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Abstract
Rushin Shojaii, “Novel Methods for Automatic Segmentation of Abnormal Lung
Parenchyma Utilizing Watershed and Wavelet Transforms”, MASec, Electrical and
Computer Engineering, Ryerson University, Toronto, 2006

CT scan of the thorax is widely used to diagnose and evaluate numerous lung diseases.
These scans yield a large amount of image data. The expanding volume of thoracic CT stud-
ies along with the increase of image data, elucidates the need of computer-aided diagnosis
(CAD) schemes to assist the radiologists. Since several lung diseases are diagnosed based
on the patterns of lung tissue in medical images, texture segmentation is an essential part
of the most CAD systems. '

The preprocessing step of most CAD systems is lung segmentation. In the first part of this
thesis a novel approach for lung segmentation is proposed. The proposed method is based
on watershed transform, which is fast and accurate. Lung region is precisely marked with
internal and external markers. The markers are combined with the gradient image of the
original data, then watershed transform is applied on the combined data to find the lung
borders. A “Rolling ball” filter is used to fill the cavities and make the contour smooth while
preserving the original borders.

In the second part of this research work a novel composite method is proposed to segment
the abnormality in lung tissue. The proposed approach is based on wavelet transform and
intensity similarities. Our focus is on the honeycomb texture in lung tissue, which occurs
with several interstitial lung diseases. After segmenting lung regions, Wavelet Transform is
applied to decompose the image. The transformed lung region is thresholded to extract high
resolution areas. Then the regions with low pixel intensities are kept and grown to segment
the honeycomb regions. The proposed method has been tested on 91 pediatric chest CT
images containing healthy and unhealthy lung images. Statistical analysis has been done
and the results show the sensitivity of 100% along with the average Specificity of 95.14%. A
comparison with AMFM (82.5% sensitivity and 99.9% specificity)and ANN methods (100%
sensitivity and 88.1% specificity) reveals the superiority of the proposed approach.

The test results of both the lung segmentation and abnormal lung tissue segmentation tech-
niques validate the robustness of the proposed methods.
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Chapter 1

Introduction

Recent advances in Computed Tomography (CT) technology has enabled it to be widely
used in diagnosing and quantifying different diseases. In particular, the expanding volume
of thoracic CT studies along with the increase of image data, elucidates the need for Com-
puter Aided Diagnosis (CAD) schemes to assist the radiologists [4].

The first step of most CAD systems is lung segmentation. Several lung diseases are diag-
nosed by investigating the patterns of lung tissue in pulmonary CT images, therefore texture
segmentation and analysis is another important part of CAD systems.

In the first part of this thesis a novel approach to segment lung regions in CT images is
proposed, developed and tested. In the second part a new composite method, which is com-
posed of a multi resolution technique and the methods based on intensity similarities of the
regions, is proposed to detect the lung tissue abnormalities.

In order to differentiate between normal and abnormal lung images, it is essential to under-
stand the different aspects of lung CT images and various textures in lung tissues. In this
chapter, first CAD systems are briefly discussed, then the respiratory system is reviewed.
The fundamentals of chest CT is discussed in section 1.3. In sections 1.3.1 and 1.3.2 several
lung CT images including healthy and unhealthy lung tissue are shown. These images com-
pare various textures that might exist in an unhealthy lung. A brief knowledge about object
and texture segmentation and analysis is given in sections 1.4 and 1.5. The contribution of

this thesis and its outline are discussed in the last section.



1.1 Computer-Aided Diagnosis

While computer technology has had a tremendous impact on medical imaging, the interpre-
tation of medical images is still best performed by humans. During the coming decades, the
use of computers in image interpretation is expected to increase and improve dramatically
[4]. Already Computer-Aided Diagnosis (CAD) has been described as “a second pair of eyes
for the radiologist” [4], and in some cases computer algorithms are outperforming human
observers.

Methodological researchers currently focus on segmentation and feature extraction approaches
and techniques for pattern recognition. The application areas are chest, brain, heart, blood
vessels, bone and all other parts of the body which can be examined through medical im-
ages.

The focus of this research is on lung and texture segmentation to evaluate lung tissue in
pulmonary (chest) CT images. The main motivation behind this research is to improve the

CAD systems which are used to locate abnormal lung tissue without massive invasion.

1.2 Pulmonary Anatomy

Lungs are the central organs of the human respiratory system. Other organs of the pulmonary
system include the nose, mouth, rib cage and diaphragm which are diagramatically shown
in figure 1.1. The main function of the respiratory system is to transport oxygen from the
atmosphere into the lung tissues to support cellular metabolism, and to transport carbon
dioxide from the lung tissues out to the atmosphere. The pulmonary system includes lungs
and the respiratory airways leading into the lungs and the structures of the thorax involved
in producing the movement of air through the airways into and out of the lungs [1]. For

more details on lung anatomy please refer to appendix A.



. Nasal passage

Figure 1.1: Human respiratory system [1].

1.3 Computed Tomography of Lung

Recent advances in multi-slice CT technology have enabled the acquisition of high spatial
volumetric pulmonary images within a breath hold. The fundamentals of CT scanners along
with Helical CT ones are described in Appendix B and B.1. CT images of lungs have been
widely used to study interstitial lung diseases. A lung CT dataset consists of an abundance
of cross-sectional images (slices) from different parts of the lung with a specified distance
(thickness) between them. As it is shown in figure 1.2, images from the upper part of the
chest (figure 1.2-a) may contain just the trachea and small parts of the lung and as it goes
down to the lower parts of the chest (figure 1.2-b), lung regions will be evident. In the lower
parts of the chest (figure 1.2-c) diaphragm will be seen along with the small parts of the
lung.

A standardized scale named Hounsfield Unit is used to facilitate the intercomparison of CT
values obtained from different CT scanners (Appendix B.1.1). In pulmonary CT images the

air will appear with a mean intensity of approximately -1000 Hounsfield Units (HU), the



(a) Upper part of chest (b) Middle part of chest (c) Lower part of chest

Figure 1.2: CT images of different parts of chest.

lung region will be in the range of [-1000 to -400] HU, and the chest wall, blood and bone
will be much more dense and well above -400 HU.

The format of the pulmonary CT images used for this research is DICOM (Appendix
B.1.2). DICOM is a cooperative standard and its goal is to achieve compatibility and im-
provement in workflow efficiency between imaging systems. The metadata in a DICOM file
provides information, such as the size, dimensions, and bit depth of the image. In addition,
the DICOM specification defines numerous other metadata fields that describe many other
characteristics of the data, such as the modality used to create the data, the equipment

settings used to capture the image, and information about the study.

1.3.1 Healthy Lung

In order to interpret lung CT images, it is required to have a detailed understanding of
normal lung anatomy and of the pathologic alterations, which occur in the presence of
disease. Figure 1.3 shows a CT image of a healthy lung. The background of the lung area
is almost uniform with insignificant changes in intensity. Vessel and artery branches can be
clearly seen in the image. Since vessels contain blood which is denser than air they look
brighter than the lung tissue in the image. Pulmonary airways also can be seen in lung
images especially in High Resolution Computed Tomography (HRCT). Since these airways

are filled with air, the cross-section view of them happens to be seen in CT images as an



Figure 1.3: CT image of healthy lung.
empty circle. Whereas the cross-section of blood vessels can be seen as filled circles [2).

1.3.2 Abnormal Lung

The detection and diagnosis of diffuse lung disease using high-resolution computed tomog-
raphy (HRCT) is based on the recognition of specific abnormal findings. In this section it is
shown that different lung diseases cause different patterns in lung tissue. Radiologists study
these patterns to diagnose any abnormality of the lung to monitor the improvement of the
disease during the healing process.

The patterns of lung abnormalities vary based on the disease syndromes. For example figure
1.4 shows four different examples of abnormal lung tissue. Figure 1.4-a shows an emphyse-
matous lung. Since emphysema is an interstitial lung disease (Appendix A.1.1), it affects
pixels’ density such that the emphysematous regions in the images appear darker (with lower
density) [2].

