced

model”.

4.1 Long-wave equations

As it is detailed in chapter 2, the results from the full equations indicated that instability is related to

infinitely long perturbations or perturbations that have a finite wavelength but are still long relative to

the thickness of the film. We thus expect to obtain an accurate approximation of the stability analysis by

implementing a simplified model based on the smallness of the aspect ratio δ. We proceed by considering

the asymptotic limit δ → 0 and deem O(δ2) terms as negligible. We assume all the parameters of the

problem to be O(1) with the exception of Ka which is assumed to be large enough so that Kaδ3 is not

negligible, and discard the O(δ2) terms in the full equations (2.14) - (2.26). This allows us to eliminate

the pressure from the system as follows. The z-momentum equation, (2.16) becomes

∂p

∂z
=

1

Re

(
δ
∂2w

∂z2
− 3 cotθ

)
.

Integrating this equation with respect to z results in

p = p|z=hs −
1

Re

(
δ
∂w

∂z

∣∣∣∣
z=hs

− δ ∂w
∂z
− 3 cotθ(hs − z)

)
. (4.1)
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We get p|z=hs from the normal force condition (2.20)

p|z=hs =
2

Re

(
δ
∂w

∂z

∣∣∣∣
z=hs

− δ ∂h
∂x

∂u

∂z

∣∣∣∣
z=hs

)
− δ2We

∂2h

∂x2
. (4.2)

The expression for p is introduced into the x-momentum equation, (2.15). Similarly, we can eliminate

the filtration pressure. Specifically, we integrate (2.19) to obtain

pp = pp|z=0 − 3δ cotθz. (4.3)

The expression for pp|z=0 is obtained from condition (2.23) which, in our asymptotic limit, is given by

pp = δRep at z = 0. The expression for pp is then introduced into equation (2.18).

The complete set of long-wave equations is given by

∂u

∂x
+
∂w

∂z
= 0 , (4.4)

δRe

(
∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z

)
= −3δ cotθ

∂h

∂x
+ δ3ReWe

∂3h

∂x3
+ 3 +

∂2u

∂z2
, (4.5)

∂up
∂x

+
∂wp
∂z

= 0 , (4.6)

Da2Reδ

φ

∂up
∂t

= −3δ cotθ
∂h

∂x
+ δ3ReWe

∂3h

∂x3
− up + 3 , (4.7)

subjected to the conditions
∂u

∂z
= 0 at z = h(x, t) , (4.8)

w =
∂h

∂t
+ u

∂h

∂x
at z = h(x, t) , (4.9)

w = Da2wp at z = 0 , (4.10)

∂u

∂z
=
αBJ
Da

(u−Da2up) at z = 0 , (4.11)

wp = 0 at z = −d . (4.12)

For the purpose of gauging the accuracy of this long-wave model, we perform a linear stability

analysis and compare the results with those from the full equations. We perturb the primitive variables

and linearize the governing equations. We then convert to the stream function formulation and introduce

normal modes thus obtaining

D3Ψ− [iKRe(us − c)]DΨ + iKReDusΨ−K1η = 0 , (4.13)

where Ψ(z) is the amplitude of the stream function perturbation, η is the amplitude of the perturbation

added to the thickness of the fluid film and K1 = 3iK cotθ + iK3ReWe. The associated boundary
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conditions are

D2Ψ− 3η = 0 at z = hs , (4.14)

Ψ− (c− us)η = 0 at z = hs , (4.15)

(1−K2c)Ψ + dDa2K1η = 0 at z = 0 , (4.16)

(1−K2c)DΨ +Da2K1η −
Da

αBJ
(1−K2c)D

2Ψ = 0 at z = 0 , (4.17)

where K2 = iKDa2Re/φ.

As it is exemplified by the results in Figures 4.1 and 4.2, the predictions made by the long-wave

equations are in good agreement with those from the full equations. Most notably, the long-wave

equations capture the instability of moderately long perturbations associated with the onset of instability

of the flow.

