EVALUATING SECURITY MEASURES OF A

LAYERED SYSTEM

By

Sanaz Hafezian Razavi

Software Engineering, Islamic Azad University, Iran, 2003

A Thesis
Presented to Ryerson University
In partial fulfillment of the
Requirement for the degree of
Master of Applied Science
In the Program of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2009

©Sanaz Hafezian Razavi, 2009

o vl YUY
SON LItV ERSITY LIBRARY

(RS RT 2 H

Author’s Declaration

I hereby declare that [am the sole author of this thesis project.
I authorize Ryerson University to lend this project to other institutions or individuals for t

purpose of scholarly research.

Signature

I further authorize Ryerson University to reproduce this thesis by photocopying or by oth
means, in total or in part, at the request of other institutions or individuals for the purpose

scholarly research.

Signature

Instructions on Borrowers

Ryerson University requires the signature of all persons using or photocopying this thesis. Please

sign below, and give address and date.

iii

Abstract

EVALUATING SECURITY MEASURES OF A LAYERED
SYSTEM

©Sanaz Hafezian Razavi, 2009

Master of Applied Science
Electrical and Computer Engineering

Ryerson University

Most distributed systems that we use in our daily lives have layered architecture since such
architectures allow separation of processing between multiple processes in different layers
thereby reducing the complexity of the system. Unauthorized control over such systems can have
potentially serious consequences ranging from huge monetary loss to even loss of human life.
Hence considerable research attention is being given towards building tools and techniques for
quantitative modeling and evaluation of security properties. This thesis proposes a high-level
stochastic model to estimate security of a layered system. It discusses evaluation of availability
and integrity as two major security properties of a three-layered Architecture consisting of
Client, Web-server, and Database. Using Mobius software, this study models the change in
vulnerability of a layer owing to an intrusion in another layer. Furthermore, it analyzes the
impact on the security of the upper layers due to an intruded lower layer. While maintaining a
system availability of 97.73%, this study indicates that increasing the system host attack rate in

the Database layer from 10 to 20 will reduce system availability to 97.55%. Similar modification

made to a Web-server layer will contribute to 97.04% availability. This set of results imply that
increasing attack rate in Web Server layer has a more severe impact on system availability, while
the same modification in Database layer will less severely influence system availability.

Similar results have been gathered when measuring integrity of the system under identical set of
modification. At system integrity of 96.88%, increasing host attack rate in Database layer has
resulted in achieving integrity of 96.68%; similar experiment for Web server layer resulted in

system integrity of 96.57%.

Acknowledgments

Thereby, I would like to convey my special appreciations to my supervisor, Dr. Olivia Das, who
has supported, guided, and supervised me through completion of this study thesis and for reviewing
this document and offering valuable comments. I would like to thank my friends and fellow
colleagues for sharing their thoughts and making the DAS lab a pleasant learning and working
environment at Ryerson University. I am thankful to Bruce Derwin, Engineering support at Ryerson
University, for his technical support and for allowing continuous availability of tools and technology.
[would like to thank Ken Keefe and Shravan Gaonkar — Group members of Mobius team- for
sharing their expertise, and providing me with assistance, and valuable comments on this study. The
contributions of Sankalp Singh from the University of Iliinois, is remembered and appreciated.
Finally yet importantly, I would like to thank my lovely husband, Farhad, for being with me,

patiently understanding, and assisting me every step of this thesis.

Vi

To my husband, Farhad, for his patience and support

vii

Table of Contents

INTRODUICTTON ,sosmmnnssnmmsnosmsss simsssss s ssssmssssnnbinsis s i o coammmmasemmase oo s o 1
1.1 Totroduction and IOV ation s s smmm——————————————" s 1
1.2 Research Objectivesccoveveveviveieereeeeann. et 2
1.3 Previous StUAIESc.cvviiiiiiiiieeieeee et e et 3
1.4 Thesis CONIIDULIONSc.oiviiiiiieiiiieiiiieete et 6
1.5 TRESIS OULINEouiiiiiiiiiicec ettt e e e s 8

RELATED WORK ..ottt ettt 10
2.1 Early work on State-Based teChniques................ocooooviveveeiieieeeeeeeeeeeeeeeeeeeeeee . 10
2.2 Probabilistic model based on attacker behaviour.................ccocoovoveeeeerieeeeeeeeesee, 11
23 PrOVIICES CIBEPIL e mmmsnaisbiniomemmnsminesbsmmsraseamrrs ey st s s s e s 11
2.4 Application of Semi-Markov Process to Model Attacker Behaviour and System
TR YD OTNEC susensvssnnososisuimmnsmasss & 5455w 35k o e e iy s v 3 5 85 PR AN SR GRS 12
2.5 Partially Observable Markov Decision ProCesses..............oooovvveeeererserssesssssnn, 13
2.6 Attack-response GIaphi..........cccooooiiviieieieiiiiiiieceiieeeeee e ettt ee e, 14
277 Game Strategies in NetWork SECUTItYccocvoeiiriireiiieieiieiceceeeeee e 15
28 BUOCHABLIE IGAING wxuiovmonmmsninsnssrissssssstsasmtststinisinsmmmmneomsaresissess mmsss s o RS 16
2.9 Makov Chaits Tor PHVAIBEE. .o ammmmommmmansms e commrssemesmms s s ammass, 16
2.10 Stochastic GAME NELcociiiriiieiiiiiie ettt LV
211 Architecture-based MOloouviieieiiiiiiiiiiiieeeecee e, 17
2.12 Stochastic Activity NEtWOrks (1) ..occvevveriireioiieicieieeee ettt 18
213 Stochastic Activity NetWOrks (2)ccvoviereiiiiieeieeiececeeeeeeeeeeeeee e 19

SOFTWARE ARCHITECTURE AND MODEL ASSUMPTIONSc.coccoovioieeeeeeeeeeee 21
3.1 Stochastic Activity Network MOAElfNgcoussmssisimminsmmmmnemmmesssensonmassarmmmeessemesseys 21
3.2 MObiis WOrKIIOM s s immmisssormmmssoms s oavenerees s g g s s s 23
3.3 Overview of Layered Archit€CturE.cvoviviiviveeiieeeeieeeeeeeeeeeeeeeeeeee oo, 25
3.4 Software ArCRILECIUIEc.ooiriiueieiiiiieieieieteteect ettt e e, 26
3.5 TerMINOIOIES......cuiiuimiiiiieiieieie ettt e oo, 28
3.6 Model ASSUMPLIONS.ciitiirieieietiietitet ettt et e e e e e e e e 30

3.6.1 ALACK TYPES c.vvivivieieiiiieietee ettt 32

viii

3.6.2 Attack Propagation.........ccccooeiiiiciiiiieniiiiiiiic i 32

3.6.3 INTrUSION BEIECES.. o .enrsms s snis sassvsmmsensmesesms cres o s m s R4 S se KO0 S0 M G e e s 33
SAN MODEL DESCRIPTIOMNcecxs cnec nassmesnses o555 5555556 o554 S s 5 i s o9 5a s s s se s s 34
4] COMPOSEA VOAEL .mrm e wsmmmmmormmane s 555 65054535 78570 A S S A 45 TS AT 35
4.2 Syster SUD-IHOMAEL. ... coxmmromommemme om0 T Sy S DS A FA RS RET 36
4.3 Hobst BUb-MOAEL.. o aourrmammmvammmmmmsmmsomssammsomsomsmmmammsssssans s s 455588 4555 085 TTFH 38
4.4 Replica SOD-MOFRL ; cooimsimummummmismmmnnnsssmumnmssessss oo s s s o s sy g 44
RIESTTILTTS. .. corvmmeonmmms om0 485555083 SR8 5 L S R 5 S T R Y S S BAF O QRS S A SRSy e oo 49
5.1 The Effect of Replica Distribution and Sub-system Quantity on Security Measures.... 52
5.2 The Effect of Database Host Attack Rate Changes on Security Measures.................... 55
5.3 The Effect of Web Server Host Attack Rate Changes on Security Measure 58
5.4 Comparison of Rate Changes in Database Host Attack and Web Server Host Attack.. 61
5.5 The Effect of IDSW Quality on Security Measures in Database Host 64
5.6 The Effect of IDSW Quality on Security Measures in Web Server Host...................... 67
5.7 Comparison of Database Host IDSW Quality and Web Server Host IDSW Quality
07111 - S SRR S 70
5.8 The Effect of Database Replica Attack Rate Changes on Security Measure................. 74
5.9 The Effect of Web server Replica Attack Rate Changes on Security Measure.............. 76
5.10 Comparison of Database Replica Attack and Web Server Attack Rate Changes 78
5.11 The Effect of IDSW Quality on Security Measures in Data base Replica................. 80

5.12 The Effect of Changing Quality of IDSW in Web server Replica on Security

L AT S . st e s s s smmsn 555050008 1 S S O R M AP SOV 82

5.13 Comparison of Database Replica IDSW Quality and Web Server Replica IDSW

QUAIILY CHANBES.mmsmssmmmmmsssemmsssmsororss s eom e oo o o s s os sy s ass s 35543 84
CONCLUSIONS AND FUTURE WORKooiiiiiiiiiiiciiiiiccie i 86
SYSTEM MODEL.......ooiiiiiiiiiiteieie sttt s 88
REFERENTES ... usransnsssnssiinss 5 5 5555 iy 50 i S5 s aiessss ¥ G e p 00y g o Sy e s pwvam e 120

List of Figures

Figure 1 - SAN PIIMIIVES...c..viiiiiiiiiiiieieieiet ettt ee e e s, 23
Figure 2 - Composed MOEIS..........ccueiiiiiiiieiiieiet it e et 24
Figure 3 - Mobius WOIKFIOWcouiiiiiiiiiiiicicicceee e 25
Figure 4 - Layered Architecture.............. e 26
Figure 5 - System ArChItECIUIEc.eiiiiiiiieiiietiiett et 28
Figure 6 - Composed MOAEL.........c.ocuiiiiiiiiiiieiiiieieei e e e 35
Figure 7 - System Sub mMOdel.........ccoouiviiiiiiiiiecceeeeee e 36
Figure 8 - DB_HOst SUb-modelccceuririniiiiiiiieiiieieieccecce e 42
Figure: 0 - WS_HOSE SUB-IOUCL..coniieiossmnssinsmn iois s sssissmimamsmramsmenersessmmonsones s oo ensssssmsassrss 43
Figure 10 - DB_Replica SUb-MOdElccocoiviviiiriiriiieeiceeicececeeeee et 47
Figure 11 - WS_Replica Sub-model............ccocvrioviuiiiiiiiiiieeceicecceeeeeeeeeeeee e, 48
Figure 12- System security measures for different number of Sub-...............coccoovvvviovreerrere. 52
systems and different distributions of replica in €ach hoSt.............ccccoovoviiieiieeeeeeeeeeeeee, 52

Figure 13- Behaviour of System Security Measures with Respect to Number of Sub-systems and

B DN .y e shoeem Sl i 085815785 ot S 54
Figure 14.1- The Effects of DB Host Attack Rate changes on Availability.....................ocoo....... 56
Figure 14.2- The Effects of DB Host Attack Rate changes on Integritycccocoeveveveeuvnnn.n. 57
Figure 15.1- The Effects of Web Server Host Attack Rate Changes on Availability 59
Figure 15.2- The Effects of Web Server Host Attack Rate Changes on Integrity....................... 60
Figure 16.1- Comparison of Rate Changes in DBHost and WSHost Attack (Availability)......... 62
Figure 16.2- Comparison of Rate Changes in DBHost and WS Host Attack (Integrity) 63
Figure 17.1- The effects of IDSW quality of Database host on Availabilityc.c.ccccen....... 65
Figure 17.2- The effects of IDSW quality of Database host on INtegrity.............cccococvevevreeenn... 66
Figure 18.1- The effects of IDSW quality of Web server host on Availability................cc.......... 68
Figure 18.2- The effects of IDSW quality of Web server host on Integritycccccocvvvenen... 69
Figure 19.1- Comparison of DB Host and WS Host IDSW quality Changes (Availability)........ 71
Figure 19.2- Comparison of DB Host and WS Host IDSW quality Changes (Integrity)............. 72
Figure 20.1- Database Replica Attack Rate Effects on Availabilitycocoovvvveeeiveeesenn 74
Figure 20.2- Database Replica Attack Rate Effects on INtegrity.............ocooevevevereeeeereeeesenn 75

Figure 21.1- Web Server Replica Attack Rate Effects on Availability .cusuaswwmnswmwammsens 76
Figure 21.2- Web Server Replica Attack Rate Effects on Integritycccccoevviviiiiiiiiininnnnnn 77
Figure 22.1- Comparison of DB Replica and WS Replica Attack Rate Changes (Availability).. 78
Figure 22.2- Comparison of DB Replica and WS Replica Attack Rate Changes (Integrity)....... 79

Figure 23.1- The effects of IDSW quality of Database replica on Availabilityccceees 80
Figure 23.2- The effects of IDSW quality of Database replica on Integrity...........ccoceeeveiinninnnnns 81
Figure 24.1- The effects of IDSW quality of Web server replica on Availability............cccc..c..... 82
Figure 24.2- The effects of IDSW quality of Web server replica on Integrity...........cccccoeeeennn. 83

Figure 25.1- Comparison of DB replica and WS replica IDSW quality Changes (Availability). 84
Figure 25.2- Comparison of DB replica and WS replica IDSW quality Changes (Integrity) 85

Xi

List of Abbreviations

ADSG
ARG
COTS
DB

DTMC
ESPN
FTs
GSPN
IDSW
ITUA
MRGP
MRM
MTTSF
PN
RBD
SAN
SGN
SMpP
SPN
SRN
WS

Attack-Defence Stochastic Game
Attack Response Graph
Commercial available Off-The-Shelf

Database

Discrete Time Markov Chain
Extended Stochastic Petri Net
Fault trees

Generalized Stochastic Petri Net
Intrusion Detection Software
Intrusion Tolerance by Unpredictable Adaptation
Markov Regenerative Process
Markov Reward Model
mean-time-to-security-failure
Petri-Nets

Reliability Block Diagram
Stochastic Activity Network
Stochastic Game Net
Semi-Markov Process
Stochastic Petri Net

Stochastic Reward Net

Web server

Xii

CHAPTER 1

INTRODUCTION

1.1 Introduction and motivsation

Security is an essential property of a system structure that ensures protection of information and
property from theft, corruption, or natural disaster, while allowing the information and property
to remain accessible and productive to its intended users. It is important for hospitals to develop
a comprehensive security management program to effectively support and maintain physical
protection for patients, staff, and visitors. Available and accurate performance of almost all civic
services, such as public transit operations, traffic management, intelligent transportation, airport
management, and identity protection, and furthermore, confidential and protected state of any

country’s military goods and devices are just few instances where security is a vital key player.

The increasing dependency of almost all areas of science to computer systems has caused serious
competition among systems with the same output but different capabilities. One of the
demanding capabilities of any information system is to carry out its deliberated purpose while
maintaining vital security properties even when the attack has occurred in the system. As has
been discussed by Sanders et al. [1] and Madan et al. [2] there are three generations of software
systems (Also known as secure systems): the first generation prevents any occurrence of security
intrusion. The second generation emphasizes on detection of such security intrusions and alerts
the system administrators. However, there were a number of factors that made these traditional
approaches to the development of secure system less desirable. Development and validation of
security systems were quite expensive, especially with the emergence of unbounded systems [4]
such as the internet and large network infrastructures. Modifying a secure system was a difficult
task, since any modification in a secure system required a costly re-validation. Furthermore, there

was no second line of defence against attacks when a secure system was identified to be insecure.

These limitations have lead to the development of the third generation of software systems. The
most innovative generation aims to tolerate the presence of intrusion in the system, and to
reconfigure the system after an intrusion attack. Much of the older researches on system security
focused on the details of designing the first and second generations. Although all these efforts
have been helping the improvement of the system security, with today’s complexity of
distributed software systems, it is an essence to draw our attention to system-level security rather

than emphasizing on the details, which are very different from one system to another.

Pursued by many researchers in the area of security system evaluation, modelling approaches
have proven to be effective in examining security features of a system. While determining the
actual security parameters of a system is quite troublesome, incorporating modelling as part of
an integrated experimental design of a system allows using all information in the data and
facilitates generation of estimated parameters of interest. This process characterizes more fully
the behaviour of a system by allowing the user to speculate about how the system functions in
more detail. In addition, models are constructed to deal with security in the early stages of a
software system development. The modeling process, furthermore, enables simulation of
experiments before performing them, which in return leads to more cost effective experiments,

designs, delivers, and production.
1.2 Research Objectives

Nowadays, most of software systems have been designed based on distributed or layered
architecture (e.g. banking systems, telecommunication systems). In an intrusion tolerant layered
system, the impacts of each layer’s failure are felt through the lack of ability of its caller to attain
the desired service. Therefore, failures are propagated by the layered dependencies.

In addition, in spite of the efforts to design secure systems, to the best of our knowledge,
however, there is very less methodology than what is actually needed to evaluate security of a
computer system from quantitative point of view. More specifically, there is no systematic
research done to evaluate security level of a layered intrusion tolerance system. Since it is almost
impossible to build a complete secure system, being able to quantitatively evaluate security of a

system is a very effective step in achieving higher level of security.

This thesis has proposed a model for evaluating security properties of a three-tier layered system.
The model has been analyzed to study the effect of intrusions in lower layer servers on the
security of higher layers. The model can be easily extended to n-tier systems, however, that
would require more computing resources. There are various models of failure like fail-stop, fail-
silent system, and fail-safe failure. This thesis considers fail-safe, where the system is producing

arbitrary output, but it is clearly junk.

The availability of important information on today’s software systems and the increasing
dependence on various distributed applications have led to an impartial increase in the variety
and complexity of intrusions. An intrusion into a computer system is defined as any possible
outcome of an attack, which causes the designed system not to behave in a way its designers
expected [1]. For example intentional sending of an ill-formed message to an application,
causing it to crash; intentional causing of a buffer overflow in an application, in turn causing the
application to run arbitrary code with its own privilege; and exploitation of an operating system
vulnerability to gain unauthorized system administrator privilege [5]. Besides damages caused by
intrusion, there are damages that are not included under definition of “intrusion” — in this thesis,
referred to as “random failure”. A few examples of random failure are turning off the electricity

power supply, and discovering a bug in the system during everyday computer system use [5].

1.3 Previous Studies

Due to the large variation in the nature of studies reviewed in this thesis, this section will be
delivered with two separate contents: (1) Dependability related studies and (2) Software
architecture related studies. Evaluation of system dependability is a well-known study criterion,
which has been explored by the researchers. In contrast, an evaluation of security measures is a
new interest. However, most of the dependability context can be adopted and introduced to
security area as well. Software architecture is considered as an effective element in measuring
software dependability attributes [44], [45], [46], which also can be extended into software

security.

Dependability related studies

The concept of dependability is defined as a property of computer system such that reliance can
Justifiably be placed on the service it delivers. Dependability attributes include reliability, safety,
maintainability, availability, integrity, and confidentiality. These concepts will be defined later in
chapter 3.5. Combining integrity and availability with respect to authorized actions, together
with confidentiality, leads to security [4]. However, there is a significant difference between
dependability and security: while dependability analysis presumes that random events in the
software or hardware cause the system failure, security analysis bases its assumption upon the
failure caused by human intent. Thus, not only security failures are usually correlated, the

attackers may also learn from the previous attacks.

Different models have been used in dependability studies with extensions into security
applications. Each model concentrated on particular levels of abstraction and system features.
The remainder of this section will review a few classes of model illustration methods, including
Combinatorial, model checking, and state based stochastic methods. Combinatorial models
include Reliability Block Diagram (RBD) [6],[8] ,[9] ,[10] , Fault trees (FTs) [11], [12], [13],
[14], and Attack Trees [15][16], [16], [18]. These models do not specify all possible system
states required to achieve a solution. The drawback to these models is that they do not easily

capture certain characteristics such as stochastic dependence and imperfect fault coverage.

Model checking is another method suitable to investigate dependability and security of a system,
which is based on a reachability analysis of the model state space [1]. Some states reflect
harmful conditions. Therefore, the idea behind model checking method is to examine the state
space implied by the system. This method explores the entire state space and locates those
uncovered; this allows the method to find a path for state transition, leading to an uncovered
state. Instances of application of this approach are described in [19] and [20] where model-
checking algorithm was used in order to analyze computer programs for security flaws. Ritchey
et al. [21] and Sheyner et al. [22] have used this approach to model attacks on systems. One

important weakness of this method is the size of state space.

While Combinatorial methods are somewhat limited in expressing the stochastic behaviour of
security systems, Model checking methods are much more comprehensive and allow explicit
modeling of difficult connections. State based stochastic methods have been extensively

developed when compared to other versions of model checking algorithms earlier used in

mathematical modeling; furthermore, the more recent methods denote probabilistic conjectures
of time durations and transition behaviours. Markov Reward Model (MRM) is an example of this
method group which has been explored by several researchers [23][24], [25]. Referred to as
largeness, it is a major disadvantage of system states with complex structures consisted of
numerous constituents. This matter has earlier been investigated and two solutions of largeness
avoidance [26], [27], [28] and largeness tolerance [29], [30] have been suggested. Other
instances of state-based stochastic model have been described by Ciardo et al. [31], and Kulkarni
et al. [32] where the former used Semi Markov Process (SMP) and the latter used Markov
Regenerative Process (MRGP).

More recent studies have benefited from higher levels of model representation in order to model
the dependability and security. For instance, Interactive Markov chain (IMC) [33], Stochastic
process algebra [34][35], Petri-Nets (PN) [36], and different extensions of Petri Net like
Stochastic Petri Nets (SPN) [36], [38], Generalized Stochastic Petri Net (GSPN) [39], and
Stochastic Reward Net (SRN) [40], Extended Stochastic Petri Net (ESPN) [41] and Stochastic
Activity Network (SAN) [42], [43]. This thesis has used the Stochastic Activity Network
modeling approach. This method allows the automatic generation of large Markov chains,
therefore, the richness and diversity of the whole system can be conceptually explained without
worrying about low-level details. SAN method, furthermore pose the following features: (1)
Graphical models, (2) Simplicity in learning and usage, (3) Mathematical foundations, where the
models can be automatically checked and analyzed by software tools (i.e. Mobius), and (4)
Flexibility, that is the possibility of defining general functions for input and output gates in

programming languages.

Software Architecture

The software architecture determines how various components, comprising the software,
cooperate with one other. It also defines the component’s deployment mapping on the available
hardware. The extensive use of Object Oriented and Web-based software systems has led to
increase in applications of component based software development. In this approach, each
component may be Commercially available Off-The-Shelf (COTS), developed either

contractually or in house and not necessarily in the office. Therefore, different groups in various

environments may participate in software development. As a result, the black-boxed approach —
modeling of the system’s dependability or security as one unit, based on the overall failure
process of the software [47] — will not be appropriate any longer.

Earlier studies on software architecture, have proposed different approaches to system
dependability assessment, including state-based [49], [50], [51],[52], path-based [53], [54], and
additive algorithms [55]. Among these approaches, state-based algorithms used composite
models and then combined them into a single model. The resulting model was then solved to
evaluate the measures of interest. State-based algorithms have been exercised in this thesis to
assess system security. The assumed software system in this study is an interactive software
system having a layered architecture, wherein the system responds to the users’ inputs and each

layer of the system interacts only with its first upper and lower layer.

1.4 Thesis Contributions

Exploring related literature has proven to us that no systematic study has ever been completed to
evaluate security measure of a layered system. The unique characteristic of this study is the
application of Stochastic Activity Network (SAN) models in capturing the impacts of attack
occurring on various layers of a distributed layered system. In addition to that, constructing a
hypothetical model allowing analysis of security properties of a layered system has been of more
importance than developing an actual system. Furthermore, having a modular nature, the

proposed SAN models can be adapted to model any other layered intrusion tolerant system.

This thesis has considered both types of failure: intrusion-based failure and random failure.
Regarding the concept of intrusion, this study, however, has focused on intrusions that may
cause a system to deliberately fail delivering service or to deteriorate performance to a point that
has not been intended. Hence, the provided definition for intrusion concentrates only on denial-
of-service intrusions. The intrusions that merely probe a system’s vulnerabilities are beyond the

scope of this research.

Today’s software systems are made up of numerous small entities, globally distributed, which
are executed when called, and act as parts of a complex system [48]. Thus, evaluating their

security attributes requires substantial amount of information about the software architecture.

Moreover, analysis of the security measures in early stages of a software life cycle facilitate
changes in the system design, hence, the final software system could provide services of higher
quality. On the contrary, for an existing software system, it is yet necessary to predict the impact
of any modification in different entities of the system on the overall system’s security.
Furthermore, desired security levels of the software system must be maintained, while allowing

for changes in a particular entity, or adding and removing any component in the system.

The proposed model [84] in this thesis has evaluated security measures; similar to the study
conducted by Sharma et al [52], the approach utilized in the proposed model capture the impacts
of software architecture (i.e. layered architecture) on evaluating the desired measures. Sharma et
al [52] study, however, focused on performance evaluation while the proposed model in this
study has performed assessments of security attributes. This model is also identical to the study
accomplished by Singh et al. [5]: both studies have benefited from the Stochastic Activity
Networks method and the Mobius tool to evaluate security measures. Yet, the software

architectures recommended in the proposed model demonstrate significant differences.

A new model has been developed to evaluate security attributes of a layered intrusion tolerant
system, composed of three levels: Client layer, Web server layer, and Data base layer. A
significant contribution of this study is related to the utilization of Stochastic Activity Networks
(SANs) in the model solution technique to assess security attributes of a layered system. The

proposed model is briefly outlined below:

e Modeling a 3-tier system using SAN formalisms: different SAN sub models for different
entities of the system have been designed, which were then consolidated to form the entire
system model. In each SAN sub models, marking value of each place represents the status of
that particular component in terms of being in working mode, being intruded, or being failed.

o Host sub models: two specific sub models for web server and database hosts have
been designed to capture the behaviour of hosts and attacker against one another. The
attacker behaviour and the learning process during the sets of attacks have been
captured by the flexible attack rate in host sub models. The intrusion-tolerance nature
of the software may contribute to variable marking values of the system for which the

system remains operational even in presence of an attack.

o Replica sub models: similar to the host sub model, two different sub models for each
replica of Web server and Database layers have been proposed, which represent the
attacker behaviour and system response by changing the marking value of SAN’s
places.

o Entire system model: A composed model containing all the sub models in a fashion to
denote the relationship between different entities of the models has been designed.
This model has been used to compute the security measures.

o Security attribute evaluation: based on the composed model, security attributes of the
proposed system under different condition have been determined and analyzed to

capture the effect of different entities on the others.