In patients with bronchiectasis, the abnormal thick-walled and dilated bronchi often appear
much larger than the adjacent pulmonary artery branches (figurel.4-b). This results in the
appearance of large ring shadows, each associated with a small rounded capacity. This is
considered to be diagnostic of bronchiectasis [2].

Figure 1.4-c shows a lung with hematogenous metastases from a rectal carcinoma. Multiple



small, well-defined nodules are visible with involvement of peripheral pleural surfaces. The
overall pattern of distribution is random.

The honeycomb lung is composed of a porous network of fibrous walled cysts (figure 1.4-d),
which resembles a beehive or, more characteristically, a sponge. The cysts are filled with
air, which makes them look like dark holes in CT images. Honeycombing can be the result
of a variety of lung diseases including Idiopathic pulmonary fibrosis (IPF), asbestosis, his-
tiocytosis, sarcoidosis, chronic hypersensitivity pneumonitis and rheumatologic diseases [2].
In other words honeycombing is a feature from which several interstitial diseases could be
diagnosed.

These patterns are some examples of various patterns that might occur in case of a diseased
lung.

Studying these patterns implies that by utilizing texture segmentation techniques, patterns
in Computer Aided Diagnosis (CAD) can classify abnormal lung CT images from healthy
ones. Furthermore, quantitative analysis of these textures will be a useful tool to help a

radiologist to study the improvement of a disease during a healing process.

1.4 Image Segmentation

The subdivision of an image into components such as points, lines, or regions is called image
segmentation. The process is based on local similarities in pixels’ intensities. Image segmen-
tation is a prerequisite for processes such as computer-aided diagnosis, quantitative analysis,
visualization, registration and atlas-matching.

Generally, image segmentation algorithms are based on one of the two properties of intensity
values: discontinuity and similarity [5]. In the first category the approach is to partition
an image based on abrupt changes in intensity, such as edges. The main approaches in the
second category, are based on partitioning an image into regions that are similar according to
a set of predefined criteria. Thresholding, region growing, and region splitting and merging

are examples of methods in this category.
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(c) Nodular(Hematogenous metastases) (d) Honeycomb Lung

Figure 1.4: Some examples of abnormal lung CT images [2].

1.5 Texture and Texture Analysis

Textures in general, are complex visual patterns composed of entities, or subpatterns, that
have characteristics like brightness, color, size, etc. Thus texture can be considered as a
group of similarities in an image [6]. The properties of local subpatterns give rise to the
perceived lightness, uniformity, density, roughness, regularity, linearity, frequency, phase,
directionality, coarseness, randomness, fineness, smoothness, granulation etc. [7]. Texture

analysis has four major issues:

e Feature extraction: to compute characteristics of an image which are able to describe

its texture properties numerically.

e Texture discrimination: to partition a textured image into regions, each corresponding

to a perceptually homogeneous texture (leads to image segmentation).



o Texture classification: to determine to which physically defined classes (such as normal

and abnormal tissue) a homogeneous texture region belongs.

o Object shape determination: to reconstruct 3D surface geometry from texture infor-

mation.

Feature extraction is the first stage of image texture analysis. Results obtained from
this stage are used for texture discrimination, texture classification or object shape deter-
mination. The second part of this research is confined mainly to feature extraction, texture

discrimination, and texture classification of lung tissue.

1.6 Contribution

The goal of this thesis is to distinguish healthy pulmonary chest CT images from unhealthy
ones based on the existing textures of lung tissue, which show the abnormalities.

A novel approach is proposed and developed to segment lung regions from lung CT images.
Marker-based watershed transform has been utilized to accomplish this task. Despite its
simplicity, this method is highly robust, accurate, and fast.

In order to segment suspicious regions of lung tissue a new composite algorithm has been
utilized. The technique is based on multi-resolution methods using wavelet transform com-
bined with intensity similarities.

To segment abnormal textures in CT images entropy filtering has been implemented and
compared to the proposed algorithm.

The thesis is organized as follows:

Chapter 2 gives a brief background over the concepts of segmentation methods and the
previous works for lung and texture segmentation in lung CT images. It also discusses the
existing feature extraction and classification methods.

Chapter 3 explains the utilized methods in this research including lung segmentation and
texture segmentation.

Chapter 4 contains the experimental and analytical results and demonstrates the accuracy



of the methods utilized.

Chapter 5 is dedicated to conclusion and potential future works.



Chapter 2

Literature Review

This chapter explains previous works on lung segmentation. It also reviews the existing
methods of texture discrimination and analysis of lung tissue which have been utilized by

other researchers to detect lung abnormalities.

2.1 Lung Segmentation

To provide useful and reliable information, most CAD methods require identification of the
lung boundaries within the images, a preprocessing step known as “lung segmentation”.
Limiting further processing to the lungs greatly reduces computation time and memory,
because the lung occupies a fraction of the total volume of data. So, lower amount of
memory is required during the computation time. Automated lung segmentation is also
useful for image data visualization. Three dimensional display of CT image data is an area of
rapid development. Lung segmentation must be accurate because abnormalities such as lung
nodules may exist at the extreme periphery of the lungs. If the entire lung is not segmented,
such abnormalities will be lost in subsequent analysis. In this chapter, the previous works

from other researchers are reviewed.

2.1.1 Anatomical Model

Brown et al. [8] developed a knowledge-based, automated method for segmenting volumetric

chest CT datasets. The method utilizes a modular architecture consisting of an anatomical

10



model, image processing routines, and an inference engine, the interactions of which are
governed by a blackboard [9].

The principle of operation is as follows: for each modeled object, constraints on features are
derived and written to the blackboard. Image processing routines write corresponding feature
representations of segmented image primitives to the blackboard. The inference engine reads
the data from both sources and does the matching. Its conclusions are then also written back
to the blackboard and the information can be used to guide further matching. The mapping
to feature space allows the model and image data representations to be independent. They
initially modeled the chest wall and mediastinum, central tracheobronchial tree, and right
and left lungs in terms of attenuation threshold, shape, contiguity, volume, and relative
position.

One of the drawbacks of this method is its complexity in implementation. It is also dependent
on a priory knowledge of the structure of the lung while lung can have various shapes and

lung tissue have different patterns.

2.1.2 Optimal Threshold

Hu et al. [5], [10], [11] have utilized optimal thresholding to segment lung regions instead of
fixed threshold. Connectivity and topological analysis are used to further refine regions that
represent the extracted lungs.

It is assumed that the image volume contains only two types of voxels: 1) voxels within the
very dense body and chest wall structures (the body voxels) and 2) low-density voxels in
the lungs or in the air surrounding the body of the subject (the nonbody voxels). Optimal
thresholding is utilized to select a segmentation threshold to separate the body from the
nonbody voxels, and then identify the lungs as the low-density cavities inside of the body.
After applying the optimal threshold, the nonbody voxels will correspond to the air sur-
rounding the body, the lungs, and other low-density regions within the image volume (i.e.,
gas in the bowel). Three-Dimensional connected components labeling is used to identify the

lung voxels. The background air is eliminated by deleting regions that are connected to the

11



border of the image. Small, disconnected regions are discarded if the region volume is too
small. To identify the lungs, the two largest components in the volume are retained, with the
additional constraint that each component must be larger than a predetermined minimum
volume. Only the components with a volume greater than one percent of the total image
voxel count are retained.

The high-density vessels in the lung will be labeled as body voxels during the optimal thresh-
olding step. As a result, the 3-D lung regions will contain unwanted interior cavities. Topo-
logical analysis, similar to that used in [12] is used to fill the lung regions and eliminate the
interior cavities.

Segmentation of the Large Airways: To perform quantitative analysis on the lung tissue, the
trachea and large airways must be identified and separated from the left and right lungs.
The trachea and left and right mainstem bronchi are identified in the original gray-level
image data using a closed-space dilation with a unit radius kernel [13]. This procedure
is equivalent to the directed slice-by-slice region growing. To initialize the closed-spaced
dilation, the location of the trachea is automatically identified by searching for the large,
circular, air-filled region near the center of the first few slices in the data set. Regions in
the current slice provide potential seed point positions for the next slice. The slice-by-slice
growing procedure is stopped when the size of the region on a new slice increases dramati-
cally, indicating that the airways have merged into the low-density lung tissue.