4.2 The weighted-residual method

To study nonlinear effects on the stability of the flow we effectuate a further simplification of the long-

wave equations by eliminating the explicit dependence on the vertical coordinate. Now, the equation

for the horizontal filtration velocity, equation (4.7), is free of z derivatives, so we assume that up is z-

independent, i.e. up = up(x, t). Then, upon integrating the continuity equation in the porous medium,

(4.6), we obtain the vertical filtration velocity

wp = −d∂up
∂x

.

Integrating the continuity equation for the fluid film, (4.4), with respect to z yields

∂h

∂t
+

∂

∂x
(q + dDa2up) = 0 , (4.18)

where

q(x, t) =

∫ h(x,t)

0

u(x, z, t)dz . (4.19)

In order to eliminate the z dependence from equation (4.5) we resort to a weighted-residual method.

We introduce the function

b(x, z, t) = 2hz − z2 + 2Da1h+
2

3
Da2up ,

where Da1 = Da
αBJ

. This function satisfies the boundary condition for u (4.8), as well as the linear

approximation in Da of the boundary condition (4.11). We thus employ it as a base function and

consider u expressed as

u =
3q

2(h3 + 3Da1h2 +Da2hup)
b . (4.20)

The coefficient of b in this expansion is such that q is introduced as a new dependent variable and is
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Figure 4.1: Neutral stability obtained by the different methods with Da = 0.3, cotθ = 1, Ka = 100, φ =
0.01, αBJ = 1, d = 1.

connected to u through the relation (4.19).

In accordance with the Galerkin approach we introduce expression (4.20) into equation (4.5), multiply

by b and integrate with respect to z from 0 to h. It should be pointed out that the assumed expression

for u does not in fact satisfy the boundary condition (4.11). We rectify this by applying integration by

parts to the last term in (4.5) and substituting the correct boundary condition into the boundary terms.

More specifically, we use∫ h

0

b
∂2u

∂z2
dz =

[
∂b

∂z

(
Da1

∂u

∂z
+Da2up

)
− b∂u

∂z

]
z=0

+

∫ h

0

∂2b

∂z2
u dz ,

into which we then substitute expression (4.20) for u. Setting the residual of equation (4.5) to zero gives

∂q

∂t
+
∂f

∂x
= s1 + s2δ

2We
∂3h

∂x3
+

q2

14Θ2
1Θ2

2

(
s3
∂h

∂x
+ s4

∂up
∂x

)
+

q

ReΘ1Θ2

(
s5
∂h

∂x
+ s6

∂up
∂x

)
+

Θ1

ReΘ2

(
s7
∂h

∂x
+ s8

∂up
∂x

)
, (4.21)

where

Θ1 = Da2up + h2 + 3hDa1 ,
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Figure 4.2: The critical Reynolds number obtained by the different methods with cotθ = 1, φ =
0.01, αBJ = 2, Ka = 100 and d = 1.

Θ2 = 5 Da4up
2 + 30Da1 up hDa2 + 10up h

2Da2 + 30h3Da1 + 45h2Da1
2 + 6h4 .

f =
q2

14hΘ1Θ2
(1890 h3Da1

3+

1890 h4Da1
2 + 1890 h2up Da1

2Da2 + 714 h5Da1 + 1260up h3Da1 Da2

+ 630 h up
2Da1 Da4 + 102 h6 + 231 Da2up h4 + 210 Da4up

2h2 + 70 Da6up
3) ,

s1 =
1

ReΘ1Θ2δ
(30 Da6up

3h+ 225 Da4up
2h2Da1 + 75 Da4up

2h3 − 30 Da4q up
2 − φ q h4up

+ 540 Da2up h
3Da1

2 + 360 Da2up h
4Da1 − 45 Da2q up h

2 − 135 Da2up q hDa1+

60 Da2up h
5 + 3φ q h4 − 90 q h3Da1 − 135 q h2Da1

2+

135h6Da1 + 405h5Da1
2 + 405h4Da1

3 + 15h7 − 15 q h4) ,

s2 =
h

Θ1Θ2
(5 Da6up

3 + 45hup
2Da1 Da4 + 15 Da4up

2h2 + 135h2up Da1
2Da2+

90up h
3Da1 Da2 + 15 Da2up h

4 + φ q h3 + 5h6 + 135h4Da1
2 + 135h3Da1

3 + 45h5Da1 ) ,
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s3 = −h2(1260 Da6up
3hDa1 + 2835 Da4up

