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Abstract

Subspace Predictive Control: Stability and Performance Enhancement

PhD, 2017

Saba Sedghizadeh

Electrical and Computer Engineering

Ryerson University

In the absence of prior knowledge of a system, control design relies heavily on the system identifi-

cation procedure. In real applications, there is an increasing demand to combine the usually time

consuming system identification and modeling step with the control design procedure. Motivated

by this demand, data-driven control approaches attempt to use the input-output data to design the

controller directly. Subspace Predictive Control (SPC) is one popular example of these algorithms

that combines Model Predictive Control (MPC) and Subspace Identification Methods (SIM). SPC

instability and performance deterioration in closed-loop implementations are majorly caused by

either poor tuning of SPC horizons or changes in the dynamics of the system. Stability and per-

formance analysis of the SPC are the focus of this dissertation. We first provide the necessary

and sufficient condition for SPC closed-loop stability. The results introduce SPC stability graphs

that can provide the feasible prediction horizon range. Consequently, these stability constraints

are included in SPC cost function optimization to provide a new method for determining the SPC

horizons. The novel SPC horizon selection enhances the closed-loop performance effectively. Note

that time-delay estimation and order selection in system modeling have been a challenging step in

applications and industry. Here, we propose a new approach denoted by RE-based TDE that simul-

taneously and efficiently estimates the time-delay for the SIM framework. In addition, we use the

recently developed MSEE approach for estimating the system order. Moreover, we propose an arti-

ficial intelligence approach denoted by Particle Swarm Optimization Based Fuzzy Gain-Scheduled

SPC (PSO-based FGS-SPC). The method overcomes the issue of on-line adaptation of SPC gains

for systems with variable dynamics in the presence of the noisy data. The approach eliminates

existing tuning problem of controller gain ranges in FGS and updates the SPC gains with no need

to apply any external persistently excitation signals. As a result, PSO-based FGS-SPC provides a

time efficient control strategy with fast and robust tracking performance compared to conventional

and state of the art methods.
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Chapter 1

Introduction

1.1 Dissertation Objectives

Two fundamental steps in developing control systems are: (i) obtaining model of the system, and

(ii) designing a controller for the system. Both steps have significant impacts on the closed-loop

stability and performance of the implemented control system.

General approaches for the first step are system modeling and system identification. System

modeling uses physics laws such as, Newton’s law [1], Ohm’s law [2] and thermodynamic prin-

ciples [3] to obtain an appropriate mathematical description of the system. This approach is

well-developed in control system design and there are many successful implementations of such

technique. Nevertheless, system modeling is not applicable for complex and multivariate systems,

due to expensive, time consuming and inaccurate performance of such dynamic systems. System

identification is another approach to obtain the system model. It develops mathematical model of

the system by using experimental data [4]. There are many applications of system identification

in control with substantial overlap in other areas such as signal processing, communication and

statistics. Some of the identification methods have black-box approach to the identified system

which is good for automatic identification, where no additional information about the identified

system is available. However, the input-output (I/O) data may be corrupted and the pure black-

box approach may lead to a model, which is significantly deviated from the real system. There is

often a priori information, which should be exploited to increase the quality of the identification

and to ensure that the identified model is close to some expectations. These approaches are called

gray-box methods [5].

In the second step, a controller is designed based on the system model developed in the first step
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and the specifications of the closed-loop system performance. There are various types of controllers

from traditional Proportional-Integral-Derivative (PID) controllers, most popular controller in the

industry, to the advanced sophisticated modern control methods. Among them Predictive Control

Method is a class of control algorithms that determines the control law from a predictive model

of the system by minimizing an appropriate objective function. There is a model-based approach

to predictive control, which is called Model-based Predictive Control (MBPC) or Model Predictive

Control (MPC) [6–10]. MPC was introduced in early 80’s which calculates dynamic model of the

system from I/O data using system identification techniques and uses the model to construct the

predictor matrices. MPC utilizes on-line optimization of a linear or quadratic objective function

subject to linear constraints over a finite prediction horizon [7,11,12]. The controller uses different

system models, such as impulse response or step response series [13, 14], transfer function models

[15,16] and state-space realizations [12,17] in the presence of both soft and hard constraints.

On the other hand, it has been found in late 90’s that these predictor matrices can be obtained

directly from the experimental I/O data [18,19]. This approach is called data-driven or model-free

predictive control, which is based on an appropriate combination of MPC with Subspace Identi-

fication Methods (SIM) [18–20]. In data-driven approach the predictor matrices are determined

directly from the experimental I/O data by using subspace predictor matrices which eliminates

the intermediate parametric model identification step [18,19]. The resultant methodology is called

Data-driven Subspace Predictive Control or briefly Subspace Predictive Control (SPC) in the lit-

erature [18], [21]. In SPC methodology the system identification and the controller design steps

are combined and implemented in a single-step which is calculating the subspace predictor. Some

features of SPC, such as no pre-assumptions about system model, calculation of predictor matri-

ces without iteration and no need to solving Diophantine equation are some of the advantages of

SPC in practical applications [21, 22]. With increasing popularity of MPC and SPC in industrial

applications [23] such as, chemical engineering [24–26], power systems [27–29], smart grids and

buildings [30, 31], network control systems [32, 33], vehicle control [34], their closed-loop stabil-

ity and performance have become significant and controversial issues in predictive control [35–38].

This dissertation focuses on studying the SPC methodology and overcoming some of its well-known

issues.
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SPC Stability

Due to the finite horizons formulation in MPC and SPC, stability and feasibility are not guaranteed

for all time instants. Stability issue of MPC is studied in several papers in the literature, an

exhaustive review of stability solutions for MPC is provided in [39]. In [40] and [41] closed-loop

stability criterion is presented for extended predictive control by taking into account the prediction

horizon value and the reference trajectory dynamics. Necessary and sufficient conditions of infinite

horizon Generalized Predictive Control (GPC) GPC∞ is presented in [42] with no need to solve a

Lyapunov equation. Stability conditions for constrained GPC∞ and constrained receding horizon

predictive control are presented in [43] by imposing terminal constraints on inputs and outputs

over some constraint horizon and checking the monotonicity of cost function. The MPC stability

is investigated in [44] by checking the monotonicity of cost function for a nonlinear predictor based

on neural network. In [45] several criteria are provided to guarantee the closed-loop stability of

GPC in the field of self-tuning control. However, all these MPC closed-loop stability strategies

have been developed with assumption that the system dynamic model or some prior information,

such as open-loop settling time, rise time, time-delay are available and all state variables can be

measured [46–49]. Since SPC is a model-free approach, the existing model-based techniques for

tuning and stability are not applicable for SPC, and closed-loop stability of SPC is still an open

problem. Therefore, stability analysis of the SPC is the main research objective of this dissertation.

SPC Performance

Performance monitoring of a closed-loop system has three steps: First, an appropriate benchmark is

defined for comparison and to determine the controller capability. Second, the controller operation

by proper monitoring statistics is assessed [50,51]. Third, possible performance degradation of the

controller is detected. The main focus of the existing works on performance monitoring of SPC

concentrates on the first and second steps [36, 52], and the third step is not addressed adequately.

Generally, there are some internal and external factors that cause performance deterioration in SPC

[53]. Internal factors include changes in real process which affect the subspace predictor matrices

in SPC, changes in the controller constraints, and poor tuning of the SPC parameters. External

factors include noisy data, disturbances, length of data and malfunction of sensors/actuators. This

dissertation focuses on changes in real process in the presence of noisy data and tuning of the SPC

parameters to achieve an efficient performance.
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SPC Tuning Parameters

MPC and SPC have same cost functions and tuning parameters, which include prediction horizon,

control horizon and weighting matrices to penalty the tracking error, control signal and its variation.

Appropriate choice of these parameters can significantly influence the closed-loop stability and

performance. There are extensive studies in the literature that provide several tuning strategies

for MPC [48, 54–58]. There exist some attempts to improve the performance and computational

efficiency of MPC algorithms for fast dynamic applications by selecting small horizons. In [59] the

cost function with a single horizon is considered and the optimality of control law with horizon

one is discussed. In this particular application, however, the inputs are limited to a finite set

of data and analysis is for a very restricted specific application. Moreover, a small deviation

from the actual system can jeopardize the stability and optimality of the system. In [60] a non-

linear MPC formulation of I/O linearizion in continuous time is given for single-input single-output

(SISO) systems, and shown that an I/O linearizing state feedback is a shortest-prediction-horizon

MPC law. However, the method is suffering from instability for non-minimum-phase systems.

This issue is addressed in [38] through the use of Lyapunov inequality constraints. All the above

mentioned methods are restricted to special cases and cannot be generalize to obtain optimum

horizon. Consequently, the second research objective of this dissertation is determining the feasible

range of SPC horizons based on model-free algorithms to guarantee the closed-loop stability, and

to achieve an optimum feasible performance by obtaining the optimum horizons.

SPC Gains Updating

In earlier SPC algorithms, the subspace predictor matrices are calculated off-line before the actual

implementation by using open-loop I/O data [18, 21], as well as closed-loop I/O data [61, 62].

However, these approaches have not adequately addressed issue of on-line controller adaptation

for time-varying systems. In application of SPC, due to existence of nonlinearities and parameter

uncertainties in real processes, the input signals have to be persistently exciting (PE) the system by

randomly generated signals. This feature enables SPC to obtain sufficient information from new I/O

data and to predict the system outputs accurately. However, because of the high computational load

and disruption in system operation, the all times persistent excitation should be avoided, especially

in the steady-state mode. Therefore, much attention is given to replacing this time consuming

updating process with an efficient algorithm [63]. There are several works that propose different

adaptive algorithms to combine with SPC. For instance, in [64] the excitation method is illustrated
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by formulating additional constraints to the optimization problem, however, this approach results

in solving non-convex optimization problem to compute the control signal at each time step. A

similar approach is also found in [65] to assure PE in the input signal. Moreover, [66] presents a

method to update the predictor in recursive manner by considering an exponential forgetting factor.

Another recursive SPC technique that is based on the orthogonal Givens rotations and variable

forgetting factors is demonstrated in [67] and [68]. In [68] a strategy to determine the sufficient

time to apply the excitation signal to the system is proposed by considering the prediction error.

A time-varying forgetting factor based strategy is presented in [69] to apply in an adaptive manner

to the SPC. In [70] an extra term has been added to the cost function to ensure the PE, and to

keep the optimization problem convex and quadratic, however, it degrades the control performance.

Although, there have been some attempts to reduce the destructive effects of applying the all-time

PE signals, but non of them could completely eliminate the requirement of PE in SPC. Therefore,

providing an efficient method to eliminate the requirement of applying PE signals to update the

SPC gains is the third research objective of this dissertation.

Time-delay and Order Selection in SIM and SPC

SIM and SPC are black-box data-driven approaches, which do not need to have prior knowledge

about the system. In SPC, the subspace predictor matrices are derived directly from I/O data.

This feature of SPC makes it appropriate for automatic control purposes. However, when I/O data

is corrupted by noise, the pure black-box data-driven approach may lead to an incorrect result

in prediction and deteriorate the SPC performance. In this scenario, incorporating some a priori

information can help to appropriately select the SPC parameters and increase the quality of the

prediction and performance. Some of the a priori information, which would be useful to incorporate

are the system order, sign of DC-gain and time-delay. In SIM framework these parameters can be

determined from the subspace predictor matrices, which are derived via I/O data block-Hankel

matrices. However, estimation of these parameters from noisy I/O data is a tricky task. There are

several well known order selection methods in the literature which are based on information criteria

such as, Akaike’s Information Criterion (AIC) [71] and Minimum Description Length (MDL) [72].

However, it has been shown that both AIC and MDL tend to overestimate the system order by

increasing the Signal-to-Noise Ratio (SNR) [73]. Furthermore, MDL tends to underestimate the

system order at low SNR. Moreover, most of the existing time-delay estimation techniques are

threshold based methods such as, Cumulative Sum (CUSUM) method [74], Separating Frequency

5



CHAPTER 1. INTRODUCTION

Method [75] and Subspace based method [76], which are not applicable for low SNR noisy data.

Therefore, two new statistical approaches are presented in this dissertation to estimate the system

order and time-delay, and the advantages of the proposed methods are shown over the existing

methods.

1.2 Dissertation Outline

The dissertation structure are as follows:

Technical background of the dissertation is provided in Chapter 2. Classical System Identi-

fication, Subspace System Identification, Model-based and Data-driven approaches of Predictive

Control are reviewed in this Chapter. Model Predictive Control (MPC) and Subspace Predictive

Control (SPC) algorithms are briefly discussed. Last part of the chapter focuses on a general review

of Fuzzy Gain-Scheduling (FGS) and Particle Swarm Optimization (PSO) techniques.

Chapter 3 provides SPC closed-loop stability analysis, and the necessary and sufficient condition

for SPC closed-loop stability of open-loop stable systems is derived based on a model-free approach.

Consequently, SPC stability graph is introduced, and a model-free technique is provided to find

the feasible range (FR) of prediction horizon that guarantees the closed-loop stability. Next, a

technique is introduced to select the efficient control horizon and prediction horizon by optimizing

the SPC cost function.

Chapter 4 addresses issues of SPC on-line adaption for time-varying systems, and introduces

an artificial intelligence based approach to update the SPC gains. A PSO-based FGS-SPC method

is proposed to eliminate the requirement of applying persistently exciting signal to system and

their drawback. Moreover, existing issue of FGS in determining the controller gain ranges (CGRs)

in PSO-based FGS technique is addressed and solved. Therefore, PSO-based FGS itself can be

considered as a separate package for applying to any system which needs Gain-Scheduling (GS)

technique. The formulation and simulation results are given in detail. The proposed method

is compared with FGS-SPC and SPC method to illustrate its efficiency and performance in the

presence of noisy data.

In Chapter 5, the issue of black-box data-driven SPC approach in the presence of noisy data

is discussed. The Chapter shows the benefits of incorporating some prior knowledge such as sys-

tem order and time-delay in SIM and SPC. Mean Squared Eigenvalue Error (MSEE) method is

implemented for order selection, and for time-delay estimation the Reconstruction Error Based
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(RE-based) method is introduced. Simulation results show the superiority of these methods over

the existing methods.

1.3 Dissertation Contributions

The contributions of this dissertation are summarized as follows:

• A necessary and sufficient condition for SPC closed-loop stability is provided for open-loop stable

systems based on SPC gains and SPC tuning parameters. Consequently, SPC stability graph

is introduced to determine the feasibility range of prediction horizon (FR of Np) that guar-

antees SPC closed-loop stability. The method is applicable to non-minimum phase systems.

• Efficient control horizon (NEC) is determined by minimizing the dimension of subspace predictor

matrix. Efficient prediction horizon (NEP ) is then provided by minimizing the SPC cost

function to ensure the closed-loop stability holds in the presence of noise. Moreover, this

optimal selection of SPC horizon length decreases the computational requirements of the

SPC optimization algorithm without jeopardizing the closed-loop stability and performance.

• PSO-based FGS-SPC method is proposed to optimally update the SPC gains for time-varying

systems in the presence of constraints and noise. The proposed method eliminates the re-

quirement of applying PE signals to update the subspace predictor matrices, and reduces the

computational complexity load of the gain updating procedure in SPC.

• The proposed PSO-based FGS procedure by itself is an optimal technique to tune the CGRs in

FGS procedure, which is applicable for any system that uses FGS method. This technique

overcomes the problem of calculating the CGRs in FGS algorithm, by optimally calculating

the CGRs via minimizing the SPC cost function.