Optimal thresholding is a heuristic approach, so, it is time consuming and as it is shown in
chapter 4, it is not successful in segmenting lungs with some abnormalities including honey-
combing. The trachea elimination for each slice is dependent on the previous slice, while it

can simply be done on each slice independently.

2.1.3 Histogram Tresholding

Armato et al. utilized histogram thresholding to segment lung regions ([14],(15]). A cumu-
lative gray-level profile is constructed from pixels along a diagonal of the CT section image,

and the shape of this profile is used to identify a gray-level threshold. A binary image is

12



created by thresholding the section image. An -eight-connected border tracking algorithm
[11] is used to identify the outer margin of the largest object in the binary image, and the
set of pixels in the original image that lie within this contour is considered the segmented
thorax region. The presence of a single, large lung segmentation region in any section in-
dicates that gray-level thresholding has fused the two lung regions at the anterior junction
([8],{10],[16],[17]). Distinction between left and right lungs is often required for more detailed
image analysis. Consequently, the single lung region is separated into two regions by elim-
inating pixels along the anterior junction line. The most anterior point along the cardiac
aspect of the lung region is identified. Because the anterior junction line typically demon-
strates a mild curvature, a search of 10 pixels on either side of the initial anterior junction
line is performed in each image row intercepted by the initial anterior junction line to locate
the local maximum. This set of local maximum pixels represents the anterior junction line,
which is turned “oft” in the lung region to create two distinct regions from what had been
erroneously identified by initial gray-level thresholding as a single segmented lung region.
Gray-level thresholding tends to include the trachea and main bronchi within the segmented
lung regions [16]. To ensure that these structures are not subsequently included in the
segmented lung regions, the trachea and main bronchi are eliminated from the segmented
thorax regions in all sections in which they appear. A seed point for trachea segmentation
is automatically identified in the superiormost CT section. This seed point is the pixel with
the lowest gray level in a region about the center-of-mass of the thorax and is assumed to
exist within the trachea. Region-growing technique [11] is used to expand the identified
trachea region about the seed point; as the graylevel threshold is incremented by 5 during
region growing, more pixels surrounding the seed point within the trachea are identified.
A stopping criterion is established to halt the region-growing process when the trachea has
been adequately segmented.

In this technique lung segmentation and border tracking is done in two different sections,
while they can be done in one step. Areas with high intensity might be abnormal regions in

lung and histogram thresholding might lose these parts.
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2.2 Texture Segmentation

Texture analysis and segmentation in discriminating between healthy and unhealthy lung
tissue is an essential part of most Computer-Aided Diagnosis systems.

Texture analysis approaches are usually classified into four categories:
e structural
o statistical
e model-based
e transform methods

Structural approaches [18], [7] represent texture by well defined primitives (micro-
texture) and a hierarchy of spatial arrangements (macro-texture) of those primitives. To
describe the texture, one must define the primitives and the placement rules. The choice of
a primitive (from a set of primitives) and the probability of the chosen primitive to be placed
at a particular location can be a function of location or the primitives near the location. The
advantage of the structural approach is that it provides a good symbolic description of the
image; however, this feature is more useful for synthesis than analysis tasks. The abstract
descriptions can be ill defined for natural textures because of the variability of both micro-
and macrostructure. There is also no clear distinction between them. A powerful tool for
structural texture analysis is provided by mathematical morphology [19], [20]. It may prove
to be useful for bone image analysis, e.g. for detection of changes in bone microstructure.
Statistical approaches represent the texture indirectly by the non-deterministic properties
that govern the distributions and relationships between the grey levels of an image. Methods
based on second-order statistics (i.e. statistics given by pairs of pixels) have been shown to
achieve higher discrimination rates than the power spectrum (transform-based) and struc-
tural methods [21]. Human texture discrimination in terms of texture statistical properties
is investigated in [22]. Accordingly, the textures in grey-level images are discriminated spon-

taneously only if they differ in second-order moments. Equal second-order moments, but
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different third-order moments require deliberate cognitive effort. This may be an indication
that also for automatic processing, statistics up to the second order may be most important
[23]. The most popular second-order statistical features for texture analysis are derived from
the so-called co-occurrence matrix [18]. They were demonstrated to feature a potential for
effective texture discrimination in biomedical-images [24). The approach based on multi-
dimensional co-occurrence matrices was recently shown to outperform wavelet packets (a

transform-based technique) when applied to texture classification [25).

Model based texture analysis [26], [27], [28], [29], [30], which uses fractal and sto-
chastic models, attempts to interpret an image texture by use of, respectively, generative
image model and stochastic model. The parameters of the model are estimated and then
used for image analysis. In practice, the computational complexity arising in the estimation
of stochastic model parameters is the primary problem. The fractal model has been shown
to be useful for modeling some natural textures. It can be used also for texture analysis and
discrimination [27], [31], [32]; however, it lacks orientation selectivity and is not suitable for
describing local image structures.

Transform methods of texture analysis, such as Fourier [33], Gabor [34], [35] and wavelet
transforms [36], [37], [38] represent an image in a space whose co-ordinate system has an
interpretation that is closely related to the characteristics of a texture (such as frequency or
size). Methods based on Fourier transform perform poorly in practice, due to its lack of spa-
tial localization. Gabor filters provide means for better spatial localization; however, their
usefulness is limited in practice because there is usually no single filter resolution at which
one can localize a spatial structure in natural textures. Compared with the Gabor transform,
the wavelet transforms feature several advantages: first, varying the spatial resolution allows
it to represent textures at the most suitable scale. Second, there is a wide range of choices
for the wavelet function, so one is able to choose wavelets best suited for texture analysis in
a specific application. These advantages make the wavelet transform attractive for texture

segmentation. The problem with wavelet transform is that it is not translation-invariant
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[39].

2.2.1 Previous Works

Lung parenchyma evaluation is done by several research group exclusively. Various texture
segmentation methods, which are addressed in previous section, are utilized. In this section
the existing texture segmentation methods which are exclusively utilized to evaluate lung

parenchyma is discussed.

ANN Technique

In order to detect interstitial lung diseases, Uchiyama et al. [40] [41] developed a CAD
scheme, in which lung regions are divided into many contiguous regions of interest with a
32 by 32 matrix. Six physical measures are determined for each region and artificial neural
networks (ANNs) are employed to distinguish between seven different patterns including
normal and abnormal lung tissue.

Later the number of features increased by the same group. 10 clinical parameters and 23
HRCT features have been utilized to differentiate among 11 diffuse lung diseases [42).

In this technique 32x32 matrices is used to evaluate the features. Lung occupies at most one
third of the image size, which is 512x512. Choosing the size of 32 can be a cause of loosing
some abnormalities in lung, particularly small abnormal regions. Uchiyama et al. claimed
the sensitivity of 100% for honeycombing with the specificity of 88.1% for their technique,

while the proposed technique in this thesis proves to be superior.

AMFM Technique

Uppaluri et al. developed an adaptive multiple feature method (AMFM) which uses 22 sta-
tistical measures to classify six tissue patterns [43], [44], [45]. Edgementation is utilized in
AMFM to segment different textures of lung region [46]. Edgementation is a kind of split
and merge method, the split part is accomplished by edge detection and merge is done based

on statistical measures.

Uppaluri et al. use edgementation which splits the lung based on all existing edges and
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then merge them based on similariites in statistical measures. Since lung region contains
an abundance of edges (vessels, air tree, air sacs, artery branches etc.), this method is time
consuming for this application. Uppaluri et al. [43] claimed that their work is especially
successful for the detection of normal, emphysemalike, ground glass, and bronchovascular
patterns of the lung parenchyma, while it is less successful for the evaluation of the honey-

combing and the nodular patterns.
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Chapter 3

Methodology

In the first part of this research a new approach based on both similarity and discontinuity
properties of the image using fixed thresholding and Watershed transform is proposed to
segment lung regions in the chest CT images. The second part is dedicated to segmentation of
different textures of lung parenchyma by two approaches: entropy filtering and decomposing
the lung regions into sub-images with different resolutions using wavelet transform. The
focus of this research is on a particular texture named honeycomb texture. The employed

techniques are described in detail.

