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ABSTRACT

EXPERIMENTAL IMPLEMENTATION OF
ARTIFICIAL NEURAL NETWORK-BASED
ACTIVE VIBRATION CONTROL & CHATTER SUPPRESSION

Yong Xia
Doctor of Philosophy, 2010

Mechanical Engineering, Ryerson University

Vibration control strategies strive to reduce the effect of harmful vibrations such
as machining chatter. In general, these strategies are classified as passive or active. While
passive vibration control techniques are generally less complex, there is a limit to their
effectiveness. Active vibration control strategies, which work by providing an additional
energy supply to vibration systems, on the other hand, require more complex a gorithms
but can be very effective. In this work, a novel artificial neural network-based active
vibration control system has been developed. The developed system can detect the
sinusoidal vibration component with the highest power and suppress it in one control
cycle, and in subsequent cycles, sinusoidal signals with the next highest power will be
suppressed. With artificial neural networks trained to cover enough frequency and
amplitude ranges, most of the original vibration can be suppressed. The efficiency of the
proposed methodology has been verified experimentally in the vibration control of a
cantilever beam. Artificial neural networks can be trained automatically for updated time
delaysin the system when necessary. Experimental results show that the developed active

vibration control system is real time, adaptable, robust, effective and easy to be



implemented. Finally, an experimental setup of chatter suppression for a lathe has been
successfully implemented, and the successful techniques used in the previous artificial
neural network-based active vibration control system have been utilized for active chatter

suppression in turning.
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CHAPTER 1
INTRODUCTION

1.1  Vibration Control

Vibration is present in many dynamic mechanical systems. Vibration control is

the effort to reduce the negative effects of vibration effectively.

Two main groups of vibration control methods are passive and active methods [1,
2]. Other vibration control methods, e.g., semi-active and other hybrid methods, can be

considered as a combination of passive and active methods.

1.1.1 Passive Methods

Passive vibration control methods include elimination of additional energy
sources, eliminating or decreasing input forces and isolation from external disturbances
[1]. Examples include balancing, reduction of mass, substitution of rolling bearings by
sliding ones, etc. The parametric modifications lead mainly to changes of mass and
stiffness elements. The structural modifications deal with introducing additional
constraints to the system or modification of existing ones (i.e., continuity interruption of
vibrator structure via introduction of intermediate elements), or addition of vibration
eliminators [1]. Damping is also an important parameter but usually takes secondary
consideration. It works by dissipation of mechanical energy that is converted to heat [1].
Therefore, it may cause the decrease of general working efficiency in some areas, e.g.,
for machines. The ideal device should run with minimal damping values. In cases when
undesirable vibrations cannot be eliminated via structural or parameteric changes,
damping may be introduced. Additional damping is usually provided by materials with

appropriate damping values, frictional joints, additional dampers, etc.
1



Unfortunately, the use of passive vibration control methods is not effective
because of inefficiency in the range of low frequencies, sensitivity on application
conditions, lack of robustness, and increased size and weight. On the other hand, these
methods allow dissipation of a great deal of vibration energy in the range of sufficiently
high frequencies (energy dissipation increases with decrease of passive elements

stiffness) [1, 2].

Better vibration control results may be achieved by using active methods.

1.1.2 Active Methods

Active vibration control (AVC) methods work by providing an additional energy
supply to vibration systems. These methods alleviate the problems of contradictory
requirements imposed on passive vibration control techniques, such as efficiency of
device operation, low frequency vibration, dynamic stability, stiffness, etc. The
additional energy supply can produce a force that compensates the forces that account
for vibrations. To reduce the vibration, the additional energy should have appropriate
power, frequency and phase, relative to existing vibration forces. AVC methods can
change the system parameters in an active way. Some commonly utilized AVC methods
include adaptive filter control, Proportional-Integral-Derivative (PID) control, fuzzy
logic control and artificial neural network (ANN)-based control. As the vibration control

method used in this research, the AVC method will be introduced in detail in chapter 2.

AVC is a highly multidisciplinary field with elements from structural dynamics,
signal processing, materials science, mechanical vibration, actuator and sensor
technology. The applications of AVC are also diverse. The following are some example

areas for AVC application.

Chatter is a machining process instability resulting from self-excited vibration
caused by the interaction of the chip removal process and the structure of the machine

tool. Chatter occurs especially when machining flexible parts such as turbine blades, or
2



when machining deep features using slender end mills. Chatter can limit metal removal
rates (productivity), cause poor surface finish, and accelerate tool wear. There has been a
considerable research effort concerned with the suppression of chatter. Applying
ANN-based AVC in machining chatter suppression is discussed in much more detail

later in this thesis.

Active noise control is an attractive means to achieve large amounts of noise
reduction in a small package, particularly at low frequencies. Current applications
include: control of aircraft interior noise by use of lightweight vibration sources on the
fuselage and acoustic sources inside the fuselage; reduction of helicopter cabin noise by
active vibration isolation of the rotor and gearbox from the cabin; attenuation of

unavoidable noise in automobiles (electronic mufflers, engine mounts, and so on).

AVC can be used for suppressing the vibrations within a building generated by
high winds or an earthquake, for reduction of sway in tall buildings and vibration of

construction machinery, and to prevent large bridges from damage by flutter [1, 2].

AVC has also been used in vibration-sensitive machines. Examples include
surgical microscopes, electronic equipment, lasers, MRI units, scanning electron

microscopes, and computer disk drives.

AVC can also be used in transportation equipment, life sciences, marine,

semiconductor industry, and many other areas as well.

1.1.3 Hybrid Methods

There are other vibration control methods that can be considered as a
combination of passive and active methods. One of these methods is called semi-active
vibration control and includes passive elements where elastic and damping forces may
be changed depending on the conditions. Such methods require an external energy

source with much lower power requirements.



Another hybrid method uses both active and passive elements. The active part

operates in the low frequency range and the passive one in the higher frequency range.

Considering the superior capabilities of active methods over passive methods, in
this research, AVC will be utilized. However, there are some technical challenges
associated with the implementation of AVC. For example, adaptive filter control and
PID control can only work effectively for linear vibration problems; most implemented
artificial neural network (ANN)-based control methods rely on the plant output as the
feedback signal and therefore have to solve the time-delay problem, which leads to the
complexity of the control systems (see chapter 2 for details). This AVC research is

working on dealing with these challenges.

1.2 Chatter Suppression

Machine tool vibration suppression techniques have been studied for many years
because excessive vibrations often result in poor surface finish, reduced tool life and
severe acoustic noise in work environment. Among those vibrations, chatter is the most
problematic limiting factor of machining, especially with high spindle speeds and long

reach cutters, such as a boring bar.

Chatter is a violent relative vibration between a cutting tool and a workpiece.
Chatter falls into two categories, forced and self-excited. Forced chatter is due to the
unbalance of rotating members, such as unbalanced driving system, servo instability, or
impacts from a multi-tooth cutter. Self-excited chatter consists of two types, i.e., primary
(or non-regenerative) type and regenerative type [3]. Regenerative chatter frequently
occur in boring operation due to the low stiffness and low damping property of a slender

boring bar itself.

The regenerative type of self-excited chatter is due to the interaction of the

4



cutting force and the workpiece surface undulations produced by previous tool passes.
Its amplitude increases with the progress of cutting [3]. Regenerative chatter is found to
be the most detrimental phenomena in most machining process [4]. Hence, methods to

suppress it have been the focus of many studies.

Generally, chatter suppression methods fall into two categories, passive and
active methods. Other methods, e.g., semi-active and hybrid methods, can be considered

as a combination of passive and active methods.

Passive methods include enhancing the system’s dynamic stiffness and damping,
elimination of additional energy sources, eliminating or decreasing input forces and

isolation from external disturbances [5].

Active methods work by providing an additional energy supply to vibration
systems. To suppress chatter, the additional energy should have appropriate power,
frequency and phase, relative to existing chatter forces. The actual active chatter
suppression methods are diverse and some examples will be introduced in the next

chapter.

1.3  Objective

The objective of the current work is to develop a robust real-time adaptable AVC
system to detect and suppress the vibration of a cantilever beam, and utilize similar
techniques used in the AVC system in an active chatter suppression (ACS) system for

turning. The effectiveness of both systems is verified through experiments.



CHAPTER 2
LITERATURE REVIEW

2.1 Active Vibration Control

The research in active vibration control (AVC) has been expanding since Lueg’s

work in 1930s [6], and especially rapidly in the past three decades.

AVC is achieved by using a control source to introduce a secondary (control)
disturbance into a system to cancel the existing (primary) disturbance, thus resulting in
an attenuation of the original vibration [1]. These secondary sources are interconnected
through an electronic system using a specific signal-processing algorithm for a particular
cancellation scheme. To explain the concept of AVC, a classical application of active
noise control is always used as an example as in [2]. The principle of destructive
interference used is not only limited to the control of acoustic waves, but also

successfully applied to the control of other vibration.

The classical application is the active control of sound waves in a small duct,
which is shown in Figure 2-1. An actuator (a loudspeaker) and two sensors (two
microphones in this case) are used. Sensor A, which is called a reference sensor, is used
to measure the advanced information on the disturbance sound wave that propagates in
the duct, and sensor B, which is called an error sensor, is used to monitor the
performance of the active sound control system, thus providing feedback to a control
algorithm. To keep this example simple, sensor A is assumed to be not coupled with the
actuator, so sensor A only measures the disturbance sound field. The control structure of
Figure 2-1 is called “feedforward”, because the controller feeds the actuator with a signal

based on the advanced information obtained from sensor A. If the controller works



properly, the signal sent to the actuator will generate a sound wave, which will cancel
the disturbance sound wave at the location of sensor B. Because only plane wave
propagation is considered in such a small duct commonly, the sound field will be
uniform in any section of the duct, and the sound will be reduced from sensor B to the

end of the duct. Details of active sound control theory and applications can be found in
[2].
Compared with AVC, passive vibration control methods suppress vibration by

using energy absorbing dampers to consume energy input or by changing the system

structures or conditions to reduce the energy inputs or generated energy.

Disturbance | Primary Vibration {Noise)
Source - O

Referance Y Control Error
Sensor (A) Actuator Sensor (B)
x(n) e(n)

| Controller |

Figure 2-1: Active control of sound waves in a duct [2]

The concept of AVC has been known for more than 60 years. The basic ideas of
AVC were proposed in 1936, when Paul Lueg first described the design of active noise
control in a patent published in the United States. Even though the concept is simple, it is
only with the development of low-cost fast digital signal processing (DSP) systems
during the last 20 years that the implementation of practical active sound and vibration
control systems has become feasible. It is desirable for the vibration canceller to be
digital, where signals from electroacoustic or electromechanical transducers are sampled

and processed in real time using DSP systems. Digital technology is well suited for
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adaptive control systems or control configurations where a lot of precision is required in

order to achieve good performance.

The continuous progress of AVC involves the development of improved adaptive
signal processing algorithms, transducers, and DSP hardware. Since the characteristics
of the vibration source and the environment are time varying, the frequency content,
amplitude, phase, and vibration velocity of the undesired vibration are not stationary. An
AVC system must therefore be adaptive in order to cope with these variations. AVC

systems can be used in linear or nonlinear control problems.

For linear control problems, adaptive filters combined with some algorithms are
always used. Adaptive filters adjust their coefficients to minimize an error signal and can
be realized as finite impulse response (FIR), infinite impulse response (IIR), lattice, and
transform-domain filters [6]. The FIR filter is also called a transversal filter and the 1IR
filter is also called a recursive filter. The algorithms used for adaptive filters are
generally based on gradient descent algorithms. Examples are least-mean-square (LMS)
and filtered-X LMS algorithms. For nonlinear control problems, many researchers have
focused on neural networks combined with some specific algorithms, such as the
standard gradient descent backpropagation algorithm. Moreover, neural networks proved
experimentally to be robust for not only nonlinear control but also linear control [7].
Some commonly used architectures and algorithms in AVC will be introduced in a latter

section.

More sophisticated algorithms allow faster convergence and greater vibration
suppression and are more robust with respect to interference. A good review of the
different control techniques that have been used for the active control of sound and
vibration can be found in [6, 8-11]. The development of improved DSP hardware has
allowed these more sophisticated algorithms to be implemented in real-time to improve

system performance.



2.2 Control Strategies

Basically, in the area of AVC, there are two kinds of control strategies:

feedforward and feedback [1, 2, 6].

2.2.1 Feedforward Control

The noise suppression example in the preceding section is a feedforward
control strategy application. The principle of feedforward control is presented in Figure
2-2. Feedforward controllers rely on the availability of a reference signal correlated to
the primary disturbance. This signal is passed through an adaptive controller. The output
of the controller is applied to the system by secondary sources. The filter coefficients are
adapted in such a way that the error signal at one or several critical points is minimized.
The idea is to produce a secondary disturbance such that it cancels the effect of the

primary disturbance at the location of the error sensor.

Primary
source
g
System Errnr
Secondary Signal
source
Pad
Adaptative
controller |
Reference ?

Figure 2-2: Principle of feedforward control [12]

One important point to note is that the signal must be received by the controller
in sufficient time for the required control signal to be generated and output to the
control/secondary source when the disturbance (from which the reference signal was
generated) arrives. Systems, for which the active control system produces the control

signal at the downstream location at the same time that the primary signal arrives, are
9



referred to as “causal”. Causality is a condition that all feedforward designs must satisfy
if the vibration to be controlled is not periodic [8]. As will be discussed in section 2.3,
the reason why most transfer function models utilize tapped delay lines is to enable the
modeling of the explicit system time delays to maintain causality within the control
schemes. If the vibration to be controlled is periodic, it is possible to get a similar
outcome without satisfying causality if the control signal output and the arriving

disturbance have a phase difference equal to an integer number of periods.

Another point to note is that there is no guarantee that the global response is also
reduced at other locations and, unless the response is dominated by a single mode, there
are places where the response can be amplified; the method can therefore be considered
as a local one, in contrast to feedback which is global (as will be discussed in the

following section).

2.2.2 Feedback Control

Feedback control is a control system which monitors its effect on the system it is
controlling and modifies its output accordingly. The principle of feedback control is
presented in Figure 2-3. The output y of the system is compared to the reference input x
and the error signal, e = x - y, is passed into a compensator H(s) and applied to the
system G(s). The design problem consists of finding the appropriate compensator H(s)
such that the closed-loop system is stable. Feedback on how the system is actually
performing allows the compensator (controller) to dynamically compensate for

disturbances, d, to the system.

o
=]
x—l-c‘:f—n» His)  —m  Gfg) —bg——y

Figure 2-3: Principle of feedback control [12]
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2.2.3 Feedforward vs. Feedback

Generally, a feedforward control system should be implemented whenever it is
possible to obtain a suitable reference signal because of its inherent stability
characteristics and usually superior performance to a feedback control system [1, 6]. The
use of feedback control has been popular in the area of structural vibration because of its
ability to damp structural vibrations without the need to be able to measure a reference

signal in advance [1, 2, 6, 8].

There is no direct connection between the output of the system and the actual
conditions encountered in feedforward control, which means the system does not and
cannot compensate for unexpected disturbances. Moreover, a suitable reference signal is

not always available.

2.3 Control System Design

Many of the electronic systems utilized in control schemes derive control inputs
for secondary sources (as in Figure 2-2) via modified adaptive signal processing
architecture/algorithm combinations. Since the characteristics of input signal and system
response are unknown, or may be slowly changing with time, the controller must “learn”,
and be able to “relearn” to cope with changes in the signal structure. Basically, there are
two kinds of such architecture/algorithm combinations: linear filter combinations and

nonlinear combinations.

2.3.1 Linear Filter Architecture/Algorithm Combinations

Many of today’s implementations of active control use adaptive linear
filtering techniques. With the advances in digital technology over the past several
decades, adaptive DSP has become a firmly established field, encompassing a wide

11



range of applications. One of the most common forms of adaptive architecture/algorithm
linear filter combinations is the filter-based controller adapted by using Least Mean
Square (LMS)-based algorithms (discussed in section 2.3.1.2) [8]. The aim of the
adaptation algorithm is to adapt the filter coefficients such that the error signal is

minimized.
2.3.1.1 Adaptive Filters

Adaptive filters can be realized as (transversal) finite impulse response (FIR),
(recursive) infinite impulse response (IIR), lattice, and transform-domain filters [8-11]
and [13-14]. Two primary types of digital filters used in (DSP) applications are FIR
filters and IR filters [8].

2.3.1.1.1 FIR Filters

Figure 2-4 shows the structure of a transversal FIR filter with N taps adjustable
weights. The Z* block represents a unit sample of delay. The impulse response is
"finite" because there is no feedback in the filter. The FIR filter is obtained by

combining a tapped delay line with a linear network [8].

Input

e Output

Figure 2-4: Transversal FIR Filter structure

The tap-weight vector, w(n), is represented as w(n) = [wo(n), wi(n), ..., wy.i(n)]";
the tap-input vector, x(n), is represented as x(n) = [x(n), x(n-1), ..., x(n-(N-1))]"; the FIR

12



filter output, y(n), can then be expressed as
N-1

y(n) =2 w,(n)x(n—i) (2-1)
i=0

where # is the time index and N is the order of the filter.
2.3.1.1.2 |IR Filters

Another primary digital filter used in DSP application is IIR. The impulse
response is "infinite" because there is feedback in the filter. An IIR filter produces an
output, y(n), which is the weighted sum of the current and past inputs, x(r), and past
outputs. Figure 2-5 is a generic IIR digital filter and equation (2-2) shows how to

calculate the output of the filter [15].
v(n) =gf[x(n) +a; x(n-1) +... + ayx(n-N)+ b; y(n-1) + ... + byyy(n-M)] (2-2)

If the generic IIR filter in Figure 2-5 does not operate on the past values of the
output, i.e., it would only have non-zero a; coefficients in the above equation, but all b

coefficients would be zero, then it changes to a FIR filter as shown in Figure 2-4.

y(n)

Figure 2-5: A generic IR digital filter [31]
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2.3.1.1.3 FIR Filters vs. IIR Filters

The FIR filter and The IIR filter have their separate advantages and
disadvantages. Overall, though, the advantages of the FIR filter outweigh its
disadvantages, so it is used much more than the 1IR filter [8]. Compared to the FIR filter,
the IIR filter can achieve a given filtering characteristic using less memory and
calculation than a similar FIR filter. However, compared to IIR filters, FIR filters have

more advantages as listed below [16]:

e  They can easily be designed to be "linear phase";
e  They are simple to implement;

e  They are suited to multi-rate applications;

e  They have desirable numeric properties; and

e  They can be implemented using fractional arithmetic.

2.3.1.2 Adaptation Algorithms

There are many possible adaptation algorithms, and one of the most useful
algorithms is the LMS algorithm [8, 10, 13]. Many LMS-based algorithms and their
variants exist. This section focuses on the LMS algorithm and an LMS-based algorithm,

i.e., the filtered-x LMS algorithm for FIR filters.
2.3.1.2.1 FIR Filters / LMS Algorithm Combination

Figure 2-6 shows a block diagram of an adaptive filter system identification
model. The unknown system is modeled by an FIR filter with adjustable coefficients.
Both the unknown system and the FIR filter model are excited by an input sequence x(n).
The adaptive FIR filter output y(n) is compared with the unknown system output d(n) to
produce the error signal e(n). The error signal represents the difference between the

unknown system output and the model output. The error e(n) is then used as the input to
14



an adaptive control algorithm, which corrects the individual tap weights of the filter.
This process is repeated through some iterations until the error signal e(n) becomes
sufficiently small. The resultant FIR filter response now represents that of the previously

unknown system.

Unk d(n)
—>|  Systom —
+
y(n) _

N FIR Filter
Model

Adaptive ¢
Algorithm

Figure 2-6: Adaptive filter system with a controller based on the LMS [11]

The LMS algorithm adjusts the weights and biases of the FIR filter so as to
minimize the mean square error. LMS algorithm is an example of supervised training, in

which the learning rule is provided with a set of examples of desired network behavior:

{61, 630 {x, 2, ) Here x is an input to the network, and ¢ is the corresponding

target output. As each input is applied to the network, the network output is compared to
the target. The error is calculated as the difference between the target output and the

network output. The Mean Square Error (MSE) to be minimized is

MSE =

D eln)* =

9
k=1

0
> (1)~ y(n)) 2-3)

Q|+
Q|-

The LMS algorithm is initialized by setting all the weights to zero at time £=0.

Tap weights and bias are updated using the relationship [11, 13]

w(k+1) = w(k) + 2 ue(k)x(k) (2-4)
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b(k+1) = b(k) + 2 u e(k) (2-5)

where w(k) represents the tap weights of the transversal filter, e(k) is the error signal, x(k)

represents the tap inputs, b(k) is the bias, and the factor x is a convergence factor (also

called the learning rate or the step length) whose value influences the amount by which

the weight vector is altered at each iteration. To ensure convergence, x should satisfy

the condition [11]:

0< 7RIS (1 //lmax) (2'6)
where A, isthe maximum eigenvalue of the input correlation matrix.

