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ABSTRACT 

 

In this thesis, periodic inspection of a load-sharing k-out-of-n system has been studied to obtain 

the optimal inspection interval using the analytical and simulation approaches. The components of 

a load-sharing system are stochastically dependent, which makes the analysis of these systems 

more complex than those with independent components. In order to acquire the optimal inspection 

interval for the system, two models have been developed to study load-sharing systems with 

Tampered Failure Rate (TFR) and Cumulative Exposure (CE). The former considers only the 

current load of the components and the latter accounts for the history of load. Various load 

intensities are examined to study the effects of this parameter on each model. It is observed that as 

the load intensity increases, the system needs more frequent inspections. The results also reveal 

that a system with the CE model requires a shorter inspection interval in comparison to that with 

the TFR model. 
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1. LITERETURE REVIEW 
 

 

 

1.1. Introduction 

Unreliability is one of the main concerns in industries [1]. Unreliability of a system can cause 

superficial effects, like the failure of a fuse in the electrical system of an apartment, or serious 

effects, such as the failure of a medical device in a hospital that may cause disability or even death 

of a patient. These failures can cause deficiencies in a system in different ways, which has led to 

development of reliability engineering. Reliability is a measure of performance for a system or its 

components which ensures that the system is functional over a period of time and under certain 

conditions. Reliability can be expressed by probability functions [2]. 

The main purpose in reliability engineering is to avoid or lessen the failure of components and 

accordingly the whole system. In order to achieve this goal, the reliability of the system needs to 

be improved, which signifies the importance of inspection optimization and maintenance. This 

topic is the main focus of this study.   

Many different techniques are used by engineers to design a system which can satisfy a 

minimum level of reliability. One of the most common and cost-effective design techniques is 

redundancy configuration [3]. Redundancy is the existence of alternative ways to perform a 

required function in a system. Multi-processor computers, multi-engine machines, multi-engine 

aircrafts, and electric generators are some examples of redundant systems. Redundancy can be 

categorized into two types, listed below [4]: 
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1. Active redundancy: In this type of redundancy, there are 𝑛 components in the system 

operating simultaneously, 𝑘 out of which are required in order for the system to 

function, and the remaining components are supporting the system. Electrical power 

distribution is an example of the active redundancy. Several power lines connect each 

facility with customers. Each power line includes monitors and circuit breakers. The 

combination of power lines provides excess capacity. Whenever an overload is detected 

the circuit breakers disconnect a power line and power will be distributed among the 

remaining lines (Fig.1). Communication systems processors are another examples of 

the active redundant systems. 

 

 
 

Figure 1: Electrical power distribution, an example of active redundancy 

(http://www.schneider-electric.com/products) 

 

 

http://en.wikipedia.org/wiki/Active_redundancy
http://www.schneider-electric.com/products
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2. Standby redundancy: In this type of redundancy, there are 𝑛 components in the system, 

𝑘 out of which are active and operating simultaneously, and the remaining components 

are inactive and on standby. Whenever an active component fails, one of the inactive 

components takes over the workload. If the failed components outnumber the inactive 

components, the system will fail. The standby generator (Fig.2) can be considered an 

example of this type. Whenever the main power source shuts down, the generator will 

produce power to avoid power outage.  

 

Figure 2: Portable Generator, an example of standby redundancy 

(http://www.powermate.com/generators/) 

 

1.2. The Configuration of Components in a System 

A System is usually represented as a set of different components arranged in Series, Parallel, 

k-out-of-n, or any combination of these. Therefore, before any analysis, the structure and reliability 

block diagram of the system should be fully understood. The reliability block diagram is used to 

http://www.powermate.com/generators/
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show the arrangement of components and their functional relationship. Different system 

configurations are discussed in the following section, and their block diagrams are presented.  

 

1.2.1. Series Configuration 

In a series system, every single component must be operational in order for the system to work. 

In this configuration, even if only one component fails, the entire system will fail consequently. 

Hence, the reliability of such systems is the same as the least reliable component. Series 

configuration represents a non-redundant system [5].  

A system consisting of a modem, cable and wireless router to provide wireless internet is an 

example of a series system. All three components should be operational at the same time, otherwise 

there will be no wireless internet connection. Fig.3 shows the block diagram of a series system 

with 𝑛 components.  

 

 

 

 

 

1.2.2. Parallel Configuration 

In a parallel configuration, the system remains operational until all the components fail [5]. 

This configuration falls under the active redundant systems. Therefore, as the number of elements 

increases, so does the reliability of the system. 

1 3 2 𝑛 𝑛 − 1 

Figure 3: Block diagram of a series system consisting of 𝒏 components 
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As an example of the parallel configuration, consider a lighting unit with a number of light bulbs. 

The unit delivers light until all the light bulbs fail. Fig.4 shows the block diagram of a parallel 

system consisting of 𝑛 elements. 

 

 

 

1.2.3. k-out-of-n Configuration 

A k-out-of-n system is an active redundant system configured in parallel, with the constraint 

that a minimum of 𝑘 components must be operational in order for the system to function [6]. A 

parallel system is basically a special case of a k-out-of-n system, where 𝑘 is equal to one (1-out-

of-n). 

A k-out-of-n configuration is a very popular form of redundancy, which has extensive 

applications in industrial and military systems. Consider a three-cylinder engine which works if at 

1 

2 

𝑛 

Figure 4: Block diagram of a parallel system 

consisting of n components 
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least two out of three cylinders fire. This engine configuration is a 2-out-of-3 system. Fig.5 shows 

the block diagram for a 2-out-of-3 system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2.3.1. Load-Sharing Systems 

A load-sharing system, is a k-out-of-n system which is subject to a certain amount of load 

shared equally or unequally among the system components. In such system, when a number of 

components fail (less than 𝑛 − 𝑘 + 1), the system remains operational and the load is distributed 

to the remaining components. In a load-sharing system, the survived components experience a 

higher level of load, and thus higher hazard/failure rates. The components of a load-sharing system 

are dependent as they share a specific amount of load. 

An example of a load-sharing system is a system consisting of several pipelines transporting 

water, oil or gas; whenever a pipeline segment fails, the load of that segment is transferred to the 

1 

2 

2 

3 

1 3 
𝐴3 

𝐴1 

 

𝐴2 

Figure 5: Block diagram of a 2-out-of-3 system 
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other segments which are still operational (Fig. 6). Therefore, the entire system still continues to 

work, and the load of the failed segments is equally distributed to the remaining parts, increasing 

their hazard rates.  

 

Figure 6: Pipelines, an example of a load-sharing system (http://business.time.com) 

 

1.3. Reliability and Maintenance Optimization of Multi-Component Systems 

Most technical systems, such as transportation systems used in airplanes and trains, consist of 

different components in a mixed configuration (Fig.7), which are called multi-component systems. 

In a multi-component system, the components interact with one another. These interactions create 

dependency among the components that can be categorized as follows [7]: 

 

1. Economic dependence, occurs when the cost of maintenance and replacement creates 

dependency among the components. In other words, the replacement of a number of 

components together may cost less than the replacement of them individually. In fact, it might 
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be cost efficient to replace a functional component at the time of replacing some failed 

components, which creates dependency among them. Systems like aircrafts, ships, 

telecommunication, and mass production lines are examples of this type [8]. 

 

     

 

 

 

  

 

 

 

 

 

 

2. Structural dependence, occurs when the maintenance and replacement of some components 

require replacement or disassembly of some other parts or components [7].  

 

3. Stochastic/Probabilistic dependence, which happens when the state of a component, such as 

its workload, affects the life-time distribution of the other components. Stochastic dependence 

is sometimes referred to as probabilistic dependence or failure interaction. This type of 

dependency accounts for the relationship between the components of a system and the failure 

of each component. For instance, the failure of one component increases the failure/hazard rate 

 

G I 

E 

D 

F 

A 

B 

C H J 

Figure 7: Block diagram of a complex system 
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of other components. In an aircraft with multiple engines, if an engine stops working, the other 

engines experience higher workload. Therefore, they may fail earlier than their mean time to 

failure. Components of a load-sharing system are also stochastically dependent since the failure 

of one component increases the load of the remaining components. This type of dependency is 

the focus of the present study. 

 

There are many studies [13,14,17] on reliability and maintenance of multi-component systems, 

however most of these studies consider only one of the dependencies discussed above. The 

complex nature of the problem makes these models too complicated to be solved or analyzed when 

considering more than one of these dependencies [9]. 

In 1986, Thomas [7] put together a survey reviewing the models which were previously 

proposed for complex systems along with their maintenance and replacement policies. A few years 

later in 1991, Cho and Parlar [10] reviewed the maintenance of various multi-component models. 

In 2012, Sarkar et al. [11] reviewed the literature and collected different maintenance policies for 

complex systems. This article provides a good overview for both single and multi-component 

systems during the past 50 years. 

According to these reviews [7,10,11], while there are several publications on multi-component 

systems with economic dependence, the studies on complex systems with stochastic dependence 

are sparse. Most of these studies only consider two-component systems, because in practice it is 

difficult and sometimes impossible to evaluate the actual effect of the failure of multiple 

components on each other [12]. 

Murthy and Nguyen [13,14] studied the maintenance of systems considering stochastic 

dependence. They formulated the failure interactions between components in a two and multi-
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component systems and developed expressions for the expected operation costs for both finite and 

infinite life-times.  

Scarf and Deara [15] developed a model considering both economic and stochastic 

dependences between components in a two-component system. The policies in their model were 

age-dependent. They further extended their model to block replacement policies for a two-

component system [16].  

Zequeira and B’erenguer [17] analyzed the maintenance costs for a two-component standby 

parallel system taking into account the stochastic dependence. In their study, they considered 

periodic inspections and preventive maintenance. 

The present work considers stochastic dependence for a complex multi-component system. In 

this study, the failure of one component increases the failure/hazard rate of other components. The 

novelty of this work is that this model is applied to multi-components as well as two-component 

systems. 

 

1.4. Reliability and Maintenance Optimization of k-out-of-n Systems 

Studying a k-out-of-n system while including the dependency of the components is very 

complicated, which is the reason why most studies on such systems assume independent 

components [18-20]. However, in the real world, many systems are load-sharing [6], which makes 

the assumption of independency unrealistic [21,22]. There are numerous studies on k-out-of-n 

systems whose main focus is the reliability and maintenance of such systems. In 1981, Chiang and 

Niu [23] proposed a recursive formula to find the reliability of a system consisting of independent 

and identically distributed components. They also provided lower and upper bounds for the 

reliability of each component and the whole system. Later in 1989, Kossow and Preuss [24] 
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developed a model to find the exact system reliability of k-out-of-n systems with non-identical 

components. They assumed that the failures are not independent. 