3.1 Lung Segmentation

In this section a novel lung segmentation technique based on watershed transform is pre-
sented. Lung region is precisely marked with internal and external markers. The markers are
combined with the gradient image of the original data and watershed transform is applied on
the combined data to find lung borders. “Rolling ball” filter is used to smooth the contour
and fill the cavities while preserving the original borders. The details of this technique are

discussed in the following sections.

3.1.1 Watershed Transform

Watershed transform can be classified as a region-based segmentation approach. Buecher

and Lantuejoul [47] formalized the concept and later Vincent and Soille [48] turned it into
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Walershed line Catchmanl basins

Figure 3.1: Watershed Lines and Catchment Basins (Courtesy of Steve Eddins).

an “immersion-based” algorithm. “Watershed” refers to a ridge that divides areas drained
by different river systems. A “catchment basin” is the geographical area draining into a river
or reservoir. Watershed transform finds “catchment basins” and “watershed ridge lines” in
an image by treating it as a surface, where bright pixels are high and dark pixels are low [5].
Figure 3.1 illustrates the concepts of watershed lines and catchment basins.

Several definitions of the watershed transform have been declared. Marker-based wa-
tershed algorithms on discrete images [5], [49] are considered in this thesis. Generally, the
watershed transform is computed on the gradient image, where the boundaries of the catch-
ment basins are located at high gradient points. The principle of the immersion-based
watershed algorithm [48] can be illustrated by imagining the gradient image as a relief (the
elevations or inequalities of a land surface), with the height variable being the grey-value
for each pixel position. Imagine, water immersing from the bottom of the relief (the darkest
parts of image), every time the water reaches a minimum, which corresponds to a region in
the original image, a catchment basin is grown. Watershed transform is based on set theory

and can be formulated as follows:

Tl = {(z,9)lg(z,y) <n} (3.1)

In which, g(z,y) denotes the gradient image of the original one. n is the level of water

and T[n] represent the set of coordinates (z,y) for which g(z,y) is less than n. In other
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words T'[n] is the set of coordinates of points in g(x,y) lying bellow the plane g(z,y) = n.
Assume M;, My, ... are the sets of pixel coordinations in the regional minima of an image
g(z,y). A portion of binary image T'[n| at the stage n of flooding that is associated with

regional minimum M is given by:.

Ca(M;) = C(M;)(T[n] (3.2)

Cn(M;) is the set of pixel coordinations in the catchment basin associated with minimum
M; that are flooded at stage n. C(M;) is a set of pixel coordinations in the catchment basin
associated with regional minimum M;.

Finally C[n], which denotes the union of R flooded catchment basins portions at stage n, is

formulated as:

Cn) = (JCalM) (3:3)

C[n] can be considered as regions of interest.

When two neighboring catchment basins eventually meet, a dam is created to avoid the
water merging at that level of flooding and spilling from one basin into the other. This
property is utilized to make the left and right lung separation during the transformation. As
it is shown in figure 3.2, when the water reaches the maximum gray-value, the union of all
dams forms the watershed lines [5].

Watershed transform has several advantages: it is a simple intuitive method, which is
fast and can be parallelelized [50], [51].

Over-segmentation is a well-known drawback in watershed segmentation. Since every re-
gional minimum, even if tiny and insignificant, forms its own catchment basin, over-segmentation
occurs. This phenomenon is illustrated in figure 3.3-c, which is the result of applying stan-
dard watershed transform on the gradient image of a pulmonary CT slice (figure 3.3-a).

By using marker-based watershed transform, we can decrease the regional minima and bind
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Figure 3.2: The process of building Watershed Lines (Courtesy of Tesi di Laurca).

them within the region of interest to prevent over-segmentation. There are several tech-
niques to define markers and choosing a technique is highly dependent on the application.

The details of our approach are described in the following steps.

3.1.2 Gradient Image (Step 1)

Since watershed transform is applied on the gradient image, the first step is to obtain the
gradient image. The Sobel masking operator is applied on the original pulmonary CT image

in both horizontal and vertical directions to create the gradient image (figure 3.3-b).

3.1.3 Internal Marker (Step 2)

The key point of our approach is the internal markers. The internal markers are the connected
components of the pixels with almost the same intensity values, whose external boundary
pixel values are all greater than a level of n. The value of n is a gray level value, which
specifies the approximate gray level value for non-body pixels in CT images. In pulmonary

CT images the air will appear with the intensity of -1000 Hounsfield Units (HU) (refer to
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Figure 3.3: (a) Original pulmonary CT image. (b) The gradient image of figure (a) using Sobel
masking. (c) Result with oversegmentation obtained using standard watershed transform on the
gradient image.

Appendix B.1.1). Since lung region is filled with air sacs, blood vessels, capillaries and air
tree, it will be in the range of -1000 to -400 HU. The chest wall, blood and bone will be
much dense and well above -400 HU. In order to specify the internal markers the regions
with pixel values lower than -400 HU are selected. The background of the CT image is
almost black (lower than -400), so, it makes an erroneous regional minimum. Background is
removed by eliminating the objects, which are attached to the border of the binary image
[52). After removing the background, the small objects in the markers, which are caused
by the cross-section of veins, should be eliminated. The open morphological operator is
utilized to eliminate these small separate objects. The result is shown in figure 3.4-a. To
remove trachea and other large airways from the internal marker binary image, two methods
are utilized and compared with each other. The first method is simply to remove the small
isolated objects near the center of the chest in the CT image, which is accurate and fast. The
second method is based on Masutani’s work [13]. The location of the trachea is identified
by searching for the circular object near the center of first few slices. Each slice provides
the seed point for the next slice. When the size of the region on a slice highly increases, the
region growing procedure stops and the pixels, which correspond to trachea or main bronchi,

are turned off in the internal marker binary image. In this method elimination of trachea in
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each slice is depending on the previous slice, while in the first method it is done in each slice
independently.

In CT images with certain disease conditions such as emphysema, the left and right lungs
are attached to each other or separated with a very thin wall (with the intensity lower than
-400 HU). A single large lung region in the internal marker binary image indicates that the
left and right lung regions are merged. To extract the border in this case along with other
tissues during the watershed transform, no regional minimum should be imposed on the area
between the two lung regions. This area is specified by a black strip near the center of the
chest in the image. The pixels of the internal marker on this area are turned off to avoid

imposing regional minima on this area.

3.1.4 External Marker (Step 3)

Lung border is located in the neighborhood area of the internal marker. To bind this area
an external marker is required. The internal marker is dilated with two circular structuring
elements with the ratios of 4 and 104. By subtracting the results, external marker is specified.
It is a wide strip around the internal marker with a small distance. The width of the strip
is selected at least 100 pixels to eliminate the whole possible minima in the neighborhood.
The distance between the two markers is 3 pixels to include the slightly curved border of the
lung. The wider the strip, the lower the risk of oversegmentation. The ratio of the smaller
structuring element specifies the distance between the two markers. Figure 3.4-b shows the

external marker for the lung CT image of figure 3.3-a.

3.1.5 Imposing Regional Minima (Step 4)

In this step the regional minima will be placed only in the marked area of the gradient image.
To do this, it is required to compute the watershed lines in the region of interest. Minima
imposition procedure, which utilizes morphological reconstruction, is used to place regional

minima only within the area of the union of the two markers (figure 3.5-a).
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(a) (b)

Figure 3.4: (a) Internal Marker (b) External Marker.

(b)

Figure 3.5: (a) Imposed regional minima in the marked arca. (b) Segmented lung contour.

3.1.6 Watershed Transform (Step 5)

Watershed transform of the obtained image finds the watershed lines corresponding to the
most significant edges between the markers. These watershed lines are the borders of the
lung regions (figure 3.5-b). Since during this transform a dam is created between the two

lung regions to prevent merging, the thin wall between the attached left and right lung with

emphysema, disease is also extracted.
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(b)

Figure 3.6: (a) Smoothed lung contour using rolling ball filter (b) Segmented lung regions.

