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Abstract 

Dynamic Finite Element (DFE) and conventional finite element formulations are developed to 

study the flexural – torsional vibration and stability of an isotropic, homogeneous and linearly 

elastic pre-loaded beam subjected to an axial load and end-moment. Various classical boundary 

conditions are considered. Elementary Euler – Bernoulli bending and St. Venant torsion beam 

theories were used as a starting point to develop the governing equations and the finite element 

solutions. The nonlinear Eigenvalue problem resulted from the DFE method was solved using a 

program code written in MATLAB and the natural frequencies and mode shapes of the system 

were determined from the Eigenvalues and Eigenvectors, respectively. Similarly, a linear 

Eigenvalue problem was formulated and solved using a MATLAB code for the conventional FEM 

method. The conventional FEM results were validated against those available in the literature and 

ANSYS simulations and the DFE results were compared with the FEM results. The results 

confirmed that tensile forces increased the natural frequencies, which indicates beam stiffening.  

On the contrary, compressive forces reduced the natural frequencies, suggesting a reduction in 

beam stiffness. Similarly, when an end-moment was applied the stiffness of the beam and the 

natural frequencies diminished. More importantly, when a force and an end-moment were acting 

in combination, the results depended on the direction and magnitude of the axial force. 

Nevertheless, the stiffness of the beam is more sensitive to the changes in the magnitude and 

direction of the axial force compared to the moment. A buckling analysis of the beam was also 

carried out to determine the critical buckling end-moment and axial compressive force.   
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1. Introduction 

Beams are important and commonly used structures, since many components of airborne vehicles, 

such as wings and helicopter blades could be modeled as a simple beam or as a series of beams 

during the preliminary design stages. Additionally, multiple layers of beams could be used to 

model sandwich/composite materials and delamination problems.  

Such an aircraft structural component is exposed to a large range of vibrational frequencies during 

its operational lifetime. Therefore, it is of utmost importance to study the vibrational 

characteristics, such as the fundamental frequencies and mode shapes of a system in order to avoid 

resonance. Thus, prior to manufacturing, most components undergo modal analyses which would 

allow the designers to investigate the effects of various loading and boundary conditions the part 

would be subjected to during its operation, and understand the effect of those on the vibrational 

characteristics of the component. Using these results, the engineers and designers could then alter 

and optimize the geometry of the system and the materials used, to gain a favorable outcome. They 

would also be able to determine the most suitable locations to add supports and areas that require 

additional reinforcements. Thus, modal analysis would ensure that the natural frequencies of the 

component is maintained within an accepted range.  

In many aerospace applications, the structural beam elements are in a state of preload or pre – 

stress due to the application of axial loads and end-moments (e.g. helicopter rotor blades and 

structural elements attached through semi – rigid connections). The centrifugal force acting on the 

blades could be modelled as an axial force. The presence of such axial loads and end-moments can 

affect the vibrational and stability characteristics of the beam and as such it is worthwhile to 

investigate. Therefore, in this study a modal analysis will be carried out to investigate the stability 
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and vibration of a simple Euler – Bernoulli beam under various boundary conditions subjected to 

axial force and end- moments.   

Many researchers have studied the free vibration of isotropic, sandwiched, composite and thin-

walled beams subjected to various loading configurations, using numerous techniques. Hashemi 

and Richard [1] developed a new Dynamic Finite Element (DFE) formulation to analyse the free 

vibration of bending – torsion coupled beams. The flexural axis of the beam studied by Hashemi 

et al. is not coincident with the inertial axis.  Hashemi and Roach [2] also formulated a DFE for 

the free vibration of an extension – torsion coupled composite beam. A quasi – exact DFE 

formulation, for the free vibration analysis of a three layered sandwich beam consisting of a thick, 

soft, low strength and density core as well as two face layers made of high strength material, was 

developed by Hashemi and Adique [3]. Borneman and Hashemi [4] developed a DFE for the free 

vibration analysis of a bending – torsion coupled laminated composite wing beam.  The effects of 

shear deformation and rotary inertia were neglected in this study, but were accounted for in another 

study by Hashemi and Pereira [41].  

The exact method has been used to determine the flexural – torsional vibrational characteristics of 

a uniform beam with single cross sectional symmetry by Dokumaci et al [5]. The classical finite 

element method was used by Mei [6] to study the coupled vibration of thin walled beams with 

open section. This study included the effects of warping stiffness. The free vibration of an open, 

variable cross section I-beam was investigated by Wekezer [7]. The flexural – torsional vibration 

of a uniform beam was studied by Tanaka et al, [8], by determining the exact solution of the 

governing differential equations.  

Bannerjee et al. have used the Dynamic Stiffness Matrix Method (DSM), which utilizes the general 

closed form solution of the governing differential equations of motion to generate the frequency 
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dependent stiffness matrix, for vibrational analysis of isotropic [9,10], sandwich [11,12,13] and 

composite [14] beams in the past.  Banerjee et al. [15] also developed an exact DSM to investigate 

the vibration of an Euler – Bernoulli thin walled beam and exploited the Wittrick – Williams [16] 

root finding algorithm to arrive at the Eigensolutions. Bannerjee and Su [17] later used the DSM 

to conduct a free, transverse and lateral vibration analysis of a beam coupled with torsion. 

Borneman et al. [18] also used the DSM method to investigate the vibrational characteristics of a 

doubly coupled (material and geometric) composite beam.  Friberg [19] and Leung [20] developed 

an exact DSM of a thin walled beam. The Dynamic Stiffness method was used by Hallauer et al. 

[21] to determine the vibrational characteristics and generalized masses of an aircraft wing 

modelled as a series of three simple beams. 

The axial load and end-moment affect the stability and vibrational characteristics of the beam. The 

effect of the axial load on the transverse vibrational characteristics of beams has been well 

established [22]. Hashemi and Richard [23] conducted a vibrational analysis on an axially loaded 

bending – torsion geometrically coupled beam using the DFE method. Banerjee et al. [24] studied 

the coupled flexural – torsional vibration of an axially loaded Timoshenko beam. Analytical 

solutions were developed by Bannerjee et al. [25, 26] to model a uniform, axially loaded, 

cantilevered beam with flexural – torsional geometric coupling as a result of non-coincident shear 

and mass centers. The effects of warping has been neglected in these studies. Jun et al. [27] studied 

the coupled flexural – torsional vibration of an axially loaded, thin walled beam with 

monosymmetrical cross sections and accounted for the effects of warping. The effect of axial load 

has also been previously studied by Murthy and Neogy [28] for clamped and pinned boundary 

conditions as well as by Gallert and Gluck [29] for the cantilevered boundary condition. Bokaian 

[30] studied the natural frequencies of a uniform single span beam subjected to a constant tensile 
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axial load for various boundary conditions. The same author also investigated the vibrational 

characteristics of a uniform single span beam for ten different end conditions when a constant 

compressive axial load is applied [31].  Shaker et al. [32] conducted a modal analysis to determine 

the effect of axial load on the mode shapes and natural frequencies of beams.  