Sooktip et al. [25] studied the reliability optimization of a system with multiple k-out-of-n 

subsystems configured in series. The main goal of their study was to maximize the system 

reliability considering constraints such as cost. Coit and Liu [26] also discussed the redundancy 

allocation in a series system consisting of multiple k-out-of-n subsystems in order to maximize the 

reliability. 

 

1.5. Reliability and Maintenance Optimization of Load-Sharing Systems 

As discussed earlier, there are numerous studies about the reliability of k-out-of-n systems in 

the literature [23-27]; however, the studies on load-sharing systems are limited. In 1988, Scheuer 

[28] proposed a model to estimate the reliability of an m-out-of-n system with independent and 

identically exponentially distributed components. In this model, the components were 

independent, but the failure of a component was assumed to cause higher failure rates in the 

survived components. Few years later in 1998, Liu [29] estimated the reliability of a load-sharing 

system with general life distributions and non-identical components. In this work, however, the 

components were assumed to be non-repairable and removed from the system after each failure. 

Kvam and Pena [30] estimated the properties of a load-sharing system with equal loads, 

identical components, and continuous distribution function. Yinghui and Jing [31] studied the 

relationship between the failure rates of components and various loads in a k-out-of-n load-sharing 

system. They assumed that the components were non-repairable and the failures followed 

exponential distribution. Shao and Lamberson [32] presented a Markov model to analyze the 

reliability and availability of a k-out-of-n load-sharing system with repairable components. More 
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comprehensively, Amari and Bergman [21] proposed a method to compute the reliability of k-out-

of-n load-sharing systems consisting of both identical and non-identical components. They also 

implemented general failure distributions to their model. In a recent study, Amari et al. [33] 

presented reliability characteristics of a k-out-of-n warm standby system with identical 

components subject to exponential lifetime distributions. 

 

1.6. Inspection Optimization Models for Complex Systems 

Nowadays, the unreliability of complex multi-component systems is a very important issue 

since most systems are multi-component, such as medical, transportation, and military systems. In 

such systems, there are several components interacting with each other. The failure of these 

systems can have extremely substantial impacts. If the engine of an airplane fails, the result is 

catastrophic and irreversible. If a medical device fails, the result could be death of a person.  

By performing inspection and maintenance, a system can operate safely and reliably during a 

specific period of time. The question though is that how often the inspections should be scheduled. 

The failure of the components in a system occurs at random, which makes it hard to answer this 

question. While the components of a system require frequent inspections to avoid failure, the 

number of these inspections should be optimized due to their considerable expenses. Such 

schedules need to account for the costs related to failure and inspection of the system.    

Even though there are numerous studies in the literature discussing the failure and lifetime 

characteristics of k-out-of-n and load-sharing systems, such as reliability and availability, the 

inspection and maintenance optimization of such systems have received little attention. Yet, 

inspection and maintenance optimization models have been extensively discussed for multi-

component systems [12,34-36,39,40]. 
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For a 1-out-of-2 cold standby system, Lu et al. [37] developed a periodic inspection 

optimization model for a system with two identical components using the concept of delay-time 

modeling. The author assumed that repair time is not negligible and repair is equivalence to 

replacement. Pham and Wang [38] proposed a model for opportunistic maintenance of a k-out-of-

n system with imperfect preventive maintenance in which the components are identically 

distributed and independent. Unlike [37], in their study, minimal repair is considered and repair 

time was assumed negligible. 

In the present study, two models for periodic inspection optimization of an active k-out-of-n 

load-sharing system with multiple identical components are proposed. The failures follow a non-

homogeneous Poisson process. The stochastic dependence has been taken into account so that each 

failure of components increases the hazard rates of the remaining components. To the best of the 

author’s knowledge, the present work is the first study developing an inspection optimization 

model considering dependent components and the possibility of both minimal repair and 

replacement of the components after failure. 
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2. INSPECTION OPTIMIZATION OF A K-OUT-OF-N LOAD-

SHARING SYSTEM WITH TAMPERED FAILURE RATE 

MODEL 
 

 

 

2.1. Introduction 

To discuss the reliability and inspection optimization of a load-sharing system, one should 

consider the properties of a load-sharing system and whether the load history affects the 

components life-cycle or not. According to Amari et al. [33], load-sharing systems can be 

categorized into two types: Tampered Failure Rate (TFR), and Cumulative Exposure (CE), which 

will be described below. 

 

1. Tampered Failure Rate (TFR) Model: In this model, the failure rate of a component is 

independent of its load history. In other words, the failure/hazard rate of a component 

depends only on the current load of the components. This model was first proposed by 

Bhattacharrya & Soejoeti [41] in 1989. The focus of this chapter is on the TFR model. 

 

2. Cumulative Exposure (CE) Model: Unlike TFR, this model considers the cumulative 

effect of the load history applied to each component to find the failure rate and reliability 

of the system. This model was first proposed by Nelson [42] in 1980. The CE model will 

be discussed in detail in Chapter 3. 
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In this chapter, inspection optimization of a k-out-of-n load-sharing system with tampered 

failure rate is studied. The components are assumed to be dependent and identical. This chapter 

also includes the description of the problem followed by an inspection optimization model 

developed in this study. The analytical model and failure situations for a 1-out-of-2 system are 

presented along with the reason why a simulation algorithm is required for solving the model. A 

detailed description of the simulation algorithm is provided. This chapter also contains several 

numerical examples and discussions. 

 

2.2. Problem Description, Objective and Assumptions 

In the proposed model, a k-out-of-n load-sharing system is considered. The system 

is inspected periodically at times 𝑙𝜏, where 𝑙 = 1,2,3, … , 𝑚 . Assume that the system’s 

planning horizon is 𝑇, which is the life-cycle or life expectancy of the system (Fig.8). 

Thus, 𝑇 = 𝑚𝜏 or 𝑇 = (𝑚 − 1)𝜏 + 𝜎, where 𝜎 < 𝜏. The system starts with a specific 

amount of load which is equally distributed among all 𝑛 components.  

 

Figure 8: Periodic inspections over life-cycle T 
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The load function considered here is given by  𝛿𝑖 = (
𝑛

𝑛−𝑖
)

𝛼

, which is a function of 

𝑛 and the number of failed components 𝑖 [21,22]. When there is no failed 

component 𝛿0 = 1, thus the load is equal for all components. The parameter 

𝛼 indicates the intensity of the load distributed among the remaining components.  

Since the system is k-out-of-n, it remains functional if less than  𝑛 − 𝑘 + 1 components fail in 

an inspection interval. In this case, the failures remain hidden until the next inspection time, when 

they will be detected and repaired. The load of the failed components is transferred to the survived 

components.  

When the number of failed components surpasses 𝑛 − 𝑘 + 1, the system stops working 

immediately, and this is when the system is inspected instantly and all failed components are 

detected and repaired. The repair of a component at inspection or at a system failure's time can be 

either a minimal repair or a replacement, depending on the component's age. Replacing a 

component returns it to the state of as-good-as new, while a minimal repair brings it back to the 

state just before the failure.  

In fact, at the time of each inspection, if a repair is needed an age-dependent probability 

function 𝑟(𝑥) is used to decide whether it is a minimal repair or a replacement. In this function, 𝑥 

is an indicator of the age of the component at the failure time. 

If a system does not fail within an inspection interval, the failed components still decrease the 

reliability of the entire system, because of the increased load of the survived components. This, in 

turn, reduces the performance of the system. Therefore, a penalty cost should be considered for 

the time period that a component is down due to failure. In addition, for each system failure, a 

considerable penalty cost is assumed.  
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The objective of this work is to develop a model to find the optimum inspection interval 𝜏 for 

the system which minimizes the total expected cost incurred over the life cycle 𝑇. 

The assumptions made are summarized below: 

1. The system is a k-out-of-n load-sharing system, with  𝛿𝑖 = (
𝑛

𝑛−𝑖
)

𝛼

 as the load-sharing 

function. 𝑖 indicates the number of failed components at any moment, and 𝛼 is the intensity 

of the load. 

2. The failures of the components follow a non-homogeneous Poisson process (NHPP). 

3. The hazard rate of a component at any moment is 𝜆(𝑥, 𝑖) = 𝛿𝑖𝜆(𝑥), where 𝑥 is the age of the 

component and  𝛿𝑖 is the load function at that moment. 

4. When the total number of failures in an inspection interval is less than 𝑛 − 𝑘 + 1, the failures 

are rectified at the next periodic inspection and the load of the failed component is shared by 

the other working components; thus, their hazard rates increase. 

5. Repair times are negligible. 

6. There is a penalty cost for each component’s downtime. 

7. There is a penalty cost for system failures. 

8. The failed component is minimally repaired or replaced according to its age by using the 

probability function 𝑟(𝑥).  

9. System is inspected periodically at times 𝑙𝜏 where 𝑙 = 1,2,3, … , 𝑚. 

10. The last inspection takes place at the end of the life-cycle 𝑇.  
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2.3. Inspection Optimization Modeling 

The total expected cost incurred over the system’s lifecycle consists of the following: 

 Cost of inspections, 

 Cost of minimal repairs, 

 Cost of replacements, 

 Penalty cost for downtime of the failed components, 

 Penalty cost for system failures. 

Consider 𝐶𝑖 to be the cost of one inspection, therefore the total inspection cost is: 

 

                         𝐼𝑛𝑠𝑝𝑒𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 = (𝑚 + 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑦𝑠𝑡𝑒𝑚 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠) × 𝐶𝑖                   (1) 

 

In Eq.1, 𝑚 is the number of periodic inspections. The number of system failures is also added 

since whenever a system fails an inspection takes place. 

The following costs are assumed given: 

 

- 𝐶𝑖: Cost of one inspection, 

- 𝐶𝑚: Cost of minimal repair of a component, 

- 𝐶𝑟: Cost of replacement of a component, 

- 𝐶𝑑: Penalty cost for downtime of a component per unit time,  

- 𝐶𝑓: Penalty cost for each system failure. 