• Novel data-driven method for order selection and new time-delay estimation method are presented

in SIM framework. RE-based TDE is used for time-delay estimation and MSEE is utilized

for order selection. These data-driven approaches can also be utilized for SPC in case the

system order or time-delay are required.
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Chapter 2

Background

2.1 System Identification Methods

System identification is a well-known procedure to obtain model of the system by using experi-

mental data. There are comprehensive literature and many applications for system identification

in different fields such as control systems, chemical and petroleum engineering, signal processing,

statistics and more. In the area of control systems following publications by Ljung [4], Sinha and

Kuszta [77], Soderstrom and Stoica [78] can be mentioned. Generally, system identification for

linear systems has three main steps:

Experiment Design and Data Acquisition

In this step the I/O data is collected by exciting the system with appropriate persistently exciting

(PE) input signals and choosing a good sampling rate around the operating point. These PE

signals must sufficiently rich to excite the system so that all important aspects of the system

behavior appear in the system’s output. Gaussian white noise and Pseudo Random Binary Signals

(PRBS) are two of the most popular PE signals in system identification. Data collecting procedure

can be done in open-loop or closed-loop conditions by considering the safety and stability of the

system. Sometimes, it needs to have some physical knowledge or a priori information about the

system to enhance the identification [79], [80].

Model Structure Determination

After gathering the enough data the suitable dynamic model structure is selected for the system

based on the chosen control strategy. These models include state-space models, transfer functions
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and time series models for parametric methods [81–83]. Also, it could be a non-parametric models

such as impulse responses, frequency responses etc. [84–86]. One of the most challenging problems

in fixing the good model structure is to find the system order and existing time-delay from I/O

data.

Parameter Estimation and Validation

After choosing the model structure its parameters need to be estimated by one of the well-known

system identification techniques. Typical techniques include the Prediction Error Method (PEM)

[4, 87] which uses Least Squares and Maximum Likelihood techniques. The Instrumental Variable

Method (IVM) which uses correlation algorithms [88, 89]. The Subspace Identification Methods

(SIM) which use experimental data to estimate the state-space model of the system [19, 20, 90].

Finally, the model validation should be done to ensure that the estimated model can describe the

system appropriately. In this step some techniques such as spectral and residual analysis may

be hired to find the degree of confidence of the model. The whole procedure needs to be tried

again, if the results are unsatisfactory. In addition, there are several criterion to select the best

model among the several estimated models, such as, Akaike Information Criterion (AIC) [91],

Baysian Information Criterion (BIC) [92], Minimum Description Length (MDL) [72] and Minimum

Description Complexity (MDC) [93,94].

2.1.1 Classical Approach

While this dissertation only concentrates on the Subspace approach of system identification which

are used for SPC, here we provide a brief review on Classical approaches of system identification

that are historically before Subspace approach.

Classical system identification theory has been pioneered by Astrom and Bohlin [81] in 1960’s by

introducing the PEM. PEM is based on parameter optimization which uses the maximum likelihood

framework. In PEM prediction error is defined as difference between the measured output y(k) and

the one-step ahead predicted output ŷ(k). The prediction error is used to create a cost function,

then the cost function is optimized with respect to the parameters of the model. Hence, selecting

model is the most crucial part of the PEM.

The PEM was further extended by Ljung [4] who defined different classes of transfer-function-

based models. In some of these models the prediction error is linear in the model parameters, which

allows for simple optimal solution by using the Least Squares method. However, for most of the
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cases the problem is nonlinear, so a nonlinear optimization needs to be utilized. Some of the crucial

problems in PEM framework are selecting the model class, determining order of the polynomials

and choosing starting value of the model parameters, which are troublesome procedures especially

in multi-input multi-output (MIMO) case. Procedure of the PEM can be summarized in four main

steps [19]:

Model Structure Selection

Consider the true system represented as follows,

y(k) = Ḡp(q
−1)u(k) + d(k) (2.1)

where k is the k-th sampling time, u(k) is the input, y(k) is the output, Ḡp(q
−1) is the true system,

q−1 is the backward shift operator, d(k) is the output disturbance. A general stable linear time

invariant (LTI) system model has following structure,

y(k) = Gp(q
−1; θ)u(k) +Gw(q−1; θ)w(k) (2.2)

where Gp(q
−1; θ) is the system model Gw(q−1; θ) is the noise model, w(k) is white noise with zero

mean and variance σ2, and θ is a set of all unknown parameters other than the noise variance. The

problem is to fit the LTI model in (2.2) to a given I/O data set {[u(k), y(k)], k = 1, ..., N}.

The most commonly used class of model structures in the PEM can be described by following

equation,

A(q−1)y(k) =
B(q−1)

F (q−1)
u(k) +

C(q−1)

D(q−1)
w(k) (2.3)

where

A(q−1) = 1 + a1q
−1 + · · ·+ anaq

−na (2.4)

B(q−1) = b1q
−1 + · · ·+ bnbq

−nb (2.5)

C(q−1) = 1 + c1q
−1 + · · ·+ cncq

−nc (2.6)

D(q−1) = 1 + d1q
−1 + · · ·+ dndq

−nd (2.7)

F (q−1) = 1 + f1q
−1 + · · ·+ fnfq

−nf (2.8)
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the parameter to be estimated is,

θ = [a1, . . . , ana, b1, . . . , bnb, c1, . . . , cnc, d1, . . . , dnd, f1, . . . , fnf ]T (2.9)

Different model structures are obtained from the PEM model in (2.3) by considering some

assumptions:

- Auto-Regressive with Exogenous Input Model (ARX): By considering C(q−1) = D(q−1) =

F (q−1) = 1 in the PEM model (2.3), the ARX model can be obtained,

A(q−1)y(k) = B(q−1)u(k) + w(k) (2.10)

ARX model is a commonly used structure in system identification due to its simple and easily

estimated structure.

- Auto-Regressive Moving Average with Exogenous Input Model (ARMAX): By re-

moving the restriction from the numerator of the disturbance model in the ARX model structure

ARMAX model can be obtained,

A(q−1)y(k) = B(q−1)u(k) + C(q−1)w(k) (2.11)

The ARMAX model is useful in the design of Kalman filter and Generalized Predictive Control

(GPC).

- Box-Jenkins Model (BJ): In BJ the model structure different denominators are considered

for plant and disturbance models, unlike the ARMAX model,

y(k) =
B(q−1)

F (q−1)
u(k) +

C(q−1)

D(q−1)
w(k) (2.12)

The BJ model can be useful when the disturbance has a completely different model from the plant.

- Output Error Model (OE): OE model is a special case of PEM if the estimation of the

disturbance is not of interest,

y(k) =
B(q−1)

F (q−1)
u(k) + w(k) (2.13)
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The OE model is a good option of model in practice due to have fewer parameters.

- State-space Model : Generally, in PEM an innovation form of the state-space model is used,

x(k + 1) = A(θ)x(k) +B(θ)u(k) +K(θ)ζ(k) (2.14)

y(k) = C(θ)x(k) +D(θ)u(k) + ζ(k) (2.15)

where A,B,C and D are system matrices, K is the Kalman predictor gain, and ζ(k) is innovation

sequence. This state-space model is more suitable for MIMO systems, and it is transferable to the

general form of the model in (2.2) by using following equations,

Gp(q
−1; θ) = C(θ)[qI −A(θ)]−1B(θ) (2.16)

Gd(q
−1; θ) = I + C(θ)[qI −A(θ)]−1K(θ) (2.17)

Optimal Predictor Determination

In PEM the prediction error is defined as follows,

ε(k; θ) = y(k)− ŷ(k; θ) (2.18)

where ε(k; θ) is the one-step ahead prediction error, y(k) is the current output and ŷ(k; θ) is the one-

step predicted output. The optimal one-step ahead predictor ŷ(k; θ) and the one-step prediction

error ε(k; θ) are given as follows by considering (2.1) and (2.2),

ŷ(k; θ) = G−1
d (q−1; θ)Gp(q

−1; θ)u(k) + [I −G−1
p (q−1; θ)]y(k) (2.19)

ε(k; θ) = G−1
d (q−1; θ)[Ḡp(q

−1)−Gp(q−1; θ)u(k)] +G−1
d (q−1; θ)d(k) (2.20)

For a state-space model in equations (2.14) and (2.15) in innovation form, the optimal predictor

and the prediction error ε(k; θ) are computed as follows,

x̂(k + 1; θ) = [A(θ)−K(θ)C(θ)]x̂(k; θ) +B(θ)u(k) +K(θ)y(k) (2.21)

ŷ(k; θ) = C(θ)x̂(k; θ) +D(θ)y(k) (2.22)

ε(k; θ) = −C(θ)x̂(k; θ)−D(θ)u(k) + y(k) (2.23)
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Prediction Error Collection

From the given experimental I/O data {[u(k), y(k)], k = 1, ..., N} the predictions and the corre-

sponding sequence of prediction errors are obtained as,

ε(k; θ) = y(k)− ŷ(k; θ), k = 1, ..., N (2.24)

Cost Function Definition

To minimize the prediction error {ε(k; θ), k = 1, ..., N} in PEM the trace of sample covariance

matrix of prediction errors is selected as a cost function, JN (θ), to estimate the optimal θ̂,

min
θ

JN (θ) = trace[
1

N

N∑
i=1

ε(k; θ)εT (k; θ)] (2.25)

which is generally a complicated function of system parameters, and needs to be solved by iterative

descent methods, which may get stuck in local minima. In the case of using ARMAX models the

PEM reduces to a nonlinear optimization problem. Block diagram of PEM is shown in Figure

2.1 [19].
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Figure 2.1: General block diagram of the Prediction Error Method
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2.1.2 Subspace Approach

Foundation of the system identification based on state-space model started in 1960’s with solving

the deterministic state-space realization problem by Ho and Kalman [95] for the first time. They

show that how a state-space model can be obtained from the impulse response coefficients by

forming a certain Hankel matrix. The realization algorithm is based on the property that the

Hankel matrix, which is build from impulse response parameters is equal to the product of the

extended observability and controllability matrices. However, the approach is only allowed for the

determination of a deterministic state-space model from impulse responses. Stochastic state-space

realization was further introduced by Akaike [96].

Later in 1990’s the Subspace Identification Method (SIM) algorithms were developed [20,97] via

extracting the system matrices from I/O data by using modern linear algebra tools. In SIM frame-

work the state vector x(k) is estimated from I/O data matrices by utilizing a projection algorithm,

and linear algebra tools such as, Singular Value Decomposition (SVD) and QR-factorization. By

having the state x(k), input u(k) and output y(k) vectors the state-space matrices A,B,C and D

can be estimated using Least Squares technique. Some of the important features of SIM can be

listed as follows:

1- SIM framework is based on computational tools such as, SVD and QR-factorization, which makes

it intrinsically robust from a numerical point of view.

2- No need to optimize an explicit cost function allowed SIM to avoid local minima and convergence

problems.

3- Theoretical and experimental evidence have shown that some SIM algorithms are close to opti-

mal, in the sense that they approach the Cramer-Rao bound.

4- SIM is a non-iterative procedure and it is more reliable to deal with MIMO systems.

An overview of SIM algorithms is given in this section.

System Description

There are several state-space representation forms of a system. One of the most commonly used

form in system identification is the innovation form. A discrete LTI system of order n can be
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described in state-space innovation form as,

x(k + 1) = Ax(k) +Bu(k) +Kζ(k) (2.26)

y(k) = Cx(k) +Du(k) + ζ(k) (2.27)

where k is the k-th sampling time, u(k) ∈ Rm is the input, y(k) ∈ Rl is the output, x(k) ∈ Rn is the

state of the system, and ζ(k) ∈ Rl is an unknown innovation sequence with E[ζ(k)ζT (k)] = S ∈ Rl×l

as the innovation covariance matrix. The matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n, D ∈ Rl×m

are state-space matrices that describe the system, and K ∈ Rn×l is the Kalman gain of the stable

system. {A,C} and {A,B} are assumed to be observable and controllable, respectively.

There is also another form of state-space model which has been used in subspace identification

literature as below,

x(k + 1) = Ax(k) +Bu(k) + w(k) (2.28)

y(k) = Cx(k) +Du(k) + v(k) (2.29)

with

E

 w(k)

v(k)

( wT (l) vT (l)
) =

 Q S

ST R

 δkl ≥ 0 (2.30)

where δkl is the Kronecker delta, Q ∈ Rn×n, S ∈ Rn×l and R ∈ Rl×l. The process noise w(k) ∈ Rn

and the measurement noise v(k) ∈ Rl are considered as the unobserved, Gaussian distributed,

zero mean, white noise vector sequences. Note that the process noise represents the accuracy and

time-lag in the estimated value, and the measurement noise represents noise characteristics of the

sensor. {A,C} and {A, [ B Q1/2 ]} are assumed to be observable and controllable, respectively.

It can be shown that the model in equations (2.28) and (2.29) is also convertible to innovation form

in (2.26) and (2.27) [98].

Subspace Equations

Suppose that measurements data of input u(k) and output y(k) are available for k ∈ {1, 2, . . . , N},

where N is large enough (N →∞). In addition, to have a consistent identification we assume that,

the input u(k) is PE signal and it is uncorrelated with ζ(k), [20,98]. The concept of persistency of

excitation is defined in [20,98,99] as follows,

15



CHAPTER 2. BACKGROUND

Definition 2.1.1. The input signal u(k) is PE of order i if the following limit exists,

ru(τ) = lim
N→∞

1

N

N∑
k=1

u(k + τ)uT (k) (2.31)

and the following input covariance matrix is positive definite.

Ru(i) =


ru(0) ru(1) . . . ru(i− 1)

ru(−1) ru(0) . . . ru(i− 2)
...

...
...

...

ru(1− i) . . . . . . ru(0)

 (2.32)

In order to obtain the subspace equations the state-space representation in equations (2.26) and

(2.27) is reformulated. For time instant k we have,

x(k + 1) = Ax(k) +Bu(k) +Kζ(k) (2.33)

for time instant k + 1 and by substituting (2.33) we have,

x(k + 2) = Ax(k + 1) +Bu(k + 1) +Kζ(k + 1) (2.34)

= A(Ax(k) +Bu(k) +Kζ(k)) +Bu(k + 1) +Kζ(k + 1) (2.35)

= A2x(k) +
[
AB B

] u(k)

u(k + 1)

+
[
AK K

] ζ(k)

ζ(k + 1)

 (2.36)

by continuing this procedure for time instant k +M − 1 can be written,

x(k +M) = AMx(k) +
[
AM−1B AM−2B . . . B

]


u(k)

u(k + 1)
...

u(k +M − 1)



+
[
AM−1K AM−2K . . . K

]


ζ(k)

ζ(k + 1)
...

ζ(k +M − 1)



(2.37)
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Therefore, by collecting the state variables in a vector as below,

[x(k +M) x(k +M + 1) . . . x(k +N − (M − 1))] (2.38)

following equation is obtained,

[
x(k +M) x(k +M + 1) . . . x(k +N − (M − 1))

]
= AM

[
x(k) x(k + 1) . . . x(k +M − 1)

]

+
[
AM−1B AM−2B . . . B

]


u(k) u(k + 1) . . . u(k +N − (M − 1))

u(k + 1) u(k + 2) . . . u(k +N − (M − 2))
...

...
...

...

u(k +M − 1) u(k +M) . . . u(k +N)



+
[
AM−1K AM−2K . . . K

]


ζ(k) ζ(k + 1) . . . ζ(k +N − (M − 1))

ζ(k + 1) ζ(k + 2) . . . ζ(k +N − (M − 2))
...

...
...

...

ζ(k +M − 1) ζ(k +M) . . . ζ(k +N)


(2.39)

By applying the same recursive substitution for (2.27) following equations are obtained. For time

instant k we have,

y(k) = Cx(k) +Du(k) + ζ(k) (2.40)

for time instant k + 1 and by substituting (2.26) we have,

y(k + 1) = Cx(k + 1) +Du(k + 1) + ζ(k + 1) (2.41)

= C(Ax(k) +Bu(k) +Kζ(k)) +Du(k + 1) + ζ(k + 1) (2.42)

= CAx(k) +
[
CB D

] u(k)

u(k + 1)

+
[
CK I

] ζ(k)

ζ(k + 1)

 (2.43)
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by continuing this procedure for time instant k +M − 1 can be written,

y(k +M − 1) = CAM−1x(k) +
[
CAM−2B CAM−3B . . . D

]


u(k)

u(k + 1)
...

u(k +M − 1)



+
[
CAM−2K CAM−3K . . . I

]


ζ(k)

ζ(k + 1)
...

