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ABSTRACT

The Surface-constrained Continuous-time Extended Kalman Filter (SCEKF), derived

in thesis, contains a novel approach for handling surface or equality constraints, in which

the surface-constrained CEKF is the projection of the unconstrained CEKF onto the set of

state estimate rates that satisfy the constraints. The filter is used for optimal estimation of

a state of a ball rolling on a known surface with uneven elevation. The state consists of

surface contact point and geometrical center positions, attitude and angular velocity of the

ball. The dynamics of the ball is affected by "unknown" to the filter disturbances, due to

off-center point mass and variable wind.

Thesis includes derivations of the SCEKF and the constraint dynamics of a rolling ball.

The numerical computation results show that the surface-constrained filter can produce an

accurate state estimate of the rolling ball and demonstrate that the estimate is significantly

better than that produced by unconstrained filter.
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Chapter 1

Introduction

In order to get estimates of such parameters as position, velocity and orientation of

a moving system as accurate as possible, based on a set of noisy measurements, for the

purpose of navigation for example, it is necessary to process the measurements in such a

way as to reduce the error in the estimates as much as possible. One way to process noisy

measurements, is to use Kalman filtering - a mathematical method for optimal, or best

possible estimation using available noisy data. The overview of Kalman filtering is given

in the next section.

1.1 General Description of Kalman Filtering

The Kalman filter is a system state estimation algorithm based on probability theory

and statistics. It combines the modelled state of a system with the measured state, to

produce the state estimate that is, in general, more precise than the estimate based on the

measurements only. It was initially developed by several authors around 1960. The filter

is named after Hungarian-born American engineer and mathematician Rudolf E. Kalman,

who published a paper on the subject in 1960 [1] [2].

The motivation for the Kalman filter comes from the fact that any system model

is an approximation with modelling errors and there could be a number of unforeseen

disturbances that are hard to model in advance; any measurements have errors associated

with the measurement technique, measuring device, etc. A direct way of calculating a

state of a system using a system model or measurements can lead to an estimate that has

a significant uncertainty. The Kalman filter accounts for the various uncertainties and
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produces an optimal (best possible, for which the errors are minimized) estimate of system

state parameters [3].

All the available state measurements can be used by the filter, but their effect on the

state estimate is weighted according to their uncertainty. In general, even considerably

corrupted measurements can improve the estimate (as long as their uncertainty is known

fairly well). The Kalman filter is a recursive estimation algorithm, which means that

only the estimate from the previous time step is required in order to compute the new

estimate [3]. The filter produces the highest precision estimates when it is applied to linear

system models for which the system and measurement noise are white (noise frequencies

are uncorrelated and have equal amplitude across the noise spectrum) and Gaussian (the

probability distribution of noise frequency values, has Gaussian profile) [4].

In its original form, Discrete-time Kalman Filter produces state estimates in discrete

time steps and deals with systems described by linear unconstrained models [1]. Using

the current optimal, system state estimate, the state model is used to predict the state of

the system after a time step. The measurement taken after a time step is used to correct

the prediction, so that the new optimal estimate of the system state is obtained. Then, the

algorithm is repeated recursively [4].

Continuous-time Kalman Filter is the limiting case of the discrete-time Kalman filter,

for which the time steps become infinitely small. In practice, the continuous-discrete-time

Kalman filter is often used, for which the state is modelled by a continuous time function,

while the measurements are taken in discrete time intervals. As in the case of Discrete-time

Kalman Filter, this filter is for linear system models [5].

The Extended Kalman Filter is used to estimate the state of the systems that are

described by nonlinear models. The nonlinear model of a system is linearized (represented

by a combination of linear terms, commonly produced using Taylor series approximation)

around the estimate produced by the Kalman filter, while the estimate is based on the

linearized model [6].

The Unscented Kalman Filter is a type of nonlinear Kalman filter that that can be used

to solve highly nonlinear systems, for which the first order linearization that the extended

Kalman filter uses, may not be accurate enough or may not be possible at all in the cases

where the system model function is not differentiable [5].

The Constrained Kalman Filter deals with the cases in which system states have to
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satisfy constraints [5]. For example, a rocket moving in an open space is a case of

an unconstrained motion. It is not confined to follow a particular path and its velocity

components, can be determined independently. On the other hand, a roller coaster cart is

constrained to move on the roller coaster track and the components of its velocity are not

independent of each other.

A number of Kalman filter types can handle state estimate constraints. Usually, a

given type of the constrained filter is suitable for a certain type of constraints, such as

norm constraints (for the state estimate vectors that have norm requirements), or linear

and nonlinear equality constraints (for when the state estimates have to satisfy specific

equality relations). For example, a well known method employed for attitude estimation

problems - Multiplicative Extended Kalman Filter (MEKF) is a norm-constrained filter [5].

The MEKF formulation uses quaternion. The norm of the quaternion, by definition, must

satisfy the unit constraint. During the computation, the division of the quaternion estimate

by its norm ensures that this constraint is satisfied [5] [7]. In some methods, the Kalman

gain is optimally constrained in order to obtain state estimates that satisfy constraints [8].

In the reference [9] such method is used to solve a system state estimation problems with

linear equality and inequality constraints. Kalman filter can be constrained by projecting

the unconstrained system state estimates onto the constraint surface. This approach is

used for linear equality constraints in [9] [10] and for nonlinear equality constraints in

[11]. In [9] [12] [7], the discrete-time filter is considered and it is demonstrated that

optimally constraining the gain (in order to satisfy norm constraints) leads to constrained

Kalman estimate which is the orthogonal projection of the unconstrained estimate onto the

constrained set. In [13] [14], the continuous-time filter is considered and it is shown that

the optimal constrained gain (that accounts for norm constraints) leads to the projection of

the unconstrained Kalman filter onto the allowed set of state estimate rates. Another way

to enforce constrains is to define them as pseudo-measurements and then include them

in the Kalman filter. The pseudo-measurements are used for introducing linear equality

constraints into Kalman filter in [15] [16].
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1.2 Surface-Constrained Kalman Filtering

The Kalman filtering can be difficult to apply to a case of a dynamic system constrained

to move on a surface, especially if the surface is uneven and the motion is affected by

disturbances. In this thesis the Surface-constrained Continuous-time Extended Kalman

Filter (SCEKF) is derived and applied to a ball-rover moving on a known, uneven surface,

with its motion affected by such (unknown to the filter) disturbances as off-center point

mass embedded within the ball and time-varying wind force (which varies both in direction

and magnitude). In practice, it can be a wind-driven tumbleweed-type rover, such as the

proposed spherical, robotic, tumbleweed Mars rover [17].

In a general sense, surface-constrained means constrained to the surfaces that are

defined by constraints and exist in constraint space. In the application used in the thesis,

the system is constrained to a physical surface.

The constrained Kalman filter derived in the thesis is unique in the approach taken for

equality (surface) constraints. In this approach, finding the optimal, constrained Kalman

gain leads to geometric interpretation in which the constrained state estimate rates are

orthogonal projections of the unconstrained state estimate rates onto the space defined by

the state estimate rates that satisfy constraints. The SCEKF can handle both linear and

nonlinear equality constraints.

The pseudo-measurements method [15] can be applied to the type of the state estimation

problems that the SCEKF can handle. However it does not enforce the constraints as

strictly as the SCEKF, potentially leading to less precise system state estimates. In this

method, the constraint expressions are used in Kalman filter as perfect measurements, or

pseudo-measurements. Having no error, the perfect measurements may lead to singularity

issues in the Kalman filter estimation algorithm. To overcome this problem, some noise is

added to the pseudo-measurements, which means that the constraints can not be satisfied

exactly [7].
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Chapter 2

Surface-constrained Continuous-time
Extended Kalman Filter

In this chapter the Surface-constrained Continuous-time Extended Kalman Filter

(SCEKF) used in this thesis, will be developed. As the naming of the filter indicates, it is

for surface-constrained, continuous-time, nonlinear systems. In the first part of this chapter,

surface-constrained continues-time linear Kalman filter will be derived. Then, it will

be extended to nonlinear systems, thus becoming Surface-constrained Continuous-time

Extended Kalman Filter.

2.1 Surface-constrainedContinuous-timeLinearKalman
Filter

The linear, continuous-time, system model is specified as

.
x(t) = A(t)x(t) +B(t)u(t) +w(t) , (2.1)

where x(t) ∈ Rnx is the system state vector, u(t) ∈ Rnu is the known control input vector,

w(t) ∈ Rnx is the zero-mean white noise process vector (which appears due to the state

modelling errors) with autocovariance

E
{
w(t)w(τ)T

}
= Q(t)δ(t − τ) , (2.2)
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where E {} is the expectation operator,Q(t) is the process noise covariance matrix and

δ(t − τ) is the Dirac Delta function, which implies that the noise values at a time t and τ

are not related that is E
{
w(t)w(τ)T

}
= 0 if t , τ. The matricesA(t) andB(t) as well as

the vector u(t) are assumed to be piecewise continuous.

The linear, continuous-time measurement model is expressed as

y(t) = C(t)x(t) + v(t) , (2.3)

where y(t) ∈ Rny is the system state measurement vector, v(t) ∈ Rny is the zero-mean

white noise process vector (consequence of the measurement modelling errors) with

autocovariance

E
{
v(t)v(τ)T

}
= R(t)δ(t − τ) , (2.4)

whereR(t) is the measurement noise covariance matrix. The matrix C(t) is assumed to

be piecewise continuous. Furthermore, it is assumed that w(t) and v(t) are independent.
For convenience, the time dependence is omitted from the notation, however it is

assumed that all the variables can depend on time.

The linear state estimate rate equation is expressed as

.

x̂= Ax̂ +Bu +K(y −Cx̂) , (2.5)

where x̂ is the state estimate and K is the optimal gain matrix. The estimate error is

defined as

x̃ = x − x̂ , (2.6)

therefore,
.
x̃=

.
x −

.

x̂ , (2.7)

substitution of (2.6) and (2.7) into (2.5) gives

.
x −

.
x̃= A(x − x̃) +Bu +K[y −C(x − x̃)] , (2.8)
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substituting (2.1) into the above equation get

.
x̃ = −A(x − x̃) −Bu −K[y −C(x − x̃)] +Ax +Bu +w

= −Ax +Ax̃ −Bu −Ky +KCx −KCx̃ +Ax +Bu +w

= (A −KC)x̃ −Ky +KCx +w ,

(2.9)

using (2.3) in the last expression leads to

.
x̃= (A −KC)x̃ −KCx −Kv +KCx +w , (2.10)

or
.
x̃= (A −KC)x̃ +w −Kv , (2.11)

which is the estimate error rate equation.

The estimate error covariance matrix is defined as

P = E
{
x̃x̃T }

, (2.12)

this expression satisfies the following error covariance rate equation [5],

.
P = (A −KC)P + P (A −KC)T +Q +KRKT (2.13)

The state vector has the form

x = coli=1,...,m {xi} , (2.14)

where xi ∈ Rnx,i for i = 1, ...,m , is in general a column vector. The state estimate vector

x̂ is partitioned in the corresponding manner,

x̂ = coli=1,...,m {x̂i} , (2.15)

with x̂i ∈ Rnx,i for i=1,...,m .
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It is assumed that (2.15) includes constrained state estimates x̂i for i = 1, ...,m − 1

and unconstrained state estimates x̂m . The constrained state estimates have to satisfy

equality, surface constraints, defined as

gi(x̂i) = 0 , i = 1, ...,m − 1 , (2.16)

where the expression (2.16) represents the surfaces (in constraint space) to which the

system state is constrained. The functions gi are continuously differentiable on these

surfaces.

Differentiating the constraints (2.16) with respect to time produces

dgi(x̂i)
dt

=
∂gi(x̂i)
∂x̂i

dx̂i

dt

= Gi(x̂i)
dx̂i

dt
= 0 , i = 1, ...,m − 1 ,

(2.17)

where

Gi(x̂i) =
∂gi(x̂i)
∂x̂i

, (2.18)

is the constraint Jacobian matrix. It is assumed that the surfaces (2.16) are regular, hence

the constraint surface gradients, which are the rows of the Jacobian (2.18), are linearly

independent andGi(x̂i) , 0. The state estimate rate vectors dx̂/dt can have values other

than zero, therefore equation (2.17) shows that dx̂/dt must be in the null-space ofGi(x̂i).
The state estimate rates ∂x̂i/dt, which are given by (2.5), are continuous, so if the state

estimates x̂i are initially anywhere on the constraint space surfaces (2.16) and if (2.17) is

satisfied (the constraint space surfaces do not change with time), then (2.16) has to be true

at all times and the state estimates remain on the surfaces at all times.

In accordance with the partitioning format of the state vector (2.16), the matrices used

in the estimate rate equation (2.5) are partitioned in the following way,

A =


A1

...

Am


, B =


B1

...

Bm


, K =


K1

...

Km


, (2.19)
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P =


P11 · · · P1m
...

. . .
...

Pm1 · · · Pmm


=

[
P1 · · · Pm

]
, (2.20)

Q =


Q11 · · · Q1m
...

. . .
...

Qm1 · · · Qmm


=

[
Q1 · · · Qm

]
(2.21)

Now the state estimate rate equation (2.5) can be written in a partitioned form as

.

x̂i = Aix̂ +Biu +Ki(y −Cx̂)

= Aix̂ +Biu +Kiỹ , i = 1, ...,m ,
(2.22)

where

ỹ = y −Cx̂ , (2.23)

is the state measurement estimation error.

Substituting (2.22) into (2.17) gives the following constraint equations,

Gi(x̂i)[Aix̂ +Biu +Kiỹ] = 0 , i = 1, ...,m − 1 (2.24)

It can be noted, that the only adjustable parameter that the ith estimator (2.22) and the

ith constraint (2.24) depend on, is the partitioned gainKi.

By following the standard Kalman filtering approach [5] the optimal gainK is found

by minimizing the cost function J, that is, by minimizing the function that quantifies the

deviation of the state estimate from the true state,

J =
1

2
trace[

.
P ] , (2.25)

while at the same time making sure that the constraints (2.24) are satisfied.
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In accordance with the partitioning format of the error covariance P (2.20), the cost

function (2.25) can be written as

J =
1

2

m∑
i=1

trace[
.
P ii] (2.26)

Using the partitioned matrices (2.19), (2.20) and (2.21), the estimate error covariance

rate equation (2.13) can be partitioned in the following way,

.
P ii = (Ai −KiC)Pi + P

T
i (Ai −KiC)T +Qii +KiRK

T
i , i = 1, ...,m (2.27)

Each
.
P ii in (2.27), as well as each constraint in (2.24) depends only on the gainKi.