2.3.1.2.2 FIR Filters / Filtered-x LMS Algorithm Combination

Another popular adaptive architecture/algorithm combination is the FIR
filter/filtered-x LMS algorithm combination. The filtered-x LMS algorithm is also called
the multi-error LMS algorithm or multi-channel LMS algorithm, which is an extension

of the LMS algorithm.

In Figure 2-6, the output of the FIR filter is an estimate of the unknown system.
However, in real control applications, the adaptive filter works as a controller controlling
dynamic systems, which contain actuators, amplifiers, etc. The estimate in this case can
thus be considered as the output signal from a dynamic system, i.e., a forward path as in
Figure 2-7. Since there is a dynamic system between the filter output and the estimate,
the direct LMS algorithm is likely to be unstable in this application due to the phase shift
(delay) introduced by the forward path [2]. In this case, a model of the forward path can
be introduced to filter the reference signal to the adaptive algorithm as in Figure 2-7. The

compensated adaptive algorithm obtained is the filtered-x LMS algorithm [13].

As shown in section 2.3.1.1.1, the FIR filter output, y(n), can be expressed as
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equation (2-1). Equation (2-1) can also be written as

y(n)=w"(n)x(n) (2-7)
where
x(n) =[x(n), x(n=1),....x(n— N +1)]" (2-8)

is the input signal vector to the adaptive filter and
w(n) =[wy (1), wy (n),..., wyy (m)]" (2-9)

is the adjustable filter coefficient vector. In control applications, the estimation error

e(n) is defined by the difference between the desired signal (desired response) d(n)

and the output signal from the forward path or plant under control y. (n):

en) =d(n) - y.(n) (2-10)
- § c; x(n—1i) _
3 cx(n—i-1)
X (n) = - : (2-11)

= ’
ZCix(n—i—N+1)

L i=0

where n is the time index, i is the order and ¢, is the coefficients of the estimated FIR

filter model of the forward path [10].

. (n) = c, —)ne{O,...,]—l} (2-12)
0 — else

where £ _.(n) is the estimated FIR filter model of the forward path.
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w(n+1) =w(n) + u-x . (n)e(n) (2-13)
where « isa convergence factor (also called learning rate or step length).

In order to ensure that the filtered-x LMS algorithm is stable, the maximum value
for the convergence factor p should be given approximately by [13]:

2

= 2-14
NE[x*(n)] &1

i<

where E/x’(n)] is the mean square value of x(n).

din)
Forward path

x(n i n (n)
(m) - Flﬂlfiller y(n) c Ye
w(n)
o RN [ Adapive |
algorithm

Model of the forward path

Figure 2-7: Adaptive filter system with a controller based on the filtered-x LMS algorithm [13]

2.3.2 Nonlinear Architecture /Algorithm Combinations

Even though the combination of a transversal filter using modified LMS
algorithms has been widely demonstrated to be very useful, it has a potential limitation
because it is designed for linear control problems. In other words, the control signal, as
well as the associated measured error signal used in the adaptation process, must be
linear functions of the reference signal used by the adaptive filter to derive the control
signal [6]. The linear filter architectures may not perform well in cases where
nonlinearities are found in an active control system. One of the most common sources of
nonlinearity in the field of active control of vibration is the actuator. An actuator has

typically a nonlinear response when it operates with an input signal having an amplitude
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close to (or above) the nominal input signal value, or when it operates at a frequency
outside of the normal frequency range of operation (or close to the limits) [18]; a control
actuator also may have some nonlinear performance characteristic, such as where it
generates some harmonics and introduces the harmonics into the system, which must be
compensated for; and where a power based (intensity) error signal is used, which will be
twice the frequency of the reference signal [6], for example, when some band-pass filters
are used for the error signal. Another example of nonlinearity in active vibration control is
when a sinusoidal reference signal is used to derive a signal to control a disturbance
containing both the reference tone and several harmonics. Nonlinear behaviors can also

occur when the dynamics of the system to be controlled are nonlinear.

Therefore, what is desired in these situations is a nonlinear controller, which can
improve the control performance of a system associated with some form of nonlinearity.
One such controller arrangement, which has received increased attention in recent years,
is the artificial neural network (ANN). ANN-based AVC is the focus of this research, so
ANN architectures and algorithms, and ANN application in AVC will be introduced in
detail.

2.4 Artificial Neural Network

An ANN is a system whose architecture is inspired by the arrangement of nerves
in biological systems and by their operation. An ANN is an extensively parallel
interconnection of simple neurons that has the ability to learn from its environment and
store the acquired knowledge for future use [10]. ANNs are used for pattern recognition
or function approximation. In AVC, ANNs are mostly used for their function
approximation capability. Properly designed and trained neural networks are capable of
approximating any linear or nonlinear function to the desired degree of accuracy [10]. A

strong case can be made that neural network implementation is simply a form of
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multivariate statistical analysis [6].

There are a variety of design and learning techniques to choose from when using
an ANN. The pattern of connections between the neurons, called network architecture,
and the method in which the weights of the connections are determined, known as

learning algorithm, are the elements that characterize an ANN.

2.4.1 Multilayer Feedforward Neural Network

The most common ANN architecture used in AVC is the multilayer feedforward
neural network. Figure 2-8 illustrates an example of the structure of a multilayer
feedforward neural network, which comprises a layer of input signals, 2 hidden layers

(layer 1 and layer 2) of neurons, and an output layer (layer 3) of neurons.

Input Layer 1 Layer 2 Layer 3 (Output)
N7 N
X al=y
Rxl ““Vlll V]. VS 53x1
SIxR 3
) + 5'x1 s*x1 £
1 bt
s'x1 1 571 2 531 3
K AN AN S
al = flL(OWup+b1) az= f2(LWz1at+h2) as =F3 (LWazaz2+hs)

¥y = a =f3 (LW::f2 (LW:.lf]- (TWi1 X +b1)+bz)+bs

Figure 2-8: An example of the structure of a multilayer feedforward neural network [19]

A multilayer feedforward neural network (see Figure 2-8) comprises a layer of
input signals, one or more hidden layers of neurons, and an output layer of neurons. A
layer consists of a single or multiple neurons. Neurons in each layer are connected to all
neurons in adjacent layers. The network in Figure 2-8 is of the feedforward type,
wherein the effects of the input signals are propagated through the networks layer by
layer. Differences between the desired outputs (targets) and the network outputs are the
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“errors”. The connection strengths (‘weights’) and ‘biases’ are updated during training
(learning) such that the network produces the desired output for the given input. The
multilayer feedforward neural networks trained with a back-propagation algorithm are
compact and provide excellent generalization (i.e., accurate outputs for inputs not
encountered during training) [10]. Mathematically, neuron j having m inputs is described

as follows [10]:

v, =1)

3

v, = Z WX, +b, (2-15)

j :

where x; are input signals, w; are weights from neuron i to neuron j, b, is bias, v,

is the activation potential, f; is the activation/transfer function and y, is the output

signal of the neuron. The bias applies an affine transformation to the linear combination
of inputs and weights. The type of activation function used determines the neuron output
for the given weights, inputs and bias. For example, the following activation functions

are always used [10]:

fiv)=v;, linear

1
1+e

Jiv;)=

,  log-sigmoid

Vi

v, —-v;
J J
—e

f,(v,) =tanh(v,) =<—%

—, tan-sigmoid (2-16)
e’ +e’

Feedforward networks often have one or more hidden layers of sigmoid neurons
followed by an output layer of linear neurons. Multiple layers of neurons with nonlinear
transfer functions allow the network to learn nonlinear and linear relationships between
input and output vectors. The linear output layer lets the network produce values outside

the range -1 to +1. However, if the outputs of a network need to be constrained (such as
21



between 0 and 1), the output layer should use a sigmoid transfer function (such as
log-sigmoid).
Theoretically, a two-hidden-layer network having a sigmoid first hidden layer

and a linear second layer can be trained to approximate most functions (linear or

nonlinear) arbitrarily well [10].

2.4.2 Backpropagation Algorithms

There are many variations of the backpropagation algorithm. The simplest one is
the gradient descent algorithm, which updates the network weights and biases in the
direction in which the performance function decreases most rapidly -- the negative of the

gradient.

For a given set of inputs to the network, outputs are computed for each neuron in
the first layer and forwarded to the next layer. The signals propagate on a layer-by-layer

basis until the output layer is reached. The weights and biases remain unchanged during

the “forward pass”. The output of the network is compared with the desired value (z,),

and the difference gives the error:
€=t~y (2-17)

Applying the delta rule [10], which adjusts the weights so as to minimize the

mean square error, the total error (or “error criterion” in some papers) is defined as:
1&
E = EZ ej. (2'18)
j=1

where c is the number of neurons in the output layer.

The error E represents the cost function, and the weights and biases are updated
to minimize it. The backpropagation algorithm minimizes the cost function in a manner

similar to the steepest descent method [10]. The computed partial derivatives (sensitivity)
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OE/0w;; determine the search direction for updating the weights wy; as

E ()

Wk =w, () =a 20

(2-19)
where « is the learning rate parameter (step size), & is the current time and (k + 1) is

the next time step. For stable learning,

a<—— (2-20)

where A .. is the maximum curvature, or the maximum eigenvalue of the Hessian

matrix [10]. The weights and biases are updated during the “backward pass” starting

from the output layer, and recursively computing the local gradient for each neuron.

The gradient descent algorithm can be refined using a ‘momentum term’ that has
a stabilizing effect on the backpropagation algorithm [10]. By the use of momentum, a
larger « can be used, while maintaining the stability of the algorithm. Momentum
allows a network to respond not only to the local gradient, but also to recent trends in the
error surface. It also allows the network to ignore small features in the error surface.
Without momentum, a network may get stuck in a shallow local minimum. With

momentum, a network can slide through such a minimum [10].

In practical application, the two backpropagation algorithms (gradient descent,
and gradient descent with momentum) are often too slow. Modifications fall into two
main categories [19]. The first category uses heuristic techniques, which were developed
from an analysis of the performance of the standard steepest descent algorithm. One
heuristic modification is the momentum technique, such as variable learning rate
backpropagation, and resilient backpropagation [19]. The second category of fast
algorithms uses standard numerical optimization techniques, such as conjugate gradient,

quasi-Newton, and Levenberg-Marquardt [10].
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2.4.3 Learning Methods

The learning methods include supervised learning and unsupervised learning. In
supervised learning neural networks are adjusted, or trained, so that a particular input
leads to a specific target output. In unsupervised learning, there is not a specific target
output. Unsupervised networks can be used, for instance, to identify groups of data.

However, in AVC, supervised training methods are commonly used.

2.4.4 Training Styles

The training of a neural network is complete when the error (or change in the
error) reduces to a predetermined small value. ANN training methods comprise batch
training and incremental training. Batch training of a network proceeds by making
weight and bias changes based on an entire set (batch) of input vectors. Incremental
training changes the weights and biases of a network as needed after presentation of each
individual input vector. Incremental training is sometimes referred to as “on-line” or

“adaptive” training.
2.4.5 Normalization

Before training, it is often useful to scale the inputs and targets so that they
always fall within a specified range [19]. Neural networks are very sensitive to absolute
magnitudes. For this reason, the inputs and targets are usually scaled to give each of
them equal importance and to prevent premature saturation of activation functions. All
data to an ANN are normalized so that they correspond to roughly the same range of
values. Normalization has the advantage of mapping the desired range of variable to a

full working range.

2.4.6 Improving Generalization

One problem that occurs during neural network training is called overfitting. The
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error on the training set is driven to a very small value, but when new data is presented
to the network the error is large. The network has memorized the training examples, but

it has not learned to generalize to new situations [19].

One method for improving network generalization is to use a network that is just
large enough to provide an adequate fit [10]. Unfortunately, it is difficult to know
beforehand how large a network should be for a specific application. The standard ways
to limit the capacity of an ANN including limiting the number of hidden units, limiting

the size of weights and stopping the learning before it has time to overfit (early
stopping).

In the early stopping method, the available data are divided into three subsets.
The first subset is the training set, which is used for computing the gradient and updating
the network weights and biases. The second subset is the validation set. The error on the
validation set is monitored during the training process. The validation error will
normally decrease during the initial phase of training, as does the training set error.
However, when the network begins to overfit the data, the error on the validation set will
typically begin to rise (see Figure 2-9, which is an example drawn by using MATLAB).
When the validation error increases for a specified number of iterations, the training is
stopped, and the weights and biases at the minimum of the validation error are returned.
The test set error is not used during the training, but it is used to compare different
models. It is also useful to plot the test set error during the training process. If the error
in the test set reaches a minimum at a significantly different iteration number than the

validation set error, this may indicate a poor division of the data set [19].

Another way recommended in [19] is Bayesian regularization. Bayesian
regularization generally provides better generalization performance than early stopping,
when training function approximation networks [19]. This is because Bayesian

regularization does not require that a validation data set be separated out of the training
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data set. It uses all of the data. This advantage is especially noticeable when the size of
the data set is small.
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Figure 2-9: Early stopping method (drawn by using MatLab)

2.4.7 Dynamic Neural Network

Dynamic neural networks are always used to model dynamic systems [10]. A
dynamic ANN has some time-delayed values of the outputs as its inputs by using tapped
delay lines (TDL). A TDL is a delay line with at least one “tap”. A delay-line tap extracts
a signal output from somewhere within the delay line, optionally scales it, and usually
sums with other taps from the signal output. A tap may be interpolating or
non-interpolating. A non-interpolating tap extracts the signal at some fixed integer delay
relative to the input. Tapped delay lines efficiently simulate multiple echoes from the

same source signal.

One example of using TDL in a neural network model of a system is shown in
Figure 2-10 (a). In this example each “Time Delay” operator yields a one-time-step
delayed version of the input signal, and thereby builds a short-term memory into the

system. This feature transforms a static ANN to a dynamic ANN whose output is a
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function of time [9, 20].

2.5 ANN Applications in AVC

The idea of using ANNSs for nonlinear feedforward control problems was first
proposed by K. S. Narendra and K. Parthasarathy [21], and then, the investigations into
it by some other people have been reported (see, for example, [7, 17, 22-25]). Generally,
multilayer feedforword neural networks adapted using some extensions of the standard
gradient descent backpropagation algorithm has received the most attention from the

control community as a potential nonlinear filtering tool [6].

In the AVC area, the linear function is generally used for neurons in the output
layer, and nonlinear functions (such as the sigmoid function) are used for neurons in
hidden layers. The linear activation function used for output neurons can provide the
control signals with the capacity to vary over the positive/negative range required for
control; the nonlinear activation functions used for hidden neurons can provide nonlinear

control.

2.5.1 Batch-Training Dynamic ANN-Based AVC

One example of batch-training dynamic ANN-based AVC is discussed in [25]. A
Neural Network Identifier (NNI) and a Neural Network Controller (NNC) are used in
this example (Figure 2-10). The NNI is a model of the system, which is a dynamic neural
network and used to simulate the response and design the controller. The inputs to the
NNI include excitation signals, control signals and two delayed values of plant output.
The activation function is purely linear. The design of the NNC is based on the inversion
of the plant model (NNI). The NNC has five hidden neurons and a single output neuron,
which produces the controller voltages. The inputs consist of excitation signals, control

signals and time-delayed target values. The hidden layer uses the tangent sigmoid
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activation function (as in equation 2-16), which limits the output to +1 for large values of
the activation potential. This has a stabilizing effect on the controller signals. For the
output neuron, the activation function is purely linear, which provides the control signals

with the capacity to vary over the positive/negative range required for control.
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d - Disturbance @ Linear Neuron i Distuibance )
u - Controller Qutput . { - Target @ Linear Neuron
y - Plant Output |A] Time Delay u - Controller Output [A] Time Delay
(a) Neural network identifier (NNI). (b) Neural Network Controller (NNC).

Figure 2-10: Neural network identifier and Neural Network Controller in [25]

The significant feature in this example is the way to train the NNC. The NNI is
trained in a batch mode, and then is used to train the controller through off-line

simulation. An adaptive scheme was used for the controller, as shown in Figure 2-11.

The problem in training the NNC is that no target values (in terms of control
signals, which are the output of the NNC) are known that would minimize the tip
acceleration (which is the goal). The significant idea of [25] to solve this problem is by
defining the target as the sum of control signal and tip acceleration (NNI output, which is
desired to be zero for vibration suppression). The error is the difference between the
target value and the NNC predicted value (control signal). The error (the tip acceleration
in this case) is backpropagated to train the NNC. The NNC weights and biases are
adjusted after every ten samples of data, which resulted in updated control signals. Once
the NNC training was complete, it was connected to the plant to obtain controlled

responses.
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Figure 2-11: Training of Neural Network Controller (NNC) in [25]

In another example, the simplest concept called “Direct Inverse Control” is
implemented in an ANN-based AVC [24]. The principle of “Direct Inverse Control” is
that if a process can be described by a function dependent on the past states of the
system that may be dependent on past inputs and outputs, a network is trained as the
inverse of the process since that plant can be approximated by an inverse function. The
inverse model is subsequently applied as the controller for the process by inserting the

desired output. [24].

To design a plant inverse model, input/output data must be collected for the
operating range and input conditions of the system. To construct a direct inverse neural
network controller, an ANN to model the inverse of the plant needs to be trained (see
Figure 2-12). The inputs to the ANN inverse model are the state: x(k) and the change in

state: dx. The output is the input control signal going to an actuator or shaker.

After the ANN is trained, it is put into the direct inverse control framework. The
input to the inverse plant model controller is the current state and the desired state. The
output of the controller is the input control signal going to an actuator or shaker (see

Figure 2-13, where D means one time step delay here).
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Figure 2-12: Inverse system identification in [24]

Both of the above two examples are claimed to demonstrate the efficiency and

robustness of batch-training dynamic ANN-based AVC mechanism.
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Figure 2-13: Direct inverse control of a plant in [24]

2.5.2 On-Line-Training Dynamic ANN-Based AVC

There has been an intensive interest in on-line-training dynamic ANN-base AVC
since the idea of using ANN for nonlinear feedforward control problems was first
proposed by K. S. Narendra and K. Parthasarathy ([7, 17-18, 21]). The commonly used
feedforward AVC arrangements are similar to the one shown in Figure 2-14. “ANN 1” is
a neural network controller and “ANN 2” is a neural network model of the plant.
Reference signals are sent to “ANN 1”. Tapped delay lines are always used as the input
layer in feedforward neural networks. Tapped delay lines yield time-step delayed
versions of the input signal, and thereby built short-term memories into systems. This
feature transforms a static network into a dynamic network whose output is a function of

time (as discussed in section 2.4.7). Transfer function models utilize tapped delay lines
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to enable the modeling of the explicit system time delays to maintain causality within the

control scheme (as discussed in section 2.2.1).

The reference signals are used by “ANN 1” (neural network controller) to derive
a set of control signals. Each control signal is modified by some system dependent
cancellation path transfer function, i.e., “ANN 2” (plant model), before sent to the plant
through actuators. Each error signal is then the sum of the primary and control
components (superposition of the signals in the plant environment) and measured by a

sensor. The error signals are then used by the neural networks for weight adjusting.

The training of “ANN 2” can be done with classical neural networks algorithms,
including backpropagation algorithms (with or without momentum), nonlinear
optimization algorithms (quasi-Newton algorithms, conjugate gradient algorithms) or
nonlinear identification techniques (nonlinear extended Kalman filtering or
recursive-least-squares algorithms). A review of these algorithms can be found in [18].
The training of “ANN 1” can not be done with those classical algorithms, because of the
tapped delay lines between the two neural networks. For this kind of on-line-training
dynamic ANN-based AVC, finding the effective algorithms to train “ANN 1” has been a
focus of many researches. The combination of multilayer feedforword neural networks
adapted using some extensions of the standard gradient descent algorithm, together with

the developments of those modified algorithms, can be found in the literature.

. Primary
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ANN 2
{Plant Model)
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{Controller)
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Figure 2-14: Commonly used feedforward active control arrangement
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One example of such a kind of on-line-training dynamic ANN-based AVC is
shown in [7], in which two multilayer feedforword neural networks, each having a
tapped delay line, are used; a modified gradient descent backpropagation algorithm for
adapting the feedforward neural network which has a tapped delay line is developed, and

the performance characteristics are assessed experimentally.

Figure 2-15 represents the two multilayer feedforword neural networks used in
[7]. Figure 2-15 (a) is an ANN feedforward controller, i.e. “ANN 1” in Figure 2-14;
and Figure 2-15 (b) is an ANN model of the cancellation path transfer function, i.e.
“ANN 2” in Figure 2-14. In [7], the control achieved by using a 6x6x1 “ANN 1” (6
inputs, six nonlinear hidden layer nodes, and one linear output node), together with a 6x1

“ANN 2” (six inputs and one linear output node).