® A software tool called Mobius has been used to create, solve, and analyse the model.

® Model analysis: Analysis was conducted for both host and replica entities in Web Server and

Database layers. This analysis has accounted for (1) the Effects of changes in host attack

rates on security measures, and the comparison of these effects, and (2) the Effects of

changes in quality of Intrusion Detection Software (IDSW) on Security Measures.

1.5 Thesis outline

The remainder of this thesis is organized as follows:

Chapter 2 will provide background information on which the foundation of this research
is structured. It mainly explores dependability and its evaluation methodologies, layered
systems, and security assessment techniques.

Chapter 3 will describe the terminology used in the remainder of the thesis. This chapter
will also provide detailed description of the proposed system architecture. A brief
explanation of SAN models and Mobius tool are also covered in this chapter. Finally, the
chapter will investigate all the assumptions for the proposed model.

Chapter 4 will provide detailed information for all the sub-models designed in Mobius.
This chapter will explore the structure of SAN sub models as well as their application to
evaluate the desired security measures.

Chapter 5 will provide a review of security measures desired for the proposed system. It

will illustrate how presence of vulnerability in each component of the system would

affect the rest of the system; it further discusses the impacts on the security of the upper
layers due to intrusion in the lower layer

e Chapter 6 will provide the reader with conclusions drawn from this study; it summarizes
the work, and describes the achievements of the research. Furthermore, this chapter will

provide recommendations on future study.

CHAPTER 2

RELATED WORK

Traditionally security validation has only been explored qualitatively (e.g. Security Evaluation
Criteria [1], [S7]). However, when quantitative approaches attempted, they were based on formal
or informal methods. The former ones [58] tried to confirm that certain security properties hold
given a specified set of assumptions, while the later methods [59] made use of expert teams to try
to compromise a system. In contrast, dependability analysis has habitually used Stochastic
Modeling. This approach has also recently been adopted and used in security analysis, in order to
obtain quantitative system measures [1], [1], [60]. It should be noted that not all security
attributes can be integrated naturally into dependability concept. The reason for that is in
dependability context, the system failure’s roots are fundamentally different from those in
security violations. Dependability analysis supposes that random events in hardware or software
cause failures while failure in security analysis are caused by human intent, resulting in security

failures. However, still methods used in dependability area can be transferred into security.

This chapter introduces some of the previous works in security criteria along with their pros and

cons.

2.1 Early work on State-Based techniques

One of the groundbreaking attempts in security area was a study by Littlewood et al. [61]. Two
basic measures of security were defined in this study: mean effort to security failure, and mean
time to security failure. In selecting these measures, time and effort were treated as two separate
entities an attacker had to impact to cause a successful security breach. Alternately, the time
required for a security failure to occur can be assumed a random function of effort, thus making
the models more stochastic and complex. The authors considered the application of probabilistic

methods (i.e. Markovian Model) to assess the security of a system. In their study, the similarities

10

between reliability and security were considered and were further discussed in a process
exploring the “Operational security” measures. To do so, the authors characterized the attacker’s
behaviour against that of the system. The proposed Markov model in their study consisted of
“working” and “security failed” states, which were specified as two states supporting the security
measurement. In Littlewood et al. [61] study, only the very simplest type of problem statement
was considered; similar to those for reliability issues concerning time to the next failure, and they
have not well thought-out any of the other interesting parallels that could have existed with
availability. The study concluded by not offering a solid solution to the defined issues; instead a
set of new open questions were posed as closing remarks to this study that required further

clarification when striving for a viable probabilistic security evaluation.

2.2 Probabilistic model based on attacker behaviour

In another study, Jonsson et al. [62] presented a probabilistic model to evaluate security of a
system based on attacker’s behaviour. In this study, security concepts were treated as two
distinctive types: behavioural and preventive. Limitation in data availability forced this study to
last up to two years in an attempt to gather all the necessary data regarding the typical attacker’s
behaviour. In the approach proposed by this study, attacker’s behaviour was divided into three
phases: one, the learning phase, two, the standard attack phase, and three, the innovative attack
phase. Regardless of the cause, the probability to thrive an intrusion was small during the first
and last phases, yet the probability of occurrence for a successful attack was considerably higher
in the standard attack phase. Markovian model with exponential time distribution was employed
in this approach. Considered as a significant progress towards quantitatively assessing the system
security, this approach, however, only modeled the behaviour of an attacker that was an

ambiguity source in security evaluation.
2.3 Privilege Graph
Ortalo et al. [63] suggested that an appropriate notion of state for a probabilistic system model

would be the degree of privilege that an attacker has obtained. They offered a methodology for

modeling UNIX security vulnerabilities known as a privilege graph. This graph corresponded to

a global model for the entire system. By incorporating the assumptions concerning an attacker’s
behaviour with the privilege graph, “attack state graph” was obtained. Furthermore, the authors
described a technique for transforming the attack state graph into a Markov chain where the
states of the resulting Markov chain have represented the enhanced privileges gained by an
attacker as a result of a series of atomic attacks on the system. An interesting definition of reward
used in this Markov is the “effort” needed to initiate a transition. By solving the obtained
Markov model, several probabilistic security measures were assessed. The resulting Markov
chain model was used for assessing the security attributes of a system by computing the mean
time (or effort) required to send the system into a security failed state. To illustrate the
application of their approach, an analysis was conducted using data obtained from measurements
conducted on a large computer installation over a 21-month period. In spite of the interesting
results obtained, the approach recommended by the authors had two limitations: (1), only the
security of a particular system was assessed with respect to the known vulnerabilities, and (2),
collection of a large amount of data was required to populate a constructed model. Therefore,
such an approach was well suited only when discovering and assessing the impact of known
vulnerabilities in an operating system. This approach proved less capability in predicting the
relative efficacy of alternative intrusion tolerance techniques. In order to make such predictions,
a higher-level approach was needed that could focus on the operation of the intrusion tolerance

mechanisms, rather than on identified vulnerabilities.

2.4 Application of Semi-Markov Process to Model Attacker

Behaviour and System Response

Madan et al. [1] made use of traditional stochastic modeling techniques to capture attacker
behaviour and the system's response to attacks. This study illustrated behaviours of both the
intruder and the security system in a single Markov model for an intrusion tolerant system called
SITAR that has earlier been introduced. Based on particular attack scenarios, this study
illustrated that there was a noticeable correlation between states and failure of availability, data
integrity, and data confidentiality. Steady-state behaviour of the system was computed using this
model, followed by determining the steady state availability of SITAR system. Because of the

non-exponential behaviour of underlying stochastic model, this model needs to be formulated in

12

terms of a Semi-Markov Process (SMP). Based on the classification of the SMPs (i.e. irreducible
SMP and SMP with absorbing states), two different types of security attributes have been
pictured. The steady-state probabilities of various states were carried out from the irreducible
SMP, which then lead to the computation of the steady-state availability. In contrast to the
irreducible SMP model, the analysis of an absorbing state SMP model dealt with identifying the
absorbing states, which were typically the security-failed states. This analysis was used to serve
two main findings: one, to determine the time or the effort required for the SMP to reach an
absorbing state in order to yield the mean time to security failure (MTTSF), and second, to learn
about the probabilities of reaching different absorbing states. Utilizing these probabilities, the
causes of different security violation types were identified independent of one another.
Insufficient data, however, forced the study to incorporate unreal data in generating the results.
This study was then concluded by introducing semi-automated and automated experiments to

cover data shortage.
2.5 Partially Observable Markov Decision Processes

An alternative approach, introduced by Zhang et al. [64] is a state-based approach to monitor
behaviour of attacker and defender in case of multi-stage cyber attacks on a typical network. The
authors believed that attacker’s behaviour played a key role in causing models of security
evaluation to be complicated. They considered an attack in terms of its effect on the system
rather than the attack itself. From the authors’ perspective, this approach could facilitate
categorizing different types of attacks within the same group, even if the attacks contributed to
the same fault in the system. Another observation in this study was that attackers might change
their behaviour with respect to the response received from the system. Authors integrated all of
these notions in a simple state-space approach. They developed two objective-oriented models to
assess system and attackers behaviours. Afterwards, the authors integrated and formulated the
objectives and actions as a process known as Partially Observable Markov Decision Processes
that also included the resultant impacts from the attacker and system and the underlying system
states. In this process, the attacker and defender were represented as decision-making process
and the process evolution was directed by the objectives. Furthermore, rewards were defined as

the attacker and defender’s objectives rather than underlying system states or their transitions.

13

The proposed model treated system states exclusively through observations produced by the key
discrete states rather than continuous states, allowing for successfully limiting extensive growth
in state space. Real data has been used to conduct the simulation-based experiments. Authors
evaluated system security on the basis of action effects of attacker and defender, as well as the
inferences of their optimal action policies. To develop their model, multi phases of system attack
were considered; furthermore, the probability that a particular attack may occur under several
phases with several sub-goals leading to the final purpose was also taken to account. Therefore,
modeling attacker’s behaviour allowed the system to detect attack instances prior to the final
attack phase. Such modeling also enabled the system to form predictions about the attacker’s
next probable actions. In conclusion, investigation of better-objective-oriented models that
provided more accurate quantification of attacker’s intents, costs, and actions as well as the
defender’s cost-sensitive consequential actions in a complete multi-stage attack scenario was

suggested to be postponed for consideration in future studies.
2.6 Attack-response Graph

A new approach of attack-response graph was taken by Madan et al. in[65].In their previous
work, they used Markov chain model to achieve mean time to security failure, however creating
the Markov model was not always an easy task. Therefore, they decided to define the Attack
Response Graph (ARG) that illustrated the behaviour of attacker and system in the way that the
arcs of the graph represented the attacker/system’s action and the states represented the security-
failed state. Going from start node of this graph to one of the other nodes, showed the path
required to breach the system security. Transferring time between states of the graph could take
random amount of time; consequently, the Stochastic Petri Net (SPN) driven from this ARG was
a Generalized Stochastic Petri Net (GSPN). By creating reachability graph of GSPN,
corresponding absorbing Markov chain was easy to obtain. This Markov has been used to
compute the system security in terms of the mean-time-to-security-failure (MTTSF) measure for
an intrusion tolerant system. The considered numerical instance confirms that the MTTSF could
be increased by allowing the system to decide on more destructive measures when reacting to the
attack. The difference between this approach and those of other researches was that in this

approach the entire intrusion against the system was not accounted for. The only important

14

intrusions taken to consideration were those, which could be defended by the system. Moreover,
this study only considered the security failure of the system and did not categorize this event as
one of the more specialized causes. Such specialized causes for system security failure include
failure of confidentiality, failure of availability, and failure of privacy. Such categorization of
failed states could facilitate analyzing the Markov chain by computing another security measure

based on the absorption probabilities of these states.
2.7 Game Strategies in Network Security

Another methodology used by researchers to assess system security attributes is known as the
Game Theory. Lye et al. [66] presented a model to examine the network security and to
determine the best-response strategies for the attackers and system administrators. In this model,
the attacker and system behaviours were considered as two opponents in an absolute game of
competition. This concept was illustrated using a concrete example in which an attacker invaded
into the structure of a simple enterprise network that provided internet services such as web and
FTP servers. In this example, the authors identified a set of specific states and made assumptions
about state-transition probabilities. By using a non-linear program, the authors calculated the
“Nash Equilibria” which provided the system administrator with ideas about attacker’s behaviour
in future states. This program also allowed the system to form logical decisions on selecting
defence strategies. In addition, the study discussed the notion of utilities in order to combine the
attackers’ target, cost, and objectives. In spite of the benefits achieved through this method, a
number of important disadvantages were pointed out. This study did not allow to manually
enumerating the states for the attack scenario. Moreover, the game theoretical models consumed
much longer time to speculate a multi-stage attack’s strategy since they loosely treated the
temporal correlation between attacker actions. The Game Theory model could hardly assist the
developers to percept the attack schemes individually, and did not provide a framework to decide
on the elements of a particular attack scheme. This is because in the Game Theory models, the
attacker’s objective is to achieve the highest payoff with respect to the system’s defence
component, and the strategies could only be inferred at the balanced state between attacker and
defender. Additionally, high computational cost was identified as a disadvantage in utilizing the

proposed method in practical applications.

2.8 Stochastic Game

Using stochastic techniques, Sallhammar et al. [67] modeled and evaluated the expected failure
times of a computing system where the failure could occur on an arbitrarily or deliberately basis.
The authors considered many effective factors on trustworthiness of the system including normal
user behaviour, administrative activities, random failures, and attacks. Game Theory approach
was taken to solve the behavioural model for system’s future security and dependability.
Utilizing this stochastic model, the states in which the system showed vulnerability to malicious
faults were chosen as the game elements in a two-player, zero-sum, stochastic game. Game
Theory model was based on a reward- and cost concept, making it possible to fine-tune the
transition rates of the stochastic model for a particular threat assumption, such as the motivation
and detection awareness of potential attackers. In solving the game, through weighting the
transition rates according to probability distributions, the expected attacker behaviour could be
revealed in the transitions between states in the system model. Finally, the corresponding
stochastic process was used to compute operational measures of the system. The modelling
approaches taken by these authors were similar to Madan et al. work [1]; except that decision
probabilities were used when integrating attacker behaviour in the transition rates of the model.
Moreover, this study illustrated modeling of unintended hardware and software failures, in
conjunction with intrusions. In contrast to Lye et al. [66] study, Sallhammar et al. [67] modeled
the game element outcomes generated by the attackers’ actions regardless of them being detected
by the system’s Intrusion Detection Software (IDSW) mechanisms. Unlike the study performed
by Liu et al. [67], this study used the same game model for different threat environments.
Application feasibility study of time dependent success rates in computing more realistic

strategies has been postponed for future research.
2.9 Markov Chain for Privilege

In another study, Jiang et al. [69] used Markov chain for privilege to model the attacker’s
behaviour. Again, the behaviour of attacker and system are viewed as two players of the game
and an Attack-Defence Stochastic Game (ADSG) are formulated. Their work also assesses cost

factors of cost-sensitive model and introduces the attack strategies prediction and optimal active

16

defence strategy decision. In the game theory strategy, gaining the greatest payoff for attacker
and defender is their objective while it is considered that the system contains defence component

as a whole and the strategies stay at the balance state between attacker and defender.

2.10 Stochastic Game Net

Wang et al. [70] applied Stochastic Game Net (SGN) to model and analyse the E-Commerce
attack and defence. To construct the model, the authors defined the transition as possible actions
that may be derived by the attacker or defender. Places represented the states of the system or the
player according to the results of the actions. The reward gained by the player when an action is
complete has been regarded as Reward element in the Game Theory model. By computing the
strategy m as the choice probability under Nash Equilibrium and analyzing time and probabilities
of different attack actions for e-commerce, the authors determined the optimal defence strategy
and instructed it within the system administrator to use the obtained results enhancing the
security of the system. This study was concluded by performing experiments showing that if the
system was shifted towards a steady state, the successful attack probability was still independent
of the attack rate. This result proved that when defining the defence strategies, the system
administrators could consider the fixed attack probability and time for a given network. Hence,
attack probability and intrusion period solely depend on the attacker’s ability and the predicted
reward, yet being independent of the attack rate. The proposed model in this study inherited the
efficient and flexible modeling approach of Stochastic Petri Nets (SPN), while it also made well
use of the game-theoretical framework from Stochastic Game theory. The authors believed that

based on the obtained results, some effective defending mechanism can be designed.

2.11 Architecture-based Model

Sharma et al. [70] focused on an architecture-based unified hierarchical model for software
reliability, performance, security, and cache behaviour prediction, which had not been widely
explored in past studies. This study provided expressions for predicting the general system

behaviour based on the individual components’ features, which also accounted for second order

architectural effects for providing an accurate prediction. This approach also facilitated the
identification of reliability, performance, security, and cache performance bottlenecks.

A hierarchical approach to forecast a variety of software system attributes based on the
architecture and the attributes of the ingredient components were provided in this study. The
novelty of this approach was in proposing a unique hierarchical model to assess reliability,
performance, security, and cache behaviour prediction. By considering software architecture, this
study made an original contribution in the field of cache-miss analysis. In this proposed
absorbing Discrete Time Markov Chain (DTMC) model, the states of the DTMC at any time
were given by the component in execution at that time. The arcs between states represented the
transfer of control from one component or layer to another. The initial and final components
receiving the control flow first and last denoted the initial and absorbing states of the DTMC,
respectively. By assigning suitable rewards to this DTMC, reliability, security, performance and
cache performances of the software system have been carried out. Two case studies were
presented in this study to illustrate the practical application of the model. Furthermore, the
authors provided the analytical techniques for sensitivity analysis of the system under
consideration. Such analysis was necessary for systems in which the individual parameters were
not accurately measured or estimated. Due to the hierarchical nature of the model, any changes
in the system components’ behaviour did not affect the model. A limitation of this approach was
the complexity in modeling the concurrency of control flow using a DTMC and concurrently

executing components that had to be modeled as a single state in the DTMC model.
2.12 Stochastic Activity Networks (1)

In a model-based validation effort, Stevens et al. [72] computed a networked intrusion tolerant
information system called Joint Battlespace Infosphere (JBI). The Model-based results were
used to design the system and to determine if a given survivability requirement was satisfied. In
this study a hierarchical model was constructed based on stochastic activity network (SAN)
using the Mobius tool [73], [74] to validate intrusion tolerant systems and to evaluate merits of
various design choices. In this modeling, eighteen different SAN models for different system
components were built and were combined using the Rep-Join composition formalism. The

probabilistic model made use of an innovative attacker model. The attacker model had a

18

complicated and detailed depiction of different kinds of intrusions’ effects on the system
components behaviour (e.g. different failure modes). The attack model illustrated the process of
discovery of vulnerabilities and further described their subsequent exploitation. Accounting for
the connectivity of the components of the system, at the infrastructure and the logical levels, the
model could call for an aggressive spread of attacks through the system. Furthermore, authors
employed a probabilistic model to compare various design configurations, which allowed the
system designers to select best configurations to maximize the intrusion tolerance provided by
the system prior to system implementation. Stevens et al. derived this model based on
experiments in which the survivability of the system was computed by measuring the probability
of success for the transactions between the clients and the core. Finally, the model was used to
illustrate that the system could meet a set of quantitative survivability requirements. To assemble

such a model, a thorough specification of the system structure was needed.
2.13 Stochastic Activity Networks (2)

Singh et al. [5] conducted a research study using Stochastic Activity Networks (SAN) to validate
and to evaluate the intrusion tolerant systems. The system modeled was part of the Intrusion
Tolerance by Unpredictable Adaptation (ITUA) architecture, which intended to provide a
middleware-based intrusion tolerance solution. The emphasis of this research was to study
impacts of intrusions on the system behaviour and to explore the ability of the intrusion-tolerant
mechanisms to handle those impacts. Assumptions were made regarding the discovery and the
exploitation of vulnerabilities by the attackers to achieve such intrusions. The proposed model
included different sub models for attacker, the intrusion-tolerance mechanism, the application,
and the resource/privilege state of the system. Once a separate sub models for replica, host and
management components (i.e. the ITUA components) were created, a complete model of the
system was composed using replicate and join operations in a unique model. Moreover, the
attacker model represented details of the intrusion itself as well as the effects of the intrusion.
The authors constructed their attacker model based on the experiments conducted by Jonsson et
al. [62] that suggested three distinct classes of attacks: script-based attacks, more exploratory
attacks, and totally innovative attacks. Singh et al. also presumed the possibility of learning from

successful intrusions for an attacker. Therefore, in the proposed model the corruption of a host in

19

a security domain enlarged the vulnerability of other hosts in the domain, since other host
probably could have similar operating system versions and service configurations. In order to
evaluate the interested security measures (i.e. unavailability and unreliability), the service was
defined by an application to be improper when suffering a Byzantine fault (a third or more of the
currently active replicas are corrupt). The authors gave insights into the relative merits of a
variety of design choices by studying the variations in the mentioned measures in response to
changes in system parameters. Furthermore, the authors conducted studies to evaluate the system
sensitivity to variation of different parameters such as different distributions of a constant
number of hosts into domains, Impact of Different Numbers of Hosts Distributed into a Constant
Number of Domains and Comparison of Domain exclusion and Host exclusion Management

Algorithms.

This thesis has illustrated the application of Stochastic Activity Networks for addressing the
challenges involved in assessing system security measures, specifically assessing security
measures of a three-layered intrusion tolerant system. Furthermore, the modular design of the
model increases the compatibility to apply to any other 3-Tier software architecture. Application
of SAN models will also allow defining new functions, when there is a desire to incorporate

more security measures into the proposed designs in this thesis.

20

CHAPTER 3

SOFTWARE ARCHITECTURE AND MODEL
ASSUMPTIONS

This chapter will provide fundamental concepts, which explore our proposed model. It briefly
describes the structure of Stochastic Activity Networks and the Mobius platform, which have
been utilized in this thesis as the modeling tool. Furthermore, the chapter will elaborate on the
layered architecture used in the model and will outline model assumptions considered in the

modelling process.

3.1 Stochastic Activity Network Modeling

Stochastic Activity Networks (SAN) are probabilistic extensions of activity networks, which
allow building dependability, performance, and security models. Type of the extension is similar
to the extension that constructs stochastic Petri nets from classical nets. Investigation of
stochastic activity networks in detail is beyond the intentions of this thesis. A comprehensive
description can be found in Sanders et al. [43] work. This section attempts to explain briefly the
fundamental concepts of SAN model in order to provide a better understanding of the designed

model.

SAN models are used to delineate a random process, which explains the system’s behaviour.
SAN model formalism benefits from four SAN primitives when specifying a model structure:
Activities, Places, Input, and Output Gates. Each of these primitives has a graphical
representation, which is useful for specifying a model in a concise and intuitive manner. Figure 1
illustrates the overall structure of SAN components.
e Places — represent the state of the modeled system. They contain natural numbers
referred to as the place’s marking. The model state is the ordered set of the place

markings.

21

Activities — characterize the actions of the modeled system. Timed and instantaneous are
two types of activity. Their main characteristic is self-explanatory: the instantaneous
activity does not take any time to be completed; while for timed activity, the required
time to complete the activity is expressed as a random variable. It is also possible that an
activity has different outcomes, which are specified as cases. Each case is assigned a
probability, which can be a function of the model state. When an activity completes, an
activity case is selected based on the case probabilities. Timed activities also have
activation predicates and reactivation predicates. Note that these features have not been

utilized in this thesis. An activity is referred to as activated when it becomes enabled.

Input Gates — they determine if activities can become ‘enabled’ within a SAN structure.
Input gate predicate and input gate function are two components of input gates. It is
possible that an activity does not associate with an input gate. Otherwise, to allow an
activity to be enabled, necessary requirements in input gate Predicate (i.e. if statement in
Mobius platform) must be met. The input gate function specifies a change of model state

that is executed when its associated activity completes.

Output Gates — these gates allow changing of the state of the modeled system, once an
activity is ‘complete’. Output gates can also be associated with individual activity cases.
Therefore, for activities with more than a case, Output gates may be used to specify the
outcomes of every case. In addition, Output gates may be linked to an activity having no

input gate to define the effect of the activity on the model’s state.

Arcs — are used to connect the places and activities. An arc stretching from a place to an
activity symbolizes an implicit enabling condition. This implicit enabling condition
requires the marking of the attached place to be greater than zero. A directed arc, initiated
from an activity and ending at a place, specifies an implicit state change upon activity
completion. This implicit state change results in increasing the marking of the place by

one [80].

22

3.2

Place

stantaneous_Activity

Output_Gate1

Extended Place Output Gatez

Figure 1 - SAN primitives

Mobius Workflow

A detailed description of the Mobius modeling tool is given by [74], [75].

Atomic Models — the primary and most basic structure in Mobius is the atomic model,
which can be parameterized with the use of global variables. It is possible to vary the
values of these global variables and produce a set of experiments to evaluate the model

for different parameter values.

Composed Models — the hierarchical system modeling approach is supported by Mobius
through a composed model. In this approach, atomic models are linked together through
sharing state variables of different atomic models, allowing direct interaction among
atomic models and the shared state variables. The relationship amongst atomic models is
achieved by constructing a ‘composed model’. Sub-model, Replicate, and Join blocks are
components that are essential elements of a composed model. Mobius Replica/Join
composition feature is illustrated in Figure 2. Sub-models are the building blocks required
to construct larger models. A Join node establishes a number of state variables that are
shared among its children. Replica node is a special kind of a Join node in which all

children of a Replica are identical in sub-model type [75].

23

Submodel Submaodel
Atomic Model2 Atomic Model1

Figure 2 - Composed Models

* Reward Models: reward models are utilized to define measures of interest that the
analyzer wishes to obtain from the system model. Once an atomic or composed model
has been defined, a reward model can be created. When the model is simulated or
numerically solved, the reward model identifies what data from the system needs to be

collected.

* Studies — a study is created in order to indicate a set of experiments to be performed on a

parameterized model in an automated manner.

» State Space Generators and Solvers — a numerical analysis of a Markovian model is
performed in two steps: a state space exploration and the numerical calculation of a

transient or steady state distribution, which is in turn used to evaluate rewards of interest.

* Simulator — to retrieve the generated results of a certain model, reward, and study,

Mobius performs a stochastic discrete event simulation.

The dependency of above Mobius elements is illustrated in Figure 3.

24

Composed model

l Atomic

madel

y
[Reward Model]

[Simulation J (State Space }

v

[Solver]

Figure 3 - Mobius Workflow

3.3 Overview of Layered Architecture

The objective of this thesis has been to model security attributes of a layered intrusion tolerant
system. One of the most prevalent software architectures used in almost all client server systems
is layered software architecture, which allows construction of software systems that can be
decomposed into a few parts, where each part is at a particular level of abstraction with well-
defined interface [78]. In a layered system, an entity at a lower level provides services to entities
at a higher level. Multiple entities at a given level may use an entity at a lower level, but the
lower level is not actually part of any of those. In contrast to layered system, traditional
hierarchical systems were built on the is-a-part-of relationship, where an element at one level

was composed of elements from the level immediately below it [52].