ζ(k +M − 1)



(2.44)

by compiling the output equations for time instants from k to k+M − 1 following matrix equation

is obtained,


y(k)

y(k + 1)
...

y(k +M − 1)

 =


C

CA
...

CAM−1

xk +


D 0 . . . 0

CB D . . . 0
...

...
...

...

CAM−2B CAM−3B . . . D




u(k)

u(k + 1)
...

u(k +M − 1)



+


I 0 . . . 0

CK I . . . 0
...

...
...

...
...

CAM−2K CAM−3K . . . I




ζ(k)

ζ(k + 1)
...

ζ(k +M − 1)


(2.45)

By collecting the state variables in a vector as [x(k) x(k + 1) . . . x(k +M − 1)] following block
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matrix output equation is obtained,


y(k) y(k + 1) . . . y(k +N − (M − 1))

y(k + 1) y(k + 2) . . . y(k +N − (M − 2))
...

...
...

...

y(k +M − 1) y(M) . . . y(k +N)

 =


C

CA
...

CAM−1


[
x(k) x(k + 1) . . . x(k +M − 1)

]

+


D 0 . . . 0

CB D . . . 0
...

...
...

...

CAM−2B CAM−3B . . . D




u(k) u(k + 1) . . . u(k +N − (M − 1))

u(k + 1) u(k + 2) . . . u(k +N − (M − 2))
...

...
...

...

u(k +M − 1) u(M) . . . u(k +N)



+


I 0 . . . 0

CK I . . . 0
...

...
...

...

CAM−2K CAM−3K . . . I




ζ(k) ζ(k + 1) . . . ζ(k +N − (M − 1))

ζ(k + 1) ζ(k + 2) . . . ζ(k +N − (M − 2))
...

...
...

...

ζ(k +M − 1) ζ(M) . . . ζ(k +N)


(2.46)

Therefore, the subspace I/O matrix equations are obtained from equations (2.39) and (2.46) as

below,

Yp = ΓMXp +Hd
MUp +Hs

NZp (2.47)

Yf = ΓMXf +Hd
MUf +Hs

NZf (2.48)

Xf = AMXp + ∆d
MUp + ∆s

NZp (2.49)

where the superscripts d and s stand for the deterministic and stochastic part of the system, and

subscripts p and f stand for the past and future. The past and future input-output (I/O) data and

innovation block-Hankel matrices are defined as [20,100],

Up ,


u(1) u(2) . . . u(N − 2M + 1)

u(2) u(3) . . . u(N − 2M + 2)
...

...
...

...

u(M) u(M + 1) . . . u(N −M)

 , Uf ,


u(M + 1) u(M + 2) . . . u(N −M + 1)

u(M + 2) u(M + 3) . . . u(N −M + 2)
...

...
...

...

u(2M) u(2M + 1) . . . u(N)


(2.50)
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Yp ,


y(1) y(2) . . . y(N − 2M + 1)

y(2) y(3) . . . y(N − 2M + 2)
...

...
...

...

y(M) y(M + 1) . . . y(N −M)

 , Yf ,


y(M + 1) y(M + 2) . . . y(N −M + 1)

y(M + 2) y(M + 3) . . . y(N −M + 2)
...

...
...

...

y(2M) y(2M + 1) . . . y(N)


(2.51)

Zp ,


ζ(1) ζ(2) . . . ζ(N − 2M + 1)

ζ(2) ζ(3) . . . ζ(N − 2M + 2)
...

...
...

...

ζ(M) ζ(M + 1) . . . ζ(N −M)

 , Zf ,


ζ(M + 1) ζ(M + 2) . . . ζ(N −M + 1)

ζ(M + 2) ζ(M + 3) . . . ζ(N −M + 2)
...

...
...

...

ζ(2M) ζ(2M + 1) . . . ζ(N)


(2.52)

where Up, Uf ∈ RMm×N−2M+1, Yp, Yf ∈ RMl×N−2M+1 and Zp, Zf ∈ RMl×N−2M+1.

Note that, the data in the columns of the “future” block-Hankel matrices follows the data

of the same column of the “past” block-Hankel matrices. In order to have an extra freedom in

identification algorithm, the row dimension of the “past” and “future” block-Hankel matrices can

be different. In SIM the data block-Hankel matrices should be very rectangular to minimize the

noise sensitivity.

M > n, N >> max{Mm,Ml}, N →∞

The “past” and “future” state matrices, Xp and Xf , are defined as,

Xp ,
[
x(1) x(2) x(3) . . . x(N − 2M + 1)

]
∈ Rn×N−2M+1 (2.53)

Xf ,
[
x(M + 1) x(M + 2) x(M + 3) . . . x(N −M + 1)

]
∈ Rn×N−2M+1 (2.54)

The extended (M > n) observability matrix, ΓM , and the reversed extended controllability
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matrices, ∆d
M and ∆s

M , are defined as,

ΓM =



C

CA

CA2

. . .

CAM−1


∈ RMl×n (2.55)

∆d
M =

[
AM−1B AM−2B . . . AB B

]
∈ Rn×Mm (2.56)

∆s
M =

[
AM−1K AM−2K . . . AK K

]
∈ Rn×Ml (2.57)

The lower triangular block-Toeplitz matrices, Hd
M and Hs

M , are also defined as below,

Hd
M =



D 0 0 . . . 0

CB D 0 . . . 0

CAB CB D . . . 0
...

...
... . . .

...

CAM−2B CAM−3B CAM−4B . . . D


∈ RMl×Mm (2.58)

Hs
M =



I 0 0 . . . 0

CK I 0 . . . 0

CAK CK I . . . 0
...

...
... . . .

...

CAM−2K CAM−3K CAM−4K . . . I


∈ RMl×Ml (2.59)

Subspace Identification Methods (SIM)

Subspace identification algorithms basically consist of two main steps: First the system order, n,

and the extended observability matrix of the system, ΓM or the estimate of the state sequence Xf ,

are determined directly from the given I/O data. Then the system matrices (A,B,C,D,Q,R, S)

are determined by using one of the following mentioned subspace identification algorithms up to

similarity transformation. Two most popular subspace identification algorithms are: Numerical

Subspace State-Space System Identification (N4SID), and Multivariable Output Error State-Space

(MOESP).
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- Numerical Subspace State-Space System Identification (N4SID): The algorithm con-

structs the projection of future output data onto past I/O data and estimates matrices via SVD

and Least Squares, the algorithm was presented and expanded by Overschee and De Moor in

1990’s [19,20,97]. This method mainly uses oblique projection concept and SVD for identification.

The N4SID algorithm is summarized into four main steps,

Step1: Compute the oblique projection of future outputs onto the past I/O along the future

inputs,

OM = Yf/Uf
Wp (2.60)

where Wp is defined as the past I/O data matrix as below,

Wp =

 Yp

Up

 ∈ RM(m+l)×N−2M+1 (2.61)

From (2.48) the oblique projection can be obtained as,

OM = ΓMXf/Uf
Wp +Hd

MUf/Uf
Wp +Hs

NZf/Uf
Wp (2.62)

From the definition of oblique projection we have Uf/Uf
Wp = 0, and when the number of samples

N and number of past data row M are large enough we have,

lim
M,N→∞

Xf/Uf
Wp = X̂f (2.63)

lim
N→∞

Zf/Uf
Wp = 0 (2.64)

Therefore, the oblique projection in (2.62) is simplified as,

OM = ΓMXf (2.65)

Step2: Compute the SVD of the oblique projection, then obtain system order n = dim(Σ1)

and the estimate of the state vector Xf . The SVD of the oblique projection be given by,

OM =
[
U1 U2

] Σ1 0

0 0

 V T
1

V T
2

 = U1Σ1V
T

1 (2.66)

Since the oblique projection is OM = ΓMXf , the extended observability matrix and the estimate
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of the state vector are derived from SVD as below,

ΓM = U1Σ
1/2
1 T ∈ RMl×n (2.67)

Xf = T−1Σ
1/2
1 V T

1 ∈ Rn×N−2M+1 (2.68)

where T ∈ Rn×n is an arbitrary non-singular matrix representing a similarity transformation.

Step3: In previous step the estimate of state vector is obtained from (2.68) as,

XM =
[
x(M) x(M + 1) . . . x(N −M − 1) x(N −M)

]
(2.69)

then the following matrices with N − 2M columns are defined as,

X̄M+1 =
[
x(M + 1) x(M + 2) . . . x(N −M)

]
(2.70)

X̄M =
[
x(M) x(M + 1) . . . x(N −M − 1)

]
(2.71)

ŪM |M =
[
u(M) u(M + 1) . . . u(N −M − 1)

]
(2.72)

ȲM |M =
[
y(M) y(M + 1) . . . y(N −M − 1)

]
(2.73)

where ŪM |M , ȲM |M are block Hankel matrices with only one block row of inputs and outputs,

respectively.

Step4: Compute the matrices A, B, C and D by solving the following regression equation by

using the Least Squares technique,

 X̄M+1

ȲM |M

 =

 A B

C D

 X̄M

ŪM |M

 (2.74)

 Â B̂

Ĉ D̂

 =


 X̄M+1

ȲM |M

 X̄M

ŪM |M

T


 X̄M

ŪM |M

 X̄M

ŪM |M

T

−1

(2.75)

- Multivariable Output Error State-Space (MOESP): This method uses RQ decomposition

of joint I/O data matrices and first calculates the extended observability matrix via SVD and obtain

some of the state-space matrices, then uses Least Squares method to estimate other matrices. This
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method was introduced by Verhaegen and Dewilde in 1990’s [19,101,102]. The MOESP algorithm

is summarized into four main steps,

Step1: Suppose that the past I/O data Up and Yp were obtained. Compute the RQ decompo-

sition of the past I/O data matrix as,

Wp =

 Up

Yp

 =

 R11 0

R21 R22

 QT1

QT2

 (2.76)

where R11 and R22 are lower triangular and Q1 and Q2 are orthogonal. This RQ decomposition is

computed by taking the transpose of the RQ decomposition of the W T
p . The following equations

are written as,

Up = R11Q
T
1 (2.77)

Yp = R21Q
T
1 +R22Q

T
2 (2.78)

Suppose that the following conditions are satisfied, (i) the system is reachable or the state vector

is sufficiently excited, (ii) the system is persistently excited by the input sequence and (iii) the I/O

data are obtained from an open-loop experiment. Under these assumption R11 is nonsingular, so

that (2.78) is written as follows,

Yp = R21R
−1
11 Up +R22Q

T
2 (2.79)

sinceQT1 , QT2 are orthogonal, the first term in the right-hand side of the equation (2.78) is orthogonal

to the second term. The orthogonal projection of the row space of Yp onto the row space of Up and

its complement U⊥p is given by these two equations,

Yp/Up = R21Q
T
1 = R21R

−1
11 Up (2.80)

Yp/U
⊥
p = R22Q

T
2 (2.81)

also, it follows from equations (2.47) and (2.76) that,

ΓMXp +Hd
MR11Q

T
1 = R21Q

T
1 +R22Q

T
2 (2.82)
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post-multiplying (2.82) by Q2 yields,

ΓMXpQ2 = R22 (2.83)

now, the image of the extended observability matrix ΓM and the dimension n obtain from SVD of

R22.

Step2: Compute the SVD of R22 to obtain the system order, n, and the extended observability

matrix, ΓM . The SVD of R22 be given by,

R22 =
[
U1 U2

] Σ1 0

0 0

 V T
1

V T
2

 = U1Σ1V
T

1 (2.84)

then ΓMXpQ2 = U1Σ1V
T

1 and the extended observability matrix is defined as,

ΓM = U1Σ
1/2
1 (2.85)

and the order is n = dim(Σ1).

Step3: Obtain the matrices C and A by using the extended observability matrix. The matrix

C is given by,

C = ΓM (1 : l, 1 : n) (2.86)

and A is obtained by solving this equation,

ΓM (1 : l(M − 1), 1 : n)A = ΓM (l + 1 : Ml, 1 : n) (2.87)

Step4: Estimate the matrices B and D by the Least Squares method. Since UT2 R22 = 0 and

UT2 ΓM = 0, pre-multiplying equation (2.82) by UT2 , then post-multiplying it by Q1 yields,

UT2 H
d
MR11Q

T
1 = UT2 R21Q

T
1 −→ UT2 H

d
MR11 = UT2 R21 (2.88)
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Now, there is a linear equation with respect to B and D, it can be solved by Least Squares method,

UT2



D 0 0 . . . 0

CB D 0 . . . 0

CAB CB D . . . 0
...

...
... . . .

...

CAM−2B CAM−3B CAM−4B . . . D


= UT2 R21R

−1
11 (2.89)

by Least Squares solution of this overdetermined linear matrix equation B and D can be estimated.

Figure 2.2 shows the overview of N4SID and MOESP methods. Through the N4SID and

MOESP algorithms the state sequence Xf and the extended observability matrix ΓM are deter-

mined. Then the system matrices A,B,C and D are extracted using the algorithms.

 

 

 

 

 

 

MOESP N4SID 

Xf 

System Matrices 

ГM 

Input-Output Data 

Figure 2.2: Comparing the N4SID and MOESP algorithms

2.2 Predictive Control

In last three decades Predictive Controllers became most widely used advanced controllers in the

process control in industry [7, 10, 103]. In general, predictive control is a control strategy which

obtains the control signal by using a predictive model of the process in a cost function minimization.

The procedure is done over a fixed prediction horizon in the presence of constraints. There are
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two different approaches for predictive control. First is the model-based approach, which is called

Model-based Predictive Control (MBPC) or briefly Model Predictive Control (MPC) [7,12,15,104].

Second the model-free approach, which is called Data-driven Subspace-based Predictive Control

(SBPC) or briefly Subspace Predictive Control (SPC) [18,21,100].

Process model is the basic requirement of the design in model-based approach. Then the

predictor matrices are obtained from the process model, and the controller is design by using the

predictor matrices. Therefore, in MPC the closed loop performance of the system heavily depends

on the accuracy of the process model, which is utilized to design the predictor. Hence, modeling is

considered as the most challenging and time consuming work in MPC design.

On the other hand, in model-free approach the predictor matrices are determined directly from

I/O data by using the data block-Hankel matrices that are defined in SIM with no need to obtain

the parametric model of the process and the identification step. Hence, model-free approach is also

called data-driven approach. In model-free approach the predictor is derived from the subspace I/O

matrix equations of SIM in (2.47), (2.48) and (2.49), which is called Subspace Predictor. Therefore,

the model-free approach is obtained based on combination of the Subspace Predictor and Predictive

Control which is called SPC. Figure 2.3 illustrate the difference between model-based approach and

data-driven approach for predictive control. Main advantage of SPC over MPC is its capability

to on-line adapt the SPC gains by collecting new I/O data and updating the Subspace Predictor

matrices in data-driven manner. This feature makes SPC much more appropriate than MPC to

control time-varying and nonlinear systems.

2.2.1 Model-based Approach: Model Predictive Control (MPC)

Note that while the concentration of this dissertation is on SPC (Section 2.2.2), the MPC and

SPC methods share the same cost function and SPC has been introduced after MPC. This section

concentrates on formulation of MPC and the provided cost function, control law and constraint of

this section are used in SPC approaches.

There are different MPC techniques in the literature, and some of the most popular MPC

algorithms are Dynamic Matrix Control (DMC) [13], Quadratic Dynamic Matrix Control (QDMC)

[14], and Generalized Predictive Control (GPC) [15]. In general, all of the MPC algorithms have

three basic elements:

27



CHAPTER 2. BACKGROUND

 

 

 

 

 

 

Data-driven Approach 
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Figure 2.3: Comparing model-based approach and data-driven approach in MPC

Prediction Models

MPC is a model-based optimization technique, however, the models are not directly used to design

the controller. Instead, they are used to design the predictors, and then the control strategy is

obtained according to the predictor. In MPC the predictor is multi-step ahead not just one-step

ahead, therefore, the system output follows a trajectory of the reference input. Moreover, in MPC

future outputs are predicted by considering the future inputs, not only by past inputs and outputs.