It has also been found by Chen and Astuta [33] that transverse bending and torsion is coupled by 

static end-moments and that flexural – torsional buckling is comprised of this transverse flexure 

and torsion. Analytical investigations on the influence of axial loads and end-moments on the 

vibration of beams have been previously reported by Joshi and Suryanarayan for a simply 

supported case [34] as well as for various boundary conditions [35]. Joshi and Suryanarayan [36] 

also studied analytically, the flexural – torsional instability of thin walled beams subjected to axial 

loads and end-moments. The same authors studied the coupled bending – torsion vibration of a 

deep rectangular beam that was initially stressed due to the application of moments varying along 

the span of the beam [37]. Pavlovic and Kosic [38] developed a closed form analytical solution to 

investigate the effects of end-moments on a simply supported thin walled beam. Pavlovic et al. 

[39] also formulated the analytical solutions to study a simply supported thin walled beam 

subjected to the combined action of an axial force and end-moment.  

The reliability and accuracy of such modal analysis results depends on the method implemented. 

There are several analytical, semi-analytical and numerical methods that could be used to carry 

out the modal analysis. All methods mentioned in the above references have their inherent 

advantages and disadvantages. Although there exists a class of problems for which an exact 

solution can be easily obtained, in most cases an exact solution for the normal modes and 

frequencies of the system would be intractable. Exact methods such as DSM are capable of using 

just one element matrix to produce the exact results for the vibrational characteristics of a beam. 
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Nevertheless, the applicability of such analytical methods is limited to simple and special cases. 

With every change made to the system configuration, the equations should be reformulated and it 

is difficult to use analytical methods to model problems with variations in geometry and material 

properties. Thus, recourse would be made to one of the many approximate solutions such as the 

Rayleigh-Ritz method and Galerkin's method [40].  

The conventional Finite Element Method (FEM), which uses the Galerkin method of weighted 

residuals, is widely used for modal analysis and is very popular among researchers since it is 

convenient and adaptable to many complex systems including systems consisting of material and 

geometric variations. Geometric variations are modelled as stepped, piecewise – uniform 

configurations. In this method, the system is discretized once the weak form of the governing 

differential equations is obtained by applying the Galerkin method of weighted residuals. Cubic 

Hermite approximations are frequently used for transverse flexural displacements and linear 

approximations for torsion. This results in the element mass and stiffness matrices, which are 

independent of the natural frequency. Assembling the element mass and stiffness matrices creates 

a linear Eigenvalue problem of which, the Eigenvalues and Eigenvectors give the natural 

frequencies and mode shapes of the system, respectively. 

The DFE method [1, 23] is a hybrid frequency-dependent approximate solution method which is 

more accurate than the conventional FEM and, unlike the DSM, is adaptable to many complex 

configurations. It allows for a reduced mesh size and its formulation is quite similar to that of the 

conventional FEM. The Galerkin method of weighted residuals is also used in the DFE method to 

arrive at the weak integral form of the governing differential equations, after which the DFE 

formulation process deviates from the classical FEM. Instead of using polynomial and linear shape 

functions to approximate the flexural and torsional displacements, respectively, the DFE method 
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utilizes frequency-dependent basis/shape functions presented in [1] and [23] to approximate the 

displacements. The trigonometric shape functions have been obtained in [1] and [23] by taking the 

exact solutions for the differential equations of motion governing the uncoupled vibrations of a 

uniform beam. The nodal approximations of displacement is found using the frequency-dependent 

shape functions obtained when the solutions to the above governing differential equations are 

employed as basis functions. Subsequently, discretization of the beam is carried out similar to the 

conventional FEM, which leads to the frequency-dependent dynamic element stiffness matrices. 

When these element matrices are assembled, the frequency-dependent global dynamic stiffness 

matrix is found. In order to find the natural frequencies of the system, the frequency, ω, is swept 

to search for particular frequencies that would make the determinant of the global stiffness matrix 

go to zero. The corresponding eigenvector provides the mode shapes of the system.  

To the best of the author’s knowledge, a conventional or dynamic finite element formulation has 

not yet been developed to model the geometrically coupled flexural – torsional free vibration of 

an Euler – Bernoulli beam subjected to an axial force and an end-moment simultaneously. 

Therefore, in what follows, a classical finite element solution and a DFE formulation are presented 

to investigate the stability and flexural – torsional vibration of a simple Euler – Bernoulli beam 

subjected to an axial load and an end-moment. The effects of the axial load and end-moment on 

the stiffness and natural frequencies of the beam for various classical boundary conditions are 

examined. Program codes were written for the FEM and DFE methods using MATLAB and the 

results for the FEM code were validated using ANSYS commercial software. Subsequently, the 

DFE code results were compared for accuracy using the results produced for the same 

mathematical model, by the FEM code.    
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The purpose of developing a DFE solution for a beam model that is axially loaded and 

geometrically coupled due to an end-moment thus inducing flexural – torsional vibration, is that it 

could be then used as a powerful tool to quickly investigate the vibrational and stability 

characteristics of numerous aerospace applications that are modelled as beams or assemblages of 

several identical beams (planar or space frames) to a very high degree of accuracy at the 

preliminary design stage.  It is very important to take in to account the coupling effects in vibration 

and response calculations of these types of structures.  The DFE beam model could be conveniently 

used to study periodical structures or more complex assemblies made of several identical 

substructures (beams) that has the same dynamic stiffness components and frequency 

characteristics.  

Given the magnitude of aerospace components that are axially loaded and bending-torsion coupled 

that could be represented as beams to an acceptable degree of accuracy during the preliminary 

design stages, such as helicopter, propeller, compressor and turbine blades, the fact that engineers 

and designers could arrive at an acceptable ballpark for the vibrational characteristics within a 

fraction of the time, especially for higher modes, using an extremely coarser mesh in comparison 

to conventional FEM is a massive advantage as it avoids the difficulty of having to solve a very 

large Eigenvalue problem. For such aerospace components the coupled bending-torsional 

frequencies and mode shapes are crucial for aeroelastic calculations. The fact that any mode 

number could be investigated using dynamic elements regardless of the total number of degrees of 

freedom of the global system, is also an advantage.  

Therefore, in the second chapter the problem that is studied will be explicitly defined and the 

theoretical aspects involved in developing the conventional FEM method will be explained in 

detail commencing from the governing differential equations of motion and extending to the point 
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where the linear Eigenvalue problem is developed. The element mass and stiffness matrices 

resulting due to the discretization process will also be presented here.   

Next, the numerical test results obtained from the conventional FEM analysis and a verification of 

the FEM results using ANSYS simulations would be presented. Comments will be made on the 

accuracy and efficiency of the solution.  

In the third and penultimate chapter, the Dynamic Finite Element formulation process would be 

presented and its distinctions from the conventional FEM method would be elaborated. The 

process leading to the development of the coupled and uncoupled element stiffness matrices and 

the frequency dependent nonlinear Eigenvalue problem will be discussed in detail.  

This will be followed by the results of the numerical tests performed using the DFE method which 

will be compared for accuracy and efficiency of convergence with the conventional FEM results.  

Finally, conclusions will be drawn upon the results presented previously and the benefits and 

applications of the developed DFE beam model would be discussed. Additionally, this chapter will 

also be comprised of comments on the extendibility of the current work to incorporate other effects 

that were not considered in this study such as warping, geometric nonlinearity and variation of 

material properties that could be useful for future works.   
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2. Conventional Finite Element Analysis 

Consider a linearly elastic, homogeneous, isotropic beam subjected to an end-moment, M, and an 

axial load, P, undergoing linear vibrations. Euler – Bernoulli bending and St. Venant torsion beam 

theories are used to derive the governing differential equations of motion and a classical finite 

element solution is developed. As can be observed from equations (1) and (2) below, the system 

is coupled by the end-moments, M. The end-moments act about the z-axis (lagwise), however, 

bending in the x-y plane (lagwise) is not considered and bending occurs in the x-z plane (flapwise). 