Hence, the gainKi is selected in such a way as to minimize the cost function J (which is a

function of
.
P ii) while at the same time satisfying the constraints (2.24). Furthermore, the

minimization of the cost function J can be carried out by minimizing m cost functions Ji,

where each Ji corresponds to aKi,
.
P ii pair,

min
Ki

Ji =
1

2
trace[

.
P ii] , (2.28)

this equation should satisfy the ith constraint from (2.24),

Gi(x̂i)[Aix̂ +Biu +Kiỹ] = 0 (2.29)

For the equations (2.28), (2.29), i = 1, ...,m − 1. The unconstrained cost function that

is being minimized is for i = m ,

min
Km

Jm =
1

2
trace[

.
P mm] (2.30)
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The gainKi represents the constrained gain as it has to satisfy the constraint equation

(2.29). Taking the derivative of the cost function Ji with respect to the gainKi gives the

following result,

∂Ji

∂Ki
= −P T

i C
T +KiR , i = 1, ...,m (2.31)

If all the state estimates were unconstrained, then ∂Ji/∂Ki = 0 and the equation (2.31)

could be expressed as

Ki,unc = P
T
i C

TR−1, i = 1, ...,m , (2.32)

where, as follows from (2.30),

Km =Km,unc (2.33)

The error covariance matrix P is symmetric, hence it can be written that


K1,unc
...

Km,unc


= PCTR−1 =Kunc , (2.34)

hereKunc is the optimal Kalman gain matrix for the entire unconstrained system.

In order to find the gainsKi that minimize the cost functions Ji (2.28) subject to the

constraints (2.29), the Lagrangian method is used.

First, the corresponding Lagrangians are written as

Li = Ji + λ
T
i Gi(x̂i)[Aix̂ +Biu +Kiỹ] , i = 1, ...,m , (2.35)

where λi ∈ Rng,i are Lagrange multipliers.
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Next, the derivative of the Lagrangians with respect to the minimization variableKi,

are computed,

∂Li

∂Ki
=

∂Ji

∂Ki
+ λT

i
∂

∂Ki
{Gi(x̂i)[Aix̂ +Biu +Kiỹ]} , (2.36)

using equation (2.31) , the following expression for the derivative is obtained,

∂Li

∂Ki
= −P T

i C
T +KiR +G

T
i λiỹ

T (2.37)

The application of Lagrange multipliers to solve the given constrained minimization

problem, requires the gradients (with respect toKi) of the constraints (2.29) to be linearly

independent [18]. To check the linear independence, the rows of the constrained Jacobian

Gi are indexed with j, so that the j th row ofGi is denoted byGi, j . In this notation, the

j th constraint in (2.29) can be written as

Gi, j(x̂i)[Aix̂ +Biu +Kiỹ] = 0 , j = 1, ..., ng,i (2.38)

Taking the gradient of the above expression with respect toKi gives

GT
i, j ỹ

T, j = 1, ..., ng,i (2.39)

It is assumed in (2.16) that the constraint surfaces gi are regular, hence the matrices

Gi (2.18), composed of the gradients of gi, have full row-rank, that is, the rowsGi, j are

linearly independent.

The following equation which includes (2.39) ,

ng,i∑
j=1

α jG
T
i, j ỹ

T = 0 , (2.40)

where α j is a real number, is written in accordance with the standard way of checking

whether vectors are linearly independent [20] , which states that if the summation is zero

12



only in the case when all α j are zero, then the vectors must be linearly independent. As

noted aboveGi, j are linearly independent, thus for (2.40) to hold true, all α j must be zero,

which implies that the constraint gradients are linearly independent.

The required condition for a minimum of the Lagrangians is ∂Li/∂Ki = 0, so the next

step in the Lagrangian method is to set the derivative of the Lagrangians (2.37) equal to

zero, which gives

−P T
i C

T +KiR +G
T
i λiỹ

T = 0 ,

which can be written as

−P T
i C

TR−1 +Ki +G
T
i λiỹ

TR−1 = 0 , i = 1, ...,m − 1 , (2.41)

substituting (2.32) into the above equation gives

Ki =Ki,unc −GT
i λiỹ

TR−1 , i = 1, ...,m − 1 , (2.42)

using this expression in the constraint equations (2.29) leads to

Gi(x̂i)[Aix̂ +Biu + (Ki,unc −GT
i λiỹ

TR−1)ỹ] = 0 , i = 1, ...,m − 1 ,

which can be written as

Gi[∆i −GT
i λiỹ

TR−1ỹ] = 0 , i = 1, ...,m − 1 , (2.43)

where

∆i = Aix̂ +Biu +Ki,uncỹ , i = 1, ...,m − 1 , (2.44)

where ∆i is the unconstrained Kalman filter that would be used for the system state

estimation if there were no constraints.
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Now, the equation (2.43) is solved for the Lagrange multipliers, which leads to

λi = [GiG
T
i ]−1Gi

∆i

ỹTR−1ỹ
, i = 1, ...,m − 1 , (2.45)

and since due to assumed regularity,Gi has full row-rank (all the rows of this matrix are

linearly independent), the Lagrange multipliers (2.45) are unique.

Before using the Lagrange multipliers λi in equation (2.43) to get the constrained

gainsKi, it will be verified whetherKi minimizes the Lagrangians (2.35) (and therefore

minimizes the cost function J while simultaneously satisfying the constraint equation

(2.29)), that is, whether the extremum of Li found by setting the first-order derivative of Li

with respect toKi (2.37) equal to zero, is indeed the minimum. The sufficient condition

for this is that the second-order derivative of Li with respect toKi is positive-definite for

all possible directions ofKi (such directions that satisfy the constraint equations) [18].

To compute second-order derivative, or the Hessian of the Lagrangians Li the gainKi

is written in a vector form. If j th row ofKi is designated as kT
i, j so that

Ki =


kT

i,1
...

kT
i,ng,i


, (2.46)

then, the vector form ofKi can be defined as a column vector in the following way,

ki,vec =


ki,1
...

ki,ng,i


(2.47)

Now the derivative of the Lagrangians Li with respect toKi (2.37) can be vectorized

by using (2.47) in place ofKi,

∂Li

∂ki,vec
=


Rki,1
...

Rki,ng,i


T

+αT, (2.48)
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where α is the term −P T
i +G

T
i λiỹ

T in a vectorized form which is independent of ki,vec .

Now, the Hessian of the Lagrangian Li can be computed as follows,

∂2Li

∂k2i,vec

=
∂

∂ki,vec


Rki,1
...

Rki,ng,i


T

= diag {R, ...,R}

(2.49)

The resulting Hessian is a diagonal matrix. This matrix is positive-definite, because

R has been assumed to be positive-definite. Therefore, it is verified thatKi minimizes

the Lagrangians (2.35) and thus the cost function (2.28) while satisfying the constraints

(2.29). It can be seen from (2.28) and (2.27) that cost functions Ji depend onKi and since

the last term of (2.27) produces matrix that in its main diagonal has squared elements of

Ki, the Ji are strictly convex. All the requiredKi that satisfy (2.28) should also satisfy

the constraints (2.29), so the required set ofKi is a convex set. ThereforeKi given by

(2.42) which includes λi given by (2.45) is a global minimizing solution to the constrained

problem specified by (2.28) and (2.29). Using similar approach, it can be shown that the

unconstrained gain Km (2.33) is the global minimizing solution for the unconstrained

minimization problem (2.31). Now that it has been shown that the gainsKi (2.42) together

with the Lagrange multipliers λi (2.45) minimize the cost function (2.28) whereKi is

subject to constrained (2.29), λi can be substituted intoKi to give the following equation

for the constrained minimizing gain,

Ki =Ki,unc −GT
i [GiG

T
i ]−1Gi

∆iỹ
TR−1

ỹTR−1ỹ
, i = 1, ...,m − 1 (2.50)

Substituting the above result into the partitioned state estimate rate equation (2.22)

leads to the following constrained state estimate rate equation,
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.

x̂i = Aix̂ +Biu +Kiỹ

= Aix̂ +Biu + (Ki,unc −GT
i [GiG

T
i ]−1Gi

∆iỹ
TR−1

ỹTR−1ỹ
)ỹ

= Aix̂ +Biu +Ki,uncỹ −GT
i [GiG

T
i ]−1Gi∆i

= ∆i −GT
i [GiG

T
i ]−1Gi∆i

= (1nx,i×nx,i −GT
i [GiG

T
i ]−1Gi)∆i

= Πi∆i , i = 1, ...,m − 1 ,

(2.51)

where

Πi = 1nx,i×nx,i −GT
i

[
GiG

T
i

]−1
Gi , i = 1, ...,m − 1 (2.52)

and

∆i = Aix̂ +Biu +Ki,uncỹ , i = 1, ...,m − 1 ,

as defined in (2.44).

∆i is the unconstrained state rate vector expression which could be used in the

unconstrained state estimate rate (differential) equation to get estimates of i = 1, ...,m −
1 unconstrained state vectors (which together with the state vector solution to i =

m unconstrained state estimation problem, would give the estimate of the complete

unconstrained state vector). In accordance with the preceding derivation, multiplication of

∆i by Πi leads to the constrained state estimate rate equation (2.51).

In terms of geometric interpretation, it can be demonstrated that the matrix Πi

orthogonally projects the vector ∆i onto the null-space of the constraint JacobianGi.

If the projection Πi∆i is a vector in the null-space of Gi, then it should satisfy

GiΠi∆i = 0. This can be verified using (2.52) as follows,

GiΠi∆i = Gi
(
1nx,i×nx,i −GT

i

[
GiG

T
i

]−1
Gi

)
∆i

= Gi∆i −GiG
T
i

[
GiG

T
i

]−1
Gi∆i

= Gi∆i − 1nx,i×nx,iGi∆i

= 0 , i = 1, ...,m − 1

(2.53)

16



Next, in order to demonstrate that Πi orthogonally projects ∆i onto the null-space of

Gi, first, it can be noted that the projection Πi∆i and the projected vector ∆i satisfy the

following geometric vector subtraction relationship,

∆i − (∆i −Πi∆i) = Πi∆i , i = 1, ...,m − 1 ,

or

∆i = Πi∆i + (∆i −Πi∆i) , i = 1, ...,m − 1 (2.54)

If the matrixΠi orthogonally projects the vector ∆i onto the null-space of the constraint

Jacobian Gi, then the vector (∆i − Πi∆i) should be orthogonal to the null-space of Gi.

Using Πi expression (2.52), it can be written that

∆i −Πi∆i = ∆i −
(
∆i −GT

i

[
GiG

T
i

]−1
Gi∆i

)
= GT

i

[
GiG

T
i

]−1
Gi∆i , i = 1, ...,m − 1

(2.55)

Now, let a be a vector in the null-space ofGi, so thatGia = 0, then

aT (∆i −Πi∆i) = aTGT
i

[
GiG

T
i

]−1
Gi∆i

= (Gia)T
[
GiG

T
i

]−1
Gi∆i

= 0 , i = 1, ...,m − 1 ,

(2.56)

and since a can be any vector in the null-space ofGi, the vector (∆i −Πi∆i) is orthogonal
to the null-space ofGi.

In accordance with earlier discussion, as long asΠi∆i satisfies (2.17), the corresponding

state estimate x̂i is on the constraint surfaces (2.16).

Using (2.34), in (2.50) the expression for the entire (rather than partitioned, as in

(2.50)) constrained Kalman gain matrix is obtained,

K =Kunc −

coli=1,...,m−1

{
GT

i [GiG
T
i ]−1Gi∆i

}
0nx,m×1


ỹTR−1

ỹTR−1ỹ
(2.57)

The resulting surface-constrained continuous-time linear Kalman filter is summarized

in table 2.1.
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Table 2.1: Surface-Constrained Continuous-time Linear Kalman Filter

Estimator

Constrained state estimate rate equation:
.

x̂i = Πi∆i , i = 1, ...,m − 1 (2.51)

The unconstrained term of the constrained state estimate rate equation:
∆i = Aix̂ +Biu +Ki,uncỹ , i = 1, ...,m − 1 (2.44)

State measurement vector:
ỹ = y −Cx̂ (2.23)

The term that enforces constraints in the state estimate rate equation:

Πi = 1nx,i×nx,i −GT
i [GiG

T
i ]−1Gi , i = 1, ...,m − 1 (2.52)

Constraint Jacobian matrix:

Gi(x̂i) =
∂gi(x̂i)
∂x̂i

, i = 1, ...,m − 1 (2.18)

Unconstrained state estimate rate equation:
.

x̂m = Amx̂ +Bmu +Km,uncỹ

Gains

The optimal Kalman gain matrix for the entire unconstrained system:
Kunc = PC

TR−1 (2.34)

Constrained Kalman gain matrix:

K =Kunc −
[
coli=1,...,m−1

{
GT

i [GiG
T
i ]−1Gi∆i

}
0nx,m×1

]
ỹTR−1

ỹTR−1ỹ
(2.57)

Covariance Propagation

Error covariance rate equation:
.
P = (A −KC)P + P (A −KC)T +Q +KRKT (2.13)
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2.2 Surface-constrainedContinuous-timeExtendedKalman
Filter

Now, by taking the linear filter, obtained in the previous section, and extending it to

nonlinear systems, the surface-constrained Continuous-time Extended Kalman Filter will

be developed.

Instead of the linear system consisting of the state (2.1) and the state measurement

(2.3), the following nonlinear system will be used for the extended filter development,

.
x(t) = f (x, t,u,w) , (2.58)

y(t) = h(x, t, v) (2.59)

It assumed that the functions f and h are continuously differentiable with respect to

x, w and v, continuous in u and piecewise continuous in t. The zero-mean white noise

processesw and v are assumed to be defined in the same way as in the previous section.