Some of the typical models used in MPC are [98]:

- Step response model, which is used in DMC algorithm [98].

y(k) =

∞∑
i=1

gi∆u(k − i) (2.90)

where gis are the sampled unit step values, ∆ = 1 − q−1 with q−1 as the back shift operator, and

∆u(k) = u(k)− u(k− 1). In step response modeling there is no need to a priori information about

the system, and complex dynamics such as non-minimum phase or time-delays can be described

easily. However, it requires large number of parameters, and it is limited to stable systems without
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integrators.

The step response model is used in DMC algorithm to obtain the prediction model. Assume

that the system is stable and Ns is the settling time in terms of samples. The step response model

in (2.90) can be written as,

y(k) =

Ns∑
i=1

gi∆u(k − i) +
∞∑

i=Ns+1

gi∆u(k − i) (2.91)

using the step response model in (2.91) the prediction of the output at the instant k until the

instant k +Np under the effect of Nc control actions can be obtain as follows,

ŷf = y∗f +G∆uf (2.92)

where the index f represents future data, ŷf is the predicted output, y∗f represents free response of

the system, ∆uf is variation of the future control signal and G is called the dynamic matrix, which

contains the system dynamics,

ŷf =


ŷ(k + 1|k)

ŷ(k + 2|k)
...

ŷ(k +Np|k)

 , y∗f =


y∗(k + 1)

y∗(k + 2)
...

y∗(k +Np)

 , ∆uf =


∆u(k)

∆u(k + 1)
...

∆u(k +Nc − 1)

 (2.93)

GNp =



g1 0 . . . 0

g2 g1 . . . 0
...

...
...

...

gNc gNc−1 . . . g1

...
...

...
...

gNp gNp−1 . . . gNp−Nc+1


(2.94)

Free response of the system is defined as the response that would be expected if no future actions

are taken. Thus y∗(k +Np) is calculated as,

y∗(k +Np) =

Ns∑
i=Np+1

gi∆u(k +Np − i) +

∞∑
i=Ns+1

gi∆u(k +Np − i) (2.95)
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- Transfer function models, which are used in GPC design [98].

y(k) =
B(q−1)

A(q−1)
u(k) +

C(q−1)

A(q−1)
w(k) (2.96)

These models needs fewer parameters, and applicable for unstable systems. However, structure

selection (ARX, ARMAX, BJ, OE) and order of the polynomials is necessary for identification.

Transfer function models lead to solve the Diophantine equation in optimization procedure. Also,

parametric models with limited number of parameters may not be suitable for some processes and

MIMO systems.

GPC design starts with identifying an ARIMAX (integrated moving-average) model for the

system. ARIMAX model is expressed as,

y(k) =
B(q−1)

A(q−1)
u(k − 1) +

C(q−1)

A(q−1)

w(k)

∆
(2.97)

Optimal prediction is obtained by recursion of following Diophantine equations,

C(q−1)

A(q−1)∆
= Gdi(q

−1) + q−1 F (q−1)

A(q−1)∆
(2.98)

Gdi(q
−1)B(q−1) = Gi(q

−1)C(q−1) + q−1Γi(q
−1) (2.99)

The Np step ahead prediction equation is written as,

ŷ(k +Np|k) = y∗(k +Np) +GNp∆u(k +Np − 1) +GdNp
d(k +Np) (2.100)

where, the free response of the system, y∗(k +Np), is calculated as,

y∗(k +Np) =
FNp(q−1)

C(q−1)
y(k) +

TNp(q−1)

C(q−1)
∆u(k) (2.101)

by ignoring the future disturbance term Gdid(k+ i), the multi-step predictor equation is expressed

as,

ŷf = y∗f +G∆uf (2.102)

where the index f represents future data, ŷf is the predicted output, y∗f represents free response of
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the system, ∆uf is variation of the future control signal,

ŷf =


ŷ(k + 1|k)

ŷ(k + 2|k)
...

ŷ(k +Np|k)

 , y∗f =


y∗(k + 1)

y∗(k + 2)
...

y∗(k +Np)

 , ∆uf =


∆u(k)

∆u(k + 1)
...

∆u(k +Nc − 1)

 (2.103)

and G is the dynamic matrix, which contains the step response coefficients of B(q−1)
A(q−1)

or the impulse

response coefficients of B(q−1)
A(q−1)∆

.

- State-space models, which became more popular recently due to applicability for stable, un-

stable and MIMO systems [98],

x(k + 1) = Ax(k) +Bu(k) (2.104)

y(k) = Cx(k) +Du(k) (2.105)

however, process modeling with limited number of parameters is one of the disadvantages of these

modeling method. Also, using an observer may complicate the calculations if all of the states are

not reachable.

Assume state-space model of a MIMO system by considering the system noise and disturbance

as below [12],

x̄(k + 1) = Āx(k) + B̄u(k) + B̄dd(k) (2.106)

y(k) = C̄x̄(k) (2.107)

where Ā ∈ Rn1×n1 , B̄ ∈ Rn1×m and C̄ ∈ Rl×n1 are the state-space matrices for system model,

x̄(k) ∈ Rn1×1 is the state variable vector, d(k) is the input disturbance that is a sequence of

integrated white noise. Note that from the principle of predictive control the u(k) cannot affect

the y(k) at the same time. Thus, D̄ = 0 in the system model.

State-space based MPC design starts with deriving the Integrator Embedded State-space (IESS)
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model as,

 ∆x̄(k + 1)

y(k + 1)


︸ ︷︷ ︸

x(k+1)

=

 Ā 0Tn1×1

C̄Ā Il×l


︸ ︷︷ ︸

A

 ∆x̄(k)

y(k)


︸ ︷︷ ︸

x(k)

+

 B̄

C̄B̄


︸ ︷︷ ︸

B

∆u(k) +

 B̄d

C̄B̄d


︸ ︷︷ ︸

Bw

w(k) (2.108)

y(k) =
[

0n1×1 Il×l

]
︸ ︷︷ ︸

C

 ∆x̄(k)

y(k)


︸ ︷︷ ︸

x(k)

(2.109)

Therefore the IESS model is obtained as,

x(k + 1) = Ax(k) +B∆u(k) +Bww(k) (2.110)

y(k) = Cx(k) (2.111)

The triplet (A,B,C) is called the augmented model which is used in MPC design. The dimension-

ality of the augmented state-space system is n = n1 + l.

Assuming that the state variable vector x(k) is available at the sampling time k, the Np step

ahead state variables are predicted as,

x̂(k +Np|k) = ANpx(k) +ANp−1B∆u(k) + · · ·+ANp−NcB∆u(k +Nc − 1)

+ANp−1Bww(k) +ANp−2Bww(k + 1|k) + · · ·+Bww(k +Np − 1|k)
(2.112)

From the predicted state variables, the Np step a head predicted output variables are,

ŷ(k +Np|k) = CANpx(k) + CANp−1B∆u(k) + · · ·+ CANp−NcB∆u(k +Nc − 1)

+CANp−1Bww(k) + · · ·+ CANp−NcBww(k +Nc − 1)
(2.113)

Note that, for zero-mean white noise sequence w(k), the predicted value of w(k+ i− 1|k) at future

sample i is assumed to be zero. Therefore, the predictor equation is defined as,

ŷf = Υx(k) + Φ∆uf (2.114)

where the index f represents future data, ŷf is the predicted output, ∆uf is the future control
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signal variations,

ŷf =


ŷ(k + 1|k)

ŷ(k + 2|k)
...

ŷ(k +Np|k)

 , ∆uf =


∆u(k)

∆u(k + 1)
...

∆u(k +Nc − 1)

 (2.115)

and Υ and Φ are defined as,

Υ =



CA

CA2

CA3

...

CANp


, Φ =



CB 0 0 . . . 0

CAB CB 0 . . . 0

CA2B CAB CB . . . 0
...

...
... . . .

...

CANp−1B CANp−2B CANp−3B . . . CANp−NcB


(2.116)

Cost Function and Tuning Parameters

There are different cost functions for different MPC techniques, but all of them wants to minimize

the output deviation from the reference input by optimizing the control signal or its variation. A

typical form of such a cost function in MPC is [12,68,98],

J(k) =

Np∑
i=Nd

(ŷ(k + i|k)− r(k + i))TQ(ŷ(k + i|k)− r(k + i)) +

Nc∑
i=1

∆uT (k + i)R∆u(k + i)(2.117)

where r(k) is the reference signal at the current sample time k, Np is the Prediction Horizon and Nc

is the Control Horizon. Nd is usually chosen as one or the system time-delay in terms of samples.

Q ∈ RNpl×Npl and R ∈ RNcm×Ncm are the positive semi-definite and positive definite Weighting

Matrices for penalizing the tracking error and the incremental control signal, respectively. The

weighting matrices and horizons are considered as Tuning Parameters to ensure the stability and

enhance performance of the closed-loop system in MPC design. The cost function in (2.117) can

be written in vector form as,

J = (ŷf − rf )TQ(ŷf − rf ) + ∆uTf R∆uf (2.118)
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where rf is a vector containing the future reference inputs as,

rf =


r(k + 1)

r(k + 2)
...

r(k +Np)

 (2.119)

In MPC algorithm, at the current sample time k, first the appropriate future input trajectory

is calculated based on the past I/O data and the internal model of the system over the control

horizon Nc, then the best future output is predicted using the model-based designed predictor over

a fixed prediction horizon Np. The prediction horizon needs to be selected large enough to ensure

the stability and tracking purposes. This can be achieved by applying following terminal equality

constraint [43, 44],

e(k +Np + i|k) = 0, ∀i ≥ 0 (2.120)

where e(k + i) = r(k + i) − ŷ(k + i|k) is the tracking error. The Figure 2.4 shows a typical MPC

strategy at the time instant k. Note that, the input trajectory remains constant after the control
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output 
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input 
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up 

yp 
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Nc 
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Figure 2.4: A typical MPC strategy
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horizon Nc, which is applied by adding following equality constraint to the cost function [43,44],

∆u(k +Nc + i) = 0, ∀i ≥ 0 (2.121)

In MPC algorithms after calculating the future control trajectory, only its first element is applied

to the system. At the next time step k + 1, the whole procedure is repeated by one time step

shifting forward of the both horizons.

Control Law and Constraints

In MPC the control law, u(k) = u(k − 1) + ∆u(k) is calculated via minimizing the cost function

and solving a typical Least Squares problem as [12,43,44,98,105],

min
∆uf

J = (ŷf − rf )TQ(ŷf − rf ) + ∆uTf R∆uf

subject to ŷf from (2.92) or (2.102) or (2.114)

e(k +Np + i|k) = 0, ∀i ≥ 0

∆u(k +Nc + i) = 0, ∀i ≥ 0

(2.122)

where ŷf could be any of the predictor equations of DMC in (2.92), GPC in (2.102) or state-space

based MPC in (2.114). The unconstrained MPC solution is found from,

∂J

∂∆uf
= 0 (2.123)

for DMC and GPC:

∆uf = (GTQTG+R)−1GTQT (rf − y∗f ) (2.124)

and for state-space MPC:

∆uf = (ΦTQTΦ +R)−1ΦTQT (rf −Υx(k)) (2.125)

However, in the presence of active inequality constraints on u(k), ∆u(k), y(k) or ∆y(k) using the

numerical optimization is necessary. Capability to handle the inequality constraints is one of the
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main advantages of MPC algorithms. The inequality constraints are specified in the form of,

umin ≤ u ≤ umax

∆umin ≤ ∆u ≤ ∆umax

ymin ≤ y ≤ ymax

∆ymin ≤ ∆y ≤ ∆ymax

(2.126)

Therefore the constrained MPC problem is summarized as follows [12,43,44,98],

min
∆uf

J = (ŷf − rf )TQ(ŷf − rf ) + ∆uTf R∆uf

subject to ŷf from (2.92) or (2.102) or (2.114)

e(k +Np + i|k) = 0, ∀i ≥ 0

∆u(k +Nc + i) = 0, ∀i ≥ 0

vmin ≤ v ≤ vmax

(2.127)

where v is any of the constrained variables in (2.126).

2.2.2 Data-Driven Approach: Subspace Predictive Control (SPC)

The data-driven SPC approach is derived via the combination of Subspace predictor and Predictive

control technique. SPC has some features, which has made it as one of the most popular control

strategies in industry over the past decade [21,66,68]. These features are:

1- No need of prior knowledge on the order and model structure of the system,

2- On-line adapting the controller in data-driven manner,

3- Same cost function and same tuning parameters as GPC,

4- No need to solve the Diophantine equation,

5- Based on the reliable linear algebra tools such as SVD and QR decomposition,

6- No need for iterative algorithm to obtain predictor matrices,

7- Easily applicable to MIMO systems.

Subspace Predictor

Consider the state-space innovation form of discrete LTI system from (2.26) and (2.27). Suppose

that measurements of the I/O data, u(k) and y(k) are available for k ∈ {1, 2, . . . , N}, and the data

is persistently exciting. The I/O data and innovation block-Hankel matrices are constructed as
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equations (2.50), (2.51) and (2.52). Note that, to minimize the unwanted effect of noise on the

identification of the system, the number of columns in these data block-Hankel matrices should be

much larger than the number of rows. Moreover, the input u(k) is persistently exciting and it is

uncorrelated with ζ(k), and the number of measurements are large enough (N →∞) [18,21,68].

Consider the subspace future output matrix equation in (2.48), by substituting equations (2.47)

and (2.49) into (2.48) the future output matrix equation is obtained as below,

Yf = ΓMA
MΓ†MYp+ΓM (∆d

M−AMΓ†MH
d
M )Up+Hd

MUf+ΓM (∆s
M−AMΓ†MH

s
M )Zp+Hs

MZf (2.128)

where superscript † represent the Moore-Penrose pseudo-inverse. Since Zf is stationary white noise

and for a large enough set of measurements, the optimal prediction of Yf from equation (2.128) is

written as a linear combination of past I/O data and future input of the system [18,21]. Therefore

the Subspace Predictor equation is defined as,

Ŷf = LwWp + LuUf (2.129)

where Lw ∈ RMl×M(l+m) and Lu ∈ RMl×Mm are the subspace linear predictor coefficient matrices

that corresponds to the past I/O data and the future input data, respectively. Wp is the past I/O

data matrix which is defined in (2.61).

The subspace predictor matrices Lw and Lu are calculated from the data block-Hankel matrices,

by solving the following Least Squares problem,

min
Lw,Lu

‖Yf − [Lw Lu]

 Wp

Uf

 ‖2F (2.130)

The Least Squares problem can be solved numerically by making the following RQ-decomposition,


Wp

Uf

Yf

 =


R11 0 0

R21 R22 0

R31 R32 R33



QT1

QT2

QT3

 = RTQT (2.131)

where RT is a lower triangular matrix and Q is an orthogonal matrix. Therefore, Ŷf can be written
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as below,

Ŷf = [R31 R32]

 R11 0

R21 R22

†  Wp

Uf

 (2.132)

where superscript † represent the Moore-Penrose pseudo-inverse. From equations (2.129) and

(2.132) the matrices Lw and Lu are obtained as below,

L = [Lw Lu] = [R31 R32]

 R11 0

R21 R22

† (2.133)

where, Lw and Lu can be represented as [18,21],

Lw = L(: , 1 : M(m+ l)) (2.134)

Lu = L(: , M(m+ l) + 1 : end) (2.135)

assuming that M is large enough (M → ∞) following results are obtained from subspace identifi-

cation [18,21],

LwWp = ΓMXf (2.136)

Lu = Hd
M (2.137)

Therefore, the linear subspace predictor can describe the system behavior by constructing the

subspace matrices directly from I/O data without need to identify the system model.