Thus, the end-moments acting in the lagwise direction introduces torsion to the system and creates 

flexural-torsional coupling. Figure 1 (below) illustrates the geometry of the studied system. 

 

Figure 1: Beam with axial load and end-moment applied at x=0 and x=L 

The two governing differential equations of the beam are as follows. 

0''''''''  wAMPwEIw   (1) 

0''''''   
P

P IMw
A

PI
GJ  (2) 

where w stands for the transverse flexural displacement and θ represents the torsional 

displacement. The derivatives with respect to the length of the beam and time are denoted with a 
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prime (′) and a dot (.), respectively. In equations (1) and (2) the applied moment and force are 

shown as M and P, respectively. EI and GJ in the above equations are the Euler bending and St. 

Venant torsion stiffness terms, respectively. The cross-sectional area of the beam is denoted by A.  

The mass density is represented by ρ and Ip stands for the polar moment of inertia of the beam. In 

order to eliminate the time dependency in equations (1) and (2), simple harmonic vibration is 

considered and the following transformations are used to describe the transverse and torsional 

displacements. 

)sin(ˆ),( tWtxw   (3) 

)sin(ˆ),( ttx    (4) 

where ω is the circular frequency and t, is the time. 𝑊̂ and 𝜃 are the transverse and torsional 

displacement amplitudes, respectively.  Upon substituting equations (3) and (4), equations (1) and 

(2) becomes, 

0ˆˆˆˆ 2''''''''  WAMWPWEI   (5) 

0ˆˆˆˆ 2''''''   AIWMPIGJ PP  (6) 

The Galerkin method of weighted residuals [40] is employed to develop the integral form of the 

above equations. 

'''' '' '' 2

0

( ) 0

L

fW W EIW PW M A W dx         (7) 

'' '' '' 2

0

( ) 0

L

P
t P

PI
W GJ MW I dx

A
           (8) 
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where δW and δθ (i.e. weighting functions) represent the transverse and torsional virtual 

displacements, respectively. Performing integration by parts on equations (7) and (8) leads to the 

weak integral form of the governing equations, written as: 

'' '' ' ' ' ' 2 ''' ' ' '' '

0 0

0

( ) [( ) ] [( ) ] 0

L

L L

fW EIW W PW W M W A W W dx EIW PW M W EIW W                   (9) 

' ' ' ' ' ' 2 ' ' '

0
0

( ) [( ) ] 0
L

LP P
t P

PI PI
W GJ MW I dx GJ MW

A A
                   

   

(10) 

Expressions (9) and (10) also satisfy the principle of virtual work. 

0INT EXTW W W    (11) 

where, 

0EXTW   (12) 

and thus, 

INT f tW W W   (13) 

The total virtual work, internal virtual work and external virtual work are denoted by 𝑊̅, 𝑊̅𝐼𝑁𝑇 

and 𝑊̅𝐸𝑋𝑇, respectively. The resulting shear force S(x), bending moment M(x), and torsional torque 

T(x), defined as: 

''( )M x EIW   (14) 
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''' ' '( )S x EIW M PW    (15) 

' ' '( ) PPI
T x GJ MW

A
     (16) 

are zero at the free end and the displacements are set to zero at the fixed boundaries. As a result, 

the bracketed boundary terms in expressions (9) and (10) vanish for all boundary conditions. The 

system is then discretized using elements with 2 nodes and three DOF per node as shown in Figure 

2 below such that,  

. .

1 1

No ofElements No ofElementsk k k

INT f tk k
W W W W W

 
      (17) 

 

Figure 2: System discretized using elements with 3 degrees of freedom per node 

Nodal DOF’s are lateral displacement w, rotation (i.e. slope) w’ and torsional displacement θ. The 

classical finite element formulation is developed using cubic Hermite type polynomial 

approximations for bending displacement (equation 18) and linear approximations for torsional 

displacements (equation 19) introduced in the weak integral form of the governing equations such 

that for a two node, three degree-of-freedom per node element, 

 1

321)( Cxxxxw   (18) 

 21)( Cxx   (19) 
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In equations (18) and (19) above C1 and C2 are columns vectors of unknown constant coefficients. 

The vectors of nodal displacement for bending and torsion are shown below.  
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Thus,  

     nnwn WxNWPxxxxW )(1)(
1

,
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

 (22) 

and 

   nntn xLPxx  )(][1)( 1

,  
 (23) 

where <N(x)> and <L(x)> are both row vectors consisting of cubic and linear shape functions for 

bending and torsion, respectively. The cubic shape functions N1, N2, N3 and N4 are, 
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The linear shape functions L1 and L2 are defined as, 

l

x
xL 1)(1

 

(25) 

l

x
xL )(2

 

A graphical representation of the shape functions described in equations (24) and (25) above could 

be seen in Figure 22 in Appendix A. This discretizing process leads to the element stiffness, mass 

and coupling matrices which when assembled together within the FEM code written in MATLAB 

would result in the linear Eigenvalue problem shown in equation (26) below.  

   02  nn WMKW   

(26) 

0)det( 2  MK   

where K stands for the global stiffness matrix, which is a collection of all the element stiffness 

matrices. The global mass matrix is symbolized by M.  

Matrix (26-a) shown below is the element mass matrix, [m]k, and matrices (26-b) through (26-f) 

are the uncoupled, coupled and geometric element stiffness matrices. When matrices (26-b) 

through (26-f) are assembled together, the final element stiffness matrix would result. This is 

shown as matrix (26-g).  
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where l stands for the element length and m represents the element mass per unit length. The 

element uncoupled bending stiffness matrix, [kB], is shown below.  
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The final element stiffness matrix is modified due to the presence of the end-moment and axial 

load which contributes the [k]geometric matrix, [k]torsion matrix, bending – torsion coupling stiffness 

matrix, [kBT]c, and the torsion – bending coupling stiffness matrix, [kTB]c. These are added to the 

bending stiffness matrix, [kB], above, to form the final element stiffness matrix, [k]k. The geometric 

and torsion stiffness matrices contributed by the axial load P are shown below. 
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The bending – torsion and torsion – bending coupling stiffness matrices introduced by the end-

moment M are as follows.  
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Therefore, the final element stiffness matrix, which is a collection of the five sub matrices, takes 

the following form. 
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(26-g) 

The solution to the linear Eigenvalue problem in equation (26) is achieved by determining the 

Eigenvalues and Eigenvectors using a FEM code developed in MATLAB. Various classical 

boundary conditions are also applied within the MATLAB code. Thus, the natural frequencies and 

mode shapes of the beam are evaluated. 
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2.1 FEM Numerical Tests 

A Steel beam (E=200 GPa and d=7800 kg/m3), having a length of 8m, width of 0.4m and depth of 

0.2m was studied. The first stage of the numerical tests was to validate the results obtained using 

the developed FEM code with known exact results. Due to the lack of analytical results for the 

problem containing an axial load and end-moment, the accuracy of the natural frequency values 

from the code were compared with the analytical results for a beam without any force or moment. 