Also, as in the previous section, the constraints (2.29) are applied to the system state,

partitioned in the following manner,

f (x, t,u,w) =


f1(x, t,u,w)

...

fm(x, t,u,w)


(2.60)

In accordance with the standard assumptions used in the derivation of the extended

Kalman filter, the state estimate x̂ is assumed to be close to the true state x and the noise

processes w and v are assumed to be small [6]. Then, the nonlinear system equations

(2.58) and (2.59) can be approximated by linearization, using first-order, multi-variable

Taylor series expansions,

.
x≈ f (x̂, t,u, 0) + ∂f

∂x

����
x̂,t,u,0

(x − x̂) + ∂f

∂w

����
x̂,t,u,0

w , (2.61)

y ≈ h(x̂, t, 0) + ∂h
∂x

����
x̂,t,0
(x − x̂) + ∂h

∂v

����
x̂,t,0

v (2.62)
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The matrices that appear in (2.61) and (2.62) are defined as

Fx =
∂f

∂x

����
x̂,t,u,0

, Hx =
∂h

∂x

����
x̂,t,0

, Γw =
∂f

∂w

����
x̂,t,u,0

, Γv =
∂h

∂v

����
x̂,t,0

, (2.63)

also the following vectors are defined,

ũ = f (x̂, t,u, 0) − Fxx̂ , ȳ = h(x̂, t, 0) −Hxx̂ (2.64)

With the above definitions, the equations (2.58) and (2.59) can be written in linear

approximation form as

.
x= f (x̂, t,u, 0) + Fxx − Fxx̂ + Γww ,

leading to
.
x= Fxx + ũ + Γww (2.65)

and

y = h(x̂, t, 0) +Hxx −Hxx̂ + Γvv ,

δy = y − ȳ =Hxx + Γvv , (2.66)

where ũ, given in (2.64), is a known input in the linearized system specified by equation

(2.65).

Next, the matrix Fx is partitioned as

Fx =


Fx,1

...

Fx,m


,
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which, in accordance with (2.64) leads to

ũi =


ũ1

...

ũm


,

so that ũ can now be written as

ũi = fi(x̂, t,u, 0) − Fx,ix̂ , i = 1, ...,m − 1 (2.67)

Now, the surface-constrained, continuous-time linear Kalman filter, developed in the

previous section, can be applied to the linear system defined by the equations (2.65) and

(2.66). The right hand side of the system state estimate equation can be written as

∆i = Fx,ix̂ + ũi +Ki,unc(δy −Hxx̂)

= fi(x̂, t,u, 0) +Ki,unc(y − h(x̂, t, 0))

= fi(x̂, t,u, 0) +Ki,uncỹ , i = 1, ...,m − 1 ,

(2.68)

where

ỹ = (y − h(x̂, t, 0)) (2.69)

is the measurement estimate error.

The estimator structure corresponding to (2.68), for a gainK can be written as

.

x̂= Fxx̂ + ũ +K(δy −Hxx̂) , (2.70)

or substituting (2.66), as

.

x̂ = Fxx̂ + ũ +K(Hxx + Γvv −Hxx̂)

= Fxx̂ + ũ +K(Γvv +Hxx̃) ,
(2.71)

where x̃ = x − x̂ is the estimation error.
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Now, using (2.65) and (2.71), the estimation error rate can be stated as follows,

.
x̃ =

.
x −

.

x̂

= Fxx + ũ + Γww − Fxx̂ − ũ −K(Γvv +Hxx̃)

= (Fx −KHx)x̃ + Γww −KΓvv

(2.72)

Then, as per the estimate error covariance matrix definition from the previous section,

P = E{x̃x̃T }, the estimate error covariance rate can be written as

.
P = (Fx −KHx)P + P (Fx −KHx)T + ΓwQΓT

w +KΓvRΓ
T
vK

T (2.73)

As in the previous section, the Kalman gain K is selected by minimizing the cost

function

J =
1

2
trace[

.
P ] ,

while enforcing the constraints. In the partitioned form, the derivative of the cost function

with respect to gain is

∂Ji

∂Ki
= −P T

i H
T
x +KiΓvRΓ

T
v , i = 1, ...,m , (2.74)

for the unconstrained case Ji is minimized when

−P T
i H

T
x +Ki,uncΓvRΓ

T
v = 0 , i = 1, ...,m ,

that is

Ki,unc = P
T
i H

T
x (ΓvRΓT

v )−1 , i = 1, ...,m ,

and since P is symmetric,

Kunc = PH
T
x (ΓvRΓT

v )−1 (2.75)
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In consequence of equation (2.74) having term ΓvRΓT
v instead ofR, as in the equation

(2.31) (which is a part of the Lagrangian gradients (2.37)), the Lagrangian method leads

to the following constrained gain equation for the extended Kalman filter,

K =Kunc −

coli=1,...,m−1

{
GT

i [GiG
T
i ]−1Gi∆i

}
0nx,m×1


ỹT (ΓvRΓT

v )−1

ỹT (ΓvRΓT
v )−1ỹ

(2.76)

The surface-constrained continuous-time extended Kalman filter is summarized in

table 2.2.
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Table 2.2: Surface-Constrained Continuous-time Extended Kalman Filter

Estimator

Constrained state estimate rate equation:
.

x̂i = Πi∆i , i = 1, ...,m − 1 (2.51)

The unconstrained term of the constrained state estimate rate equation:
∆i = fi(x̂, t,u, 0) +Ki,uncỹ , i = 1, ...,m − 1 (2.68)

Measurement estimate error:
ỹ = y − h(x̂, t, 0) (2.69)

The term that enforces constraints in the state estimate rate equation:
Πi = 1nx,i×nx,i −GT

i [GiG
T
i ]−1Gi , i = 1, ...,m − 1 (2.52)

Constraint Jacobian matrix:

Gi(x̂i) =
∂gi(x̂i)
∂x̂i

, i = 1, ...,m − 1 (2.18)

Unconstrained state estimate rate equation:
.

x̂m = fm(x̂, t,u, 0) +Km,uncỹ

Gains

The optimal Kalman gain matrix for the entire unconstrained system:

Kunc = PH
T
x (ΓvRΓT

v )−1 (2.75)

Constrained Kalman gain matrix:

K =Kunc −
[
coli=1,...,m−1

{
GT

i [GiG
T
i ]−1Gi∆i

}
0nx,m×1

]
ỹT (ΓvRΓT

v )−1

ỹT (ΓvRΓT
v )−1ỹ

(2.76)

Covariance Propagation

Error covariance rate equation:
.
P = (Fx −KHx)P + P (Fx −KHx)T + ΓwQΓT

w +KΓvRΓ
T
vK

T (2.73)

Jacobian Matrices

Icluding dynamics Jacobian Fx and measurement JacobianHx:

Fx =
∂f

∂x

����
x̂,t,u,0

, Hx =
∂h

∂x

����
x̂,t,0

, Γw =
∂f

∂w

����
x̂,t,u,0

, Γv =
∂h

∂v

����
x̂,t,0

(2.63)
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Chapter 3

Dynamics of a Ball Rolling on a Known
Surface

In this chapter, the equations of motion for a ball (with embedded off-center point

mass) rolling on a known surface without slipping, under influence of external force, will

be derived. First, the surface equation, the ball parameters, as well as the external force,

will be defined. Then, the constraint for the contact point between the ball and the surface

as well as constraint for the geometric center of the ball, will be formulated. Next, the

no-slip condition, constraint will be specified. These will be followed by formulation of

the kinetic and potential energies as well corresponding Lagrangian. Finally, the above

results will be employed in Lagrange multiplier method, which will be used to find the

constrained Lagrange’s equations of motion for the rolling ball.

3.1 Surface and Ball Parameters

In the following derivation it is assumed that the ball is rolling without slipping on a

surface. The description of the relevant reference frames and vectors, shown in figure 3.1,

will be given next.

In the figure 3.1, the symbol I indicates inertial reference frame, b indicates the

reference frame of the ball, c the contact point between the ball and the surface, m a point

mass embedded within the ball. The two-symbol superscript, such as in ®r bI , indicates

that the vector ®r extends from the location indicated by the second symbol to the location
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x̂
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ẑ

0

g(rI) = 0
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R~̂n

~rmb

~r cI
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x̂b
ŷb

ẑb
Fb

Figure 3.1: Ball rolling on a surface.

indicated by the first symbol, which is in the given case from the origin of the inertial

frame to the center of the ball. The surface is specified in the the global, inertial coordinate

frame FI which is defined by the set of Cartesian basis vectors,

®F T
I = [x̂, ŷ, ẑ]T , (3.1)

the 3 × 1 vector ®F T
I , is a vectrix [22], the type of a vector with the reference frame’s unit

vectors as its components.

The surface is given by the following expression,

g(rI) = 0 , (3.2)

where rI = (x, y, z) is a point on the surface, the position of that point is given by ®r = ®F T
I rI ,

and g : R3 → R (the function g takes coordinates from 3D real coordinate space and

outputs real 1D space coordinates) as well as g ∈ C3 (g is three times continuously

differentiable).

The body-fixed, ball reference frame Fb has its origin at the geometric center of the

ball and is defined as

®F T
b = [x̂b, ŷb, ẑb]T (3.3)
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The ball has uniform density, mass M and radius R, and so its moment of inertia is

given by

Ib =
2MR2

5
1 , (3.4)

where 1 is a 3 by 3 identity matrix. A point mass m is embedded within the ball at a

position

®r mb = ®F T
b r

mb
b (3.5)

from the geometric center of the ball, where rmb
b = (x

mb
b , ymb

b , zmb
b ). An external force ®f b

is acting at the geometric center of the ball, this force is given by

®f b = ®F T
I f

b
I (3.6)

3.2 Ball-Surface Contact Condition

As shown in figure 3.1, the point of contact of the ball in the inertial reference frame is

given by ®r cI = ®F T
I r

cI
I , and the position of the ball’s geometric center in the inertial frame

is given by ®r bI = ®F T
I r

bI
I . The center and the contact point must satisfy the following

equation,

®r bI = ®r cI + R ®̂n , (3.7)

where

®̂n = ®F T
I n̂I (3.8)

is the unit vector normal to the surface g at the point of contact ®r cI , pointing upward. As

the contact point is on the surface, it must satisfy equation (3.2),

g
(
rcI

I
)
= 0 (3.9)
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By definition the gradient ∇g is perpendicular to g, thus

n̂I =
∂g

(
rcI

I

)
/∂rI����∂g (

rcI
I

)
/∂rI

���� (3.10)

is the unit normal vector, which is assumed to be pointing in upward direction. If initially,

n̂I is pointing downward, the sign of g(rI) can be changed to the opposite. In terms of

vector coordinates equation (3.7) can be written as

r bI
I = r

cI
I + Rn̂I (3.11)

Surface contact constraint (3.9) and ball center constraint (3.11) equations are holonomic

(relations between coordinates) constraints that have to be satisfied.

The inertial velocity of the contact point of the ball is given by

®v cI = ®F T
I

.
r

cI
I , (3.12)

the inertial velocity of the center of the ball is

®v bI = ®F T
I

.
r

bI
I , (3.13)

where,
.
r

bI
I is obtained from (3.11),

.
r

bI
I =

.
r

cI
I +R

.

n̂I (3.14)

Differentiating (3.10) with respect to time gives

.

n̂I =

(
d/dt

(
∂g

(
rcI

I

)
/∂r

) ) ����∂g (
rcI

I

)
/∂r

���� − (
∂g

(
rcI

I

)
/∂r

) {
d/dt

����∂g (
rcI

I

)
/∂r

����}����∂g (
rcI

I

)
/∂r

����2 ,

let f {u[x(t)]} =
����∂g(rcI

I )/∂r
����, u[x(t)] = ∂g (

rcI
I

)
/∂r, x(t) = rcI

I , then

dx
dt
=

.
r

cI
I ,
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du
dt
=
∂u

∂x

dx
dt
=
∂2g

(
rcI

I

)
∂r∂rT

.
r

cI
I ,

df
dt
=
∂ f
∂u

∂u

∂x

dx
dt
=

(
∂g

(
rcI

I

)
/∂r

)T����∂g (
rcI

I

)
/∂r

���� ∂2g (
rcI

I

)
∂r∂rT

.
r

cI
I ,

hence

.

n̂I=
1����∂g(rcI
I )/∂r

���� ∂2g (
rcI

I

)
∂r∂rT

.
r

cI
I −

1����∂g(rcI
I )/∂r

����2 ∂g
(
rcI

I

)
∂r

(
∂g

(
rcI

I

)
/∂r

)T����∂g (
rcI

I

)
/∂r

���� ∂2g (
rcI

I

)
∂r∂rT

.
r

cI
I ,

which leads to

.

n̂I=
1����∂g (
rcI

I

)
/∂r

����
(
1 − 1����∂g (

rcI
I

)
/∂r

����2 ∂g
(
rcI

I

)
∂r

(
∂g

(
rcI

I

)
∂r

)T
)
∂2g

(
rcI

I

)
∂r∂rT

.
r

cI
I (3.15)

Substituting (3.15) into (3.14) gives

.
r

bI
I =

.
r

cI
I +

R����∂g (
rcI

I

)
/∂r

����
(
1 − 1����∂g (

rcI
I

)
/∂r

����2 ∂g
(
rcI

I

)
∂r

(
∂g

(
rcI

I

)
∂r

)T
)
∂2g

(
rcI

I

)
∂r∂rT

.
r

cI
I ,

using the unit normal vector expression (3.10) in the above equation, gives

.
r

bI
I =

.
r

cI
I +

R����∂g (
rcI

I

)
/∂r

���� (1 − n̂I
(
rcI

I
)
n̂I

(
rcI

I
)T

) ∂2g (
rcI

I

)
∂r∂rT

.
r

cI
I ,

or
.
r

bI
I = A

(
r cI

I
) .
r

cI
I , (3.16)
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where

A
(
r cI

I
)
= 1 +

R����∂g (
rcI

I

)
/∂r

���� (1 − n̂I
(
rcI

I
)
n̂I

(
rcI

I
)T

) ∂2g (
rcI

I

)
∂r∂rT (3.17)

Constraint equation (3.16) is non-holonomic (velocity-dependent) representation of

the holonomic, ball center constraint equation (3.11). Similarly, differentiating holonomic

surface constraint equation (3.9) with respect to time, produces the non-holonomic surface

constraint, (
∂g

(
rcI

I

)
∂r

)T
.
r

cI
I = 0 (3.18)

3.3 Kinetic and Potential Energies

It is assumed that CbI ∈ SO(3) (the set of all three-dimensional rotation matrices) is

the rotation matrix mapping coordinates from the inertial frame FI to the ball reference

frame Fb. Furthermore, CbI completely describes the attitude of the ball in the inertial

reference frame. The angular velocity vector of the ball can be written as

®w bI = ®F T
b w

bI
b , (3.19)

hence, the ball rotates about the axis lying along the angular velocity vector ®w bI , which

points from the origin of the inertial frame to the center of the ball. Equation (3.19) defines

the angular velocity in the body-fixed coordinate system of the ball.