Unconstrained SPC

The developed subspace predictor in (2.129) can be combined with MPC cost function in (2.118)

to obtain the data-driven approach SPC [18,21]. The SPC problem is realized by minimization of

a cost function under certain constraints on the control signal and the system output.

In implementation of SPC, only the leftmost column of Ŷf is considered to predict the output.

Selecting the Prediction Horizon, Np, and the Control Horizon, Nc, truncates the subspace predictor

coefficient matrices. Therefore, (2.129) is rewritten as,

ŷf = L̃wwp + L̃uuf (2.138)
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where L̃w and L̃u are defined as follows,

L̃w = Lw(1 : Npl, :) (2.139)

L̃u = Lu(1 : Npl, 1 : Ncm) (2.140)

Here, ŷf , uf and wp are defined as the leftmost column of matrices Ŷf , Uf and Wp as,

ŷf =


ŷ(k + 1|k)

ŷ(k + 2|k)
...

ŷ(k +Np|k)

 , uf =


u(k + 1)

u(k + 2)
...

u(k +Nc)

 , wp =

 yp

up

 =



y(k −M + 1)
...

y(k − 1)

y(k)

−−−−

u(k −M + 1)
...

u(k − 1)

u(k)



(2.141)

In the case of no active constraints, a typical form of cost function can be considered as (2.117) or

(2.118). Recall the cost function from (2.118), the SPC control law which is applied to the system

will be obtained by replacing the (2.138) in the cost function J in (2.118), and minimizing the

cost function [18, 21]. Therefore, the predicted output, in (2.138) needs to be written in terms of

incremental input signal as below [21],

ŷf = F1y(k) + F2L̃w∆wp + F2L̃u∆uf (2.142)
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where incremental input signal ∆uf , incremental I/O data ∆wp, F1 and F2 are defined as,

∆uf =


∆u(k + 1)

∆u(k + 2)
...

∆u(k +Nc)

 , ∆wp =

 ∆yp

∆up

 =



∆y(k −M + 1)
...

∆y(k − 1)

∆y(k)

−−−−

∆u(k −M + 1)
...

∆u(k − 1)

∆u(k)



(2.143)

F1 =


Il

Il
...

Il

 , F2 =


Il 0 . . . 0

Il Il . . . 0
...

...
. . .

...

Il Il . . . Il

 (2.144)

The unconstrained SPC problem is defined as follows,

min
∆uf

J = (ŷf − rf )TQ(ŷf − rf ) + ∆uTf R∆uf

subject to ŷf = F1y(k) + F2L̃w∆wp + F2L̃u∆uf

(2.145)

by replacing the (2.142) in the cost function J in (2.118), and minimizing the cost function, the

incremental control law will be obtained as,

∂J

∂∆uf
= 0

∆uf = −(R+ (F2L̃u)TQ(F2L̃u))−1(F2L̃u)TQ((F2L̃w)∆wp + F1y(k)− F1r(k + 1)) (2.146)

Remark 2.2.1. Different control signals can be obtained from (2.146) by tuning the SPC parame-

ters Q, R, Np and Nc. Therefore, appropriate choice of these tuning parameters has a significant

impact on the performance and stability of the closed-loop system.
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The incremental control law in (2.146) can be summarized as below;

∆uf = −K̃e(y(k)− r(k + 1))− K̃∆wp∆wp (2.147)

where SPC gain matrices K̃e and K̃∆wp are defined as,

K̃e = (R+ (F2L̃u)TQ(F2L̃u))−1(F2L̃u)TQF1 (2.148)

K̃∆wp = (R+ (F2L̃u)TQ(F2L̃u))−1(F2L̃u)TQ(F2L̃w) (2.149)

Since, at each time instant only the first element of ∆uf is considered to calculate the next control

input, then by truncating the first m rows in (2.146), the control law at time instant k + 1 is

obtained as,

∆u(k + 1) = −k̃e(y(k)− r(k + 1))− k̃∆wp∆wp (2.150)

u(k + 1) = u(k) + ∆u(k + 1) (2.151)

where the controller gains k̃e and k̃∆wp are defined as the first m rows of the gain matrices K̃e and

K̃∆wp , respectively. By using this control action zero steady-state tracking error is achievable, even

for systems with no integrator. Note that above-mentioned SPC control law in (2.147) is obtained

directly from subspace matrices, with no need to any system modeling and identification. Figure

2.5 shows a typical block diagram of data-driven SPC approach.

Constrained SPC

One of the main features of MPC and SPC is their ability to include constraints in the control

algorithm. In real processes, there are constraints that are raised due to physical limitation of

the system and safety concerns. Generally, in MIMO systems, the constrained SPC problem is

considered as a Quadratic Programming (QP) problem and solved by a QP function solver to
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obtain the most optimum control law [21,68]. The constrained SPC problem is defined as,

min
∆uf

J = (ŷf − rf )TQ(ŷf − rf ) + ∆uTf R∆uf

subject to ŷf = F1y(k) + F2L̃w∆wp + F2L̃u∆uf

e(k +Np + i|k) = 0, ∀i ≥ 0

∆u(k +Nc + i) = 0, ∀i ≥ 0

vmin ≤ v ≤ vmax

(2.152)

where v is any of the constrained variables, which are defined in (2.126).

To formulate the constrained SPC problem in QP form the SPC cost function needs to be

revised as follows: The SPC cost function in (2.118) can be rewritten by using the predicted output

in (2.142) and reference input in (2.119) as below,

J = (F2L̃w∆wp + F2L̃u∆uf + F1(y(k)− r(k + 1)))TQ(F2L̃w∆wp + F2L̃u∆uf + F1(y(k)− r(k + 1)))

+ ∆uTf R∆uf

(2.153)

by expanding (2.153) and removing the terms that are not related to ∆uf the QP at every instant
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will be obtained as [21,68],

min
∆uf

J = ∆uTfH∆uf + P T∆uf (2.154)

where H and P are defined as,

H = (F2L̃u)TQ(F2L̃u) +R (2.155)

P = 2(F2L̃u)TQ(F2Lw∆wp + F1(y(k)− r(k + 1))) (2.156)

The constraints for SPC are rewritten as,

F4∆uf ≤ F3umax − F3u(k)

−F4∆uf ≤ −F3umin + F3u(k)

∆uf ≤ F3∆umax

−∆uf ≤ −F3∆umin

F2L̃u∆uf ≤ F1ymax − F1y(k)− F2L̃w∆wp

−F2L̃u∆uf ≤ −F1ymax + F1y(k) + F2L̃w∆wp

L̃u∆uf ≤ F1∆ymax − L̃w∆wp

−L̃u∆uf ≤ −F1∆ymax + L̃w∆wp

(2.157)

where ufmax = F3umax, ufmin
= F3umin and yfmax = F1ymax, yfmin

= F1ymin, and ∆ufmax , ∆ufmin
,

∆yfmax and ∆yfmin
are defined in a similar way. F3 and F4 are defined as,

F3 =


Im

Im
...

Im

 , F4 =


Im 0 . . . 0

Im Im . . . 0
...

...
. . .

...

Im Im . . . Im

 (2.158)
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These constraints in (2.157) are written in a single inequality as follows [21,68],



F4

−F4

Im

−Im
F2L̃u

−F2L̃u

L̃u

−L̃u



∆uf ≤



F3umax − F3u(k)

−F3umin + F3u(k)

F3∆umax

−F3∆umin

F1ymax − F1y(k)− F2L̃w∆wp

−F1ymax + F1y(k) + F2L̃w∆wp

F1∆ymax − L̃w∆wp

−F1∆ymax + L̃w∆wp



(2.159)

AQP∆uf ≤ BQP (2.160)

Therefore, the constrained SPC problem is solved by considering the following QP formulation

[21,68],

min
∆uf

J = ∆uTfH∆uf + P T∆uf

subject to AQP∆uf ≤ BQP
(2.161)

The optimization can be done by using any of the standard commercially available QP optimization

code at each sample time. Then the calculated control signal u(k + 1) is applied to the system.

Constrained SPC has more computational load than unconstrained SPC. However, capability of

constraint handling is one of the most attractive features of the SPC in industrial applications,

since all of the real processes has some practical limitations on their parameters.

2.3 Subspace-based Approach for a Priori Knowledge Extraction

SIM is a data-driven black-box approach, but it has the capability to determine or estimate some

of the system characteristics, such as system order, impulse response, step response, static gain and

time-delay. These characteristics are derived directly from I/O data and can be used as a priori

knowledge when they are required.
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Impulse/Step Response Estimation

Recall the Subspace Predictor equation in (2.129),

Ŷf = LwWp + LuUf (2.162)

it has been shown that assuming that the number of row blocks, M in data block-Hankel matrices

is large enough (M →∞) following result is obtained [18,21],

Lu = Hd
M (2.163)

where Lu is the subspace predictor coefficient matrix which is calculated in (2.133) from the I/O

data block-Hankel matrices by solving the Least Square problem in (2.130), and Hd
M is a lower

triangular block Toeplitz matrix in (2.58). Considering the matrix Hd
M from (2.58), it can be seen

that first column of Hd
M contains the true impulse response coefficients (IRCs) (Markov parameters)

of the system for M horizon.

h̄M = Hd
M (:, 1) =



D

CB

CAB
...

CAM−2B


(2.164)

Moreover, true step response coefficients (SRCs) for M horizon are obtained as,

ḡM = F2H
d
M (:, 1) =



D

D + CB

D + CB + CAB
...

D + CB + CAB + · · ·+ CAM−2B


(2.165)
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where F2 is defined as (2.144). Therefore, first M samples of IRCs and SRCs of the system can be

estimated from the first column of matrix Lu as below,

ĥM = Lu(:, 1) (2.166)

ĝM = F2Lu(:, 1) (2.167)

Time-delay and Static Gain Estimation

By estimating the IRCs and SRCs from (2.166) and (2.167), if there is a time-delay of Td in I/O data

(or Nd in terms of samples) the first Nd elements of the ĥM and ĝM must be approximately zero.

Therefore, the time-delay can be estimated from (2.166) and (2.167) by applying an appropriate

threshold. Moreover, static gain of the system and its sign can be determined from the estimated

SRCs in (2.167).

Order Estimation

Consider the Subspace Predictor equation in (2.129). In this equation Lu and Lw are subspace

predictor matrices, which are calculated in (2.133) from the I/O data block-Hankel matrices by

solving the Least Square problem in (2.130) via QR decomposition in (2.131). From the equation

(2.133), Lw can be obtained as,

Lw = (R31 −R32R
−1
22 R21)R−1

11 (2.168)

In SIM framework, order of system can be estimated from the Singular Value Decomposition (SVD)

of subspace predictor coefficient matrix Lw [62],

Lw = [U1 U2]

 Σ1 0

0 Σ2

†  V T
1

V T
2

 (2.169)

In practical applications Lw is not a rank deficient matrix, but it can be approximated as,

Lw ≈ U1ΣT
1 V

T
1 (2.170)

which is a rank deficient matrix. Consequently, order of the system is estimated by applying an

appropriate threshold and determining the number of dominant singular values, Σ1 in (2.169) [62].
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Moreover, it was shown that the following SVD can give better estimation of the system order

than (2.168) [20] [106],

R31 −R32R
−1
22 R21 = [U1 U2]

 S1 0

0 S2

†  V T
1

V T
2

 (2.171)

the order n will be the number of dominant singular values S1 in (2.171).

2.4 Fuzzy Gain-Scheduling Procedure (FGS)

Most industrial processes are nonlinear and time-varying systems, their dynamic behavior changes

with the operating conditions of the process. A commonly used scheme to deal with this issue

is applying a Gain Scheduling (GS) technique [99]. In GS technique the controller parameters

are updated by monitoring different operating conditions of the process. GS technique was first

introduced in about 1950s with application on flight control systems [99], and it is very useful

technique to reduce the effects of parameter variation in different processes, such as pH control,

fuel-air control in car engine and ship steering [99]. Since the parameter updating procedure is

done based on open-loop or pre-programmed way, it is controversial to consider the GS technique

as an adaptive system. However, by utilizing and evaluating some auxiliary scheduling variables,

which are correlated with the changes in system dynamics the GS technique can be considered as an

adaptive controller [99]. In this case there is no need to estimate and identify the system parameters,

because the controller parameters can be updated quickly by using the auxiliary scheduling variable

values, as soon as a changes are observed in system dynamics. Figure 2.6 shows a typical block

diagram of a system with GS technique.

Generally, a conventional GS procedure has following designing steps [99]:

1- Determine the suitable auxiliary scheduling variables based on the physical system knowledge.

2- Linearized the non-linear system at about different operating points. These linearized models

are utilized to compute the local controller parameters for each of the operating conditions.

3- Apply the GS technique based on measurements of the auxiliary scheduling variables, which is

done by monitoring different operating conditions.
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Figure 2.6: Typical structure of GS technique

The main issue in design of GS system is finding suitable auxiliary scheduling variables, which is

done in model-based approach. Another drawback of conventional GS technique is that it is based

on open-loop compensation method, and if the linearization is not accurate enough, the error can

result to closed-loop instability. Moreover, the controller parameters must be determined for many

operating points, which is very time consuming. Stability and local performance assessment of each

linearized controller must be done for each operating point, and non-local performance evaluation

is checked by simulations.

On the other hand, there is a fuzzy logic based approach to GS technique which can overcome

the disadvantages of conventional GS technique. The approach is called Fuzzy Gain-Scheduling

(FGS) technique. There are many successful implementation of FGS in the literature to control

the nonlinear and time-varying systems [107–110], and FGS-PID, which is one of the most popular

FGS techniques in industry [111–114].

In general, FGS procedure consist of three main parts Fuzzifier, FGS Rules and Defuzzifier as

shown in Figure 2.7.

In FGS technique, first, the crisp input variables are converted to fuzzy numbers in Fuzzifier,

then they are utilized to determine updated controller gains by considering FGS Rules. Finally,

the resultant fuzzy numbers representing the controller gains are converted to crisp values by

Defuzzifier.

A well-known issue in FGS technique is predefined the prescribed ranges of controller parame-

ters. Since the controller parameters in FGS algorithm is considered in normalized format in range
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Figure 2.7: Typical structure of FGS

of zero to one, the output of defuzzifier block should be in the normalized form. Therefore, without

having these controller gain ranges (CGRs) recovering the actual values of controller parameters is

impossible. Currently, these CGRs are calculated in an ad hoc manner by the designer, which is

a complex procedure especially for time-varying and nonlinear systems. The issue was addressed

in the literature, and several methods were presented to determine the CGRs in FGS-PID con-

troller [112, 115–118]. For example, in [117] CGRs are determined in FGS-PID by rule of thumb

based on extensive simulation studies and by using the gain and period of oscillation at the stability

limit under proportional control. The CGRs replaced by proper adjustment rates in [112] to gener-

ate the degrees of gain difference. However, the rates still need to be selected by the user according

to the several simulation results of FGS-PID. In [116] CGRs were considered as scaling factors for a

PID-type fuzzy controller, and a self-tuning method was presented to tune them via tracking error

based functions. However, the simulation results show a considerable overshoot at the transient

response of the controlled system. An optimal FGS-PID control is also presented in [115] to en-

hance the performance of conventional PID controller. The method uses Bee Colony Optimization

technique to automatically tuning the scaling factors, membership functions and control rules of

the FGS-PID controller automatically. However, on-line tuning of all membership functions and

control rules is a complex task and demands high computational load. In [118] a Particle Swarm

Optimization (PSO) based strategy was provided for tuning scaling factors in a PID-type fuzzy

logic controller, by considering a cost function to minimize the maximum overshoot and the integral

of absolute error. The approach was compared with standard Genetic Algorithm (GA) approach

which shows computational efficiency and converges superiority of the PSO-based algorithm.
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2.5 Particle Swarm Optimization Technique (PSO)

PSO is an intelligent based optimization technique, and belongs to meta-heuristic class of opti-

mization algorithms [119–121], which is inspired by social behavior of animals like ants, fish and

birds. It has superiority to other meta-heuristic optimization methods such as GA in terms of

complexity and computational load [118, 122]. There are many successful engineering applications

of PSO in the literature [123,124]. PSO is a population based technique which contains a swarm of

candidate solutions called particles. Each particle has a position in a multidimensional search space

of the optimization problem. The search space contains all possible solutions for the optimization

problem. PSO searches for the optimum solution among these possible solutions.