Table 1 below include the results for the first three natural frequencies for various boundary 

condition types using the exact [40] and FEM methods.  

Table 1: Comparison between the exact and FEM results for the first three natural frequencies at P = 0 

and M = 0 

Boundary 

Condition 

Natural Frequencies (Hz) at P = 0 and M = 0 

Mode 1 Mode 2 Mode 3 

Exact 

[40] 

FEM (40 

elements) 

Exact 

[40] 

FEM 

(40elements) 

Exact 

[40] 

FEM 

(40elements) 

C - F 2.556 2.556 15.995 15.995 44.858 44.858 

C - C 16.266 16.266 44.858 44.858 87.970 87.970 

P - P 7.175 7.175 28.718 28.718 64.633 64.633 

P - C 11.209 11.209 36.351 36.351 75.611 75.611 

 

From Table 1 above it can be observed that the results produced by the exact method and the FEM 

method are identical and as such the FEM code generates accurate results.  

In order to determine the rate of convergence of the FEM method, the fifth natural frequency of a 

cantilevered beam was used. Since coupling caused by end-moment introduces more error to the 

system, the highest possible loading configuration with 1.85 MN of tensile force and 9.21 MN.m 

of end-moment was applied. The convergence was verified by using different numbers of elements 
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to generate the mesh and finding the least number of elements that would yield acceptable results. 

Once again, as there were no analytical results available for similar cases, the FEM code was used 

to determine the exact results by progressively increasing the number of elements used from 10 to 

1000. Table 2 below includes these results and it can be observed that the value for the fifth natural 

frequency remains at 88.243 Hz when 200 or more elements are used. Thus, as the result has 

converged and it does not change even when 1000 elements are utilized, 88.243 Hz is taken to be 

the exact value for the 5th natural frequency when the cantilevered beam is subjected to a tensile 

force of 1.85 MN and end-moment of 9.21 MN.m. However, since 40 elements is sufficient to 

obtain a result with an error less than 0.01 percent, 40 elements were considered as a reasonable 

number of elements for the FEM method. Convergence of the results for the first four fundamental 

frequencies were also checked and it was observed that these results converged to the analytical 

result with lesser number of elements. 

Table 2: Convergence of the fifth natural frequency 

No. of 

Elements 
Mode 5 (Hz) 

10 88.376 

20 88.261 

30 88.255 

40 88.247 

50 88.245 

75 88.244 

80 88.244 

200 88.243 

500 88.243 

1000 88.243 
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Figure 3 below is a graphical representation of the reduction in percentage error between the FEM 

and exact results as the number of elements is increased. It illustrates that the result for the fifth 

natural frequency of the beam subjected to the above mentioned loading and boundary conditions 

would converge to the exact result when 200 elements are used. It also depicts that 40 elements 

are sufficient to attain a percentage error below 0.01 percent.  

 

Figure 3: Convergence analysis for conventional FEM for cantilevered beam 

A pre-stressed modal analysis was conducted using ANSYS 14 to simulate the problem and to 

further validate the FEM code results. For FEM meshing of the beam, SOLID 187 elements were 

used (see Figure 30 in Appendix B). The SOLID 187 element is a higher order, 3D, 10 – node 

element capable of 6 degrees of freedom (3 translations and 3 rotations) per node. A total of 102 

elements were used for the meshing process in ANSYS.  

The first natural frequency of the beam was determined for all classical boundary conditions when 

subjected to an axial tensile load and an end-moment. The accuracy of the results produced by the 

proposed FEM method was checked using ANSYS commercial software for the cantilevered case 

and the results are included in Table 3 below.  
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Table 3: First natural frequencies for cantilever boundary condition (C – F) when force and 

moment are applied; a 40-element FEM model is used 

C-F 

End-Moment 

0 (MN.m) 6.14 (MN.m) 9.21 (MN.m) 

Fundamental Frequency (Hz) 

Force 

(MN) 
ANSYS 

FEM Code 

(40 elements) 
ANSYS 

FEM Code 

(40 elements) 
ANSYS 

FEM Code 

(40 elements) 

0 2.555 2.556 2.241 2.234 1.749 1.727 

0.62 2.883 2.884 2.620 2.614 2.233 2.216 

1.23 3.168 3.169 2.939 2.934 2.614 2.600 

1.85 3.421 3.422 3.217 3.213 2.934 2.922 

 

As can be observed from Table 3, the developed FEM code yields results that are closer to the 

exact results, compared to the ANSYS simulation. This could be due to the shear and warping 

effects of the 3D element (SOLID 187) used in ANSYS that were not accounted for in the code.  

Tables 4 through 6 below include the results for the first natural frequency for different 

combinations of tensile force and end-moment for the clamped – clamped, pinned – pinned and 

pinned – clamped boundary conditions, respectively.  
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Table 4: Fundamental frequencies for clamped – clamped boundary condition (C–C), when force 

and end-moment are applied; a 40-element FEM model is used 

C-C 

End-Moment 

0 

(MN.m) 

6.14 

(MN.m) 

9.21 

(MN.m) 

Force 

(MN) 

FEM Fundamental Frequency 

(Hz) 

0 16.266 16.141 15.984 

0.62 16.413 16.290 16.134 

1.23 16.559 16.437 16.283 

1.85 16.703 16.582 16.430 

Table 5: First natural frequencies for pinned – pinned boundary condition (P – P) when force and 

moment are applied; a 40-element FEM model is used 

P-P 

End-Moment 

0 

(MN.m) 

6.14 

(MN.m) 

9.21 

(MN.m) 

Force 

(MN) 

FEM Fundamental Frequency 

(Hz) 

0 7.175 6.947 6.651 

0.62 7.440 7.220 6.935 

1.23 7.695 7.483 7.208 

1.85 7.942 7.736 7.471 
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Table 6: First natural frequencies for pinned – clamped boundary condition (P – C) when force 

and moment are applied; a 40-element FEM model is used 

P-C 

End-Moment 

0 

(MN.m) 

6.14 

(MN.m) 

9.21 

(MN.m) 

Force 

(MN) 

FEM Fundamental Frequency 

(Hz) 

0 11.209 11.040 10.824 

0.62 11.408 11.242 11.031 

1.23 11.604 11.441 11.233 

1.85 11.796 11.636 11.432 

 

The critical buckling end-moments and compressive forces were also determined for the 

cantilevered boundary condition and the results are shown in Table 7 and Table 8 below.  

Table 7: Critical buckling moment for cantilevered boundary condition (C - F) with varying 

compressive force 

Force (MN) Buckling Moment (MN.m) 

-1.85 3.900 

-1.23 7.750 

-0.62 10.60 

0 12.28 

0.62 13.76 

1.23 15.57 

1.85 16.95 
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Table 8: Critical buckling compressive force for cantilevered boundary condition (C - F) with 

varying end-moment 

Moment (MN.m) 
Buckling Force 

(MN) 

0 -2.057 

3.07 -1.900 

6.14 -1.750 

9.21 -0.900 

 

Figures 4 through 7 illustrate the variation of the first natural frequency when both tensile force 

and end-moment is acting on the beam, for various classical boundary conditions.  