3.1.7 Smoothing and Filling the Cavities (Step 6)

This is one of the most common practices in many lung segmentation schemes [10], [52]. In
some CT images, the segmented lung region excludes dense structures, such as juxtapleural
nodules and hilar vessels (figure 3.5-b). To include these structures the rolling ball filter is
utilized [5], [52]. The segmented lung border is superimposed on the original image and the
closed morphological operator is applied. A rolling ball with the ratio of 9 is selected as a
3D structuring element. Indeed, the ball rolls along the lung contours identifying the pixel
along the balls circumference with tangential slope that matches the tangential slope of the
lung contour at the current contour pixel. The width of entering blood vessels in children
is about lcm. The indentation of the vessels are fairly smoothed by a ball with the ratio
of 9. The smoothed image is shown in figure 3.6-a. At this stage those parts of the border
that need to be smoothed are changed and other parts remain the same, which is the unique

advantage of our technique. The segmented lung regions are shown in figure 3.6-D.
3.2 Honeycomb Lung Segmentation using Entropy Fil-
tering :

Several interstitial lung diseases could be diagnosed based on Honeycombing feature. Figure

3.7 shows two CT images of honeycomb lungs.
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Figure 3.7: Two lung CT images with honeycombing [2].

3.2.1 Spectral Measures

Spectral measures are suited for describing the periodic or almost periodic 2-D patterns.
These measures are based on the Fourier spectrum and the patterns can be detected as
concentrations of high-energy bursts in the spectrum. By expressing the spectrum in polar
coordinates S(r, ), the interpretation of spectrum features will be more meaningful. Ana-
lyzing Sp(r) for a fixed value of 6 yields the behavior of the spectrum (such as the presence
of peaks) along a radial direction from the origin, and analyzing S(f) for a fixed value of 7
yields the behavior along a circle centered on the origin. To obtain the global description of

the spectrum the integrations of these functions are used:

S(r) = Y S(r) (34)
0};00
S@6) = ) 5:(0) (3.5)

where Ry is the radius of a circle centered at the origin. Three 50 by 50 images are
selected from the different parts of the lung CT images (figure 3.8) and the equations B.1
and 3.13 are computed for each. The selected images show healthy, honeycomb and the part
with vessel branches of lung tissue. The results of above equations are shown in figures 3.9
and 3.10.

As it is shown, there are a few differences between the results for different types of the

lung tissue, so, the required information to detect the honeycomb tissue cannot be obtain
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Figure 3.8: Healthy, Honeycomb and tissue with vessel branches.

using these equations. These measures are usually useful for distinguishing periodic from
non-periodic patterns. For periodic patterns Sy is symmetrical and can be distinguishes from

non-periodic patterns.

3.2.2 Statistical Méasures

Statistical measures of intensity histogram are frequently used to analyze textures. Some of

these measures are based on statistical moments. The nth moment about the mean is given

by:

o = (= m)"p(z) (36)

=0
where z; is a random variable indicating intensity, p(z;) is the histogram of the intensity

levels in a region, L is the number of possible intensity levels, and m in equation 3.7

L-1
m = Zzip(zi) (3.7)

i=0
is the mean intensity. Another statistical property which is commonly used for texture

analysis is ”Standard Deviation”, which is a measure of average contrast and is expressed

by:

o = V() (3.8)

Smoothness is another measure to discriminate different textures and is defined by:

R = 1-1/(1+4% (3.9)
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Figure 3.9: : Left: S(r) Right: S(6) of healthy, honeycomb and arca with vessel branches.
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Figure 3.10: S(r,0) of healthy, honeycomb and nodular.
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Table 3.1: Statistical Measures of Three Lung Different Tissue

scale | Healthy | Honeycomb | Vessel Branches
Mean 1.0e+004 | 1.1505 1.2248 1.2702
Third Moment | 1.0e+003 | 1.7085 2.4324 2.3208
Smoothness 1 0.4469 0.9017 0.8215
NTM 1 -3.3794 -6.3223 2.8445
Uniformity 1 18.2679 16.3927 21.8349
Entropy 1 276.8342 341.2825 303.6690

Uniformity is maximum when all gray levels are equal and expressed by:

L-1
U = sz(z,-) (3.10)

i=0

Entropy is a measure of randomness and is defined as:

L-1
e = —Y p(z)log,p(z) (3.11)

i=0

All these six features are tested for three different types of lung parenchyma and the re-

sult is tabulated in table 3.1. The measures are scaled by 100. One of the reliable measures

for the purpose of this paper is Entropy, which is used to segment the honeycomb region and

is discussed in detail in the next part.

3.2.3 Entropy Filter

As a part of this research entropy is utilized to segment honeycomb region of lung tissue. The

concept of entropy in information theory describes how much randomness (or, alternatively,

"uncertainty’) there is in a signal or random event. An alternative way to look at this is

to talk about how much information is carried by the signal. In an image, regions with

more variations in intensity have higher entropy. In order to detect the areas with higher
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resolutions of an image, it is filtered by an entropy filter, which replaces each pixel value
with the entropy value of itself and its 9 by 9 neighborhood pixel values. Figure 3.12 shows
the result of entropy filtering of the lung CT image in figure 3.11.

Figure 3.11: CT image of Honeycomb Lung.

Figure 3.12: Entropy filtered image.

The area with honeycombing and vessel branches has high intensity variation and higher
entropy value therefore they look brighter in the entropy filtered image. The next step is to
threshold the filtered image to extract the area with higher entropy. To accomplish this task
a fixed threshold with the value of 230 has been used. The binary image after thresholding
is shown in figure 3.13. Since regions with vessel branches and the borders of the lung have

also high entropy, these regions are also extracted along with the honeycomb lung.
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Figure 3.13: Thresholded filtered image.

3.2.4 Extracting Honeycomb from other Textures

Honeycombing is a set of cysts filled with air, whereas the vessel branches and the lung
border are denser than the air. In other words in CT image honeycombing is seen as dark
holes but lung border and nodular parts are seen as brighter areas. This feature is used to
distinguish honeycomb pattern from others. The binary thresholded image is used as a mask
on the original image to keep the darkest areas of the thresholded image (figures 3.15 and
3.15).

Figure 3.14: Original gray scale pixel values of thresholded image.

2D seeded-region growing is used to extract the regions with honeycomb tissuc. The first

step is to find seeds. Dilation morphological operation is utilized to eliminate small isolated
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Figure 3.15: Darkest areas of the thresholded image.

objects (figure 3.16). The next step is to build a mask. The darkest regions of high resolution

Figure 3.16: Sccds.

areas, which are obtained previously (figure 3.15), are dilated by a disk-structuring element
with the ratio of 3 to include the honeycomb hole walls and have almost the natural size of
the abnormal region (figure 3.17). The disk structuring clement has been chosen because of
the circular shape of the honeycomb holes.

The final step is to apply 2D region growing technique on the obtained mask and seeds,
which are shown in figures 3.16 and 3.17. 8-connected neighborhoods and the fast hybrid
grayscale reconstruction algorithm described in [53] is utilized to perform region growing.

The result is a binary image (3.18) which is used as a mask to extract honeycomb area from
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Figure 3.17: The mask used for region growing,.

Figure 3.18: The mask for honeycomb areca.

the original image. Figure 3.19 shows the abnormal lung tissue and illuminates the accuracy

of this method.

3.3 Honeycomb Lung Segmentation using Wavelet Trans-
form

This section is dedicated to the second proposed approach of honeycomb lung segmentation

by decomposing the image of lung region into separated images with different resolution

using wavelet transform.
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Figure 3.19: Extracted honeycomb tissue of the lung.

3.3.1 Wavelet Transform

Recently, multiresloution-based approaches have drawn increasing attention in the field of
texture analysis. Several successful applications of this approach to automatic texture seg-
mentation have been proposed. Wavelet transform [36] is used in multiresolution-based
approaches. Most of the wavelet-based methods use a pyramidal type of decomposition to
transform the input image into an image of wavelet coefficients at different resolutions. The
wavelet coefficients are then transformed into texture-specific features. Based on the fea-
tures, traditional clustering techniques such as c-means are adopted to segment the image
into texture regions.