 

The total expected cost incurred over the life-cycle 𝑇 is indicated by 𝐸[𝐶𝑠
𝑇] and is as follows: 
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𝐸[𝐶𝑠
𝑇] = (𝑚 + 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑦𝑠𝑡𝑒𝑚 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠) × 𝐶𝑖   

+ 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑛𝑖𝑚𝑎𝑙 𝑟𝑒𝑝𝑎𝑖𝑟𝑠 × 𝐶𝑚 

                    +𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑠 × 𝐶𝑟 

                                                        +𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒 × 𝐶𝑑 

                                                       +𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑦𝑠𝑡𝑒𝑚 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 × 𝐶𝑓                      (2)        

   

2.3.1. Discussing Failures and Inspections for a 1-out-of-2 Load-Sharing System  

To solve Eq.2, obtaining different expected values are needed. To explain how these expected 

values are obtained over the life-cycle  𝑇, assume that the system is parallel with only two 

components, A and B, which is equivalent to a 1-out-of-2 system with initial ages 𝑋0 = 𝑡 and 𝑌0 =

𝑠, respectively. Also assume that there is only one inspection interval of length 𝜎 in which  𝜎 =

𝜏 = 𝑇 . The two components may or may not fail during the inspection interval 𝜎. This arises the 

five following cases: 

 

 Cases 1 and 2: 

Both components fail in the inspection interval (Fig. 9). After the failure of the second 

component, the system fails. These two cases may seem to be similar whereas they have different 

outcomes. Components A and B do not necessarily have the same initial ages at the beginning of 

the interval, even though they both have been subject to the same amount of load; thus, their hazard 

rates are different since they have different initial ages (assuming the hazard parameters are the 

same for all components).  

The probability of the system failure depends on the sequence of the failures. In other words, 

the expected number of system failures may be different when component A fails first (Case 1) 
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compared to the case when component B fails first (Case 2). When component A fails, its load is 

transferred to component B after the failure time (i.e. 𝑋1), which increases component B’s hazard 

rate. When component B fails, the system stops working and both components are inspected and 

are either minimally repaired or replaced. 

For component A, at the time of system failure, the probability of a minimal repair is 𝑟(𝑡 +

𝑋1) and the probability of a replacement is 𝑟̅(𝑡 + 𝑋1) = 1 − 𝑟(𝑡 + 𝑋1), in which 𝑡 + 𝑋1 and 𝑋1 

are the age and the uptime of component A at the time of failure, respectively.  

For component B, at the time of system failure, the probability of a minimal repair is 𝑟(𝑠 +

𝑋1 + 𝑌1) and the probability of a replacement is 𝑟̅(𝑠 + 𝑋1 + 𝑌1) = 1 − 𝑟(𝑠 + 𝑋1 + 𝑌1), in which 

𝑠 + 𝑋1 + 𝑌1 and 𝑋1 + 𝑌1 are the age and the uptime of component B, respectively.  Therefore, at 

time 𝑋1 + 𝑌1, the number of minimal repairs, replacements, uptime, and downtime of the two 

components are known.  

When components A and B are repaired, the system continues to function, so the next step is 

to obtain the required expected values over the remaining interval, i.e. 𝜎 − ( 𝑋1 + 𝑌1). In other 

words, if 𝑉 is a random variable of interest, for example the number of minimal repairs or 

replacements, then: 

𝐸[𝑉𝜎] = 𝐸[𝑉𝑋1+𝑌1] + 𝐸[𝑉𝜎−𝑋1−𝑌1]     (3) 

 

Furthermore, at the time of system failure, the failed components are repaired, so their ages 

might not be the same due to their different failure times and maintenance actions (whether it is a 

minimal repair or replacement). Afterwards, the system becomes completely operational with the 

two components working with the same amount of load. 
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System failure may occur many times in the inspection interval σ, therefore; obtaining the required 

expected values are not analytically feasible (see Section 2.3.2), especially for a system with 

several components and inspection intervals. A simulation model is developed to solve this 

problem and acquire the expected values required in the objective function. 

 

 

 

Figure 9: Cases 1 and 2, there is a system failure in the inspection interval 

 

 Cases 3 and 4:  

These cases consider the failure of only one component in the inspection interval (Fig. 10). In 

these two cases, the system never fails in the interval. The load of the failed component is 

transferred to the survived component after the failure time. The failed component is only detected 

and repaired at the inspection time 𝜎. The number of minimal repairs or replacements at time 𝜎, 
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which is one in Cases 3 and 4, is a function of the age of the components, i.e. 𝑡 + 𝑋1 (in case 3) or 

𝑠 + 𝑌1 (in case 4). In Case 3, the uptime of the components A and B, in the inspection interval 𝜎, 

are 𝑋1 and 𝜎, respectively. Similarly, in Case 4, the uptime of the components A and B are 𝜎 

and 𝑌1.  

 

Figure 10: Cases 3 and 4, there is no system failure in the inspection interval 

 

 Case 5: 

In this case, neither of the components fails in the interval (Fig. 11). There is no downtime and 

the uptime of the both components is equal to 𝜎. There is no minimal repairs, replacements and 

system failures. 
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Figure 11: Case 5, both components survive in the inspection interval 

 

2.3.2 Mathematical Solution for a 1-out-of-2 System 

The objective of this section is to derive an analytical solution to find the required expected 

values in Eq.2 and then explain the computational difficulty of obtaining them, particularly for the 

case when several components are considered over multiple inspection intervals. 

First the functions used in the analytical solution will be introduced below: 

 Pdf and CDF of 𝑋1: (the first failure time of component 𝐴 with initial age 𝑡) are as follows: 

 

𝑓1
𝑋(𝑥|𝑡, 𝑖) = 𝜆(𝑥 + 𝑡, 𝑖)𝑒− ∫ 𝜆(𝑧,𝑖)𝑑𝑧

𝑡+𝑥
𝑡                                                                                               

                                                   𝐹1
𝑋(𝑥|𝑡, 𝑖) = 1 − 𝑒− ∫ 𝜆(𝑧,𝑖)𝑑𝑧

𝑡+𝑥
𝑡 ,                                                (4) 

 

where 𝜆(𝑥, 𝑖) = 𝛿𝑖𝜆(𝑥). 

Similarly, the pdf and CDF of 𝑌1 are defined as: 

 

𝑓1
𝑌(𝑦|𝑠, 𝑖) = 𝜆(𝑦 + 𝑠, 𝑖)𝑒− ∫ 𝜆(𝑧,𝑖)𝑑𝑧

𝑠+𝑦
𝑠  

                                                  𝐹1
𝑌(𝑦|𝑠, 𝑖) = 1 − 𝑒− ∫ 𝜆(𝑧,𝑖)𝑑𝑧

𝑠+𝑦
𝑠                                                 (5) 
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 The probability that a component A or B survive up to 𝜎 given their initial ages are 𝑡 and 

𝑠, is defined as follows: 

𝑃1
𝑋(𝜎|𝑡, 𝑖) = 𝑃(𝑋1 = 𝜎|𝑋0 = 𝑡, 𝑖) = 𝑒− ∫ 𝜆(𝑧,𝑖)𝑑𝑧

𝑡+𝜎
𝑡  

                                     𝑃1
𝑌(𝜎|𝑠, 𝑖) = 𝑃(𝑌1 = 𝜎|𝑌0 = 𝑠, 𝑖) = 𝑒− ∫ 𝜆(𝑧,𝑖)𝑑𝑧

𝑠+𝜎
𝑠  .                              (6)   

                                                  

For simplicity, it is assumed that the failed components receive only minimal repair after a failure  

detection. Let : 

                                                𝐺1 (𝜎, 𝑡, 𝑠) = 𝐸[𝑉|𝑋0 = 𝑡, 𝑌0 = 𝑠].                                              (7) 

 

To develop a formula which can be used generally to find the expected value of any random 

variable of interest 𝑉, a place-holder function 𝛹(𝑥, 𝑦) is considered. This function’s value changes 

according to the random variable of interest 𝑉, like the number of minimal repairs or uptime. 

Therefore, by using this function the general formula remains the same for all random variables, 

and the only function that changes accordingly is the place holder function. By knowing all the 

definitions, it can be shown that: 

 

𝐺1 (𝜎, 𝑡, 𝑠) = 

∫ ∫ {
𝜎−𝑥

0

𝜎

0

𝛹(𝑥, 𝑥 + 𝑦) + 𝐺1(𝜎 − 𝑥 − 𝑦, 𝑡 + 𝑥, 𝑠 + 𝑥 + 𝑦)}𝑓1
𝑋(𝑥|𝑡, 0)𝑃1

𝑌(𝑥|𝑠, 0)𝑓1
𝑌(𝑦|𝑠 + 𝑥, 1)𝑑𝑦𝑑𝑥 

+ ∫ ∫ {
𝜎−𝑦

0

𝜎

0

𝛹(𝑥 + 𝑦, 𝑦) + 𝐺1(𝜎 − 𝑥 − 𝑦, 𝑡 + 𝑥 + 𝑦, 𝑠 + 𝑦)}𝑓1
𝑌(𝑦|𝑠, 0)𝑃1

𝑋(𝑦|𝑡, 0)𝑓1
𝑋(𝑥|𝑡 + 𝑦, 1)𝑑𝑥𝑑𝑦 

+ ∫ 𝛹(𝑥, 𝜎)𝑃1
𝑌(𝑥|𝑠, 0)𝑃1

𝑌(𝜎 − 𝑥|𝑠 + 𝑥, 1)𝑓1
𝑋(𝑥|𝑡, 0)𝑑𝑥

𝜎

0

 

+ ∫ 𝛹(𝜎, 𝑦)𝑃1
𝑋(𝑦|𝑡, 0)𝑃1

𝑋(𝜎 − 𝑦|𝑡 + 𝑦, 1)𝑓1
𝑌(𝑦|𝑠, 0)𝑑𝑦

𝜎

0

 

1 

2 

3 

4 
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+𝛹(𝜎, 𝜎)𝑃1
𝑌(𝜎|𝑠, 0)𝑃1

𝑋(𝜎|𝑡, 0).                                                                                                         (8)      

 

The terms indicated in Eq.8 are corresponding to the five different cases in Section 2.3.1. 

Assuming that 𝜎 = 𝜏 = 𝑇, the place holder function 𝛹(𝑥, 𝑦) is defined according to the random 

variable of interest as follows (𝑥 and 𝑦 are the ages of components A and B): 

 

(a) Expected number of system failures, 

 

𝛹(𝑥, 𝑦) = {
0,            𝑥 =  𝜎 𝑜𝑟 𝑦 = 𝜎
1,            𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

.   

 

When 𝑥 = 𝜎 = 𝑇 or y= 𝜎 = 𝑇, just one of the components has failed during the time interval 

and there is no system failure. It should be noted that 𝑥 and y cannot be greater than 𝜎, since it is 

assumed to be equal to the life-cycle of the system. 