The rotational kinematics of the ball satisfy Poisson’s equation [22],

.
CbI= −

(
wbI

b
)×
CbI , (3.20)

where (wbI
b )
× is the angular velocity skew-symmetric matrix.
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The kinetic energy of the ball (the translational kinetic energy plus the rotational

kinetic energy) is given by the following equation,

Tb =
1

2
M

(
.
r

bI
I

)T .
r

bI
I +

1

2

(
ωbI

b
)T
Ibω

bI
b (3.21)

It can be seen from figure 3.1 and equation (3.5), that the point mass m, embedded

within the ball, has inertial position specified by

®r mI = ®r bI + ®r mb = ®F T
I

(
r bI

I +C
T
bIr

mb
b

)
(3.22)

Taking the derivative of (3.22) with respect to time and noting that neither ®F T
I (specified

in equation 3.1) nor rmb
b (specified in figure 3.1) are time dependent, gives the following

equation for the inertial velocity of the point mass,

®v mI = ®F T
I

(
.
r

bI
I +

.
C

T
bI r

mb
b

)
,

using (3.20) leads to

®v mI = ®F T
I

(
.
r

bI
I −

((
ωbI

b

)×
CbI

)T
rmb

b

)
= ®F T

I

(
.
r

bI
I +C

T
bI

(
ωbI

b

)×
rmb

b

)
= ®F T

I

(
.
r

bI
I −CT

bI

(
rmb

b

)×
ωbI

b

) (3.23)

Using the inertial velocity expression (3.23), the kinetic energy for the point mass can

be written as follows,
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Tm =
1

2
m

(
.
r

bI
I −CT

bI

(
rmb

b

)×
ωbI

b

)T (
.
r

bI
I −CT

bI

(
rmb

b

)×
ωbI

b

)
=

1

2
m

(
.
r

bI
I

)T .
r

bI
I

− 1

2
m

(
.
r

bI
I

)T
CT

bI

(
rmb

b

)×
ωbI

b −
1

2
m

(
CT

bI

(
rmb

b

)×
ωbI

b

)T
.
r

bI
I

+
1

2
m

(
CT

bI

(
rmb

b

)×
ωbI

b

)T

CT
bI

(
rmb

b

)×
ωbI

b

=
1

2
m

(
.
r

bI
I

)T .
r

bI
I −m

(
.
r

bI
I

)T
CT

bI

(
rmb

b

)×
ωbI

b −
1

2
m

(
ωbI

b

)T (
rmb

b

)× (
rmb

b

)×
ωbI

b

(3.24)

Combining the kinetic energy of the ball (3.21) and the kinetic energy of the embedded

mass (3.24) gives the expression for the total kinetic energy,

T = Tb + Tm

=
1

2
M

(
.
r

bI
I

)T .
r

bI
I +

1

2

(
ωbI

b

)T
Ibω

bI
b

+
1

2
m

(
.
r

bI
I

)T .
r

bI
I − m

(
.
r

bI
I

)T
CT

bI

(
rmb

b

)×
ωbI

b −
1

2
m

(
ωbI

b

)T (
rmb

b

)× (
rmb

b

)×
ωbI

b

=
1

2
(M + m)

(
.
r

bI
I

)T .
r

bI
I − m

(
.
r

bI
I

)T
CT

bI

(
rmb

b

)×
ωbI

b

+
1

2

(
ωbI

b

)T
(
Ib − m

(
rmb

b

)× (
rmb

b

)×)
ωbI

b

=
1

2
(M + m)

(
.
r

bI
I

)T .
r

bI
I − m

(
.
r

bI
I

)T
CT

bI

(
rmb

b

)×
ωbI

b +
1

2

(
ωbI

b

)T
Jbω

bI
b ,

(3.25)

where

Jb = Ib − m
(
rmb

b

)× (
rmb

b

)×
, (3.26)

is the resulting moment of inertia of the ball and point mass, about the geometric center of

the ball.
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It is assumed that the gravitational force is acting in the negative ®z I direction, causing

acceleration g. Hence the gravitational potential energy for the ball is

Vb = Mg ®r bI · ®z I

= Mg
(
rbI

I

)T
e3

(3.27)

where e3 = [0, 0, 1]T . The potential energy for the point mass is defined in a similar manner

and with the use of (3.22),

Vm = mg ®r mI · ®z I

= mg
(
rbI

I

)T
e3 + mg

(
rmb

b

)T
CbI e3

(3.28)

The combination of (3.27) and (3.28) gives the total gravitational potential energy,

V = Vb + Vm

= (M + m)g
(
rbI

I

)T
e3 + mg

(
rmb

b

)T
CbI e3

(3.29)

Using the total kinetic energy equation (3.25) and the total gravitational potential

energy equation (3.29), the Lagrangian for the ball and point mass system can be written

in the following way,

L = T − V

=
1

2
(M + m)

(
.
r

bI
I

)T .
r

bI
I −m

(
.
r

bI
I

)T
CT

bI

(
rmb

b

)×
ωbI

b +
1

2

(
ωbI

b

)T
Jbω

bI
b

− (M + m)g
(
rbI

I

)T
e3 − mg

(
rmb

b

)T
CbIe3

(3.30)

3.4 No-Slip Condition

The no-slip condition requires that the inertial velocity (with respect to the surface)

of the instantaneous point of contact is zero. It should be noted, that the instantaneous
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point of contact has a fixed location on the ball, hence it rotates with the ball and should

satisfy the non-slip condition when it becomes instantaneously in contact with the surface

and its position vector relative to the center of the ball coincides with the position vector

−R ®̂n (figure 3.1). Therefore, the inertial velocity of the instantaneous point of contact is

different from the inertial velocity of the point of contact between the ball and the surface,

given by equation (3.12) (this point is not fixed on the ball, but exists between the ball and

the surface only, hence for example, if the ball is stationary but spinning with slipping, then

the ball’s center velocity is zero, the velocity of the point of contact between the ball and

the surface is zero, however the velocity of the instantaneous point of contact is non-zero).

Equation (3.7) can be rearranged to express the inertial position of the instantaneous

point of contact between the ball and the surface,

®rcI
inst = ®r

bI − R ®̂n , (3.31)

where the subscript inst is used in order do indicate the instantaneous point of contact and

to distinguish it from the point of contact between the ball and the surface ®rcI .

The no-slip condition is satisfied when the vector sum of the inertial velocity of the

ball center and the inertial velocity of the instantaneous point of contact relative to the ball

center, is equal to zero, that is

d
dt

(
®rbI

)
+

d
dt

(
®rcb

inst

)
= ®0 , (3.32)

where ®rcb
inst is the position of the instantaneous point of contact relative to the center of the

ball in the coordinate system of the ball.

Using equation (3.31) and applying transport theorem [21], the inertial velocity of the

instantaneous point of contact can be expressed as,

d
dt

(
®rcb

inst

)
= ®wbI × ®rcb

inst , (3.33)
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according to the above description, at the moment of contact with the surface, the position

vector of the instantaneous point of contact relative to the center of the ball, is ®rcb
inst = −R ®̂n,

thus

d
dt

(
®rcb

inst

)
= −R ®wbI × ®̂n , (3.34)

substituting (3.34) into (3.32) leads to the following no-slip condition equation,

d
dt

(
®rbI

)
− R ®wbI × ®̂n = ®0 , (3.35)

which indicates that for no-slip, the magnitude of the velocity of the ball’s center d/dt
(
®rbI )

should be equal to the magnitude of the velocity of a point on the surface of the ball

R ®wbI × ®̂n , located in the direction perpendicular to ®ωbI . This equation can be expressed

as

d
dt

(
®rbI

)
= −R ®̂n × ®wbI ,

now, using equations (3.8), (3.13), (3.19) and the relationship ®Fb = CbI ®FI (as per rotation

matrix definition from section 3.3), the above equation can be written as

®F T
I

.
r

bI
I = −R

(
®F T

I n̂I

)
×

( (
CbI ®FI

) T
wbI

b

)
,

which leads to
.
r

bI
I = −R n̂×I C

T
bI ω

bI
b (3.36)

Equation (3.36) is an additional non-holonomic (velocity-dependent) constraint that

must be satisfied.
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3.5 Lagrange’s Equations of Motion

As a first step, the rotation matrix CbI (which is mapping coordinates from FI to Fb,

as described in section 3.3) is parameterized by itself, following the approach given in

[19], the parameter is defined as

p =


c1

c2

c3


, (3.37)

where ci is the ith column of CT
bI . As shown in [19] the angular velocity and the time

derivative of the parameter p satisfy kinematic relationships,

ωbI
b = S(p)

.
p (3.38)

and
.
p = Γ(p)ωbI

b , (3.39)

as well as a non-holonomic constraint

Ξ(p) .p = 0 , (3.40)

where matrices S(p) , Γ(p) and Ξ(p) are parametric functions. Matrix Ξ(p) has full
row-rank. Moreover, reference [19] provides the following identities (which will be used

in the Lagrange’s method),

Ξ(p)Γ(p) = 0 , S(p)Γ(p) = 1 , (3.41)

∂
(
CbIv

)
∂pT Γ(p) =

(
CbIv

)×
,
∂
(
CT

bIv
)

∂pT Γ(p) = −CT
bIv
× , (3.42)

for any v ∈ R3, as well as (
.
S(p) −

∂ωbI
b

∂pT

)
Γ(p) = −

(
ωbI

b

)×
(3.43)
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The generalized coordinates are specified as

q =


rbI

I

rcI
I

p


(3.44)

The non-holonomic (velocity-dependent) constraints, which have to be satisfied are

specified by (3.16), (3.36) and (3.40). The first two equations can be written as follows:

ball center inertial velocity constraint (3.16) ,

.
r

bI
I −A

(
rcI

I
) .
r

cI
I = 0 , (3.45)

no-slip condition constraint (3.36),

.
r

bI
I + Rn̂×IC

T
bIω

bI
b = 0 (3.46)

Now, the three non-holonomic constraints can be expressed in matrix form,

W
.
q = 0 , (3.47)

where

W =


W1

W2

W3


, (3.48)
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and

W1 =
[
1 −A

(
rcI

I
)

0
]

W2 =
[
1 0 Rn̂×IC

T
bIS(p)

]
W3 =

[
0 0 Ξ(p)

] (3.49)

It is assumed thatA
(
rcI

I

)
is invertible (non-singular), so that the matrixW (3.48) has

full row-rank. Thus, the constraints can be introduced in Lagrange’s equations using the

Lagrange multiplier method.

Using the generalized coordinates specified by (3.44) and virtual displacement δrbI
I ,

the virtual work δW associated with the force f bI
I given in (3.6) (and shown in figure 3.1)

can be written as

δW =
(
δrbI

I
)T
f b

I = δq
T f̄ , (3.50)

where the generalized external force is specified as

f̄ =


f bI

I

0

0


(3.51)

Now, the Lagrange’s equations of motion can be written as follows,

d
dt

(
∂L
∂
.
q

)
− ∂L
∂q
= f̄ +W T

1 λ1 +W
T
2 λ2 +W

T
3 λ3 , (3.52)

where λ1, λ2 and λ3 are Lagrange multipliers, which are vectors with appropriate

dimensions.

Using the Lagrangian L specified by (3.30), the derivatives in the right hand side of

(3.52) can be found. First, the components of ∂L/∂ .
q are calculated.
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∂L

∂
.
r

bI
I

=
∂

∂
.
r

bI
I

(
1

2
(M + m)

(
.
r

bI
I

)T .
r

bI
I −m

(
.
r

bI
I

)T
CT

bI

(
rmb

b

)×
ωbI

b

+
1

2

(
ωbI

b

)T
Jbω

bI
b − (M + m)g

(
rbI

I

)T
e3 − mg

(
rmb

b

)T
CbIe3

)
= (M + m) .rbI

I −mCT
bI

(
rmb

b

)×
ωbI

b ,

(3.53)

∂L

∂
.
r

cI
I

= 0 , (3.54)

substituting equation (3.38) into the Lagrangian L and then taking the partial derivative

with respect to .
p , leads to

∂L
∂
.
p
= mS(p)T

(
rmb

b

)×
CbI

.
r

bI
I +S(p)TJbω

bI
b (3.55)

Differentiating (3.53), (3.54) and (3.55) with respect to time, in order to evaluate

d/dt(∂L/∂ .
q), and using (3.20), leads to

d
dt

(
∂L

∂
.
r

bI
I

)
= (M + m) ..rbI

I −m
.
C

T
bI

(
rmb

b

)×
ωbI

b − mCT
bI

(
rmb

b

)× .
ω

bI
b

= (M + m) ..rbI
I +mCT

bI

[(
ωbI

b

)×]T (
rmb

b

)×
ωbI

b − mCT
bI

(
rmb

b

)× .
ω

bI
b

= (M + m) ..rbI
I −mCT

bI

(
ωbI

b

)× (
rmb

b

)×
ωbI

b − mCT
bI

(
rmb

b

)× .
ω

bI
b ,

(3.56)

d
dt

(
∂L

∂
.
r

cI
I

)
= 0 , (3.57)
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d
dt

(
∂L
∂
.
p

)
= m

.
S(p)T

(
rmb

b

)×
CbI

.
r

bI
I + mS(p)T

(
rmb

b

)× .
CbI

.
r

bI
I

+ mS(p)T
(
rmb

b

)×
CbI

..
r

bI
I +

.
S(p)TJbω

bI
b + S(p)

TJb
.
ω

bI
b

=
.
S(p)T

(
m

(
rmb

b

)×
CbI

.
r

bI
I + Jbω

bI
b

)
+ S(p)T

(
m

(
rmb

b

)×
CbI

..
r

bI
I −m

(
rmb

b

)× (
ωbI

b

)×
CbI

.
r

bI
I + Jb

.
ω

bI
b

)
(3.58)

Next, the ∂L/∂q term of the Lagrange’s equations of motion (3.52) will be evaluated,

by taking the required derivatives of the Lagrangian L (3.30),

∂L
∂rbI

I

= − (M + m)ge3 , (3.59)

∂L
∂rcI

I

= 0 , (3.60)

∂L
∂p
= − ∂

∂p

(
m

(
.
r

bI
I

)T
CT

bI

(
rmb

b

)×
ωbI

b

)
+

∂

∂p

(
1

2

(
ωbI

b

)T
Jbω

bI
b

)
− ∂

∂p

(
mg

(
rmb

b

)T
CbIe3

)
= −m

(
∂CT

bI

∂pT

(
rmb

b

)×
ωbI

b

)T
.
r

bI
I + m

(
∂ωbI

b

∂pT

)T (
rmb

b

)×
CbI

.
r

bI
I

+

(
∂ωbI

b

∂pT

)T

Jbω
bI
b − mg

(
∂CbIe3
∂pT

)T

rmb
b ,

which can be rearranged as

∂L
∂p
=

(
∂ωbI

b

∂pT

)T (
m

(
rmb

b

)×
CbI

.
r

bI
I + Jbω

bI
b

)
− m

(
∂CT

bI

∂pT

(
rmb

b

)×
ωbI

b

)T
.
r

bI
I

− mg

(
∂CbIe3
∂pT

)T

rmb
b

(3.61)
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Now all the components of the Lagrange’s equations of motion (3.52) are specified. The

right hand side components are given by (3.56) - (3.61) and the left hand side components

are given by (3.49), (3.51). The Lagrange’s equations for rbI
I (the first component of

equation (3.52), where (3.49), (3.51), (3.56) and (3.59) have been used) are as follows,

d
dt

(
∂L

∂
.
r

bI
I

)
− ∂L
∂rbI

I

= f b
I + 1λ1 + 1λ2 + 0λ3 ,

which leads to

(M + m) ..rbI
I −mCT

bI

(
ωbI

b

)× (
rmb

b

)×
ωbI

b − mCT
bI

(
rmb

b

)× .
ω

bI
b

= f b
I − (M + m)ge3 + λ1 + λ2

(3.62)

The Lagrange’s equations of motion for rcI
I (the second component of equation (3.52),

where (3.49), (3.51), (3.57) and (3.60) have been used) are given by,

d
dt

(
∂L

∂
.
r

cI
I

)
− ∂L
∂rcI

I

= 0 −A
(
rcI

I

)T
λ1 + 0λ2 + 0λ3 ,

which leads to

0 = −A
(
rcI

I

)T
λ1 (3.63)

It is assumed thatA(rcI
I ) is non-singular (invertible, with non-zero determinant), hence

λ1 = 0 (since if there exists λ1 , 0 such that 0 = −ATλ1 , then A must be singular).