Layered architecture is utilized in almost all web-based systems where security is a very
important factor. Therefore, security assessment of a layered system has become of high

importance to system analyst and system architects.

In this thesis, an interactive three layered intrusion tolerant system has been considered. An
interactive system responds to users’ inputs. Three-tier architecture is typically taken up when a
distributed client server design is needed, providing a significant improvement in system

flexibility, reusability, and maintainability. In addition, this architecture simplifies the

25

onnsenry QRe.

s ¥ § 452 fE B
Y LIERARY

complexity of the distributed processing system for the end user. Therefore, such architecture has
been found well situated for internet applications, which are the most common applications these

days.

Even though this work has focused on hypothetical applications of an assumed system, yet a
common layered intrusion tolerant structure has been considered. By changing the value of
assumed variables to the values of interest, the model can be used in any other system with the

same architecture. Figure 4 visualizes three-tier client server architecture.

Clients Webserver Layer Database Layer

Figure 4 - Layered Architecture

This system allows users to interact with the first layer, which passes the request, if needed, to
the second layer, which may then be passed to the next available layers. Once the last layer
locates the information related to the request, it sends that information back, which then goes
across the layers, until the user receives the output. Each layer works as a functional unit, which
provides a defined set of services through the designed interface. Hence, it is not necessary that
different components of a layer actually be placed in the same hardware. Nevertheless, various
components of software from different layers might be located in identical or different machines.
Once a layer is completed with its assigned duties, it either returns the generated results to the

user or sends a request to its next layer in the same or different machine.
3.4 Software Architecture

The proposed system architecture in this thesis has taken the benefit of the replication method in
order to tolerate break down caused by the presence of an intrusion or a random failure. It
consists of client(s), middleware, Web-server (WS) layer, and Database (DB) layer where Web-

server and Database layers consist of Total_num_hosts hosts. Figure 5 depicts the overall

26

structure of the proposed system. There are Total_num_subs sub-systems in the system; each
includes one Web-server along with Toral_num_reps replicas located in the upper layer and one

Database host containing the same number of replicas in the lower one.

In the designed model, Client entity sends a request to the middleware. Middleware decides
which sub-system to send the user’s request to and if for any reason like sub-system’s
unavailability, middleware does not receive the desired response, it switches to other sub-
systems for obtaining the desired service. When simulation process begins, each replica in a host
receives a unique identifier. Replicas with the same identifier in two layers communicate with
each other. It is assumed that at the beginning of simulation process all the hosts are in the
running state. In addition, each replica would initiate or resume the running mode once its

equivalent replica in the other layer starts running.
A sub-system would work when the following two conditions are met:
e Both of the sub-system’s hosts are running (i.e. not failed)
e At least one set of replicas is operating.
The whole system will work until there is at least one sub-system available.

In case of any entity’s failure (replica or host), its relevant party in the other layer is forced to
stop running; it would resume once the corrupted entity is repaired. A hierarchical relationship
among the system’s components is presumed in which the system entity is parent of hosts and
replicas are hosts’ children. Whenever a parent fails, all its children will stop running until the
parent’s recovery allows all its children to restart. In addition to failure caused by human-based
attack, the random failure for all entities is also taken into consideration. For failure of every
entity of the model including hosts and replicas in both layers, an individual repair facility is

considered.

27

CClient >

Middle ware

k= Total_num_subs
m= Total num_ hosts =k/2
n= Total num reps

......................

WS Hostl

Replical [Reph‘cﬂ . {Replican;g

¢ || Replical i Reptica2 |, Replican| Web server Layer

& i,

A N A A A
DE Sl . +» DB Host m W -
4 P—— e] [y u ;=1 Data base La
: Replical iRephcaZ [ﬁephcam i+« il Replical !chlicaz j i;Rephcanl ; ase Layer

3.5

M L T e ——

Figure S - System Architecture

Terminologies

For better delivery of material included in this document, the following definitions have been

provided:

Host — a computer or any other computing resource with an operating system and
network interface cards

System behaviour — the abstract output of the object system [76]

Inputs — all possible operations to or against the system, including normal operations
performed by system’s defined users and operations, which result from intentional
attacks against the system

Fault — the progress that causes a system to experience vulnerabilities, to be added to the
system during its design time deliberately and maliciously in some instances

Failure — occurrence of potential faults in the system during the operational time which
may result in security breaches

Security breach — any possible input causing the system to behave against its security

requirement [61]

28

Attack — a malicious interaction fault through which an attacker may attempt to
deliberately breach security property of the system [1]; similar to the work proposed by
Littlewood et al. [61], this thesis has also considered attack behaviour as the following
classification:
o Passive attack, such as listening to public traffic and analyzing it,
o Prohibited use of the system, such as the insertion of trap doors by privileged
system users,
o Attacks upon personnel, as in bribery or blackmail, which does not need any
computing knowledge at all, nor even any interaction with the computer system

itself

Intrusion — any possible outcome of an attack [72]; an intrusion happens when
vulnerability in the target component is located by the attack. As a result, the target
component may behave in the manner not originally defined. This change in target
component behaviour may be simple, as in a case when the intrusion is “masked”; or it
can be very severe like when it compromises the target so that the targeted object could
be utilized to establish a new attack. The intrusion is prevented when the attack fails to
locate an existing vulnerability in its target. In contrast, an intrusion is tolerated when its

impacts do not lead to unsuccessful processing of a published request.

Vulnerability — a security exposure in any component of a system, which may be defined

according to a successful intrusion

Repeated attack — an attack is repeated when it happens on a similar target with identical

properties (i.e. same attack type, same source).

Attack propagation — a successful attack is propagated if the intruded target is
compromised, leading the target to become a new basis for further attacks. When this
source has access to a similar target with the similar vulnerability, the original attack may
be repeated. The source can also initiate a new attack, which then leads to seeking for a

new vulnerability in another target.

Security — The ability of a system to prevent unauthorized access to the system [61];

more precisely security consists of combination of the following concepts:

29

o Confidentiality — the probability of the system to prevent an unauthorized uset

from having access to protected data [64], [76],

o Integrity — the probability of the system to prevent an unauthorized user from

changing protected data [64], [76].

o Availability — the probability of the system to be ready/available for use in an

instance of time [76].
3.6 Model Assumptions

Chapter 4 of this thesis describes in detail the proposed model components including sub models
such as web-server and Database Hosts and their belonging replicas. There is no limitation in the
quantity of applications to be included in this proposed architecture. Middleware is responsible
for replicating any number of applications (i.e. Replica entity) and distributes them across the
hosts in both layers. In addition, when receiving the user’s request, it is the middleware’s
responsibility to select host and replica to which the request must be sent. The sending action is
performed in a similar fashion as when the middleware receives the response from the upper
layer and forwards it back to the user. Therefore, given all these tasks are completed by the
middleware, the algorithm in which middleware has based its decision-making will not be an
important matter; since these selections and connections of the elements are not prone to
intrusion attacks. This model has focused on attacks on the system entity and the hosts and

replicas within both layers.

All entities in our model are susceptible to attacks, which may potentially result in security
breaches. In each layer (i.e. Web server and Database), there may be any number of damaged
entities, which may or not be detected by the Intrusion Detection Software (IDSW). There exists
a threshold for the number of detected and undetected damaged entities, which can be tolerated
before a sub-system, or the entire system loses its availability (in case of detected damaged
entity) or integrity (in case of undetected damaged entity). Byzantine fault tolerance [82], [83]
utilizing authenticated Byzantine agreement under a timed-asynchronous environment has been
assumed in the structure of the model. As a general convention in this thesis, the term ‘corrupt’

refers to entities whose IDSW has detected the presence of intrusion, causing full disability until

30

the repair process has completed. In contrast, the term ‘damaged’ refers to entities, which suffer

from presence of intrusion but not yet detected by IDSW.

o Applying Byzantine agreement to find system availability: Less than a third of the total
number of hosts in each layer can be corrupt, yet allow the entire system to stay available.
In a similar notion, while less than one third of total number of replicas in each host is
corrupt, the host with those replicas running on remains available. It is noticed that the
assumed architecture is dynamic which means one entity may have been killed upon
detection of corruption by IDSW, and a new one may have initiated to replace the corrupt
one. When an entity (i.e. host or replica) receives a repair, it will remain on call until it is
directed by middleware (in case of hosts) or host (in case of replica) to be replaced by

one of the corrupt hosts or replicas.

o Applying Byzantine agreement to find system integrity: in case of integrity, the same
agreement is applied for loosing sub-system or entire system integrity, except the term
‘corrupt’ is replaced by ‘damaged’. Therefore, when an entity is under attack and remains
undetected, with no interference with its performance, its outputs will not be trustable,
leading to a loss in its integrity. However, the entire system’s integrity will not be

affected until more than one-third of hosts lose their integrity.

The IDSW discovers attacks on the host operating system, its services, and the replicas running
on the host, although it is not guaranteed that all intrusions will be detected. Furthermore, it is

probable that the IDSW has generated false alarms when there has not been any actual intrusion.

Through locating an attack in host or replica, their IDSW generates alarm, which causes the
entity to stop running and the repair facility in the corrupt entity may be called by middleware.
During the time when an entity spends in its repair facility, the entity party will also stop running
until full recovery of the entity. Once the hosts’ IDSW have located an intrusion in the host
operating system or in the host service, the host with its entire replicas would be excluded from
the system. Once the host is fully repaired, it will restart all its replicas. Therefore, if there were
any corrupt replica, which has not received a repair service during the host repair, the corrupt
replica will also restart to allow operation in a safe mode. The proposed model has assumed that

the system is left on its own with minimum human intervention; thus, if excluding a host results

31

in running out of hosts, the system availability become zero until at least one host comes back to

the system. The same assumption also applies for replica’s exclusion.

The main objective of this thesis study has been to perform an assessment of security measures
and to explore the effect on other entities due to an attack on certain entities, hence a secure
mechanism for starting hosts, replicas and assigning the user request to the entities have been
assumed. In addition, it has been assumed that the same number of hosts in each layer is running
and each host runs the same number of replicas as others. Moreover, to keep the model simple a
one to one relationship has been assumed between the hosts of two layers, as well as between the

replicas in each host.
3.6.1 Attack Types

Detailed discussion on how security system boundaries have been defined in general is beyond
the scope of this thesis, yet attempts have been made to propose a model to apply practical
security problems on a wide basis. This thesis is focused on security assessment of a layered
system. Although based on Jonsson et al. [62]’s experiments there are three different types of
attack — script-based, exploratory, and innovative attacks — the proposed structure does not
model attacker’s behaviour in terms of attack type. From the security measure’s point of view,
the effect of these types is to lose trustworthiness and availability of the system. In this study, an
attack may happen in different entities of the system including the hosts and the replicas within
different layers. In the event of an attack in the host entity, host’s operating system or any
hardware or software residing in that host may become a target. This model is based upon the use
of the updated commercial Intrusion Detection Softwares (IDSW), which are equipped with the
latest information about a variety of attack types. Therefore, when assigning values to the
variables regarding the quality of IDSW, it was assumed that the software was capable of

detecting a majority of attacks.
3.6.2 Attack Propagation

An attack may occur in different entities of the system including the hosts and the replicas within
the same or different layers. In the event of an attack in the host entity, host’s operating system
or any hardware or software residing in that host may be a target. Under the proposed algorithm,

the targeted component can become a new source to launch new attack against the other attached

32

components. Thus, when a host is intruded, all the host’s running replicas will be more
vulnerable than the other replicas in the system. In other words, the presence of attack in a host
greatly increases the probability of successful intrusion into all its replicas, which are running.
This behaviour is modeled by assigning flexible rates to the replicas’ attack activity. Therefore,
replicas running on various hosts have different attack rates based on their host status. Detailed

description of this assignment is given in section 4.4

One other type of attack propagation, considered in this thesis, is the spread of attack when a
replica in upper layer has sent a request to the replica in the lower layer. A successful attack in
each layer’s replicas of the system may exploit through the next layer’s replicas while two layers
are communicating. If the sender replica has been attacked, it increases the chance of a
successful intrusion in the receiver. Therefore, the system vulnerability does not always remain
in the same stage and it would increase in the layer of which its above layer has been intruded.
Thus, rate of attack in the lower layer is affected by marking its host’s attack place as well as by

marking its equivalent replica’s attack place in the upper layer.
3.6.3 Intrusion Effects

It has been stated that once a host in a layer has been intruded and that the host’s IDSW has
detected the existence of an intrusion, the repair facility for this host will be called. Therefore,
while this host is receiving repair service, all its belonging replicas will stop running.

Furthermore, when a failure occurs in the lower layer, this layer will not be able to return any
results to the upper layer(s), resulting in unavailability of the upper layer(s). This implies that a
successful attack in the upper layer host/replica will increase the vulnerability of the relevant
replica in the lower layer, whereas a successful attack in a replica in the lower layer is a reason

for unavailability of the relevant replica in the upper layer.

33

CHAPTER 4

SAN MODEL DESCRIPTION

A detailed explanation of the proposed model is provided in this chapter. Mobius software has
been utilized to model the proposed model structure. In the last chapter, section 3.1 has provided
a description of the four primitive elements of SAN models (i.e. Place, Activity, Input gates, and
Output gates) and section 3.2 has explained the Mobius workflow and mentions about the
primary role of Atomic sub models and Composed model in the entire model. The proposed
model includes five atomic models, which are connected through a composed model. To achieve
this connection, a few places in different atomic models are shared among two or more atomic

models. The shared places have been identified using an asterisk (*).

In addition to shared places, there is another useful element called ‘extended place’, which
allows the model to handle the representation of structures and arrays of primitive data types
[75].

Mobius uses a C code for both input and output gates’ functions. These codes, as also used in

this model process, can be retrieved from Appendix A. In addition to these codes, all variables

used in the model along with their values have also been provided in Appendix A. To provide a

better understanding of the model description, a few variables or structures used in the model are

defined below:

e Three variables ‘Total_num_subs’, ‘Total_num_hosts’, and ‘Total_num_reps’ have been
used in atomic models as well as the composed model to represent the number of sub-
systems (i.e. the combination of a host in each layer along with their replicas), hosts, and

replicas in each host, respectively.

e Two user-defined variable types were introduced: ‘Reps’ variable, which is an array of
Total_num_reps integers used as the type of a few extended places which maintain
information about replicas. Another defined type of variable is referred to as the ‘Sub’

variable, which is a structure, containing two integers: WS and DB integers. This structure

34

has used as type of a few places. The value of this structure may be {0} or {1}, which refers

to the status of host in each layer. (i.e. WS for web server layer and DB for Database layer)

4.1 Composed Model

Join
oin1
Rep submodel
Subs System
Jaoin
Subsyste

Jain Join
W Graup DB/ Groyp

Kep Submaodel Rep Submodel
WS_reps WSHost DB_feps DBHost

Submaodel Submodel
WSReplica DBReplica

Figure 6 - Composed model

Five atomic sub-models, DB_Replica, WS_Replica, DB_Host, WS_Host, and System have been
replicated and joined together to construct a complete model for the proposed layered system.

Such model is illustrated in Figure 6.

As described earlier, there is a one-to-one relationship between replicas of two layers. Therefore,
the same number of hosts and replicas are present in each layer. DB_Replica and WS_Replica
sub-models are both replicated Total_num_reps times to create DB_Reps and WS_Reps

respectively.

To attain complete DB and WS structures, each host sub-model must join its replica group. This
concept is shown in the figure by joining the resultant node in previous step (i.e. DB_Reps and

WS_Reps) to their relevant host.

35

A single sub-system is created once a host in the Web server layer is connected to a host in the

Database layer.

A complete system architecture is achieved once the sub-systems have been replicated

Total_num_subs times and the resultant node has joined the System entity.

4.2 System Sub-model

num_restarted_Hosts DB_Lost_Integrity WS_Lost_Integrity reps_lost_Integrity Cnt

system_repair 5_1G3

sys_randrep 5¥S

System_prev_State num_hosts_running

sys_|1G4 sys |1G2

sys random failure sys_IG1 sys system failed hosts

Figure 7 - System Sub model

A SAN view for the System entity is provided in Figure 7. This entity has been designed to
capture the entire behaviour of the system. System failure occurs due to either a random failure
or failure of the hosts running in the two layers. The activity, sys_random_failure, handles the
random failure occurrence. Activity, sys_system_failed_hosts, fires when the place,
num_hosts_running*, has received a zero marking. This event happens once all hosts in the
system have failed or stopped running. Each sub-system consists of two hosts, WS_host and
DB_host; num_hosts_running* initially has the value of Total_num_hosts, which is twice the
value of Total_num_subs. Marking of this place is decremented whenever a host has failed and
incremented upon host’s repair. When any of the system failure activity fires, the place,

system_failed , receives a marking of 2 in case of a random failure, and a marking of 1, in case of

36

failure due to the lack of running host. The marking of place, system_failed", illustrates whether

the entire system is available (i.e. marking of 0).

All entities have been assigned two different types of repair facilities: one type for random
failure and another type for intrusion-based failure. The strategy for assigning repair facilities to
the entities is out of the scope of this thesis and it has been assumed that this mechanism has an
acceptable performance. Depending on the value of the system_failed" place, activities
sys_randrep or system_repair may be fired, both causing similar modifications in the place’s
marking value. When the entire system is repaired, all the hosts will restart and reinitialize
themselves. In addition, when the system fails because of the random failure, it is possible that
there are still operating hosts, which need to be informed to stop running. To keep the hosts up to
date regarding any changes occurring in the system status, the place System_prev_State” will

save the former status of the system prior its status.

The rest of places in the System atomic model that are shared among all the entities in the system
will be described when their applications are discussed. These places are included in the System

sub model to allow re-initialization of these places once the system has been repaired.

37

4.3 Host Sub-model

Figure 8 and Figure 9 illustrate the host SAN sub-models for a Database and Web server,
respectively. Web server and Database host sub-models have almost identical activities and
places; however, the rates of activities may vary. Rate of an activity is defined as the inversed
mean time between two activity firings. Due to this similarity, for better presentation of material
in this study, the prefixes DB and WS will be eliminated from the description names of activities
and places. A host Sub-model (i.e. Database or Web server) may modify the host’s running
status through the activities: occurrence of an attack on the host, true or false detection of the
intrusion, the occurrence of a random failure on the host, and finally the repair of the host.
Among all the places within host sub-model, only lost_Integrity, and host_failed are used in
security measurements. Fundamentally, both Database and web server host sub models in every
subsystem are in a running mode, that is an indication of the sub-system being available (i.e.
initial marking of DB_host_running/ WS_host_running is 1). There is a probability of an attack
when a host is in running mode. Attack_host activity fires under the following conditions: (a) the
host has not been under an attack, (b) the host is in running mode, and thus the entire system and
the subsystem in which this host is running, are all available. Shared place, Lost_Integrity", is
reserved for future utilization of measuring the security values. When a host is intruded, its
retrieved data will not be reliable, as this data may have been modified by the attacker.
Therefore, in spite of having the host’s data available, the results generated by the host will not
be reliable, while the host is under an attack that has not been detected by the intrusion detection

software. Incrementing marking of the place, Lost_Integrity”, is an indication of this concept.

A high quality, updated intrusion detection software facilitates the discovery of intrusion
existence in the system; however, even well developed detection software systems have the
potential for issuing false alarms. Yet, when an alarm has been accurately generated, there are a
few places where new markings will be required. Two cases of the activity, valid_alert, represent
false or true detection of intrusion; however, true detection has a higher weight. Upon true firing
of activity, valid_alert, the host fails and therefore it will need to stop running. At this point, the
host will not be capable of returning any feedback to its caller (either to the upper layer or to the
middle ware), thus the data will not be available, but the integrity would not be lost anymore

(decrementing marking of Lost_Integrity”). Furthermore, number of running hosts will

38

decrement and the sub model will not be available anymore. The justification behind this failure
is that the two hosts in two layers exchange data between one another and failure in one causes
the other not being able to continue processing, thus resulting in subsystem’s unavailability.
Moreover, all replicas running on corrupt host will be stopped. Changing host status to failure
causes Host_repair activity to be enabled. Alike to System entity, a random failure may occur in
a host sub-model that has not failed. Similar actions will be taken by firing of random _failure

activity, except that marking of place Lost_]ntegrity* will not change.
Thus, the place, host_failed, may present three different markings:

(1) A marking value of zero is granted if the host has not been attacked and is in running
mode, or when it is attacked but the attack has not been detected.

(2) A marking value of two is granted when a random failure occurs, and this triggers the
Host_randrep Activity.

(3) A marking value of one is granted, after successfully detecting of an attack by IDSW,

causing the Host_repair activity to be enabled.

The firing of activity, Host_repair, leads to the following adjustments:
(a) Re-initializing of the markings of places host_failed, host_running, and host_attacked
(b) Incrementing of the marking values of num_hosts_running place

(c) Decrementing of the marking values of place Sub_Working.

As explained earlier, when a parent is repaired, all its children will restart, forcing the marking
value of the extended place, reps_failed*, to become equal to its initial value, which is zero for

all the elements.

It has already been stated that a single sub-system is available while both of its hosts (i.e.
WS_Host and DB_Host) are running; that is no failure has occurred. When one of the hosts in a
particular sub model fails, the DB_Change_WSChange activity in DB_Host sub-model or the
WS_change_DBChange activity in WS_host sub-model will fire in order to bring the other host
and all its replicas to a halt status. The extended shared place, reps_prev_running”, has been used
to maintain the last status for the replicas in the host — the host that need to be stopped due to
failure in its other pair. Therefore, once the corrupt host has been repaired and is back to running
mode, the replicas running on the safe host, which has been stopped, could return to their earlier

status.

39

When the corrupt host has recovered and has started running, the activity,
DB_Change_WSChange/ WS_change_DBChange, will fire once again to bring the correct host

back to the running mode and its replicas back to their earlier status.

One other case in which the status of a host changes from running to not running is where the
activity, all_reps_failed, has fired. If all the replicas running on a host have failed, although host
has not failed, the host will not be able to respond to any requests. Therefore, the activity,
all_reps_failed, will be enabled and fired. This behaviour justifies the sharing condition of the

place, reps_failed*, with a host and all the host’s replicas.

As noted earlier, in certain instances the System entity enters the failure state, while the system
hosts are still in running mode. Thus, the system entity will demand these hosts to stop operating.
The activity, Stop_sysFailure, is responsible for transporting host and its belonging replicas to
stop progressing when the system has failed. Thus, this activity ensures that while the system

entity stays in the failure mode, no other activity in other entities will fire.

Once the system has been repaired, it will communicate with its entire hosts to reinitialize and to
start operating again. The Start_sysRepair activity fires to restart the host and all its replicas.
This activity is initiated only when the last status of the System entity and its status are not
identical. Upon firing of Start_sysRepair activity in each host, all its replicas will also restart and
the marking value of the local place Has_restarted will become 1 to ensure that this activity in
the host will not fire again. Marking value of the globally shared place num_hosts_running* also
increases implying that a new host has been added to the system. num_restarted_Hosts* and
Cnt* places are shared among the system entity, DB_Host, and WS_Host and are used to count
the number of restarted hosts after the system has been repaired. It should be noted that no other
activity in the entities would be fired until the Start_sysRepair activity has been fired in all hosts.

During this time the marking value of the System_prev_State* place stays 1.

The Relnit_Prev activity is fired once all the hosts in the system have restarted. The firing
changes the previous status of the system as in the case with no failure (i.e. marking of

System_prev_State* equivalent to 0) allowing all activities in all the entities to fire if other

40

predicate conditions have been met. From this point on, the system will operate fresh from

scratch, as in the case where no instance of attack had ever occurred.

Both host sub models (i.e. Data base host and Web server host) contain the activities earlier

described; however, the rates of these activities are varied.

41

daJpues 1504 80 69780

JledalTIso0y 8a

g9l 8a

w

[Ppow-qng JSOH g - 8 231y
S1S0H papeIsal wnu

palie) sdaJ e 8a a
abueyosa sbueyd gqg

pajie) sdas wnu~gg

palie) sdai"ga

pa|ie) 10U~ SA

Buuuni~sdai"ga 891/ 8a 1911 84

Buluuni~Aaid sdaLga ool ag

Aubau| 10 sdas gag

Buiuuny] A3ld IIBy 8a

ainjie; wopues 84 pogqg

Buiuunis1soy wnu 194d 8a

u3eTpieA 80 o

paxJene sdai 8aq

paxIene 1so0y 8a

AuBajuisoT

1504 2N 8a
Aubajul1sol sdas

194

[PPoW-qng ISOH SM - 6 31031

abueypgqg sfueya™
palle; 1s0y ga

Buiuuntsdal” s

-

L Buiuuni~aal
daipuel 1S0H SaA 6917 SA e

Jledal 1s0y” SAA

paxoene” sdal San AJBa1ui1s0[sdal"San

]

3uniie/ WOPUBS"SM poyTgan paley 1s0USA

d sdel g

3lle) sdal (e
>>_; e SA

palles sdal”San
g
.

Lolfaa

pauelsal seH

fedaysAs LeIS SAA

Buiuuns g 3 .Hm|>m_“_alEmHm>m

| >

Buiuuni"s1soy"wnu 190 SAA L3R pIRA S

EOI SM P34Je1E 150U S

BdbIoAL ONS

Abaiu 1s0| sdau

pajie) sdal wnu” San

e e

e}

019 Sm

A3ld Y3y S

SISOH pauelIsal wnu

4.4 Replica Sub-model

Figure 10 and Figure 11 illustrate SAN models of DB_Replica and WS_Replica, respectively.
Some of the shared conditions, which are required to permit firing of activities among replicas
and host, are summarized below:

« All the activities and places in DB_Replica and WS_Replica are identical except the

activities’ rates.

« Similar to host entities, the common predicate conditions for all activities in the Replica
sub model are: (a) both system and sub-system are working (b) system’s previous status

must be working (i.e. marking value of System_prev_State to be equivalent to zero).

« Another common precondition for all Replica’s activities, except Get_Repid, is to have

an identifier greater than zero.

« The entire extended place that has a “Reps” type, is an array of Total_num_reps
elements, which is initially set to have a value of zero for each element. The i" element of

the array refers to the replica with identical code equal to i-1.