2h2Da1
2 − 360 Da4up

2h3Da1 − 3105 Da2up h
4Da1

2+

1890 Da2up h
3Da1

3 − 1908 Da2up h
5Da1 + 175 Da8up

4 + 105 Da6up
3h2 − 282 Da4up

2h4−

282 Da2up h
6 − 36h8 − 504h7Da1 − 2178h6Da1

2 − 3240h5Da1
3) ,

s4 = −h2(−135h5Da1
2Da2 − 945up

2h2Da1 Da6 − 720up h
4Da1 Da4−

1890h3up Da1
2Da4 − 72 Da4up h

5 − 140hDa8up
3−

225 Da6up
2h3 − 945h4Da1

3Da2 + 120 Da2h6Da1 + 30 Da2h7) ,

s5 = −3φh4cotθ ,

s6 =
Da2

8
(20 Da4up

2hRe d− 120 Da4up
2RedDa1 + 57 Da2up h

3Red−

720 Da2up hRe dDa1
2 + 147h4RedDa1 + 21h5Red− 180h3RedDa1

2 − 1080h2RedDa1
3) ,

s7 = −5
(
3h cotθ up Da2 + 3h3cotθ + 9h2cotθDa1

)
,

s8 = −5
(
Redup

2Da6 + 3hRe dDa1 up Da4
)
.

Equations (4.18), (4.21) and (4.7) constitute our reduced model and govern the dependent variables

h(x, t), q(x, t) and up(x, t), which are the thickness of the fluid film, the flow rate of the film and the

filtration velocity in the substrate, respectively. If we set Da = 0 then equations (4.18) and (4.21) reduce

to the modified integrated-boundary-layer equations proposed by Ruyer-Quil and Manneville [23] for flow

over an impermeable surface. These equations predict the correct threshold for the onset of instability

and it has been demonstrated [24] that they constitute the optimal weighted-residual approximation.

For the permeable substrate case such an analysis of equations (4.18), (4.21) and (4.7) would be quite

complicated. Therefore, to gauge the accuracy of our reduced model we determine the effect of the

weighted-residual approximation on the linear stability results.

Adding normal-mode perturbations to the equilibrium solution gives

h = hs + h̃eσteikx, q = 1 + q̃eσteikx, up = 3 + ũpe
σteikx.

Substituting the perturbed equilibrium solution into our reduced model and linearizing with respect

to the amplitudes h̃, q̃ and ũp leads to a dispersion relation. This equation was obtained with the aid

of the Maple Computer Algebra System, however its formulation is quite lengthy and it is pointless to

present it here. Suffice it to say that it is cubic in σ and for fixed values of the other parameters the

solutions were obtained by means of the Matlab polynomial root finder. The real part of σ measures

the temporal growth rate of the perturbation, so we are able to determine neutral stability. As it is

illustrate in Figures 4.1 and 4.2, the results are in excellent agreement with those from the long-wave

equations for a wide range of permeability values. There is thus strong evidence that the reduced model
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is accurate, and we carry out a nonlinear stability analysis on it.

The reduced model is amenable to a very effective numerical method. The equations constitute a

system of nonlinear hyperbolic conservation laws with source terms. Terms which cannot be expressed as

total derivatives, and thus cannot be included in the flux, appear as source terms involving the derivatives

of the state variables. We deal with these terms by following a fractional-step approach. Such a method

was applied in previous investigations of inclined film flow [13,25,26]. With this procedure, in order to

advance the solution from one time level to the next, we apply a two-step process. In the first step we

discard the derivative source terms and consider the system

∂h

∂t
+

∂

∂x
(q + dDa2up) = 0 ,

∂q

∂t
+
∂f

∂x
= s1 ,

Da2Reδ

φ

∂up
∂t

+ 3δ cotθ
∂h

∂x
= 3− up ,

which is of the general form
∂V

∂t
+

∂

∂x
F(V) = B(V) ,

where V, F and B are column vectors with V containing the dependent variables of the system. We

solved this system using the extension to MacCormack’s scheme made by LeVeque and Yee [27] to include

source terms via the scheme

V∗
j = Vn

j −
∆t

∆x

[
F(Vn

j+1)− F(Vn
j )
]

+ ∆t B(Vn
j ) ,

Vn+1
j =

1

2

(
Vn
j + V∗

j

)
− ∆t

2∆x

[
F(V∗

j )− F(V∗
j−1)

]
+

∆t

2
B(V∗

j ) ,

where the notation Vn
j ≡ V(xj , tn) is utilized with ∆x denoting the uniform grid spacing and ∆t is the

time increment.