Therefore, the Lagrange’s equations for rbI
I , given in (3.62), can be written as

(M + m) ..rbI
I −mCT

bI

(
ωbI

b

)× (
rmb

b

)×
ωbI

b − mCT
bI

(
rmb

b

)× .
ω

bI
b = f

b
I − (M + m)ge3 + λ2

(3.64)

The Lagrange’s equations of motion for p (the third component of equation (3.52),

where (3.49), (3.51), (3.58) and (3.61) have been used) are as follows,
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d
dt

(
∂L
∂
.
p

)
− ∂L
∂p
=

.
S(p)T

(
m

(
rmb

b

)×
CbI

.
r

bI
I + Jbω

bI
b

)
+ S(p)T

(
m

(
rmb

b

)×
CbI

..
r

bI
I −m

(
rmb

b

)× (
ωbI

b

)×
CbI

.
r

bI
I + Jb

.
ω

bI
b

)
−

(
∂ωbI

b

∂pT

)T (
m

(
rmb

b

)×
CbI

.
r

bI
I + Jbω

bI
b

)
+ m

(
∂CT

bI

∂pT

(
rmb

b

)×
ωbI

b

)T
.
r

bI
I

+ mg

(
∂CbIe3
∂pT

)T

rmb
b = 0 + 0λ1 + R

[
n̂×IC

T
bIS(p)

]T
λ2 + Ξ(p)Tλ3 ,

which can be written as

S(p)T
(
m

(
rmb

b

)×
CbI

..
r

bI
I −m

(
rmb

b

)× (
ωbI

b

)×
CbI

.
r

bI
I + Jb

.
ω

bI
b

)
+

(
.
S(p) −

∂ωbI
b

∂pT

)T (
m

(
rmb

b

)×
CbI

.
r

bI
I + Jbω

bI
b

)
+ m

(
∂CT

bI

∂pT

(
rmb

b

)×
ωbI

b

)T
.
r

bI
I

+ mg

(
∂CbIe3
∂pT

)T

rmb
b = −RS(p)TCbIn̂

×
I λ2 + Ξ(p)Tλ3

(3.65)

Multiplying (3.65) by Γ(p)T (which appear in identities (3.41), (3.42) and (3.43)),

gives (
S(p)Γ(p)

)T
(
m

(
rmb

b

)×
CbI

..
r

bI
I −m

(
rmb

b

)× (
ωbI

b

)×
CbI

.
r

bI
I + Jb

.
ω

bI
b

)
+

((
.
S(p) −

∂ωbI
b

∂pT

)
Γ(p)

)T (
m

(
rmb

b

)×
CbI

.
r

bI
I + Jbω

bI
b

)

+ m
©«
(
∂CT

bI

(
rmb

b

)×
ωbI

b

∂pT

)
Γ(p)

ª®®¬
T

.
r

bI
I

+ mg

((
∂CbIe3
∂pT

)
Γ(p)

)T

rmb
b = −R

(
S(p)Γ(p)

)T
CbIn̂

×
I λ2 +

(
Ξ(p)Γ(p)

)T
λ3 ,
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where (rmb
b )
× and ωbI

b are kept fixed in the the differentiation with respect to p in the third

term on the right-hand side of the above equation, applying identities (3.41), (3.42) and

(3.43) to this equation gives the following result,

m
(
rmb

b

)×
CbI

..
r

bI
I −m

(
rmb

b

)× (
ωbI

b

)×
CbI

.
r

bI
I + Jb

.
ω

bI
b

+
(
ωbI

b

)× (
m

(
rmb

b

)×
CbI

.
r

bI
I + Jbω

bI
b

)
+ m

((
rmb

b

)×
ωbI

b

)×
.
r

bI
I − mg(CbIe3)× rmb

b = −RCbIn̂
×
I λ2

(3.66)

Thus the Lagrange multiplier λ3 has been eliminated. Equation (3.66) can written as

m
(
rmb

b

)×
CbI

..
r

bI
I +Jb

.
ω

bI
b +

(
ωbI

b

)×
Jbω

bI
b

+ m

((
ωbI

b

)× (
rmb

b

)×
−

(
rmb

b

)× (
ωbI

b

)×
+

((
rmb

b

)×
ωbI

b

)×)
CbI

.
r

bI
I

− mg(CbIe3)×rmb
b = −RCbIn̂

×
I λ2

(3.67)

Using the identities a×b× = baT −
(
aTb

)
1 and (a×b)× = baT − abT , in the second

term on the left-hand side in (3.67) leads to

m

(
rmb

b

(
ωbI

b

)T
−

((
ωbI

b

)T
rmb

b

)
1 − ωbI

b

(
rmb

b

)T
+

((
rmb

b

)T
ωbI

b

)
1

+ ωbI
b

(
rmb

b

)T
− rmb

b

(
ωbI

b

)T
)
CbI

.
r

bI
I = 0 ,

hence, equation (3.67) can be expressed as

m
(
rmb

b

)×
CbI

..
r

bI
I +Jb

.
ω

bI
b +

(
ωbI

b

)×
Jbω

bI
b − mg

(
CbIe3

)×
rmb

b = −RCbIn̂
×
I λ2 (3.68)
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Now the remaining Lagrange multiplier λ2 will be eliminated. In order to do this,

equations (3.64) and (3.68) (both have λ2) are assembled in a single vector form as


(M + m)1 −mCT

bI

(
rmb

b

)×
m

(
rmb

b

)×
CbI Jb



..
r

bI
I
.
ω

bI
b

 +

−mCT

bI

(
ωbI

b

)× (
rmb

b

)×
ωbI

b(
ωbI

b

)×
Jbω

bI
b

 =
f b

I − (M + m) ge3
−mg

(
rmb

b

)×
CbIe3

 +


1

−RCbIn̂
×
I

 λ2 ,

(3.69)

which can be written in compact form as

M


..
r

bI
I
.
ω

bI
b

 + fnon = fext + W̄λ2 , (3.70)

where the definition of each term can be inferred from (3.70) and fnon, fext are nonlinear

and external forces respectively.

Using the no-slip condition (3.36), the following expression can be specified,


.
r

bI
I

ωbI
b

 = Υ
(
rcI

I ,p
)
ωbI

b , (3.71)

where

Υ
(
rcI

I ,p
)
=


−Rn̂×IC

T
bI

1

 (3.72)

It can be clearly seen that

ΥTW̄ = 0 (3.73)
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Taking the derivative with respect to time of (3.71), gives


..
r

bI
I
.
ω

bI
b

 = Υ
(
rcI

I ,p
) .
ω

bI
b +

.
Υ

(
rcI

I ,p
)
ωbI

b (3.74)

Substitution of (3.74) into (3.70) results in

M Υ
.
ω

bI
b +M

.
Υ ωbI

b + fnon = fext + W̄λ2 ,

multiplying both sides of the above equation by ΥT and using (3.73), eliminates the

remaining Lagrange multiplier, λ2 , and leads to

ΥTM Υ
.
ω

bI
b +Υ

TM
.
Υ ωbI

b + Υ
Tfnon = Υ

Tfext (3.75)

Now each term of (3.75) will be evaluated. Differentiating (3.72), gives

.
Υ =


−R

.

n̂
×
I C

T
bI − R n̂×I

.
C

T
bI

0


=


−R

.

n̂
×
I C

T
bI + R n̂×I

( (
ωbI

b

)×
CbI

)T

0


=


−R

.

n̂
×
I C

T
bI − R n̂×IC

T
bI

(
ωbI

b

)×
0

 ,
(3.76)

where substitution of (3.20) has been made. The time derivative of the unit normal is

given by (3.15),

.

n̂I=
1����∂g(rcI
I )/∂r

����
(
1 − 1����∂g(rcI

I )/∂r
����2 ∂g

(
rcI

I

)
∂r

(
∂g

(
rcI

I

)
∂r

)T
)
∂2g

(
rcI

I

)
∂r∂rT

.
r

cI
I ,
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using (3.10), (3.15), (3.16) and (3.36) in the above equation, gives

.

n̂I =
1����∂g (
rcI

I

)
/∂r

���� (1 − n̂In̂
T
I

) ∂2g (
rcI

I

)
∂r∂rT A

(
rcI

I
)−1 .

r
bI
I

= − R����∂g (
rcI

I

)
/∂r

���� (1 − n̂In̂
T
I

) ∂2g (
rcI

I

)
∂r∂rT A

(
rcI

I
)−1
n̂×IC

T
bIω

bI
b ,

(3.77)

equation (3.77) can be simplified using (3.17),

.

n̂I = −
(

R����∂g (
rcI

I

)
/∂r

���� (1 − n̂In̂
T
I

) ∂2g (
rcI

I

)
∂r∂rT

)
A

(
rcI

I
)−1
n̂×IC

T
bIω

bI
b

= −
(
A

(
rcI

I
)
− 1

)
A

(
rcI

I
)−1
n̂×IC

T
bIω

bI
b

=
(
A

(
rcI

I
)−1 − 1

)
n̂×IC

T
bIω

bI
b ,

(3.78)

using (3.69), (3.70), (3.72) and (3.76), the terms in (3.75) can be expressed as follows,

ΥTMΥ
.
ω

bI
b =

[
−R

(
n̂×IC

T
bI

)T
1
] 
(M + m)1 −mCT

bI

(
rmb

b

)×
m

(
rmb

b

)×
CbI Jb



−Rn̂×IC

T
bI

1


.
ω

bI
b

=
[
RCbIn̂

×
I (M + m) + m

(
rmb

b

)×
CbI −mRCbIn̂

×
IC

T
bI

(
rmb

b

)×
+ Jb

]

−Rn̂×IC

T
bI

1


.
ω

bI
b

=
(
− RCbIn̂

×
I (M + m)Rn̂×ICT
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(
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b

)×
CbI Rn̂×IC

T
bI

− mRCbIn̂
×
IC

T
bI

(
rmb

b

)×
+ Jb

)
.
ω

bI
b

=
(
Jb − (M + m)R2CbIn̂

×
I n̂
×
IC

T
bI − mR

(
CbIn̂I

)× (
rmb

b

)×
− mR

(
rmb

b

)× (
CbIn̂I

)×) .
ω

bI
b ,

(3.79)
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ΥTM
.
Υ ωbI

b =
[
RCbIn̂

×
I (M + m) + m

(
rmb

b

)×
CbI −mRCbIn̂

×
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T
bI

(
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b

)×
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]
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.
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×
I C

T
bI − R n̂×IC

T
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(
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b

)×
0
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b

=

(
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×
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.
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×
I C

T
bI − RCbIn̂

×
I (M + m) R n̂×ICT

bI

(
ωbI

b

)×
− m

(
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b

)×
CbI R

.

n̂
×
I C

T
bI − m

(
rmb

b

)×
CbI R n̂×IC

T
bI

(
ωbI

b

)×)
ωbI

b

= −(M + m)R2CbIn̂
×
I

.

n̂
×
I C

T
bIω

bI
b + mR

(
rmb

b

)× (
CbI

.

n̂I

)×
ωbI

b ,

(3.80)

ΥTfnon =
[
−R

(
n̂×IC

T
bI

)T
1
] 
−mCT

bI

(
ωbI

b

)× (
rmb

b

)×
ωbI

b(
ωbI

b

)×
Jbω

bI
b


= −mR(CbIn̂I)×

(
ωbI

b

)× (
rmb

b

)×
ωbI

b +
(
ωbI

b

)×
Jbω

bI
b ,

(3.81)

ΥTfext =
[
−R

(
n̂×IC

T
bI

)T
1
] 
f b

I − (M + m) ge3
−mg

(
rmb

b

)×
CbIe3


= RCbIn̂

×
I

(
f b

I − (M + m)ge3
)
− mg

(
rmb

b

)×
CbIe3

(3.82)

Equation (3.75) can be written as

ΥTM Υ
.
ω

bI
b =

(
− ΥTM

.
Υ ωbI

b − Υ
Tfnon

)
+ ΥTfext (3.83)

Substituting expressions (3.79) to (3.82) into (3.83) gives dynamic equation for a ball

with off-center point mass, rolling without slipping on a surface,

M̃
.
ω

bI
b = f̃non + f̃ext ,
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solving for angular acceleration of the ball leads to

.
ω

bI
b = M̃

−1(f̃non + f̃ext) , (3.84)

where M̃ is the generalized mass matrix or the combined moment of inertia of the ball

and the embedded point mass, which varies due to rotation of the point mass about the

ball’s geometric center,

M̃ = Jb − (M + m)R2CbIn̂
×
I n̂
×
IC

T
bI − mR

(
CbIn̂I

)× (
rmb

b

)×
− mR

(
rmb

b

)× (
CbIn̂I

)×
,

(3.85)

the term f̃non represents the nonlinear forces that arise to the rotation of the ball and the

point mass,

f̃non =mR
(
CbIn̂I

)× (
ωbI

b

)× (
rmb

b

)×
ωbI

b −
(
ωbI

b

)×
Jbω

bI
b + (M + m)R2CbIn̂

×
I

.