 

Figure 4:Variation of natural frequencies when tensile force and end-moment is applied for 

cantilevered (C-F) boundary condition 
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Figure 5: Variation of natural frequencies when tensile force and end-moment is applied for clamped – 

clamped (C-C) boundary condition 

 

Figure 6: Variation of natural frequencies when tensile force and end-moment is applied for 

pinned – pinned (P-P) boundary condition 
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Figure 7: Variation of natural frequencies when tensile force and end-moment is applied for 

clamped – pinned (C-P) boundary condition 

Figure 8 depicts how the critical buckling compressive force changes when the end-moment is 

varied. Similarly, Figure 9 shows the fluctuation of the magnitude of the critical buckling moment 

with respect to the change in tensile and compressive axial force.   

 

Figure 8: Variation of critical buckling compressive force with end-moment 
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Figure 9: Variation of critical buckling end-moment with tensile and compressive force 

In Figure 10 and Figure 11, respectively, the bending and torsional mode shapes of the first five 

natural frequencies for the cantilevered beam subjected to a tensile force of 1.85MN and end-

moment of 9.21 MN.m are shown. 

 

Figure 10: Bending components of mode shapes 

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

-1 1 3 5 7 9

B
en

d
in

g
 D

is
p
la

ce
m

en
t 

(m
)

Distance from Clamped End (m)

Mode 1

Mode 2

Mode 3

Mode 4

Mode 5



   

28 
 

 

Figure 11: Torsional components of mode shapes 

The frequency results of the developed FEM code showed good agreement with the ANSYS 

results and the error was less than 2 percent. As expected, tensile axial load increased the natural 

frequencies of the beam thus, indicating and increase in the stiffness of the beam for all classical 

boundary condition types. The increment in natural frequencies corresponding to the application 

of higher values of tensile load shows that the beam gets stiffer when the tensile load is increased. 

When the end-moment is applied without a tensile force, the natural frequencies reduce again for 

all boundary conditions indicating that the moment also causes a reduction in stiffness of the beam. 

Any increment in the magnitude of the applied end-moment lessened the stiffness of the beam 

further. As can be seen from Tables 3 through 6 and Figures 4 through 7, if the end-moment is 

held constant and the tensile load is increased, the natural frequencies increase indicating an 

increase in beam stiffness. However, on the contrary, if the tensile load is held constant and the 

end-moment is increased, the beam stiffness reduces.  
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A compressive axial load has the opposite effect to that of a tensile load, on the natural frequencies 

and stiffness of a beam. The results in Table 7 show that the critical buckling moment is 12.28 

MN.m when no force is acting, for the cantilevered boundary condition. However, when a 

compressive force is applied, the beam buckles at much lower magnitudes of the end-moment. 

Thus, the magnitude of the critical buckling moment reduces with a progressive increase in the 

compressive load applied. In contrast, results in Table 7 show that when a similar magnitude of 

tensile force is applied, the critical buckling moment increases. This further confirms the claim 

that tensile forces introduce additional reinforcement to the structure, increasing its stiffness. More 

quantitatively, the critical buckling end-moment increases from 3.9 MN.m to 16.95MN.m simply 

by reversing the direction of the applied force while keeping the magnitude constant at 1.85MN. 

The above results are depicted graphically in Figure 9. 

 

Similarly, Table 8 shows that the magnitude of the critical buckling compressive force reduces 

with increasing values of end-moment, further confirming that the end-moment has a detrimental 

effect on the stiffness of the beam. This is shown in Figure 8.  

 

Figure 10 and Figure 11, respectively, depict the flexural and torsional components of the mode 

shapes of the beam. As can be seen from these figures, the vibration of the beam is predominantly 

flexural in the first three natural frequencies. Torsion becomes predominant in the 4th natural 

frequency. The 5th natural frequency again becomes predominantly flexural.  
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3. The Dynamic Finite Element (DFE) Method 

A linearly elastic, homogeneous and isotropic beam with the same dimensions, material properties, 

loading configuration and boundary conditions as the beam used in the previous chapter is 

considered.  

3.1 The Dynamic Stiffness Matrix method 

If the beam element is considered to be uniform and homogeneous, thus, making material and 

geometric properties such as EI, GJ and mass uniform throughout the beam, it is possible to 

develop a DSM formulation. This is not always the case and material non – uniformity can make 

the DSM method inapplicable. However, the frequency dependent shape functions of the DFE 

method are found by using the exact solution to the uncoupled governing equations as expansion 

terms.  

3.2 The conventional FEM method based on polynomial interpolation functions 

As seen in the previous chapter, the FEM method is very flexible and convenient. Unlike the DSM 

method, it could be extended to include systems consisting of material and geometric non linearity 

making it a useful method for complex problems. However, the FEM method uses a large number 

of elements to achieve a reasonable degree of accuracy especially when the higher frequencies of 

vibration are of interest, thus, consuming more computational overhead and increasing round off 

error. On the other hand the DFE method has been proven in the past [1, 23] to produce exact 

results using just 1 element for uncoupled systems. Highly accurate results for coupled systems 

have been achieved using the DFE method with 5 or 6 elements [1, 23]. The formulation of the 

equations for the FEM and DFE methods are the same up to the point of discretization (equation 

17), using two-node, six degree-of-freedom elements (see Figure 2). Beyond this point, the two 
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methods diverge in their formulation processes as the FEM method utilizes the cubic Hermite 

shape functions (equation 24) and linear shape functions (equation 25) for bending and torsion, 

respectively, as opposed to the DFE method which uses trigonometric shape functions presented 

in [1] and [23].  

3.3 The frequency- dependent Dynamic Finite Element method based on trigonometric shape 

functions 

In this section, the flexural – torsional vibration and stability of a simple Euler – Bernoulli beam 

will be investigated using the DFE method. As mentioned previously, the DFE method is a hybrid 

and intermediate method that combines the accuracy of the DSM method as well as the adaptability 

of the conventional FEM method to obtain a better finite element model. Therefore, the starting 

point of the DFE formulation would be the two discretized weak form equations from the 

conventional FEM shown below, after the bracketed boundary terms explained in the previous 

chapter vanished. 
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Two sets of integration by parts will be carried out on the first two terms of the equation for flexure 

and one set of integration by parts will be performed on the first two terms of the equation for 

torsion in order to obtain the following forms. 
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Substituting, 𝜉 = 1/𝑙 in both equations above would results in, 
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The interpolation functions which respect the nodal properties would be the solutions to the 

integral terms marked as (*) and (**). Thus, the non – nodal approximation of the solution 

functions, W and θ, and the test functions δW, and δθ, written in terms of generalised parameters 

are as follows. 

                 
f f

W P a W P a      (33) 

                 
t t

P b P b         (34) 

The basis functions of the approximation are shown below. These basis function are the solutions 

to the characteristic equations (*) and (**). When the roots, α, β, and τ of the characteristic 

equations tend to zero, the resulting basis functions are similar to that of a standard beam element 

in the classical FEM where flexure and torsion are approximated using cubic Hermite polynomials 

and linear functions, respectively.   

   
         

2 2 3 3

sin cosh cos sinh sin
cos ; ; ;

f
P

    
 

    

 


 
 (35) 

     cos ;sin /
t

P      (36) 

The roots, α, β, and τ are defined as follows. 