As discussed before, in applications of on-line-training dynamic ANN-based
AVC, in order to derive an algorithm which will facilitate stable adaptation of an
ANN-based feedforward active control system, the plant model is used to incorporate the
frequency response characteristics of the control actuator and error sensor, as well as the
response characteristics of the structural system which separates them, including delays

due to the finite distance between the source and the sensor. In [7], this plant model is

modeled as a second neural network, the input of which is the control signals, x,(k),
and the output of which is the feedforward control signals, s(k), measured at the output

of the error sensor. A reference input sample at time %, x, (k), which is in some way

related to (but not necessarily linearly correlated with) in impending primary disturbance,

p(k), is used to derive the set of control signals, x,(k). Each error signal is then the

sum (superposition) of the primary and control components [7]:
ej(k) =pj(k)+sj(k) (2'21)

The error criterion that the controller is to minimize is the sum of the mean square value
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of error signals from N(e) error sensors [7]:

N,-1 N,-1 N,-1
ErrorCriterion = Z & (k)= Z E {e,f (k)} ~ Z e’ (k) (2-22)
n=0 n=0 n=0
Neural Network Controller Cancellation Path
—| Transfer Functions

(a) An ANN feedforward controller

Cancellation Path Transfer Function

Model For Control Signal ¢

(b) An ANN model of the cancellation path transfer function
Figure 2-15: Two multilayer feedforword neural networks used in [7]
The gradient descent algorithm acts to adjust the weights of the control system [7]:

w(k +1) = w(k) — aAw(k) (2-23)
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The gradient estimate used in the adaptive algorithm is [7]:

Ni,—lan (k)
Aw= )y ———= 2-24
w Z(; ™ (2-24)

The impediment to utilizing the standard backpropagation algorithm for
adapting the controller neural network is the inclusion of the tapped delay line input to
the transfer function model. The standard backpropagation algorithm cannot be used
directly in this arrangement since it must backpropagate through a tapped delay line.
Therefore, the standard gradient descent backpropagation algorithm must be modified to
enable adaptation of the neural controller for use in feedforward control systems. In [7],
steepest descent algorithms based on the filtered-x approach were introduced for the
training of the controller network. In order to derive a modified algorithm, the error
signals can first be backpropagated from the transfer function model output to the tapped
delay line if the transfer function model input uses the standard algorithm [7]. The
outcome shows that it is in fact past and present versions of the nodal outputs which are
used in updating the controller network weights, and not past and present values of the

error signals (see [7] for details of the algorithm development).

One point should be stressed here is that the neural network controller and the
cancellation path transfer function neural network are inherently different in their
function, so they must be adapted separately [7]. Once converged, the cancellation path
transfer function neural network is then simply used as a tool to facilitate stable
adaptation of the neural network controller and is not modified itself in this process. The
neural network controller is a “phase inverse” model, whose error signal is defined as the
sum of its output and the signal whose inverse signal is desired (the superposition of the
control signal and the primary disturbance in the structural domain); while the
cancellation path transfer function neural network is a model, whose error signal is based

on the difference between its output and some desired signal (the system response
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measured at the error senor output to the control signal input) [7].

For this kind of on-line-training dynamic ANN-based AVC, finding the effective
algorithms to train the ANN controller has been a focus of many researches. For
example, in [17], an adjoint approach is introduced; and in [18], a heuristic procedure is
introduced for the development of recursive-least-squares algorithms based on the
filtered-x and the adjoint gradient approaches, which leads to the development of new

recursive-least-squares algorithms for the training of the ANN controller.

2.6 Real-Time Concepts for Dynamic ANN-Based AVC

The following real-time concepts are very important for dynamic ANN-based

AVC experimental implementation.

2.6.1 Real-Time Performance

The most common misconception associated with real-time performance is that it
increases the execution speed of a program. While this is true in some cases, it actually
enhances the application by providing more precise and predictable timing
characteristics. With these enhancements, the exact time when certain events will occur
can be determined [26]. Real-time performance can be achieved through either hardware

or software.

2.6.2 Real-Time Operating Systems

A real-time system is one in which the correctness of the computations not only
depends upon the logical correctness of the computation, but also upon the time at which
the result is produced. If the timing constraints of the system are not met, system failure
is said to have occurred [27]. Microsoft Windows 2000, XP and Vista are all

general-purpose operating systems, but they are not real-time operating systems [26].
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One of the main differences between real-time operating systems and general-purpose
operating systems is the ability to guarantee a worst-case latency. On a general-purpose
operating system, an external interrupt could be put into a queue and then serviced later
after the operating system has finished its current operation and any other interrupts in
the queue. On the other hand, a real-time operating system can halt its current process to
handle an interrupt immediately. In essence, the real-time operating system guarantees

event response within a certain interval [26].

2.6.3 Real-Time Control

With real-time control, a physical system can be monitored and simulated
continually. Real-time control applications repeatedly perform a user-defined task with a

specified time interval separating them [26].

2.6.4 Real-Time Signal Processing

Real-time signal processing has many of the same characteristics as real-time
control. It requires deterministic time intervals between repetitive events [26]. But
instead of calculating a response, it performs signal processing on the acquired data. In
dynamic ANN-based AVC applications, point-by-point analysis routines provide much
better performance. Instead of analyzing blocks of data, these routines maintain a
memory of previous data and calculate a new output based on the history of the data and
the current value. Hard real-time performance is necessary in these systems because
missing input values or even acquiring these values after a small time delay destroys the

integrity of the historical data for future calculations.

2.7 Challenges in Current AVC Applications

There are some technical challenges associated with the current AVC
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applications. As introduced in section 2.3, adaptive filter control systems can only work
effectively for linear vibration problems. As introduced in section 2.5, most implemented

ANN-based control methods lead to the complexity of the control systems.

The previous work tried to deal with these challenges. The proposed

methodology is introduced in the following section.

2.8 Previous Work in AVC

The previous work in AVC is presented in [28]. Feedforward control strategy (as
introduced in section 2.2.1) was utilized in the previous work of AVC design and the
system did not have to deal with the time-delay problem directly. In a feedforward AVC
strategy (see Figure 2-16), a controller relies on the availability of a reference signal
correlated to the primary disturbance, i.e. x(p) in Figure 2-16. This signal is passed
through the controller. And then, the output of the controller, i.e. x(u), is applied to the
plant by a secondary source, i.e. Actuator in Figure 2-16. The plant output, i.e. Y in

Figure 2-16, is the vibration response of the plant measured at some point.
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Actuator

A x(u)
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Figure 2-16: Feedforward AVC strategy in previous work

¥

An ANN was used as the main part of the controller in the previous work. The
ANN was used for identification of the system, i.e. as a system model. The system

model was trained off-line using the system inputs as inputs and the measured vibration
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responses of the plant at some point of interest as the output. The input signal of the

plant was also the reference signal to the controller as shown in Figure 2-16.

Figure 2-17 shows the training process of the ANN model, where x(p) represents
the primary inputs to the plant, x(u) represents the control inputs to the system and Y is
the vibration response of the plant measured at some point of interest, which also is the
expected output of the ANN model. The error, i.e. e, was the difference between the
measured plant output values, i.e. Y, and predicted values of the ANN model, i.e. Y.
The error was backpropagated to train the ANN model. After training the ANN model,

the model was used in the controller for AVC of the plant.
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Figure 2-17: Training of the ANN model in previous work

To make the AVC system simple to implement, in the previous work, the
controller was a static ANN controller, which included two main parts (see Figure 2-18).
The first part was the trained ANN model. The second part was a minimization module
which generated random control inputs x(z) “ to the ANN model and found the minimum
ANN model output value. Literally, the controller worked in this way: for given primary
inputs to the plant, i.e. x(p), the ANN controller generated random control inputs x(u) ’;
the combination of x(p) and x(u) ~ were sent to the ANN model as inputs; for each
combination of x(p) and x(u) ', an output, i.e. y ', was obtained and sent to the
minimization module; the minimization module found the minimum ANN model output,

i.e. Y., based on the given primary input to the plant and sent the corresponding signal,
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i.e. x(u) , to the plant as control signal, i.e. x(u).
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Figure 2-18: Static ANN-based AVC methodology in previous work

The inputs of the ANN included the primary inputs to the plant, i.e. x(p), and the
control inputs to the system, i.e. x(u). The output of the ANN model was the vibration
responses of the plant measured at some point of interest, i.e. Y. The training data, i.e.

x(p), x(u) and Y, were obtained by experiments.

To get a robust neural network model, which means a model affected minimally
by external sources of variability, the experiments need to be designed first. In the
previous work, the fractional factorial design [59] was used for the design of

experiments to obtain training data for the ANN model.

The minimization module in the ANN controller used simulated annealing and

resilient propagation algorithms.

2.9 Machining Chatter Suppression

In the chatter control area, many papers concentrate on chatter control while
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some focus on chatter detection. This research will comprise both parts but focus on
chatter control. Therefore, both chatter detection and suppression methods, together with

regenerative chatter mechanisms, will be reviewed in this section.

2.9.1 Regenerative Chatter

The mechanisms that cause regenerative chatter are called “Regeneration of
Waviness”. Tobias [31] was the first to identify the mechanisms known as regeneration.
Figure 2-19 shows a two-dimensional metal cutting in turning. Although in many papers
nowadays the turning process is described as two-degree-of-freedom systems (early
investigated by Salje [32]), for the sake of simplification, in this figure the dynamic
model of the turning tool is assumed to be a single-degree-of-freedom lumped parameter
system whose stiffness and mass are the effective stiffness and mass of the turning tool
reduced to the point of attachment of the cutting insert. The flexible tool engages the
workpiece and, due to the cutting force, begins vibrating. This vibration is imprinted on
the machined surface to leave a specific “wavy” surface on the workpiece. This wavy
surface varies the instantaneous chip thickness which, in turn, modulates the cutting
force and the cutter vibration (i.e., a feedback mechanism is produced that can lead to
self-excited vibrations, or chatter) [33]. Depending on the relationship between the wavy
surface left by the previous tooth and the current cutter vibration, the resulting

deflections and forces can grow very large (chatter) or diminish (stable cutting) [33].
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Figure 2-19: Chip thickness variation due to cutter vibrations [33]
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An example of a stable turning operation is shown in Figure 2-20, where the tool
vibrations are in phase with the surface left in the previous revolution. This leads to very
little variation in the instantaneous chip thickness and, therefore, a stable cut even
though the tool is vibrating. If the new cut leads to a chip with variable chip thickness
(i.e. waves are out of phase), this would translate as variable forces on the cutting edge

and eventually as vibration, i.e., regenerative chatter [33].

Favorable spindle speeds and chip widths can be selected to avoid chatter by
using stability lobe diagrams, provided the system dynamics have been characterized
beforehand. A typical stability lobe diagram example shown in Figure 2-21 is a plot that
separates unstable combinations of chip width and spindle speed (i.e., those that produce
chatter) from stable combinations [33]. Stable cuts occur in the region below the stability
boundary (or combination of all the stability “lobes”), while unstable cuts occur above

the stability boundary.

It is often possible to increase the allowable chip width without chatter by
increasing the spindle speed, rather than slowing down. This counterintuitive behavior is
one reason that is important to characterize the dynamic response of the cutting tool and

produce the corresponding stability lobe diagram [33].
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Figure 2-20: Tool vibrations are in phase with previously cut surface [33]

Upon closer observation of the Stability Lobes, it is evident that maintaining a
chip width below the bjimit will always yield a stable cutting region. The value of bjimit

depends on the dynamic characteristics of the structure, the work piece material, cutting
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speed and feed, and the geometry of the tool [34].
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Figure 2-21: Example stability lobe diagram [33]

It is widely known that machining chatter signals have harmonic shapes [32], and
their frequencies are around the respective natural frequencies of the machining systems
[32]. As observed by experimental results of many papers, such as [32] and [35], the
frequency of a regenerative chatter is around the first natural frequency of the machining

system and in most cases slightly lower than the natural frequency.

2.9.2 Chatter Detection

Over the years, various techniques for on-line detection of chatter have been
studied to detect chatter rapidly and accurately. In the frequency domain, some studies
have focused on setting up a proper threshold value for the power spectrum of measured
dynamic force, sound, acceleration or displacement to detect chatter occurrence [36].
The difficulty in determining suitable threshold values has led to artificial neural
network-based techniques (e.g., [37]), multi-sensor based techniques (e.g., [38]) or the
combination of both (e.g., [39]). In the transition of cutting dynamics domain, [40]
proposed that the cutting process contained chaotic dynamics and utilized the premise in
chatter detection using coarse-grained entropy rate, based on a transition from high
dimensional to low dimensional dynamics of cutting at the onset of chatter; [41] and [36]
applied the maximum likelihood (ML) algorithm to estimation of fractal dimension

using wavelets.
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However, some methods mentioned above are not suitable for the current
research objective. In the frequency domain, although ANNSs are a potentially powerful
tool for classification owing to their ability to represent complex patterns by learning, the
successful application of an ANN is strongly dependent on the proper selection of the
type of network structure as well as the adequacy of the training data, which are not
always available for the constantly changing machining environment, such as the
machining of super alloys in small batches. In the transition of cutting dynamics domain,
calculations are always complicated and sometimes are not suitable for on-line

application.

2.9.3 Chatter Suppression

Generally, chatter suppression methods fall into two categories, passive and

active methods.

2.9.3.1 Passive Methods

Passive control, compared with active control, exhibits the advantages of easy
implementation, low cost, and no need for external energy. More importantly, passive
control methods never drive the controlled system to instability, while the active control

methods might [5].

Passive methods include enhancing the system’s dynamic stiffness and damping,
elimination of additional energy sources, eliminating or decreasing input forces and
isolation from external disturbances [5]. Usually passive chatter suppression methods
include using energy absorbing dampers to consume the energy input (such as using
damping treatment on a workshop floor), changing the cutting conditions to reduce the
energy input or by changing the cutting conditions to reduce chatter energy generated
during the machining process (e.g., detecting and calculating chatter “stability lobes” and

then adjusting the process parameters, such as speed and feed, to produce a stable cut, as
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utilized in many papers), increasing of the rigidity of the machine tool structure by
redesigning or through the use of dampers [43], changed tool geometry, variation of
directional factors, etc. (e.g., modifications were made to the tool holders for adding
dynamic stiffness and damping in [42]). Based on the dynamics of stability lobe
diagrams, some tunable stiffness, damping [44] or vibration absorber [49], spindle speed
variation [45] and spindle speed selection [46] strategies have been proposed for
regenerative chatter suppression. Also, In the case of conventional cutting, chatter is
very sensitive to the tool geometry, such as the rake angle and the clearance angle [47]

[48].

The use of passive vibration control methods is restricted because of small
effectiveness in the range of low frequencies, sensitivity-dependent on application
conditions, lack of robustness, reduction of efficiency, increased size and weight, etc.
Damping refers to mechanical energy dissipation that is converted to heat [5], so it may
cause the decrease of general working efficiency in machining. The ideal device should
run with minimal damping values. On the other hand, because of sensitivity-dependent
on application conditions and lack of robustness, passive methods suffer from the fact
that when the machine tool-workpiece configuration changes, the machines have to be
retuned. However, an online or self-tuning is difficult to achieve with passive methods.

All these lead to active control consideration.
2.9.3.2 Active Methods

Active methods work by providing an additional energy supply to vibration
systems. The additional energy supply can produce forces that compensate the forces
that account for chatters. As mentioned, active methods can overcome the limitations
discussed before. In this section, some recent examples of active chatter control will be
introduced.

Active vibration control is typically achieved by incorporating sensor and
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actuator pairs in the structural design to modify the response via feedback control [35].
Once active elements are incorporated into the structure, any type of feedback control
may be used. The experimental setup of [35] (as shown in Figure 2-22) for a boring
chatter suppression is the nearest to the experimental setup that will be utilized in this

research.
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Figure 2-22: Location of the actuators and sensors along the boring bar [35]

In [50], a method based on a variable-stiffness boring bar containing an
electrorheological (ER) fluid is utilized to suppress chatter in boring. ER fluids undergo
a phase change when subjected to an external electrical field, the deformation modes of
which are dependent on applied electrical field strength and strain amplitude. This

phenomenon permits the global stiffness and energy-dissipation properties of the bar to
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be tuned on line by varying the electrical field strength for chatter suppression.

The chatter suppression method is based on the application of active dampers to a
slender boring bar in [51]. Chatter vibration signals detected by a sensor are fed to a
computer. After calculating the chatter frequency and the corresponding phase shift
parameter, the computer supplies the amplified signals to piezoelectric actuators with the
same phase as that of the vibration velocity of the boring bar. As a result of this, the
actuators generate damping forces; that is, they act as active dampers. The experimental
setup of [51] (as shown in Figure 2-23) can get more working range for the boring bar
than [35]’s, so it deserves a closer scrutiny in the future. In this setup, eight piezoelectric

actuators are attached to the boring bar as the active dampers.

300
O U—— L S _____,|

e
Ry e S

Piezoelectric
actuator

M5 . 90

Figure 2-23: Boring bar with active dampers [51]

A unique boring bar system has been developed in [52]. The system consists of
three principle subsystems: active clamp (tool holder), instrumented boring bar and
control electronics. The active clamp is a lathe-mountable body capable of supporting
bars of varying sizes and articulating them in orthogonal directions from the base of bar
shank. The instrumented bar consists of a steel shank, standard insert head and imbedded
accelerometers. Wire harnesses from both the bar and the clamp connect to control
electronics comprised of amplifiers, a PC-based program manager and two digital signal
processing boards. All real-time signal processing is based on the principles of adaptive
filter minimization. The active clamp design of [52] can also provide more working
range for the boring bar and be able to support bars of varying size, but it is complicated

and delicate.
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CHAPTER 3
METHODOLOGY OF AVC

As stated previously, the first part of the objective of this research is to develop
an effective adaptable real-time online AVC system to detect and suppress the noisy
sinusoidal vibration of a cantilever beam. Because of their many advantages, artificial
neural networks (ANNSs) are used to fulfill these requirements. The methodology to be
introduced in this chapter does not utilize a reference signal correlated to the primary
disturbance and as such is different from previous work [28], which utilized feedforward
control strategy. The rationale is that a suitable reference signal is not always available
and a robust AVC system should be able to monitor its effect on the system it is
controlling and compensate for unexpected changes. Therefore, feedback control
strategy is utilized in the current work. As a consequence, the vibration signal needs to

be detected in the current work.

The general idea of the AVC methodology in the current work is based on
Fourier theory. Fourier theory states that any signal, in the current case vibration signals,
can be expressed as a sum of a series of sinusoids. If a vibration control system can
detect the sinusoid with the highest power and control this sinusoid in one control cycle,
and repeat the control cycle to control the sinusoid with the next highest power, then,
after enough control cycles, most of the original vibration should be controlled.
Therefore, the general methodology is divided into vibration detection, which detects
sinusoid parameters, and vibration control, which sends out an accumulated control

signal to control vibration sinusoids detected in different control cycles.

The vibration detection methods and the AVC strategy used in the current work

will be presented. The resilient propagation algorithms used in the AVC system will also
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be introduced.

3.1 Vibration Detection

As mentioned at the beginning of this chapter, vibration detection is to detect
sinusoid parameters because the general methodology in the current work is based on
Fourier theory, which states that any signal can be expressed as a sum of a series of
sinusoids. A summary of different methods for detecting sinusoid vibration parameters
can be found in [53]. Classical methods include the maximization of periodogram (MP)
and the minimization of the sum of squared error by non-linear least squares (NLS)
regression. In [54], an algebraic approach is proposed for the fast and reliable, on line,
identification of the amplitude, frequency and phase parameters in unknown noisy

sinusoidal signals.

Generally, the algebraic method uses the algebraic derivative method in the
frequency domain vyielding exact formulae, when placed in the time domain, for the
unknown parameters. Considering an uncertain sinusoidal signal of the form:

x(t) = Asin(ax + ¢) + K (3-1)
where A4 is the unknown amplitude, w is the unknown frequency, g¢is the unknown phase,
and K is an unknown constant bias perturbation term, the Laplace transform of this signal

is given by [54]:
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x(s)=—; —+— +—
S+ w S+ w S

(3-2)

where s is the complex frequency. After some differentiations, integrations, and integral

convolutions as shown in [54], the unknown 4, @, and ¢can be obtained. If used with

appropriate filters, the algebraic method can deal with noise very well.

Since the algebraic approach is fast (can be performed in a quite small time
interval which is only a small fraction of the first full cycle of the measured sinusoid
signal), robust with respect to signal measurement noises and able to do the computation
of amplitudes, frequencies and phases of a linear combination of sinusoids [54], it can be
utilized in the current work. To get more accurate parameters, especially for frequency,
the outcomes of the algebraic approach can be applied to classic methods, which require

extremely precise initial values to ensure convergence.