 

(b) Expected number of minimal repairs, 

 

𝛹(𝑥, 𝑦) = {

0,                                            𝑥 = 𝑦 = 𝜎
1,                 𝑦 < 𝑥 = 𝜎 𝑜𝑟 𝑥 < 𝑦 = 𝜎
2,                              𝑥 < 𝜎 𝑎𝑛𝑑  𝑦 < 𝜎

. 

 

When 𝑥 = 𝑦 = 𝜎 , both components survived up to time 𝜎 and there is no failure, and as a 

result repair is not needed in that time interval. If 𝑦 < 𝑥 = 𝜎 or 𝑥 < 𝑦 = 𝜎, one of the components 

5 
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survived up to time 𝜎 and the other one failed before 𝜎 and it needs to be repaired. If both 𝑥 and 𝑦 

are less than 𝜎, both components failed and need to be repaired. 

 

(c) Expected uptime (total uptime of both components),   

 

𝛹(𝑥, 𝑦) = {

2 min(𝑥, 𝑦) + max(𝑥, 𝑦) ,           𝑥 < 𝜎 𝑎𝑛𝑑 𝑦 < 𝜎
𝑥 + 𝜎,                                                    𝑥 < 𝑦 = 𝜎
𝑦 + 𝜎,                                                    𝑦 < 𝑥 = 𝜎 
2𝜎,                                                            𝑥 = 𝑦 = 𝜎

. 

 

When 𝑥 < 𝜎 and 𝑦 < 𝜎, both components failed in the time interval so the total uptime is equal 

to the summation of the ages of the first failed component and the second one. When 𝑥 < 𝑦 = 𝜎 

or 𝑦 < 𝑥 = 𝜎, just one component failed before 𝜎, therefore the total uptime is equal to the age of 

the failed component plus 𝜎. Finally, if both components survived up to the time 𝜎, the total uptime 

is 2𝜎. 

Eq.8 shows how 𝐺1 (𝜎, 𝑡, 𝑠) can be obtained recursively. There is no closed form for 𝐺1 (𝜎, 𝑡, 𝑠), and 

numerical approximation methods, such as Simpson’s rule can be applied to estimate the integrals. In 

Simpson’s rule, the integration interval is discretized and the integral is estimated according to a rule which 

depends on the number of discrete points. To obtain 𝐺1 (𝜎, 𝑡, 𝑠), it is needed to first calculate 

𝐺1 (𝑧, 𝑡, 𝑠) for all 0 < 𝑧 ≤ 𝜎, 0 ≤ 𝑡 ≤ 𝜎 and 0 ≤ 𝑠 ≤ 𝜎, and then solve a system of linear equations. This 

is computationally intensive, especially when shorter intervals are considered for discretization.  

Eq.8 can be extended for 𝑚 inspection intervals as follows: 

 

𝐺𝑚 (𝜎, 𝑡, 𝑠) = 
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∫ ∫ {
𝜎−𝑥

0

𝜎

0

𝛹(𝑥, 𝑥 + 𝑦) + 𝐺𝑚(𝜎 − 𝑥 − 𝑦, 𝑡 + 𝑥, 𝑠 + 𝑥 + 𝑦)}𝑓1
𝑋(𝑥|𝑡, 0)𝑃1

𝑌(𝑥|𝑠, 0)𝑓1
𝑌(𝑦|𝑠 + 𝑥, 1)𝑑𝑦𝑑𝑥 

+ ∫ ∫ {
𝜎−𝑦

0

𝜎

0

𝛹(𝑥 + 𝑦, 𝑦) + 𝐺𝑚(𝜎 − 𝑥 − 𝑦, 𝑡 + 𝑥 + 𝑦, 𝑠 + 𝑦)}𝑓1
𝑌(𝑦|𝑠, 0)𝑃1

𝑋(𝑦|𝑡, 0)𝑓1
𝑋(𝑥|𝑡 + 𝑦, 1)𝑑𝑥𝑑𝑦 

+ ∫ {𝛹(𝑥, 𝜎) + 𝐺𝑚−1(𝜏, 𝑡 + 𝑥, 𝑠 + 𝜎)}𝑃1
𝑌(𝑥|𝑠, 0)𝑃1

𝑌(𝜎 − 𝑥|𝑠 + 𝑥, 1)𝑓1
𝑋(𝑥|𝑡, 0)𝑑𝑥

𝜎

0

 

+ ∫ 𝛹(𝜎, 𝑦) + 𝐺𝑚−1(𝜏, 𝑡 + 𝑥, 𝑠 + 𝜎)𝑃1
𝑋(𝑦|𝑡, 0)𝑃1

𝑋(𝜎 − 𝑦|𝑡 + 𝑦, 1)𝑓1
𝑌(𝑦|𝑠, 0)𝑑𝑦

𝜎

0

 

+{𝛹(𝜎, 𝜎)𝐺𝑚−1(𝜏, 𝑡 + 𝜎, 𝑠 + 𝜎)}𝑃1
𝑌(𝜎|𝑠, 0)𝑃1

𝑋(𝜎|𝑡, 0).                                                                             (9) 

 

In Eq.9, it is assumed that the length of the last inspection interval is 𝜎, and those of the other 

inspection intervals are 𝜏. As it can be seen, 𝐺𝑚 and 𝐺𝑚−1 are called recursively inside Eq.9. Thus, 

using Eq.9 and Eq.8 is not computationally feasible for a multi-component system over a long 

planning horizon. Therefore, to calculate the expected values in Eq.2, a simulation model is 

developed, which will be described in the following section. 

 

2.4. Simulation Algorithm 

As discussed in the previous section, the analytical solution is not computationally feasible for 

this problem, which is why a simulation algorithm is needed. The assumptions are that the 

components of a load-sharing system follow a NHPP with a power law intensity function and the 

hazard rate of a component is λ(𝑥, 𝑖) = 𝛿𝑖λ(𝑥) = 𝛿𝑖 (
𝛽

𝜂
) (

𝑥

𝜂
)

𝛽−1

 , in which 𝑥 is defined as the age 

of the component and 𝑖 as the number of failed components at a specific moment. For the 

simulation model, it is necessary to generate the times of the first failure for all components. Since 

the components are identical, the parameters of the power law (𝛽 and 𝜂) are the same for all 
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components. 𝛼, which is the intensity of the load function 𝛿𝑖 = (
𝑛

𝑛−𝑖
)

𝛼
, and the life-cycle, 𝑇 , are 

both known.  

Here is a brief description of the simulation algorithm: at time zero, the first failure time is 

generated for all components, assuming that the number of failed components is zero (𝑖 = 0). The 

first failure time for a component with initial age 𝑡 is generated as follows: 

 

                       𝑁𝑒𝑥𝑡 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑡𝑖𝑚𝑒 = 𝜂 [(
𝑡

𝜂
)

𝛽

−
1

𝛿𝑖
log(𝑤)]

1/𝛽

− 𝑡,                                    (10) 

 

where 𝑤 is a random number generated from uniform distribution (𝑤 = 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(0,1)). The 

derivation of the next failure time, Eq.10, is provided in Appendix A. If the minimum generated 

failure time of the components is lower than the first inspection interval, the load of the component 

with the minimum failure time will be transferred to the surviving components and their failure 

times are regenerated using Eq.10. Then 𝑖 becomes one. Again, the minimum of all failure times 

are selected and if it falls within the remaining time before the first periodic inspection, then 𝑖 =

𝑖 + 1, and the hazard rates of the remaining components are adjusted and their failure times are 

regenerated.  

If the total number of failures is lower than 𝑛 − 𝑘 + 1, there will be no system failure, and all 

the failed components are detected at time 𝜏. These components will either be minimally repaired 

or replaced according to their age which is given by 𝑟(𝑥) = 𝑎𝑒−𝑏𝑥. At the time of inspection 𝑟(𝑥) 

is calculated using the current age of the components and then a random number uniformly 

distributed within (0,1) is generated. If this random number is greater than 𝑟(𝑥), the component 

will be replaced, otherwise it will be minimally repaired. The number of minimal repairs, 
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replacements, and uptime of the components will be recorded at each time. If the total number of 

failures becomes 𝑛 − 𝑘 + 1, the system stops working and the number of system failures is 

increased by one. At the moment of the system failure, all failed components are repaired or 

replaced, 𝑖 becomes zero again, the next failure times are generated, and the same procedure 

continues until the end of the life-cycle 𝑇 . Fig.12 presents the simulation flowchart for calculating 

the required expected number of minimal repairs, replacements, system failures, and the expected 

uptime. 

 

2.5. Numerical Examples 

To use the simulation algorithm proposed in the previous section for finding the optimal 

inspection interval, k-out-of-5 load-sharing systems are considered, where 𝑘 = 1,3,4 and 𝛼 =

0,1,2 with load function 𝛿𝑖 = (
𝑛

𝑛−𝑖
)

𝛼

. When 𝛼 = 2, the survived components are subject to higher 

load if a component fails, compared to the case when 𝛼 = 1. Moreover,  𝛼 = 0 indicates that the 

system is not load-sharing since always  𝛿𝑖 = 1 . For all systems, the same parameters are 

considered for the power law intensity function, i.e., 𝛽 and 𝜂  in λ(𝑥, 𝑖) = 𝛿𝑖 (
𝛽

𝜂
) (

𝑥

𝜂
)

𝛽−1

, presented 

in Table 1. 

It is also assumed that the probability of minimal repair or replacement of a component is 

determined based on the function 𝑟(𝑥) = 𝑎𝑒−𝑏𝑥, 𝑎 > 0, 𝑏 ≥ 0, 𝑥 ≥ 0, where 𝑥 is the age of the 

failed component at the failure time. Parameters 𝑎 and 𝑏 are also given in Table 1. The same 

minimal repair, replacement, downtime, system failure and inspection costs are assumed for all 

systems, which are given in Table 2. The costs and parameters are taken from Taghipour et al. 

[39]. 
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time< 𝜏? Next inspection= 𝜏  
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For the failed component and the survived components: 

 Uptime=Uptime+ Mintime  
 Add Mintime to their current ages  

- Current time=Current time+ Mintime 
- Update the age of the failed components according to the 
maintenance action (minimal repair or replacement)  
- Keep track of the Minimal repairs and Replacements. 
- Generate the next failure time for all components 
considering i=0. 
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-i=0 
 

Current                        

time < 𝑇? 