* 

** 
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   2 2

1 2

4 4
           

2 2

B B AC B B AC
X X

A A

     
   

(37) 

where the constants,  

2

3
                    ( )

EI P
B C ml

l l
A 

 
    

 
  (38) 

Thus, the roots are, 

2 1          X X    (39) 

and, 

2 2

p

p

I l A

AGJ PI

 
 


 (40) 

Replacing the generalized parameters, 〈𝑎〉,〈𝛿𝑎〉,〈𝑏〉 and 〈𝛿𝑏〉 in equations (33) and (34) with the 

nodal variables, 〈𝑊1𝑊1
′𝑊2𝑊2

′〉,  〈𝛿𝑊1 𝛿𝑊1
′ 𝛿𝑊2 𝛿𝑊2

′〉, 〈𝜃1𝜃2〉 and 〈𝛿𝜃1𝛿𝜃2〉, and re-writing 

equations (33) and (34) will result in equations (41) and (42) below. 

                     n n n nf f
W P a W P a    (41) 

                     n n n nt t
P b P b     (42) 

The matrices,[𝑃𝑛]𝑓 and [𝑃𝑛]𝑡, are defined as, 
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






)sin(
)cos(

01
][ tnP  (42-b) 

Thus, equations (33), (34) and the, [Pn]f, and [Pn]t, matrices above could be combined in the 

following manner to construct nodal approximations for flexural displacement W(𝜉) and torsion 

displacement 𝜃(𝜉). 

     
1

( ) ( ) ( )n n nf ff
W P P W N W  


   (43) 

     
1

( ) ( ) ( )n n nt tt
P P N     


   (44) 

In equations (43) and (44), 〈𝑁(𝜉)〉𝑓, and 〈𝑁(𝜉)〉𝑡, are the frequency dependent trigonometric shape 

functions for flexure and torsion, respectively. Equations (43) and (44) could also be re-written as, 

  
( )

( )
n

W
N w



 

 
 

 
 (45) 

where,  

1 2 3 4

1 2

( ) ( ) ( ) (0 0
[ ]

0 0 0 0

)

( ) ( )

f f f f

t t

N N N N

N N
N

   

 

 
  
 

 (46) 

and 

  ' '

1 1 1 2 2 2

T

nw WW W W   (47) 

The definitions of the frequency-dependent trigonometric shape functions for flexure obtained 

from [1] and [23] are as follows. Although, dependent on the frequency ω elsewhere (see Figures 

24 through 29 in Appendix A), the trigonometric shape functions for bending are independent of 

the frequency at the element boundaries and as such, N1f = 1, N2f = 0, N3f = 0, and N4f = 0, at 𝜉 = 0 
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, and N1f = 0, N2f  = 0, N3f  = 1, and N4f  = 0, at 𝜉 = 1. See Figure 23 in Appendix A for an illustration 

of flexural shape functions used for the DFE method.  

1

( )
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 

 
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1
( ) cosh( ) sin( ) sin( (1 )) cosh( ) sin( )
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 (51) 

where, 

2 2

( ) 2 (1 cos( ) cosh( )) sin( ) sinh( )fD
 

    


   
          

   
 (52) 

The trigonometric shape functions for torsion presented in [1] and [23] are shown below. Similarly, 

these shape functions are also independent of ω at the element boundaries such that, N1t = 1 and 

N2t = 0, at 𝜉 = 0 and N1t = 0 and N2t = 1, at  𝜉 = 1. See Figure 23 in Appendix A for a graphical 

representation of the torsional shape functions utilized in the DFE method.  
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1
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t
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      (53) 

2

sin(
(

)
)t

t

N
D


   (54) 

where, 

sin( )tD   (55) 

Therefore, using equations (31), (32) and the shape functions (48) through (55), the element 

stiffness matrix is obtained. The element stiffness matrix, [𝐾𝐷𝑆]𝑘, consists of two coupled dynamic 

stiffness matrices, [𝐾𝐷𝑆]𝐵𝑇,𝑐
𝑘 , and [𝐾𝐷𝑆]𝑇𝐵,𝑐

𝑘 , symbolized collectively as, [𝐾𝐷𝑆]𝑐
𝑘, and four 

uncoupled dynamic stiffness matrices, [𝐾𝐷𝑆]𝑢1
𝑘 , [𝐾𝐷𝑆]𝑢2

𝑘 , [𝐾𝐷𝑆]𝑢3
𝑘 , and  [𝐾𝐷𝑆]𝑢4

𝑘 , jointly denoted 

as, [𝐾𝐷𝑆]𝑢
𝑘 .  

The final element dynamic stiffness matrix,[𝐾𝐷𝑆]𝑘, is determined by assembling these six coupled 

and uncoupled sub matrices as shown below.  

       
k kk

n DS DS nc u
W w K K w   (56) 

The global dynamic stiffness matrix, [KDS], is then obtained by assembling all the element stiffness 

matrices together. This process was performed using a DFE code written in MATLAB software 

which resulted in the non – linear Eigenvalue problem shown in equation 57 below. 

   0)( nDS WK   (57) 

 

Matrices (57-a) through (57-d) below are the four uncoupled element stiffness matrices mentioned 

above.  
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Matrices (57-e) and (57-f) are the two coupled stiffness matrices stated previously.   
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Various classical boundary conditions were also applied on the global dynamic stiffness matrix 

within the MATLAB code. The natural frequencies of the system would be the values of ω that 

would yield a zero determinant for the global dynamic stiffness matrix. This is obtained by 

sweeping the frequency domain using visual approximation to find particular values of ω that 
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produce a zero determinant. The Eigenvectors corresponding to these natural frequencies provide 

the mode shapes of the system.  
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3.4 DFE Numerical Tests 

Figure 12 below depicts the convergence analysis carried out for the 5th natural frequency of a 

cantilevered beam when a tensile force of 1.85 MN and end-moment of 9.21 MN.m was acting. 

As the DFE method yields exact results with just one element for all other loading configurations 

pertaining to this study, except for when an end-moment is applied, loading configurations with 

no moment were not considered for the convergence analysis. Furthermore, the same loading 

conditions used for the convergence analysis of the FEM method were utilized to ensure ease of 

comparison of the rates of convergence of the two methods. A comparison between the DFE 

method and conventional FEM with regards to the efficiency in convergence is illustrated in Figure 

13. For the 5th natural frequency, the DFE method produces results with an error less than 0.2 

percent compared to the exact result with just 5 elements or to an error less than 0.1 percent using 

8 elements. As can be seen from both Figure 12 and Figure 13, if the number of elements in the 

DFE method is increased to 11, the percentage error would be further reduced.  In contrast, the 

FEM method requires at least 20 elements to achieve an error less than 0.1 percent for the 5th 

natural frequency. Thus, even for higher natural frequencies the DFE method uses 2.5 times less 

elements than the FEM method and as such the former is capable of converging faster.  It is 

important to note here that for the 1st, 2nd, 3rd and 4th natural frequencies, the DFE method produces 

much accurate results with even fewer elements. This can be observed from Table 9 below which 

shows that the DFE method converges to the FEM result for the 1st natural frequency with an error 

between 0 – 0.17 percent using just 5 elements, whereas the FEM method required 40 elements to 

achieve this. Thus, the FEM method used 8 times more elements than the DFE method.  

Table 9 also shows that when no end-moment is acting, the DFE method is capable of producing 

the exact results [40] for the uncoupled case of P = 0 and M = 0 using just 1 element whereas the 
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FEM requires 40 elements to achieve the same degree of accuracy. Since, the DFE method uses 

the exact solutions to the uncoupled governing differential equations as expansion terms (i.e. basis 

functions of approximation space) to obtain the frequency dependant shape functions that are later 

utilized to approximate the bending and torsional displacements as well as rotation, the DFE 

method is capable of producing the exact results with a single element if the system is uncoupled. 