n̂
×
I C

T
bIω

bI
b

− mR
(
rmb

b

)× (
CbI

.

n̂I

)×
ωbI

b ,

(3.86)

finally f̃ext represents an external force f b
I (other than gravity) that acts on the geometric

center of the ball, as well as force due to gravity g acting on the ball and the point mass in

e3 = [0, 0, 1]T direction,

f̃ext = RCbIn̂
×
I

(
f b

I − (M + m)ge3
)
− mg

(
rmb

b

)×
CbIe3 (3.87)

3.6 Equations of Motion Summary

It is evident from (3.84) to (3.87) and (3.10), (3.78) that the dynamic equation depends

on the ball’s attitudeCbI , contact point position rcI
I , as well as angular velocity ωbI

b . Thus,

for complete description of the motion of the ball, the kinematic equations forCbI and rcI
I

are required in addition to the dynamic equation (3.84). The kinematics for CbI is given

by Poisson’s equation (3.20),
.
CbI= −

(
wbI

b
)×
CbI ,
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for computational simplicity, the rotationmatrixCbI is parameterized by the unit quaternion

q ∈ S3 (a member of a 3-manifold in 4D space) with vector part ε ∈ R3 and scalar part

η ∈ R [22] ,

q =


ε

η

 (3.88)

By definition, the unit quaternion must satisfy the unit-norm constraint,

qTq − 1 = 0 (3.89)

The parameterization of CbI is accomplished in the following way [22] ,

CbI =
(
η2 − εTε

)
1 + 2εεT − 2ηε×, (3.90)

where the right hand side of the above equation is the quaternion rotation operator [23] ,

now
.
CbI can be represented by [22] ,

.
q =


.
ε
.
η

 , (3.91)

where

.
ε=

1

2

(
ε× + η1

)
ωbI

b , (3.92)

.
η = −1

2
εTωbI

b (3.93)

The kinematics for rcI
I is specified by the non-slip condition (3.36) together with the

contact condition (3.16), so that from (3.36),

.
r

bI
I = −Rn̂×IC

T
bIω

bI
b ,
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and from (3.16),

.
r

bI
I = A

(
r cI

I
) .
r

cI
I ,

combining the two above expressions, gives the kinematic equation for rcI
I ,

.
r

cI
I = −RA−1

(
r cI

I
)
n̂I

(
r cI

I
)×
CT

bIω
bI
b (3.94)

The state vector for the rolling ball can be expressed as

x =


x1

x2

x3


, (3.95)

where x1 =
[ (
rbI

I

)T
,
(
rcI

I

)T
]T
, x2 = q, x3 = ω

bI
b .

The dynamic model for the rolling ball is given by the time derivative of the state

vector (3.95),

.
x =


.
x1
.
x2
.
x3


, (3.96)

where
.
x1 =

[(
.
r

cI
I

)T
,
(
.
r

bI
I

)T ]T
,

.
x2 =

.
q , and

.
x3 =

.
ω

bI
b , are the equations of motion

summarized in the table 3.1.
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Table 3.1: Equations of Motion of the Ball Rolling on a Surface Without Slipping

The ball contact point kinematic equation of motion:
.
r

cI
I = −RA−1

(
rcI

I
)
n̂I

(
rcI

I
)×
CT

bIω
bI
b (3.94)

The ball center kinematic equation of motion:
.
r

bI
I = −Rn̂×IC

T
bIω

bI
b (3.36)

The ball attitude kinematic equation of motion:
.
q =

[ .
ε
.
η

]
, (3.91)

where
.
ε=

1

2
(ε× + η1)ωbI

b , (3.92)
.
η = −1

2
εTωbI

b (3.93)

The angular velocity dynamic equation of motion:
.
ω

bI
b = M̃

−1 (q , rcI
I
) (
f̃non

(
ωbI

b , q , rcI
I
)
+ f̃ext

(
q , rcI

I
) )

(3.84)
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Chapter 4

Surface-constrained Continuous-time
Extended Kalman Filter for a Ball
Rolling on a Known Surface

The surface-constrained continuous-time extended Kalman filter derived in chapter

2, can be applied to various surface-constrained dynamic systems. The derivation in

chapter 3, provides dynamics formulation for a particular dynamic system - a ball rolling

without slipping on a known surface. Now the terms in the surface-constrained filter can be

defined using the rolling ball dynamics, to produce a surface-constrained continuous-time

extended Kalman filter specific to a ball rolling on a known surface. Based on the rolling

ball dynamics formulation, section 4.1 of the current chapter defines the constraints for

use in the Kalman filter, while section 4.2, specifies the measurements used for optimal

estimation and defines all the terms of the filter.

4.1 Surface Constraints for a Rolling Ball

The ball is rolling on a known surface, which can be represented by the following

function,

z = f (x, y) ,

such that

g(x, y, z) = g(rI) = z − f (x, y) = 0 , (4.1)
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where rI = [x, y, z]T is the position vector of a point in inertial reference frame FI - the

coordinate system where the surface is defined, as shown in figure 4.1.

It follows from chapter 3, that there are three constraint equations in the ball dynamics.

First states that the contact point of the ball must stay on the surface. Hence, if the contact

point position is specified by rcI
I vector, which extends from the inertial frame’s origin to

the point of contact (figure 4.1), then it follows from (4.1) that it must satisfy

g(rcI
I ) = 0 (4.2)

The second ensures that ball center point stays the radius away from the contact point,

in the direction of positive normal to the surface. If the ball’s geometric center position is

specified by rbI
I vector, which extends from the origin of the inertial frame to the center of

the ball (figure 4.1), the positive unit normal vector (pointing upward) at the ball-surface

contact point rcI
I is n̂I and the radius of the ball is R, then the ball center position must

satisfy

rbI
I = r

cI
I + Rn̂I ,

rbI
I − r

cI
I − Rn̂I = 0 (4.3)

The third constraint has to do with the definition of a unit quaternion. The rotation

matrix which maps the coordinates from inertial frame to the frame attached to the ball,

and which specifies the inertial attitude of the ball, is given by CbI . It is represented by

the unit quaternion q = [εT, η]T (with the vector part ε and the scalar part η) as

CbI = (η2 − εTε)1 + 2εεT − 2ηε× , (4.4)

the quaternion must satisfy the unit length constraint,

qTq = εTε + η2 = 1 ,

qTq − 1 = 0 (4.5)
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Surface constraints (4.2) and (4.3) can be expressed as

g̃1 =


g(rcI

I )

rbI
I − r

cI
I − Rn̂I


, (4.6)

and quaternion constraint as

g̃2 = q
Tq − 1 , (4.7)

the constraints can be combined in a vector as

g̃ =


g̃1

g̃2

 (4.8)

4.2 Surface-ConstrainedKalmanFilter for aRollingBall

The system model (3.96), has the following structure,

f (x, t) = .
x =


.
x1
.
x2
.
x3


=


f1

f2

f3


(4.9)

The error covariance rate equation (2.73) is given by,

.
P = (Fx −KHx)P + P (Fx −KHx)T + ΓwQΓT

w +KΓvRΓ
T
vK

T,
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setting Γw = Γv = I (where I is identity matrix) leads to

.
P = (Fx −KHx)P + P (Fx −KHx)T +Q +KRKT (4.10)

The terms included in the above equation are described next. The dynamics Jacobian

is defined in expression (2.63),

Fx =
∂f

∂x

����
x̂,t,u,0

(4.11)

The constrained Kalman gain K (2.76) is for the system model (3.96) in which

component 1 (ball position vectors) and component 2 (quaternion vector) are constrained

while component 3 (ball angular velocity vector) is unconstrained, as shown in chapter 3.

The corresponding constraint Jacobian (2.18) is represented by, G1 and G2, hence the

constrained Kalman gain expression becomes,

K =Kunc −


GT

1 [G1G
T
1 ]
−1
G1∆1

GT
2 [G2G

T
2 ]
−1
G2∆2

01x3


ỹTR−1

ỹTR−1ỹ
(4.12)

The unconstrained Kalman gain (2.75),

Kunc = PH
T
x (ΓvRΓT

v )−1 ,

has Γv = I (where I is identity matrix), so that

Kunc = PH
T
xR
−1 (4.13)

The measurement Jacobian is defined in expression (2.63), as

Hx =
∂h

∂x

����
x̂,t,u,0

, (4.14)
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where h(x) vector components come from two measurement models representing two

kinds of measurements being used. The first measurement model represents the ranges

measured in the inertial reference frame FI from the location of the geometric center of

the ball rbI
I to four, fixed, known reference points or beacons, with locations specified by

(rRI
I )i ∈ R3, as indicated in figure 4.1,

h1,i(x) =
rbI

I − (r
RI
I )i

 , i = 1, 2, 3, 4 , (4.15)

yi =
rbI

I − (r
RI
I )i

 + vi , i = 1, 2, 3, 4 , (4.16)

where yi are the modelled range measurements and vi are zero-mean white noise processes

with autocovariance defined by equation (2.4). The second measurement model represents

two unit vector measurements that indicate the attitude or the orientation of the ball,

h2,i(x) = C(q)si
I , i = 1, 2 , (4.17)

yi = C(q)si
I + vi, i = 1, 2 , (4.18)

where C(q) is the rotation matrix which maps coordinates from the reference frame FI to

the reference frame Fb and is expressed in terms of the unit quaternion q as defined in

equation (4.4), si
I ∈ S2 are known unit reference vectors and vi are zero-mean white noise

with autocovariance specified by equation (2.4).

With the above definitions the measurement vector can be expressed as

y = [y1, y2, y3, y4, yT
1 , y

T
2 ]T , (4.19)

while h(x) can be expressed as

h = [hT
1,h

T
2 ]

T
= [h1,1, h1,2, h1,3, h1,4,hT

2,1,h
T
2,2]

T (4.20)

The measurement noise covariance matrix isR, defined in (2.4) and the process noise

covariance matrix isQ, defined in (2.2).
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g(rI) = 0

rbII

xb
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zb

Fb

0

rRI
I

Reference point
(beacon)

Figure 4.1: Ball center and reference point position. The figure shows the surface g, the
inertial reference frame FI , the reference frame of the ball Fb, the position vector of the
center of the ball rbI

I and the reference point position rRI
I .

The constraint Jacobian matrix elementsG1 andG2 are given by

G1 =
∂g̃1
∂x1

, G2 =
∂g̃2
∂x2

, (4.21)

where g̃1 and g̃2 come from (4.6), (4.7) and x1 and x2 are specified in (3.95).

The measurement estimate error (2.69), is given by

ỹ = y − h(x̂) , (4.22)

here y are the true measurements, and h(x̂) are the predicted measurements that are based

on current state estimate vector x̂ and with the structure given by (4.20).

As defined by equation (2.68), the unconstrained part of the constrained state estimate

rate equations for the rolling ball, is

∆i = fi(x̂, t,u, 0) +Ki,unc ỹ , i = 1, 2 , (4.23)

where the equations of motion f1 = [
.
r

bI
I

T
,
.
r

CI
I

T
]T and f2 =

.
q are from (3.96),Ki,unc are

specified by (4.13) and ỹ is given by (4.22).
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The f3 =
.
ω

bI
b equation of motion is unconstrained and as it is shown in the table 2.2,

that the corresponding angular velocity optimal estimate rate equation is as follows,

.

x̂3 = f3(x̂, t,u, 0) +K3,unc ỹ (4.24)

The constraints for the constrained elements of the state of the rolling ball (3.96) are

specified by the equation (4.6) (constraints on position coordinates) and the equation

(4.7) (quaternion constraint). The optimal estimate for these state elements is obtained by

projecting the corresponding unconstrained state estimate rate equations ∆i (4.23), onto

the set of state estimate rates that satisfy the constraints. This is achieved by using the

projector,

Πi = I −GT
i [GiG

T
i ]
−1
Gi , i = 1, 2 , (4.25)

whereG1 andG2 are given in (4.21).

The optimal state estimate rate equations for the constrained elements of the state, are

as follows,
.

x̂i = Πi∆i , i = 1, 2 , (4.26)

where the term Πi projects the vector ∆i onto the null-space ofGi, this space coincides

with the tangent space of the surface corresponding to (4.6) and (4.7).

In order to switch off the constraints in the above constrained filter algorithm, for

comparative testing of the filter performance with and without the constraints, the constraint

terms in the equations (4.12) and (4.25) (those involvingGi) have to be removed.
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Chapter 5

Results and Analysis: Optimal Estimate
of the State of a Rolling Ball

In this chapter the computational results that include the unconstrained and surface-

constrained continuous-time, extended Kalman filter state estimates as well as the true

state of the ball rolling on a known surface, are displayed and analyzed (the unconstrained

filter is obtained by removing constraining terms from SCEKF). The computations were

performed using MATLAB software.

The figures given below, in the sections 5.2, 5.3, show how the estimate of the state of

the ball rolling on a known surface, obtained using surface-constrained, continuous-time,

extended Kalman filter (or surface-constrained CEKF), as well as unconstrained CEKF,

compare to the true state of the ball generated using ball dynamics. This allows comparison

between the surface-constrained and the unconstrained filter.

The dynamics of the rolling ball is subjected to disturbances, which are "unknown"

to the SCEKF. These disturbances are nonlinear force due to the point mass embedded

within the ball, and external force in the form of the time-varying aerodynamic drag force

due to wind acting at the geometric center of the ball. Two sets of results were generated.

The time-varying wind field was kept the same for both the sets, while the embedded point

mass was placed closer to the geometric center of the ball for the first set and placed at the

surface of the ball for the second set.

As summarized in section section 4.1, the constrained state components are ball’s

surface contact point position, geometric center position and attitude. The accuracy of

the estimates of the ball’s contact point and the geometric center positions, gives a good

indication of the SCEKF filter performance and these state estimates are included in
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the results. According to [24] the attitude can be determined in a deterministic manner

based on the existing vector measurements without filtering, hence the results for attitude

produced by the surface-constrained and unconstrained CEKF are similar and rather

accurate. Due to this similarity, the attitude comparison is not included in the results. The

angular velocity dynamic equation of motion (3.84), is unconstrained, however it depends

on the constrained contact point position, thus the results include the angular velocity

estimates.

The settings for the surface, the ball and the dynamic disturbances, used for generation

of the results, are stated next.