Mintime < Next 

inspection? 

i=n-k+1?  
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𝑇, 𝜏, 𝑖 = 0 

Generate time of the first 

failure for all components  

Current time=0 , 𝑖 = 0 
Next inspection=  
Systemfailures=0 
Uptime=0 for all components 

 
For the survived components:  

  Uptime=Uptime+ Next inspection  
  Add “Next inspection” to their 
current ages  

-Current time=Current time+ Next 
inspection 
-Update the age of the failed 
components according to the 
maintenance action (minimal repair or 
replacement)  
-Keep track of the Minimal repairs and 
Replacements. 
- If i>0 generate the next failure time 
for all components considering i=0. 
-i=0 
 
 

Stop 

  i=i+1 
 

- For the failed component and the 
survived components: 

Uptime=Uptime+ Mintime  
Add Mintime to their current ages  

- Current time=Current time+ Mintime 
- Generate the time of the next failure for 
the survived components. 
Next inspection= Next inspection- 
Mintime 
 

No 

Figure 12: Simulation algorithm flowchart for TFR model 
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The objective is to find the optimal inspection interval which minimizes the total expected cost 

incurring over the life-cycle 𝑇 = 12 months. Each component is assumed to be as-good-as new at 

the beginning of the life-cycle, so the initial age 𝑡 is zero for all components. It is also assumed 

that the inspection interval 𝜏, varies from 1 to 12 months. If the life-cycle 𝑇, which is 12 months, 

is not divisible by 𝜏, the last inspection interval is shorter than the preceding inspection intervals.  

The simulation algorithm is executed 1,000 times. Each required expected value (i.e. the 

number of minimal repairs, replacements, system failures, and downtime of components) is then 

the average of the values of the corresponding random variable obtained from the 1000 simulation 

runs. The expected values for all systems when 𝛼 = 2 are presented in Tables 3, 4 and 5. 

 

TABLE 1 

PARAMETERS OF THE POWER LAW INTENSITY FUNCTION AND THE PROBABILITY OF 

MINIMAL REPAIR/REPLACEMENT OF COMPONENTS 

𝜼 𝜷 𝒂 𝒃 

 

3.5 

 

1.3 

 

0.9 

 

0.3 

 

TABLE 2  

MINIMAL REPAIR, REPLACEMENT, DOWNTIME, SYSTEM FAILURE AND INSPECTION 

COSTS 
 

Minimal repair 

 

Replacement 

 

Inspection 

 

Penalty for a system  

failure 

 

Penalty per unit time 

for each component’s 

downtime 

 

$70 

 

$210 

 

$250 

 

$550 

 

$50 

 

First consider the case when 𝛼 = 2 in k-out-of-5 load-sharing systems, where 𝑘 = 1,3,4. The 

total expected costs are calculated using Eq.2 for different values of 𝜏 = 1,2,3, … ,12 are shown in 

Fig.13. As it can be seen in Fig.13, for the 1-out-of-5 system, 𝜏 = 1 provides the optimal inspection 

interval with the total expected cost of $7,967.62. However, for the 3-out-of-5 and 4-out-of-5 
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systems, the optimal inspection intervals are 𝜏 = 3 and 𝜏 = 12, with the total expected costs of 

$9,550.12 and $11,485.71, respectively. 

In the 1-out-of-5 system, more components are allowed to be down without causing a system 

failure; therefore, more downtime penalty cost is incurred. Thus, for this system, a shorter optimal 

inspection interval is obtained to avoid high penalty cost due to downtime of the failed 

components. In addition, when more components are down while the whole system is still 

operational, the hazard rates of the remaining components are higher in one inspection interval.  

This also causes the higher number of component failures and eventually system failures in a 

1-out-of-5 system with 𝛼 = 2, compared to the same system with 𝛼 = 1. The results for the case 

of 𝛼 = 1 are shown in Fig.15. The optimal inspection interval 𝜏 = 2 is obtained for a 1-out-of-5 

system with 𝛼 = 1, which implies that the lower load intensity requires less frequent inspection. 

The optimal 𝜏 = 3  is obtained for the 3-out-of-5 systems when 𝛼 = 2 (Fig.13) and 𝛼 = 1 

(Fig.14). A 3-out-of-5 system compared to a 1-out-of-5 system is prone to more system failures.     

The more system failures provides also the more opportunity to detect and rectify the failed 

components; therefore, the less periodic inspections may be required.   

For the 4-out-of-5 systems when 𝛼 = 2 (Fig.13) and 𝛼 = 1 (Fig.14), the optimal inspection 

interval is obtained to be 𝜏 = 12. This result is totally expected, since increasing 𝑘  makes the 

system closer to a series system (i.e. an n-out-of-n system), in which 𝜏 has no contribution to the 

total expected cost incurred over the life-cycle (except the periodic inspection costs). In other 

words, the system fails whenever a component fails, and there is no downtime for a component; 

therefore, periodic inspections do not contribute to lessen components failures, unless preventive 

maintenance is conducted at periodic inspections' times.  



 

33 
 

In order to clearly show the fluctuations in costs for different inspection intervals, Table 6 

presents the estimated expected costs for 𝜏 = 1, 2, 3, … , 12 for all systems. 

Now, consider the case when 𝛼 = 0 (shown in Fig.15), which is similar to a non-load-sharing 

k-out-of-n system. For the 1-out-of-5 system, the optimal inspection interval is obtained to be 𝜏 =

3 with the total expected cost of $4,213.95. Comparing this case with the case when 𝛼 = 2 , it is 

expected to have a lower number of components failures, because their hazard rates are only 

function of their ages, and not the load. 

The less number of component failures implies the less components downtime, and so the 

system requires less frequent periodic inspections (𝜏 = 1 is obtained when 𝛼 = 2 ). The same 

argument can be made for obtaining the optimal 𝜏 = 6 for the 3-out-of-5 system when 𝛼 = 0, 

compared to the case when the same system with 𝛼 = 2  is considered (where the optimal 𝜏 = 3  

is obtained).  

Similar to the 4-out-of-5 systems when 𝛼 = 2 and 𝛼 = 1, the optimal inspection interval 𝜏 =

12 is obtained for the case of 𝛼 = 0, implying the minimal role of periodic inspections in reducing 

the total expected cost.  

Tables 3, 4, and 5 present the total expected number of minimal repairs and replacements for 

all components, the expected number of system failures, and the total expected uptime for all 

components when 𝜏 = 1, 2, 3, … , 12 and 𝛼 = 2. 

It should be noted that the simulation algorithm returns the expected minimal repairs, 

replacements and uptime for each component separately. In the table, sum of the corresponding 

values for all components is presented. The standard errors for all estimated expected values (i.e. 

those for an individual component, or the expected number of system failures) are also calculated. 

The standard error is between 0.02502 and 0.06339. 
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Figure 13: Total expected costs for τ=1,2,…,12  for k-out-of-5 load-sharing systems, where k=1,3,4, and 

α=2 

 

 
Figure 14: Total expected costs for τ=1,2,…,12  for k-out-of-5 load-sharing systems, where k=1,3,4, and 

α=1 
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In general, comparing the total expected costs obtained for the three systems when 𝛼 = 0,1,2  

(given in Tables 3,4, and 5), it is observed that a higher 𝛼 results in higher total expected costs for 

the three systems due to the occurrences of more component failures. Therefore, there will be more 

minimal repairs, replacements, downtime, and eventually system failures. 

 

 
Figure 15: Total expected costs for τ=1,2,…,12  for k-out-of-5 load-sharing systems, where k=1,3,4, and 

α=0 
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TABLE 3 

ESTIMATED EXPECTED NUMBER OF MINIMAL REPAIRS, REPLACEMENTS, SYSTEM 

FAILURES, COMPONENT’S DOWNTIME PENALTY FOR 1-OUT-5 SYSTEM, 𝛼 = 2 

 

System Type 

and Load 

Intensity 

 

 

 

𝝉 

 

Expected number of 

 

 

 

Expected Uptime 

 

Minimal repairs Replacements System Failures 

 

 

 

 

 

 

 

 

1-out-of-5 

𝜶 = 𝟐 

1 10.54 12.26 1.55 51.67 

2 12.54  13.61 3.71 48.21 

3 12.96 13.73 4.32 47.52 

4 13.33 13.87 4.70 47.04 

5 13.15 13.88 4.66 47.21 

6 13.31 13.94 4.94 46.63 

7 13.27 13.96 4.93 46.70 

8 13.47 13.97 5.00 46.40 

9 13.70 14.16 5.06 46.91 

10 13.47 14.07 5.02 46.68 

11 13.42 13.82 4.95 46.61 

12 13.66 14.12 5.30 45.98 
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TABLE 4  

ESTIMATED EXPECTED NUMBER OF MINIMAL REPAIRS, REPLACEMENTS, SYSTEM 

FAILURES, COMPONENT’S DOWNTIME PENALTY 3-OUT-5 SYSTEM, 2   

 

System Type 

and Load 

Intensity 

 

 

 

𝝉 

 

Expected number of 

 

 

 

 

Expected Uptime  

Minimal Repairs 

 

Replacements 

 

System Failures 

 

 

 

 

 

 

3-out-of-5 

𝜶 = 𝟐 

1 9.53 11.74 3.93 53.72 

2 9.82 11.94 5.69 52.38 

3 9.89 11.90 6.18 51.65 

4 9.97 12.03 6.53 51.47 

5 10.14 12.08 6.59 51.65 

6 10.03 11.99 6.78 51.21 

7 10.00 12.05 6.80 51.19 

8 10.09 11.95 6.83 51.14 

9 10.03 12.14 6.83 51.52 

10 9.95 12.13 6.81 51.39 

11 10.11 12.11 6.88 51.31 

12 10.24 12.15 7.18 50.83 

 

 

 

 

 



 

38 
 

TABLE 5  

ESTIMATED EXPECTED NUMBER OF MINIMAL REPAIRS, REPLACEMENTS, SYSTEM 

FAILURES, COMPONENT’S DOWNTIME PENALTY FOR 4-OUT-5 SYSTEM, 2   

 

System Type 

and Load 

Intensity 

 

 

 

𝝉 

 

Expected number of 

 

 

 

 

Expected Uptime  

Minimal Repairs 

 

Replacements 

 

System Failures 

 

 

 

 

 

 