Since the concept of lost_integrity is also applicable to the replica entity, any replica in running
mode may also undergo an intrusion event. Therefore, occurrence of an attack in a replica results
in increasing the marking value of reps_lost_Integrityis. Thus, including more than one replica in
each host will prevent sub-system integrity loss as long as the marking value of this place is less
than one third of the total number of activated replicas in the sub-system according to Byzantine
Agreement. A host will also stop running when all the running host replicas fail or stop running.

Each replica in each host is distinguished from the others by a unique identifier, which is
generated by firing of high rate activity Ger_Repid. This activity fires only for replicas running
on an available sub-system, which have not already received any identifier. Upon firing of
Get_Repid activity, if the replica has not failed, belongs to a safe sub-system, and has not been in
running mode, start_rep activity will be enabled. When start_rep activity fires, corresponding
element of extended place reps_running* will receive value of one, indicating that this replica is

working.

44

Any replica in the running mode, which has not been attacked yet, is capable of being intruded.
Upon firing of attack_rep activity, its corresponding element in extended place reps_attacked*

would get marking value of one to show the presence of intrusion in the replica.

Section 3.6.2 describes that under the proposed algorithm, when a host has been intruded; all the
host’s running replicas will be more vulnerable than the other replicas in the system. This
behaviour has been modeled by assigning flexible rates to the replicas’ attack activity.
Attack_rep activity has a rate that is common between all replicas in each layer. When a host
with running replicas is intruded, the multiplication of this rate by marking of host_attack”
allocates a higher rate to this activity. Therefore, replicas running on various hosts have different
rates based on their host status. For example, the rate for the WS_attack_rep activity in the

WS_Replica sub model is defined as:
WS_base_rep_attack_rate * (WS_host_attacked->Mark () +1.0)

If the corresponding host has not been intruded, place WS_host_attacked has the marking value
of zero, which implies the above multiplication to be equal to WS_base_rep_attack_rate, while
presence of intrusion in the host causes marking value for WS_host_attacked to be one.
Therefore the activity’s rate become 2* WS_base_rep_attack_rate. That indicates replicas

running on an attacked host are two times more vulnerable than other replicas.

Another type of attack propagation, considered in this study is the spread of attack when a
replica in upper layer (i.e. Web ser'ver) sends a request to the one in the lower layer (i.e.
Database). If the sender replica has been attacked, it increases vulnerability of the receiver. Thus,
rate of attack_rep in the lower layer will be affected by marking its host’s attack place and also
marking of its equivalent replica’s attack place in the upper layer. Thus, the attack rate of

DB_attack_rep activity in the DB_Replica sub model is defined as:
DB_base_rep_attack_rate * (DB_host_attacked ->Mark () +1.0) *
((WS_reps_attacked->Index (DB_rep_id->Mark ()-1) ->Mark () +1.0)

The above multiplication statement indicates that the rate of DB_attack_rep activity is affected
by the marking value of the DB_host_attacked place and also by marking value of the relevant
element in the WS_reps_attacked extended place. If any of these two places has marking values

greater than zero, the rate of DB_attack_rep activity will become twice as it originally is (i.e. if

45

both DB_host_attacked place and WS_reps_attacked have marking values greater than zero, the

rate of DB_attack_rep activity quadruples its base value.)

Moreover, referring to description of host sub-models, when an entity has been intruded,
although it returns a feedback to its caller, the response will not be trustable due to a loss in the
integrity. Therefore, occurrence of an attack in a replica results in increasing the marking value
of the reps_lost_Integrityis place. However, since each host includes more than one replica, the
integrity of the subsystem will not be lost until the marking value of this place has become more

than one third of total number of activated replicas in the subsystem (Byzantine agreement).

Once reps_attacked place receives marking value of one, the valid_alarm activity will be
enabled, which may produce a true or false alert, similar to the case described for host sub-
model. Firing of valid_alarm’s true alert leads the Replica model to the failure mode, where the
rep_repair activity will be ready to recover the replica. In terms of modification in places
marking value of the model, firing of the rep_random_failure activity will also have the same

consequence as that for valid_alarm.

In both cases replica will stop running and will designate a value of 1 in its equivalent element in
the extended place, reps_failed*. The only difference between the outputs generated by the
firings of the rep_random_failure and valid_alarm activities is decrementing the marking of

place reps_lost_Integrityis after firing of the valid_alarm activity.

When a replica has been repaired, it will remove its flag from extended shared places
reps_failed* and reps_attacked* and will start running once again. As earlier mentioned, when a
host status in one layer changes from running mode to stop running mode, and vice versa, the
other host in the other layer has to follow the same status modification. Similar behaviour will
exist for the replicas. Activities DB_Changes_due_to_WSRep in DB_Replica and
WS_Changes_due_to_DBRep in WS_Replica sub models are incorporated to perform such
adjustment. These activities will fire under two distinct conditions: (1) when the relevant replica
in the other layer (e.g. Repl) has failed- firing of this activity will bring the safe replica (e.g.
Rep2) to the stop running mode; Rep2 will remains in halt mode until Repl has been repaired,
(2) once the failed replica (i.e. Repl) has been repaired, Changes_due_to_DBRep activity fires
once again to transport the safe Replica (i.e. Rep2) from the stop running mode to the running

mode.

46

PPow-qng exNday g(- (f 2ms1g

pIsdal gg

Piday a8 5g 1oifaa pIdas"ag zoiaa dal pEE e

*—r—|

Buiuunt"sdas"gan

997aq Jedal das"gg

69 aa daygpuel eadal gg

. Buiuuna
pajie) ddal ’ .

uga

ga nalle) sdas saa

pajie) sdal”

89 ag ainies wopues das gqg _ B
daysan 01 anp~sabueyn gqg

PlleA ga 5o a0 paxylepe sdaigq roifea Awbaiso/ sdai g

das3agne 9g

AbBaju 150 sdal 31e1s Asud WwalsAs palie) WaisAs Bupiioan ong

@ e e @

paxaene isoy gag paxoene sdai San

@ m

8y

pPpow-qng eaday " SAA - 11 24n31]
pI sdat Sa

Jledas das SAA pidas 186 S LoiTsi pIdai S Z9 SAA dal Hels SAA

Buiuuniy sdas gqg

daypuel eandal” Sa

6Ol SAA

pajes sdai"g Buiuuny sdas san colfsm pale) sdas ga

o — aunjie wopues das S

891 SA é

pajie) sdal”

daygg o1 ang sabueud S

WiEle PIBA SM goiTga paoeme sdas sam poifsm AubajuiTisolsdal sm

-+ >— B 2

dai 328118 SAA

AuBaluTiso"sdas a1e1sTAsd WalsAs pajie) walshs Buplopt ONS PaXoIene 150U SAA

CHAPTER 5

RESULTS

This study has proposed a model to assess availability and integrity as two key system security
measures of a layered structure. Mobius tool has been used to design the stochastic activity
network sub-models, and different studies were conducted to define the interested security

attributes. The security measures evaluated by this model for specified time interval include:

e System availability: unavailability of a system represents the fraction of time the system
does not respond due to the following reasons:

o All the sub-system’s hosts have failed or stopped running. This occurs due to a
random failure or failure after successful detection of intrusion in the host. The
system is then available while at least one of its sub-systems is available.

o Failure of all the replicas running on all the hosts while the hosts are in running
status. This failure causes the host to stop responding and consequently do not

answer the caller.

e System integrity, which indicates the portion of time the system, is available but the
service is inappropriate in the study interval. The system middle ware receives request
from one of the sub-systems and therefore the integrity of the system in any fraction of
time is defined as the integrity of the sub-system, which returns the response to the

middle ware. The inappropriate service of the system may be due to:

o The presence of intrusion in at least one third of total number of hosts in the entire
system (i.e. Byzantine Agreement for hosts).
o The presence of intrusion in at least one third of total number of replicas in the
entire system (i.e. Byzantine Agreement for replicas).
The availability and integrity security measures, discussed in these studies, are quantitatively
computed in form of the reward functions in the Mobius software. In the rest of this chapter

various studies we conducted by the model are explained.

49

In the first and most basic experiment, we evaluated the security measures for different number
of sub-systems as well as different distribution of replicas in each sub-system’s host. All the
following experiments inherit the study parameters from the first one except the parameter of
interest in that particular study to assess the effect of the specified parameter in the security

attribute of the system.

Studies 5.2 and 5.3 compare the intrusion tolerance of the system when the rate (i.e. the number
of time an attack against the host happens in each time unit) of attack against each layer’s host
increases. These studies has performed on the database layer and then on the web server layer.
Finally, in Study 5.4 the security measures of two layers are compared together to show how

each layer influences the other layer’s security measures.

The next three studies (i.e. Studies 5.5, 5.6, and 5.7) compared security attributes of the layered
system while the quality of intrusion detection software varies. As already stated, it is possible
that intrusion detection software alarms inaccurately. By increasing the quality of IDSW, the
number of false alarm reduces. Therefore, we studied the security measure of the system in case
of increasing valid alarm rates of IDSW in each layer’s host. Also as previously stated, the last
study of this set shows how quality of each layer host’s IDSW may cause the other layer to have

higher or lower security measures.

In three more studies (i.e. studies 5.8, 5.9, and 5.10), each layer replica’s attack rate rises, and the
impact of this increment in each layer and also in comparison of both layers are evaluated.

The last set of studies (i.e. studies 5.11, 5.12, and 5.13) calculates security measures of the
system when the quality of replica’s IDSW in each layer changes. Some of these parameters (for
example Attack_host_rate, Base_rep_attack_rate, valid_alert_rate and Rep_valid_alarm_rate)

have been taken from Singh et al. [5].

For better consistency, duration of one hour has. been considered as a time unit. All the
experiments have been simulated by Mobius for an interval of 1-100 time units (hour).The
followings are the parameters, which have been used with the same values in all the studies:
® Total_num_reps/ Total_num_subs: For each experiment, except the first experiment, the
number of replicas is set to be two and four. In addition, the number of sub-system is set

to be two and four, which means four and eight hosts respectively.

50

Random_failure_rate/ Rep_random_failure_rate: While very rare to occur, random
failures such as electrical power outage are also taken to consideration. Random failure
rate for Database and Web server host is 1.0E-4. Replica’s random failure rate in each

layer is equal to 0.001.

Host_randrep_rate/ Host_repair_rate: A variety of repair facilities for attacked failures
and random failures are also included in this model. Each layer’s host’s repair rate in case

of random failure is set to 0.001 and in case of failure caused by attack is sat to 5.0.

Replica_randRep_rate/ Replica_repair_rate: replicas repair rate for random failure

equals to 0.01 and repair rate after failure by intrusion is 10.0.

prob_succ/ rep_prob_succ: Intrusion detection probabilities are always considered to be
99% in case of existence of attack in host and to be 90% in case of presence of attack in

replica.

Replica_getid_rate/ Start_rep_rate: the rate of assigning an identifier to each replica in

each host is 100.0 and the rate of starting each replica is equal to 50.0.

Change_WSChange_rate/ Changes_due_to_WSRep_rate: all replicas and hosts are
always monitoring the status of their part to switch their own status as needed from
running to stop running or in opposite manner. The rate of this monitoring is 10.0 for

both components.

All_reps_failed_rate: Each host may switch to stop running status if all of replicas
running on it have failed. The rate of this check to decide whether the switch should

occur or not, is set to 5.0 for the hosts in both layers.

System_failed_hosts_rate/ system_repair: the whole system fails when the entire hosts in
both layers stop running. The rate for this event is 1.0. Repair rate for the whole system is

also 1.0.

Start_sysRepair: when system is repaired, all the hosts reinitialize themselves. The rate

for each host re-initialization is 5.0.

51

® Attack_host_rate/ Base_rep_attack_rate: rate of attack against host is 10.0 unless it
specified in the experiment. Base rate for replica attack is equal to 40.0, which may

change in different replicas based on their host attack status.

e Valid_alert_rate / Rep_valid_alarm_rate: rate of true detection of attack for host and

replica is set to 5.0 and 10.0 respectively.

In the following studies, all the presented results have a 90 percent confidence interval. For
better illustration, in addition to the base graph of the experiment for a specific variable, two
separate graphs are plotted for which smaller range of security measures (i.e. Availability and
Integrity) are shown. For instance, figure 14.1(a) is divided into graphs 14.1(b) and 14.1(c) in
which micro variations of availability measures for variable DB_Artack_host_rate are better

presented.

5.1 The Effect of Replica Distribution and Sub-system Quantity on

Security Measures

System Security measure for 3 replicas in each host

700.00 -
90.00 -
80.00 -
70.00 -
60.00 -
50.00 |
40.00 -
30.00
20.00 -
710.00 -

0.00

@ Availability
O Integrity

Availability/
Integrity

2 3 4 5 6 7
96.05 | 97.49 | 97.90 | 97.98 | 98.11 | 98.13
95.45 | 96.85 | 97.09 | 97.13 97.13 | 97. 15
number of sub-system

Figure 12- System security measures for different number of sub-

systems and different distributions of replica in each host

Figure 12 contains graphic illustrations of the results obtained from the proposed model. This
figure shows the changes in system’s availability and integrity for 1 host in each layer, 3 replicas

running in each host, and sub-systems varying from 1 to 7. As can be seen, there is a significant

52

difference between system security measures when one sub-system is considered compared to
cases with more than one sub-system for the whole system. However, having more than four
sub-systems does not change the security attributes very considerably. Therefore, considering the
expected outcome as well as the target cost-to-benefit ratio, it is the system administrator’s role

to determine if more than four sub-systems must be included in the system.

Figure 13 presents the effect of increasing number of replicas in each host on system security
measures when the number of sub-system is kept constant. Exploring the variations of
availability and integrity in these graphs, it is clear that increasing the number of replica will
increase system security attributes, accordingly. Once again, it must be noted that while levels of
availability and integrity significantly alter when moving along the X-axis from 1 to 4 (i.e.
number of replicas changing from 1 to 4); the security measures value will not radically change
when we go further. Based on this observation, one could determine it adding more than four

replicas in a host is not a beneficial use of available resources.

53

13.1
98% — — — He———— \
B = " % o num_subs=2
= 98% _
% me&wmwk*”m%“‘*mwmmewﬁmwgwmnum‘SUbs_'%
< 97% P UM _Subs=4
3 ———t— num_subs=5
Z 97%
e UM _SUbS=6
96% T w— e num_subs=7
S e B
1 2 3 4 5 6 7
num_reps
13.2
97% —
_ P T
o7y, T T - — = — num_subs=2
> = e AUM_SUbS=3
= 969
’G'n 96% T T® e UM _SUbS=4
L
- P ——— num_subs=5
= 96% -
e — = ——a— num_subs=6
95% P ~——e— num_subs=7
" i
95% ¥
1 2 3 4 5 6 7
num_reps

Figure 13- Behaviour of System Security Measures with Respect to Number of Sub-systems and Replicas

As a convention, in this thesis variations in system availability and system integrity are
illustrated in graph categories (1) and (2), respectively, which will be presented in the subsequent
sections. Each study has a combination of four experiments, which are different in terms of in
number of sub-system and replicas in addition to the object variable for a particular study.
Different replica and sub-system combinations are listed below:

® | sub-system with 1 host in each layer and 2 replicas in each host

® 1 sub-system with 1 host in each layer and 4 replicas in each host

® 4 sub-systems with 1 host in each layer and 2 replicas in each host

® 4 sub-systems with 1 host in each layer and 4 replicas in each host

54

5.2 The Effect of Database Host Attack Rate Changes on Security

Measures

Figure 14.1 and Figure 14.2 illustrate a study where attack rate in data base host increases from
10 to 20 in increments of 1.0. These figures show that both system security measures (i.e.
availability and integrity) decrease as the Host Attack rate increases. System security measures
tend to improve when increasing the number of replicas and the number of sub-systems. For
better illustration, Figure 14.1(b) and Figure 14.1(c) represent closer views of portions of Figure
14.1(a) in which the number of sub-system was chosen to be 1 and 4, respectively. Comparing
these two graphs shows that the effect of DB_Attack_host_rate is much higher when smaller

number of sub-systems constitutes the system, while in both cases an increase in
DB_Attack_host_rate will lead to a loss in system security measures. It is worth to point out that
since an attack event may propagate from the affected host to the corresponding replicas, with no
attacks detected, the rate of the selected replica attack is much more than the largest host attack
rate. Therefore, increasing the rate of attack against host not only affects host vulnerability, it
will also increase the vulnerability of replicas running on the host, and adversely increases the
number of failed replicas in each host, and ultimately affecting system availability and integrity
by different means. The adverse increase in the number of failed replicas is due to maintaining

the same attack detection rate as well as identical rate of replica repair.

55

92. %
82.% -~ == nUM_subs=1
o, 72.% num_reps=2
= -« = num_subs=1
= 62.% num_reps=4
-5 52 9 o o nuUM_subs=4
= e num_reps=2
2 42. % s NUM_SUDS4
32.9 num_reps=4
22. % Ot B b 0O b AR b AR o S o A B R R ok
10 11 12 13 14 15 16 17 18 19 20
DB_attack_host_rate
23.8%
"
23.6% e
o
o, 23.4% e
- S
= 232% w
= “‘\ T a
S 23 % - i
‘= S (S oo =@ nUM_subs=1
> 228% i . Slen num_reps=2
< 226 % Tre g ~——u + = num_subs=1
22.4% “~“”-""~~~’ num_reps=4
222 %
10 11 12 13 14 15 16 17 18 19 20
DB_attack_host_rate
97.9 %
97.7 % 2¢ e
2 975% B P i
= = A = num_subs=4
-g 973 % ; num_reps=2
=) ey NUM_SUbS4
0, -
S 97.1% . gt R num_reps=4
< 96.9% e e T
96.7 %
96.5 %

10 11 12 13 14 15 16 17 18 19 20
DB_attack_host_rate

Figure 14.1- The Effects of DB Host Attack Rate changes on Availability

56

14.1(a)

14.1(b)

14.1(c)

100. %
90. %
80. % ~ === num_subs=1
num_reps=2
..:‘ 70. % ~—w « =~ num_subs=1
) 60. % num_reps=4
b = - numM_subs=4
S 50.% num_reps=2
20. % e NUM_SUDS4
e num_reps=4
30. %
20.% Tooommiie— e e e e e e g
10 11 12 13 14 15 16 17 18 19 20
DB_attack_host_rate
22.5%
P e
22. % B
21.5% —— T,
)
'E 21. % == @== num_subs=1
80 20.5% num_reps=2
2 . & = nuUM_subs=1
et 20.% num_reps=4
19.5 %
19. % Fo=mtmmateeoay B giehie T e e —,
18.5%
10 11 12 13 14 15 16 17 18 19 20
DB_attack_host_rate
97. %
96.9 %
96.8 %
Z 96.7% ~ b = num_subs=4
.‘E i num_reps=2
80 96.6 % M NUM_SUbs4
= % num_reps=4
= 965% X 5
96.4 % S DL S
Mo
96.3 % e
96.2 %

00 11 12 13 14 15 16 17 18 19 20

DB_attack_host_rate

Figure 14.2- The Effects of DB Host Attack Rate changes on Integrity

57

14.2(a)

14.2(b)

14.2(c)

5.3 The Effect of Web Server Host Attack Rate Changes on

Security Measure

Similar experiments as described in the previous section were performed for the Web Server
Host Attack Rate. The results of these experiments also prove similar results as those observed
when changing the variable DB_Attack_host_rate. In these experiments, Database host attack
rates, replica attack rate in both layers (i.e. host and replica), and the rate of detection of any
intrusion in the system are kept constant at values of 10, 40, 5, and 10, respectively. The
following graphs, however, were plotted using the results obtained when increasing Web Server

Attack Rate from 10 to 20 in increments of 1.0.

It is noted that while the number of sub-system and replica increase, the availability and security
measures of the system noticeably convalesce; yet increasing the rate of attack in web server host

has the opposite effect in the behaviour of system security measures.

58

15.1(a)
B P L e L L L e e .Y
91. %
o == @== num_subs=1
z Bl num_reps=2
= 71.% ®» - = num_subs=1
'c% 61. % num_reps=4
= = b = num_subs=4
g 51.% num_reps=2
< 1% e NUM_subs=4
31. % num_reps=4
. /0
21.% 4§ ‘h*‘éb*‘&b”*b*“-b*‘ﬁ&h‘b*‘&hrﬂhrwﬂ’
10 11 12 13 14 15 16 17 18 19 20
WS_attack_host_rate
238% o 15.1(b)
23.6% .y
23.4% e
.*? 23.2% o ok e - « == num_subs=1
E 23 % P e num_reps=2
< ’ T e -
= % Sag ; — & + = num_subs=1
§ 2 8% B e et num_reps=4
< 226% iR =y
e
22.4% PR,
22.2%
10 11 12 13 14 15 16 17 18 19 20
WS_attack_host_rate
15.1(c)
97.9% |
97.7 % k\
>
= 975% » i~ num_subs=4
2 973% \ um reps=2
= ‘,\'\—"“"—"""—‘""‘““"‘-ﬂ-——n i ey UM _SUDS=4
® 971% 4 num_reps=4
> i Iy R T =
< 96.9% i
96.7 %
96.5 %
10 12 14 16 18 20
WS_attack_host_rate

Figure 15.1- The Effects of Web Server Host Attack Rate Changes on Availability

59

B — 6 % - 3 - s ST S—
88. %
- 78. % it num_subs=21
num_reps=
-'E 68. % —® « = num_subs=1
é‘) 58. % num_rezs=4
= = b num_subs=4
= 48.% num_reps=2
38. % e NUM_subs=4
28.% num_reps=4
18. U e e o e i o o e o o T LR e -
10 12 14 16 18 20
WS_attack_host_rate
22.5% o
22.% .
21.5% e
> 21.% -
En 20.5 % - num_subs=21
num_reps=
<°=.’. 20. % ~—® + = num_subs=1
= 19.5% num_reps=4
19.% =g
18.5 % e
18. %
10 12 14 16 18 20
WS_attack_host_rate
96.9 % ,\
96.85 % \
96.8 % \
,*:' 96.75 % = > : - = num_subs=4
’5“3 96.7 % e % num_reps=2
k) ' °° P e - M\ ——¥— num_subs=4
5 96.65% ~ N__“__\’\ num_reps=4
96.6 % Toe i~
96.55 % o
96.5 %
10 12 14 16 18 20

WS_attack_host_rate

Figure 15.2- The Effects of Web Server Host Attack Rate Changes on Integrity

60

15.2(a)

15.2(b)

15.2(c)

5.4 Comparison of Rate Changes in Database Host Attack and
Web Server Host Attack

As noted earlier, the main objective of this research has been to evaluate security measures of a
layered architecture. Focusing on the results of the conducted experiments, including those
obtained from altering the DB_Attack_host_rate and WS _attack_host_rate variables, this section
will explore the effects of changes in each layer attack rate on the other layer. Figure 16.1(a) and
Figure 16.2(a) show the variation of availability and integrity measures in presence of 1 sub-
system and 4 replicas in the system, while the host attack rate in both layers changes from 10.0 to
20.0 in increments of 1.Figure 16.1(b) and Figure 16.2(b) present similar experiments except the
number of sub-system that in this case is set to be 4. In each experiment, rate of attack layer is

kept constant at 10.0 while the attack rate in the other layer is allowed to change.

When comparing the two plots from part (1) of each experiment, it can be noted that once all the
rates, except DB-attack-rate and WS-attack-rate, are kept identical, increasing attack rate in Web
Server layer will have a more severe impact on system availability while increasing the attack
rate in Database layer will less severely influence system availability. The reason for such
behaviours is that while both host attacks (i.e. Web Server and Database) may propagate into all
replicas running on the attacked host, presence of any undetected attack in the upper layer (i.e.
Web server) also propagates into the lower layer (i.e. Database). The latter propagation causes
more vulnerability of the Database layer and consequently decreases system availability. While
increase in attack rate in both layers reduces system availability, the upper layer is more
susceptible since vulnerability always has a downward propagation and therefore an increase in
attack rate for the upper layer will increase the possibility of intrusion existence in the lower

layer (i.e. larger reduction in System Availability).

Comparing Section (2) of each graph (i.e. system integrity) will lead to similar results. As earlier
mentioned, system integrity is lost when number of undetected hosts targeted with a type of an
intrusion becomes more than one third of total number of hosts in the system. In addition,
integrity loss may happen when the number of undetected intruded replicas is greater than one
third of total number of replicas in the system. When attack rate of Web Server Host increases,

all replicas running on that host will have a higher probability of being intruded, while the

61

quality of intrusion detection software remains unchanged. While undetected attack in Web
Server Host propagates into Web Server replicas, there is a possibility of propagation in
vulnerability from Web Server replica to its party in the Database layer. Attack propagation is
not a possible event upward from the lower layer to the upper layer (although it remains a
possibility for an attack event to be broadcasted from database host into its replicas). Therefore,
the Lost_Integrity place that keeps track of the number of undetected attacked entities will have a
higher value when attack rate increases in Web Server layer, which will then result in limited

system integrity when upper layer host attack rate is increased for a similar experiment now

performed in the lower layer.