However, when the end-moment is applied, the DFE method requires up to 5 elements to generate 

results similar to the FEM results, with an error less than 0.2 percent. According to the third terms 

(coupling terms) of both equations (1) and (2), the end-moment, M, couples the two governing 

differential equations. When the dynamic shape functions that are based on the solutions to the 

uncoupled systems are used to approximate the behaviour of a geometrically coupled system when 

end-moment is applied, error is introduced in to the calculations and thus, more than one element 

is required to converge the results to a suitable degree of accuracy.  

 

Figure 12: Convergence analysis for DFE method for cantilevered beam 
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Figure 13: Comparison of convergence efficiency between DFE method and conventional FEM 

for cantilevered beam 

Tables 9 through 12 show the results for the first natural frequency for cantilevered, clamped – 

clamped, pinned – pinned and pinned – clamped boundary conditions, respectively.  

Table 9:  First natural frequencies for cantilever beam (C – F) when force and moment are applied 

C-F 

End-Moment 

0 (MN.m) 6.14 (MN.m) 9.21 (MN.m) 

FEM Fundamental Frequency (Hz) 

Force 

(MN) 

DFE (1 

element) 

FEM (40 

elements) 

DFE (5 

elements) 

FEM (40 

elements) 

Error 

(%) 

DFE (5 

elements) 

FEM (40 

elements) 

Error 

(%) 

0 2.556 2.556 2.237 2.234 0.13 1.730 1.727 0.17 

0.62 2.884 2.884 2.617 2.614 0.11 2.219 2.216 0.14 

1.23 3.169 3.169 2.935 2.934 0.02 2.603 2.6 0.12 

1.85 3.422 3.422 3.213 3.213 0.00 2.925 2.922 0.10 
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Table 10: First natural frequencies for clamped – clamped boundary condition (C – C) when force 

and moment are applied 

C-C 

End-Moment 

0 (MN.m) 6.14(MN.m) 9.21(MN.m) 

FEM Fundamental Frequency (Hz) 

Force 

(MN) 

DFE (1 

element) 

FEM (40 

elements) 

DFE (5 

elements) 

FEM (40 

elements) 

DFE (5 

elements) 

FEM (40 

elements) 

0 16.266 16.266 16.157 16.141 16.019 15.984 

0.62 16.413 16.413 16.306 16.290 16.170 16.134 

1.23 16.559 16.559 16.451 16.437 16.316 16.283 

1.85 16.703 16.703 16.597 16.582 16.464 16.430 

 

 

Table 11: First natural frequencies for pinned – pinned boundary condition (P – P) when force 

and moment are applied 

P-P 

End-Moment 

0 (MN.m) 6.14 (MN.m) 9.21 (MN.m) 

FEM Fundamental Frequency (Hz) 

Force 

(MN) 

DFE (1 

element) 

FEM (40 

elements) 

DFE (5 

element) 

FEM (40 

elements) 

DFE (5 

element) 

FEM (40 

elements) 

0 7.175 7.175 6.955 6.947 6.669 6.651 

0.62 7.440 7.440 7.228 7.220 6.954 6.935 

1.23 7.695 7.695 7.488 7.483 7.223 7.208 

1.85 7.942 7.942 7.743 7.736 7.487 7.471 
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Table 12: First natural frequencies for pinned – clamped boundary condition (P – C) when force 

and moment are applied 

P-C 

End-Moment 

0 (MN.m) 6.14 (MN.m) 9.21 (MN.m) 

FEM Fundamental Frequency (Hz) 

Force 

(MN) 

DFE (1 

element) 

FEM (40 

elements) 

DFE (5 

elements) 

FEM (40 

elements) 

DFE (5 

elements) 

FEM (40 

elements) 

0 11.209 11.209 11.051 11.040 10.851 10.824 

0.62 11.408 11.408 11.254 11.242 11.058 11.031 

1.23 11.604 11.604 11.451 11.441 11.257 11.233 

1.85 11.796 11.796 11.646 11.636 11.456 11.432 

 

A buckling analysis was also carried out using the DFE method and the results for the critical 

buckling compressive force and end-moment are included in Table 13 and Table 14 below.  

Table 13: Critical buckling moment for cantilevered boundary condition (C - F) with varying 

compressive force 

Force (MN) 
Buckling Moment (MN.m)                   

DFE (5 element) 

-1.85 3.91 

-1.23 7.82 

-0.62 10.31 

0 12.33 

0.62 14.07 

1.23 15.59 

1.85 17.00 
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Table 14: Critical buckling compressive force for cantilevered boundary condition (C - F) with 

varying end-moment 

Moment 

(MN.m) 

Buckling Force (MN)       

DFE (5 elements) 

0 -2.06 

3.07 -1.93 

6.14 -1.55 

9.21 -0.91 

 

Figures 14 through 17 below are graphical representations of the results in Tables 9 through 12. 

These figures illustrate the variation of the first fundamental frequency with tensile axial force and 

end-moment.  

 

Figure 14: Variation of natural frequencies when tensile force and end-moment is applied for 

cantilevered (C-F) boundary condition 
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Figure 15: Variation of natural frequencies when tensile force and end-moment is applied for 

clamped – clamped (C-C) boundary condition 

 

Figure 16: Variation of natural frequencies when tensile force and end-moment is applied for 

pinned – pinned (P-P) boundary condition 
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Figure 17: Variation of natural frequencies when tensile force and end-moment is applied for 

pinned – clamped (P-C) boundary condition 

Figure 18 below illustrates how the critical buckling end-moment varies with axial force. Figure 

19 depicts the fluctuation of the critical buckling compressive force with changing end-moment. 

 

Figure 18: Variation of critical buckling end-moment with axial force for cantilevered (C-F) 

boundary condition 
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Figure 19: Variation of critical buckling compressive force with end-moment for cantilevered 

(C-F) boundary condition 

Figure 20 and Figure 21 show the bending and torsional components of mode shapes of a cantilever 

beam when a force of 1.85 MN and moment of 9.21 MN.m is applied, respectively. 

 

Figure 20: Bending component of mode shapes of the system 
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Figure 21: Torsional component of mode shapes of the system 

The results obtained using the DFE method are in excellent agreement with the results of the 

conventional FEM for all types of loading and classical boundary conditions, as can be observed 

from Tables 9 through 12. Once again it is evident that the natural frequency of the system 

increases when the tensile axial force is applied. Any increment in the magnitude of the tensile 

force further increases the natural frequency of the system suggesting of a simultaneous increment 

in the stiffness of the beam.  This is further confirmed in Figure 18 and Table 13 as it could be 

observed that a tensile force of 1.85 MN causes the critical buckling moment to increases to 17 

MN.m. Requiring a larger moment to cause buckling indicates a stiffening of the beam. 