3.2  The General Vibration Control Strategy

The general proposed AVC strategy utilized in the current work is shown in Figure
3-1 [30]. In this strategy, a vibration suppression module relies on the availability of
detected vibration parameters from the vibration detection module to generate control
signals, i.e., x(u), which are applied to the plant by secondary sources, i.e., actuators, to

suppress the vibration. In Figure 3-1, x(p) represents the primary disturbance. The plant
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output, i.e., Y'in Figure 3-1, is the vibration response of the plant measured at the location

of interest.

x(p) Y

—— PI:nt #»

Vibration Detection
Module

Actuators

A<
Vibration Suppression
Module

Figure 3-1: The general AVC strategy

In this strategy, the following relation exists:
Y = F(x(p),x(u),1) (3-3)

The vibration suppression module’s task is to synthesize x(u) such that it
minimizes Y. If a comprehensive, differentiable physical model of plant is available, the
control signal to the actuator, i.e., x(u), could be determined through an optimization

method in order to minimize Y. One such optimization method is steepest decent, where:

, or*
ox(u)"

x(u)™ = x(u)" -« (3-4)

k

Here % is the gradient of the dynamic model of the plant Y; x(w)* and x(w)*"' are
X\u

the values of the control signal in the £ and £+ iterations respectively; and « is the size of

the steps in the direction of minimization.
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The calculation of the gradient requires the availability of a differentiable physical
model. However, comprehensive, differentiable physical models of complex systems
usually do not exist. In this case, using artificial neural networks (ANN) in the chatter
suppression module is a good choice because ANNs are known for their function
approximation capability. As introduced before, properly designed and trained neural
networks are capable of approximating any linear or nonlinear function to the desired

degree of accuracy and they are noise tolerant.

In this work, a vibration suppression module is used to generate a control signal to
suppress the original vibration at the location of interest. The ideal generated control
vibration should have the same amplitude and frequency of the original one at that

location but with a 180-degree phase difference in dominant vibration frequencies.

3.3 Vibration Control Subsystem Design

The vibration control module is the most critical part of this control system. Figure

3-2 shows some details of the proposed vibration control subsystem design.

To generate an “opposite” vibration at the location of interest to suppress the
original one, an ANN is utilized as an identification model of the plant based on the
function approximation capability of ANNs. To make the proposed AVC system robust,

the ANN model should be used for a relatively stable part of the plant. To generate control
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signals, the ANN model should work as an inverse model, which means the inputs of the
ANN model are actually the outputs of the plant, i.e., the parameters of the vibration signal,
which include amplitude (A1), frequency (F7) and phase (PI), while the outputs of the
ANN are the parameters of the control signal, which include amplitude (40), frequency

(FO) and phase (PO).

Y
e, Plant

+ Yy

Actuators Vibration Detection
A Module

AQ,FO. PO
(anN )

A A1 FLPT

4

_ALFLEPI

J

Delay Estimate

4

Vibration Suppression
Module

Figure 3-2: Some details of the vibration control module

Time delay in AVC is very critical. To satisfy causality of different iterations, the
time delay between the iteration to collect vibration signal parameters and the iteration to
send out control signal should be considered to get the actual phase input (P/") to the

ANN.

Real-time digital signal processing provides precise and predictable timing
characteristics. Because of the deterministic property of a real-time system, the accuracy
of running time of a control iteration, or a while loop, can be expected. In the current work,
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if the running time for each iteration is ¢, considering the time delay of one control iteration
and the 180-degree phase difference, the actual phase input (P/’ in Figure 3-2) of the

ANN model should be,

PI' = PI +180 + (FI x ¢ — int(FT x £)) x 360 (3-5)

3.4  Design of the Inverse ANN Model

As mentioned before, in the proposed AVC system, the ANN is used for function
approximation and works as an inverse identification model of a relatively stable part of
the plant. The design of the ANN model is based on the applied AVC strategy and the
actual experimental setup. Generally, design steps are as follows: First, training data for
the ANN models are collected via experiments according to the AVC strategy presented
in previous sections. Then, the training data are analyzed in order to choose a proper
normalization method. The general network architectures of the ANN models are then
designed and the suitable learning algorithm is chosen. Finally, the ANN models are
trained to avoid overfitting. The network architectures may be modified for better

function approximation based on experimental results.

An ANN model example based on the proposed vibration suppression subsystem

design is shown in Figure 3-3. In this example, a multilayer feedforward ANN is utilized.
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The ANN architecture used here has three inputs, one hidden layer of log-sigmoid neurons

and one output layer of three log-sigmoid neurons.

The ideal control signal frequency (#O) should be the same as vibration frequency
(FI) [29]. Moreover, the input PI can be cancelled if the phase difference (PD) between
the control signal and the vibration signal is utilized (PD = PI-PO). In this case, the ANN
can be simplified as shown in Figure 3-4. In the detailed design, the number of hidden
layers and the number of neurons in each hidden layers are decided by finding out what the

best numbers are to obtain the smallest mean square error (MSE) for validation data sets.
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Figure 3-3: ANN model example

In experiments to collect training data for the ANN models, only the control actuator
is utilized to generate the plant vibration, i.e., the primary disturbance x(p) =0. Therefore,
the inputs of the ANN are A7 and FO (FI should be the same as FO). To get a robust
training, which means a training affected minimally by external sources of variability, the

experiments to collect training data need to be designed first. In this work, the fractional
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factorial design [59] is used for the design of experiments to obtain the training data for the

ANN models as shown in [29].

Al ANN

FI —» PD

Figure 3-4: Simplified ANN model

Considering the time delay between the iteration to collect vibration signal
parameters and the iteration to send out control signal, the phase of the control signal

should be:
PO=PI'-PD (3-6)

where PI' can be calculated from equation (3-5), in which PI is known from

experiments.

3.5 Resilient Propagation

In the current work, Resilient Backpropagation is used as the training algorithm
for the ANN model because, although it is not the fastest one, theoretically, it can also

help to reduce squashing effect of the magnitudes of partial derivatives.

Resilient propagation (RPROP) performs a local adaptation of the weight updates
according to the behavior of the error function [55]. Only the sign of the derivative is
used to determine the direction of the weight update; the magnitude of the derivative has

no effect on the weight update. The size of the weight change is determined by a
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separate update-value, A,. The update-value for each weight and bias is increased by

calculated factors. The adaptive update-value, i.e., A, evolves during the learning

process based on its local sight on the error function E according to the following

learning rule [55]:

(1) (1)
ow; ow;
GE (1) aE (t)
A, =1 * A(I,’,‘l), if — *— <0 (3-7)
’ ’ ow; ow,
A(;fl), else

where 0<7” <1<n",and w, isthe weight from neuron to neuron i.

Described in words, the adaptation rule works as follows [55]: every time the
partial derivative of the corresponding weight w, with respect to £ changes its sign,
which indicates that the last update was too big and the algorithm has jumped over a

local minimum, the update-value is decreased by the factor 7. If the derivative retains

its sign, the update-value is slightly increased by factor n" in order to accelerate

convergence in shallow regions [55].
Once the update-value for each weight is adapted, the weight-update itself
follows a very simple rule: if the derivative is positive (increasing error), the weight is

decreased by its update-value; if the derivative is negative, the update-value is added

[55]:
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—AY i = >0
! / ow;
aE (t)

A =4+ AD i 2 <0 i

i i U ow, (3-8)

0, else
(e+1) _ (1) (1)

wl.j’ = wl.j.’ +Awl.j’ (3-9)

However, there is one exception: if the partial derivative changes sign, i.e., the
previous step was too large and the minimum was missed, the previous weight-update is
reverted [55]:

oE ‘P o ©
N k—

<0 (3-10)
aw% 8M@

0 _ _ (1) ;
Aw;" =—=Aw; ™, if

Due to that “backtracking” weight-step, the derivative is supposed to change its
sign once again in the following step. In order to avoid a double punishment of the

update-value, there should be no adaptation of the update-value in the succeeding step.
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CHAPTER 4
EXPERIMENTAL SETUP OF AVC

The methodology presented in Chapter 3 was evaluated experimentally through
active vibration control (AVC) of a cantilever beam. The experimental setup is described

in this chapter.

4.1 Hardware Setup

Figure 4-1 shows the top view of the hardware setup developed for the
experiments. The beam is made of plain carbon steel and has the dimensions: 550 mm x
25 mm x 4.5 mm. Two electromagnetic shakers are used to provide the primary
disturbance force (shaker 1) and the control force (shaker 2) to the beam. These shakers
are located at 145 mm and 373 mm from the clamped end, on each side of the beam,

respectively. Since the shakers have significant mass, and mass loading will lower the
apparent measured frequency (o = \/E), to minimize the effect of the shakers on the
m

structure, the shakers are attached to the beam through stingers. The stingers serve to
isolate the shakers from the structure, reduce the added mass, and cause the force to be
transmitted axially along the stingers. The primary shaker is attached to the beam firmly;
but the control shaker simply pushes up against the beam. The resulting preload is used
to maintain contact between the control shaker and the beam. The objective is to
minimize the vibration of the beam at the proximity sensor location, which is 498 mm

from the clamped end of the beam.
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Figure 4-1: Hardware setup for implementing AVC design

Two computers are used in the system because LabVIEW Real-Time Developing
System of National Instruments is used as the main developing software in this project.
One computer works as a Dedicated Real-Time Target, which integrate the DAQ board
for analog, digital, counter/timer, and vibration signals. Programs are developed on a
Windows XP host computer and downloaded to the real-time target via Ethernet.
Moreover, some time-consuming applications, such as graphing and data recording, are
implemented on the host computer instead of the target computer. The target computer

runs a single-kernel RTOS (Real-Time Operating System) for maximum reliability.

The data acquisition (DAQ) board has four 12-bit analog inputs with a maximum
sampling rate of 5 Mega-Sample (MS)/s. It also provides two 16-bit analog outputs with
a maximum update rate of 2.5 MS/s (see Appendix A for the DAQ board specifications).
Figure 4-2 is a sketch of the experimental hardware setup, which shows some functions
of the DAQ board. Two analog outputs, i.e., “AO 1” and “AO 27, and one analog input,

i.e., “Al”, are used in the experiments.
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Figure 4-3: Photograph of the experimental hardware setup
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The vibration is measured using an inductive proximity sensor (see Appendix B
for sensor specifications). The two electromagnetic shakers are driven by two 40W

amplifiers. Figure 4-3 shows the photograph of the experimental setup as described.

4.2 Software Environment

In this work, the operation system on the host computer was Microsoft Windows
XP and LabVIEW Real-Time version 85.1 on the target computer. LabVIEW
Real-Time version 8.5.1 is used for measurement, signal processing and the development
of user interfaces. MATLAB 2008 is used for neural network design, implementation,
visualization and simulation, as well as data analysis and some graphing. Microsoft
Visual C++ 6.0 is used for algorithm implementation and for implementing neural
networks in the form of Dynamic Link Library (DLL) files. ANSYS 7.0 is used for the

Finite Element Method (FEM) analysis of the beam vibration.

Figure 4-4 shows one example of user interfaces developed in the current work.
In this user interface, the amplitudes, frequencies and phases of the primary and control
signals can be input by typing or turning the small nubs. The calculated control signal
parameters, measured analog input maximum peak-peak amplitudes, an artificial neural
network (ANN) model outputs and the elapsed time of the system are displayed
numerically. The control, primary and analog input signals are displayed graphically.

The two FFT graphs show the phases and magnitudes of the analog input signal.

4.3 Signal Processing

In this work, the Hanning window function is utilized for sinusoidal signals and

the uniform window function is utilized for white noise signals to correct leakage.
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The sampling rate can be set to up to 2 MS/s while 1000 S/s is set in some cases,
e.g., measuring natural frequencies. High sampling rate is good for fast FFT calculation
[26] and avoiding aliasing and improving measurement accuracy even with very a short
sampling time, such as 25 ms. According to Shannon’s sampling theorem, to avoid
aliasing, the signal should be sampled at a rate at least two times of the highest
frequency in the signal [1]. As will be discussed in the following chapter, the highest
frequency in the signals of the current work is less than 100 Hz. Therefore, the sampling
rate is good enough to avoid aliasing and improve measurement accuracy even with a
very short sampling time. Aliasing can also be avoided in signals containing many

frequencies by subjecting the analog signal to an antialiasing filter [5].
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Figure 4-4: An example of user interfaces used in the current work
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4.4 Bending Vibration Analysis of the Beam

In the proposed experimental setup, the vibration of the cantilever beam in the
direction perpendicular to its length is considered. Such vibrations are known as

transverse or flexural vibrations.

The cantilever beam of this experiment can be considered an Euler-Bernoulli
beam because its length/width>10 and length/thickness>10 [1]. Therefore, the effects

of shear deformation and rotary inertia are ignored in the vibration analysis.

When the energy dissipation of the beam is taken into consideration, the damping

ratios ¢, (the nth modal damping ratio) are chosen based on experience or on
experimental measurements. Usually, &, is a small positive number between 0 and 1,

with most common values of £ <0.05 [5]. The damped natural frequency is:

@, =0, 1-¢, (4-3)

where @, is the undamped natural frequency.

If the energy dissipation of the beam (see Figure 4-5) is ignored, the natural

frequency @, and the mode shape X, (x) of the beam can be calculated as [5]:

[ ]
¥

Figure 4-5: A cantilever beam
o, =B EIl pA (4-4)
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X ,(x)=cosh g x—cosp x—o, (sinh g x—sin S x) (4-5)

sinh B[ —sin g [
o Sinh B, =sin B, @)
cosh B [ +cos g,/

where S,/ are called the weighted frequencies, / is the length of the beam, E is the
Young's elastic modulus for the beam, 7 is the cross-sectional area moment of inertia,

and p isthe density of the beam.

From [5], the following parameters can be found:
Bl =1.87510407; B,l =4.69409113; p,l=7.85475744; ...
0,=0.7341; ©,=1.0185; ©,=0.9992; ...

For the beam used in the current work,

[=0.55m;

E~2x10"N/m? ; [56]

1= (1/12)(2.5x10%)(4.5x10%)® ~1.9x10 m*: [58]
p ~ 7.84x10° Kg/m?; [57]

A= (2.5x10%)(4.5x10°)=1.125x10"m? .

So the first three natural frequencies can be calculated by equation 4-4 as:

@, ~76.7 rad/s, fi= ;"_1 ~12.20 Hz
T

w, ~477.3radls,  fo= —% ~7596 Hz

w, ~1337.1radls, f;= ;)_73[ ~212.80 Hz
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The first three mode shapes are plotted in Figure 4-6.
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Figure 4-6 (a-b): The first three mode shapes of the cantilever beam
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Clamped-Free Mode 3 Natural Frequency = 1337.1232 rad/s

/

o
w
T

i

o
@
T

o
o

Modal Amplitude
& o
) (=] 5]
T N T

&
IS
T

i

o
[
T

(=]
™

1
0.1 0.2 0.3 0.4 0.5 0.6 0.7
Length along bar - x

(c) Mode 3

Figure 4-6 (c): The first three mode shapes of the cantilever beam

4.5 Natural Frequencies of the Overall System

The method used to measure the natural frequencies of the whole experimental
system including the beam and two shakers is via sending uniform white noise signals to
the shakers and analyzing the corresponding Fast Fourier Transform (FFT) responses of

the system at the sensor location, as shown in Figure 4-7.

Uniform white noise generates a signal that contains a uniformly distributed,
pseudorandom pattern whose values are in the range [-a: a], where a is the absolute
value of amplitude [26]. Ideal white noise has equal power per unit bandwidth, resulting
in a flat power spectral density across the frequency range of interest. Figure 4-8 shows
the FFT response of the system output when uniform white noise (¢ = 0.01V) is sent to
the primary shaker alone; to the control shaker alone; and to both shakers respectively.

There is almost no jitter for the spectra of (a); but there are many jitters for the spectra of
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(b) and some jitters for the spectra of (c). However, the graphs show that the first natural
frequency is around 34 Hz and the second natural frequency is around 130 Hz. Because
of spectral leakage, 34 Hz and 130 Hz are approximate values of the first and second

natural frequencies.
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Figure 4-7: Interface of system natural frequency measurement

The main reason for the complex behavior of the system is the control shaker
(actuator). The control shaker makes the FFT spectra of the system output jitter, because
it is not firmly attached to the beam. It simply pushes up against the beam (see section
4.1). When the amplitude of vibration of the beam is large, the control shaker may lose
contact with the beam, and therefore makes the system more complicated by introducing

nonlinearity.

To test the efficiency of this natural frequency detection system, a magnet of 145
grams was attached to the beam at 280 cm and 518 cm from the clamped end of the
beam separately. After running the program, the new first natural frequencies changed to

32Hz and 25 Hz respectively, as shown in Figure 4-9.
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Figure 4-8: Measuring the system natural frequencies via experiments
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Figure 4-9: First natural frequency measurement outcomes

4.6 Introducing Nonlinearity to the System

For the purpose of testing performance of the system for nonlinear control
problems, nonlinearity is introduced into the experimental arrangement. This can be
done in two different ways (see Figure 4-10) in the experimental setup. The first way is
by not attaching the control source shaker to the beam, but simply pushing it up against
the beam. The resulting preload is used to maintain contact between it and the beam. By
increasing the driving force of the primary disturbance, the control shaker must also
drive harder to suppress the primary disturbance, which in this case will cause the

control shaker to rattle as it loses the contact with the beam, and therefore will make the
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resultant error signal spectrum “noisier”.
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Figure 4-10: Two ways to introduce nonlinearity

The effect of the first way is shown by the two graphs in Figure 4-11, which are
produced when a sinusoidal signal (50Hz) is sent to the control shaker only. When the
control shaker is driven soft (0.005V), the resultant error signal spectrum is very clean,
as shown in Figure 4-11 (a). Only the 50Hz peak (magnitude > 0.046) is evident, and all
the other peaks are too small (magnitudes < 0.002) to be compared with this one. The
small 60Hz peak is due to electrical noise, the small 100Hz peak is the first harmonic of
50Hz signal and the small 120Hz peak is the first harmonic of the electrical noise.
However, when the control shaker is driven harder (0.1V), the resultant error signal
spectrum becomes “noisier” with the comparable harmonics of the signal, as shown in

Figure 4-11 (b).

The second way for introducing nonlinearity is by bandpass filtering the analog
input signal from the sensor to provide a slight bias to the higher frequency harmonics,

e.g., 100 Hz, thus exaggerating the relative importance of the harmonics in the spectrum.
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Figure 4-11: Spectrum comparison between driving the control shaker soft and hard
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CHAPTER 5
EXPERIMENTAL IMPLEMENTATION OF AVC

5.1 AVC System Design

Based on the methodology and the experimental setup, the designed AVC system
to generate a control signal is shown in Figure 5-1. This control system can modify the
control signal online in every control cycle (one control cycle could include one or more

than one control iterations) in the following way:

1. The system can repeat all calculations in one control iteration and generate a
current control signal (e.g., with parameters of FO, AO, and PO) based on the detected

vibration situation (e.g., FI, Al, and PI) of this current iteration;

2. As shown in Equation (5-1), the current control signal is added to the accumulated
control signal, i.e., (control signal), of the nth control cycle, which is a combination of all
previous continuous control signals, to get an updated control signal, i.e., (control
signal)n+1, in the Signal Combination module (the control signal of the first control cycle is

zero);
(control signal),+1 = (control signal), +current control signal (5-1)

3. The new updated control signal, i.e., (control signal)n+1, is sent out to the actuator

at the beginning of the next iteration; and
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4. At the same time, this updated control signal becomes the “accumulated control

signal” in the next control cycle.

Therefore, the actual control signal sent to the actuator is an accumulation of all
previous generated control signals, which are all continuous. One control cycle should
include more than one control iterations to avoid unstable transient conditions after the
modification of the actual control signal and to get more accurate measurements of
vibration. In current work, a control cycle could be 25 ms, which means a new control

signal could be generated as fast as in every 25 ms in the current setup.

X(p) Y
— Plant -
Actuator ( Vibration Detecti 011>
‘ Module

AL FL PI

[Signal Combination]

AL FI

PI FI
it

Vibration Suppression
Module

Figure 5-1: The AVC system in current work

The parameters of the control signal, i.e., AO, FO, and PO, can be obtained from

ANN outputs and the equations in the previous section. The phase difference between the
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control signal in programming and the actual control signal at the connector block is

considered because the difference may not be the same when the system restarts.

5.2  ANN Training Data

As discussed in Chapter 3, after the control strategy is set up, the first step to
design the ANN model is to collect training data based on the control strategy and
experimental setup. The training data should be collected via experiments based on the
control strategies and the experimental setup. To get a robust training, which means a
training affected minimally by external sources of variability, the experiments to collect

training data need to be designed first.