Mathematical model for motion of particles and updating their position in PSO is described

as [121],

vi(t+ 1) = w(t)vi(t) + r1c1(pbi(t)− pi(t)) + r2c2(pg(t)− pi(t)) (2.172)

pi(t+ 1) = pi(t) + vi(t+ 1) (2.173)

where, i is the index of the particle, t is the discrete time step and shows the iteration of the

algorithm, pi(t) and vi(t) are position and velocity of ith particle in the search space at time

step t, respectively. w(t) is the inertia coefficient. r1 and r2 are uniformly distributed random

numbers between zero and one. c1 and c2 are positive acceleration coefficients to scale the cognitive

component (pbi(t) − pi(t)) and the social component (pg(t) − pi(t)), respectively. pbi(t) is the

personal best position for ith particle and pg(t) is the global best position among the members of

swarm at iteration t. The personal best position and the global best position, at the next iteration

t+ 1 are updated as follows [121],

pbi(t+ 1) =


pbi(t) if J(pi(t+ 1)) ≥ J(pbi(t))

pi(t+ 1) if J(pi(t+ 1)) < J(pbi(t))

(2.174)

pg(t+ 1) =


pg(t) if J(pbi(t+ 1)) ≥ J(pg(t))

pbi(t+ 1) if J(pbi(t+ 1)) < J(pg(t))

(2.175)

where J(pi(t+ 1)) is the PSO fitness function evaluation for particle i at the iteration t+ 1.

Suitable selection of inertia coefficient, w(t), is essential to ensure convergence behavior of

50



CHAPTER 2. BACKGROUND

optimization problem. The inertia coefficient has effect on narrowing the search area gradually

by changing the exploratory mode to an exploitative mode. In practical applications, w normally

decreases from wmax = 0.9 to wmin = 0.4 from the beginning to the end of the optimization

problem [121]. In each iteration the inertia coefficient is calculated as follows,

w(t) = (wmin − wmax)
IT (t)

ITmax
+ wmax (2.176)

where, IT (t) and ITmax are current iteration number and maximum number of iterations, re-

spectively. Since, PSO is an iterative optimization procedure a convergence criteria is required to

terminate the iteration. Some of these terminating conditions are such as [125]: Exceeding the

maximum number of iteration, finding an acceptable solution, observing no improvement over a

number of iteration, achieving to almost zero normalized swarm radius or achieving approximately

zero slope in objective function. General principle of PSO algorithm is shown in Figure 2.8.
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Figure 2.8: Basic principle of PSO

A more generalized PSO algorithm was suggested in [120], which can improve the convergence

quality by decreasing the amplitude of the particle movements as they approach to the solution.
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This method is also called Constriction PSO, which is formulated as follows,

vi(t+ 1) = χ[vi(t) + r1φ1(pbi(t)− pi(t)) + r2φ2(pg(t)− pi(t))] (2.177)

pi(t+ 1) = pi(t) + vi(t+ 1) (2.178)

where φ1 = φ2 = 2.05 and χ is calculated as,

χ =
2κ

|2− φ−
√
φ2 − 4φ|

(2.179)

where φ = φ1 + φ2 and κ = 1. Parameter χ guaranties a decreasing velocity for each particle by

increasing the number of iterations [120,126].

2.6 Summary

In this chapter, an introduction to system identification methods and predictive control were pro-

vided. Focusing on open-loop system identification, the Prediction Error Method (PEM) and the

Subspace Identification Methods (SIM) were reviewed. A review of model-based approach and

data-driven approach of predictive control were presented, and formulation of Model Predictive

Control (MPC) and Subspace Predictive Control (SPC) were provided for both unconstrained and

constrained cases. A review of subspace-based methods to estimate the impulse response and

step response, static gain, time-delay and system order were also included. Moreover, a review of

Fuzzy Gain Scheduling (FGS) technique and Particle Swarm Optimization (PSO) procedure were

presented.
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Stability and Performance of SPC

3.1 Problem Statement and Chapter Summary

In SPC implementation, the SPC gain matrices and control signal are functions of SPC tuning

parameters. Therefore, appropriate choice of SPC tuning parameters, horizons and weighting ma-

trices, have a significant impact on stability and performance of SPC closed-loop system. Moreover,

the SPC gains are calculated directly by using I/O data, and computational complexity of the opti-

mization algorithm depends on the dimension of the system, which is also affected by the length of

SPC horizons. Therefore, it is required to select the SPC horizons in an optimal way to guarantee

the closed-loop stability and performance and to minimize the computational load. There exist

tuning strategies and stability analysis for MPC, which are based on model-based techniques [48].

These methods need some prior information from the system model and parameters, such as open-

loop settling time, rise time, delay time or system matrices and only some of them can guarantee the

closed-loop stability. However, SPC is a model-free approach, and these model-based techniques are

not applicable for SPC. In the best of our knowledge, there is no model-free approach for tuning the

SPC horizons. In SPC approach the controller is designed based on subspace predictor matrices Lu

and Lw, which are driven directly from I/O data. Therefore, it is necessary to provide an optimal

model-free tuning technique for SPC based on subspace predictor matrices that can also guarantee

the closed-loop stability. Here, we concentrate on open-loop stable systems, but the systems can

be non-minimum phase.

In this chapter, SPC closed-loop stability conditions are provided for open-loop stable systems

based on SPC gains and SPC cost function tuning parameters. Consequently, SPC stability graph

is introduced and feasibility range of prediction horizon is determined to ensure the closed-loop
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stability. Moreover, a technique is provided to calculate the efficient prediction and control horizons

to guarantee the closed-loop stability and performance and to minimize the computational load.

3.2 SPC Stability Analysis

Considering the SPC incremental control law from (2.147) and SPC gain matrices in (2.148) and

(2.149), this section provides SPC closed-loop stability conditions based on the SPC gains and SPC

cost function tuning parameters.

3.2.1 SPC Closed-loop Transfer Function

Assume that a SISO open-loop stable system is described by the following discrete time transfer

function,

Gol(q
−1) =

y(k)

u(k)
=
N(q−1)

D(q−1)
(3.1)

where N(q−1) and D(q−1) are polynomials with unknown coefficients. Note that the system can

be non-minimum phase with time-delay.

On the other hand, by considering ∆wp in (2.143) the SPC control law in (2.150) can be

rewritten as below,

∆u(k + 1) = −k̃e(y(k)− r(k + 1))− k̃∆yp(q−1)∆y(k)− k̃∆up(q−1)∆u(k) (3.2)

where k̃∆yp(q−1) and k̃∆up(q−1) are defined as,

k̃∆yp(q−1) = k̃∆ypM
q−M+1 + · · ·+ k̃∆yp2

q−1 + k̃∆yp1
(3.3)

k̃∆up(q−1) = k̃∆upM
q−M+1 + · · ·+ k̃∆up2

q−1 + k̃∆up1
(3.4)

See Appendix A for calculations.

By multiplying both sides of (3.1) by ∆ = 1− q−1 and using (3.2) the SPC closed-loop transfer

function is obtained as follows,

Gcl(q
−1) =

y(k)

r(k + 1)
=
q−1N(q−1)

Dcl(q−1)
(3.5)
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where Dcl(q
−1) is the closed-loop characteristics polynomial as below,

Dcl(q
−1) = ∆k̃−1

e D(q−1) + q−1[∆k̃−1
e N(q−1)k̃∆yp(q−1) + ∆k̃−1

e D(q−1)k̃∆up(q−1) +N(q−1)] (3.6)

See Appendix B for calculations.

Remark 3.2.1. In MIMO systems with m inputs and l outputs, the transfer function matrix can

be considered as follows,

y(k) = Gol(q
−1)u(k) (3.7)

where y(k) ∈ Rl, u(k) ∈ Rm and Gol(q
−1) is defined as below,

Gol(q
−1) =


G11 G12 . . . G1m

G21 G22 . . . G2m

...
...

. . .
...

Gl1 Gl2 . . . Glm

 (3.8)

where Gij is transfer function from jth input to ith output.

3.2.2 SPC Closed-loop Stability

The SPC closed-loop characteristics equation in (3.6) can be rewritten as follows,

∆k̃−1
e D(q−1) +N∗(q−1) = 0 (3.9)

where N∗(q−1) is defined as,

N∗(q−1) = q−1[∆k̃−1
e N(q−1)k̃∆yp(q−1) + ∆k̃−1

e D(q−1)k̃∆up(q−1) +N(q−1)] (3.10)

and the closed-loop poles are also satisfying the following equation,

1 +
k̃e
∆

N∗(q−1)

D(q−1)
= 0 (3.11)
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Structure of (3.11) indicates that the SPC closed-loop characteristics equation can be defined as a

negative feedback control system, which includes a compound system with transfer function of,

N∗(q−1)

D(q−1)
(3.12)

and an integral type regulator with transfer function of,

k̃e
∆

(3.13)

By considering that ∆(1) = 0, DC-gain of the compound system in (3.12), can be derived as,

Kco =
N∗(1)

D(1)
=
N(1)

D(1)
= Kol (3.14)

where Kco is DC-gain of the compound system in (3.12) and Kol is DC-gain of the open-loop system

in (3.1).

Theorem 3.2.1. The necessary and sufficient condition for small-gain stability of SPC closed-loop

system in (3.5) is,

k̃eKol > 0 (3.15)

where k̃e and Kol are defined in (2.150) and (3.14), respectively.

Proof. Applying similar small-gain root-locus analysis as in [127] and [128] to (3.11) proves stability

of the SPC closed-loop system [129]. See Appendix C for proof.

Remark 3.2.2. Note that in (3.15), only sign of the open-loop DC-gain, sgn[Kol], is required,

which can be determined by the method in Section 2.3.

Remark 3.2.3. Since, k̃e is defined as the first m rows of K̃e, recall (2.148) shows that k̃e is propor-

tional to the weighting matrix Q and inversely proportional to the weighting matrix R. Therefore,

the concept of small-gain k̃e can be interpreted as sufficiently large value of R and sufficiently small

value of Q.

Remark 3.2.4. Given sufficiently small Q ≥ 0 and sufficiently large R > 0, the SPC closed-loop

system defined in (3.5) is stable, if Np and Nc (Np > Nc) are selected such that the SPC closed-loop
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stability condition in (3.15) is satisfied.

Definition 3.2.1. SPC gains that satisfy (2.148) and (2.149) are called achievable SPC gains,

and the achievable SPC gains which ensure SPC closed-loop stability in (3.15) are called feasible

SPC gains. Similar definitions are used for MPC in [49].

3.3 SPC Tuning Parameters Selection

The SPC cost function in (2.117) has four tuning parameters: Weighting matrices Q,R, Prediction

horizon Np and Control horizon Nc. Appropriate selection of them has significant effect on stability

and performance of the SPC controller. Weighting matrices have similar roles and characteristics

as in Linear Quadratic (LQ) controllers [48]. However, prediction horizon Np and control horizon

Nc are the specific parameters for SPC, as LQ controllers use infinite horizon in the optimization

algorithm. This section analyzes the effect of selecting SPC tunning parameters on stability and

performance of the closed-loop system.

3.3.1 Weighting Matrices (Q and R)

In SPC cost function weighting matrices Q and R are considered as positive semidefinite and

positive definite matrices to penalize tracking error and control signal, respectively. Weights on

the tracking error, Q, are used to direct more control effort towards more dominant output signal.

Setting larger weight for a particular output leads to a faster, but aggressive response for that

particular output. Weighting matrix R is utilized to penalize the control signal. Setting a large

penalty for a specific control signal yields a more robust, but slow controller. On the other hand,

smaller weights result in more aggressive, but less robust controllers [48].

3.3.2 Prediction Horizon (Np)

Prediction horizon is considered as the number of future samples needed to be computed to minimize

tracking error. Np is chosen long enough to ensure that the controlled system output reaches steady

state. For practical applications, Np needs to be larger than the control horizon and is chosen at

least equal to the open-loop settling time [48, 54]. Good stability properties has been observed by

using a large prediction horizon, which leads to a control law that approaches LQ control [61,130].

However, the use of large Np does not always guarantee the closed-loop stability and may cause

numerical instability, and also drastically increases the computational load especially for systems
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with fast dynamics. On the other hand, selecting very short prediction horizon can jeopardize the

robustness and stability of the SPC closed-loop system.

In SPC approach selecting the prediction horizon Np truncates the rows of subspace predictor

matrices Lw ∈ RMl×M(l+m) and Lu ∈ RMl×Mm, as shown in (2.139) and (2.140). Therefore, Np

cannot be considered larger than M . By considering Nc < Np, the achievable prediction horizon

range for the SPC approach is defined as,

1 ≤ Nc < Np ≤M (3.16)

However, not all of the achievable prediction horizons can guarantee the SPC closed-loop stability.

Therefore, the feasible range of prediction horizon has to be defined based on SPC closed-loop

stability condition in (3.15).

Definition 3.3.1. The achievable range of Np that guarantees the SPC closed-loop stability condi-

tion in (3.15) is called the Feasible Range (FR) of prediction horizon.

Definition 3.3.2. The smallest prediction horizon that ensures the SPC closed-loop stability condi-

tion in (3.15) is called Shortest-Feasible-Prediction-horizon (SFP) and is denoted by NSFP .

Determine NSFP and FR of Prediction Horizon

Table 3.1 provides a technique to obtain the feasible SPC gains based on the SPC stability condi-

tion in (3.15) and Remark 3.2.4 for given weighting matrices, Q ≥ 0 and R > 0, then to determine

the NSFP and FR of Np [129].

Table 3.1: Technique of determining the feasible SPC gains, NSFP and FR of Np

Step 1: Determine sgn[Kol] using open-loop I/O data

Step 2: Given Q and R calculate achievable SPC gains k̃e, for 1 ≤ Nc < Np ≤M and Nc = Np − 1

Step 3: Obtain the feasible SPC gains k̃e by using SPC closed-loop stability condition in (3.15),
and determine NSFP and FR of Np
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Remark 3.3.1. According to the SPC stability condition in (3.15) and the technique in Table 3.1,

the Efficient-Prediction-horizon, NEP must be selected as,

NSFP ≤ NEP ≤M (3.17)

Moreover, choice of NEP depends on the desired closed-loop performance for each system. Here,

we propose optimal selection of NEP based on the SPC cost function optimization. The strategy is

provided in Table 3.2.

3.3.3 Control Horizon (Nc)

Control horizon determines behavior of the control signal. Selecting a very small control horizon

can be computationally more efficient, but deteriorates performance of the closed-loop system [48].

In addition, increasing the control horizon from a certain value has no significant effect on the

closed-loop performance, but increases the computational load of the optimization algorithm and

closed-loop system [48,56].

In SPC approach selecting the control horizon, Nc, truncates the columns of subspace predictor

matrix Lu ∈ RMl×Mm, which is shown in (2.140). The achievable control horizon range for SPC

approach is defined as,

1 ≤ Nc < Np (3.18)

It can be shown that for sufficiently small Q ≥ 0 and sufficiently large R > 0, control horizon

does not affect the FR of Np and SPC closed-loop stability. However, Nc has an impact on the

performance of the closed-loop system.

Selection of Efficient Control Horizon and Prediction Horizon (NEC and NEP)

In the subspace identification literature, by assuming that the number of row blocks, M , in the

data block Hankel matrices is large enough (M → ∞), the subspace predictor coefficient matrix,

Lu in (2.135) is considered as the estimate of matrix Hd
M [18,21]. Recall the matrix Hd

M in (2.58),

it can be seen that Hd
M is a lower triangular block Toeplitz matrix which contains the impulse

response coefficients (Markov parameters) of deterministic inputs. In (2.140) it has been shown

that selecting the control horizon truncates the columns of subspace predictor coefficient matrix Lu.