23 8 % it 16- 1 (a)
g ~_
e
- L Te
\ “~
= N TYwal
= Ny T
§23.4% - L .,\N“* “.,,,...._,‘\%\\
g ~— e el
2 -~
< \ «.“
. -
N s
TN
23.% ~
10 11 12 13 14 15 16 17 18 19 20
attack_host_rate
~~-~¢ -~ Data base / num_subs=1 —— u- — WebServer / num_subs=1
num_reps=4 num_reps=4
—— 16.1(b)
1(..,\
B bt Ty e R
& - -
-~
>]97.6% : e -
= \ Theeene
= :
< Y
S 97.4% \ -
< \
97.2% b
—
~=
97. %
10 12 12 13 14 15 16 17 18 19 20
attack_host_rate
==~~¢~-~ Database/num_subs4 - s — WebServer / num_subs=4
num_reps=4 num_reps=4

Figure 16.1- Comparison of Rate Changes in DBHost and WSHost Attack (A vailability)

62

224%
Kew
S
N
22.% ' b
.. S
3} ‘--.\ . “\,,_
= ‘\..._..7-*-'::9?;{:».._’_____‘
21.6% % A
- e . “\\
¥ g
E T .. y ‘*~..
W ——e
212% e
10 11 12 13 14 15 16 17 18 19 20
attack_host_rate
~wwgp~~ Data base / num_subs=1 ww @ = \WebServer / num_subs=1
num_reps=4 num_reps=4
96.9 % <_
% “"\\
~
96.8 % \ -
i T -
\‘4.—-‘-—. N ".‘-""“"-.._“_
)] AR R .
T 96.7% - g
&b N T
(5] L.
E G e s
= 96.6 % N
\I
96.5 %
10 11 12 13 14 15 16 17 18 19 20

attack_host_rate

w4 =~ Data base / num_subs=4
num_reps=4

v @ == \WebServer / num_subs=4
num_reps=4

Figure 16.2- Comparison of Rate Changes in DBHost and WS Host Attack (Integrity)

63

16.2(a)

16.2(b)

5.5 The Effect of IDSW Quality on Security Measures in Database
Host

As noted earlier, almost no intrusion detection software (IDSW) is capable of detecting all the
intrusion into a system. High quality and updated IDSW facilitates true detection of an intrusion
in a system, yet there always exists a potential for false detection alarm while in reality no
system intrusion is in place. To better explore this topic, a set of studies were desi gned to analyze
the impact of the quality of the IDSW on the system security measures. Specifically, we studied
the effect of the rate of valid alarms. For these experiments, all the parameters are kept identical
to those used in the previous experiments, except that the rate of valid alarms generated by the
intrusion detection software on each host was set to vary from 5.0 to 15.0 with 1.0 increment.
The value of this range is selected at an extreme for better illustration and such a large value may

not be experienced by intrusion detection software.

Figure 17.1 and Figure 17.2 respectively illustrate the availability and integrity variations when
the quality of intrusion detection software (IDSW) increases. The experiments shown in Figure
17.1 and Figure 17.2 recommend that a higher valid_alert rate (i.e. quality of IDSW) results in a
significant improvement in the integrity of the system due to the detection of larger number of
attacks in the Database host by the IDSW. Such detection lowers the probability of propagation
of an attack from the hosts to the replicas. However, by detecting an attack in the database host,

the corrupt host enters into the failed state, resulting in less availability of the system.

Figure 17.1(a) and Figure 17.2(a) illustrate behaviour of a system that includes 1 to 4 sub-
systems with 2 and 4 replicas. Figure 17.1(b), 17.1(c), Figure 17.2(b), and Figure 17.2(c) are
provided to allow better observation of details of Figure 17.1(a) and Figure 17.2(a) when a

design is proposed incorporating 1 and 4 sub-systems along with 2 and 4 replicas in each host.

64

97.% - - o 54 s 3¢ = o5 24 %
87. %
77. %
> oy = numM_subs=1
.*_:':' 67. % num_reps=2
% [
-c% 57. % w . = num_subs=1
T'g 47. % num_reps=4
:5 37. % « s = num_subs=4
27.% num_reps=2
17. % I T bgndi, - O BTt TP e UM _Subs4
0"---9-..-...____*_._“ TR A} v B num_reps=4
7. % b e SRR R &
6 4 8 9 10 11 12 13 14 15
DB_valid_alert_rate
23.% k:" .
e
2% 5 s
& 19% .- e
= 17.% e it
=2 % ‘\\ B P
_.E 15.% et 09 - = e == NUM_Subs=1
§ R i num_reps=2
13. % R o
< 0 \"* ® e @ = num_subs=1
11. % e Y num_reps=4
i
9. % o ~.._'.~~-‘
7.% T
6 7 8 9 10 11 12 13 14 15
DB_valid_alert_rate
97.75% O
A ‘m
TLTH e e ——
97.65% T —
oy g
= 97.6% =
= N, oy UM _Subs=4
= 97.55% i iy num_reps=2
.a [l — v
»> 97.5% . e UM _SUbLS4
< 97.45 % -~ num_reps=4
« o i
5
97.4% vy
97.35%
6 7 8 9 10 11 12 13 14 15

DB _valid_alert_rate

Figure 17.1- The effects of IDSW quality of Database host on Availability

65

17.1(a)

17.1(b)

17.1(c)

79. %
-~~~ ~= num_subs=1
::’ 69. % num_reps=2
=
%0 59.% ~ @ ~— num_subs=1
N ri =4
S 49.% num_reps
% = e o nUM_subs=4
39.% num_reps=2
29.%
. o i e o e o G e UGS L e NUM_Subs4
19.% s ____;—;”_3::..,.::_-*-——:— i num_reps=4
5 6 7 8 9 10 11 12 13 14 15
DB_valid_alert_rate
28.%
. * -
27.% g M
26.% = - ¥ -l
> 25.% o Ll ',f’ -~~~ num_subs=1
= . P R num_reps=2
: 24.% - o . o o p
é‘) 23. % e ’/ ~ @+ =~ num_subs=1
= P : I S - num_reps=4
= 22.% 47
4
4
21. % o
20.% et
4
19. %
6 7 8 9 10 11 12 13 14 15
DB_valid_alert_rate
99. % l‘e/'
98.5 %
b 98. % / e o NUM_SUbs=4
= g num_reps=2
&’ e bs4
~ o 4 num_subs
.5 HI o it num_reps=4
- o
97.% e &
t
96.5 %

5 6 7 8 9 10 11 12 13 14 15

DB_valid_alert_rate

Figure 17.2- The effects of IDSW quality of Database host on Integrity

66

17.2(a)

17.2(b)

17.2(c)

5.6 The Effect of IDSW Quality on Security Measures in Web

Server Host

In the foregoing studies, experiments were conducted for system web server host similar to those
for system database host. This section describes study the impact of higher quality web server
host IDSW when the number of true detection of intrusion increases from 10.0 to 20.0 at 1.0
increment. Figure 18.1(a) and Figure 18.2(a) demonstrate the results for a design experiment
containing | subsystem, 4 sub-systems, and each host in the sub-system holding 2 and 4 replicas.
The portion of 1 and 4 sub-systems are shown in part (b) and (c) of these figures. As can be seen,
increasing the value of WS_valid_alert_rate (i.e. increasing number of actual detected attacks)
when the attack and repair rates are kept identical, causes a negative effect in the availability of
the system. When the web server host’s attack is detected by the IDSW, the status of the
corrupted host changes to failed mode until it is fully repaired. Moreover, during this period all
the replicas running on the corrupt host stop running. Therefore, number of hosts running in the

system decreases causing reduction system availability.

From the integrity point of view, improving the IDSW quality has a positive impact on the
system integrity. The system integrity is lost when the presence of intrusion in the host is not
detected. During this period (i.e. presence of undetected attack in the host), it is possible that the
attack propagates from the web server host into all replicas running on it. Furthermore, the attack
may broadcast from an unobserved corrupt replica in the web server layer into its party in the
database layer. However, by increasing the value of WS_valid_alert_rate the time interval
between occurrence of an attack and its detection becomes shorter. Therefore, not only it causes
less time to observe the attack, but also the probability of propagations of attack from web server

host into its replicas and also from web server replicas into database replicas are reduced.

67

e S ey T e TrTae e e e b~

97. % % 346 36 = 2 = ¢ ¢ ®
87. %
>, 77. % == @== num_subs=1
= num_reps=2
= 67.% —® - = num_subs=1
E 57.% num_reps=4
= = o= numM_subs=4
> 47. % num_reps=2
< 37. % e NUM_SUbDS4
-0 num_reps=4
27. %
l TSN S e B
17. % b o e -&m.a,«.-.g__*:_-;, - i = o n =iz
5 6 7 8 9 10 11 12 13 14 15
WS_valid_alert_rate
24. %
235% Fiem
23.%
22.5% \\ . "
> 22.% ~
=215 ‘y: b Hi o < =@== num_subs=1
3 21.% e s
o) . /0 w7 T num_reps=2
<20.5% B vemmme e
‘" 20.% T i e =+ = num_subs=1
> 19.5% gy . num_reps=4
< 19.% e = S
18.5% e T
18. % e o
17.5%
17. %
5 6 7 8 9 10 11 12 13 14 15
WS_valid_alert_rate
98. %
97.9 %
297.8% = = num_subs=4
%97 7% Jt-—-—-w.._,_“ _ num_reps=2
% I % == _ » \ e NUM_SUbDS4
Z97.6% I — um-repst
b S e g &
97.5% <«
Mo - 4
97.4% -

5 6 7 8 9 10 19 12 13 14
WS_valid_alert_rate

15

Figure 18.1- The effects of IDSW quality of Web server host on Availability

68

18.1(a)

18.1(b)

18.1(c)

99. % =% ~ 5 = o P K
89. %
79. % «=@== num_subs=1
num_reps=2
%’ 69. % ——u + = nuUM_subs=1
) " num_reps=4
2 59.% = -4 = num_subs=4
E‘q 49. % num_reps=2
e UM _SUDS4
39.% num_reps=4
29.% -
19.% tmmezb=sn e apibiipe el L e et alatnbatn
5 6 7 8 9 10 11 12 13 14 15
WS _valid_alert_rate
25. %
24- % PR e o =8
L p
> 23.% — P === nuM_subs=1
.E - oo T num_reps=2
" .
?30 22.% e I ma w @ = num_subs=1
=] ,.-"""l num_reps=4
= 21.% & -
L4
ISP SR g
20.% g
,’
19.%
5 6 4 8 9 10 11 12 13 14 15
WS_valid_alert_rate
98. %
0 i
97.5% 7 = i = nUM_subs=4
.‘? : - num_reps=2
50 97. % —— e NUM_SUbs4
- ? e e & num_reps=4
b=t
&
96.5%
96. %
5 6 7 8 9 10 11 12 13 14 15

WS_valid_alert_rate

Figure 18.2- The effects of IDSW quality of Web server host on Integrity

69

18.2(a)

18.2(b)

18.2(c)

5.7 Comparison of Database Host IDSW Quality and Web Server
Host IDSW Quality Changes

In section 5.4 the result of changing host attack rate in one layer was studied against the other
layer. This section will study the effect of web server host valid rate enhancements in contrast to
those for the database layer. The major results of this study are highlighted in Figure 19.1 and
Figure 19.2.

Figure 19.1(a) and Figure 19.1(b) show descending plots for system availability with a design
composed of 1 and 4 sub-systems, respectively, allowing for ascending in the value of
valid_alert_rate of each host layer. As explained in Sections 5.5 and 5.6, system availability
decreases for both layers. Yet, the negative influence of DB_valid_alert_rate (i.e. valid alarm
rate of database host) is much more than that of web server layers. Per Section 3.6.2, based on
the system architecture status quo, any attack in the system may propagate downward from web
server layer through the database layer. Therefore, existence of intrusion in the upper layer
increases the vulnerability of the lower layer in the system. The effect of intrusion occurrence is
system unavailability that spreads upward from database layer to web server layer; thus,
detection of attack in the lower layer causes the database host to enter a failed mode, since
database host will not be able to respond to the web server request, resulting in less availability

of the system.

70

e

24. % e
23.% Rt
22.% N
> 21.% s s
= 20.% kel M0 e TEL... _NET I C———
2 19.% T o
= 18. % Mg
17. % >
< 16% el RAY
15. % P
14.% e e
: 13. % *
» 5 6 7 8 9 10 11 12 13 14 15
1 .
valid_alert_rate
-=#~~ Data base / num_subs=1 - w = WebServer / num_subs=1
num_reps=4 num_reps=4
97.8 %
- 97.75 %
= 4»—-—-—--*—: G ——— ;
2 917% IS
—t . 0 l-.‘
'§ \\\\k““*‘“-«o—---—-——,,_.
Y
< 97.65% b S
B ittt D PSR
-
97.6 %
5 6 7 8 9 10 11 12 13 14 15
valid_alert_rate
-~ =@~ Data base / num_subs=4 - - = \WebServer / num_subs=4
num_reps=4 num_reps=4

71

Figure 19.1- Comparison of DB Host and WS Host IDSW quality Changes (Availability)

19.1(a)

19.1(b)

28. %

27. %
2 26. %
=
go 25. %
=
= 24.%

23. %

22.%

5 6 7 8 9 10 11 12 13 14 15
valid_alert_rate
~=#==~ Data base / num_subs=1 — - = \WebServer / num_subs=1
num_reps=4 num_reps=4
99. % T
&""J'
98.5% e
’I
> s
-‘E 98. % A —
%ﬂ ""' / - P
N £
597.5% /', P
”’a : i o
97. % = e
96.5 %
5 6 7 8 9 10 11 12 13 14 15

valid_alert_rate

~=%== Data base / num_subs=4 -~ « = \WebServer / num_subs=4
num_reps=4 num_reps=4

Figure 19.2- Comparison of DB Host and WS Host IDSW quality Changes (Integrity)

72

19.2(b)

The foregoing studies, designed for specific set of sub-systems, hosts, and replicas, illustrated
gradual changes in security measures when both attack rate and valid detection rate for a host in

each layer were allowed to increase.

A second set of studies have been conducted to determine the behaviour of the system by
monitoring the changes in the security measures when attack rate and valid detection rate of a
replica in each layer have been increased. The remainder of graphs in this chapter will illustrate
such experiments. Graph categories (1) and (2) have been reserved to represent the variation in
availability and integrity of the system when replica’s attack rate and replica’s valid alert rates
were increased. Note that high-ending values of this range of values is rather extreme and may
not be experienced by a real system. These values have rather been exaggerated for better
illustration of availability and integrity variations caused by replica attack. As can be seen,
similar outcomes have been generated when monitoring the behaviour of system security

measures by allowing changes in attack rate and valid alarm rate of replicas.

73

The Effect of Database Replica Attack Rate Changes on

Security Measure

DB_base_rep_attack_rate

B L T S ———
92.%
82.%
)
= “=<@ -~ num_subs=1
= % num_reps=2
"§ 62.% - ®- =~ num_subs=1
T-g' num_reps=4
S 52.% e nUM_subs=4
< num_reps=2
42.%
~—3¢— numM_subs4
32.% num_reps=4
22.% Qrwes B e oo e B b de SN ot a0 AW, b, BTN, i DI I B b e
DB_base_rep_attack_rate
MMM
92.%
82.%
.*? 72.% ==~~~ num_subs=1
E num_reps=2
] 62. % e W == UM_Subs=1
% num_reps=4
N 52.% “de -+ num_subs=4
< 42.% num_reps=2
' 3¢ numM_subs4
32.% num_reps=4
22.%
DB_base_rep_attack_rate
97.8%
97.7%
) S
= W\w;__\
= 976% R
£ ’ - —
...g any wde - num_subs=4
® 975% g num_reps=2
z M s UM _SUbS4
97.4% - num_reps=4
. RS
97.3%

Figure 20.1- Database Replica Attack Rate Effects on Availability

20.1(a)

20.1(b)

20.1(c)

99. % 20.2(a)
B e e e e e

89.%

79.% === nUM_subs=1
=, num_reps=2
= 69. % - @ == num_subs=1
) -
%‘) 59.% num_reps=4
- = e = NUM_Subs=4
E 49.% num_reps=2

s UM _SUDS4

39.% num_reps=4

29.%

1G5 S A By) W s W e W 2

40 50 60 70 80 90 100 110 120 130 140
DB_base_rep_attack_rate
225% 20.2(b)
P —

22.% : W

21.5% e
_;’ s e IUM_SUbS=1

1;‘) 20.5% num_reps=2
E 20.% w8 = nUM_subs=1
= num_reps=4
= 19.5%
19.% P
R T
185% S %
18.% B ittt ledtes - = T SN
40 50 60 70 80 90 100 110 120 130 140
DB_base_rep_attack_rate
— 20.2(c)
ol W
96.7% &
>
-E ke « ~~ ~ num_subs=4
B0 96.5% 3 num_reps=2
] Y 3= numM_subs4
.5 96.4 % © num_reps=4
4
96.3 % £y
g
96.2% e —
B .
96.1 %
40 50 60 70 80 90 100 110 120 130 140
DB_base_rep_attack_rate

et - YW

Figure 20.2- Database Replica Attack Rate Effects on Integrity

75

5.9 The Effect of Web server Replica Attack Rate Changes on

Security Measure

R S o ¢ 2 n R
92. %
B 82.% = numM_subs=1
=1 72. % num_reps=2
:._E. 8 - = num_subs=1
) 62. % num_reps=4
= w b nuUM_subs=4
> 52.% num_reps=2
< 42.% e AUM_SUDS=4
num_reps=2
32.%
22‘ % - A o dw o da s B o o dw s e e Ao
40 50 60 70 80 90 100 110 120 130 140
WS_base_rep_attack_rate
23.75% e
e ”
5, 23.55 % T e g
= L =-4-~ num_subs=1
= o num_reps=2
E 2283 % — - ~ num_subs=1
s num_reps=4
E 23.15% £
~‘”_-‘..--~ .
22.95% e —
S
e
22.75%
40 50 60 70 80 90 100 110 120 130 140
WS_base_rep_attack_rate
97.75 % ;
£97.65% >\M“"‘*
:’E ™ = - num_subs=4
= 97.55 % - S num_reps=2
-E s () W
» ~
< gr.a5% s :\"\
. () e
- %
97.35%
40 50 60 “ﬁs b§§’e re%;) attja%i(lJa‘lt(& 120 130 140

Figure 21.1- Web Server Replica Attack Rate Effects on Availability

76

21.1(a)

21.1(b)

21.1(c)

40

50 60 70 80 90 100 110 120 130 140

WS_base_rep_attack_rate

W Ko Ly e e - - £ed L s
88.%
78. % ~~4-- num_subs=1
num_reps=2
B 68.% —® - = num_subs=1
= num_reps=4
o0 .Y -
8 25 w b num_subs=4
=S 48.% num_reps=2
e UM _SUbS=4
38. % num_reps=4
28.%
40 50 60 70 80 90 100 110 120 130 140
WS_base_rep_attack_rate
22.8%
.
Ty, =
21.8% T T Ml
.‘E 20.8 % - === numM_subs=1
o num_reps=2
g ——w - = num_subs=1
= 19.8% num_reps=4
&
0 'S
18.8 % \‘*—-'“’~-~...__,
A s
17.8% e
40 50 60 70 80 90 100 110 120 130 140
WS_base_rep_attack_rate
97. %
96.9 %
96.8 % =% 1
Q ’ T A = e o, —\“"-‘“\
E” 96.7 % s Y o 4 = num_subs=4
E T e e g - \\ num_reps=2
™ 96.6 % i - - nUM_subs=4
m\x num_reps=4
96.5 %
96.4 %

Figure 21.2- Web Server Replica Attack Rate Effects on Integrity

77

21.2(a)

21.2(b)

21.2(c)

TN

5.10 Comparison of Database Replica Attack and Web Server

Attack Rate Changes

23.8%
L
Ny
N S
- 23.7% o S “\’
) .
E-E . .*-v~;t.:-‘-“~\~
= by, e
0 M, .
:L: 23.6% S) -~
g m*_ m..___‘_‘_____’
< 23.5% - =
¥ ~
23.4%
40 60 80 100 120 140
base_rep_attack_rate
~~-¢-~~ Data base /num_subs=1 —— ». — WebServer / num_subs=1
num_reps=4 num_reps=4
97.8%
P o
Bt LT
o, o
> 97.7% R v
E B R S S
- ¥ v ‘h‘
= S e e
:L: 97.6 % - et N
5 ~. e
. ..._‘_5‘
< g15% . e ~e
3 ~ '
97.4% o
40 60 80 100 120 140
base_rep_attack_rate
-~~#~~ Database /num_subs4 —— a- — WebServer / num_subs=4
num_reps=4 num_reps=4

Figure 22.1- Comparison of DB Replica and WS Replica Attack Rate Changes (Availability)

78

22.1(a)

22.1(b)

22.2(a)
22.4%)
\Q’\'.
222% -
-
22.% = 7‘----_,,
% ~ Y
B 8% ot
E 216% B e e
8 \ - ~"~‘
S 214% B R L TR
ped g A
212 % 4
21. % ,
40 60 80 100 120 140
base_rep_attack_rate
w4 -~ Database/num_subs=l -~ w. ~ WebServer / num_subs=1
num_reps=4 num_reps=4
96.9% & 22.2(b)
SR
. T
Seeeaal
96.8% e SRRE S SO -z
Sy e
z —-— -
E‘D ~ AT
goeTa <7
= ~
96.6 % .\
‘w
96.5 %
40 60 80 100 120 140
base_rep_attack_rate
~--&~~ Data base / num_subs=4 ~ »- — WebServer / num_subs=4
num_reps=4 num_reps=4

Figure 22.2- Comparison of DB Replica and WS Replica Attack Rate Changes (Integrity)

79

5.11

The Effect of IDSW Quality on Security Measures in Data base

Replica

e 3 3¢ O i 3 36 - %
90. %
80. %
) o =@~ nuUM_subs=1
| 70. % num_reps=2
'g 60. % = ® . = num_subs=1
= ' num_reps=4
§ 50. % =« =~ num_subs=4
< o num_reps=2
40. % e UM _SUbS4
30. % num_reps=4
20. % ‘hs‘A.*‘AA-"-Ah”&khwb“&h“-ﬁ&h&h”&b*‘éb‘
« /0
10 11 12 13 14 15 16 17 18 19 20
DB_rep_valid_alarm_rate
23.7% o e
23.5:% o
3; TV g s
= 233%
'g === num_subs=1
'E 231% $=z num_reps=2
z 2299 \’“\ - —® « = num_subs=1
"“'*_‘* num_reps=4
22.7% e
T o
22.5% -
10 11 12 13 14 15 16 17 18 19 20
DB_rep_valid_alarm_rate
97.8 %
3
o 97.7% :\
= < = i ow nUM_subs=4
E . num_reps=2
g 97.6 % e UM _SUbS4
E ~ %%\\‘\ num_reps=4
e e ey
< 975% o e
Hhin,
oy s
97.4% -~
10 11 12 13 14 15 16 17 18 19 20
DB_rep_valid_alarm_rate

Figure 23.1- The effects of IDSW quality of Database replica on Availability

80

23.1(a)

23.1(b)

23.1(c)

10 11 12 13 14 15 16 17 18 19

DB_rep_valid_alarm_rate

e e A% o x Hpeo = E—1
89. %
79.% o= nUM_Subs=1
Z 69.% num_reps=2
ED 59. % @+ = nUM_subs=1
num_reps=4
g 49.% i
0 = o= num_subs=4
39.% num_reps=2
29.% e NUM_SUbDS4
5% - .. % R R] -
10, Lo b S-S Sy . SR num_reps=4
10 11 12 13 14 15 16 17 18 19 20
DB_rep_valid_alarm_rate
25.5% R
25.% —
24.5% —=—
24. % o
235% o
E’ 23. % v T
B 225% = . === numM_subs=1
L 22.% num_reps=2
S 215% ~—w « = nuM_subs=1
2(2)15- :;" Prlad » num_reps=4
S5% ’*__,-4"
20. % ‘.'____"'”_”.‘,,....n—v‘*
19.5% _"*,“'
19. % Summms®l
10 131 12 13 14 15 16 17 18 19 20
DB_rep_valid_alarm_rate
97.5%
97.4%
973 %
97.2% %
<~
& 971% =
= o s - nUM_subs=4
éﬂ 97. % i e num_reps=2
S 96.9%
o o e NUM_SUbS4
96.8 % num_reps=4
96.7 %
96.6 %
96.5 %

20

Figure 23.2- The effects of IDSW quality of Database replica on Integrity

81

23.2(a)

23.2(b)

23.2(c)

..

5.12 The Effect of Changing Quality of IDSW in Web server
Replica on Security Measures
% S 25 24 ¥ Pt it 4% e
90. %
0,
>, 80.% - == num_subs=1
= 70.% num_reps=2
= ~—w - = num_subs=1
= 60.% num_reps=4
.§ 50. % = = = num_subs=4
< num_reps=2
40. % e NUM_SUbS4
num_reps=4
30. %
20 % {hahhibh&b"‘&h"&hh&&h&b"u&hh‘h"‘-ﬁ.@-‘
10 11 12 13 14 15 16 17 18 19 20
WS_rep_valid_alarm_rate
24.% 24.1(b)
23.5% el vl 137 Ehris? S e R
23.% Fesmeno
> Rt S S i L =
= 225% ey
§ 22.% ~ === nuM_subs=1 _}
S 21.5 % num_reps=2
=== . - num_subs=1 :
21.% num_reps=4 ?
20.5%
20. %
10 11 12 13 14 15 16 17 18 19 20
WS_rep_valid_alarm_rate
98. % 24.1(c)
97.8 %]
E’ 97.6 % = = 4 = num_subs=4
’E Sy . - M num_reps=2
[L)
:-_; 97.4 % T " s UM _SUDS4
> num_reps=4
< 972% o
S
97. %
% e
96.8 % -
10 11 12 13 14 15 16 17 18 19 20
WS_rep_valid_alarm_rate

Figure 24.1- The effects of IDSW quality of Web server replica on Availability

82

oo - 36 4 34 ot o % ®
89. %
79. % == == num_subs=1
num_reps=2
2 69.% ~® . = num_subs=1
= num_reps=4
o0 59. % = num_subs=4
E 49. % num_reps=2
=~ e UM _SUDS4
39. % num_reps=4
29. %
19. % "'"Zf"::4;2:44374;114;::4;234;334;334;2
10 11 12 13 14 15 16 17 18 19 20
WS_rep_valid_alarm_rate
25. %
.
[
24. % — o
L
z) 23, % - —
= - ~ === num_subs=1
én 22.% num_reps=2
= P
= 21.% gy =y ~—w = nUM_subs=1
e =
PPy num_reps=4
20. % e
*‘,-0”
19.% ===
10 11 12 13 14 15 16 17 18 19 20
WS_rep_valid_alarm_rate
97.5%
.*? _4"/:(
5o % it o " o= = s = num_subs=4
k3] 97.% /x——-——*—“'“’ s num_reps=2
= 3 o o
- e i s B e UM _SUDS4
T g e b T num_reps=4
96.5 %

11 12 13 14 15 16 17 18 19 20
WS_rep_valid_alarm_rate

Figure 24.2- The effects of IDSW quality of Web server replica on Integrity

83

24.2(a)

24.2(b)

24.2(c)

5.13

Comparison of Database Replica IDSW Quality and Web

Server Replica IDSW Quality Changes

24. %
o .
"-.; s, PR
S D e s g
£ 235% B e
= ~. i
< Mb bt S
2 e
> B et
< 23. % <&
S meeee
22.5%
10 11 12 13 14 15 16 17 18 19 20
valid_alert_rate
~=~4=-- Data base / num_subs=1 - u - - WebServer / num_subs=1
num_reps=4 num_reps=4
97.8 %
-~
97.7 % "'*:i\
= N
= 97.6% % .
_g \‘ e —— e
LY .
= e e
® 97.5% v o
2 [S ,—
e
97.4 % o T
\q",_‘“
97.3 % R

10 11 12 13 14 15 16 17 18 19 20
valid_alert_rate

~=&=-= Data base / num_subs=4
num_reps=4

- » + ~ WebServer / num_subs=4
num_reps=4

Figure 25.1- Comparison of DB replica and WS replica IDSW quality Changes (Availability)

84

25.1(a)

25.1(b)

SO

26. %

25.5 % o

25. % et

R -

,E* 245% — -~ g
& 24.% i et
- e pT——
S 235% ¥ s

23.% e T a

B el
22.5% ot
22. %
10 11 12 13 14 15 16 17 18 19 20
valid_alert_rate
-= %= Data base / num_subs=1 -~ w - = WebServer / num_subs=1
num_reps=4 num_reps=4

97.5%

97.4%

973 %
U=
T 97.2% e
£ 9714 it
S i o Lo E 2 S

97. % s am
' B ettt Rl e
069 % fetamsmi T
96.8 %

10 11 12 13 14 15 16 17 18 19 20

valid_alert_rate

=-=%=~ Data base / num_subs=4 ~u - = \WebServer / num_subs=4
num_reps=4 num_reps=4

Figure 25.2- Comparison of DB replica and WS replica IDSW quality Changes (Integrity)

85

25.2(a)

25.2(b)

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

The novelty of our proposed approach is the application of Stochastic Activity Networks (SAN)
models in capturing the impacts of attack in different layers of a distributed layered system. To
the best of our knowledge, no systematic research has ever been conducted to assess security
measure of a layered system. Furthermore, constructing a hypothetical model to analyze security
properties of a layered system has been more useful than developing an actual system to evaluate
the security measures. The proposed SAN models have been designed to be modular models,
thus, they can easily be adopted by any other layered intrusion tolerant system. The results
obtained from the set of studies conducted in this work are quite significant. These results have
revealed the effectiveness of probabilistic modeling method for evaluating a layered architecture
intrusion tolerant system. Moreover, the results have demonstrated the utility of SAN models to

evaluate security measures.