Generally, experiments are used to study the performance of processes and
systems. The process or system can be represented by the model shown in Figure 5-2.
The process transfers some inputs into an output that has one or more observable
responses [59]. Some of the process variables (factors) x1, x2, ..., xp are controllable,

whereas other variables z1, z2, ..., zqg are uncontrollable.

Controllable Factors

xl %2 £p
Inputs Chatput
—_— - Process
¥
zl z2 zq

TTncontrollable Factors

Figure 5-2: General model of a process or system [59]
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The objectives of the experiment may include the following:
1. Determining which factors are most influential on the response y;

2. Determining where to set the influential x’s so that the response y is almost

always near the desired nominal value;
3. Determining where to set the influential x’s so that variability in y is small;

4. Determining where to set the influential x’s so that the effects of the

uncontrollable variables are minimized.

The general approach to planning and conducting the experiment is called the
experimental design. There are several strategies that an experimenter could use, such as
best-guess approach, one-factor-at-a-time, factorial design and fractional factorial design

[59].

The fractional factorial design is a variation of basic factorial design in which
only subsets of the runs are made and it considers the interaction among the factors [59].
In this project, the fractional factorial design is used for the design of experiments to
obtain the training data for the ANN model. The objective of the experiments in the
current work is to determine the influence of the controllable factors, i.e., control signal
parameters, i.e., AO, FO and PO, to the response, i.e., the sensor signal parameters, i.e.,
Al, Fl and PI. Therefore, there should be three controllable factors, i.e., AO, FO and PO,
with different levels. In this case, an orthogonal array for three factors with different
levels should be used in the experiment design. However, as introduced in section 3.4,
by using phase difference, i.e., PD, the controllable factors can be reduced to two, which
are AO and FO. For only two factors with different levels, the design of experiments is

straight, which is to find all combinations of the two factors with different levels.

The data ranges are decided by the regions of interest for each variable and

hardware performance limitations. After some modifications to strengthen stingers of the
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experimental setup (as shown in Figure 4-1), the first natural frequency of the system
was found to be around 38 Hz and the second natural frequency was around 137 Hz.
Since the frequency response ranges for the two amplifiers are 20 Hz to 30 KHz, and the
vibration frequency range of interest is 25 Hz to 55 Hz in the current work, the
frequency range 25 Hz to 55 Hz is used for the control signal. To find out the proper
amplitude ranges for the signals sent to the shakers, many experiments were undertaken.
Considering the measurement range of the sensor and the hardware setup, according to
the results of these experiments, the peak amplitude range for the control signal sent to
the actuator is set to from 0.002 V to 0.038 V for frequencies around the first natural
frequency of the system and from 0.002 V to 0.1 V for other frequencies. For
frequencies around the first natural frequency of the system, the vibration amplitude of
the beam at the sensor location increases much faster with the increase of the control
signal amplitude and the steel beam may hit the sensor if the control signal amplitude is
larger than 0.038 V. The phase difference range can be set to from -180 degree to 180

degrees.

To reduce harmful effects, e.g., the squashing effect, of using sigmoid transfer
functions in the hidden layer and the output layer of the ANN model, and normalization,
the above data ranges can be divided into several sub-ranges, e.g., the original frequency
range can be divided into three smaller sub-ranges: 25 Hz to 35 Hz, 35 Hz to 40 Hz and
40 Hz to 55 Hz. The control signal amplitude range sent to the actuator is set to from
0.002 V to 0.038 V for the frequency range 35 Hz to 40 Hz and from 0.002 V to 0.1 V
for the other two frequency ranges. ANN models are trained separately for different
sub-ranges. Moreover, Resilient Backpropagation (RPROP) algorithm is utilized to train
ANN models because, although it is not the fastest one, theoretically, it can also help to

reduce squashing effect of the magnitudes of partial derivatives.
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5.3 Normalization

The values of all the data must be normalized for efficient processing by the
ANN (see section 2.4.5). In the current work, all the experimental input and output data
are positive values. The data are normalized to a range of 0.1 to 0.9 by using the

following equation:

X, =08+~ _tmn_,01 (5-2)

Xmax ~ Xmin

where x is the real value, x_,, is the normalized value, x_, is the minimum value

and x,, Isthe maximum value of one input or output.

X

5.4 ANN Architecture

In this work, multilayer feedforward ANNs are utilized (see section 2.4.1). To
find the suitable number of neurons in the hidden layer, many experiments have been
done to see how many neurons in the hidden layer can provide the smallest Mean Square
Error (MSE) for validation data sets (see section 2.4). Early stopping and Bayesian
regularization methods are used in MATLAB to improve generalization in these

experiments (see section 2.4.6). Test data sets are also used to compare different models.

The best ANN architecture found via experiments for the AVC system is similar
to the example shown in Figure 3-3. It is a multilayer feedforward ANN, which has two
inputs (i.e., Al and FI), one hidden layer of 12 log-sigmoid neurons and one output layer
of two log-sigmoid neurons for two outputs (i.e., AO and PD). The smallest MSE
obtained for validation data sets of this architecture is 0.058% in the current work. The
output layer uses a log-sigmoid transfer function because the outputs of the ANNSs are

supposed to be constrained to a range of 0 to 1 and it is a good choice in the architecture
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for the current experiment setup [5]. This ANN architecture provided the smallest Mean
Square Error (MSE) and has very good performance for generalization in experiments.
For the same experimental setup, the ANN architecture did not change, but the weights

between neurons changed for different data sub-ranges after training.

5.5 Training Algorithms

A number of different training algorithms were examined. The training speed is
not very critical in the current work, because after the ANN is trained, it is then used as a
part of the controller and is not modified in the control process. Moreover, when using
early stopping to improve generalization, an algorithm that converges too rapidly should

not be used [19].

Multilayer networks typically use sigmoid transfer functions in the hidden layers.
These functions are often called "squashing™ functions, since they compress an infinite
input range into a finite output range [19]. Sigmoid functions are characterized by the
fact that their slope must approach zero, as the input gets large. This causes a problem
when using steepest descent to train a multilayer network with sigmoid functions, since
the gradient can have a very small magnitude; and therefore, cause small changes in the
weights and biases, even though the weights and biases are far from their optimal values
[19]. In MATLAB, the resilient backpropagation training algorithm is used to eliminate

these harmful “squashing” effects of the magnitudes of the partial derivatives.

The resilient backpropagation training algorithm was found to be a good choice
since it can help to reduce the harmful effects of using sigmoid transfer functions in the

hidden layer and output layer of the ANN model.

After the ANN model is trained, it works in the controller of the AVC system as
shown in Figure 5-1. The performance of this AVC system has been evaluated
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experimentally.

5.6 Experimental Results

In order to evaluate the performance of the AVC system experimentally, a noisy
sinusoidal signal was sent to the primary shaker to generate beam vibration. The controller
was turned on several seconds after the start of the vibration to allow steady state to

prevail.

All the analog input and analog output signals, and FFT (magnitude and phase) are
displayed on user interfaces graphically only on a host computer and let the target
computer work as a dedicated real-time system. The sampling rate for data analysis was

200000 Hz.

Figure 5-3 shows five examples of the beam vibration at the sensor location in the
first 7.5 seconds. The figures are grabbed from a user interface directly. The Y-axis of
Figure 5-3 shows amplitudes of sensor signals, which are analog inputs of the data
acquisition system. In all the experiments, the primary shaker was driven with a primary
noisy sinusoidal signal from the beginning. After about 2.75 seconds, a control signal was
generated and sent to the control shaker, but with only about a fraction, e.g., around 70%,
of the calculated amplitude to get some vibration remained for a second control signal to

check out the adaptability of the AVC. Then, after about 1.5 seconds a new control signal
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was generated based on the current vibration status and added to the original control signal

sent to the control shaker.

In Figure 5-3 (a), for the primary signal, the frequency is about 32.33Hz, the
amplitude is about 0.038V, and the signal-to-noise ratio (S/N) is about 40; In Figure 5-3
(b), for the primary signal, the frequency is about 38.38Hz, which is close to the first
natural frequency, the amplitude is about 0.028V, and the S/N is about 40; In Figure 5-3
(c), for the primary signal, the frequency is about 43.58Hz, the amplitude is about 0.070V,
and the S/N is about 35; In Figure 5-3 (d), for the primary signal, the frequency is about
33.07Hz, the amplitude is about 0.099V, and the S/N is about 38; In Figure 5-3 (e), for the
primary signal, the frequency is about 28.88Hz, the amplitude is about 0.059V, and the

S/N is about 35.

Figure 5-3 (a) shows that the amplitude of the vibration was reduced from about
0.58V (peak to peak) to about 0.1V, which represents about 82.7% reduction of the beam
vibration at the sensor location; Figure 5-3 (b) shows that the amplitude of the vibration
was reduced from about 2.88V to about 0.5V, which represents about 82.6% reduction of
the beam vibration at the sensor location; Figure 5-3 (c) shows that the amplitude of the
vibration was reduced from about 2V to about 0.45V, which represents about 77.5%
reduction of the beam vibration at the sensor location; Figure 5-3 (d) shows that the
amplitude of the vibration was reduced from about 1.8V (peak to peak) to about 0.32V,

which represents about 82.2% reduction of the beam vibration at the sensor location;
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Figure 5-3 (e) shows that the amplitude of the vibration was reduced from about 0.65V
(peak to peak) to about 0.13V, which represents about 80% reduction of the beam
vibration at the sensor location. Generally, around 80% reduction in vibration amplitudes

can be achieved in all experimental results in this work.
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Figure 5-3 (a)-(c): Beam vibration control outcome examples
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Figure 5-3 (d)-(e): Beam vibration control outcome examples

For the same primary noisy sinusoidal signal as in the above five examples,
without reducing the first calculated control signal amplitude, the system can get almost
the same vibration amplitude reduction right after the first control signal. These examples

show the online adaptive ability of the system.

Experimental results have also shown that the designed AVC system eliminates
the sensitivity to time delays. Some experiments have been executed by changing the
position of the control shaker or the point of interest, i.e., the sensor location, and therefore
changing the time delays. After each modification, an initialization program can be run to

collect training data and train the ANN model automatically based on the new
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experimental setup, and therefore absorbs the information of new time delays. After
retraining, the AVC can work as well as before. For example, Figure 5-3 (a) shows a
reduction of 82.7% in vibration amplitude when the primary vibration of the beam was at
32.33 Hz. After moving the sensor to another location (478 mm from the clamped end of
the beam) and retraining the ANN, the AVC system can still get a reduction around 82%.
The experimental outcomes did not show reduction of the AVC system ability caused by
time delay changes. Some other random changes in time delay, i.e., the position change of
the primary shaker, do not reduce the control ability of a given AVC system, which means

the ANN model does not need to be retrained.

Many papers and books, e.g., [6], have already demonstrated the ability of ANN
control systems to deal with nonlinearity because of the nature of ANNSs. Although the
ANN used in the current work is not designed for dealing with nonlinearity, the AVC
system has proved to be able to deal with nonlinearity as long as the vibration frequency
can be measured accurately. In the above experiments, as mentioned before, the primary
shaker can also be simply pushed up against the beam to introduce nonlinearity into the
experimental setup. By increasing the driving force of the primary disturbance, the
primary shaker rattles as it loses the contact with the beam, and therefore will make the
resultant error signal spectrum noisier. To check the ability of the AVC system in dealing
with nonlinearity, some experiments were completed with the primary shaker pushed up

against the beam. The results of these experiments are almost the same as the results
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shown above. In most cases, for the same inputs, the outcome differences of the two
different setups are within 8%. For example, when the frequency of the primary signal is
about 45.88Hz and the amplitude is about 0.27V, a reduction of 57.9% of the beam
vibration at the sensor location was obtained when the primary shaker was simply pushed
up against the beam; when the primary shaker was attached to the beam, for the same

primary signal, the reduction was around 59%.

5.7 Discussion

The experimental results show that the proposed AVC system works effectively.
The ANN controller of the modified AVC system can reduce the root mean square (RMS)
vibrations by about 80%. The reductions in the RMS vibrations have a very significant
effect on the fatigue life of a structure in practical application. Generally, reducing the

RMS vibrations by just 10% doubles the fatigue life [25].

By using a real-time environment, the designed AVC system was used to repeat
the vibration detection and control loop in every 25 ms and worked very well. The system
is real-time adaptable. The repetition of adding new control signals can also be set up at

any specific time during online control.

The AVC system is also robust when the experimental setup changes. When the

setup changes, the AVC system can collect training data and train the ANN model
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automatically via running a calibration or initialization program and then the system is

prepared for AVC of the new setup.

At the present time, the AVC system has proved to be able to deal with noisy
sinusoidal vibrations. Its ability to deal with more complicated signals can be tested in the

future.

85



CHAPTER 6
APPLICATION TO CHATTER SUPPRESSION

As mentioned previously, the objective of the current work is to develop an
effective adaptable real-time online AVC system to detect and suppress the noisy
sinusoidal vibration of a cantilever beam, and utilize the similar techniques in machining
chatter control. The designed AVC system has proved to be able to deal with noisy
sinusoidal vibrations effectively, as introduced in previous chapters. In the next few
chapters, the methodology for design and implementation of such an active chatter

suppression (ACS) system will be presented.

6.1 Chatter Detection Methodology

As mentioned in Chapter 2, it is widely known that machining chatter signals
have harmonic shapes, and their frequencies are around the respective natural
frequencies of the machining systems [32]. As observed by experimental results of many
researchers, the frequency of a regenerative chatter is around the first natural frequency
of the machining system and in most cases slightly lower than the natural frequency [32,
35]. Therefore, the vibration detection techniques used in the designed AVC system can

be utilized as a part of the chatter detection sub-system of the proposed ACS system.

As reviewed in section 2.9.2, over the years, various techniques for on-line
detection of chatter have been studied to detect chatter rapidly and accurately. In most
cases, suitable threshold values need to be determined based on experimental results.
The chatter detection sub-system should be able to decontaminate the sensor signal and

recognize the chatter omen.
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6.1.1 Chatter Detection Sub-System for Two Actuator/Sensor Pairs

Considering current research objectives, the accelerations of both horizontal and
vertical directions from the bending vibration of the cutting tool should be measured.
Using the coherence function between the two accelerations provides a good choice
because it is simple and yet effective [38]. This approach provides an easy way of setting
threshold values for chatter detection because it has been found that the two
accelerations are highly correlated at the chatter frequency, resulting in a sharp increase

in their coherence function to a value approaching unity [38].

As introduced in Chapter 1, the proposed ACS system could utilize two
actuator/sensor pairs: one pair to control motions parallel to the axis of the workpiece
(x-direction) and the other pair to control motions in the direction tangent to the
machined surface (y-direction). The horizontal (x-direction) & vertical (y-direction)
accelerometers (the sensors) would be glued to the cutting tool at the location of the
insert, i.e., the location of interest. By using two sensors, two crossed accelerations, i.e.,
horizontal and vertical accelerations, from the bending vibration of the cutting tool at the

location of the insert will be measured.

The proposed chatter detection sub-system is shown in Figure 6-1. There are four

inputs of the chatter detection sub-system:

1. Measured horizontal acceleration signal: x-signal;

2. Measured vertical acceleration signal: y-signal;

3. Measured first natural frequency of the tool system in the horizontal direction: fy, ;

4. Measured first natural frequency of the tool system in the vertical direction: fy, .
The outputs of the chatter detection sub-system include the following:

1. Horizontally oriented chatter frequency £, ;
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2. Vertically oriented chatter frequency f,;

3. Horizontally oriented chatter amplitude: 4. ;
4. Vertically oriented chatter amplitude: 4, ;

5. Horizontally oriented chatter phase: P, ;

6. Vertically oriented chatter phase: P,.

As shown in Figure 6-1, the measured horizontal and vertical acceleration signals,
i.e., x-signal and y-signal, have been converted to corresponding digital signals, i.e.,

x-digital signal and y-digital signal. Then, after Digital Signal Processing (DSP), the

- - - - - - - - 2
value of the coherence function of x-digital signal and y-digital signal, i.e., y; and the

amplitude and phase FFTs of both x-digital signal and y-digital signal can be obtained.

- - 2 - 2 -
The system will compare the maximum ofy_ , i.e., ()., in the whole frequency

range, with a threshold, e.g., 7 (based on experimental results, 7" should be close to

- - - - - - 2 - -
unity), in each control iteration, as shown in Figure 6-1. If (y;),. is bigger than the

max

threshold, which means that(yfy) ~1, the system will find out the corresponding

max

frequency of the (y2),., Value,ie., f,.

max

The range of the chatter frequency is estimated by using the measured first
natural frequencies of the tool system in the horizontal and vertical directions, i.e., fi.
and fy,. In Figure 6-1, the range iS (s, fua), Where £, is M; times the smaller one of £,
and fy,, and f,... is M, times the bigger one. M; and M, are the coefficients chosen based

on experimental results, e.g., M; =0.7 and M), = 1.1.

Then, if £, falls in the range, which means f,,.< f, </, the system will calculate

the six outputs, i.e., f, f;, 4x, 4,, Prand P,. f,and f, are the corresponding frequencies in

x-direction and y-direction which have the maximum FFT amplitudes. 4., 4,, P.and P,
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can be obtained based on FFT calculations.
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Figure 6-1: The proposed chatter detection sub-system for two actuator/sensor pairs

6.1.2 Chatter Detection Sub-System for One Actuator/Sensor Pair

When there is only one actuator/sensor pair, chatter can be detected when a
pre-specified threshold is reached. The parameters of the chatter signals will be obtained
and then used by the chatter suppression sub-system. However, it is difficult to

determine the proper threshold values beforehand.

In [36], an on-line chatter detection methodology is proposed based on the
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maximum likelihood algorithm using wavelets. A cutting process is assumed as a

nearly-1/f process andy, which is the spectral parameter related to the self-similarity

parameter, is used as a chatter index. To find the proper threshold value of y, surface

roughness data were recorded with a profilometer and used as a basis for determining the

chatter occurrence. The proposed proper threshold value of » for reliable chatter

detection for turning processes is -0.5. Moreover, it is claimed that the proposed index is
independent of cutting conditions, and is accurate and appropriate for on-line chatter

detection.

The on-line chatter detection methodology in [36] can be utilized when only one
actuator/sensor pair is used in one direction, e.g., the vertical direction, as shown in
Figure 6-2. The only input of the chatter detection sub-system is the measured vertical
acceleration signal: y-signal. The outputs of the chatter detection sub-system are the

measured frequency f,, amplitude 4, and phase P, when chatter is detected.

As shown in Figure 6-2, in every control iteration, the measured vertical
acceleration signal, i.e., y-signal, has been converted to a corresponding digital signal,

i.e., y-digital signal. After Digital Signal Processing (DSP), which includes the applied

algorithm in [36] and FFT analysis, the value of the chatter index y of y-digital signal

and the amplitude and phase FFT’s of y-digital signal can be obtained. When y is

bigger than -0.5, the sub-system will send out the measured frequencyf,, amplitude 4,
and phase P,, which are the corresponding parameters with the maximum value in the

amplitude FFT of y-digital signal in that control iteration.

There are other methods to detect chatter, as reviewed in section 2.9.2. For most
of these, the critical point is to choose a threshold based on experiments. The researchers
provided some suitable threshold values based on their experiment results. Most

proposed threshold values are also claimed to be independent of cutting conditions,
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accurate and appropriate for on-line chatter detection.
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Figure 6-2: The proposed chatter detection sub-system for one actuator/sensor pair

6.2 Chatter Suppression Methodology

As stated previously, the objective of the current work is to develop a real-time
online active chatter suppression (ACS) system, which would be effective, adaptable,
simple to implement, noise tolerant and robust. Control forces could be applied in
two-orthogonal directions of a cutting tool to insure a robust and effective control system.
Because of their many advantages, artificial neural networks (ANNSs) will be used to
fulfill these requirements. The methodology to design and implement such an

ANN-based ACS system will be presented in this section. First, the general ACS
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strategy used in the current work will be presented. Then the design of the chatter
suppression sub-system used in the ACS system will be introduced. Finally, the general

methods to design the ANN models will be discussed.

6.2.1 General ACS Strategy

The proposed ACS control strategy utilized in the current work is shown in
Figure 6-3. In this strategy, a chatter suppression module relies on the availability of a
detected chatter parameters from the chatter detection module to generate control signals,
i.e., x(u), which are applied to the plant by secondary sources, i.e., actuators, to suppress
the chatter. In Figure 6-3, x(p) represents the primary disturbance, which includes the
sharpness and parameters of the insert, the workpiece shape and material, depth of cut,
cutting speed, as well as other factors. The plant output, i.e., Y in Figure 6-3, is the

vibration response of the cutting tool measured at the sensor location.