Wavelet analysis is the breaking up of a signal into shifted and scaled versions of the original

(or mother) wavelet. General formula for continuous wavelet transform can be written as:

Uoa() = —T (t"r) (3.12)

S

Vs
[royw,0a (3.13)

v(s,7)

Where VU is a wavelet, which is a waveform of effectively limited duration that has an average
value of zero. The signal f(t) is filtered by the shifted and scaled versions of this filter to
decompose it into different frequency bands. The values of v for different scales (s) and

translations (7) are the coefficients of transformed signal.
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In the proposed approach discrete wavelet transform is utilized. The discrete wavelet trans-
form of image f(x,y) of size M by N can be written as [5]:

M-1N-1

1
Wa(jo,m,n) = ——= s Y)Bio.mn (T, 3.14
[ Omn) m;;f(my):’ (my) ( )
) 1 M-1N-1
WiG,mn) = — flz,y) ¥ (z, 3.15
v \/]M_N;yz:; (a:y) J,,(a:y) ( )
i = {H,V,D}

®jomn(,y) and Ui (z,y) are the scaled and translated basis functions:

Bjmn(z,y) = 210(2z —m, 2y —n) (3.16)
W n(@,y) = 2502z —m, 2y —n) (3.17)
i = {H,Y,D}

®(z, ) is the scaling function and ¥#(z,y), UV (z,y), and ¥P(z,y) are three two-dimensional
wavelets, which are the products of one-dimensional ® and corresponding wavelet ¥. 7 is a
superscript that identifies the directional wavelets [5].

Discrete wavelet transform corresponds to multiresolution approximation expressions. Mul-
tiresolution analysis is carried out using 2 channel filter banks composed of a low-pass and a
high-pass filter and each filter bank is then sampled at a half rate (1/2 down sampling) of the
previous frequency. By repeating this procedure, it is possible to obtain wavelet transform of
any order. Filtering is implemented in a separable way by filtering the lines and columns so
the original image can be transformed into approximation, horizontal, vertical and diagonal
sub-images.

Among several well known wavelets including Haar, Daubechil, Daubechi2 and ..., which
have been tested, BiorSplines 1.1 wavelet proved to have best results for this application.
The horizontal, vertical and diagonal subimages obtained from applying wavelet transform
on lung image using BiorSplines 1.1 wavelet are shown in figure 3.20 after upsampling. Since
honeycomb region is best differentiable in horizontal and vertical subimages, they are good

candidates to extract honeycomb regions.
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(a) Horizontal subimage (b) Vertical subimage

(c) Diagonal subimage

Figure 3.20: Wavclet Transform.
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Figure 3.21: High resolution regions.

Figure 3.22: Masking high resolutions arcas on original image.

3.3.2 Histogram Thresholding

To keep the high resolution areas histogram thresholding [5] is used. The vertical subimage
(figure 3.20) is used to extract the high resolution arcas. The binary image of the lung area
is used as a mask to calculate the histogram of vertical subimage of the lung region. The

result of thresholding is shown in figure 3.21.

3.3.3 Extracting Honeycomb from other Textures

Honeycombing is a set of cysts filled with air, where as areas with artery branches and lung
border are denser than the air. In other words in a lung CT image honeycombing is seen
as dark holes but lung border and artery branches are seen as brighter area. This feature

is used to distinguish honeycomb pattern from other high resolution areas. To extract the
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low intensity regions with high resolution the thresholded images is used as a mask on the
original image 3.22. To find darkest areas of the thresholded image, the regions with pixel
values less than -800 Hounsfield Unit (around the gray level value of air) are kept.

Seeded-region growing is used to extract the exact parts of honeycomb tissue. To find
accurate seeds and eliminate small regions from low intensity regions with high resolution,
morphological erosion with a vertical line structuring element with the length of 5 is used
(figure 3.23-a). The length of 5 experimentally proved to be the proper length to keep the
seeds. To have an accurate mask for region growing method the darkest high resolution
objects are dilated by a disk structuring element of size 5 (figure 3.23-b). Since honeycomb
region has circular holes a disk structuring-element is selected. The final step is to apply
region growing technique with the seed shown in figure 3.23-a on the mask shown in figure

3.23-b. The result is shown in figure 3.24 which shows the accuracy of this method.

Figure 3.23: a) Sced or marker, b) Mask.

A Graphical User Interface has been also developed to test the proposed techniques

(figure 3.26).
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(b) ()

Figure 3.24: a) Result of region growing, b) Lung with honcycombing, ¢) Segmented honeycomb
area.

(b)

Figure 3.25: a) Original slice with honeycoming, b) Segmented honeycomb areca.
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-} Lung Parenchyma Evaluatar

Figure 3.26: Graphical User Interface which is developed to test the proposed algorithms.
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Chapter 4

Validation

This chapter is dedicated to demonstrate the feasibility and usefulness of the proposed ap-
proaches. The evidences for each technique is discussed in separate sections.

In the first section lung segmentation method is evaluated using experimental results. The
proposed technique has been applied on several pulmonary CT images and the segmented
lung regions have been assessed by a radiologist. It is also compared with a technique pro-
posed by a group of researchers in University of Iowa [10]. The comparison is made based
on accuracy and speed.

In the second section the detection of abnormal lung tissue is assessed to validate the pro-
posed composite technique. Statistical analysis is done as an evaluation technique.

The tests have been applied on 512 by 512 by 16 pediatric Helical CT images. The images
are acquired by a GE MEDICAL SYSTEMS CT scanner from the Department of Diagnos-
tic Imaging in the Toronto Hospital for Sick Children. All approaches are implemented in

MATLAB 7.0.
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4.1 Lung Segmentation Verification

The test procedure of lung segmentation method has been accomplished in two stages. This
method is applied on more than 180 CT and the segmented lung regions have been visually
verified. Some examples are given in the next part of this section. In the second part of
this section the proposed technique is compared with a commonly used method [10]) based

on speed and accuracy.

4.1.1 Experimental Results

The pictorial lung segmentation results for 512 by 512 by 16 3D helical CT images of thorax
with different slice thicknesses are given. The slices are selected from different parts of the
chest to show the accuracy of the proposed technique. The results for the images of upper,
middle and lower parts of the chest with various regions of the lung, which are successfully
segmented, are shown in figure 4.1.

To make the borders smooth and retrieve the dense structures, which are adjunct to the
lung border (figure 4.2-a), a “rolling ball” with the ratio of 9 is used. The images in figures
4.2-b and 4.2-c illustrate the segmented lung borders before and after the rolling ball filtering.
Comparing the segmented lung regions (figure 4.2-d) with the original image (figure 4.2-a)
verifies the accuracy of this technique.

The theory of Watershed transform along with the experimental results prove that even
if there are no strong edges between the internal and external markers, watershed transform
always detects a significant edge in the desired area that demonstrates the robustness of this
technique. This method has been applied on more than 180 CT images from different parts

of the chest and the results are visually acceptable.

4.1.2 A Comparison

In this part of testing procedure a comparison is made between the proposed method and Hu’s
work. As addressed in chapter 2, Hu et al. [10] proposed a method for lung segmentation

based on optimal thresholding. As a part of this research Hu’s work is developed and
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(a)Upper part of chest. (b)Upper part of lung.

(c)Middle part of chest. (d)Middle part of lung.

\J

(e)Lower part of chest. (f)Lower part of lung.

Figure 4.1: Left: Original CT imziﬁi:s. Right: Scgmented lung Regions.



Figure 4.2: (a) Originl pulmonary CT image. (b) Segmented lung borders. (c) Smoothed lung
borders. (d) Lung regions.
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compared with the proposed technique. The popularity of Hu’s method provides a good
incentive to be chosen for comparison purpose.

A dataset of a patient with a high stage of honeycomb lung is selected. Both methods
are applied on the dataset. As it is shown in figure 4.3 the Hu's method is less successful
identifying left lung area, whereas the proposed is fairly successful.

In terms of speed the two methods were tested on the same computer with the same
dataset. For each slice with our method it takes less than 5 seconds to do the segmentation
task including reading image files, ordering them, segmentation and smoothing the borders-
, whereas Hu’s method takes about 7 seconds.