Although the rate values used in this work are not based on those belonging to a practical system,
the obtained results from the experiments provide functional insights to the proposed system
architecture. One of the very practical outcomes of these results implies that incorporating more
number of replicas required per hosts or many sub-systems will not necessarily result in higher
security measure in a system. The results show that at a certain point (i.e. 4 sub-systems and 4
replicas in experiments proposed by this work) security measures will achieve stability, showing
minimal variation; adding more hardware to the system would only increase the cost of the

system construction and operation while system availability and/or integrity will not be

improved.

Moreover, it has been noted that it would be quite essential to determine the desirable quality of
the IDSW, especially for the system database layer, which has a considerable impact on the
system security properties. However, the justification behind constructing any software will
~ provide a great contribution to selecting an IDSW of a higher quality. The results illustrate that

while the repair facilities are kept identical, increasing the quality of IDSW in both layers (i.e. in

86

our experiments from 5 to 15), will decrease system availability. This behaviour is more
significant when the quality of the IDSW for a database improves, while a similar modification
will cause an increase in the system integrity measures. The experiments illustrated that while
maintaining system availability of 97.73%, the improvement of quality of IDSW in database host
resulted in having availability of 97.62%. Similar modification for the web server host resulted in
an availability of 97.67%. Considering syétem integrity, having integrity of 96.89%, increasing
IDSW ' quality from 5 to 15 in database host has resulted in obtaining integrity of 98.93%.
Identical improvement made within the web server host has resulted in integrity of 97.88%.
Hence, the process of identifying the more critical security measure, either the system

availability or integrity, is derived by the design intention of the software.

Furthermore, the influence of an intruded lower layer on the security of the system has been
analyzed. The results obtained from the experiments indicate that having a system availability of
97.73%, increasing the system host attack rate in the Database layer from 10 to 20 will reduce
system availability to 97.55%. Similar modification made to a Web-server layer will contribute
to 97.04% availability. This set of results imply that increasing attack rate in Web Server layer
has a more severe impact on system availability, while the same modification in Database layer
will less severely influence system availability. Similar results have been gathered when
measuring integrity of the system under identical set of modification. At system integrity of
96.88%, increasing host attack rate in Database layer has resulted in achieving integrity of

96.68%; similar experiment for Web server layer resulted in system integrity of 96.57%.

The main objective of this study has been to develop a probabilistic assessment method for a
three layered intrusion tolerant system — the client layer, the WS layer, and the DB layer.
Today’s complex systems could consist of multiple layers composing a distributed system. In
spite of existing constraints, achieving the goal of the proposed model allows researchers to
explore in more depth and detail, the topics on system security, in particular by accounting for
the current limitation in the number of layers. In addition, this thesis has considered a one to one
relationship between hosts of two layers as well as their replicas. Exploring beyond such
relationship between pairs of hosts and replicas (i.e. utilizing many-to-many relationships) will
enable future studies to evaluate a multi-layered system with various types of correlation

between replicas.

87

APPENDIX
SYSTEM MODEL

Model: DBHost

DB_Stop_pysFailure DB_attg

ck_host

reps_lost_Integrity
_Lost_Integrity

DB_host_attacked DB_IG3 DB_valid_alert DB_PG1 num_hosts_running

DB_reps_attacked

DB_IG4 DB_random_failure

DB_Relpit_Prev

Has_restarted DB_Start_sysRefair

Cnt DB_reps_failed DB_|IG1

e Hi
num_restarted_Hosts DB_num_reps_failed

DB all reps failed

DB |

| running

DB_IGS

DB_host_faile

DB_reps_Est_lntegrity DB_IG9 DB_Host_randrep

~feps_prev_running
DB_host_repair

DB_reps_running

WS_host_failed

DB_change_WSChange

Bucket Attributes:

Place Names Initial Markings
Cnt 0
DB_Lost_Integrity 0
DB_host_attacked u 0
DB_host_failed : . 0
DB_host_running 1
DB_num_rch_failcd R 0
DB_reps_attacked 0
DB_reps_failed 0
DB_reps_lost_Integrity 0
DB_reps_prev_ru nnin?g 0
DB_reps_running 0
Has_restarted 0
Sub_Working 1
Systcm_prev_S"{amte 0
WS_host_failed 0

num_hosts_running

Total_num_hosts

Timed Activity:

num_restarted_Hosts | 0 x
reps_lost_Integrity 0
system_failed 0

DB_Host_réndrep

88

Distribution Parameters

Rate

DB_Host_randrep_rate

Activation Pfédicate

(noné)

Reactivation Predicate

(none)

Timed Activity:

DB_Relnit_Prev

Distribution Parameters

Rate

DB_ReInit_Prev_rate

Activation Predicate

(none)

Reactivation Predicate

(none)

Timed Activity:

DB_Start_sysRepair

Distribution Parameters

Rate

DB_Start_sysRepair_rate

’Activation Predicate

(noné)

Reactivation Predicate

(none)

Timed Activity:

DB_Stop_sysFailure

Distribution Parameters

Rate

DB_Stop_sysFailure_rate

Activation Predicate

(none)

Reactivation Predicate

(none)

Timed Activity:

DB_all_reps_failed

Distribution Parameters

Rate

DB_all_reps_failed_rate

Activation Predicate

(none)

Reactivation Predicate

(none)

Timed Activity: DB_attack_host
Rate
DB_attack_host_rate
Distribution
Parameters

/** ((WS_reps_attacked->Mark () & DB_host_WSrep_id-

>Mark ())+1)*/

/*check if the WS replica who called this DB host, is under
attack or not*/

’ Activation Predicate

(noné) "
Reactivation —
Predicate)
Timed Activity: DB_change_WSChange

Distribution Parameters

Rate

DB_change_WSChange_rate

Activation Predicate :

(none) ‘

89

Reactivation Predicate |

(none)

Timed Activity:

DB_host_repair

Distribution Parameters

Rate

DB_host_repair_rate

Activation Predicate

i

(none)

Reactivation Predicate |

o “‘(none)

Timed Activity:

DB_randbm_failure

Distribution Parameters

Rate

DB_random_failure_rate

Activation Predicate

—

Reactivation Predicate

(none)

Timed Activity:

DB_valid_alert

Distribution Parameters

Rate

DB_valid_alert_rate

Activation Predicate (none)
Reactivation Predicate | (none) -
case 1
1- DB_prob_succ
Case Distributions
case 2
DB_prob_succ
Input Gate: DB_IG1

jsystem_failed~>Mark()==0 && System_prev_State->Mark()==0 &&

Predicate Sub_Working->DB->Mark ()==1 && Sub_Working->WS->Mark()==1 &&
DB_num_reps_failed->Mark ()== Total_num_reps
Sub_Working->DB->Mark ()=0;

F " DB_host_running->Mark ()=0;

unction DB_host_failed->Mark()=-1;// APR 06
num_hosts_running->Mark ()—-—;
Input Gate: DB_IG10

num_restarted_Hosts->Mark ()==Total_num_hosts &&

Predicate System_prev_State->Mark ()==1 &&
Has_restarted->DB->Mark ()==1 && Has_restarted->WS-
>Mark () ==

Function

Has_restarted->DB->Mark ()=0;

90

Has_restarted->WS->Mark ()=0;

Cnt->Mark ()-=2;

if (Cnt->Mark ()==0)
System_prev_State->Mark ()=0;

e e LAk LY B Dl s i 2l F et ln et Tl i ol it e et

Input Gate: DB_IG2
/*Host is not already corrupt and it is running*/
Predicate system_failed->Mark()==0 && System_prev_State->Mark ()==0 &&
DB_host_attacked->Mark ()==0 &&
Sub_Working->WS->Mark ()==1 && Sub_Working->DB->Mark ()==
F i DB_host_attacked->Mark ()=1;
uneuon DB_Lost_Integrity->Mark ()++;
Input Gate: DB_IG3
Prodicat system_failed->Mark ()==0 && System_prev_State->Mark ()==0 &&
Eeglicate DB_host_attacked->Mark ()==1 &&
Sub_Working->WS->Mark ()==1 && Sub_Working->DB->Mark ()==1
Function .
’
Input Gate: DB_IG4
num_hosts_running->Mark ()>0 &&
Predicat Sub_Working->WS->Mark ()==1 && Sub_Working->DB->Mark ()==1 &&
redicate DB_host_failed->Mark ()==0 &&
system_failed->Mark ()==0 && System_prev_State->Mark ()==0
DB_host_failed->Mark ()=2;
DB_host_running->Mark ()=0;
/*decreamenting # of running host in the system*/
Function num_hosts_running->Mark () -—;
Sub_Working->DB->Mark ()=0;
for (int i=0;i<Total_num_reps;i++)
DB_reps_running->Index (i)->Mark ()=0;
Input Gate: DB_IG5
num_hosts_running->Mark () >0 &&
Predicate DB_host_failed->Mark ()==1 &&
system_failed->Mark ()==0 &&
System_prev_State->Mark () ==
DB_host_failed->Mark ()=0;
num_hosts_running->Mark () ++;
DB_host_running->Mark ()=1;
Function DB_host_attacked->Mark ()=0;

Sub_Working->DB->Mark ()=1;
if (reps_lost_Integrity->Mark()>=DB_reps_lost_Integrity-
>Mark ())

reps_lost_Integrity->Mark()-=DB_reps_lost_Integrity-

91

>Mark () ;

DB_reps_lost_Integrity->Mark()=0;

DB_num_reps_failed->Mark ()=0;

for (int i=0;i<Total_num_reps;i++) {
DB_reps_failed->Index (i)->Mark ()=0;
DB_reps_prev_running->Index (i)->Mark ()=0;
DB_reps_running->Index(i)->Mark ()=0;
DB_reps_attacked->Index (i) ->Mark ()=0;

o "Input Gate: DB_IG6

Predicate system_failed->Mark ()==1 &&
DB_host_running->Mark () !=0

DB_host_running->Mark ()=0;

for (int i=0;i<Total_num_reps;i++)
DB_reps_running->Index (i) ->Mark ()=0;

Sub_Working->DB->Mark ()=0;

num_hosts_running->Mark () --;

Function

Input:ata L . — LR L)

system_failed->Mark ()==0 &&
Predicate System_prev_State->Mark ()==1 &&
Has_restarted->DB->Mark () ==

DB_host_running->Mark ()=1;

DB_host_failed->Mark ()=0;

DB_host_attacked->Mark ()=0;

DB_Lost_Integrity->Mark ()=0;////////////////// it was
commented

DB_reps_lost_Integrity->Mark ()=0;

DB_num_reps_failed->Mark ()=0;

num_restarted_Hosts->Mark () ++;

Cnt->Mark () ++;

. if (Sub_Working->DB->Mark ()==0)

Function num_hosts_running->Mark () ++;

Has_restarted->DB->Mark ()=1;

Sub_Working->DB->Mark () =1;

for (int i=0;i<Total_num_reps;i++) {
DB_reps_failed->Index (i)->Mark()=0;
DB_reps_running->Index (i)->Mark()=0;
DB_reps_prev_running->Index (i)->Mark ()=0;
DB_reps_attacked->Index (i)->Mark ()=0;

Input Gate: | ~ DBIGS

92

num_hosts_running->Mark ()>0 &&

Predicate system_failed->Mark ()==0 && System_prev_State->Mark()==0 &&
DB_host_failed->Mark () !=1 && //DB_host_failed->Mark() ==0 &&
DB_host_running->Mark () != Sub_Working->WS->Mark ()
if (Sub_Working->WS->Mark ()==1) {

int i, n=0;
for (i=0;i<Total_num_reps;i++)
if (DB_reps_failed->Index(i)->Mark()==1)
n++;
if (n<Total_num_reps) {
DB_host_running->Mark ()=1;
Sub_Working->DB->Mark ()=1;
DB_host_failed->Mark()=0; /*Apr 06*/
num_hosts_running->Mark () ++;
for (int i1=0;i<Total_num_reps;i++)
DB_reps_running->Index (i) -
>Mark () =DB_reps_prev_running->Index (i)->Mark () ;
}

Function) . . .
/*else if (Sub_Working->WS—->Mark ()==0 && WS_host_failed-
>Mark ()==1){ Apr 06 */
else if (Sub_Working->WS->Mark ()==0 && WS_host_failed->Mark () !=
0){

DB_host_running->Mark ()=0;
Sub_Working->DB->Mark () =0;
DB_host_failed->Mark ()=-1; /*Apr 06*/
num_hosts_running->Mark ()-—;
for (int i=0;i<Total_num_reps;i++) {
DB_reps_prev_running->Index (i) -
>Mark () =DB_reps_running->Index (i)->Mark () ;
DB_reps_running->Index (i) ->Mark ()=-1;
}
}
Input Gate: | DB_IGY
num_hosts_running->Mark ()>0 &&

Predicate DB_host_failed->Mark ()==2 &&
system_failed->Mark () == &&
System_prev_State->Mark () ==
DB_host_failed->Mark ()=0;
num_hosts_running->Mark () ++;

DB_host_running->Mark ()=1;
DB_host_attacked->Mark ()=0;
Function Sub_Working->DB->Mark ()=1;

DB_Lost_Integrity->Mark()=0; /* the only diferences between this

activity and DB_Host_Repair*/

DB_reps_lost_Integrity->Mark()=0;/////////////Apr 06

for (int i1=0;i<Total_num_reps;i++) {
DB_reps_failed->Index (i)->Mark ()=0;

93

DB_reps_prev_running->Index (i) ->Mark ()=0;
DB_reps_running->Index (i)->Mark()=0;
DB_reps_attacked->Index (i)->Mark ()=0;

Output Gate: __DB_OG1

DB_host_failed->Mark ()=
DB_host_running->Mark ()=0;
DB_host_attacked->Mark ()=0;
DB_Lost_Integrity->Mark()-—;
num_hosts_running->Mark () -—;
Sub_Working->DB->Mark ()=0;
for (int i=0;i<Total_num_reps;i++)
DB_reps_running->Index (i) ->Mark ()=0;

1;

Function

Model: DBReplica

WS_reps_attacked DB_host_attacked Sub_Working system_failed System_prev_State
DB_attack_rep
a5 ‘ i

DB_reps_lost_Integrity ~ DB_|iG4 DB_reps_attacked ~ DB_IGS

DB_rep_random_failure DB_IGS ~i

DB_Changes_{iue_to_WSRep

@

i b fai
_repp_failed

reps_lost_Integrity

_reps_failed

WS_repé_failed DB_|IG3 DB_rep;:running
DB_replica_randRep ~ DB_IG9
WS_reps_running DB_rep._repair DB_IG6
i < o {
DB_start_rep DB_IG2 DB_rep_td DB G DB_get_repid
DB reps id
Bucket Attributes:

Place Names ‘ Initial Markings %
DB_host_attacked 0
'DB_num_reps_‘failed f 0
5 o 1 et o
DB_reps_attacked 0
DB_reps_failed ‘ k 0
DB_reps_id Total_num_reps
‘DB_reps_lost_Integrity 0
DB_reps_running 0

94

Sub_Working

System_prev_State

WS_reps_attacked

WS _reps_failed

WS_reps_running

reps_lost_Integrity

[=E el ol ol lal N

0

system_failed

Timed Activity:

‘ DB_Changes_due__'tb())_WSRepb

Distribution Parameters

Rate

DB_Changes_due_to_WSRep_rate

Activation Pi'edicate

(none)

Reactivation Predicate

(none)

Timed Activity:

DB_attack_rep

Distribution Parameters

Rate

DB_base_rep_attack_rate * (DB_host_attacked->Mark()+1.0) *
((WS_reps_attacked->Index (DB_rep_id->Mark ()-1)->Mark ()
)+1.0)

/*

WSReplica attacks propagate into DBReplica,

and also DBHost attacks propagate into replicas running on
it.

u's
Activation Predicate (none)
“Reactivatign Predicate ‘) (none)
Timed Activity: DB_get_repid
Rate

Distribution Parameters

DB_replica_getid_rate

/*WS_replicas_id :common for all reps*/

Activation Predicate

(none)

Reactivation Predicate

(none)

Timed Activity:

DB_rep_random_failure

Distribution Parameters

Rate

DB_rep_random_failure_rate

Activation Predicate

(none)

Reactivation Predicate

(none)

Timed Activity:

DB_rep_repair

Distribution Parameters

Rate

DB_replica_repair_rate

95

Activation Predicate |

(vrvxone)

Reactivation Predicate

(none)

Timed Activity:

DB_replica_randRep

Rate

Distribution Parameters DR papliss sandiep mabe

Activation Predicate

(none)

Reactivation Predicate

(none)

Timed Activity:

DB_start_rep

Rate

Distribution Parameters 9H_stark rep rats

Activation Predicate

(none)

Reactivation Predicate

(none)

Timed Activity:

DB_valid‘alarn{ N

Rate

Distribution Parameters DB_rep_valid_alarm_rate

~ Activation Predicate

(none)
| Reactiv‘at‘ion Predicate (none)
case 1
1 - DB_rep_prob_succ
Case Distributions
case 2
DB_rep_prob_succ
Input Gate: DB_IG1
system_failed->Mark ()==0 && System_prev_State->Mark ()==0 &&
Sub_Working->DB->Mark ()==1 && Sub_Working->WS->Mark ()==1 && /* the
host this replica running on,is not failed*/
Predicate DB_reps_id->Mark()>0 && /* there is still replica to be
assigned*/
DB_rep_id->Mark ()==0 /* there is still replica to be
assigned*/
Function DB_rep_id->Mark ()= DB_reps_id->Mark () ;
uncti DB_reps_id->Mark () --;
Input Gate: DB_IG2
system_failed->Mark ()==0 && System_prev_State->Mark ()==0 &&
Predicat Sub_Working->DB->Mark ()==1 && Sub_Working->WS->Mark ()==1 &&
redicate DB_rep_id->Mark ()>0 &&
DB_reps_failed->Index (DB_rep_id->Mark()-1)->Mark ()==0 &&
(DB_reps_running->Index (DB_rep_id->Mark ()-1)->Mark ()== |]

96

DB_reps_running->Index (DB_rep_id->Mark()-1)->Mark ()==-1)
//DB_reps_running->Index (DB_rep_id->Mark ()-1)->Mark () !=1
/ *
1. Host submodel will put 1 in this place as needed
2. 1if DB replica has been previously activated, it forces
WS_rep as well to
start running and WS_replica will put 1 in its relevant
vector of WS_reps_activated
*/
Function DB_reps_running->Index (DB_rep_id->Mark()-1)->Mark ()=1;
Input Gate: DB_IG3
system_failed->Mark()==0 && System_prev_State->Mark ()==0 &&
Sub_Working->DB->Mark ()==1 && Sub_Working->WS->Mark ()==1 &&
DB_rep_id->Mark () >0 &&
Predicat DB_reps_failed->Index (DB_rep_id->Mark ()-1)->Mark ()==0 &&
redicate (WS_reps_running->Index (DB_rep_id->Mark ()-1)->Mark () !=
DB_reps_running->Index (DB_rep_id->Mark ()-1)->Mark ())
/* if the relevant replica in DB group has been activated */
if (WS_reps_running->Index (DB_rep_id->Mark()-1)->Mark()==1 &&
DB_reps_running->Index (DB_rep_id->Mark ()-1)->Mark ()==0) {
DB_reps_running->Index (DB_rep_id->Mark()-1)->Mark()=1;
Function }
if (WS_reps_running->Index (DB_rep_id->Mark()-1)->Mark ()==0 &&
WS_reps_failed->Index (DB_rep_id->Mark ()-1)->Mark ()==1)
DB_reps_running->Index (DB_rep_id->Mark()-1)->Mark ()=0;
Input Gate: DB_IG4
/ *
Replica is not already under attack and it is running and
the host rep running on, is running
*/
Predicat system_failed->Mark ()==0 && System_prev_State->Mark()==0 &&
recicate Sub_Working->DB->Mark ()==1 && Sub_Working->WS->Mark ()==1 &&
DB_rep_id->Mark ()>0 &&
DB_reps_attacked->Index (DB_rep_id->Mark()-1)->Mark ()==0 &&
DB_reps_running->Index (DB_rep_id->Mark ()-1)->Mark ()==1
DB_reps_attacked->Index (DB_rep_id->Mark()-1)->Mark()=1; /*Shows
Functi Replica is under attack*/
unction DB_reps_lost_Integrity->Mark () ++;
reps_lost_Integrity->Mark () ++;
Input Gate: DB_IGS

97

system_failed->Mark ()==0 && System_prev_State->Mark ()==0 &&
Sub_Working->DB->Mark ()==1 && Sub_Working->WS->Mark ()==1 &&

Predicate DB_rep_id->Mark ()>0 &&
DB_reps_failed->Index (DB_rep_id->Mark()-1)->Mark ()==0 &&
DB_reps_attacked->Index (DB_rep_id->Mark()-1)->Mark ()==1
Function .
ir
Input Gate: DB_IG6
/*
Replica may be repaired if its failure is due to attack on
replica, which
if DB_replica_failed==1, otherwise the failure is due to host or
Pieiioate WS attack propagatiop
and can not be repaired.
*f
system_failed->Mark ()==0 && System_prev_State->Mark ()==0 &&
Sub_Working->DB->Mark ()==1 && Sub_Working->WS->Mark ()==1 &&
DB_rep_id->Mark () >0 &&
DB_reps_failed->Index (DB_rep_id->Mark ()-1)->Mark()==
/* inform the host that this replica has been repaired*/
DB_reps_failed->Index (DB_rep_id->Mark()-1)->Mark()= 0 ;
Function DB_reps_attacked->Index (DB_rep_id->Mark()-1)->Mark()=0;
DB_reps_running->Index (DB_rep_id->Mark ()-1)->Mark ()=1;
DB_num_reps_failed->Mark () -—;
Input Gate: DB_IGS8
system_failed->Mark ()==3 &&
system_failed->Mark ()==0 && System_prev_State->Mark ()==0 &&
Predicate Sub_Working->DB->Mark ()==1 && Sub_Working->WS->Mark ()==1 &&
DB_rep_id->Mark () >0 &&
DB_reps_failed->Index (DB_rep_id->Mark()-1)->Mark()==0 &&
DB_reps_running->Index (DB_rep_id->Mark()-1)->Mark ()==1
DB_reps_failed->Index (DB_rep_id->Mark()-1)->Mark()=2;
Function DB_reps_running->Index (DB_rep_id->Mark()-1)->Mark()=0;
DB_num_reps_failed->Mark () ++;
Input Gate: DB_IGY
system_failed->Mark ()==0 && System_prev_State->Mark ()==0 &&
Predicate Sub_Working->DB->Mark ()==1 && Sub_Working->WS->Mark ()==1 &&
DB_rep_id->Mark () >0 &&
DB_reps_failed->Index (DB_rep_id->Mark()-1)->Mark ()==2
/* inform the host that this replica has been repaired*/
Function DB_reps_failed->Index (DB_rep_id->Mark()-1)->Mark ()= 0 ;

DB_reps_attacked->Index (DB_rep_id->Mark ()—-1)->Mark ()=0;

98

DB_reps_lost_Integrity->Mark ()=0;
DB_num_reps_failed->Mark () -—;

Output Gate: DB_OGAi

DB_reps_running->Index (DB_rep_id->Mark()-1)->Mark ()=0;
/*this Replica is not running any more*/
/* inform the host that this replica has been failed*/

DB_reps_failed->Index (DB_rep_id->Mark()-1)->Mark() = 1;
Funetian i;l;:ljiica doesn't run anymore,so the Integrity is not

if (DB_reps_lost_Integrity->Mark()>0)
DB_reps_lost_Integrity->Mark ()—-—;

reps_lost_Integrity->Mark()-—;

DB_num_reps_failed->Mark () ++;