Y
@b— Plant -

Y

| | Chatter Detection
Actuators Module
A x(u
Chatter Suppression|
Module

Figure 6-3: The proposed ACS strategy

The chatter detection module was introduced in the previous section. There are
two sets of inputs for this module, i.e., the detected signals (i.e., x-signal and y-signal in
Figure 6-1) from the sensors and the measured first natural frequencies of the tool
system in the horizontal and vertical directions (i.e., f. and £y, in Figure 6-1). The plant
output, i.e., Y in Figure 6-3, includes both x-signal and y-signal, which are coming from
the sensors of the proposed experimental setup. Another set of inputs, i.e., f. and f,, are

obtained before cutting. The strategy for the chatter detection module to obtain £, and £,
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is shown in Figure 6-4.
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Figure 6-4: The proposed first natural frequency detection strategy

The natural frequencies of the tool system are measured by using the system
natural frequency measurement techniques used in the AVC system (see section 4.5).
The white noise generator in Figure 6-4 generates uniform white noise signals that
contains a uniformly distributed, pseudorandom pattern whose values are in the range [-a:
a], where a is the absolute value of amplitude. Ideal white noise has equal power per unit
bandwidth, resulting in a flat power spectral density across the frequency range of
interest. Therefore, when a uniform white noise signal is sent to an actuator, in the
corresponding amplitude FFT response of the tool system at the sensor location, the
frequency corresponding to the maximum amplitude should be the first natural
frequency because of the resonance effect. In this way, f. and fy, can be obtained. Then,
the chatter detection module will save them and their values will not change unless the

tool system is modified.

Based on the two sets of inputs, the chatter detection module can monitor the
vibration status of the cutting tool at the sensor location and send the chatter parameters
to the chatter suppression module when the onset of chatter is detected, as shown in

Figure 6-3.

In this ACS strategy, the following relation exists:
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Y= f(x(p) x(u),1) (6-1)

The chatter suppression module is used for minimizing Y. In order to minimize Y,
the control signal to the actuator, i.e., x(u), can be determined through an optimization
method such as steepest decent, where

ovr*
ox(u)*

x(u) = x(w)" - a* (6-2)

k
where

i is the gradient of the dynamic model Y; x(u)“and x(u)"" are the values

of the control signal in the k& and k£+1 iteration; and « is the size of the steps in the

k

direction of minimization. The calculation of % depends on availability of a
X\U

differentiable model.

However, a comprehensive physical model of a complex system usually does not
exist. In this case, using artificial neural networks in the chatter suppression module is a
good choice because ANNSs are known for their function approximation capability. As
introduced before, properly designed and trained neural networks are capable of
approximating any linear or nonlinear function to the desired degree of accuracy and

they are noise tolerant.

6.2.2 Chatter Suppression Subsystem Design

The design of the chatter suppression subsystem is based on the techniques

utilized in the AVC subsystem design (see section 3.3).

Figure 6-5 shows some details of the proposed chatter suppression sub-system.
The inputs of this sub-system, i.e., /, f, A4y A4, Prand P,, are the outputs of the proposed
chatter detection sub-system, as shown in Figure 6-1. The outputs of the proposed

chatter suppression sub-system, i.e., fu, fu Ax 4w, P and Py, which are also the
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parameters of control signals, i.e., x(u) in Figure 6-3, are sent to corresponding actuators
to suppress the detected chatter. PD is the phase difference as described in the next
section. The purpose of the chatter suppression subsystem is to generate an “opposite”
vibration of the cutting tool at the location of interest to suppress the original one.
Therefore, the vibration generated by each control signal at the sensor location should be
out of phase with the chatter signal in each direction, while the amplitude and the
frequency of the vibration generated by the control signal at the sensor location should
be the same as the chatter’s in this direction. In this way, the chatter in this direction will

be suppressed. The same control strategy will be applied in both directions.
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5 AR e Ag B
Delay Estimate Delay Estumate
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FD i D < fy }:"v
Jx B |fx Ax

Figure 6-5: Proposed chatter suppression sub-system

To generate an “opposite” vibration at the location of interest to suppress the
original one, an ANN is utilized at each direction as an identification model of the plant
based on the function approximation capability of ANNs. Some current active vibration
control systems use ANNSs as the whole system identification models and use offline

training method to train the ANNs. However, as mentioned previously, the primary
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disturbance, i.e., x(p) in Figure 6-3, includes the sharpness and parameters of the insert,
the workpiece shape and material, depth of cut, cutting speed, as well as many other
factors. Among these factors, some keep changing during cutting. Therefore, using such
an ANN that is offline-trained to be an identification model of such a changeable system
cannot be robust. To make the proposed ACS system robust, the ANN model should be
used as the identification model of a relatively stable part of the system during cutting. In
the proposed experimental setup, which will be presented in the next chapter, the tool
system (which includes the tool holder, the boring bar, the actuators and the sensor) is
very stable. Therefore, this tool system is chosen as the model for the ANNs in the

current work.

Time delay in ACS is very critical. As discussed in section 3.3, to satisfy causality of
different iterations, the time delay between the iteration to collect vibration signal

parameters and the iteration to send out control signal should be considered.

To generate control signals, the ANN model should work as an inverse model,
which means the inputs of the ANN model are actually the outputs of the plant, as

discussed in section 3.3.

6.2.3 Design of the Inverse Artificial Neural Network Models

The design of the inverse ANN models is very similar to design for the AVC

system, as presented in section 3.4.

The ANNs are used for function approximation and work as the inverse
identification models of the cutting tool system. The design of the ANN models is based
on the applied ACS strategy and the actual experimental setup. Generally, the design
steps are as follows: First, training data for the ANN models are collected via

experiments according to the ACS strategy presented in the previous section. Then, the
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training data are analyzed in order to choose a proper normalization method. The general
network architectures of the ANN models are then designed and the suitable learning
algorithm is chosen. Finally, the ANN models are trained to avoid overfitting. The
network architectures may be modified for better function approximation based on

experimental results.

As the first step to design ANN models after the control strategy is set up,
training data should be collected based on the control strategy and experimental setup. In
experiments to collect training data for the ANN models, only the control actuators work
to generate the tool vibration. To get a robust training, which means a training affected
minimally by external sources of variability, the experiments to collect training data need
to be designed first. In this project, the fractional factorial design [59] is used for the
design of experiments to obtain the training data for the ANN models as shown in [29].
Moreover, the experiments are carried out at frequencies around the first natural
frequencies of the tool system because, as discussed before, the chatter frequencies are

always around the first natural frequencies of the tool system.

An ANN model for chatter suppression in horizontal direction is shown in Figure
6-6. This model shows an example based on the results in [29, 30]. The ANN
architecture used here has three inputs, one hidden layer of log-sigmoid neurons and one
output layer of three log-sigmoid neurons (because there are three outputs). The output
layer uses a log-sigmoid transfer function because the outputs of the ANNs are
constrained to a range of 0 to 1. In the detailed design, the number of hidden layers and
the number of neurons in each hidden layers are decided by finding out the optimal

number to obtain the smallest mean square error (MSE) for validation data sets.

In experiments undertaken to collect training data for the ANN models, only the
control actuators are active to generate the plant vibrations, i.e., the primary disturbance

x(p) =0. Therefore, the ANN model can provide the information about the kind of control
97



signal (f.., 4., and P,,) needed to get the specific vibration signal (f. 4., and P,) from the
sensor. The ideal control signal frequency (f..) should be the same as vibration frequency
(). Moreover, the input P, can be cancelled if the phase difference (PD) between the
control signal and the vibration signal is utilized (PD = P,,, — Py). In this case, the ANN can
be simplified as shown in Figure 6-7. There are only two inputs (i.e., 4,and £) and two
outputs (i.e., 4, and PD) for the ANN. In the detailed design, the number of hidden layers
and the number of neurons in each hidden layers are decided by finding out what the best
number of hidden nodes are to obtain the smallest Mean Square Error (MSE) for

validation data sets.

The ANN model for chatter suppression in vertical direction can be designed in the

same way.

Figure 6-6: The proposed ANN model for chatter suppression in horizontal direction

Ay —m —m A
i ANN -

Jo —m —= PD

Figure 6-7: Simplified ANN model
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Based on the similarity of the ACS subsystem design and the AVC subsystem
design (section 3.3 - 3.4), by using equation (3-5) and (3-6), in Figure 6-5, P, and Py, can

be obtained as:

P, =P +180+(f. xt—int(f, xt))x360—-PD (6-4)

Xu

P, =P +180+(f, xt—int(f, xt)) x 360 — PD (6-5)

where ¢ is the running time of each control iteration. £, is set to the same as £, and f;,, is set

to the same as f;. 4y, and 4,, can be obtained from the ANN model directly.
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CHAPTER 7
EXPERIMENTAL SETUP OF ACS

The methodology presented in Chapter 6 will be evaluated experimentally
through active chatter suppression (ACS) in turning on a lathe. The experimental setup is

described in this chapter.

7.1 Hardware Setup

Figure 7-1 shows the proposed hardware setup for the experiments. The proposed
lathe is a two-axis engine lathe. The square tool bar (8 mm x 8 mm) is made of plain
carbon steel and has a total length of 208 mm with one turning insert on one end and one
boring insert on another end. In Figure 7-1, the turning insert is used and the overhang
length of the tool bar is 108 mm, as measured from clamped end to the cutting edge of
the tool bar. As discussed in the previous chapter, the proposed control system should be
comprised of two actuator/sensor pairs: one pair to control motions parallel to the axis of
the workpiece (x-direction) and the other pair to control motions in the direction tangent
to the machined surface the revolving workpiece (y-direction). The horizontal
(x-direction) & vertical (y-direction) accelerometers (sensors) can be glued to the cutting
tool at the location of the insert because this is the location of interest. By using two
sensors, two crossed accelerations, i.e., horizontal and vertical accelerations, from the
bending vibration of the cutting tool at the location of the insert will be measured. The
actuators should be attached to the boring bar at the location close to the clamped end of
the tool bar to get maximum working range of the boring bar. The actuators simply push
up against the tool bar. The resulting preload is used to maintain contact between the
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control shaker and the beam.
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Figure 7-1: The hardware setup for implementing active chatter suppression

Since the proposed location for the actuators is close to the clamped end of the
tool bar, the force required to actuate the bar near its base is substantial while the travel
range required is small. Therefore, induced strain actuators are good choices for the
current application. On today’s market, among the available induced strain actuators,
both those fashioned from magnetostrictive materials, such as Terfenol-D, and
piezo-stack actuators can work in this setup. Terfenol-D actuators have the advantages
that they can be driven using standard audio-type power amplifiers [25], have a higher
energy density and more durable. However, Terfenol-D actuators are always much
bigger than piezoelectric actuators. Considering the small size of the lathe and the boring
bar used in the current work, to get enough working range of the tool, piezoelectric
actuators are the better choice if they can provide enough force and travel range. Based

on calculation, P-830.30 piezo actuator (see Appendix C for the actuator specifications)
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is chosen for the ACS system.

There are two choices for the amplifier for the selected piezo actuator (P-830.30
of Physik Instrumente GmbH & Co.), which are E-610 Piezo Amplifier/Controller and
E-617 High-Power Piezo Amplifier. Considering the probable working frequencies and
the electrical capacitance of the actuator, the more versatile one, i.e., E-617 High-Power

Piezo Amplifier, was chosen.

Also considering the small size of the lathe and the boring bar used in the current
work, a small, adhesive mounted piezoelectric accelerometer was chosen for measuring
the tool vibration. After investigation, choices were narrowed down to several
accelerometers with acceleration range of +5G (1 G = 9.80665 m/s?), +50G and +
500G. Accelerometers with acceleration range of +5G and +50G were originally
favored because based on the experimental setup it was assumed that the maximum
acceleration should be several G only. In this case accelerometers with acceleration
range of +5G and +50G would provide higher measurement accuracy. However,
accelerometers with acceleration range of +5G and +50G are too big for the current
experimental setup. Calculation also showed that the maximum acceleration could be
larger than the assumption. Therefore, an accelerometer with acceleration range of
+ 500G (8778A500M14 of Kistler Co., see Appendix D for the accelerometer

specifications) was chosen for measuring the vibration. This accelerometer is only about

¢5.8mm x 4.3mm in size and weighs only 0.4 gm, which is suitable for the size of the
boring bar and can reduce unwanted mass-loading effects.

The capabilities of the accelerometer, the actuator and amplifiers in the current
experimental setup still needed to be wverified. Therefore, only one pair of

accelerometer/actuator was purchased for the current work.

The data acquisition (DAQ) board (see Appendix A for the DAQ board

specifications) is the same board used in the AVC system, which has four 12-bit analog
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inputs with a maximum sampling rate of 5 MS/s. It also provides two 16-bit analog
outputs with a maximum update rate of 2.5 MS/s. Figure 7-2 is a sketch of the
experimental hardware setup, which also shows some functions of the DAQ board. Two
analog outputs, i.e., “A0-1" and “A0O-2”, and two analog inputs, i.e., “Al-1” and “Al-2”,

can be used in the experiments.
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Figure 7-2: Schematic diagram of experimental setup

Two computers were used in the system because LabVIEW Real-Time was used
as the main developing software in this work. One computer worked as a dedicated
real-time target, which integrated the DAQ board for analog, digital, counter/timer, and
vibration signals. Programs were developed on a Windows XP host computer and
downloaded to the real-time target via Ethernet. Moreover, some time-consuming
applications, such as graphing and data recording, were implemented on the host
computer instead of the target computer. The target computer ran a single-kernel RTOS

(real-time operating system) for maximum reliability.

To mount the P-830.30 piezo actuators properly, a toolholder was designed and

built. Figure 7-3 shows two views of the designed toolholder. The actuator can be
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mounted in both vertical and horizontal directions. Two setscrews were used to hold the
tool bar and a set of bolt/nut/lock washer was used to add preload on the actuator in each

direction.

Figure 7-3: Two views of the designed toolholder

In the toolholder design, the distance between the setscrew and the actuator is
25 mm. The overhang length of the tool bar is 108 mm, as measured from the setscrew
that holds the bar in the tool holder to the cutting edge of the turning insert (see Figure
7-1). To check the ability of the actuator for the designed toolholder some calculations
have been done to estimate the properties. The tool bar is considered as the cantilever

beam in Figure 7-4, where
L=108 mm (cutting point);
[ =25 mm (actuator point);

E (Young’s modulus) = 2x10™ N/m? (30000 kpsi);
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b =d =8 mm (square tool bar: 8 mm x 8 mm);

3
| (Moment of Inertia of the cross section) = % = 3.4133 x10° m* [5];

P =1000 N (see Appendix C for the actuator specifications).

P

.

AN
1

Figure 7-4: Schematic diagram of the tool bar

To find out the maximum displacement, &, , at the cutting point that can be obtained by

the force applied by the actuator, the following equation can be used [5]:

5,6El

“PGEL-)) 7y

By solving the equation, the maximum displacement can be obtained, which is about
0.456 mm. This is larger than the displacement at the cutting point during turning in

most cases [3].
Figure 7-5 shows two photographs of the experimental setup as described.

In the current work MAXNC T2 lathe was used. This is a two-axis mini-CNC
engine lathe with a 1/2 HP Spindle Motor and Spindle speeds from 0 to 1500 RPM. Only

one piezo accelerometer and one piezo actuator was utilized in the current setup. The

workpieces were aluminum with the size of about ¢ 25 mm x 118 mm.
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Figure 7-5: Two photographs of the experimental hardware setup
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7.2  Software Environment

The operation system on the host computer was Microsoft Windows XP and
LabVIEW Real-Time version 8.5.1 on the target computer. LabVIEW Real-Time
version 8.5.1 was used for measurement, signal processing and the development of user
interfaces. MATLAB 2008 was used for some neural network design, implementation,
visualization and simulation, as well as data analysis and some graphing. Microsoft
Visual C++ 6.0 was used for algorithm implementation and for implementing neural

networks in the form of dynamic link library (DLL) files.

Figure 7-6 shows one example of user interfaces developed in the current work.

The interfaces can only be shown on the host computer.
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Figure 7-6: An example of a part of a user interface used in the current work
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CHAPTER 8
EXPERIMENTAL IMPLEMENTATION OF ACS

8.1 AVC System Design

Based on the methodology and the experimental setup, the designed AVC system
to generate a control signal is shown in Figure 8-1. This control system can modify the
control signal online in every control cycle (one control cycle could be one or more than

one control iterations) in the following way:

1. The system can repeat all calculations in one control iteration and generate a
current control signal (e.g., with parameters of £, 4., and P,,) based on the detected

vibration situation (e.g., /.. 4., and P,) of this current iteration;

2. The current control signal is added to the accumulated control signal, which is a
combination of all previous continuous control signals, to get an updated control signal in

the Signal Combination module (the control signal of the first control cycle is zero);

3. The new updated control signal is sent out to the actuator at the beginning of the

next iteration; and

4. At the same time, this updated control signal becomes the “accumulated control

signal” in the next control cycle.
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Therefore, the actual control signal sent to the actuator is an accumulation of all previous
generated control signals, which are all continuous. One control cycle should include
more than three control iterations to avoid unstable transient conditions after the
modification of the actual control signal, and therefore to get more accurate measurements
of vibration. In current work, a control cycle includes five or more iterations. One control
cycle could be 25 ms, which means a new control signal could be generated as fast as in

every 25 ms in the current setup.
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Figure 8-1: The AVC system in current work

The parameters of the control signal, e.g., £, 4., and Py, can be obtained from

ANN outputs and the “delay estimate” module by using the equations in section 6.2.
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Before the ACS system can work during cutting, the first natural frequencies of the
system should measured by using the system natural frequency measurement techniques
used in the AVC system, as introduced in section 4.5, and the ANN models need to be
trained. The system natural frequency measurement and ANN training can be done
automatically by running a preliminary program before cutting. One piezo accelerometer
and one piezo actuator is utilized in the current work. The first natural frequency of the
tool system in the vertical direction is about 488 Hz and in the horizontal direction is about

423 Hz.

8.2  Artificial Neural Network Training

The detailed steps to train the ANN models of the ACS system are presented in
section 6.2.3. The ANNs are used for function approximation and work as the inverse
identification models of the tool system. The design of the ANN models is based on the
applied ACS strategy and the actual experimental setup. Generally, the design steps are
as follows: First, training data for the ANN models are collected via experiments
according to the ACS strategy presented in the previous section; Then, the training data
are analyzed in order to choose a proper normalization method; The general network
architectures of the ANN models are then designed and the suitable learning algorithm is
chosen; Finally, the ANN models are trained to avoid overfitting. The network
architectures may be modified for better function approximation based on experimental

results.

The Simplified ANN models are shown in Figure 8-2. As the first step to design

ANN models after the control strategy is set up, training data should be collected based
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on the control strategy and experimental setup. In experiments to collect training data for
the ANN models, only the control actuator work to generate the tool vibration. To get a
robust training, which means a training affected minimally by external sources of
variability, the experiments to collect training data need to be designed first. In this
project, the fractional factorial design [59] is used for the design of experiments to obtain
the training data for the ANN models as shown in [29]. Moreover, the experiments will
be done at frequencies around the first natural frequencies of the tool system because, as
discussed before, the chatter frequencies are always around the first natural frequencies

of the tool system.
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Figure 8-2: Simplified ANN models in ACS

As discussed in Chapter 6, a multilayer feedforward ANN is utilized, as shown in
Figure 6-8, which shows the ANN model for horizontal direction. The ANN architecture
used here has three inputs, one hidden layer of log-sigmoid neurons and one output layer
of three log-sigmoid neurons (because there are three outputs). The output layer uses a
log-sigmoid transfer function because the outputs of the ANNSs are supposed to be
constrained to a range of 0 to 1. The number of hidden layers and the number of neurons
in each hidden layers are decided by finding out what the best numbers are to obtain the
smallest Mean Square Error (MSE) for validation data sets. The ANN model for chatter

suppression in vertical direction will be designed in the same way.

The objective of the experiments in the current work is to determine the influence

of the controllable factors, e.g., the horizontal chatter frequency (f;) and the horizontal
m



chatter amplitude (4,), to the response, e.g., the horizontal control signal amplitude (4,.)
and the phase difference (PD). The data ranges are decided by the regions of interest for each
variable and hardware performance limitations. Since the first natural frequency of the
tool system in the vertical direction is about 488 Hz and in the horizontal direction is about
423 Hz, based on the results of many other papers, such as [35, 38], the chatter frequency
should be around 423 Hz to 488 Hz. Therefore, the region of interest for frequency can be
set to 400 Hz to 500 Hz, and the frequency response range of the amplifier of the piezo
actuator can cover this range with maximum work load (as shown in Figure 8-3, which
shows the operating limits of E-617 High-Power Piezo Amplifier [60], while the Electrical
Capacitance of the piezo actuator, i.e., P-830.30, is 4.5 uF). When two pairs of
accelerometer/actuator are utilized, the frequency range 400 Hz to 500 Hz can be used to
train the ANN models and also used in the Chatter Detection Module, i.e., setting f,., =
400 Hz and ,,.. = 500 Hz, as discussed in section 6.1.1. The analog output amplitude range
IS0V to 10 V for safety reasons. To find out the proper amplitude ranges to train the ANN
models, cutting experiments should be undertaken. Considering the measurement range of
the sensor and the hardware setup, according to results of experiments, the amplitude

range for the control signal sent to the actuator was set to be from 0.01 Vto5V.