4-out-of-5 

𝜶 = 𝟐 

1 19.39 8.59 11.31 52.61 

2 14.85 8.86 11.38 51.15 

3 13.26 8.85 11.44 50.74 

4 12.51 8.82 11.53 50.49 

5 12.51 8.87 11.49 50.50 

6 11.82 9.13 11.47 50.18 

7 11.84 9.05 11.55 50.16 

8 11.70 8.90 11.38 50.30 

9 11.86 8.96 11.67 50.14 

10 11.77 8.86 11.58 50.23 

11 11.79 8.96 11.47 50.21 

12 10.94 8.77 11.54 50.06 
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TABLE 6  

TOTAL EXPECTED COSTS FOR K-OUT-5 SYSTEMS, WITH 1,3,4k  , AND 0,1,2   

 

Total Expected Costs in Dollars 

 

 

 

 

 

 

𝛂 = 𝟐 

𝝉 1-out-of-5 3-out-of-5 4-out-of-5 

1 7967.62* 9590.58 12071.76 

2 8796.94 9628.32 11807.28 

3 8867.57 9550.12* 11659.61 

4 9005.70 9627.23 11637.93 

5 8956.65 9684.56 11611.65 

6 8976.13 9579.96 11641.17 

7 8970.20 9608.25 11666.09 

8 9053.98 9622.89 11514.03 

9 9138.50 9642.7 11685.03 

10 9076.15 9621.17 11596.60 

11 8968.23 9687.05 11605.75 

12 9115.56 9722.5 11485.71* 

 

 

𝜶 = 𝟏 

 

1 6417.34 8211.33 11143.30 

2 5947.93* 8134.48 10850.88 

3 6377.12 8108.22* 10674.87 

4 6422.11 8271.36 10769.81 

5 6375.43 8234.63 10711.78 
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𝜶 = 𝟏 

 

 

 

6 6507.07 8131.55 10707.41 

7 6455.71 8222.82 10728.16 

8 6563.04 8161.85 10674.72 

9 6452.97 8204.95 10726.76 

10 6425.79 8140.29 10697.94 

11 6491.24 8125.76 10610.91 

12 6553.62 8187.91 10558.17* 

 

 

 

 

 

𝜶 = 𝟎 

1 5902.54 7088.81 10481.81 

2 4495.24 6853.18 9886.52 

3 4213.95* 6803.07 9826.79 

4 4238.09 6763.31 9893.99 

5 4278.97 6867.58 9828.07 

6 4252.8 6738.36* 9826.71 

7 4291.88 6754.25 9785.87 

8 4261.86 6841.58 9729.69 

9 4280.37 6834.7 9776.66 

10 4310.09 6792.3 9728.95 

11 4416.8 6800.38 9860.84 

12 4369.61 6761.72 9593.93* 

*The costs associated to the optimal inspection interval for each system.  
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3. INSPECTION OPTIMIZATION OF A K-OUT-OF-N LOAD-

SHARING SYSTEM WITH CUMULATIVE EXPOSURE 

MODEL  
 

 

 

3.1. Introduction 

As discussed in Chapter 2, there are two types of load-sharing systems, Tampered Failure Rate 

(TFR) and Cumulative Exposure (CE). In TFR, it is assumed that the fluctuations in load do not 

affect the age of the remaining components while changing their hazard rates. Therefore, failure 

of each component depends on its current age and load. However, in CE, the fluctuations in load 

in previous inspection intervals affect both the scale parameter (𝜂) and the age of the remaining 

components [43], which means the workload history of each component is important.  

The objective of this chapter is to find the optimal inspection interval for the systems using the 

CE and describe the applications of the model by numerical examples. Similar to the TFR, there 

is no feasible analytical solution for CE, as a result, a simulation model is needed which will be 

described later. This chapter includes the description of the problem and the assumptions made 

along with the description of simulation algorithm used to find the expected values in the model 

followed by numerical examples.  

 

3.2. Problem Description 

In this section, the assumptions are the same as were in Chapter 2. The only additional 

assumption made here is to take the load history into account, which is the basis of the cumulative 

exposure model. Therefore, a k-out-of-n load-sharing system with a cumulative exposure (CE) is 
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considered, in which the variations in load affect both the scale parameter and the age of the 

remaining components. Failures follow a non-homogenous Poisson process (NHPP) with a power 

law intensity function. The system is periodically inspected to detect the failures over the life-cycle 

of the system. A failed component may be replaced or minimally repaired at each inspection based 

on its age.  

To model the effective age for the cumulative exposure, it is assumed that when there is no 

failure in an interval, the load function for age is 1. However, when there are 𝑖 failed components 

(𝑖 ≠ 0), the age of the remaining components is affected by the load function/factor of 𝛿𝑖 =

(
𝑛

𝑛−𝑖
)

𝛼

. Therefore, the age of a survived component is given by [43]: 

 

𝐴𝑔𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑎𝑡 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑖𝑡ℎ𝑓𝑎𝑖𝑙𝑢𝑟𝑒 +   𝛿𝑖 ×  𝑡𝑖𝑚𝑒 𝑜𝑓 ℎ𝑎𝑣𝑖𝑛𝑔 𝑖 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠. 

 

To find the optimal periodic inspection interval, the total expected cost should be calculated 

during the life-cycle of the system. The total expected cost, as discussed in Chapter 2 (Eq.2), is: 

 

𝐸[𝐶𝑠
𝑇] = (𝑚 + 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑦𝑠𝑡𝑒𝑚 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠) × 𝐶𝑖   

+ 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑛𝑖𝑚𝑎𝑙 𝑟𝑒𝑝𝑎𝑖𝑟𝑠 × 𝐶𝑚 

                    +𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑠 × 𝐶𝑟 

                                                        +𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒 × 𝐶𝑑 

                                                        +𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑦𝑠𝑡𝑒𝑚 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 × 𝐶𝑓  ,                     (2) 

 

where 𝐶𝑖 is the inspection cost, 𝐶𝑚 is the cost of minimal repair, 𝐶𝑟 is the cost of replacement, 

𝐶𝑑 is the penalty cost for a component’s downtime, and 𝐶𝑓 is the penalty cost for system failure. 
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It is not analytically feasible to obtain the required expected values in Eq.2. Therefore, a simulation 

algorithm is developed to find these expected values for the system. The inspection interval 

corresponding to the minimum expected cost is defined as the optimal inspection interval.  

 

3.3. Simulation Algorithm 

The simulation algorithm for the CE model is the same as that for the TFR which has been 

modified to take into account the variations in the scale parameter and also the age of the 

components. These modifications have been highlighted in Fig.16. 

Analogous to the simulation algorithm for the TFR, the input parameters include 𝑛, 𝑘, 𝑇, 𝜏, the 

parameters of the power law intensity function (𝛽 and 𝜂), and the parameters of 𝑟(𝑥) (𝑎 and 𝑏). 

The probabilities of a minimal repair and a replacement at age 𝑥 are respectively given by 𝑟(𝑥) =

𝑎𝑒−𝑏𝑥and 𝑟̅(𝑥) = 1 − 𝑟(𝑥). Fig.16 shows the simulation flowchart for the CE model. 

 

3.4. Numerical Examples 

To use the simulation algorithm proposed for the CE model, a 3-out-of-5 load-sharing system 

is considered.  The parameters of the power law intensity function and 𝑟(𝑥) are shown in Table 7 

[39]. In addition, two load intensities of 𝛼 = 0.7 and 𝛼 = 1.2 are studied. Table 8 also provides 

the different costs. 
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Current                        

time < 𝑇? 

Mintime < Next 

inspection? 
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Start for given initial ages, 

intensity parameters, and 

𝑇, 𝜏, 𝑖 = 0 

Generate time of the first 

failure for all components  

Current time=0 , 𝑖 = 0 
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Systemfailures=0 
Uptime=0 for all components 

 

For the survived components:  

  Uptime=Uptime+ Next inspection  

  Add “Next inspection” to their current 

ages  

-Current time=Current time+ Next 

inspection 

-Update the age of the failed components 

according to the maintenance action 

(minimal repair or replacement)  

-Keep track of the minimal repairs and 

replacements. 

- If i>0, adjust the scale parameter and 

generate the next failure time for all 

components considering i=0. 

-i=0 
 

Stop 

  i=i+1 
 

- For the failed component and the survived 
components: 

Uptime=Uptime+ Mintime  
Add Mintime to their current ages  

- Current time=Current time+ Mintime 
- Adjust the scale parameter 
- Generate the time of the next failure for the 
survived components. 
Next inspection= Next inspection- Mintime 
 
 

No 

Figure 16: Simulation algorithm flowchart for the CE model 
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TABLE 7 

PARAMETERS OF THE POWER LAW INTENSITY FUNCTION AND THE PROBABILITY OF 

MINIMAL REPAIR/REPLACEMENT OF COMPONENTS 

𝜼 𝜷 𝒂 𝒃 

3.5 1.3 0.9 0.3 

 

 

TABLE 8 

MINIMAL REPAIR, REPLACEMENT, DOWNTIME, SYSTEM FAILURE AND INSPECTION 

COSTS 
 

Minimal 

repair 

 

Replacement 

 

Inspection 

 

Penalty for a system  

failure 

 

Penalty per unit time for 

each component’s 

downtime 

$70 $210 $250 $450 $100 

 

The life-cycle is considered to be 𝑇 = 12 months. Using 1,000 simulation runs, the required 

expected values in Eq.2 were obtained for the inspection intervals 𝜏 = 1,2, … 12 months and the 

two load-sharing models with 𝛼 = 0.7  and 𝛼 = 1.2 . The total expected costs under different 

inspection policies are calculated using Eq.2. The results are shown in Table 9. 

Fig.17 presents the total expected costs calculated for 𝜏 = 1,2, … 12  months and the optimal 

inspection interval for the two load-sharing systems, TFR and CE, when 𝛼 = 0.7 . As it can be 

seen, the optimal inspection intervals for the TFR and the CE are obtained to be 10 and 5 months, 

respectively. In the CE model, higher expected number of minimal repairs, replacements, and 

system failures are obtained compared to the TFR model. The increase in minimal repairs is not 

very significant while the increase in replacement is considerable, which is because an increase in 

the age of the components results in higher hazard rates, and thus they require more replacements 

than minimal repairs. Therefore, it can be concluded that a system with CE should be inspected 

more frequently than the one with TFR. Because of these frequent inspections, the components 
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experience less downtime in the CE model. The average of the expected values of the random 

variables in Eq.2 is calculated over all inspection intervals 𝜏 = 1,2, … 12  . The results are 

presented in Table 10, showing higher expected number of minimal repairs, replacements, and 

system failures for the CE model. 