Model: System

sys_randrep SYS system_repair 5_1G3

System_prev_State num_hosts_running

sys_|G4 failed sys |IG2

sys_random_failure sys_IG1 sys_system_failed_hosts

WS_Lost Integrity num_restarted Hosts
@ @ B
DB Lost Integrity Cnt reps lost Integrity
Bucket Attributes:

Place Names T Initial Markings » -
Cnt \ 0
DB_Lost_Integrity 0
System_prev_State ! 0
4W§__Lost_lntcgrity 0
num_hosts_running Total_num_hosts
num_restarted_Hosts 0
reps_lost_Integrity 0

929

system_failed

0

Timed Activity:

sys_random_failure

Distribution Parameters

Rate

sys_random_failure_rate

Activation Predicate

(none)m

Reactivation Predicate

(none)

sys_ran&rép

Distribution Parameters

Rate

sys_randrep_rate

Activation Predicate

(none)

Reactivation Predicate

(none)

" Timed Activity: |

sys_system_failed_hosts

Distribution Parameters

Rate

SYS_system_failed_hosts_rate
/*DB_host causes system failure */

Activation Predicate

(none)

- Reactivation Predicate |

(none)

Timed Activity:

system_repair

Distribution Parameters

Rate

system_repair_rate

‘ Activatibn Predicate

(none)
Reactivation Predicate (none)
Input Gate: sys_IG1
Predicate system_failed->Mark ()==
. system_failed->Mark ()=2;
Function System_prev_State->Mark ()=0;
Input Gate: sys_IG2
Predicat system_failed->Mark ()==0 &&
redicate num_hosts_running->Mark ()==0 && System_prev_State-
>Mark () ==
Funat system_failed->Mark ()=1;
incHon System_prev_State->Mark ()=0;
Input Gate: % sys_IG3
Predicate system_failed->Mark ()==1
Function .
Ihput Gate: ‘ sys_IG4

100

Predicate system_failed->Mark ()==2
Function .
’

Output Gate: sys_OG1
System_prev_State->Mark ()=1;
system_failed->Mark ()=0;

i num_restarted_Hosts->Mark ()=0;
Function

Cnt->Mark ()=0;
WS_Lost_Integrity->Mark ()=0;
DB_Lost_Integrity->Mark()=0;

reps_lost_Integrity->Mark ()=0;

Model: WSHost

WS_|G10

Cnt WS_num_reps_failed

WS_reps_failed DB JIG1

num_restarted_Hosts reps_lost_Integrity

WS_Stop |sysFailure WS_attack_host 0st_Integrity

|IG2 WS_host_attacked WS_IG3

WS_valid_alert wg 561 num_nosts_running

_hast_running

DB_host_failed

W, DBCh
WS all reps failet? -change | ange

Bucket Attributes:
Place Names - Initial Markings

Cnt - 3 0
DB_host_failed |

Has_restarted 0
Sub_Working 1
Syéiém_prcv_Statc 0
WS_Lost_Integrity 0
WS_host_attacked 0
WS_host_failed 0

101

WS_host_running 1
‘WS_num_reps_failed 0
WS_reps_attacked 0
WS_reps_failed 0

W S_reps_lost_Integrity 0
WS_reps_prev_running 0
WS_reps_running 0o
num_hosts_running Total_num_hosts
tnuvm_rcstz:\m:d_Hosts 0
reps_lost_Integrity 0
system_failed 0

Timed Activity:

|
{

WS_Host_randrep

Distribution Parameters

Rate

WS_Host_randrep_rate

Activation Predicate

(none)

Reactivation Predicate

(nong)

Timed Activity:

WS_Relnit_Prev

Distribution Parameters

Rate

WS_RelInit_Prev_rate

Activation Predicate

(none)

Reactivation Predicate

(none)

Timed Activity:

WS_StarthysRepair

Distribution Parameters

Rate

WS_Start_sysRepair_rate

Activation Predicate

__ (none).

Reactivation Predicate

(none)

Timed Activity:

WS_Stop_sysFailure

Distribution Parameters

Rate

WS_Stop_sysFailure_rate

Activation Predicate

(none)

Reactivation Predicate

20E)

Timed Activity:

WS_all_reps_failed

Distribution Parameters

Actlvatlon Prediééte

Rate

WS_all_reps_failed_rate

(none)

Reactivation Predicate

(none)

Timed Activity:

WS_attack_host

Distribution Parameters

Rate

Activation Predicate

WS_attack_host_rate
’ (none)

102

Reactivation Predicate

(none)

Timed Activity:

WS_change_DBChange

Distribution Parameters

Rate

WS_change_DBChange_rate

Activation Predicate

(none)

Reactivation Predicate

(none)

Timed Activity:

WS_host_repair

Distribution Parameters

Rate

WS_host_repair_rate

Activation Predicate

(none)

Reactivation Predicate |

(none)

Timed Activity:

WS_random_failure

Distribution Parameters

Rate

WS_random_failure_rate

Activation Prediéate

(none)

Reactivation Predicate

(none)

Timed Activity:

WS _valid_alert

Distribution Parameters

Rate a

WS_valid_alert_rate

Activation Predicate (none)
Reactivation Predicate (none)
case 1
1- WS_prob_succ
Case Distributions case 2
WS_prob_succ
Input Gate: DB_IG1
system_failed->Mark ()==0 && System_prev_State->Mark()==0 &&
Sub_Working->DB->Mark ()==1 && Sub_Working->WS—->Mark ()==1 &&
WS_num_reps_failed->Mark ()== Total_num_reps
Predicate /%
system_failed->Mark ()==0 &&
(System_prev_State->Mark()==0 || Sub_restarted->Mark()==1) s&&
Sub_Working->DB->Mark ()==1 && Sub_Working->WS->Mark ()==1 &&
DB_num_reps_failed->Mark ()==Total_num_reps*/
Sub_Working->WS->Mark ()=0;
Function WS_host_running->Mark ()=0;
WS_host_failed->Mark()=-1;// APR 06
num_hosts_running->Mark ()-—;

103

|

Ihput Gate:

1G7

Predicate

Function

system_failed->Mark ()==0 &&
System_prev_State->Mark ()==1 &&

Has_restarted->WS—->Mark () ==

WS_host_running->Mark ()=1;

WS_host_failed->Mark ()=0;

WS_host_attacked->Mark ()=0;

/*if (num_restarted_Hosts->Mark()== 0)
WS_Lost_Integrity->Mark ()=0;*/

num_restarted_Hosts—->Mark () ++;

Cnt=>Mark (}++;

WS_reps_lost_Integrity->Mark()=0;

WS_num_reps_failed->Mark ()=0;

if (Sub_Working->WS->Mark ()==0)
num_hosts_running->Mark () ++;

Has_restarted->WS->Mark ()=1;

/*if (num_restarted_Hosts->Mark ()==Total_num_hosts) {
System_prev_State->Mark ()=0;
Has_restarted->WS->Mark ()=0;
Has_restarted->DB->Mark ()=0;

}oy

Sub_Working->WS->Mark ()=1;

for (int 1=0;i<Total_num_reps;i++) {
WS_reps_failed->Index (i)->Mark ()=0;
WS_reps_running->Index (i) ->Mark ()=0;
WS_reps_prev_running->Index (i)->Mark ()=0;
WS_reps_attacked->Index (i)->Mark ()=0;

Input Gate:

WS_IG10

Predicate

Function

num_restarted_Hosts->Mark ()==Total_num_hosts &&

System_prev_State->Mark ()==1 &&
Has_restarted->DB->Mark ()==1 && Has_restarted->WS-
>Mark ()==

Has_restarted->DB->Mark ()=

Has_restarted->WS->Mark (

Cnt->Mark () -=2;

if (Cnt->Mark ()==0)
System_prev_State->Mark ()=0;

0;
0

;

Input Gate:

Predicate

WS_1G2

/* Host is not already corrupt and it is running*/

104

system_failed->Mark () == && System_prev_State->Mark ()==0
&&

WS_host_attacked->Mark ()==0 &&
Sub_Working->WS->Mark ()==1 && Sub_Working->DB->Mark ()==
WS_host_attacked->Mark ()=1;
Function WS_Lost_Integrity->Mark () ++;
Input Gate: WS_IG3
/* WS_host_attacked->Mark ()==1 &&
WS_host_failed->Mark ()==0 &&
Prodicite system_failed->Mark ()==0 */
WS_host_attacked->Mark ()==1 &&
Sub_Working->WS->Mark ()==1 && Sub_Working->DB->Mark ()==1 &&
system_failed->Mark () == && System_prev_State->Mark ()==
Function s
Input Gate: WS_IG4
num_hosts_running->Mark ()>0 &&
Poudiont Sub_Working->WS->Mark ()==1 && Sub_Working->DB->Mark ()==1 &&
redicale WS_host_failed->Mark () == &&
system_failed->Mark ()==0 && System_prev_State->Mark ()==0
WS_host_failed->Mark ()=2;
WS_host_running->Mark ()=0;
/*decreamenting # of running host in the system*/
F i num_hosts_running->Mark () --;
unction Sub_Working->WS->Mark ()=0;
for (int i=0;i<Total_num_reps;i++)
WS_reps_running->Index (i) ->Mark ()=0;
Input Gate: WS_IGS
num_hosts_running->Mark ()>0 &&
WS_host_failed->Mark ()==1 &&
Predicate system_failed->Mark ()==0 &&
System_prev_State->Mark () ==
num_hosts_running->Mark () ++;
WS_host_running->Mark ()=1;
Function WS_host_attacked->Mark ()=0;

WS_host_failed->Mark ()=0;
WS_reps_lost_Integrity->Mark ()=0;
if (reps_lost_Integrity->Mark ()>=WS_num_reps_failed->Mark ())

105

reps_lost_Integrity->Mark () -=WS_num_reps_failed-

>Mark () ;

WS_num_reps_failed->Mark ()=0;

Sub_Working->WS->Mark ()=1;

for (int i=0;i<Total_num_reps;i++) {
WS_reps_failed->Index(i)->Mark()=0;
WS_reps_prev_running->Index (i)->Mark ()=0;
WS_reps_running->Index (i)->Mark ()=0;
WS_reps_attacked->Index (i)->Mark ()=0;

Input Gate: WS_IG6
Predicate system_failed->Mark ()==1 &&
WS_host_running->Mark () !'=0
WS_host_running->Mark ()=0;
for (int i=0;i<Total_num_reps;i++)
. WS_reps_running->Index (i) ->Mark ()=0;
Function Sub_Working->WS->Mark ()=0;
num_hosts_running->Mark ()-—;
Input Gate: WS_IG8
/* DB_host_running->Mark () !=WS_host_running->Mark () &&
WS_host_failed->Mark () !=1 */

Predicate num_hosts_running->Mark ()>0 &&
system_failed->Mark ()==0 && System_prev_State->Mark ()==0 &&
WS_host_failed->Mark () !=1 &&

WS_host_running->Mark () != Sub_Working->DB->Mark ()
if (Sub_Working->DB->Mark ()==1) {

int i,n;

n=0;

Function

for (i=0;i<Total_num_reps;i++)
if (WS_reps_failed->Index (i)->Mark()==1)
n++;
if (n<Total_num_reps)
WS_host_running->Mark ()=1;
Sub_Working->WS->Mark ()=1;
WS_host_failed->Mark ()=0; /*Apr 06*/
num_hosts_running->Mark () ++;
for (int i=0;i<Total_num_reps;i++)
WS_reps_running->Index (i) -
>Mark ()=WS_reps_prev_running->Index (i)->Mark () ;
}
}
else if (Sub_Working->DB->Mark ()==0 && DB_host_failed->Mark ()
0) {
WS_host_running->Mark ()=0;

| Sub_Working->WS->Mark ()=0;
| WS_host_failed->Mark ()=-1; /*Apr 06*/

106

num_hosts_running->Mark () -—;
for (int i=0;i<Total_num_reps;i++) {
WS_reps_prev_running->Index (i) -
>Mark () =WS_reps_running->Index (i)->Mark () ;

WS_reps_running->Index (i) ->Mark ()=-1;
}
}
Input Gate: WS_IGY
num_hosts_running->Mark ()>0 &&
Predicate DB_host_failed->Mark ()==2 &&
system_failed->Mark () == &&

System_prev_State->Mark ()==

WS_host_failed->Mark ()=0;
num_hosts_running->Mark () ++;
WS_host_running->Mark ()=1;
WS_host_attacked->Mark ()=0;
Sub_Working->WS->Mark ()=1;
WS_Lost_Integrity->Mark()=0; /* the only diferences between this
activity and DB_Host_Repair*/

Function WS_reps_lost_Integrity->Mark()=0;/////////////Apr 06
for (int i=0;i<Total_num_reps;i++) {
WS_reps_failed->Index (i)->Mark ()=0;
WS_reps_prev_running->Index (i) ->Mark ()=0;
WS_reps_running->Index (i)->Mark ()=0;
WS_reps_attacked->Index (i)->Mark ()=0;

Output Gate: WS_0G1
WS_host_failed->Mark ()=1;
WS_host_running->Mark ()=0;
WS_host_attacked->Mark ()=0;

/*Host doesn't run anymore,so the Integrity is not lost*/

WS_Lost_Integrity->Mark()--;

Function /*decreamenting # of running host in the system*/

num_hosts_running->Mark () -—;

Sub_Working->WS->Mark ()=0;

for (int i=0;i<Total_num_reps;i++)
WS_reps_running->Index (i) ->Mark ()=0;

107

Model: WSReplica

WS_host_attacked Sub_Waorking system_failed System_prev_State reps_lost_Integrity

WS_attack_rep

- < i
WS_reps_lost_Integrity ~ WS|IG4 WS_reps_attacked WS_IGS s valid alarm

WS_rep_random_failure WS_IG8 B

_reps_failed WS |IG3 WS_repd_running S_re% s_failed

WS _Changes_pdue_to_DBRep

_reps_failed

%

A

WS_replica_randRep WS_IGS

DB_reps_running

l < — @
WS_start_rep WS_IG2 WS_rep_id WS1IG1 WS_get_repid WS_rep_repair
WS reps id
Bucket Attributes:

Place Names Initial Markings
DB_'reISS‘_fairled . | S I : .
DB_reps_running ;) 0
Sub_Working 1
:System_prev_State 0
WS_host_attacked 0
WS_num_reps_failed 0 |
WS_rep_id 0 g
WS_reps_attacked 0
WS_reps_failed , 0 '*
’V'\"WS_reps_id ‘ - Total_num_reps
WAS_reps_lost_Integrity L v ‘ 0
WS_reps_running ” 0
\rep\s_lost_lntegrity 3 ‘ ‘ 0
sié{em;féﬁed | , il .- s

Timed Activity: ; WS_Changes_due_to_DBRep
Rate -

Distribution Parameters WS_Changes_due_to_DBRep_rate
‘ Activatién Prediéate o (none) |

108

Reactivation Predicate |

Timed Activity:

WS_attack_rep

Distribution Parameters

Rate

WS_base_rep_attack_rate
* (WS_host_attacked->Mark ()+1.0)

Activation Predicate

Reactivation Predicate |

- (none)

(none)

Timed Activity:

WS_get_repid

Distribution Parameters

Rate
WS_replica_getid_rate

/*WS_replicas_id :common for all reps*/

Activation Predicate

(none)

Reactivatioh Predicate

(none)

i Timed Activity:

WS_rep_random_failure

Distribution Parameters

Rate

WS_rep_random_failure_rate

Aéﬁvation Predicate

(none)w 4

Reactivation Predicate '

(nox_};)

Timed Aciivity:

WS_rep_repair

Distribution Parameters

Rate

WS_replica_repair_rate

Activation Predicate

(none)

Reactivation Predicate

(none)

Timed Activity:

WS_replica_randRep

Distribution Parameters

Rate

WS_replica_randRep_rate

Activation Prediéate

(none)’

Reactivaytui“(')n Predicate

(none)

Timed Activity:

WS_start_rep

Distribution Parameters

Rate

WS_start_rep_rate

Activation Predicate

(none)

Reactivation Predicate |

“ (none)

Timed Activity:

Wvaalid_alarm

Distribution Parameters

Rate

WS_rep_valid_alarm_rate

Activation Predicate

(none)

109

« Reactivation Predicate | (none)

Case Distributions

case 1
1 - WS_rep_prob_succ
case 2

WS_rep_prob_succ

Input Gate:

WS_IG1
system_failed->Mark () == && System_prev_State->Mark ()==0 &&
Sub_Working->DB->Mark ()==1 && Sub_Working->WS->Mark ()==1 && /* the
; host this replica running on,is not failed*/

Predicate % ; ; ;
WS_reps_id->Mark ()>0 && /* there is still replica to be
assigned*/

WS_rep_id->Mark () == /* this replica doesn't have nay id
yet*/
. WS_rep_id->Mark ()= WS_reps_id->Mark();

Function WS_reps_id->Mark ()-——;

Input Gate: WS_1G2
system_failed->Mark ()==0 && System_prev_State->Mark()==0 &&
Sub_Working->DB->Mark ()==1 && Sub_Working->WS->Mark ()==1 &&
WS_rep_id->Mark ()>0 &&

WS_reps_failed->Index (WS_rep_id->Mark ()-1)->Mark ()==0&&
WS_reps_running->Index (WS_rep_id->Mark ()-1)->Mark () !=
Predicate
/*
1. Host submodel will put 1 in this place as needed
. 2. if DB replica has been previously activated, it forces
WS_rep as well to
start running and WS_replica will put 1 in its relevant
vector of WS_reps_activated
=
Function WS_reps_running->Index (WS_rep_id->Mark()-1)->Mark ()=1;

Input Gate: WS_IG3
:system_failed—>Mark(== && System_prev_State->Mark ()==0 &&
Sub_Working->DB->Mark ()==1 && Sub_Working->WS->Mark ()==1 &&
WS_rep_id->Mark () >0 &&

. WS_reps_failed->Index (WS_rep_id->Mark ()-1)->Mark ()==0 &&

Predicate

(WS_reps_running->Index (WS_rep_id->Mark ()-1)->Mark () !=
DB_reps_running->Index (WS_rep_id->Mark()-1)->Mark())

/* 1f the relevant replica in DB group has been activated */

110

Function

if (DB_reps_running->Index (WS_rep_id->Mark ()-1)->Mark()==1 &&
WS_reps_running->Index (WS_rep_id->Mark ()-1)->Mark ()==0) {
WS_reps_running->Index (WS_rep_id->Mark ()-1)->Mark ()=1;
}
if (DB_reps_running->Index (WS_rep_id->Mark()-1)->Mark()==0 &&
DB_reps_failed->Index (WS_rep_id->Mark ()-1)->Mark ()==1)
WS_reps_running->Index (WS_rep_id->Mark ()-1)->Mark ()=0;

Input Gate:

WS_IG4

Predicate

/*
Replica is not already under attack and it is running

*/

system_failed->Mark ()== && System_prev_State->Mark ()==0 &&

Sub_Working->DB->Mark ()==1 && Sub_Working->WS->Mark ()==1 &&

WS_rep_id->Mark () >0 &&

WS_reps_attacked->Index (WS_rep_id->Mark ()-1)->Mark()==0 &&

WS_reps_running->Index (WS_rep_id->Mark ()-1)->Mark ()==

Function

WS_reps_attacked->Index (WS_rep_id->Mark ()-1)->Mark ()=1;

/* to keep track of all the reps which have been attacked since
presence

of attack in rep increases the vulnerability of DB sobmodel, we
need to know

which WS replicas have been attacked.*/
WS_reps_lost_Integrity->Mark () ++;

reps_lost_Integrity->Mark () ++;

' Input Gate:

WS_IGS

Predicate

fsystem_failed—>Mark()==O && System_prev_State->Mark ()==0 &&
‘Sub_Working->DB->Mark ()==1 && Sub_Working->WS->Mark ()==1 &&
WS_rep_id->Mark ()>0 &&

WS_reps_failed->Index (WS_rep_id->Mark()-1)->Mark ()==

&& WS_reps_attacked->Index (WS_rep_id->Mark()-1)->Mark ()==1

Function

Input Gate:

WS_IG6

Predicate

/* Replica may be repaired if its failure is due to attack on
replica, which

if WS_replica_failed==1,otherwise the failure is due to host
attack propagation

and can not be repaired.

*/

system_failed->Mark ()==0 && System_prev_State->Mark ()==0 &&
Sub_Working->DB->Mark ()==1 && Sub_Working->WS->Mark ()==1 &&
WS_rep_id->Mark () >0 &&

Function

WS_reps_failed->Index (WS_rep_id->Mark ()-1)->Mark ()==1

111

/* inform the host that this replica has been repaired*/

WS_reps_failed->Index (WS_rep_id->Mark()-1)->Mark()= 0 ;
;WS_reps_running->Index(WS_rep_id—>Mark()—1)—>Mark()=l;
WS_num_reps_failed->Mark () -—;
Input Gate: WS_IGS
system_failed->Mark ()==3 &&
system_failed->Mark ()==0 && System_prev_State->Mark ()==0 &&
Predicate Sub_Working->DB->Mark ()==1 && Sub_Working->WS->Mark ()==1 &&
WS_rep_id->Mark () >0 &&
WS_reps_failed->Index (WS_rep_id->Mark()-1)->Mark()==0 &&
WS_reps_running->Index (WS_rep_id->Mark()-1)->Mark ()==1
F i WS_reps_failed->Index (WS_rep_id->Mark ()-1)->Mark()=2;
nachon. WS_reps_running->Index (WS_rep_id->Mark()-1)->Mark ()=0;
WS_num_reps_failed->Mark () ++;
Input Gate: ; WS_IGY
system_failed->Mark ()==0 && System_prev_State->Mark()==0 &&
Predicate Sub_Working->DB->Mark ()==1 && Sub_Working->WS->Mark ()==1 &&
WS_rep_id->Mark () >0 &&
WS_reps_failed->Index (WS_rep_id->Mark()-1)->Mark ()==
/* inform the host that this replica has been repaired*/
WS_reps_failed->Index (WS_rep_id->Mark()-1)->Mark ()= 0 ;
Function WS_reps_attacked->Index (WS_rep_id->Mark ()-1)->Mark ()=0;
WS_reps_running->Index (WS_rep_id->Mark()-1)->Mark()=1;
WS_reps_lost_Integrity->Mark()=0;
WS_num_reps_failed->Mark () —-—;
Output Gate: WS_0G1
/*this Replica is not running any more*/
WS_reps_running->Index (WS_rep_id->Mark ()-1)->Mark ()=0;
/* inform the host that this replica has been failed*/
WS_reps_failed->Index (WS_rep_id->Mark()-1)->Mark() = 1;
. /*Replica doesn't run anymore,so the Integrity is not lost*/
Function

WS_reps_attacked->Index (WS_rep_id->Mark ()-1)->Mark ()=0;
/*Reinitializing marking of the places*/

WS_reps_lost_Integrity->Mark()--;

if (reps_lost_Integrity->Mark()>0)reps_lost_Integrity->Mark()--;

3WS_num_reps_failed—>Mark()++;

112

Model: System_Architecture

Join
A0in
Fep Subrmodel
Subs System
Jain
Ihsystem
Join Jaoin
W' Graup DB/ Groyp
Rep Submodel Hep Submodel
WS_reps WSHost DB_feps DBHost
Submaodel Submodel
WSReplica DBReplica
Rep Node Reps Shared State Variables

DB_reps Total_num_reps

%DB_host_attacked

‘DVB_num_reps_fai"l'ed
‘DB _reps_attacked

DB_reps_failed

DB_reps_id

EDB_reps_lost_Integrity

DB_reps_running

Sub_Working

iSystem_prev_State

3WS_reps_attacked

‘WS;reps_faiiéd

‘'WS_reps_running

2'rép s_lost_Integrity

system_failed

Subs Total_num_subs

Cnt

DB_Lost_Integrity

System_prev_State

WS_Lost_Integrity

‘num_hosts_running

I
‘num_restarted_Hosts

113

%reps_lost_lntegrity

isystem_failed

WS_reps Total_num_reps

DB_reps_failed

DB_reps_running

éSub_Working

i‘System_prev_State
‘WS_host_attacked

%WS_num_reps_failed
‘WS_reps_attacked

'WS_reps_failed

‘WS_reps_id

iWS_reps_lost_Integrity

‘WS_reps_running

%reps_lost_lntegrity

system_failed

J o{n Node: DB_Gljoup :

State Variable Name

Submodel ’»Variables

Cnt

‘DBHost->Cnt

bB_Lost_Integrity

DBHost->DB_Lost_Integrity

‘DB_host_attacked

DBHost->DB_host_attacked

§DB_reps->DB_h0st_attacked

DB_host_failed

DBHost->DB_host_failed

bB_host_running

DB_num_reps_failed

?DBHost->DB_h0st_running

Di?.__reps->DB_num_reps_failed

DBHost->DB_num_reps_failed

DB_reps_attacked

DB_rebs->DB_rcps_attacked

DBHost->DB_reps_attacked

DB_reps_failed

DB_reps_id

DBHost->DB_reps_failed

DB_reps->DB_reps_failed

DB_reps->DB_reps_id

DB_reps_lost_Integrity

DB_reps->DB_reps_lost_Integrity

‘DBHost->DB_reps_lost_Integrity

DB_reps_running

?DBHost—>DB_reps_running

DB_reps->DB_reps_running

Has_restarted

DBHost->Has_restarted

Sub_Working

DBHost->Sub_Working

DB_reps->Sub_Working

System_prev_State

DB_reps->System_prev_State

DBHost->System_prev_State

WS_host_failed

DBHost->WS_host_failed

WS_réps_attacked

fDB_reps->WS_reps_attacked

WS_reps_failed

§DB_reps->WS_reps_failed

WS_reps_running

DB_reps->WS_reps_running

114

num_hosts_running

;DBHost->num_hosts_running

num_restarted_Hosts

DBHost->num_restarted_Hosts

reps_lost_Integrity

DB_reps->reps_lost_Integrity

EDBHost->reps_lost_Integrity

system_failed

DB_reps->system_failed

DBHost->system_failed

Join Node: Joinl :