As mentioned before, the values of all the data must be normalized for efficient
processing by the ANN (see section 2.4.5). In the current work, all the experimental
input and output data are positive values. The data are also normalized to a range of 0.1

to 0.9 by using equation (5-2).
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Figure 8-3: Operating limits with various PZT loads (capacitance is measured in puF) [60]

As discussed in [29], to reduce harmful effects, e.g., the squashing effect, of using
sigmoid transfer functions in the hidden layer and the output layer of the ANN model, and
normalization, the above data ranges can be divided into several sub-ranges, e.g., the
original frequency range can be divided into four smaller sub-ranges: 400 Hz to 420 Hz,
420 Hz to 440 Hz, 440 Hz to 480 Hz, and 480 Hz to 500 Hz. About 100 sets of data are
collected for each sub-range. ANN models are trained separately for different sub-ranges.
Moreover, Resilient Backpropagation (RPROP) algorithm is utilized to train ANN models
because, although it is not the fastest one, theoretically, it can also help to reduce

squashing effect of the magnitudes of partial derivatives (see Chapter 5 for details).

To find the best ANN architecture (the number of hidden layers and the number
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of neurons in each hidden layer), many experiments have been done. The results and
experiences in [29, 30] were used as guidelines. The best ANN architecture can provide
the smallest Mean Square Error (MSE) for validation data sets (see section 2.4). Early
stopping and Bayesian regularization methods were used in MATLAB to improve
generalization in these experiments (see section 2.4.6). Test data sets were also used to
compare different models. The best ANN architecture found via experiments for the
ACS system was similar to the example shown in Figure 6-8. It is a multilayer
feedforward ANN, which has two inputs, one hidden layer of 15 log-sigmoid neurons
and one output layer of two log-sigmoid neurons. The MSE of validation data sets for
this architecture was about 0. 057%. The output layer uses a log-sigmoid transfer
function because the outputs of the ANNs are supposed to be constrained to a range of 0
to 1. This ANN architecture provides the smallest Mean Square Error (MSE) and has
very good performance for generalization in experiments. For the same tool setup, the
ANN architecture does not change, but the weights between neurons change for different

data sub-ranges after training.

8.3  Experimental Results

In the current work, for the reasons mentioned in section 7.1, only one pair of piezo
accelerometer/actuator was utilized. The original workpieces were aluminum with the

dimensions of ¢25 mm x 118 mm.

8.3.1 Chatter Frequencies and Amplitudes

As mentioned in previous chapters, it is widely known that machining chatter

signals have harmonic shapes and their frequencies are around the respective first natural
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frequencies of the machining systems [32]. Also, in some chatter suppression papers with
experimental data, e.g., [35, 36, 38], the chatter frequencies are in the range of 120 Hz to
550 Hz, which is around the respective first natural frequencies of the machining systems
studied. However, in the current work, the experiment results show that the chatter
frequencies are very different from the respective first natural frequencies of the

machining system.

To measure the first natural frequencies of the tool system in vertical direction and
in horizontal direction, the techniques used in section 4.5 are utilized and the frequencies
are measured while the lathe is not running. The first natural frequency of the tool system
in the vertical direction was about 488 Hz and in the horizontal direction was about
423 Hz. Then, the frequencies of the lathe, while its spindle was turning at different speeds
from about 200 RPM to 1500 RPM but without cutting, were measured. The frequency
measured from the sensor at the insert location of the tool in the vertical direction was
about 470 Hz to 490 Hz and in the horizontal direction about 400 Hz to 420 Hz in most
cases and in most iterations (the measured frequency changes in different iteration in the
same experiment too). As an example, Figure 8-4 shows the signal from the sensor and the
amplitude FFT measured in vertical direction when the spindle of the machine is turning
without cutting. In the figures, the unit for time is second, for amplitude is volt, for

frequency is Hz and for magnitude is volt.
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Figure 8-4: Signal from the sensor and the amplitude FFT measured in vertical direction when the

spindle of the machine is turning without cutting

From these measurements and experiments from literature (e.g., [35, 36, 38]), the
chatter frequency is expected to be in a range of 400 Hz to 500 Hz. However, when chatter
happened, the measured frequency in vertical direction was between 2500 Hz and 2600
Hz in most cases. Figure 8-5 compares the signal from the sensor and the amplitude FFT
measured in vertical direction when the machine was cutting with and without chatter. The
scales of axes are different to provide as much information for signals as possible. In the
experiments shown in Figure 8-5, the spindle speed was about 500 RPM and Feed=1
(setting of MAXNC T2, about 0.015 inch / second without relation to the spindle speed),

while the cutting depth was 0.01 inch for Figure 8-5 (a) and 0.02 inch for Figure 8-5 (b).
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In horizontal direction, when chatter happens, the measured frequency was more
scattered than in vertical direction, but a large part of the measurements is between 2600
Hz and 2800 Hz. As an example, Figure 8-6 shows the signal from the sensor and the
amplitude FFT measured in horizontal direction when the machine was cutting with
chatter. In the experiment shown in Figure 8-6, the spindle speed was about 500 RPM and
Feed=1, while the cutting depth was 0.02 inch. Experiment results show that when the

cutting depth is bigger, a larger part of the power is between 2600 Hz and 2800 Hz.
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Figure 8-5 (a): Comparison of vertical signals when the machine is cutting without and with chatter
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Figure 8-5 (b): Comparison of vertical signals when the machine is cutting without and with chatter

From experiments, as shown in the amplitude FFT figures above, it can be seen that
most power falls into the range of 2500 Hz to 2800 Hz when chatter happens, especially in
vertical direction (2500 Hz to 2550 Hz). And there is much more power in vertical
direction than in horizontal direction when chatter happens, which can be seen by
comparing Figure 8-5 (b) and Figure 8-6. The scales of Y-axis in these two figures are
very different because “auto scale” was used in programming to provide as much

information for signals as possible.

118



In all the experiments in this work, although the proportion of the power in
horizontal direction to the power in vertical direction may change with different cutting
conditions, for the same cutting conditions, when chatter happened, there was always

more power in vertical direction than in horizontal direction.
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Figure 8-6: Signal from the sensor and the amplitude FFT in horizontal direction with chatter

8.3.2 Chatter Signal Waveforms

The signals from the sensor (accelerometer) in the experiments when chatter
happens have shown more complexity than expected: First, as shown in the previous
section, the chatter frequencies in vertical direction and in horizontal direction are very

different from the first natural frequencies of the machine in the respective directions, and
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they are also different from each other. Second, the chatter frequencies are changing in
different iterations, which means from time to time, within ranges, as shown in Table 8-1,
which is a part of the recorded data of the same experiment to obtain data for Figure 8-5
(b). In that experiment, iteration time was 0.25 second. The measured frequencies are the
highest amplitude FFT frequencies. Moreover, the waveforms also show complexity. As
an example, Figure 8-7 shows some details of Figure 8-5 (b). As shown in the detailed

waveforms, the chatter signal waveforms include many big “waves”.

These big waves are irregular with changing amplitudes, shapes and sizes. One big
wave can include many cycles of the measured frequencies shown in Table 8-1. As
mentioned before, when chatter happens, the measured frequency was between 2500 Hz
and 2600 Hz in most cases, while the measured frequency carries the most of the vibration
power. Therefore, these big waves are not chatter signals. The chatter frequency should be
the measured frequency, and this was verified by experiments as will be discussed later in

this chapter (see the chatter pattern in Figure 8-10).

The irregular big waves are a problem for chatter suppression. The possible
reasons for the big waves could be using an unstable mini lathe and the bending of the
workpiece without using a tailstock. Experiment results also show that when cuttings were
made close to the clamped end of the workpiece, the sizes of big waves were reduced as
will be discussed later in this chapter (see Figure 8-8 and Figure 8-9). Based on the current

experimental setup, the effect of the big waves was considered in chatter suppression.
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Measured Measured Measured Time
Frequency Amplitude Phase
480.6740677 0.0023948 84.9828755 0.4389858
480.3943971 0.0027641 43.839986 0.6887331
480.3387916 0.0026016 29.248589 0.9387803
481.0432105 0.0028186 -38.9911723 1.1887274
507.8809118 0.1338728 94.2326464 1.4387722
2514.916098 1.3256609 13.8462919 1.6887398
2523.018426 0.9135309 70.9902876 1.9388185
2523.018426 0.9135309 70.9902876 2.1887345
2525.412902 0.6949867 -113.4761672 2.4387789
2525.412902 0.6949867 -113.4761672 2.6887593
2525.734173 0.6156788 99.7905283 2.938765
2530.430332 0.6663986 132.4818191 3.1887803
2534.152818 0.4751391 -70.2069631 3.4387655
2521.163563 0.5687808 163.9875793 3.6887302
2521.163563 0.5687808 163.9875793 3.9387593
2523.215564 0.4669578 -2.6812284 4.1887589
2517.355924 0.574584 -8.6912755 4.4387722
2502.732945 0.3639981 27.3728908 4.6887398
2519.134118 0.5924571 -129.3306842 4.9387846
2522.383833 0.684596 143.4411053 5.1887531
2518.965176 0.5735396 -234.470592 5.4387703
2518.965176 0.5735396 -234.470592 5.6887903
2522.097605 0.6198768 151.0523919 5.938786
2522.097605 0.6198768 151.0523919 6.1887598
2517.740162 0.5237959 -105.9861235 6.4388204
2521.381382 0.7792558 24.5645912 6.6887798
2522.588411 0.6057447 -134.1329803 6.9388089
2523.109188 0.7111996 -107.569697 7.1887765
2523.109188 0.7111996 -107.569697 7.4388022
2514.060218 0.5959324 61.2454347 7.688756
2521.775586 0.7511755 50.7832018 7.9387913
2520.333803 0.4253547 143.2432826 8.1887226
2523.011076 0.4524108 44.6645453 8.4388232
2536.693248 0.4040842 46.1623357 8.6887689

Table 8-1: A part of the recorded data of the same experiment to get Figure 8-5 (b)
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8.3.3 Chatter Detection

The chatter detection module has been developed based on the methodologies
presented in section 6.1. However, as shown in the section 8.3.1, the chatter frequencies in
vertical direction and in horizontal direction are very different from the first natural
frequencies of the machine in the respective directions, and they are also different from
each other. The actual chatter frequencies in the two directions, while they are still close
to each other, are much larger than the first natural frequencies of the machine in
respective directions. Therefore, there should be some modifications in the original design

as in section 6.1.1 if two pairs of accelerometer/actuator are used.

First, in Figure 6-1, £, and f,.. should not be decided by f. and fy, any more.
Based on the experiment results, .., and f,.. should be decided by the range of 2500 Hz

to 2800 Hz (substituting £y, and £y, with 2500 Hz and 2800 Hz).

Second, in Figure 6-1, the threshold 7 of (yfy) must be set based on experiment

max

results since chatter frequencies are different in the two directions, although they are close

to each other.

The developed chatter detection module works well for simulated signals. However,
modifications need to be made based on experiments. Since only one set of piezo
accelerometer and piezo actuator was utilized in the current work, the chatter detection
methods in frequency domain, as introduced in section 2.9.2 and section 6.1.2, were more

suitable.
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8.3.4 Chatter Suppression

Based on the experiment results, some modifications must be made for the chatter

suppression sub-system.

8.3.4.1 Modifications in ANN Model Training

Since the chatter frequencies in vertical direction and in horizontal direction are very
different from the first natural frequencies of the machine in the respective directions, the
ANN models need to be re-trained. Compared with the training in section 8.2, in which the
region of interest for frequency was set to 400 Hz to 500 Hz, based on the experiment
results, the range of 2300 Hz to 3000 Hz is used as the region of interest for frequency or

added to the region of interest for frequency.

In section 8.2, the amplitude range for the control signal sent to the actuator was set
to from 0.01 V to 5 V while the available safe range was from 0 V to 10 V. However, for a
frequency range of 2300 Hz to 3000 Hz, as shown in Figure 8-3, the available safe range
of the control signal is only 0 V to about 1.5 V. To find out the actual proper amplitude
ranges to train the ANN models, cutting experiments should be undertaken. According to
the results of some experiments, the amplitude of the control signal sent to the actuator
may need to be larger than 1.5 V, which means that a better amplifier or an actuator with
electrical capacitance less than 0.9 yF should be used. Therefore, the amplitude range of
the control signal sent to the actuator is set to from 0.01 V to 1.5 V for the new frequency

range of interest because of the limitation of current hardware.
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The ANN models were trained in the same way as introduced in section 8.2. As
mentioned before, the values of all the data are normalized to a range of 0.1 to 0.9 by
using equation (5-2). To reduce harmful effects, e.g., the squashing effect, of using
sigmoid transfer functions in the hidden layer and the output layer of the ANN model,
and normalization, the above data ranges can be divided into several sub-ranges, e.g., the
original frequency range can be divided into five smaller sub-ranges: 2300 Hz to 2500
Hz, 2500 Hz to 2600 Hz, 2600 Hz to 2700 Hz, 2700 Hz to 2800 Hz and 2800 Hz to 3000
Hz. ANN models are trained separately for different sub-ranges. Moreover, Resilient
Backpropagation (RPROP) algorithm is utilized to train ANN models. The best ANN
architecture found via experiments is also a multilayer feedforward ANN, which has two
inputs, one hidden layer of 15 log-sigmoid neurons and one output layer of two
log-sigmoid neurons. The MSE of validation data sets for this architecture was about
0.07%. Also, for the same tool setup, the ANN architecture does not change, but the

weights between neurons change for different data sub-ranges after training.

8.3.4.2 Chatter Suppression Analysis and Processing

The piezo actuator and the designed toolholder worked very well, as shown in the
ANN model training data collection. When a sinusoidal signal is sent out to the actuator, a
sinusoidal signal with excellent shape of the same frequency can be obtained from the
sensor, which means a sinusoidal vibration of the tool is generated. However, actual

chatter control experiments did not show satisfying outcomes.

One possible reason is the complexity of the signals from the sensor when chatter
happens in the current work, as shown in section 8.3.2. Figure 8-8 also shows this

complexity. In the experiment to obtain data for Figure 8-8, the spindle speed was about
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500 RPM and Feed=1 (setting of MAXNC T2, about 0.015 inch/second without relation to
the spindle speed here), while the cutting depth was about 0.02. Figure 8-8 (a) shows the
first 20 seconds of the sensor signal; Figure 8-8 (b) shows the sensor signal between 7.7
second and 7.9 second; Figure 8-8 (d) shows the first 20 seconds of the filtered signal of
the original sensor signal by using a 2539-2539.1 Hz bandpass IIR filter (the rationale to
use this band was that this is the range with highest FFT amplitude in the general
amplitude FFT at specific time); while Figure 8-8 (c) and Figure 8-8 (e) are the 7.73-7.75
second signals of the original sensor signal and the filtered signal. Figure 8-8 (b) shows
clearly that the sensor signal includes big waves. With these big waves, the amplitudes
always change between very large and very small rapidly, even within the same iteration.
However, in the chatter suppression system, within the same iteration, the control signal
does not change, while the control signal could be a combination of many sinusoidal
signals. Therefore, the signal complexity is one reason for the unsatisfactory chatter
control experiment outcomes. This problem cannot be solved by just setting a very small
iteration time because, first, if iteration time is too small, measurement accuracy will

become worse; second, the machine system needs time to reach relatively stable status.

The inconsistency of the chatter signals for the experimental setup can be traced to
the lathe used for data collection. The lathe used in the current work is a mini lathe without
a tailstock. The cutting conditions required to generate chatter were too aggressive for the

construction of the lathe as shown in high frequency vibrations. Without the support of a
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tailstock, the force of the tool on the workpiece would cause it to bend away from the tool,
producing unexpected signal signatures. Experiments also show that when the cutting is

closer to the clamped end of the workpiece, the waves in the chatter signal are smaller.
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Figure 8-8 (a)-(c): Waveforms of the original signal and the filtered signal of a chatter example
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Figure 8-8 (d)-(e): Waveforms of the original signal and the filtered signal of a chatter example

By comparing Figure 8-8 (c) and Figure 8-8 (e), which are the 7.73-7.75 second
signals of the original sensor signal and the filtered signal, it is obvious that the filtered
signal is “cleaner”. The original signal can be considered as a combination of many
sinusoidal signals, while it has big waves, big changes in amplitude, frequency and phase.
However, the filtered signal is an excellent continuous sinusoidal signal without
noticeable phase change, and in a small duration, its amplitude does not change as much as

the original signal. Moreover, the waves in the filtered signal could be smaller on a regular
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lathe with a tailstock. In that case, the filtered signal will be similar to the vibration signal
in the AVC system, which is a noisy sinusoidal signal as discussed in Chapter 3.
Therefore, this kind of signal can be suppressed by using the designed chatter suppression

system.

As shown in Table 8-1, the measured frequency changes in different iteration in
the same experiment; also as shown in amplitude FFT graphs, the highest amplitude
covers a range. This means only suppressing the filtered signal shown in Figure 8-8 is not
enough. However, this should not be a problem for the designed ACS system because one
strength of the system is that the system can generate a current control signal based on the
current iteration measurements and add the current control signal to the original control
signal to send to the actuator at the beginning of the next iteration as a new control signal

(as discussed in Chapter 6).

8.3.4.3 Chatter Suppression Experiment Results

To reduce the effect of large amplitude vibrations resulting from excessive shaking
of the lathe, cuttings were made close to the clamped end of the workpiece. Some chatter
signals show that the sizes of big waves were reduced. Then, the designed chatter
suppression system was used to control chatter signals with relatively regular pattern
offline. Figure 8-9 shows two examples of offline control outcomes (the control system
started to send out control signals after 10 seconds). These examples show that about 50%

reduction in the vibration amplitude at the sensor location can be achieved.
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Next, the chatter suppression system was applied during cutting when chatter
happened. As mentioned before, there is only one set of piezo accelerometer and piezo
actuator. Since there is more power in vertical direction than in horizontal direction when
chatter happens, which can be seen by comparing Figure 8-5 (b) and Figure 8-6, as
discussed in section 8.3.2, the set of piezo accelerometer and piezo actuator is mounted in
the vertical direction. The cuttings are close to the clamped end of the workpiece. Figure
8-10 shows that some outcomes are acceptable when chatter patterns are relatively
regular. Before applying control, many small horizontal chatter stripes are visible on the
workpiece surface. By counting the number of the small chatter stripes for one revolution,

the chatter frequency can be calculated. In the experiment to get Figure 8-10, cutting is
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Figure 8-9: Examples of control outcomes

130



very close to the clamped end of the workpiece; the spindle speed was about 500 RPM;
Feed=1 (setting of MAXNC T2, about 0.015 inch / second without relation to the spindle
speed here); and the cutting depth was about 0.02 inch. Since there are about 300 small
stripes for one revolution, the chatter frequency can be calculated as about 2500 Hz. After
control, on the workpiece surface, the small chatter stripes are almost gone and only trails

of the tool are obvious.

(before control)

Figure 8-10: An example of good control outcome
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Taking a close look at Figure 8-10, the depth of the grooves after control appear
deeper than the chatter patterns before control was activated. Without chatter there is more

power available for the cutting edge to cut deeper grooves.

Figure 8-11 shows that some outcomes are unsatisfactory when the chatter pattern
is irregular, which means the waves in the chatter signal, as mentioned in section 8.3.2, are
very irregular and choppy. In the experiment to get Figure 8-11, cutting is closer to the free
end of the workpiece; the spindle speed was about 500 RPM; Feed=1.5 (setting of
MAXNC T2, about 0.02 inch / second without relation to the spindle speed here); and the
cutting depth was about 0.03 inch.

(after control ) ( before control )
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Figure 8-11: An example of unsatisfying control outcomes
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8.4  Discussion

The experimental results show that the proposed ACS system can work when the
chatter signals are regular, i.e., when cuts were made close to the clamped end of the
workpiece and the big waves in chatter signals are not significant. By using a real-time
developing environment, the designed ACS system can repeat the vibration detection and
control loop as fast as in every 25 millisecond. The designed ACS system is a real-time

online control system.