Both tests illuminates the superiority of our method based on speed and accuracy.

4.2 Abnormal Lung Tissue Segmentation

The images, which were used to test the proposed technique are 512x512x16, 3D helical CT
with the slice thickness of 1.25 millimeter. This method has been tested on 91 pediatric
chest CT images containing healthy and unhealthy lung (with honeycomb patterns) images
and the results revealed the accuracy and the speed of the proposed composite method. The
specifications of the test datasets is tabulated in table 4.1. It has been tested on a Pentium
IV 2.8 GHz PC with 512 MB RAM and the average required time for each slice was 4-5
seconds. Since the area of lung region varies in different slices, the execution time varies for

each slice.

One approach used to define the accuracy of an imaging system is to evaluate the sys-
tems sensitivity and specificity. Sensitivity, also called true positive fraction (TPF), is the
probability of diagnosing the presence of disease when it is actually present. Specificity, also
called true negative fraction (TNF) is the probability of identifying the absence of disease
when it is not present. This thesis addresses the use of Statistical analysis to evaluate the
accuracy of the new composite method, as compared to other existing methods. The statis-

tical analysis is tabulated in table 4.2.
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Table 4.1: Datasets Specifications

Test Sets | Date of Acquisition | Images | Healthy Images | Images with Abnormality

TST-1 20050201 57 48 9

TST-2 20040803 10 1 9

TST-3 20041216 24 24 0

Table 4.2: Statistical Analysis of the Composite Method
Patient ID | Number of FPs | Number of TPs | FP (%) | Sensitivity (%) | Specificity (%)

TST-1 1 9 1.75 100 97.91
TST-2 0 9 0 100 100
TST-3 3 0 12.5 100 87.5

Although there is not any common database of lung CT images with different diseases we
can compare the sensitivity and specificity of our approach with the two existing approaches,
which are addressed in chapter 2.

Uppaluri et al. [43] evaluated their method by the kappa statistic of agreement between
the regions, for which the majority of the observers agreed on a pattern type, versus the
computer. The AMFM has demonstrated to be especially successful for the detection of
normal, emphysemalike, ground glass, and bronchovascular patterns of the lung parenchyma
(individual Kappa 0.6). Uppaluri et al. claimed that the AMFM with the sensitivity of
82.5% and specificity of 99.9% is less successful for the evaluation of the honeycombing and
the nodular patterns (individual Kappa 0.2). For this sensitivity and specificity, Uppaluri et
al. utilized a test set which includes their training set aswell.

Uchiyama. et al., who proposed an ANN method to detect different lung diseases, claimed
the sensitivity of 100% for honeycombing with the specificity of 88.1% for 98 datasets. Since
their method use the blocks of 32 by 32 to calculate the statistical features and segment the
regions, it might lose small regions with abnormal texture.

In Both techniques the researchers use an abundance of statistical measures which makes
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the process very slow.

Comparing our Composite method with Hu’s and Uchiyama’s techniques elucidates that the
proposed technique is very promising.

The drawback of the technique is that although it detects all honeycomb areas, the boundary
of the segmented abnormal area is not accurate. This issue opens an area for further research

and improvement of the proposed method.

48



Figure 4.3: First row: Original Chest CT Image. Sccond Row: Scegmented Lung with Watershed
Transform. Third Row: Segmented Lung with ngtimal Thresholding.



Chapter 5

Conclusions and Future Works

This chapter represents the conclusion of the thesis. It gives an overview of the research
including a summary of accomplishments and contributions of this thesis. The chapter closes
with a discussion of the limitations of this work and recommendations for future research
directions.

Computed Tomography is one of the most commonly used techniques to diagnose and
quantify different diseases. Since the volume of CT images and the number of the repetition
of studies have been increased, computer-aided diagnosis (CAD) schemes have a tremendous
impact on the interpretation of medical images. Although CAD systems have been improved
vastly, it is still almost exclusively the work of humans (radiologists) to interpret medical
images and CAD systems act as a second tool to detect the abnormalities. To diagnose
pulmonary diseases, chest CT images are investigated and the corresponding CAD systems
are being developed by several research groups all over the world.

Lung segmentation is the first step of most pulmonary CAD systems. Limiting further
processes to the lung areas saves time and resources like memory and CPU usage. The two
most important issues in lung segmentation is accuracy and time. Inaccurate segmentation
can be the cause of losing abnormalities in lung especially around the borders. As addressed
in Chapter 2, various lung segmentation approaches have been proposed by other research
groups. Several image segmentation techniques have been utilized by these approaches.

Some of the existing methods are not fully automated while others are not very accurate or

50



they use heuristic techniques, which are time consuming. The first goal of this thesis was
to propose, develop and evaluate a novel lung segmentation technique, which is superior to
existing methods based on accuracy and speed. Watershed transform is the core transform
in the proposed technique. It is applied on marked gradient image to find the borders and
then a “rolling ball” filter smooths the extracted borders. This method has been developed
along with another existing method which is commonly used to segment lung regions.

To detect and quantify the abnormalities, patterns of lung tissue in CT images are investi-
gated by radiologists. In CAD systems, this task is accomplished by texture segmentation
and analysis. Several research groups are working on improving the existing methods.

The next goal of this research is to propose a new texture segmentation method to extract
the abnormal areas of lung tissue. Two techniques are proposed and developed to detect
honeycomb abnormality in CT images. In the first proposed method, entropy filtering, which
is a local filtering, is utilized to find high entropy areas. Entropy filtering replaces each pixel
value with the entropy of itself and its neighbor pixels. Then seed based region growing
is applied to find abnormality. The second method is a new composite method, which is
composed of a multi resolution technique and the methods based on intensity similarities. In
this technique wavelet transform is utilized to extract the high resolution areas of lung tissue.
Since normal tissue of lung is almost plain in CT images, the high resolution areas include
abnormalities along with normal areas with several vessel branches. To exclude normal areas
with vessel branches, intensity values are compared to keep only darker areas . Seed based
region growing is applied to find the region of interest. The results from both techniques are

compared.

5.1 Conclusion

A novel lung segmentation method is developed and tested on several datasets. Optimal
thresholding technique is developed and compared to the proposed method. As it is ad-
dressed in chapter 4, the results shown the accuracy and the speed of the novel method. Even

if there are no strong edges between the internal and external markers, watershed transform
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always detects a significant edge in the desired area and this capability demonstrates the ro-
bustness of our technique. This technique is applied on more than 180 paediatric pulmonary
CT images from the Toronto Hospital for Sick Children and the results are visually accept-
able and are approved by a radiologist. The drawback of this method is over-segmentation.
It usually happens on low quality CT images.

A new composite technique is proposed and developed to evaluate lung tissue. In this method
wavelet transform is utilized combined with intensity similarities. The proposed technique
is robust, accurate, and fast. As it is discussed in chapter 4, it has been tested on several
datasets and compared with other methods based on speed, sensitivity and specificity. The
result reveals the robustness of the proposed approach.

The drawback of this technique is that although it detects all honeycomb regions, the con-
tours of the segmented abnormal area is not accurate. This issue is an area that needs further

research and improvement.

5.2 Future Works

This research opens a wide area of future research. The proposed method for lung segmenta-
tion has a good potential to detect the borders of pulmonary nodules, which is a very active
research area.

Instead of marker-based watershed transform, the combination of watershed transform and
distance transform can be utilized to separate attached nodules to improve the values of
sensitivity and specificity in assessment of nodule detection.

The proposed lung tissue evaluation approach can be further improved to detect all possible
abnormalities with different types of textures in lung tissue. Different patterns have different
resolutions and the proposed method has the capability of detecting other textures of lung
tissue, for example by applying multilevel thresholding on the transformed image different
abnormal patterns can be segmented.

Automatic lung disease quantification is another field of research which is done on segmented

abnormal region in CT images. It can also be used to monitor the healing process of the
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disease.

In addition, this approach can be improved to localize the abnormal area accurately. This
can be used in three dimensional visualization of lung and providing an idea of the shape
and volume of abnormal region.