State Var{able Name

i

Cnt

Submodel Variablés

‘Subs->Cnt

System->Chnt

DB_Lost_Integrity

Subs->DB_Lost_Integrity

System->DB_Lost_Integrity

System_prev_State

System->System_prev_State

Subs->System_prev_State

‘WS_Lost_Integrity

Subs->WS_Lost_Integrity

System->WS_Lost_Integrity

§

num_hosts_running

System->num_hosts_running

Subs->num_hosts_running

num_restarted_Hosts

Subs->num_restarted_Hosts

System->num_restarted_Hosts

reps_lost_Integrity

Subs->reps_lost_Integrity

System->reps_lost_Integrity

system_failed

System->system_failed

Subs->system_failed

Join Node: Subsystem :

State Variable Name

Submodel Variables

Cnt

WS_Group->Cnt

DB_Group->Cnt

DB_Lost_Integrity

DB_Group->DB_Lost_Integrity

DB_host_failed

WS_Group->DB_host_failed

DB_Group->DB_host_failed

DB_reps_failed

WS_Group->DB_reps_failed

DB_Group->DB_reps_failed

DB_reps_running

fW“S_Group->DB_reps_runnin g

‘DB_Group->DB_reps_running

Has_restarted

' fWS_Group—>Has_restarted

EDB_Group->Has_restarted

Sub_Working

WS_Group->Sub_Working

DB_Group->Sub_Working

System_prev_State

WS_Group->System_prev_State

DB_Group->System_prev_State

WS_Lost_Integrity

'WS_Group->WS_Lost_Integrity

115

‘WS_host_failed
‘WS_reps_attacked
WS_reps_failed
WS_reps_runni'umé .
‘num_hosts_running
num_restarted_Hosts

reps_lost_Integrity

system_failed

WS _Group->WS_host_failed
DB _Group->WS_host_failed

WS _Group->WS_reps_attacked

?DB_Group->WS_reps_attacked
WS _Group->WS_reps_failed

3DB _Group->WS _reps_failed

WS Group >WS _reps_ runnmg

DB Group >WS _Teps_ running
WS _Group->num_hosts runnmg

DB Group ->num_ hosts _running
WS Group ->num restarted Hosts

DB _Group->num_restarted_Hosts
WS Group >reps_lost Integrlty

DB Group ->reps_ lost Integrlty
WS Group >system falled
DB _Group->system_ failed

Join Node: WS_Group‘;‘

State Variable Narne

Submodel Variables)

Cnt
DB_host_failed

WSHost->Cnt

WSHost->DB_”host_failed

DB _reps_ falled
DB. _reps_ runmng
Has restarted

Sub_Working

System_prev_State

AWS_‘Lost_Integrity

fWS_reps->DB_reps_failed

WS _reps->DB_reps_ running
WSHost—>Has _restarted
'WSHost->Sub Workmg

WS _reps->Sub_Working

” WS _reps- >System prev_ State

WSHost >System prev_ State

k WSHost >WS Lost Integrlty

‘WS _host_attacked

WSHost >WS_ host attacked
WS _reps->WS host attacked

WS_host_failed

WS_num_reps_failed
‘WS_reps_attacked

‘WS_reps_failed

'WSHost->WS$ host falled
‘WS _reps- >WS _num_reps_ failed

WSHost >WS_num_reps_ failed
WS _reps->WS _Teps_ attacked

‘WSHost- >WS_reps_. attacked
WSHost->WS _reps_ farled

WS _reps- >WS _Teps_ failed

‘WS_reps_lost_Integrity

WS _reps->WS _reps_lost Integrlty

'WSHost- >WS_reps_ lost _Integrity

‘WS_reps_running

num_hosts_running
num_restarted_Hosts

WSHost->WS _Teps_running

WS _reps->WS_reps_running

WSHost- ->num_hosts_running

VWSHost >num restarted _Hosts

116

WS_reps->reps_lost_Integrit
reps_lost_Integrity — Dy =

WSHost->reps_lost_Integrity

‘WS_reps->system_failed
system_failed A -

‘WSHost->system_failed

i

Performance Variable Model: RW

_ Child Model Name S ystem_Architecture
Top Level Model Information : - : :
‘Model Type ‘Rep/Join

i

H

i
i
i
i

Performance Variable : Availability !
Affecting Models System

Impulse Functions

(Reward is over all Available Models)

Reward Function if (System->num_hosts_running->Mark ()==0) return 0.0;
e ¢ if (System->system_failed->Mark() != 0) return 0.0;

return 1.0;

Type IInterval of Time

Estimate Mean

Include Lower Bound on Interval Estimate
Options Include Upper Bound on Interval Estimate

. . Estimate out of Range Probabilities
Simulator Statistics

Confidence Level is Relative

Start Time 0.0,
Parameters .
Stop Time 100,
Confidence Level 0.99
Confidence
Confidence Interval 0.01
Performance Variable : Integrity
Affecting
System
Models y
Impulse
Functions
(Reward is over all Available Models)
if ((System->WS_Lost_Integrity->Mark() + System->DB_Lost_Integrity->Mark()) >
((Total_num_subs * 2.0)/3.0))
Reward return 0.0 ;
Function if (System->reps_lost_Integrity->Mark() > (Total_num_reps * 2.0)/ 3.0
return 0.0;
return 1.0 ;
Type Interval of Time
ol Estimate Mean
imulator s
. . Include Lower Bound on Interval Estimate
Statistics Options ! e ’
Include Upper Bound on Interval Estimate
Estimate out of Range Probabilities

117

i

Parameters

;Confidence Level is Relative

: fStart Tlme
Stop Time

fConﬁdence

EConﬁdence Le"vweﬁi" i
‘Confidence Interval

100,

0.95
0.1

Range Study le iable Asslgnments for Study ' Std_base i in ije(,t Latest :

Variable Type Range Type Range Increment Incrll:;;:ent Function n
DB Changes due to_ WSRep rate double | leed . 100 L . -k
DB_Hosﬂtlrandrep_rate double Fixed 0 - - . -
DB_ReInit_Pre\};rete doub]e Fixed ‘ 5.0 - - ;T— -
DB_Start sysR’cpairvrate ~ double Fixed 5.0 - - - -
DB Stop_eysFallure rate (double Fixed 50 “ - - - '-
DB. _all_reps_ failed. rate double Fxxed” o “50 - - - .~ ‘-
DB_attack_host_rate ~ double Fixed 10.0 - - - -
DB deC rep_attack ratc doublc 'XFi)'(ed '400 - - a -
DB change WSChange rate double 100 " - - -
DB _host_repair_rate - double ’lecd NNNNN 50 - ,—W i ’;—’ T
DB_prob_succ double Fixed 0.99 - - -
DB _random _failure_ rate double Fixed 0 j— L ' -
DB_rep_prob_succ double Fixed 0.9 - - - -
DB _rep_random_failure_ rate 'double "\;Fixed o EO - - L -
DB _rep_valid_ aldrm _rate doub]e Fixed 10.0 - - -
DB repllea_getld rate doub]e Fixed 1100.0 - - - -
DB_replica_randRep_rate ~ double Fixed 0 - - . 3
DB replica repairbrate sdouble Fixed 1100 - - - -
DB _start _rep_rate o shon Fixed 50 - - - -
DB_: _valid. _alert_rate double Fixed 5.0 - - L
SYS _System_ falled hosts _rate double jleed 1.0 - -
Total _num hmts v double F]xed fl‘O - r |2
Total_num_reps double fIncrcmcntal ggsfgzrl;eg]td] fl.O ‘Additive - -
Total_num_subs double Incremental][ngs;n;cg]tal 1.0 EAdditive - g-
WS Changes due_ to DBRep rate doub]e Fixed 10.0 - ‘- - -
WS_Host_randrep_rate A;double Fixed 0 - - - -
WS_Relnit_Prev_rate double Fixed [5.0 1 - -
WS_Start sysRepalr rate (double leed 5.0 - - - -1
WS Stop sysFailure_rate double leed 5o - - - : ;— f
WS_all_reps_failed_rate double §F1xed 5.0 L i 4 -
WS_ attaek _host ‘rate double Fixed » ?10.0 - - - v f— |
WS _base lcp__attdck rate double Fixed 400 - - - ?- é
WS change DBChange rate‘ doub]e ‘leed o §100 . - L w t' :
WS_host_repair_rate double oleed 5.0 - - |

118

WS_prob_succ double Fixed 0.99 - - - -
JWS_random_fail ure_rate double Fixed 0.0 - - - -
WS_rep_prob_succ double Fixed 0.9 - - - -
WS _rep_random_failure_rate double Fixed 0 - - - -
WS_rep_valid_alarm_rate double [Fixed 10.0 - - - -
WS_replica_getid_rate double Fixed 100.0 - - - -
WS _replica_randRep_rate double Fixed 0 - - - -
WS_replica_repair_rate double Fixed 10.0 - - - -
WS_start_rep_rate double Fixed 50.0 - - - -
WS_valid_alert_rate double Fixed 5.0 - - - -
sys_random_failure_rate double Fixed 0 - - - -
sys_randrep_rate double Fixed 0 - - - -
's”ystem_repair_rate double Fixed 1.0 - s " 5

119

REFERENCES

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]
(11]

D.M. Nicol, W.H. Sanders, and K.S. Trivedi, ‘“Model-based evaluation: From
dependability to security”, IEEE Trans. on Dependable and Secure Computing, pp. 48-
65, Jan.-Mar. 2004.

B. B. Madan, K. Goseva-Popstojanova, K. Vaidyanathan, and K. S. Trivedi, “A method
for modeling and quantifying the security attributes of intrusion tolerant systems", In
Performance Evaluation, volume 56, 2004.

J. P. Anderson, “Computer Security Technology Planning Study”, Technical Report
ESD-TR-73-51, vols. I and II, AD-758 206, USAF Electronic Systems Division, October

1972.

R.V. Belani, SM. Das, and D. Fisher, “One-to-one Modeling and Simulation of
Unbounded Systems: Experiences and Lessons”, In Proc. of the 2002 Winter Simulation
Conference, pp. 720-724, December 2002.

S. Singh, M. Cukier, and W. H. Sanders, “Probabilistic Validation of an Intrusion-
Tolerant Replication Systems”, In Proc. of Int’l Conf. Dependable Systems and Networks
(DSN2003), pp. 616-624, June 2003. A
J.C. Laprie, “Dependability of computer systems: concepts, limits, improvements”, In
Proc. of the ISSRE-95, pp. 2-11, 1995.

K.S. Trivedi, “Probability and Statistics with Reliability, Queuing, and Computer Science
Applications”, second ed., 2001.

M.L. Shooman, “Probabilistic Reliability: An Engineering Approach”, second ed.
Malabar, Fla.: R.E. Krieger Publishing Co., 1990.

R.A. Sahner, K.S. Trivedi, and A. Puliafito, “Performance and Reliability Analysis of
Computer Systems: An Example-Based Approach Using the SHARPE Software
Package”, Kluwer Academic Publishers,1996.

http://www.relexsoftware.com/products/relanalysissoft.asp, 2004.

J.E. Arsenault, and J.A. Roberts, “Reliability and Maintainability of Electronic Systems”,
Rockville, MD: Computer Science Press, 1980.

120

[12]

(13]

[14]

(15]

(16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

R.E. Barlow, and F. Proschan, “Statistical Theory of Reliability and Life Testing”, New
York: Holt, Rinehart and Winston, 1975.

B.S. Dhillon, and C. Singh, “Engineering Reliability: New Techniques and
Applications”, New York: Wiley, 1981.

E. Henley, and H. Kumamoto, “Reliability Engineering and Risk Assessment”,
Englewood Cliffs, N.J.: Prentice-Hall, 1981.

M.V. Higuero, J. J. Unzilla, P. Sdiz, E. Jacob, M. Aguado, and I. Goirizelaia , “A
practical tool for analysis of security in systems for distribution of digital contents based
on ‘attack trees”, IEEE Symp. on Broadband Multimedia Systems and Broadcasting,
2009, Spain.

Khand, P.A, “System level Security modeling using Attack trees”, 2nd Int’l Conf. on
Computer, Control and Communication, 2009.

Vu, H.L. Khaw, K.K. Chen, and T. Fei-Ching Kuo, “A New Approach for Network
Vulnerability Analysis”, 33rd IEEE Conf. on Local Computer Networks,2008.

Jing-Song Cui, and Da Zhang, "The Research and Application of Security Requirements
Analysis Methodology of Information Systems”, 2nd Int’l Conf. on Anti-counterfeiting,
Security and Identification, 2008.

F. Besson, J. Jensen, D.L. Me 'tayer, and T. Thorn, “Model Checking Security Properties
of Control Flow Graphs”, J. Computer Security, vol. 9, no. 3, pp. 217-250, 2001.

H. Chen, D. Dean, and D. Wagner, “Model Checking One Million Lines of C Code”,
Proc. I1th Ann. Network and Distributed System Security Symp., 2004.

R.W. Ritchey, and P. Ammann, “Using Model Checking to Analyze Network
Vulnerabilities”, Proc. IEEE Symp. Security and Privacy, pp. 156-165, May 2000.

O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. Wing, “Automated Generation and
Analysis of Attack Graphs”, Proc. 2002 IEEE Symp. Security and Privacy, pp. 273-284,
May 2002.

B. Haverkort, R. Marie, G. Rubino, and K.S. Trivedi, “Performability Modeling Tools
and Techniques”, Chichester, England: John Wiley & Sons, 2001.

K.S. Trivedi, “Probability and Statistics with Reliability, Queuing, and Computer Science
Applications”, second ed. New York: John Wiley and Sons, 2001.

121

[25]

[26]

[27]

(28]

(29]

[30]

(31]

[32]

(33]

(34]

[35]

(36]

G. Bolch, S. Greiner, H. de Meer, and K.S. Trivedi, “Queueing Networks and Markov
Chains”, New York: John Wiley & Sons, 1998.

R.A. Sahner, K.S. Trivedi, and A. Puliafito, “Performance and Reliability Analysis of
Computer Systems: An Example-Based Approach Using the SHARPE Software
Package”, Kluwer Academic Publishers, 1996.

H. Hermanns, “Interactive Markov Chains and the Quest for Quantified Quality”,
Springer, LNCS vol. 2428, 2002.

D. Daly, P. Buchholz, and W.H. Sanders, “An Approach for Bounding Reward Measures
in Markov Models Using Aggregation” Technical Report uiul-eng-04-2206 (crhc-04-06),
Univ. of Illinois at Urbana-Champaign Coordinated Science Laboratory, July 2004

P. Buchholz, G. Ciardo, S. Donatelli, and P. Kemper, “Complexity of Memory-Efficient
Kronecker Operations with Applications to the Solution of Markov Models”, informs J.
Computing, vol. 12, no. 3, pp. 203-222, 2000.

A.S. Miner, “Efficient Solution of GSPNs Using Canonical Matrix Diagrams”, Proc.
Ninth Int’l Workshop Petri Nets and Performance Models, pp. 101-110, Sept. 2001.

G. Ciardo, R.A. Marie, B. Sericola, and K.S. Trivedi, ‘“Performability Analysis Using
Semi-Markov Reward Processes”, IEEE Trans. Computers, vol. 39, no. 10, pp. 1251-
1264, Oct. 1990.

V. Kulkarni, ” Modeling and Analysis of Stochastic Systems” New York: Chapman Hall,
1995.

H. Hermanns, “Interactive Markov Chains and the Quest for Quantified Quality”,
Springer, LNCS vol. 2428, 2002.

M. Bernardo, and R. Gorrieri, “A Tutorial on EMPA: A Theory of Concurrent Processes
with Non determinism, - Priorities, Probabilities and Time”, Theoretical Computer
Science, vol. 202, pp. 1-54, 1998.

P. Buchholz, “Markovian Process Algebra: Composition and Equivalence”, Proc. Second
Workshop Process Algebras and Performance Modelling, Arbeitsberichte des IMMD,
vol. 27, no. 4, pp. 11- 30, 1994.

iu Mixia Zhang Qiuyu Yu Dongmei Zhao Hong, “Formal Security Model Research
Based on Petri-net” , Granular Computing, 2005 IEEE Int’l Conf., vol. 2, 25-27, pp. 575
— 578, July 2005.

122

[37]

(38]

[39]

(40]

[41]

[42]

[43]

[44]

(45]

[46]

[47]

(48]

[49]

M. Malhotra and K. Trivedi, “Dependability Modeling Using Petri Nets”, IEEE Trans.
Reliability, vol. 44, no. 3, pp. 428-440, Sept. 1995.

K.S. Trivedi, “Probability and Statistics with Reliability, Queuing, and Computer Science
Applications”, second ed. New York: John Wiley and Sons, 2001.

M. Ajmone Marsan, G. Balbo, and G. Conte, “A Class of Generalized Stochastic Petri
Nets for the Performance Evaluation of Multiprocessor Systems”, ACM Trans. Computer
Systems, vol. 2, pp. 93-122, 1984.

G. Ciardo, J. Muppala, and K. Trivedi, “SPNP: Stochastic Petri Net Package”, Proc.
Third Int’l Workshop Petri Nets and Performance Models, pp. 142-151, 1989.

J.B. Dugan, V. Nicola, R. Geist, and K. Trivedi, “Extended Stochastic Petri Nets:
Applications and Analysis”, Proc. Conf. Performance ’84, pp. 507-519, 1985.

J.F. Meyer, A. Movaghar, and W.H. Sanders, “Stochastic Activity Networks: Structure,
Behaviour, and Application”, Proc. Int'l Workshop Timed Petri Nets, pp. 106-115, July
1985.

W.H. Sanders, and J.F. Meyer, “Stochastic Activity Networks: Formal Definitions and
Concepts” Lectures on Formal Methods and Performance Analysis, First EEF/Euro
Summer School on Trends in Computer Science, LNCS, no. 2090, pp- 315-343, 2001.

D. L. Parnas, “The influence of software structure on reliability”, In Proc. 1975 Int’l
Conf. Reliable Software, pp. 358-362, Los Angeles, April 1975.

M. L. Shooman, “Structural models for software reliability prediction”. In Proc. 2nd Int’l
Conlf. Software Engineering, pp. 268-280, October 1976.

D. Hamlet, “Are we testing for true reliability?”, IEEE Software, vol. 9, pp. 21-27, July
1992.

W. Farr. Handbook of Software Reliability Engineering, M. R. Lyu, Editor, chapter
“Software Reliability Modeling Survey”, pp. 71-117. McGraw-Hill, New York, NY,
1996.

J. Voas, A. Ghosh, G. McGraw, and K. Miller. “Gluing together software components:
How good is your glue?”, In Proc. of Pacific Northwest Software Quality Conference,
Portland, October 1996.

R. C. Cheung. “A user-oriented software reliability model”. IEEE Trans. on Software
Engineering, SE- 6(2):118-125, March 1980.

123

- [50]

(51]

(52]

[53]

[54]

[55]

[56]

(57]

(58]

J. C. Laprie , and K. Kanoun, “Handbook of Software Reliability Engineering”, M. R.
Lyu, Editor, chapter “Software Reliability and System Reliability”, pp. 27-69. McGraw-
Hill, New York, NY, 1996.

B. Littlewood, “A semi-Markov model for software reliability with failure costs”, In
Proc. Symp. Comput. Software Engineering, pp. 281-300, Polytechnic Institute of New
York, April 1976.

V. S. Sharma, P. Jalote, and K. S. Trivedi, “Evaluating performance attributes of layered
software architecture”, In Proc. of 8th International SIGSOFT Symp. on Component-
based Software Engineering (CBSE) St. Louis, Missouri, USA, May 2005.

S. Krishnamurthy, and A. P. Mathur, “On the estimation of reliability of a software
system using reliabilities of its components”, In Proc. of Eighth Intl. Symosium on
Software Reliability Engineering, pp. 146— 155, Albuquerque, New Mexico, November
1997,

S. Yacoub, Bojan Cukic, and H. Ammar. “Scenariobased analysis of component-based
software”. In Proc. of Tenth Intl. Symp. on Software Reliability Engineering, Boca
Raton, FL, November 1999.

M. Xie, and C. Wohlin. “An additive reliability model for the analysis of modular
software failure data”. In Proc. Sixth Intl. Symp. on Software Reliability Ehgineering, pp-
188-193, Tolouse, France, October 1995.

US Department of Defence Trusted Computer System Evaluation Criteria (“Orange
Book™). http://www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.html, December
1985. DoD 5200.28-STD.

ISO/IEC International Standards (IS) 15408-1:1999, 15408-2:1999, and 15408-3:1999,

Common Criteria for Information Technology Security Evaluation: Part 1: “Introduction
and General Model”, Part 2: “Security Functional Requirements”, and Part 3: “Security
Assurance Requirements”, August 1999.Version 2.1 (CCIMB-99-031, CCIMB-99-032,
and CCIMB-99-033).

C. Landwehr, “Formal Models for Computer Security”, Computer Surveys, vol. 13, no. 3,

pp. 247-278, September 1981.

124

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[68]

J. Lowry, “An Initial Foray into Understanding Adversary Planning and Courses of
Action”, In Proc. of the DARPA Information Survivability Conference and Exposition II
(DISCEX’01), pp. 123-133, 2001.

K. Sallhammar, B. E. Helvik, and S. Knapskog, “A Framework for Predicting Security
and Dependability Measures in Real-time”, IJSNS International Journal of Computer
Science and Network Security, vol. 7, no. 3, pp. 169-183,March 2007

B. Littlewood, S. Brocklehurst , N. Fenton , P. Mellor, S. Page , D. Wright , J. Doboson ,
J. McDermid, and D. Gollmann, “Towards Operational Measures of Computer Security”,
Journal of Computer Security, Vol. 2, pp. 211-229, 1993.

E. Jonsson, and T. Olovsson. "A Quantitative Model of the Security Intrusion Process
Based on Attacker Behaviour”, IEEE Transactions on Software Engineering, vol. 23, no.
4, pp. 235-245, April 1997.

R. Ortalo, Y. Deswarte, and M. Ka"aniche, “Experimenting with Quantitative Evaluation
Tools for Monitoring Operational Security”, IEEE Transactions on Software
Engineering, vol. 25, no. 5, pp. 633-650, 1999.

Z. Zhang,F. Nait-Abdesselam, P. Ho, “Boosting Markov Reward Models for Probabilistic
Security Evaluation by Characterizing Behaviours of Attacker and Defender”, The Third
Int’l Conf. on Availability,Reliability and Security, pp.352-359, 2008.

B.B. Madan, K.S. Trivedi,”Security modeling and quantification of intrusion tolerant
systems using attack-response graph.” Journal of High Speed Networks, vol. 13, no. 4,
pp. 297 — 308, 2004.

K. Lye and J.M. Wing, “Game strategies in network security”, Int’l Journal of
Information Security, vol. 4, no. 1-2, pp. 71-86, 2005.

K. Sallhammar, B. E. Helvik, and S.J. Knapskog, “Towards a stochastic model for
integrated security and dependability evaluation”, In Proc. of the First Int’l Conf. on
Availability,Reliability and Security (ARES), pp. 156-165, 2006.

P. Liu , and W. Zang, “Incentive-based modeling and inference of attacker intent,
objectives, and strategies”, ACM Transactions on Information and System Security

(TISSEC), vol.8, no. 1, pp. 78 - 118,2005.

125

[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

[80]

W. Jiang, Z. Tian, H.L. Zhang, and X. Song, A Stochastic Game Theoretic Approach to
Attack Prediction and Optimal Active Defence Strategy Decision”, pp. 648-653, April
2008.

Y. Wang, C. Lin, and K. Meng, “Analysis of Attack Actions for E-Commerce Based on
Stochastic Game Nets Model”, Journal of computers, vol. 4, no. 6, June 2009.

V. S. Sharma, and K. S. Trivedi,” Architecture-Based Analysis of Performance,
Reliability and Security of Software Systems”, Proc. of the 5th international workshop on
Software and performance, Spain, pp. 217 - 227 ,2005.

F. Stevens, T. Courtney, S. Singh, A. Agbaria, J.F. Meyer, W.H. Sanders, and P. Pal,
“Model-Based Validation of an Intrusion Tolerant Information System”, Proc. 23rd
Symp. Reliable Distributed Systems (SRDS 2004), pp. 184-194, Oct. 2004.

D. D. Deavours, G. Clark, T. Courtney, D. Daly, S. Derisavi, J. M. Doyle, W. H. Sanders,
and P. G. Webster. “The M obius Framework and Its Implementation”, IEEE Trans. on
Software Engineering, vol. 28, no. 10, pp. 956-969, Oct. 2002.

G. Clark, T. Courtney, D. Daly, D. Deavours, S. Derisavi, J. M. Doyle, and P. Webster.
“The M"obius Modeling Tool”, In Proc. of the 9th Intl Workshop on Petri Nets and
Performance Models, pp. 241-250, September 2001. :

W. H. Sanders, and the Board of Trustees of the University of Illinois, “Mobius Manual”,
Version 2.2.1.

E. Jonsson, “Towards an integrated conceptual model of security and dependability”,
Proc. of the First Int’l Conf. on Availability, Reliability and Security, pp. 646-653, 2006.
M. W. Maier, “System and Software Architecture Reconciliation”, Systems Engineering,
vol. 9, no. 2, 2006. ‘

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal, “Pattern-Oriented
Software Architecture, A System Of Patterns”, 2000.

E. Jonsson, T. Olovsson, “On the Integration of Security and Dependability in Computer
Systems”, IASTED Int’l Conf. on Reliability, Quality Control and Risk Assessment in
Washington, Nov. 4-6, 1992.

Perform Research Group, “UltraSAN User’s Manual”, 3.0 ed., Coordinated Science
Laboratory, 1994.

126

[81] E. Jonsson and T. Olovsson. “A Quantitative Model of the Security Intrusion Process
Based on Attacker Behaviour”, IEEE Transactions on Software Engineering, vol. 23, no.
4, pp. 235-245, April 1997.

[82] M. Castro, and B. Liskov, “Practical Byzantine Fault Tolerance”, In Proc. Of the Third
Symp. on Operating Systems Design and Implementation, pp. 173186, Debruary 1999.

[83] L. Lamport, R. Shostak, and M. Pease. “The Byzantine Generals Problem”, ACM
Transactions on Programming Languages and Systems, vol. 4, no. 3, pp. 382-401, July
1982.

[84] S. Hafezian, O.Das, “Security modeling of a layered system”, Symp. on Information
Assurance, Biometric Security and Business Continuity: Information Assurance and

Privacy, pp. 296-301, Sep 2009.

127