 

TABLE 9  

TOTAL EXPECTED FOR A 3-OUT-OF-5 SYSTEM WITH 𝛼 = 0.7 AND 𝛼 = 1.2 

        

Total Expected Costs in Dollars 

 

𝝉 

TFR CE TFR CE 

𝛼 = 0.7 𝛼 = 1.2 

1 8030.98 8299.91 8468.00 9182.64 

2 7796.27 8177.75 8385.61 9128.62 

3 7764.62 8165.25 8484.67 9001.81* 

4 7825.68 8228.36 8394.23 9038.74 

5 7846.89 8127.39* 8389.46 9072.41 

6 7839.58 8188.97 8419.87 9089.49 

7 7804.81 8207.72 8310.03 9047.34 

8 7843.63 8142.10 8398.78 9052.58 

9 7814.07 8196.29 8296.58* 9052.51 

10 7739.56* 8234.15 8398.37 9065.49 

11 7778.82 8176.69 8335.37 9154.84 

12 7868.68 8172.43 8462.73 9089.63 

*The costs associated to the optimal inspection interval for each system. 
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Figure 17:  The expected costs and the optimal inspection intervals for the two load-sharing models with 

load intensity α=0.7 

 

In Fig.18, the load intensity of 𝛼 = 1.2  is considered. The optimal inspection intervals of the TFR 

and the CE models are 9 and 3 months, respectively.  As 𝛼 increases, more system failures occur 

in both models, and since there is a relatively high penalty cost of $450 associated with each system 

failure, it is optimal to inspect the system more frequently when 𝛼 = 1.2  compared to 𝛼 = 0.7. 

The fluctuations in the total cost for different inspection intervals are provided in Table 9. 
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Figure 18: The expected costs and the optimal inspection intervals for the two load-sharing models with 

load intensity α=1.2 

 

TABLE 10 

 THE AVERAGE OF THE EXPECTED VALUES FOR THE TWO MODELS  

WITH TWO LOAD INTENSITIES 𝛼 = 0.7 AND 𝛼 = 1.2 

 

 
Average 

 
𝜶 = 𝟎. 𝟕 

 
𝜶 = 𝟏. 𝟐 

 

TFR model CE model TFR model CE model 

Expected # of 

inspections  
8.16 8.47 8.76 9.35 

Expected # of minimal 

repairs 
7.60 7.61 8.43 8.48 

Expected # of 

replacements 
9.99 10.83 10.74 12.28 

Expected # of system 

failures 
4.74 5.05 5.34 5.93 

 

Expected downtime of 

all components 

 

10.27 

 

9.95 

 

9.51 

 

 

8.98 
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4. CONCLUSION AND FUTURE WORK 

 

 

 

In the present study, two models are developed to find the optimal inspection interval for a 

load-sharing system with the Tampered Failure Rate (TFR) and the Cumulative Exposure (CE). 

The system remains operational if the number of failed components is less than 𝑛 − 𝑘 + 1 in an 

inspection interval, and it fails otherwise. The system is periodically inspected to detect the failed 

components. At a system failure, all the failed components are detected and rectified. Failures are 

assumed to follow a Non- homogeneous Poisson Process (NHPP).  

The first step to find the optimal inspection interval was to find the required expected values 

for Eq.2. Finding an analytical solution was shown to be impractical even for the simplest case of 

a 1-out-of-2 system. Therefore, the model was implemented using a simulation algorithm to 

accommodate the mathematical complexities of the problem. This algorithm can be used to obtain 

the expected values for any k-out-of-n load-sharing system over its life-cycle.  

Several numerical examples were provided to demonstrate the proposed simulation algorithm 

for the TFR and CE models. The results revealed that for a k-out-of-5 system, when 𝑘 = 1, 3, 4 

with the TFR model, as 𝛼 increases the system needs more frequent inspections. This was expected 

since as 𝛼 increases, the load function increases and so does the load applied to each component. 

When the load increases, the hazard rate of the survived components rises, requiring more frequent 

inspections of the system.  

The effect of varying 𝑘 is somewhat different. As 𝑘 increases, the system was found to need 

less frequent inspections. The reason is that when 𝑘 is close to 𝑛, the system is similar to a series 

system and periodic inspections do not contribute to the reduction of the total expected cost.  
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Therefore, no periodic inspections, or less frequent inspections is/are recommended. When 𝑘 

is much smaller than 𝑛, particularly with a high load intensity, there is a high downtime for the 

failed components, so more frequent inspections can reduce the total expected cost if the inspection 

cost is not very high. It can be concluded that a higher load intensity results in a higher total 

expected cost; thus, the system requires more frequent periodic inspections for a system which is 

not close to a series system. 

Considering 3-out-of-5 systems with the TFR and CE models, it was seen that the system with 

the CE model needs more frequent inspections to avoid a high penalty for the system failure. For 

the CE model also, as 𝛼 increases, more frequent inspections are needed. In the CE model, the 

increase in minimal repairs is not significant compared to the increase in replacements, which is 

due to higher hazard rates and also the alterations in the age of the components. It should be noted 

that the optimal inspection interval for both models depends on the input parameters including the 

hazard rate parameters, load intensity, and costs. It should be noted that this model can be applied 

to continuous as well as discrete time periods. The continuous time is not considered in the 

simulation model since most companies are interested in inspections taking place on a common 

practice which is a multiple of a time unit (month, week).  

The models proposed in this work is similar to those of Taghipour and coworkers [35,39] who 

developed the inspection optimization models for a system with soft and hard failures. Soft failures 

do not cause system failures and do not interrupt system operation, however, they can influence 

the performance of the system. Soft failures are detected only at inspections. Hard failures are self-

announcing since they cause system failure and they need immediate attention. If the system never 

fails in an inspection interval the failures of a k-out-of-n system are similar to soft failures in 
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[35,39]. However, the main difference between the present work and [35,39] is the consideration 

of the dependency among the components through sharing a certain amount of load.  

Taghipour and Banjevic [36,40] extended their inspection models to an opportunistic case, in 

which a hard failure makes an opportunity to inspect and rectify also the soft failures. 

In the current research, the system failures provide opportunities for the other failed 

components to be detected and rectified and they are, in a sense, similar to the opportunistic 

inspections in [36,40]. However, hard failures in [36,40] are completely independent from soft 

failures, while the components in a k-out-of-n load-sharing system are dependent on each other.  

For the future work, the proposed model can be extended to the case when the components are 

not subject to the same amount of load. Such model, for example, can be used for gateways in 

telecommunication networks. Gateways send and receive packets on a network. When a gateway 

is down, the packets (load) are forwarded to the other working gateways, to eventually reach their 

destinations. A gateway may be physically located in a busy network, so it might be subject to a 

larger workload. In addition, the load may fluctuate at different days/times.   

Another extension of this work could be the case when non-identical components are 

considered in a system. In this case, both the hazard parameters and initial age of the components 

are different. Non-negligible repair times can also be considered in the model.  
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APPENDIX A 
 

 

 

 Derivation of the Next Failure Time 

 

𝑅(𝑥) = 1 − 𝐹(𝑥) = 𝑒− ∫ 𝜆(𝑥)𝑑𝑥
𝑡+𝑠

𝑡  

𝜆(𝑥, 𝑖) = 𝛿𝑖𝜆(𝑥) 

𝑅(𝑥, 𝑖) = 𝑒− ∫ 𝜆(𝑥,𝑖)𝑑𝑥
𝑡+𝑠

𝑡  

𝑅(𝑥, 𝑖) = 𝑒
− ∫ 𝛿𝑖 (

𝛽
𝜂

)(
𝑥
𝜂

)
𝛽−1

𝑑𝑥
𝑡+𝑠

𝑡  

𝑅(𝑥, 𝑖) = 𝑤,  𝑤 ∈ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(0,1) 

∫ 𝛿𝑖  (
𝛽

𝜂
) (

𝑥

𝜂
)

𝛽−1

𝑑𝑥

𝑡+𝑠

𝑡

= 𝜃 

𝑅(𝑥, 𝑖) = 𝑒−𝜃 = 𝑤 

𝜃 = −log (𝑤) 

𝜃 = ∫ 𝛿𝑖  (
𝛽

𝜂
) (

𝑥

𝜂
)

𝛽−1

𝑑𝑥

𝑡+𝑠

𝑡

= 𝛿𝑖 (
𝛽

𝜂
) (

𝜂

𝛽
) (

𝑥

𝜂
)

𝛽

]
𝑡

𝑡+𝑠

= 𝛿𝑖 [(
𝑡 + 𝑠

𝜂
)

𝛽

− (
𝑡

𝜂
)

𝛽

] 

Therefore: 

𝜃 = 𝛿𝑖 [(
𝑡 + 𝑠

𝜂
)

𝛽

− (
𝑡

𝜂
)

𝛽

] = − log(𝑤) 

(
𝑡 + 𝑠

𝜂
)

𝛽

= [(
𝑡

𝜂
)

𝛽

−
1

𝛿𝑖
log(𝑤)] 

𝑡 + 𝑠 = 𝜂 [(
𝑡

𝜂
)

𝛽

−
1

𝛿𝑖
log(𝑤)]

1
𝛽

 

𝑁𝑒𝑥𝑡 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑡𝑖𝑚𝑒 = 𝑠 = 𝜂 [(
𝑡

𝜂
)

𝛽

−
1

𝛿𝑖
log(𝑤)]

1
𝛽

− 𝑡 



 

53 
 

APPENDIX B 
 

 

 

The MATLAB Code For The TFR Simulation Model: 

 

% Function SimulationOpportunisticMRSoftHardFile(TotalTime,Tau) runs the 
% simulation model OneSimulationRun(), which is the model for the  
% opportunistic case with the assumption of minimal and replacements of 
% soft and hard failures 1,000,000 times.  
% The outputs which are the expected number of minimal repairs,  
% replacements, and uptime for all components with soft failures, and the  
% expected numbers of minimal repairs and replacmenent for hard failures 
% are exported to the excel files 

  
function SO = LoadSharing(TotalTime,Tau,k,alpha) 

  
function [Out,SystemFailure]=OneSimulationRun() 

     
NextFailures=zeros(1,CompNo); 
CurrentAges=zeros(1,CompNo); 
FailedUnits=zeros(1,CompNo); 

  
Out=zeros(CompNo,3);   % Out(i,1)  # of minimal repairs , Out(i,2)  # of 

replacements , Out(i,3) uptime 
SystemFailure=0; 

  
for i=1:CompNo; 
  z= rand(1); 
  

NextFailures(i)=Params(i,2)*power(power(CurrentAges(i)/Params(i,2),Params(i,1

))-log(z),1/Params(i,1))-CurrentAges(i); 
end;     