5.1 General Computational Settings

The 3D surface on which the ball is rolling, has square border in xy-plane, with the

side length of 40 m. The difference between the highest and the lowest point of the surface,

along the z-direction, is 0.4 m. The surface is specified by the following equation,

f (x, y) = −1

2
e− (x/30)2 − (y/30)2 +

1

20
e− (x/15)2 − (y/15)2

(
sin

( x
2

)
+ sin

( y
2

) )
, (5.1)

where {x | − 20 m ≤ x ≤ 20 m} and {y | − 20 m ≤ y ≤ 20 m} while all the scalar values
have appropriate units of meter so that z = f (x, y) is in meters. The surface defined by

equation (5.1) is shown in figure 5.1.

x  (m)

z 
 (

m
)

y  (m)

Figure 5.1: The surface on which the ball is rolling, defined by equation (5.1). The z-scale
is stretched, for the purpose of surface-curvature illustration.
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The radius of the ball is set to 0.1 m, the mass of the ball is set to 0.4 kg, the density of

the ball is assumed to be uniform.

The disturbances to the dynamics of the rolling ball, which are "unknown" to the

SCEKF, are nonlinear force due to the point mass embedded within the ball, and external

force in the form of the time-varying aerodynamic drag force due to wind acting at the

geometric center of the ball. According to chapter 3 derivation, the nonlinear and external

forces appear in the angular velocity rate equation of motion (3.84) ,

.
ω

bI
b = M̃

−1(f̃non + f̃ext) ,

where the force terms f̃non and f̃ext are given by (3.86) and (3.87).

The point mass is located at a distance away from the geometric center of the ball,

measured in the ball’s body-fixed coordinate system, as shown in figure 3.1. The point

mass value is set to 0.04 kg. It is placed on the x-axis of the body-fixed coordinate system.

The time-varying wind velocity vector at the point of the geometric center of the ball,

is given by

vw =


vw,x

vw,y

vw,z


=


0.9 m/s

0.75 cos
(

t
30 s

)
m/s

−0.12 m/s


, (5.2)

where vw,x, vw,y, vw,z are the x, y, z components of the velocity vector. The wind velocity

components were selected to be large enough to produce significant disturbance, yet not so

large as to force the ball outside the surface boundary.

The aerodynamic drag force f b
I acting on the geometric center of the ball is specified

in the following way [25] ,

f b
I (vrel, t) = −k v2rel

= −
(
1

2
CD ρ A

)
vrel · vrel

vrel

‖vrel ‖
,

(5.3)

where k is the aerodynamic drag coefficient for the given physical object (ball), vrel =( .
r

bI
I − vw

)
is the relative velocity - the difference between the velocity of the geometric

center of the ball
.
r

bI
I (3.16) and the wind velocity vw (5.2), CD is the aerodynamic drag

coefficient for the given geometric shape (sphere), ρ is the density of air, A is the reference
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area for which k is determined (such as the surface area of the ball). Assuming the drag

coefficient for a sphere at a low Reynolds number (low air flow speed) CD = 1.0 [26], the

density of air at sea level ρ = 1.2 kg/m3 [27], and knowing that the reference area of the

ball (the surface area) is A = 4πR2 = 4 π (0.1 m)2, leads to the following result for the

ball’s aerodynamic drag coefficient,

k =
1

2
CD ρ A

=
1

2
1.0 (1.2 kg/m3) 4π (0.1 m)2

= 0.075
N

m2/s2

(5.4)

The range measurements (4.16) are made with respect to four fixed beacons with x,

y, z coordinates specified by position vectors [-15, 15, 20]T m, [-15, -15, 5]T m, [15, 15,

10]T m and [15, -15, 15]T m. The x, y, z coordinates of the unit reference vectors used for

attitude measurements (4.18), are given by the following vectors, [1, 0, 0]T , [0, 1, 0]T .

The x, y, z coordinates of the initial surface contact point position of the ball are [-10,-10,

-0.361]T m. The initial angular velocity of the ball is [ωx, ωy, ωz]T = [5.73, 0, 0]T deg/s.
From the equation (2.2), the process noise covariance matrix is

Q = E
{
wwT }

,

where w is the zero-mean white noise process vector corresponding to the system

model vector (3.96),
.
x=

[(
.
r

cI
I

)T
,
(
.
r

bI
I

)T
,
.
q

T
,
(

.
ω

bI
b

)T ]T
. For the initial settings, the

errors in the kinematic equations for
.
r

cI
I ,

.
r

bI
I and

.
q are set to zero, while the errors

for the dynamic equation
.
ω

bI
b are given non-zero value, so the noise process vector is

w =
√

Qproc [0T
10×1, w̄

T
3×1]T , where Qproc is a tuning parameter selected to give a better

filtering performance and w̄ is a random noise process with unit covariance. The resulting

initial process noise covariance matrix is given by

Q = Qproc


010×10 010×3

03×10 I3×3

 , (5.5)

where Qproc = 0.52. The first ten elements of the main diagonal indicate the same zero
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variance in the noise values of the components of the kinematic equations, while the last

three elements of the main diagonal indicate the same variance, equal to Qproc, in the

noise values of the components of the dynamic equation. All of the off-diagonal elements

are zero, indicating no covariance between the noise values of the different components of

the system model vector.

From the equation (2.4), the measurement noise covariance matrix is

R = E
{
vvT }

,

where v is the zero-mean white noise process vector corresponding to the measurement

model vector (4.19), y = [y1, y2, y3, y4, yT
1 , y

T
2 ]T . The assumed initial error in a range

measurement is 0.1 m and in the attitude measurement it is 1 deg = (1 × π/180) rad. This

leads to the following initial measurement noise covariance matrix,

R =


0.12I4×4 04×6

06×4 (1 × π/180)2I6×6

 (5.6)

From the equation (2.12), the estimate error covariance matrix is

P = E
{
x̃x̃T }

,

where x̃ is the estimate error defined by (2.6) as x̃ = x − x̂. The estimate error

corresponds to the system state vector (3.95), x =
[(
rcI

I

)T
,
(
rbI

I

)T
, q T,

(
ωbI

b

)T ]T
. The

assumed standard deviation of the initial range measurement error is 1 m. The assumed

standard deviation of the angular velocity error is 0.01 rad/s. The initial error for the
quaternion is

√
0.1, this value was determined by tuning the filter. Thus, the initial estimate

error covariance matrix is specified as

P =


I6×6 06×4 06×3

04×6 0.1I4×4 04×3

03×6 03×4 0.012I3×3


(5.7)
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5.2 First Set of Results

In this section as well as in section 5.3, in order to compare the unconstrained CEKF

to the surface-constrained CEKF, the unconstrained filtering plots for a particular state

component are followed by the surface-constrained filtering plots for the same component.

Each such group of plots is supplemented by the corresponding analysis. All of the filtering

estimation errors presented in the plots, are generated by subtracting estimate state values

produced by Kalman filter, from the true state values calculated using ball dynamics.

For this, first set of the results, the point mass is located at the distance of 0.0125 m

from the geometric center of the ball.

As follows from section 5.1, the combined mass of the ball and the point mass is

0.44 kg, hence the magnitude of the force of gravity on the ball with the embedded point

mass, is Fg = (0.44 kg)(9.81 m/s2) = 4.32 N . Computational output for equation (5.3)

indicates that for the first set of results, the magnitude of aerodynamic drag force due to the

time-varying wind f b
I , which contributes to ball’s dynamics disturbance due to external

force f̃ext given by (3.87), reaches f b
I = 0.1181 N , or about 2.7 % of Fg. Equation (3.86)

can be used to determine the magnitude of the nonlinear force due to the embedded point

mass, which contributes to the disturbance due to f̃non. Computational output indicates

that the magnitude of the nonlinear force due to the point mass goes up to 0.1436 N , or

about 3.3 % of Fg. Therefore for the given set of results, the disturbance to the ball’s

dynamics caused by the nonlinear force due to the embedded point mass, reaches the same

order of magnitude as does the disturbance caused by the aerodynamic drag force due to

the time-varying wind.

It can be seen from figures 5.2 and 5.3 that the state estimate produced by the

unconstrained CEKF is significantly less precise than the estimate produced by the surface-

constrained CEKF, shown in figures 5.4 and 5.5. In particular, in the unconstrained case,

xz-plane, parts of the estimate contact point trajectory lie both rather far below as well as

above the surface (the distance between the unconstrained estimate and the surface reaches

0.142 m below the surface and 0.120 m above the surface), while in the surface-constrained

case the estimate is much better constrained to the surface. In the xy-plane, the surface-

constrained filter also produces a significantly better estimation, as the constrained estimate

follows the true trajectory much more closely than the unconstrained filter. However, there
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is an evident error towards the end of the trajectory, along the x direction, in the constrained

case. This can be attributed to the fact that the ball is slowing down and changing direction

due to the climb, and the filter is relying more on the noisy measurements rather than the

dynamics model, for the position estimation. Figure 5.6, which displays the change in

the contact point position as a function of time, indicates that the ball travels most of its

trajectory, during the initial 50 seconds or so. The first 50 seconds also correspond to the

highest angular velocity, figure 5.7.
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x  (m)

z 
 (

m
)

True
Estimate

Figure 5.2: Unconstrained CEKF estimate for surface contact point position of the rolling
ball (red) and true, surface contact point position (blue), shown in three dimensions.
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Figure 5.3: Unconstrained CEKF estimate for surface contact point position of the rolling
ball (red) and true, surface contact point position of the rolling ball (blue). The left plot
shows the side view (xz-plane) and the right plot shows the top view (xy-plane) of the
figure 5.2.
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Figure 5.4: Surface-constrained CEKF estimate for surface contact point position of the
rolling ball (red) and true, surface contact point position (blue), shown in three dimensions.
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Figure 5.5: Surface-constrained CEKF estimate for surface contact point position of the
rolling ball (red) and true, surface contact point position of the rolling ball (blue). The left
plot shows the side view (xz-plane) and the right plot shows the top view (xy-plane) of the
figure 5.4.
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Figure 5.6: True, xy-plane position components of the contact point (and the geometric
center) of the rolling ball.
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Figure 5.7: Components of the true angular velocity of the rolling ball.

The error in the unconstrained filter estimates of the ball’s contact point position

coordinates, shown in figures 5.8 and 5.9, indicate that the maximum magnitude of error

in x coordinate of the contact point is 10.99 m, while for the most part of the time interval,

the error magnitude is close to 6 m. The magnitude of the error in y coordinate is within

about 1 m. The magnitude of the error in z coordinate (figure 5.9) reaches 0.17 m.

The error in the surface-constrained filter estimates of the contact point position

coordinates, are shown in figures 5.10 and 5.11. The maximum magnitude of the error in x

coordinate of the contact point is 3.50 m and for the most part of the time interval the error

magnitude is less than 1 m. The magnitude of the error in y coordinate is within about

0.6 m. The magnitude of the error in z coordinate (figure 5.11) goes up to 0.08 m (for a

single spike and stays considerably lower most of the time). Hence, the approximate error

reduction in the constrained case is 3 to 6 times for x coordinate, 1.7 times for y coordinate

and at least 2.1 times for z coordinate. This error reduction leads to a significantly better

overall estimation of the contact point position, by the surface-constrained filter.
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Figure 5.8: Error in the Unconstrained CEKF estimate for surface contact point position
of the rolling ball. There appears to be little variation in error in the z coordinate estimate,
as its scale is much smaller than that of the errors in estimates of x and y coordinates. To
emphasize the variation, figure 5.9 shows only the error in the z coordinate estimate.
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Figure 5.9: Error in z coordinate of the Unconstrained CEKF estimate for surface contact
point position of the rolling ball.
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Figure 5.10: Error in the Surface-constrained CEKF estimate for the surface contact point
position of the rolling ball. Figure 5.11 shows the error in the estimate of the z-coordinate
separately.
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Figure 5.11: Error in z coordinate of the Surface-constrained CEKF estimate for surface
contact point position of the rolling ball.

Comparing figures 5.12, 5.13 with figures 5.8, 5.9 shows that in the unconstrained

case the position coordinates of the center of the ball do not follow the ball’s contact point

position coordinates closely. This is most evident upon comparison of the x-coordinates,

which for the most part of the time interval, differ by over 5 meters. This is due to the
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fact that the ball center position constraint (4.3) is not enforced in the unconstrained case.

However, it can be noted that the estimation errors in the x and y components of the

ball center position in the unconstrained case (figure 5.12) are overall smaller than in the

surface-constrained case (figure 5.14).

The magnitude of the error in z-component of the ball center position in the uncon-

strained case (figure 5.13) is over 0.02 m for the greater part of the time interval, while in

the surface-constrained case (figure 5.15) the magnitude of the error is within 0.01 m most

of the time. Hence for the z-component of the ball center position, the surface-constrained

filtering provides some overall improvement in estimation accuracy.

Comparison of the surface-constrained ball center position estimation errors shown

in figures 5.14, 5.15 to the surface-constrained contact point position estimation errors

shown in figures 5.10, 5.11, indicates that (unlike in the unconstrained case) these errors

are similar, hence as expected, the ball center position constraint is enforced in the

surface-constrained case.
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Figure 5.12: Error in the Unconstrained CEKF estimate for the geometric center position of
the rolling ball. Figure 5.13 shows the error in the estimate of the z coordinate separately.
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Figure 5.13: Error in z coordinate of the Unconstrained CEKF estimate for the geometric
center position of the rolling ball.
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Figure 5.14: Error in Surface-constrained CEKF estimate for the geometric center position
of the rolling ball. Figure 5.15 shows the error in the estimate of the z coordinate separately.
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Figure 5.15: Error in z coordinate of the Surface-constrained CEKF estimate for the
geometric center position of the rolling ball.

The magnitudes of errors in angular velocity estimates produced by the unconstrained

and surface-constrained CEKF (figures 5.16, 5.17) appear to vary in about the same range.

Dependence of angular velocity equation of motion (3.84) on constrained contact point

position, does not produce overall estimation improvement in the given case. This result is

expected to some extent, since the angular velocity itself, does not have constraint.
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Figure 5.16: Error in the Unconstrained CEKF estimate for the angular velocity of the
rolling ball.
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Figure 5.17: Error in the Surface-constrained CEKF estimate for the angular velocity of
the rolling ball.

5.3 Second Set of Results: Increased Disturbance Due to
Point Mass

For the results given in this section, the point mass is placed at the surface of the ball,

in order to increase the disturbance to the ball’s dynamics, due to influence of nonlinear

force f̃non (3.84).