The DFE method further confirms that application of an end-moment reduces the stiffness of the 

beam. If the magnitude of the end-moment is increased, the value of the fundamental natural 
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Figure 19 and Table 14 which show that the higher the end-moment applied, the smaller the 

compressive force required to buckle the beam. If the beam buckles due to a small compressive 

force, this means that it has lost stiffness due to the moment. Tables 9 through 12 also include the 

effect of the end-moment and tensile force when they are acting together. If the tensile force is 

kept constant and the end-moment is increased, the natural frequencies of the beam reduce. The 

opposite happens, if the end-moment is unchanged while the tensile force is increased. All the 

above observations hold true for all classical boundary conditions considered in this study. 

Graphical representations of the results in Tables 9 through 12 are shown in Figures 14 through 

17, respectively. It could also be observed that Figures 14 through 17 that were generated using 

the results of the DFE method are almost identical to Figures 4 through 7 produced using FEM 

results. Thus, the DFE results agree well with the findings from the FEM method.  

Results from the DFE method also confirm that unlike tensile force, application of compressive 

force causes a reduction in the stiffness of the beam which is accompanied by a simultaneous 

reduction in the natural frequencies of the system. As seen from Figure 18 and Table 13, when no 

axial load is applied, the critical buckling moment of the beam is 12.33 MN. However, when a 

compressive force of -1.85 MN is acting, the critical buckling end-moment reduces to 3.91 MN.m, 

which is less than the critical moment when no forces are acting whatsoever. The results in Figure 

19 and Table 14 further confirm this. Figure 19 and Table 14 show that if the compressive force is 

reduced to -0.91 MN a very large buckling moment of 9.21 MN.m is required to cause elastic 

instability of the beam, however, if the compressive force is increased to -2.06 MN the beam would 

buckle even without the presence of an end-moment. These results are true for all boundary 

conditions and almost identical to the findings from the conventional FE method. Thus, the 
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findings of the DFE method agree with the findings in the literature that a compressive axial load 

reduces the fundamental frequencies as well as the stiffness of a beam.  

Figure 20 illustrates that bending displacement is predominant until the fourth mode is reached. In 

Figure 20, the fourth mode shape shows very little bending displacement compared to the rest of 

the modes. However, in Figure 21 the fourth mode shows significant magnitudes of torsional 

displacement. Thus, the fourth mode shape is the first major torsional mode shape. The conclusion 

that the 1st, 2nd 3rd and 5th modes are predominantly flexural is confirmed by the fact that these 

mode shapes show very little torsional displacement in Figure 21. The mode shapes generated 

using the DFE method are very much identical to those produced by the FEM method seen in 

Figure 10 and Figure 11. Figures 31 through 35 in the Appendix B depict the coupled bending – 

torsion mode shapes generated using ANSYS. Figure 34 from ANSYS, confirms that the fourth 

mode is the first predominantly torsional mode.  
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4. Concluding Remarks and Recommendations for Future Works 

The study confirms the findings from past literature that tensile forces increase the natural 

frequencies and stiffness of a beam while compressive forces and end-moments reduces the natural 

frequencies and stiffness of a beam for all classical boundary conditions. The results determined 

using the DFE method are in agreement with the results found from the FE method.  

Most importantly, this study demonstrates that the DFE method could be extended to analyse 

systems exhibiting geometric couplings due to the presence of an end-moment. The Dynamic 

Finite Element (DFE) method is a superconvergent method that requires significantly less elements 

compared to the conventional FEM method and as such is very efficient. If the system is 

uncoupled, the DFE method is capable of producing exact results with just a single element as it 

utilizes the exact solutions to the uncoupled governing differential equations as dynamic basis 

functions of approximation space to develop the frequency dependent trigonometric shape 

functions. Even for a coupled system, the DFE method requires much less elements compared to 

the FE method.  

Another advantage of the DFE method is that, unlike the conventional FE method, it allows the 

user to determine if a natural frequency of the system exists within a given range of frequencies. 

This is very important for aerospace applications where the range of operating frequencies of a 

certain component is already known, since the DFE method could then be used to determine if a 

natural frequency of the component occurs within the range of its operational frequencies. It would 

allow the designers to eliminate or limit the risk of resonance.  Apart from the inherent advantage 

of allowing for a much coarser mesh, thus resulting in a largely simplified Eigenvalue problem 

due to the lesser number of elements compared to the conventional FEM method, the DFE method 

is also a powerful tool that could be used during the preliminary design stages to arrive at natural 
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frequencies and mode shapes of a component with acceptable precision within a very short time. 

Especially during the early design stages for aerospace components that could be modelled as 

beams, such as helicopter, propeller and compressor blades or for structures such as planar or space 

frames that could be represented by assemblages of identical beams, the DFE beam model would 

be useful as the coupled natural frequencies of these components are necessary for aeroelastic 

calculations.  

For future works, the effects of warping for torsion could be included to take in to account thin-

walled beams and beams with open cross sections. Furthermore, the effects of shear could also be 

investigated. The DFE beam model presented here could be used as a base on to which more 

complex features such as geometric nonlinearity and variation of material properties are 

incorporated in the future. Although, in this study the frequency domain was swept using visual 

inspection to determine the system natural frequencies, an improvement could be made to the 

method by employing the Wittrick – Williams [16] root finding algorithm for determinant search, 

thus ensuring that no natural frequencies are missed.  Furthermore, the DFE method could be used 

to determine the vibration and stability of Timoshenko beams and layered (hybrid) beams. 

Finally, in the future the DFE method could also be extended to carry out vibrational analyses of 

two dimensional elements such as plates. As the Dynamic Finite Element method described in this 

study is not only limited to beams, it could be extended to plate structures which are more 

commonly used to model fuselage and wing skins. As the geometries and material properties of 

these structures are very complex, future studies could also focus on developing robust DFE 

formulations of plate structures that could be conveniently used to model the skins of fuselages 

and wings during preliminary design stages.  



   

53 
 

5. Appendix A: Shape Functions 

 

Figure 22: Cubic Hermite shape functions for bending and linear shape functions for torsion 

used in conventional FEM 

 

Figure 23: Frequency dependent trigonometric bending and torsion shape functions presented in 

[1] and [23] used in the DFE method 
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Figure 24: Dependency on the frequency of the first bending shape function [1, 23] used in the 

DFE method 

 

Figure 25: Dependency on the frequency of the second bending shape function [1, 23] used in 

the DFE method 
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Figure 26: Dependency on the frequency of the third bending shape function [1, 23] used in the 

DFE method 

 

Figure 27: Dependency on the frequency of the fourth bending shape function [1, 23] used in the 

DFE method 

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

N
3

f 
(ξ

)

ξ

N3f (omega 1)

N3f (omega 2)

N3f (omega 3)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 0.2 0.4 0.6 0.8 1

N
4
f 

(ξ
)

ξ

N4f (omega 1)

N4f (omega 2)

N4f (omega 3)



   

56 
 

 

Figure 28: Dependency on the frequency of the first torsional shape function [1, 23] used in the 

DFE method 

 

Figure 29: Dependency on the frequency of the second torsional shape function [1, 23] used in 

the DFE method 
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6. Appendix B: ANSYS Model 

 

 

Figure 30: Beam meshed in ANSYS using SOLID 187 elements 

 

Figure 31: First coupled bending – torsion mode shape from ANSYS 
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Figure 32: Second coupled bending – torsion mode shape from ANSYS 

 

Figure 33: Third coupled bending – torsion mode shape from ANSYS 
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Figure 34: Fourth coupled bending – torsion mode shape from ANSYS 

 

Figure 35: Fifth coupled bending – torsion mode shape from ANSYS 
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