Virtual bronchoscopy is another active research area. Lung texture analysis and segmenta-

tion can also be utilized in developing a virtual bronchoscope.

53



Appendix A
The Anatomy of Lung

Lungs are anatomically divided into the left and right lung based on their locations with
respect to the chest wall and rib cage [1]. The left and right lungs have five distinct anatomic
compartments called lobes. The physical boundaries between the lung lobes are called lobar
fissures, which allow the lobes to slide relative to each other, thus to accommodating shape
changes of the thoracic cavity. There are three lobes in the right lung: the right upper lobe
(RUL), the right middle lobe (RML), and the right lower lobe (RLL).The lobar architecture
of the left lung is slightly different because of the location of the heart. There are only two
lobes on the left; left upper lobes (LUL) and left lower lobes (LLL) (figure A.1).

Air which is drawn in through the nose or mouth and into the lungs through the trachea.
The trachea is a pipe shaped by rings of cartilage. It divides into two tubes called bronchi,
which supply air to each lung.

The essential tissue of the lung is called lung parenchyma which is made up of airways,
vessels and small air sacs. Inside the lung, the bronchi divide into smaller and smaller tubes
called bronchioles. At the end of each of these bronchioles are small air sacs called alveoli
(figure A.1). The alveoli are the basic units of the pulmonary system and the area in which
gas exchange takes place. Capillaries, which are small blood vessels with thin walls, are
wrapped around these alveoli. The walls are so thin and close to each other that the air
easily seeps through. In this way, oxygen seeps through into the bloodstream and carbon

dioxide, in the bloodstream, seeps through into the alveoli, and is then removed from the
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body when we breathe out.

A.1 Lung Tissue Abnormalities
A.1.1 Emphysema

Emphysema is a condition in which the walls between the alveoli or air sacs within the lung
lose their ability to stretch and recoil. The air sacs become weakened and break. Elasticity
of the lung tissue is lost, causing air to be trapped in the air sacs and impairing the exchange
of Oxygen and carbon dioxide. Also, the support of the airways is lost, allowing for airflow
obstruction. Since emphysema is an interstitial lung disease, it affects the density of the
pixels in lung region so the emphysematous regions in the images appear darker (with lower

density) [2].
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Figure A.1: Lung and its Parenchyma [1].
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Appendix B

Fundamentals of Computed
Tomography

Computed Tomography (CT) imaging, also known as ”CAT scanning” (Computed Axial
Tomography), was invented in 1972 by British engineer Godfrey Hounsficld of EMI Labora-
tories, England. Tomography is from the Greek word ”tomos” meaning ”slice” or ”section”
and graphia meaning, ”describing”. CT is fast, patient friendly and has the unique ability
to image a combination of soft tissue, bone, and blood vessels. CT is the imaging system in
most busy radiology departments and diagnostic centers. Since its invention, CT imaging
has seen massive advances in technology and clinical performance. Today CT enables the
diagnosis of a wider array of illness and injury than ever before.

The first CT scanner took several hours to acquire the raw data for a single scan or ”slice”
and took days to reconstruct a single image from this raw data. The latest of multi-slice CT
systems which is believed to be the fastest CT scanner (the Aquilion by Toshiba America
Medical Systems figure B.1) rotates around the entire body in half a second. So the exams
that once required 30 minutes are now completed in as little as 10 seconds.

Computed Tomography is based on the x-ray principal. A CT scanner looks like a big,
square doughnut. The patient aperture (opening) is 60 cm to 70 cm (24” to 28”) in diameter.
Inside the covers of the CT scanner is a rotating frame, which has an x-ray tube mounted
on one side and the banana shaped detector mounted on the opposite side as shown in

figure B.2. A fan beam of x-ray is created as the rotating frame spins the x-ray tube and

57



Figure B.1: A Modern CT scanncr (Extracted from Aquilion64 User’s Guide.

detector around the patient. Each time the x-ray tube and detector make a 360 rotation, an
image or ”slice” has been acquired. When x-rays pass through the body they are absorbed
or attenuated (weakened) at differing levels creating a matrix or profile of x-ray beams of
different strength.

This x-ray profile is detected by a banana shaped detector, which measures the x-ray
profile. As the x-ray tube and detector make this 360 rotation, the detector takes numerous
snapshots (called profiles) of the attenuated x-ray beam. Typically, in one 360 lap, about
1,000 profiles are sampled. Each profile is subdivided spatially (divided into partitions) by
the detectors and fed into hundreds of individual channels. Each profile is then backwards
reconstructed (or “back projected”) into a two-dimensional image of the “slice” by a dedi-
cated computer. The profiles are approximated with Radon Transform of a line which shows
the attenuated x-ray beam. Inverse radon transform is used to reconstruct the two dimen-
sional image. In fact each CT image is composed of an abundance of lines. This procedure
repeats for each slice to obtain a multislice cross sectional dataset. A modern CT scanner
(Aquilion by Toshiba America Medical Systems figure B.1) is capable of producing images
0.5 mm in thickness (distance between the slices), providing more detailed pictures of the

body’s interior than traditional CTs. With this device exams that once required 30 minutes
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Figure B.2: Fundamentals of a CT scanner (Extracted from Imaginis the Breast Cancer Resource

)-

are completed in as little as 10 seconds.

B.1 Helical/Spiral Computed Tomography

Computed body tomography has been revolutionized by the technical advantages of Heli-
cal/spiral CT (HCT). CT applications are improved by the minimization of motion artifacts
and the production of overlapping images without additional radiation exposure.

Helical /Spiral CT scanning involves continuous data acquisition throughout the volume of
interest by simultaneously moving the patient through the gantry while the x-ray source
rotates [3]. The x-ray traces a spiral on the patients’s surface resulting in a helix of raw
projection data from which planar images are generated (figure B.3)

Each rotation of the tube generates data specific to an angled plane of section. In order
to achieve a true transaxial image, data points above and below the desired plane of section
must be interpolated to estimate the data value in the transaxial planc (figurc B.4)

Unlike conventional CT, the interval (spacing) between reconstructed transaxial images
can be chosen retrospectively and arbitrarily. Thus, overlapping images can be generated

without an increase in radiation exposure. So long as raw images data is stored in computer
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Figure B.3: Schematic drawing of the spiral CT [3].

memory, transaxial images can be generated with as wide or narrow a reconstruction spacing

as desired.

B.1.1 Hounsfield Unit

A standardized and accepted unit for reporting and displaying reconstructed X-ray com-
puted tomography CT values is Hounsfield Unit. The system of units represents a linear
transformation from the original linear attenuation coefficient measurements into one where
water is assigned a value of zero and air is assigned a value of -1000. If w, a, and p are the

linear attenuation coefficients of water, air and a substance of interest, the CT number of

the substance of interest is:

H= 1000(y — w) (B.1)

w—a

Thus, a change of one Hounsfield unit (HU) corresponds to 0.1% of the attenuation coef-
ficient difference between water and air, or approximately 0.1% of the attenuation coecfficient
of water since the attenuation coefficient of air is nearly zero. Using this standardized scale
facilitates the intercomparison of CT values obtained from different CT scanners and with

different X-ray beams energy spectra, although the CT number of materials whose atomic
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Figure B.4: Schematic of interpolation rationale for helical CT 3].

composition is very different from that of water will be energy dependent.

B.1.2 Digital Imaging and Communications in Medicine (DICOM)
Standard

The DICOM Standards are created and maintained for the communication of biomedical, di-
agnostic and therapeutic information in the medical disciplines that are using digital images
and associated data. DICOM is a cooperative standard and its goal is to achieve compatibil-
ity and improve workflow efficiency between imaging systems and other information systems
in health care environments worldwide. Every major diagnostic medical-imaging vendor
in the world has incorporated the standard into its product design, and most are actively
participating in the enhancement of the standard. Most biomedical professional societies
throughout the world support and participate in the enhancement of this standard. The
metadata in a DICOM file provides information, such as the size, dimensions, and bit depth
of the image. In addition, the DICOM specification defines a number of other metadata
fields that describe many other characteristics of the data, such as the modality used to
create the data, the equipment settings used to capture the image, and information about

the study.
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