Computational output shows that for the second set of results, the magnitude of the

aerodynamic drag force due to the time-varying wind, reaches f b
I = 0.1351 N , or about

3.1% of Fg. While the magnitude of the nonlinear force due to the embedded point

mass, reaches 1.217 N , or about 28 % of Fg. Thus for this set of results, the maximum

disturbance to the ball’s dynamics caused by the nonlinear force due to the embedded

point mass, is an order of magnitude greater than the maximum disturbance caused by the

aerodynamic drag force due to the time-varying wind.

Supporting the results in section 5.2, the figures 5.18 and 5.19 demonstrate that the

state estimate produced by the unconstrained CEKF is noticeably less precise than the

estimate produced by the surface-constrained CEKF, shown in figures 5.20 and 5.21. In the

unconstrained case, xz-plane, most of the estimate contact point trajectory lies above the
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surface (the distance between the unconstrained estimate and the surface reaches 0.074 m

above the surface). In the surface-constrained case the estimate stays on the surface. In the

xy-plane, the unconstrained filter contact point position estimate, for the most part is far

from the true trajectory, while the surface-constrained estimate follows the true trajectory

closely.

The largest error in the surface-constrained contact point position estimate, is near the

beginning of the trajectory, where the estimate noticeably oscillates. According to the true

xy-plane contact point position graph in figure (5.22) and true angular velocity components

graph in figure (5.23), the dominant angular velocity components initially are ωy and ωz

and as the point mass is located on the x-axis, it causes greater disturbance to the ball’s

dynamics in the initial part of the trajectory. As stated in the beginning of the chapter,

this disturbance is "unknown" to the SCEKF, hence the filter must be relying more on the

noisy measurements, rather than the dynamics model, leading to the oscillating estimate.

Within the first 100 seconds, ωy and ωz components diminish and ωx component becomes

dominant, the point mass disturbance decreases and so does the estimate oscillation. It can

be noted in the first set of the results (section 5.2), where the point mass is located closer to

the ball’s center, the surface-constrained contact point position estimate undergoes much

less of the initial oscillation.
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Figure 5.18: Unconstrained CEKF estimate for the surface contact point position of the
rolling ball (red) and true, surface contact point position (blue), shown in three dimensions.
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Figure 5.19: Unconstrained CEKF estimate for surface contact point position of the rolling
ball (red) and true, surface contact point position of the rolling ball (blue). The left plot
shows the side view (xz-plane) and the right plot shows the top view (xy-plane) of the
figure 5.18.
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Figure 5.20: Surface-constrained CEKF estimate for the surface contact point position
of the rolling ball (red) and true, surface contact point position (blue), shown in three
dimensions.
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Figure 5.21: Surface-constrained CEKF estimate for surface contact point position of the
rolling ball (red) and true, surface contact point position of the rolling ball (blue). The left
plot shows the side view (xz-plane) and the right plot shows the top view (xy-plane) of the
figure 5.20.
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Figure 5.22: True, xy-plane position components of the contact point (and the geometric
center) of the rolling ball.
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Figure 5.23: Components of the true angular velocity of the rolling ball.

Figure 5.24 shows that for the given case of the increased point mass disturbance, the

error in the unconstrained estimates of x and y coordinates of the contact point position

increase significantly in the second half of the 500-second interval. For the unconstrained

case, the magnitude of the error in x coordinate estimate reaches 11.64 m in the time

interval. The magnitude of the error in y coordinate estimate reaches 7.91 m, in the time

interval. The magnitude of the error in z coordinate of the unconstrained contact point

position estimate (figure 5.25) increases somewhat towards the end of the time interval

and reaches 0.215 m.

In the surface-constrained case, the magnitude of the error in the estimates of the x

and y coordinates of the contact point position (figure 5.26) decreases in general in the

second half of the 500-second interval (unlike in the unconstrained case, as described

above). The magnitude of the error in the x coordinate reaches 2.30 m early in the time

interval. The magnitude of the error in the y coordinate reaches 0.64 m. The values of

the largest errors are considerably lower than in the unconstrained case, 5.1 times lower

for x coordinate and 12.4 times lower for y coordinate. The magnitude of the error in

the surface-constrained estimate of the z coordinate of the contact point position tend

to become smaller in the second half of the tested time interval. The magnitude of the

surface-constrained filtering error in z coordinate reaches 0.055 m in the beginning of the

time interval, which is 3.9 times smaller than the largest magnitude of the error in the z
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coordinate in the unconstrained case. The overall convergent behaviour of the contact

point position estimate errors in the surface-constraint case is an improvement over the

overall divergent behaviour of the errors in the unconstrained case.

No obvious divergent or convergent behaviour in the magnitudes of the errors in the

surface contact point estimates, was observed in the first set of results given in section 5.2,

in the considered time interval, which was two times shorter in section 5.2 then in this

section.
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Figure 5.24: Error in the Unconstrained CEKF estimate for the surface contact point
position of the rolling ball. Figure 5.25 shows the error in the estimate of the z coordinate
separately.
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Figure 5.25: Error in z coordinate of the Unconstrained CEKF estimate for the surface
contact point position of the rolling ball.

Time  (s)
0 100 200 300 400 500

-2

-1

0

1

2

3
x
y
z

C
on

ta
ct

 P
oi

nt
 P

os
it

io
n 

E
st

im
at

io
n 

E
rr

or
  (
m

)

Figure 5.26: Error in the Surface-constrained CEKF estimate for the surface contact point
position of the rolling ball. Figure 5.27 shows the error in the estimate of the z coordinate
separately.
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Figure 5.27: Error in z coordinate of the Surface-constrained CEKF estimate for the
surface contact point position of the rolling ball.

Figure 5.29 shows that themagnitudes of the error in the coordinates of the unconstrained

estimate for the geometric center position of the ball, increase towards the end of the

500-second time interval, where the maximum error in x coordinate is 0.40 m, in y

coordinate it is 0.23 m and in z coordinate it is 0.38 m (yet remains quite small before that,

reaching 0.151 m for x coordinate at 170 th second).

As in the first set of results in section 5.2, the errors in the components of the

unconstrained estimate for the geometric center position of the ball (figure 5.28), do not

follow closely the errors in the components of the unconstrained estimate for the surface

contact point position (figures 5.24, 5.25), since the ball center position constraint (4.3) is

not enforced in the unconstrained case.

The errors in the surface-constrained estimates of the ball center position coordinates

(figures 5.29, 5.30) are analogous to the errors in the surface-constrained estimates of the

contact point coordinates (figures 5.26, 5.27), indicating that just as in section 5.2 the ball

center position constraint (4.3) is enforced in the surface-constrained filtering.

As stated above, the maximum error in the unconstrained estimate for the geometric

center position of the ball is 0.40 m in x coordinate, 0.23 m in y coordinate and 0.38 m in

z coordinate. For comparison, the maximum error in the surface-constrained estimate for

the ball’s geometric center position is 2.30 m in x coordinate, 0.63 m in y coordinate and

0.055 m in z coordinate. So, although in the surface-constrained filtering the estimate of
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the ball center position is much more consistent with the corresponding surface contact

point position, than in the unconstrained filtering, the later provides the more precise

estimate for the x and y coordinates (but not the z coordinate) in the given case (as it has

been also observed in the section 5.2).
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Figure 5.28: Error in the Unconstrained CEKF estimate for the geometric center position
of the rolling ball.
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Figure 5.29: Error in the Surface-constrained CEKF estimate for the geometric center
position of the rolling ball. Figure 5.30 shows the error in the estimate of the z coordinate
separately.
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Figure 5.30: Error in z coordinate of the Surface-constrained CEKF estimate for the
geometric center position of the rolling ball.

Figures 5.31 and 5.32 show that similar to the first set of results (in section 5.2), there is

no significant difference in the range of magnitudes of errors in angular velocity estimates

produced by the unconstrained and surface-constrained CEKF (there is a relatively small

improvement in the ωx component, which is more centered around zero in the surface-

constrained case). This shows that for the given system and testing cases, the angular

velocity estimation error is not particular sensitive to the surface-constrained filtering.
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Figure 5.31: Error in the Unconstrained CEKF estimate for the angular velocity of the
rolling ball.
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Figure 5.32: Error in the Surface-constrained CEKF estimate for the angular velocity of
the rolling ball.
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Chapter 6

Conclusions

In this thesis, the Surface-constrained Continuous-time Extended Kalman Filter

(SCEKF) has been developed and used for estimation of the state of a dynamic system - a

ball rolling on a known surface, subject to disturbances caused by the drag force due to the

time-varying wind and nonlinear force due to the point mass embedded within the ball

away from the ball’s geometric center. The Surface-Constrained CEKF filtering results

have been compared to the Unconstrained CEKF filtering results, which demonstrated that

overall the surface-constrained filtering produced significantly better state estimates and

successfully enforced the required constraints.

The SCEKF is derived in chapter 2. First, the surface-constrained linear Kalman filter

is developed in section 2.1. This section begins with the required definitions for such filter

components as the linear system state model, the measurement model, the process noise

and the measurement noise covariance matrices, the state estimate rate equation, the error

and the covariance rate equations, the surface constraints expression and the constraint

Jacobian matrix. Next, the optimal Kalman gain is found by minimizing the cost function

(that quantifies the deviation of the state estimate from the true state), that is, the gain

that gives the minimum of the cost function is found. The gain itself is subject to surface

constraints. This constrained optimization problem is solved by using Lagrange multipliers

method. Finding the constrained Kalman gain leads to geometric interpretation, in which

constrained state estimate rates are orthogonal projections of the unconstrained rates onto

the constrained estimate rates space. In section 2.2, the linear surface-constrained Kalman

filter developed in section 2.1, is modified to accommodate nonlinear systemmodels, hence

it becomes extended surface-constrained Kalman filter. This modification is accomplished

by first, defining nonlinear system and measurement models, then linearizing them using
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first-order Taylor series approximation. After that, the linear Kalman filter from section

2.1 is applied to the linearized system.

In chapter 3 the equations of motion for a ball, with embedded off-center point mass,

rolling on a known surface without slipping, under influence of external force, are derived.

The surface equation, the ball parameters and the external force are defined, at first. Then,

the constraint for contact point between the ball and the surface, the ball center position

constraint and the no-slip condition for the ball, are specified. These are followed by

definitions of the kinetic and potential energies as well as corresponding Lagrangian for the

ball and point mass system. Finally, the Lagrange’s equations of motions are formulated

and evaluated, which leads to the set of equations of motion for the rolling ball.

In chapter 4, the SCEKF derived in chapter 2 is combined with the constrained ball

dynamics obtained in chapter 3, to produce the SCEKF that can be used to for optimal

estimation of the state of the rolling ball. The chapter also specifies the measurement

models used for the optimal estimation (range measurements to four fixed beacons with

respect to the geometric center of the ball and unit vector measurements that indicate the

attitude of the ball).

The SCEKF for the ball rolling on a known surface is implemented using MATLAB

software and plotted computational results are presented and analyzed in chapter 5. The

plots provide comparison between the state estimate produced by the surface-constrained

continuous-time extended Kalman filter, the state estimate produced by the unconstrained

continuous-time extended Kalman filter (the SCEKF in which constraining terms are not

used) and the true state calculated using ball dynamics. Two sets of results are generated.

The same drag force disturbance to the ball dynamics due to variable wind field is used for

both the sets, while the nonlinear force disturbance due to the point mass embedded in the

ball, is different, as the mass is placed closer to the geometric center of the ball for the

first set (section 5.2) and at the surface of the ball for the second set (section 5.3). These

disturbances are "unknown" to the filter, hence it does not have the exact ball dynamics,

which makes the state estimation more difficult. The results focus on the ball’s state

estimates, such as surface contact point position, geometric center position and angular

velocity (excluding attitude, which is accurate and similar in both the unconstrained and

constrained case, since it can be determined based on measurements, without filtering

[24], as mentioned in the beginning of this chapter).
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Overall, the results demonstrate that the estimate of the state of the rolling ball,

produced by the surface-constrained CEKF is significantly better than that produced by

the unconstrained CEKF.

The results show that the surface-constrained filter constrains the estimated surface

contact point trajectory to the surface more successfully than the unconstrained filter.

The contact point estimation produced by the unconstrained filter appears comparably

far below and above the surface (reaching the distance of 0.142 m below and 0.120 m

above the surface in the first set of results, and reaching the distance of 0.074 m above

the surface in the second set of results, which can be compared to the 0.1 m radius of the

ball), while in the surface-constrained case the estimation remains on the surface, having

much smaller error. The errors in the estimate of the ball surface contact point position,

produced by the surface-constrained filter are a number of times smaller than the errors in

the estimate produced by the unconstrained filter (in section 5.2, the surface-constrained

error is about 3 to 6 times smaller for the x coordinate of the contact point position, about

1.7 times smaller for y coordinate and at least 2.1 times smaller for z coordinate). The

difference in the contact point estimation accuracy becomes larger when the disturbance to

the ball’s dynamics becomes greater and the unconstrained filtering error increases more

than the surface-constrained filtering error, as can be seen by comparing the contact point

estimation errors in section 5.2 to those in section 5.3, with more disturbance (in section

5.3, where the unconstrained contact point estimation error noticeably increases towards

the end of the tested time period and the largest errors produced by the constrained and the

unconstrained filter are compared, the surface-constrained error is 5.1 times smaller for x

coordinate, 12.4 times smaller for y coordinate and 3.9 times smaller for z coordinate).

For both the sets of the results (for the two disturbance settings) the errors in the x

and y coordinates of the estimate of the ball center position are actually smaller in the

unconstrained case than in the surface-constrained case, however the error in z coordinate

is smaller in the surface-constrained case. Moreover, in the unconstrained case, the

changes in the ball center position do not follow closely the changes in the contact point

position, as the ball center constraint is not enforced. On the other hand the changes in the

surface-constrained estimate of the ball center position follow closely the estimate of the

contact point position showing that the ball center constraint is properly enforced.

Both the section 5.2 and 5.3 sets of the results show that there is no significant
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difference between the unconstrained and the surface-constrained estimates of the angular

velocity, which is consistent with the expectation, since the angular velocity equation is

not constrained in the ball dynamics.

The results indicate that the SCEKF can produce good estimates of a state of a dynamic

system most of the time. However, the surface-constrained estimation curves show an

evident increase in the estimation error during some of the filtering intervals. This is

where the filter is likely relying more on the measurements (which leads to sharp changes

in estimation curve), rather than system dynamics model (which leads to smooth changes

in estimation curve) . This behaviour can be attributed to the increased difference between

the ball dynamics known to the filter and the actual ball dynamics, in these time intervals.

Investigating the source of such errors and finding the ways to minimize them can be a

way to further develop optimal estimation using the SCEKF.
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