In the second step we focus on the derivative-dependent source terms disregarded in the first step

and consider the system

∂q

∂t
= s2δ

2We
∂3h

∂x3
+

q2

14Θ2
1Θ2

2

(
s3
∂h

∂x
+ s4

∂up
∂x

)
+

q

ReΘ1Θ2

(
s5
∂h

∂x
+ s6

∂up
∂x

)
+

Θ1

ReΘ2

(
s7
∂h

∂x
+ s8

∂up
∂x

)
, (4.22)

Da2Re

φ

∂up
∂t

= δ2ReWe
∂3h

∂x3
. (4.23)

This system is to be solved over a time increment using the results from the first step as the initial

conditions. We point out that h remains constant for the second step. Therefore, the equations are

decoupled, and furthermore, if equation (4.23) is solved first, then in both equations the x derivatives
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are only applied to know quantities. So at a given spatial grid point up is linear in time and equation

(4.22) can be discretised in time by a simple second-order accurate predictor-corrector scheme.

The numerical method for solving the reduced model can be used to calculate the evolution of a

perturbed equilibrium flow. Specifically, as the initial condition we take

h = hs + ε sin

(
2π

L
x

)
, q = 1, up = 3,

where ε is the amplitude of the imposed perturbation and L is the length of the computational spatial

domain to which we apply periodic boundary conditions. We can thus determine whether or not the

solution tends to equilibrium and conclude the stability of perturbations with wavenumber 2π/L. We

considered a range of small values of the initial amplitude, 10−10 < ε < 10−3. We are thus confident that

our analysis applies to naturally occurring infinitesimal perturbations and is effective in determining the

stability of the equilibrium flow.

By iterating over the flow parameters we can pinpoint under what conditions a particular perturbation

mode is neutrally stable. We can thus generate the neutral stability curves and compare with those from

the linear analysis. Such a comparison is presented in Figure 4.1. Here, for a given value of K and

thus L = 2π/K, we incremented the Reynolds number by small increases of 0.005. For each Re value

we ran the simulation until the amplitude of the perturbation become steady. As Re was increased, at

a particular point we found this amplitude to change from values less than 10−9 to values of the same

order of magnitude as 10−2. We used this threshold as the condition for instability. As it can be seen

in Figure 4.1, there is some disagreement between the nonlinear results and the prediction of the linear

theory. More precisely, the band of moderately long modes that are linearly unstable for Re < Re0 are

predicted to be unstable only for Re > Re0. As it is well know, linear instability only indicates that

infinitesimal perturbations are amplified. However, as the perturbations grow, nonlinear terms become

significant and can act to arrest the growth. The perturbation magnitudes necessary for the nonlinearity

to take effect can still be very small, and if these levels are not exceeded the flow is practically stable. Our

solutions with deviation from equilibrium of magnitude 10−9 could be caused by an initial growth that

is then counteracted by nonlinearity. It must also be pointed out, however, that because the variations

in these solutions are much smaller than the truncation error of our numerical method, we can not be

entirely certain of their accuracy. Nevertheless, in either case we can conclude that the perturbation does

not significantly alter the equilibrium solution for Reynolds numbers less than the threshold indicated

above.