Truncating the columns of matrix Lu is equivalent to rank reduction of matrix Hd
M . To represent an
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nth order system properly by its Markov parameters, the number of parameters has to be selected

large enough, and it is necessary to have at least n Markov parameters to represent the system.

Therefore, for an observable and reachable nth order system it needs to have,

min{ rank(Hd
M )} = n+ 1 (3.19)

Therefore, in truncating the columns of matrix Lu, control horizon has to be chosen greater than

or equal to n+ 1, (Nc ≥ n+ 1). Choice of Nc < n+ 1 can deteriorate the closed-loop performance.

Moreover, it can be shown that increasing the Nc greater than NSFP does not have significant

effect on the feasible SPC gain k̃e and the performance. However, it reduces efficiency of the

control algorithm by increasing the computational load.

Proposition 3.3.1. In SPC approach for closed-loop system in (3.5), to avoid performance dete-

rioration, and for computational efficiency, the Efficient-Control-horizon, NEC , is suggested to

be selected as follows by efficiently minimizing dimension of the subspace predictor matrix Lu [129],


NEC = n+ 1 if NSFP ≤ n+ 1

NEC = NSFP if NSFP > n+ 1

(3.20)

Remark 3.3.2. Since, SPC is a model-free approach, the system order, n, can be estimated by

applying Subspace-based order estimation method in Section 2.3. Full discussion is provided in

Chapter 5.

Table 3.2 provides an efficient methodology to select the SPC horizons based on the technique

in Table 3.1, and definitions of NEC in (3.20) and NEP in (3.17).
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Table 3.2: Technique of determining the efficient SPC horizons, NEC and NEP

Step 1: Given Q and R determine NSFP and FR of Np by using the technique in Table 3.1

Step 2: Determine NEC based on the proposed criteria in (3.20).

Step 3: Given Q and R, determine NEP by optimizing the SPC cost function in (2.118) as below,

min
Np

J = (ŷf − rf )TQ(ŷf − rf ) + ∆uTf R∆uf

subject to given Q ≥ 0, R > 0

Nc = NEC

NSFP ≤ Np ≤M
vmin ≤ v ≤ vmax

where v is any of the constrained variables in (2.126).

3.4 Simulation Results

In this section, five examples are presented to demonstrate the proposed SPC stability condition

by applying the technique in Table 3.1. Simulation results show the effectiveness of the proposed

technique in Table 3.2 to select the efficient SPC horizons and stable SPC design. The selected

systems have been extensively used in simulations to validate the controller performance [20,21,40,

45,49,53,55,131,132].

3.4.1 Systems Description

System I: Non-minimum Phase Fourth-order System

For the first system an open-loop I/O dataset (N = 2000, M = 60 and Ts = 0.5sec) is collected

from the following forth-order (n = 4) SISO non-minimum phase stable system [20],

A =


0.603 0.603 0 0

−0.603 0.603 0 0

0 0 −0.603 −0.603

0 0 0.603 −0.603

 , B =


0.9238

2.7577

4.3171

−2.6436

 (3.21)

61



CHAPTER 3. STABILITY AND PERFORMANCE OF SPC

C =
[
−0.5749 1.0751 −0.5225 0.1830

]
, D =

[
−0.7139

]
(3.22)

System II: Non-minimum Phase Second-order System

Here, open-loop I/O dataset with N = 2000, M = 60 and Ts = 0.5sec is collected from the following

second-order (n = 2) SISO high stable non-minimum phase system [45],

A =

 1 −0.25

1 0

 , B =

 1

0

 , C =
[
−1 1.2

]
, D =

[
0
]

(3.23)

System III: Non-minimum Phase Fourth-order System

In this case a fourth-order SISO non-minimum phase stable system is selected to collect open-loop

I/O dataset for N = 2000, M = 60 and Ts = 0.1sec [40],

A =


1.5310 −0.6914 0.0995 −0.0256

1 0 0 0

0 1 0 0

0 0 1 0

 , B =


1

0

0

0

 (3.24)

C =
[
−0.0876 −0.1897 0.2947 0.0758

]
, D =

[
0
]

(3.25)

System IV: SISO time-delayed system

Consider following second-order plus time-delay system from [55],

Gol(s) =
e−50s

(150s+ 1)(25s+ 1)
(3.26)

Sampling time of Ts = 5sec is selected for System IV, and discretized transfer function of the

system, by using zero order holder, is obtained as,

Gol(z
−1) = z−11 0.003087 + 0.002856z−1

1− 1.786z−1 + 0.7919−2
(3.27)

Open-loop I/O dataset is collected from the discretized system (N = 2000 and M = 150).
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System V (Distillation System): MIMO time-delayed system

The Wood-Berry distillation column system is a Methanol-Water distillation column, which is a

continuous time two-input two-output process with large time-delay. Transfer function of this

MIMO model is [133],

 Y1(s)

Y2(s)

 =


12.8e−s

16.7s+1
−18.9e−3s

16.7s+1

6.6e−7s

10.9s+1
−19.4e−3s

14.4s+1


 U1(s)

U2(s)

 (3.28)

In this system, y1, y2 are two outputs, which are the overhead product compositions and the

bottom product composition, respectively. The outputs are controlled by manipulating the flux

flow rate and steam flow rate as inputs, u1 and u2 [133]. Sampling time of Ts = 1min is selected,

and discretized transfer function matrix of the system, by using zero order holder, is obtained as

follows,

Gp(z
−1) =

 z−2 0.744
1−0.9419z−1 z−4 −0.8789

1−0.9535z−1

z−8 0.5796
1−0.9123z−1 z−4 −1.302

1−0.9329z−1

 (3.29)

Open-loop I/O data for all inputs and outputs are collected for this discretized MIMO system

(N = 2000, M = 80). Note that open-loop I/O data for all of the systems are obtained by using

PRBS of magnitude 2 for the inputs u(k).

3.4.2 Stability Analysis and Determination of NSFP and FR of Np

FR of prediction horizon and NSFP for each system are calculated by applying the technique in

Table 3.1 as follows:

Step1: Sign of DC-gain, sgn[Kol], for each open-loop system is determine by using I/O data. The

DC-gain signs are provided in Table 3.3 for SISO systems, and Table 3.4 shows the sign of static

gains for each subsystem of the MIMO Distillation system. Note that, as shown in (3.15), only sign

of the DC-gain is used not the exact value.

Step2: Given weighting matrices Q and R, the achievable SPC gains, k̃e, are calculated for each
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Table 3.3: Sign of DC-gain for open-loop SISO systems
System sgn[Kol]

I -
II +
III +
IV +

Table 3.4: Sign of DC-gain for each subsystem of Distillation System
Subsystem sgn[DC-gain]

Gp11 +
Gp21 +
Gp12 -
Gp22 -

system for achievable prediction horizon range, 1 ≤ Nc < Np ≤M , and Nc = Np − 1.

Figures 3.1, 3.2, 3.3 and 3.4 show the achievable SPC gains, k̃e, in terms of achievable pre-

diction horizon range for each SISO system. We denoted these graphs as SPC stability graphs.

The SPC stability graphs for each subsystem of MIMO Distillation System are shown in Figure 3.5.
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Figure 3.1: System I: SPC stability graph for Q = I, R = 100I and Nc = Np − 1

Remark 3.4.1. Note that, for simplicity and without loss of generality, for all simulation the

weighting matrices are selected as, Q = I and R = 100I for SISO systems, and Q = 0.01I and
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R = 400I for Distillation System, otherwise they can be chosen any positive semi-definite and

positive definite matrices.
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Figure 3.2: System II: SPC stability graph for Q = I, R = 100I and Nc = Np − 1
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Figure 3.3: System III: SPC stability graph for Q = I, R = 100I and Nc = Np − 1

Step3: From the plotted SPC stability graphs in Figures 3.1, 3.2, 3.3 and 3.4, the NSFP and FR of

Np are determined by comparing the sgn[Kol], and sign of achievable SPC gains, sgn[k̃e], for each
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Figure 3.4: System IV: SPC stability graph for Q = I, R = 100I and Nc = Np − 1

SISO system, to satisfy the SPC closed-loop stability condition in (3.15). For MIMO Distillation

System the sign of DC-gain of each subsystem must be considered. The NSFP for each system and

subsystems are shown in Figures 3.1, 3.2, 3.3, 3.4 and 3.5.

For System I, from Table 3.3 the DC-gain is negative, Kol < 0, and according to the stability

graph in Figure 3.1 all achievable SPC gains are negative, k̃e < 0. Therefore, from the stability

condition in (3.15), k̃eKol > 0, all achievable SPC gains are feasible. As a result, FR of Np for

System I is equal to the achievable range of Np, and NSFP = 2.

However, for Systems II, III and IV, from Table 3.3, the DC-gains are positive, Kol > 0, and

the SPC stability graphs in Figures 3.2, 3.3 and 3.4 indicate that not all of the achievable SPC

gains can satisfy the stability condition in (3.15). According to the stability graphs in Figures 3.2

and 3.3 the value of NSFP for Systems II and III are NSFP = 9 and NSFP = 11, respectively.

Therefore, the FR of Np for Systems II and III can be obtained as 9 ≤ Np ≤M and 11 ≤ Np ≤M ,

respectively. For System IV the time-delay can also be determined from SPC stability graph in

noise-free cases. From SPC stability graph in Figure 3.4 we obtain Nd = 11, NSFP = 12 and FR

of Np is 12 ≤ Np ≤M . The results for each SISO system have been shown in Table 3.5.

For MIMO Distillation System, from the SPC stability graphs in Figure 3.5 and sign of the

DC-gains in Table 3.4, NSFP and FR of Np are determined as Table 3.6 for each subsystem. Note

that from Figure 3.5 it can be seen that in subsystem Gp21 for Np > 38 the SPC gain ke becomes

negative. Therefore, FR of Np for subsystem Gp21 will be 9 ≤ Np ≤ 38. Moreover, time-delay of

66



CHAPTER 3. STABILITY AND PERFORMANCE OF SPC

0 20 40 60 80
0

1

2

3

4

5
x 10

−3

N
p

A
ch

ie
va

bl
e 

S
P

C
 G

ai
n,

 k
e

G
p11

0 20 40 60 80
−1.5

−1

−0.5

0

0.5

1
x 10

−3

N
p

A
ch

ie
va

bl
e 

S
P

C
 G

ai
n,

 k
e

G
p21

0 20 40 60 80
−2.5

−2

−1.5

−1

−0.5

0

0.5
x 10

−3

N
p

A
ch

ie
va

bl
e 

S
P

C
 G

ai
n,

 k
e

G
p12

0 20 40 60 80
−5

−4

−3

−2

−1

0

1
x 10

−3

N
p

A
ch

ie
va

bl
e 

S
P

C
 G

ai
n,

 k
e

G
p22

0 1 2 3

0

2

4
x 10

−5

2 3 4 5

−4

−2

0

x 10
−5

2 4 6 8

0

2

4
x 10

−5

2 3 4 5

−4

−2

0

x 10
−5

38 40
−5

0

5

x 10
−5

N
SFP

=9

SPC Stability Graphs

N
SFP

=5

N
SFP

=3

N
SFP

=5

N
d
=2

N
d
=4

N
d
=8

N
d
=4

Figure 3.5: Distillation System: SPC stability graphs for each subsystem of System V for Q = 0.01I,
R = 400I and Nc = Np − 1

Table 3.5: NSFP and FR of prediction Horizon for each system
System NSFP FR of Np

I 2 2 ≤ Np ≤M
II 9 9 ≤ Np ≤M
III 11 11 ≤ Np ≤M
IV 12 12 ≤ Np ≤M

each subsystem is also detectable from the SPC stability graphs.

Figure 3.6 shows output of the System III for different feasible and unfeasible Np values. From

Table 3.5 the feasible range of prediction horizon for System III is 11 ≤ Np ≤ M . Therefore,

Figure 3.6 indicates that by selecting the Np from the feasible range of prediction horizon an stable
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Table 3.6: NSFP and FR of Np for Distillation System (M = 80)

Subsystem NSFP FR of Np

Gp11 3 3 ≤ Np ≤M
Gp21 9 9 ≤ Np ≤ 38
Gp12 5 5 ≤ Np ≤M
Gp22 5 5 ≤ Np ≤M

closed-loop system is achievable. However, for unfeasible prediction horizon values, Np = 5 and

Np = 10, the SPC closed-loop system is unstable.

0 500 1000 1500 2000
−4

−2

0

2

4

samples

N
p
 = 5

0 500 1000 1500 2000
−4

−2

0

2

4

samples

N
p
 = 10

0 500 1000 1500 2000
−1

0

1

2

3

samples

R
e

fe
re

n
ce

 s
ig

n
a

l &
 o

u
tp

u
t

N
p
 = 13

0 500 1000 1500 2000
−1

0

1

2

3

samples

N
p
 = 20

R
e

fe
re

n
ce

 s
ig

n
a

l &
 o

u
tp

u
t

Figure 3.6: System III: Reference signal and output for Q = I, R = 100I, Nc = Np−1 and different
unfeasible and feasible Np values

3.4.3 Choice of Efficient SPC Horizons NEC and NEP

By determining the FR of Np the optimum SPC horizons need to be determined from the feasible

values. In this part the efficient SPC horizons, NEC and NEP , are determined for each system
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based on the technique in Table 3.2 as follows:

Step 1: The NSFP and FR of Np are determined for each system by using the technique in Table

3.1. The results are shown in Tables 3.5 and 3.6.

Step 2: The efficient-control-horizon, NEC , can be determined for each system from the proposed

criteria in (3.20). For this purpose order of each system needs to be compared with its NSFP . The

results are shown in Table 3.7 for each system.

Remark 3.4.2. Note that the system order, n, can be estimated using the Subspace-based approach

in Section 2.3 or other existing order estimation methods in the literature. More details are provided

in Chapter 5.

Table 3.7: System order, NSFP and NEC for each system
System order (n) NSFP NEC

I 4 2 n+ 1
II 2 9 NSFP

III 4 11 NSFP

IV 2 12 NSFP

For System I according to Table 3.7, we have NSFP < n. Therefore, from the criteria in (3.20)

we select NEC = n + 1. However, for Systems II, III and IV we have NSFP > n, as a result,

we consider NEC = NSFP for these systems. For Distillation System, the overall MIMO system

order can be estimated from Subspace-based approach in Section 2.3 by considering the dominant

singular values of subspace predictor matrix Lw in (2.169). Figure 3.7 shows the first 20 dominant

singular values of Lw for the MIMO Distillation system. Here, the system order can be estimated

as n = 1 or n = 2 and in both cases n < NSFP . As a result, from (3.20) we have NEC = NSFP for

all subsystems.

Therefore, from the technique in Table 3.2 the efficient values of control horizons are obtained

for each subsystem as Table 3.8,

To verify the efficiency of proposed control horizon selection criteria in (3.20) the stability graphs

of Systems I, II and III are plotted in Figures 3.8, 3.9 and 3.10 for 1 ≤ Nc ≤ 14. The results show

that, since Q = I is small enough and R = 100I is large enough, Nc has no effect on the SPC

closed-loop stability.
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Figure 3.7: Distillation System: Singular values of Lw for Distillation System

Table 3.8: NEC for each subsystem of MIMO Distillation System
Subsystem NEC

Gp11 3
Gp21 9
Gp12 5
Gp22 5

Moreover, the SPC stability graphs indicate that there is no significant change on the SPC gain,

k̃e, for Nc > NEC . Therefore, the achievable performance of the SPC closed-loop system remains

the same for Nc > NEC , which verifies the proposed computationally efficient selection criteria of

control horizon in (3.20).

Step 3: In this step, the NEP is selected based on the SPC cost function optimization procedure in

(3.2). Given Q = I, R = 100I and Nc = NEC the SPC cost function in (2.117) has been evaluated

for feasibility range of each system, NSFP ≤ Np ≤M . From the evaluation result NEP is selected

for each system according to the Table 3.9.