The ACS system is also robust when the experimental setup changes. When the
setup changes, the ACS system can collect training data and train the ANN model
automatically via running a calibration or initialization program before cutting and then

the system is ready for the ACS of the new setup.

The system can always modify the control signal based on the feedback from the
sensor after a specific time (one or more control iterations). As presented in Chapter 6 and
section 8.1, the control system can repeat all calculations and generates a current control
signal based on the detected vibration situation of current control iteration. This current
control signal is added to the accumulated control signal, which is a combination of all
previous continuous control signals, to get an updated control signal. The new updated
control signal is sent out to the actuator at the beginning of the next iteration. This updated
control signal becomes the “accumulated control signal” in the next control cycle.

Therefore, the actual control signal sent to the actuator is an accumulation of all previous
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generated control signals, which are continuous. One control cycle may include more than
one control iteration to avoid unstable transient conditions after the modification of the

actual control signal, and therefore to get more accurate measurements of vibration.

In the current work, the experiment results show that the chatter frequencies were
different from the respective first natural frequencies of the machining system (see
section 8.3 for details). While the first natural frequency of the tool system in the vertical
direction is about 488 Hz and in the horizontal direction is about 423 Hz, when chatter
happens, in most cases, the measured frequency in vertical direction is between 2500 Hz
and 2600 Hz, and in horizontal direction is between 2600 Hz and 2800 Hz. More
complexities of chatter signals of the current experimental setup are shown in section

8.3.

The reasons for the complexities could be investigated by comparing the
performances of the current lathe and a regular lathe with a tailstock. Moreover, the
designed ACS system can be tested on a regular lathe with a tailstock. For a mini lathe
without a tailstock, the cutting conditions required to generate chatter may be too
aggressive. Without the support provided by using a tailstock, the force of the tool on the
workpiece would cause it to bend away from the tool, producing unexpected signal

signatures.

134



CHAPTER9
CONCLUSIONS AND FUTURE WORK

9.1 Contributions

A novel artificial neural network (ANN)-based active vibration control (AVC)
technique has been developed. The developed AVC system can detect the vibration
frequency with the highest power and suppress this sinusoidal signal in one control cycle.
In subsequent cycles, vibration frequencies of next level of power will be suppressed.
Technically, if the ANNSs can be trained to cover enough frequency and amplitude ranges,
after enough control cycles, most of the original vibration could be suppressed. The
ANNs can be trained automatically for updated time delays for any changes in the
system. The AVC system is experimentally verified to be effective, real-time, adaptable,

robust, and easily implemented.

When applied to a machining chatter suppression system, the developed
methodology can provide advantages over many other chatter suppression methods.
Since it works without increasing the damping of the machine tool, it does not cause a
decrease of efficiency. Unlike many other methods where a change in tool-workpiece
configuration requires off-line changes in the system, the designed system in this work is
online, adaptable and can self-tune. Using a feedback structure, the proposed
methodology can deal with unexpected disturbances. Some active suppression methods
use linear adaptive architecture/algorithm combinations and therefore cannot deal with
nonlinearities while more capable ANNs are used in the proposed methodology.
Moreover, compared with some other ANN-based active control methods, the proposed

methodology can deal with time delay and be implemented in an easier way.
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The proposed methodology can be used in lights-out machining systems where

machines are kept running through a second or third shift without adding manpower.

9.2 Conclusions

In this work, an experimental AVC system, which includes hardware setup and
real-time software development environment, has been successfully implemented. The
efficiency, real-time execution, adaptability and robustness of the proposed methodology

have been verified experimentally in the vibration control of a cantilever beam.

In addition, an experimental setup for the chatter suppression of a turning tool
has been successfully implemented. The ANN-based AVC techniques have been utilized
for active chatter suppression (ACS) for a mini-lathe. While chatter signals can be very
irregular in the current work, experimental results show that the proposed ACS system

can work for chatter signals with regular pattern.

Although the efficiency of the designed methodology has been verified
experimentally, there are some limitations for it in applications. One limitation comes
from ANNs used in the system. Since the errors of ANNs cannot be eliminated
completely, there will always be some residual vibrations after control. Some limitations
also come from hardware. For example, actuators and amplifiers usually have their
working frequency and amplitude ranges. Therefore, if components of vibrations to be

controlled are out of the working ranges, the vibrations cannot be eliminated completely.

9.3  Future Work

The ability of the proposed methodology should be tested on a production lathe
for turning and boring operations. This will require much stronger actuators and custom

built toolholders.
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The chatter problems in milling operations are more complex because of the
discontinuity of the cutting action. Nevertheless, the proposed methodology in this work

can be adapted to this problem with some modifications including signal processing.
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S Series Multifunction DAQ Specifications

Specifications— PCI-6110, PCI-6111

These specifications are typical for 25 °C unless otherwise noted.

Analog I nput
Accuracy specifications
Input Char acteristics

Number of pseudodifferential inputs:

R

Maximum Sampling Rate
6110/6111...

A

Streaming-to-disk rate 6110/6111

Input signal ranges

See Table 2, page 199

4

8 MS/s, system dependent

Input Range
(Software, Selectable per Channel)

Bandwidth (MHZ2)

H#) v

20V

CMRR, DC to 60 Hz

Range

CMRR (dB)

200 mV

7

70

67

62

56

50

20tod2 V

35

1 skew

Dynamic Characteristics

1 ns typical; fi, = 100 kHz, 10 Vrange

System noise (LSByms, not including quantization)

Range

Noise

200 mV.

10

500 mV

0.6

1to50 V

.05

=0V

£V

2V

iV

+500 mV

Input coupling

DC or AC (software selectable)

Maximum working voltage for all analog input channels

Input
Channels

Range

Maximum Working Voltage
(Signal + Common M ode)

ACH<0.3>+

200 mVto 10V
20to50 V

Should remain within 11 V of ground
Should remain within 42 V of ground

ACH<(..3>-

All

Should remain within 11 V of ground

Overvoltage protection
On/Off.

Inputs protected
FIFO Buffer Size
6110/6111
Data transfers

DMA modes

Transfer Characteristics
Relative accuracy
DNL

No missing codes

+50 V
ACH<0..3>+, ACH<0..3>-

8,192 Samples

. DMA, interrupts, programmed I/O

Scatter-gather (single transfer,
demand transfer)

+0.5 LSB typical, +1 LSB maximum
+0.3 LSB typical, £0.75 LSB maximum
12 bits, guaranteed

Spurious free dynamic range (SFDR), DC to 100 kHz

Range

SFOR (dB)

200 mVto 10 V
20t042 V

75
70

Effective number of bits
Amplifier Characteristics
Input impedance

(ENOB)

ACH<0..3>+ to ACH <0..3> -
Normal powered on ....

Powered off

11.0 bits, DC to 100 kHz

1 MQ in parallel with 100 pF
1 MQ mini

Overload

Impedence to ground
ACH<0..3>- to ground

Input bias current...
Input offset current

1 MQ

10 nF

. 2200 pA
. £100 pA

Crosstalk

Analog Output
Output Char acteristics
Number of ct 1

-80 dB, DC to 100 kHz

Resolution
6110/6111
Maximum update rate

Type of DAC.
FIFO Buffer Size
6110/6111

2 voltage outputs
16 bits, 1 in 65,536
4 MS/s, system dependent

2.5 MS/s, system dependent
Double buffered, multiplying

Data transfers
DMA modes

Transfer Characteristics
Relative accuracy
DNL

2,048 1
. DMA, interrupts, programmed I/O
. Scatter-gather (single transfer,
demand transfer)

+4 LSB typical, £8 LSB maximum

Voltage Output

+2 LSB typical, +8 LSB maximum

+10 V.

Ranges
Output li

DC

50 Q £5% Short

Output i
circuit current
stability

Protection

. £27 mA typical Output
Any passive load

Power-on state

Dynamic Characteristics

Settling time and slew rate

Short-circuit to ground
0V, =400 mV

| Setting Time for Full-Scale Step

| Slew Rate |

300 ns to +0.01%

| 300vis |

Noise

Glitch energy (at mid-scale transition)

Vel

1 mVy,, DC to 5 MHz

Digital 1/0

Number of ct

350 pv

8 input/output

Compatibility

5 VTTL/CMOS

Power-on state.

Data Transfers
6110/6111

Input (high impedance)

IF d /0

139




S Series Multifunction DAQ Specifications

Specifications— PCI-6110, PCI-6111 (continued)

Digital logic levels Digital Triggers
Level Minimum (V) Maximum (V) INUT] BETP @FF RIS cocoommmommmomamosamomamosamosamoss 2
Input low voltage 0 0.8 Purpose
Input high voltage 2.0 5.0 Analog input . Start and stop trigger, gate, clock

Output low voltage (lout =24 mA) - 0.4 Analog outpuf Start trigger, gate, clock
Output high voltage (lout= 13 mA) 435 - General-purpose counter/timers........... Source, gate

Source PFI<0..9>, RTSI<0..6>
Timing 110 Slope Positive or negative;
General-Purpose Up/Down Counter/Timers o software selectable
Number of ct 1 2 Compatibility .........cccooiiiiiiiiiiiiiiiii 5 VTITL
Resolution 24 bits Response Rising or falling edge
Compatibility 5 VITL/CMOS ik wilh 0 o il
Digital logic levels External input for digital or analogtrigger (PFIO/TRIGL)
Level Minimum (V) Maximum (V) Impedance 10 kQ
Input low voltage 0 0.8 Couplm}g DC or AC
Input high voltage 2.0 5.0 Prote-ct.lon .
Output low voltage (Tout=5mA) _ 04 Digital mgger ........................................ -0.5t0 Ve + 0.5V
Output high voltage (lout=3.5 mA) 435 - Analog trigger
(ON{O T/ HiSAbICT NEE——————————
Base clocks available .........ccoeueueeneususcusurens 20 MHz and 100 kHz Callisraien
Base clock accuracy......... .£0.01% . .
R an— 20 MHz Recommended warm-up time .................. 15 minutes
: libration Interval 1
External source selections..........ccceeevueenne PFI <0..9>, RTSI <0..6>, analog ¢ f]erv.a year
N Onboard calibration reference
N DC Level ..o 5.000 V(3. V); 1
External gate selections............cccoccovennn. PFI <0..9>, RTSI <0..6>, analog S value stcfr:dsinmEE)i’?{c(gul\?I
trigger; software selectable Temperature coefficient +0.6 ppm/°C maximum
Minimum source pulse duration ................ 10 ns, edge-detect mode L Pt qability o 6. uip NT.000h
e gate pulse duration 10 ns, edge-detect mode ong-term stability............................... ppm/V1,
Data transfers DMA, interrupts, programmed 1/O RTSI
DMA modes .. Scatter-gather (single transfer, Trigger line: 7
. - demand transfer) Bus!nterface
I\;equ:]‘:yf ) o . 1 PCI Master, slave
umber o
Resolution 4 bits Power Requirements
Compatibility 5 V/TTL Device +5 VDC (+5%) Power Available at /0 Connector
Digital logic levels PCI-6110 30 A +4.65t05.25 VDC, 1 A
Tovdl Winmom V) Tadmm V] PCI-6111 25A +4.65t05.25 VDC, 1 A
Input low voltage 0 0.8 Physcal
Input high voltage 2.0 5.0 Dimensions
Output low voltage (Tout=5mA) _ 04 Not including connectors...................... 31A2_by 10.6 cm (12.3 by 4.2 in.)
Output high voltage (Iout =3.5 mA) 435 - VO e 68-pin male SCSI type
Base clocks available ... 10 MHz, 100 kHz EnVIrqnmmt .
Base clock Y. +0.01% Olpriiiys iy N Vi s
o
Data transfers ..o Programmed I/O Stora'ge teml?efamre “““““““““““““““““““ i W
Relative I d 10 to 90%, nc d
Tri S R A
Angg;riggas Certifications and Compliances
Number of triggers ...........ccocoiiiiiiiinne 1 G CempliEE=d
Purpose ) o ) ) ) ,
Analog input Start and stop trigger. gate. clock 'Bandwidth specifications are for signals on the (+) input with the (-) input at
Analoi olI:tpu Start trigger, pgateggcl;)ci ’ DC ground. The (-) input is slew rate limited to 24 V/usec and has an additional
General-purpose counter/timers Source, gate 1) ¥ RS (® il
Source
| PCI6110 | ACH<0.3>, PFIOTRIGI |
| pcr6il | ACH<0.1>, PFIOTRIGI |
Level

Internal source, ACH<0..3> .. .. *Full-scale
External source, PFIO/TRIGI . . =10V
Slope Positive or negative; software-selectable

Resolution 8 bits, 1 in 256
Hy i Pr ble Bandwidth (-3 dB)
Internal source, ACH<0..3> 5 MHz

External source, PFIO/TRIGI . . 5 MHz
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AE SERIES ANALOG INDUCTIVE PROXIMITY SENSORS
M8 (8mm) metal — analog output

* 4 models available
* Compact metal housing

%‘n
i '\‘ + Axial cable or M8 quick-disconnect models
' %
=
g

* IP67 rated

o

.
Sa

AE Series M8 Analog Inductive Prox Selection Chart ‘ Dimensions

Part Number |Price Ssgﬁégg Housing Output Connection Dimensions Figure 1
M1
AE9-10-1A |[check ) 2m (6.5') axial cable Figure 1 o o
AE9-10-1F | check (()Ot%zllgm; Shelded o1ovbe M8 (8mm) connector Figure 2 L
|
e atio ~ [ [ -1]
AE9-10-1* ‘ :
Output Type 0-10VDC 1] E'@
Resolution 1um g/{ "
Repeat Accuracy +0.01mm |
Material Correction Factors See Proximity Sensor Terminology |
Operating Voltage 15-30vVDC L |
Ripple 20% I
No-load Supply Current 10mA @ss | |
Voltage Output Minimum Load 1kO o
Voltage Drop 20V o
Time Delay Before Availability 50ms .
Input Voltage Transient Protection Up to 30VDC Figure 2 paxt
Input Power Polarity Reversal Protection Yes -
Output Power Short-Circuit Protection Yes (switch autoresets after overload is removed)
Temperature Range -25° 10 +70° C (-13° t0 158° F) !
Temperature Drift 10% Sr
Protection Degree (DIN 40050) IEC IP67 |
Housing Material Chrome-plated brass ‘iiﬂ !
Sensing Face Material PBT -
Tightening Torque 4Nm (0.711b./in.) B E !
Weight (cable/M8 connector) 509 (1.76 0z.)/ 20g (0.71 0z.) a |
s ol
. . | |
Wiring diagrams e ——x
Connector [
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L:03
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o
15
ol
a
el 0
:'J, PTFE,
T
|'é| @55 4
#6840

P-810 dimensionsin mm. Two 0.1 m long teflon
insulated pigtails. Length L: see table. Max.
torque at top piece: 0.08 Nm.

L3

A8

14

PTFE

&

P-830 dimensionsin mm. Two 0.1 m long

T:

teflon insulated pigtails. Length L: see table.

Max. torque at top piece: 0.2 Nm.

Technical Data and Product Order Numbers

Order
number

P-810.10
P-810.20
P-810.30
P-830.10
P-830.20
P-830.30
P-830.40

Travel
range

for

0to 100 V
[um] £20%

15
30
45
15
30
45
60

*Resolution
[nm]

0.15
0.3
0.45
0.15
0.3
0.45
0.6

**Static large-
signal
stiffness
[N/pm] +20%
14

7

57
27
19
15

Push- / Electrical
pull force capacitance
capacity [MF] £20%
[N]

50 /1 0.3

50/1 0.7

50/1 1.0

1000 /5 iLls

1000 /5 3.0

1000 /5 4.5

1000 /5 6.0
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Dynamic operating
current coefficient
[WA 7 (Hz « pm)]

3.0
3.0
3.0
125
125
125
125

Resonant
frequency
(unloaded)
[kHZ] +20%

22
15
12
23
14
10
85

Mass
[a] +5%

10
16
21
27



Ceramic Shear Accelerometer

Type 8778A500...

UltraMiniature, 0.4 Gram Weight, Voltage M ode Accelerometer

_2

Small, light weight general purpose accelerometer for vibration
measurements in wide range of applications. Available in two
cable versions, the standard with a permanent attached cable and
the M14 with a field replaceable twisted wire pair.

+ Low impedance, voltage mode

e Ultra low base strain and thermal transient response
* Wide frequency response, 2 ... 9000 Hz (£5 %)

= Ground isolated assembly

= High 10 mV/g sensitivity

= Conforming to CE

Description

The Type 8778A500... and 8778A500M14 are high frequency,
ultra miniature, light weight accelerometers that contain uniquely
designed ceramic shear sensing element. The shear mode ele-
ment design provides an immunity to thermal transients, base
strain and transverse motion.

An internal microelectronic Piezotron® signal conditioning circuit
converts the charge developed in the ceramic element as a re-
sult of the accelerometer being subjected to a vibration, into
a useable high level voltage output signal at a low impedance
level. The standard Type 8778A500... accelerometer includes an
integral Teflon® jacketed 3 ft long cable terminated with a 10-32
neg. connector while the M14 version features a field replaceable
twisted wire pair and connector. The units are designed for wax
or adhesive mounting and is supplied with a custom wrench to
facilitate removal after testing. Power to the Type 8778A500...
accelerometers can be provided by any Kistler coupler Type 51...
or by any industry standard voltage mode IEPE (Integral Elec-
tronic Piezo-Electric) power supply/coupler.

Application

The light weight, low profile and small size of the accelerometer
Type 8778 A500... makes it ideal for: precision vibration measure-
ments; modal analysis on small, thin walled structures or where
space is limited and mass loading is of primary concern.

Typical applications included PC Board stress screening and critical
component evaluation on disk drive assemblies.
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Type 8778A500sp

- —

Type 8778A500M 14sp

20.23 ) )
shrink tubing
coaxial cable
conductor is positive, 1/4" Hex
0.17 shield is negative
Length
user specified
—®= | ~&—— (.13 mounting surface
Type 8778A500sp
36AWG twisted pair —
- T QH~ E
\ 3 v
W
00.23 —/ 10-32 neg. — /— 1/4" Hex
f Tk | LA E

3
A3
0.17
4 Length
t user specified
L—-l_ 0.13 mounting surface

\ shrink

tubing

Type 8778A500M 14sp



Technical Data

The recommended adhesives to be placed between the accelero-
meter’s base and the test object surface include:

Specification Unit Type 8778A500...
Acceleration range g +500 = Petro wax, Type 8432
Acceleration limit apk +750 = Loctite 430 general purpose for adhesion to metals
Threshold (noise 100 pVrms), nom. grms 0.01 = Loctite 495 general purpose for adhesion to other materials
Sensitivity, 5 % mV/g 10
Resonant frequency mounted, nom. kHz 70*  Note: Removal of an adhesively mounted unit is extremely dif-
Frequency response, +5 % Hz 2...9000*  ficult and care should be exercised during the removal process. An
Amplitude non-linearity %FSO +1  appropriate adhesive solvent and the Type 1378 custom designed
Time constant, nom. s >0.3 removal wrench should be used to twist the accelerometer off of
Transverse sensitivity, nom. (max. 5) % 3 the test object.
Environmental
Base strain sensitivity @ 250 pe g/ue 0.009*  Included Accessories Type
Shock limit (1 ms pulse) gpk 5000 = Petro wax 8432
Temperature coefficient of sensitivity | %/°F -0.08 = Removal wrench 1378
Operating temperature range °F —65 ... 250
(4 mA supply current) Optional Accessories Type

= Connecting cable for low impedance sensors 1761B
Output = Cable kit (needed to connect Type 8778A500... 1764A
Bias, nom. VDC 11 to Kistler couplers)
Impedance Q <100
Voltage full scale \% +5

Ordering Key
Source Type 8778A500 [ ]
Voltage VDC 18 ...30  Connector/Cable
Constant current mA 2..20 Solder pins/no cable M14

10-32 neg./integral coax cable sp
Construction 10-32 neg./repairable twisted pair cable M14sp
Sensing element Type ceramic-shear
Case/base material Aluminum/hard

anodized/Titanium

Related Accelerometers Type
Degree of protection case/connector | Type epoxy < integral cable, 1.6 gram weight 8728A500
Connector-terminates Type 10-32 neg. = top 10-32 connector, 1.9 gram weight 8730A500
Ground isolation, min. MQ 10 = integral cable, 1.1 gram weight 8732A500
Weight (excluding cable) grams 0.4 = integral cable, 1.1 gram weight with 8734A500
Mounting Type adhesive/wax mounting flange

The Type 8778A500... can be attached to the test structure by
adhesive or wax. The accelerometer’s side cable facilitates ori-
entation in confined areas. Reliable and accurate measurements
require that the mounting surface be clean and flat. The operating
instruction manual for the accelerometer Type 8778A... (002-
085) provides detailed information regarding mounting surface
preparation.
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