For flow parameter values which lead to instability of the equilibrium flow, the numerical calculation

of the evolution can be continued until the growth of perturbations saturates and a secondary flow is

established exhibiting permanent surface waves. In the impermeable substrate case the general structure

of the waves is dictated by the degree of supercriticality of the flow conditions [28]. For supercritical

conditions close to criticality the surface of the fluid film has a small-amplitude sinusoidal shape. For

parameter values sufficiently beyond critical levels permanent solitary waves are generated on the surface

of the fluid film. These waves have large heights and are preceded by high-frequency oscillations of

significantly smaller amplitude. For flows down permeable inclines changes in the properties of the
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Figure 4.3: Permanent surface profiles for unstable flows with different Reynolds numbers and Da = 0.3,
cotθ = 1, φ = 0.01, αBJ = 1, Ka = 100 and d = 1.

substrate can affect the general form of the permanent surface profile, but this due to the direct impact

on the critical conditions for the onset of instability. As it is illustrated in Figure 4.3, the progression of

the types of waves with departure from criticality was found to be the same as the one described above

for the basic impermeable bottom case.
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Conclusions

In this thesis we studied the interfacial instability of a gravity-driven film flow with significant fluid

filtration through the substrate. We considered an equilibrium flow that is steady and uniform in

the streamwise direction. We determined the development of instability by implementing a model for

the evolution of naturally occurring infinitesimal perturbations that interact with the equilibrium flow.

Our goal was to examine the effect of various aspects of the porous substrate, such as its thickness,

permeability and porosity, and how these factors combine with aspects of the film flow such as surface

tension.

As part of our investigation, we carried out a linear stability analysis. As such, we linearized the

governing equations with respect to perturbations imposed on the equilibrium solution. We obtained an

eigenvalue problem with an Orr-Sommerfeld type equation, the solution of which allowed us to predict

under what conditions different perturbations are amplified. As a result, we were able to determine

the critical conditions at the threshold to flow instability, and the wavelength of perturbations that

lead to instability at the onset. For the basic problem with an impermeable substrate, infinitely long

perturbations (with zero wavenumber) generate the instability as the threshold is crossed. As it is

well known, surface tension acts to suppress surface waves, but its effect diminishes as the wavelength

is increased. Consequently, the critical condition for the flow to be unstable is not affected by surface

tension and is expressed as Recrit = 5
6 cot θ. This condition specifies the necessary level of inertia to cause

instability for a given inclination. As the Reynolds number is increased ( and thus inertia intensified)

beyond criticality, the range of unstable perturbation wavenumbers, 0 ≤ K ≤ Kc, widens, i.e. Kc

increases with Re. Of course, for a fixed supercritical Re value, Kc decreases with surface tension.

In contrast to the basic problem, if the substrate is porous it is possible to have instability set in

as a result of the amplification of a finite perturbation. This phenomenon occurs for sufficiently high

permeability and sufficiently low porosity of the porous medium, and provided that the thickness of

the substrate is sufficiently large. Furthermore, the surface tension of the fluid film must be sufficiently

weak. At these levels, surface tension does in fact influence the onset of instability in the equilibrium

flow, and as expected, it plays a stabilizing role.

Another important aspect that we examined is how the critical Reynolds number for the onset of
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instability is affected by the permeability of the substrate. Previous investigations [16] have considered

small values for the permeability and the slip parameter imposed at the fluid-porous medium interface,

and concluded that increasing the permeability destabilizes the flow. In our investigation we considered

a wider range of parameter values, and found that increasing permeability can also have a stabilizing

effect for certain parameter values.

We have also explored nonlinear effects on the stability of the flow. To facilitate a nonlinear analysis

we simplified the governing equations by applying a long-wave approximation and a reduction in space

dimensionality by implementing a weighted-residual method. In order to gauge the accuracy of the

approximations a linear stability analysis was performed on the thus reduced model. The results proved

to be in good agreement with those from the full equations. To carry out the nonlinear analysis, a

numerical method was applied to the reduced model and used to calculate the evolution of sinusoidal

perturbations of given wavelength and amplitude. The results, in contrast to those of the linear analysis,

do not indicate that it is possible for a given flow to have instability of certain perturbations while longer

ones are stable. This suggests that the perturbations with positive wavenumber that are found to be

linearly unstable at the onset are in fact damped if nonlinear effects are not discarded, and the equilibrium

flow is thus subject to nonlinear stability.

39



References

1. Chakraborty, S. 2012 Dynamics and stability of a non-Newtonian falling film, Doctoral Disserta-

tion, Université Paris Sud.
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