         

  
CurrentTime=0; 
NextInspection=Tau; 
i=0; 
TotalFailures=0; 

  

  
while CurrentTime < TotalTime 
    [Mintime,MinIdx]=min(NextFailures);    

     
    while Mintime < NextInspection 
        i=i+1; 
        TotalFailures=TotalFailures+1; 
        if i < CompNo-k+1 
            for j=1:CompNo; 
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                if FailedUnits(j)==0 
                    CurrentAges(j)=CurrentAges(j)+Mintime; 
                    Out(j,3)=Out(j,3)+Mintime; 
                    if j ~= MinIdx 
                         

NextFailures(j)=GenerateNextFailure(Params(j,1),Params(j,2),CurrentAges(j),i,

CompNo,alpha); 
                    end     
                end     
            end         
            FailedUnits(MinIdx)=1;  % Indicated that the unit is failed 
            NextFailures(MinIdx)=100;  % Not to be selected as the min since 

the unit is already down 
            CurrentTime=CurrentTime+Mintime; 
            NextInspection=NextInspection-Mintime; 
        else  % System failure 
           SystemFailure=SystemFailure+1;  
           for j=1:CompNo; 
                if FailedUnits(j)==0 
                    CurrentAges(j)=CurrentAges(j)+Mintime; 
                    Out(j,3)=Out(j,3)+Mintime; 
                    if j==MinIdx   
                          rf=Params(j,3)*exp(-Params(j,4)*CurrentAges(j)); 
                          repairz= rand(1); 
                          if repairz <= rf  % minimal repair 
                              Out(j,1)=Out(j,1)+1;    
                          else  % replacement 
                              Out(j,2)=Out(j,2)+1; 
                              CurrentAges(j)=0; 
                          end  
                          FailedUnits(j)=0; 
                    end     
                else 
                      rf=Params(j,3)*exp(-Params(j,4)*CurrentAges(j)); 
                      repairz= rand(1); 
                      if repairz <= rf  % minimal repair 
                          Out(j,1)=Out(j,1)+1;    
                      else  % replacement 
                          Out(j,2)=Out(j,2)+1; 
                          CurrentAges(j)=0; 
                      end  
                      FailedUnits(j)=0; 
                end   % if FailedUnits(j)==0  
                if j==MinIdx || (k < CompNo) 
                    

NextFailures(j)=GenerateNextFailure(Params(j,1),Params(j,2),CurrentAges(j),0,

CompNo,alpha); 
                else     
                    NextFailures(j)=NextFailures(j)-Mintime; 
                end;     
           end    % for j     
            i=0; 
            CurrentTime=CurrentTime+Mintime; 
            NextInspection=NextInspection-Mintime;   
         end  % System failure 
         [Mintime,MinIdx]=min(NextFailures);  
    end; % while Mintime < NextInspection 
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      for j=1:CompNo; 
       if FailedUnits(j)==0 
           CurrentAges(j)=CurrentAges(j)+NextInspection; 
           Out(j,3)=Out(j,3)+NextInspection; 
       else 
           rf=Params(j,3)*exp(-Params(j,4)*CurrentAges(j)); 
           repairz= rand(1); 
           if repairz <= rf  % minimal repair 
               Out(j,1)=Out(j,1)+1;    
           else  % replacement 
               Out(j,2)=Out(j,2)+1; 
               CurrentAges(j)=0; 
           end  
           FailedUnits(j)=0; 
        end   % if FailedUnits(j)==0  
        if i > 0 
            

NextFailures(j)=GenerateNextFailure(Params(j,1),Params(j,2),CurrentAges(j),0,

CompNo,alpha); 
        else   
            NextFailures(j)=NextFailures(j)-NextInspection; 
        end;     
     end    % for j     
     i=0; 
     CurrentTime=CurrentTime+NextInspection; 

          
     if CurrentTime - Tau*(CurrentTime/Tau)== 0 
        RemainingTime=TotalTime-CurrentTime; 
        if RemainingTime < Tau 
            NextInspection=RemainingTime; 
        else     
            NextInspection=Tau; 
        end     
     end     
end   % While CurrentTime < TotalTime 

  
end   % function   

  

  
function nextfailure=GenerateNextFailure(beta,eta,CurrentAge,i,n,alpha) 
   z= rand(1); 
   sigma_i=power(n/(n-i),alpha); 
   nextfailure=eta*power(power(CurrentAge/eta,beta)-

(1/sigma_i)*log(z),1/beta)-CurrentAge; 
end    

  
Data = xlsread('C:\data\load_sharing\Components.xls'); 

  

  
RecordsNo=numel(Data(:,2)); 

  
rowindx=0; 

  
while (rowindx < RecordsNo) 
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    rowindx=rowindx+1; 
    Params(rowindx,1)=Data(rowindx,1); 
    Params(rowindx,2)=Data(rowindx,2); 
    Params(rowindx,3)=Data(rowindx,3); 
    Params(rowindx,4)=Data(rowindx,4); 
end 

  
 CompNo=rowindx;   

  

  

  
SimOut=zeros(CompNo,3); 

  
SimulationRuns=1000; 

  
MinimalMatrix=zeros(SimulationRuns,CompNo); 
ReplacementMatrix=zeros(SimulationRuns,CompNo); 
UpMatrix=zeros(SimulationRuns,CompNo); 

  

  
for iteration=1:SimulationRuns; 
    [out,SystemFailure]=OneSimulationRun(); 
    SystemFailureArray(iteration)=SystemFailure; 
    MinimalMatrix(iteration,:)=out(:,1)'; 
    ReplacementMatrix(iteration,:)=out(:,2)'; 
    UpMatrix(iteration,:)=out(:,3)'; 
    SimOut=SimOut+out; 
end; 

  
    AvgSTDSystemFailure(1)=mean(SystemFailureArray); 
    AvgSTDSystemFailure(2)=std(SystemFailureArray); 
    AvgSTDSystemFailure(3)=std(SystemFailureArray)/sqrt(SimulationRuns); 

  
for i=1:CompNo; 
    AvgSTDMinimals(i,1)=mean(MinimalMatrix(:,i)); 
    AvgSTDMinimals(i,2)=std(MinimalMatrix(:,i)); 
    AvgSTDMinimals(i,3)=std(MinimalMatrix(:,i))/sqrt(SimulationRuns); 

     
    AvgSTDReplacement(i,1)=mean(ReplacementMatrix(:,i)); 
    AvgSTDReplacement(i,2)=std(ReplacementMatrix(:,i)); 
    AvgSTDReplacement(i,3)=std(ReplacementMatrix(:,i))/sqrt(SimulationRuns); 

     
    AvgSTDUp(i,1)=mean(UpMatrix(:,i)); 
    AvgSTDUp(i,2)=std(UpMatrix(:,i)); 
    AvgSTDUp(i,3)=std(UpMatrix(:,i))/sqrt(SimulationRuns); 

  
end;     

  

  
SimOut=SimOut/SimulationRuns; 

  
SO=SimOut; 
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f1=strcat('AvgSTDMinimals-tau-',num2str(Tau),'.xls'); 
f = fullfile('C:', 'data', 'load_sharing','Results', f1); 
xlswrite(f,AvgSTDMinimals); 

  

  
f1=strcat('AvgSTDReplacement-tau-',num2str(Tau),'.xls'); 
f = fullfile('C:', 'data', 'load_sharing','Results', f1); 
xlswrite(f,AvgSTDReplacement); 

  
f1=strcat('AvgSTDUp-tau-',num2str(Tau),'.xls'); 
f = fullfile('C:', 'data', 'load_sharing','Results', f1); 
xlswrite(f,AvgSTDUp); 

  
f1=strcat('AvgSTDSystemFailure-tau-',num2str(Tau),'.xls'); 
f = fullfile('C:', 'data', 'load_sharing','Results', f1); 
xlswrite(f,AvgSTDSystemFailure); 
end 
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GLOSSARY 
 

 

 

NHPP                      NON-HOMOGENEOUS POISSON PROCESS 

TFR                          A LOAD-SHARING SYSTEM WITH TAMPERED FAILURE RATE  

CE                             A LOAD-SHARING SYSTEM WITH CUMULATIVE EXPOSURE 

𝑛                                NUMBER OF COMPONENTS IN THE SYSTEM 

𝑚                               NUMBER OF INSPECTION INTERVALS  

𝛿𝑖                                LOAD FUNCTION 

𝛼                                LOAD INTENSITY 

𝜆(𝑥, 𝑖)                     HAZARD RATE ( INTENSITY FUNCTION OF THE NHPP) 

𝛽, 𝜂                           PARAMETERS OF POWER LAW INTENSITY FUNCTION 

𝑇                                SYSTEM’S LIFE-CYCLE  

𝜏, 𝜎                            LENGTH OF PERIODIC INSPECTION INTERVAL 

𝐶𝑖                                COST OF INSPECTION  

𝐶𝑚                             COST OF MINIMAL REPAIR 

𝐶𝑟                               COST OF REPLACEMENT 

𝐶𝑑                              DOWNTIME PENALTY COST OF A FAILED COMPONENT 

𝐶𝑓                              PENALTY COST FOR SYSTEM FAILURE 

𝑓1
𝑋(𝑥|𝑡, 𝑖)              PROBABILITY DENSITY FUNCTION OF A COMPONENT GIVEN ITS INITIAL AGE 𝑡. 𝑡 IS 

THE  NUMBER OF FAILED COMPONENTS 
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𝐹1
𝑋(𝑥|𝑡, 𝑖)              CUMULATIVE DENSITY FUNCTION OF A COMPONENT GIVEN ITS INITIAL AGE 𝑡. 𝑖 IS 

THE  NUMBER OF FAILED COMPONENTS 

𝑃1
𝑋(𝜎|𝑡, 𝑖)              PROBABILITY THAT A COMPONENT SURVIVES UP TO 𝜎 GIVEN ITS INITIAL AGE  𝑡. 

𝑖 IS THE  NUMBER OF FAILED COMPONENTS 

𝐸[𝐶𝑠
𝑇]                      TOTAL EXPECTED COST INCURRED OVER CYCLE [0, 𝑇] 

𝑟(𝑥)                          PROBABILITY OF MINIMAL REPAIR 

𝑟̅(𝑥)                          PROBABILITY OF REPLACEMENT 

𝑎, 𝑏                            PARAMETERS OF THE PROBABILOTY FUNCTION  𝑟(𝑥) 

 

 

 

 

 

 