From the proposed technique in Table 3.2 the efficient values of prediction horizons are obtained
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Figure 3.8: System I: SPC stability graphs for Q = I, R = 100I and 1 ≤ Nc ≤ 14
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Figure 3.9: System II: SPC stability graphs for Q = I, R = 100I and 1 ≤ Nc ≤ 14

71



CHAPTER 3. STABILITY AND PERFORMANCE OF SPC

0 10 20 30 40 50 60
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Prediction Horizon, N
p

A
ch

ie
va

bl
e 

S
P

C
 g

ai
n,

 k
e

SPC Stability Graph

 

 
Nc=1

Nc=2

Nc=3

Nc=4

Nc=5

Nc=6

Nc=7

Nc=8

Nc=9

Nc=10

N
EC

=11

Nc=12

Nc=13

Nc=14

Figure 3.10: System III: SPC stability graphs for Q = I, R = 100I and 1 ≤ Nc ≤ 14

Table 3.9: Selected NEP by SPC Cost Function Evaluation
System NEP

I 15
II 30
III 32
IV 50

for each subsystem of the MIMO Distillation System by minimizing the cost function of each

subsystem. The results are shown in Table 3.10,

Table 3.10: NEP for each subsystem of MIMO Distillation System
Subsystem NEP

Gp11 32
Gp21 30
Gp12 24
Gp22 16

Figures 3.11 and 3.12 illustrate the SPC cost function evaluation and selection of NEP for

Systems III and IV.

Moreover, the SPC stability graphs in Figures 3.8, 3.9 and 3.10 show that for Nc = NEC

72



CHAPTER 3. STABILITY AND PERFORMANCE OF SPC

10 15 20 25 30 35 40 45 50 55 60
0.015

0.02

0.025

0.03

0.035

0.04

N
p

S
P

C
 C

os
t F

un
ct

io
n

25 30 35 40

0.0156

0.0157

0.0157

0.0157
N

EP
 = 32

Figure 3.11: System III: SPC cost function evaluation for Q = I, R = 100I and Nc = NEC = 11

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150150
0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

N
p

SP
C

 C
os

t F
un

ct
io

n

48 50 52 54

0.0124

0.0124

0.0124

0.0124

0.0124

0.0124
N

EP
 = 50

Figure 3.12: System IV: SPC cost function evaluation for Q = I, R = 100I and Nc = NEC = 12
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increasing the prediction horizon from NEP for each system has no significant effect on the SPC

gain k̃e. As a result, it can not enhance the maximum achievable SPC closed-loop performance,

but will increase the computational load of the SPC algorithm.

3.4.4 Effect of Weighting Matrices R and Q

According to Theorem 3.2.1 and Remark 3.2.3 to ensure the SPC closed-loop stability the weighting

matrices Q and R need to be selected sufficiently small and sufficiently large, respectively. Here,

the effect of selecting different weighting matrices R and Q on NSFP and FR of Np is studied, and

the results are provided for System III.

Effect of Weighting Matrix R

In this part effects of selecting different weighting matrices, R, on the SPC closed loop stability

and robustness is being studied for System III. In order to study the effects of selecting weighting

matrix, R on NSFP and FR of Np, the SPC stability graphs of System III are plotted for different

R values. The results are shown in Figures 3.13 and 3.14 for Q = I and Nc = Np − 1 for different

weighting matrices R.
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Figure 3.13: System III: SPC stability graphs for Q = I and Nc = Np − 1
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Figure 3.14: System III: SPC stability graphs for Q = I and Nc = Np − 1

Table 3.11 shows NSFP and FR of Np for each R in System III.

Table 3.11: System III: FR of Np for different R, Q = I and Nc = Np − 1

R NSFP FR of Np

1000I 11 11 ≤ Np ≤M
100I 11 11 ≤ Np ≤M
10I 11 11 ≤ Np ≤M
I 14 14 ≤ Np ≤M

0.1I 18 18 ≤ Np ≤M
0.01I 22 22 ≤ Np ≤M

The results show that selecting very large values for R increases robustness of the closed-loop

system, but does not affect the NSFP and FR of Np. However, for very small values of R, NSFP

increases drastically and robustness decreases. For example, Figure 3.14 shows that for R = 0.01I

there is a significant fluctuation in the SPC gain value, k̃e, which is not acceptable even when closed-

loop system is stable. As a result, robustness and stability of the closed-loop system decreases by

decreasing the values of R, which needs to be selected large enough to ensure the stability and

performance, however selecting very large values of R may result a slow response. Note that this

behavior was expected based on our SPC stability analysis in Theorem 3.2.1 and similar results
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can be obtained by analyzing other systems.

Effect of Weighting Matrix Q

To investigate the effect of different weighting matrices Q on NSFP and FR of Np, the SPC stability

graphs are considered for R = 100INc×Nc and Nc = Np − 1. Figures 3.15 and 3.16 show the SPC

stability graphs of System III for different values of matrix Q.
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Figure 3.15: System III: SPC stability graphs for R = 100I and Nc = Np − 1

The results show that selecting very large values for Q decreases both robustness and FR of Np

and increases the NSFP . Therefore, the closed-loop stability can be jeopardized by selecting large

Q weighting matrices. On the other hand, for small value of matrix Q, robustness increases, but

NSFP and FR of Np remain same. Table 3.12 shows NSFP and FR of Np for each value of matrix

Q for System III.

3.4.5 Performance Evaluation

In order to verify the effectiveness of the proposed technique in Table 3.2, the designed SPC by

proposed technique of SPC horizons selection is applied to System IV and MIMO Distillation

System. In this simulation, the following SPC tuning parameters and constraints are selected for
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Figure 3.16: System III: SPC stability graphs for R = 100I and Nc = Np − 1

Table 3.12: System III: FR of Np for different Q, R = 100I and Nc = Np − 1

Q NSFP FR of Np

1000I 18 18 ≤ Np ≤M
100I 14 14 ≤ Np ≤M
10I 11 11 ≤ Np ≤M
I 11 11 ≤ Np ≤M

0.1I 11 11 ≤ Np ≤M
0.01I 11 11 ≤ Np ≤M

each system,

System IV: Q = I, R = 100I, Nc = NEC = 12, Np = NEP = 50, −0.1 ≤ ∆u ≤ 0.1, −3 ≤ u ≤ 3

System V: Q = 0.01I, R = 400I, Nc = NEC = 9, Np = NEP = 32, −0.1 ≤ ∆u ≤ 0.1, −1 ≤ u ≤ 1

Figures 3.17, 3.18, 3.19 and 3.20 illustrate the SPC closed-loop system response of designed SPC and

the control signal for System IV and MIMO Distillation System. The figures show the effectiveness

of the proposed SPC design method in improving stability and performance of the both SISO and

MIMO systems, and the fact that control signals remain in the prescribed constraints limit.
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Figure 3.17: System IV: Reference input and output for Q = I, R = 100I, Nc = NEC = 12 and
Np = NEP = 50
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Figure 3.18: System IV: Control signal u, its variation ∆u and the constraints for Q = I, R = 100I,
Nc = NEC = 12 and Np = NEP = 50

3.4.6 Effect of Prediction Horizon

In order to verify the effectiveness of the proposed technique in Table 3.2, the designed SPC

by proposed technique of SPC horizons selection is applied to SISO Systems II and III. In this
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Figure 3.19: Distillation System: Reference inputs and outputs y1 and y2 for Q = 0.01I, R = 400I,
Nc = NEC = 9 and Np = NEP = 32

simulation, the following SPC tuning parameters and constraints are selected for each system,

System II: Q = I, R = 100I, Nc = NEC = 9, Np = NEP = 30, −0.1 ≤ ∆u ≤ 0.1, −1 ≤ u ≤ 1

System III: Q = I, R = 100I, Nc = NEC = 11, Np = NEP = 32, −0.1 ≤ ∆u ≤ 0.1, −1 ≤ u ≤ 1

Figures 3.21 3.22, 3.23 and 3.24 show the output of the SPC closed-loop system for a constant

reference signal and SPC control signal and its variation for Systems II and III. Here, different

values of feasible Nps are considered to compare the performance. The figures confirm the efficiency

of the proposed method in selecting the SPC horizons. According to the Figures 3.23 and 3.21 for

Np < NEP performance is deteriorated, but for Np > NEP there is no significant changes in output

of the systems. Moreover, Figures 3.22 and 3.24 show that the control signals and their variation

do not violate the determined constraint values.

3.4.7 Effect of Disturbance and Noisy Data

In order to investigate performance of the proposed SPC design method in the presence of noisy

data, noisy version of the System IV and MIMO Distillation System are considered as follows,
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Figure 3.20: Distillation System: Control signals u1, u2 and their variations ∆u1, ∆u2 for Q =
0.01I, R = 400I, Nc = NEC = 9 and Np = NEP = 32

System IV: SISO time-delayed noisy system

The transfer function of System IV in Section 3.4.1 with additive noise [55],

Y (s) =
e−50s

(150s+ 1)(25s+ 1)
U(s) + Ew(s) (3.30)

where Ew is a Gaussian noise with zero mean and variance of σ2. Appropriate variances are selected

for simulation to obtain the desired SNRs.

Figure 3.25 shows the SPC stability graphs of System IV for noisy data with SNR = 0db and

SNR = 10db for Q = I and R = 100I.

From the SPC stability graph in Figure 3.25 the NSFP and FR of Np are determined based on

the SPC stability condition in (3.15) to ensure the closed-loop stability. Efficient values of control

and prediction horizons are determined by applying the technique in Table 3.2. For SNR = 0db
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Figure 3.21: System II: Reference signal and output for Q = I, R = 100I, Nc = NEC = 9 and
different values of feasible Np

we have n + 1 < NSFP , then NEC = 16, and for SNR = 10db we have n + 1 > NSFP , therefore,

NEC = 3. The results are shown in Table 3.13 for each SNR.

Table 3.13: NSFP , FR of Np, NEC and NEP for System IV from Noisy Data (M = 150)

SNR NSFP FR of Np NEC NEP

0db 16 16 ≤ Np ≤M 16 35
10db 2 2 ≤ Np ≤M 3 37

Figures 3.26 and 3.27 show the SPC closed-loop system responses for this noisy system with

the following SPC parameters and constraints for each SNR case,

SNR = 0db : NEC = 16, NEP = 35, Q = I, R = 100I, −1 ≤ u(k) ≤ 1, −0.1 ≤ ∆u ≤ 0.1

SNR = 10db : NEC = 3, NEP = 37, Q = I, R = 100I, −1 ≤ u(k) ≤ 1, −0.1 ≤ ∆u ≤ 0.1

The results show the effectiveness of the proposed SPC design method even in the presence of

noisy data.
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Figure 3.22: System II: SPC control signal and its variation for Q = I, R = 100I, Nc = NEC = 9
and different values of feasible Np
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Figure 3.23: System III: Reference signal and output for Q = I, R = 100I, Nc = NEC = 11 and
different values of feasible Np
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Figure 3.24: System III: SPC control signal and its variation for Q = I, R = 100I, Nc = NEC = 11
and different values of feasible Np

Distillation System: MIMO time-delayed system

Disturbance added Distillation System model in Section 3.4.1 [53],

 Y1(s)

Y2(s)

 =


12.8e−s

16.7s+1
−18.9e−3s

16.7s+1

6.6e−7s

10.9s+1
−19.4e−3s

14.4s+1


 U1(s)

U2(s)

+


3.8e−8s

10.9s+1

4.9e−3s

13.2s+1

Ed(s) (3.31)
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Figure 3.25: System IV: SPC stability graphs from noisy I/O data for SNR=0db and SNR=10db

where Ed is an independent white noise with covariance of diag{4.4582, 4.9898}. The discretized

disturbance model using zero order holder with Ts = 1min is obtained as,

Gd(z
−1) =

 z−9 0.331
1−0.9123z−1

z−4 0.3575
1−0.927z−1

 (3.32)

To determine the FR of prediction horizon, which guarantees the SPC closed-loop stability,
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Figure 3.26: System IV: Reference input and output for noisy system for SNR=0db and SNR=10db

the SPC stability graphs need to be plotted for each subsystem. Figure 3.28 shows the SPC

stability graphs from I/O data of System V with disturbance for each subsystem with R = 400I

and Q = 0.01I.

The NSFP and FR of Np are determined based on the SPC stability condition in (3.15) by using

the SPC stability graphs to ensure the closed-loop stability. The results are shown in Table 3.14.

Note that from Figure (3.28) it can be seen that in subsystem Gp12 for Np > 66 the SPC gain ke

becomes positive. Therefore, FR of Np for subsystem Gp12 will be 8 ≤ Np ≤ 66.

Therefore, by applying the proposed technique in Table 3.2 the efficient values of control and
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Figure 3.27: System IV: Control signal u and its variations ∆u for noisy system for SNR=0db and
SNR=10db

Table 3.14: NSFP and FR of Np for Distillation System with Disturbance (M = 80)

Subsystem NSFP FR of Np

Gp11 5 5 ≤ Np ≤M
Gp21 2 2 ≤ Np ≤M
Gp12 8 8 ≤ Np ≤ 66
Gp22 2 2 ≤ Np ≤M

prediction horizons are determined as NEC = 8 and NEP = 30. Figures 3.29 and 3.30 show the

SPC closed-loop system responses for this noisy MIMO system with the following SPC parameters
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Figure 3.28: Distillation System: SPC stability graphs for each subsystem of System V with
disturbance

and constraints,

NEC = 8, NEP = 30, Q = 0.01I, R = 400I, −1 ≤ u(k) ≤ 1, −0.1 ≤ ∆u ≤ 0.1

Remark 3.4.3. Comparing the results of noise-free and noisy scenario shows that different SPC

stability graphs and different FR of Np are obtained in those scenarios. This observation proves

generality and effectiveness of the proposed data-driven SPC stability analysis.
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Figure 3.29: Distillation System: Reference inputs and outputs y1 and y2 for System V with
disturbance

3.5 Summary

In this chapter the necessary and sufficient condition to assure the SPC closed-loop stability was

provided for open-loop stable systems. Based on the derived SPC stability condition, a model-free

technique (Table 3.1) was provided to determine the shortest-feasible-prediction-horizon (NSFP )

and the feasibility range (FR) of prediction horizon that guarantees the SPC closed-loop stability.

Moreover, the criteria to optimally determine the efficient control horizon (NEC) and efficient

prediction horizon (NEP ) were suggested based on efficiently minimizing the dimension of the

subspace predictor and optimizing the SPC cost function. Consequently, the technique in Table

3.2 was proposed for tuning SPC horizons based on the technique in Table 3.1, and provided NEC

and NEP . The proposed techniques were evaluated in simulation on three SISO non-minimum

phase stable systems, a SISO time-delayed noisy system and a MIMO time-delayed system with

disturbance. For each of the systems our stability criteria successfully provided the necessary and

sufficient FR of Np and NSFP . Consequently, applying the proposed model-free technique on each

system determined the efficient SPC horizons among the feasibility range by minimizing the desired

SPC cost function as well. The simulation results show effectiveness of the proposed SPC design
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Figure 3.30: Distillation System: Control signals u1, u2 and their variations ∆u1, ∆u2 for System
V with disturbance

method.
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Chapter 4

SPC Gains Updating: PSO-based

FGS-SPC

4.1 Problem Statement and Chapter Summary

Main advantage of SPC is its capability to on-line adapting the SPC gains directly from I/O data,

which makes SPC appropriate to control time-varying and nonlinear systems. In this SPC gain

updating procedure, the subspace linear predictor matrices, Lu and Lw, and subsequently, the

controller gain matrices, K̃e and K̃∆wp , must be calculated off-line by using equations (2.133),

(2.148) and (2.149) before the controller implementation. In order to adapt the controller with

any parameter uncertainties in the time-varying or nonlinear systems, the SPC matrices must

be updated by applying randomly generated persistent excitation (PE) signals to the system and

capturing the new I/O data from the system during the closed-loop control. After that, to obtain the

new incremental control law from equation (2.150) the controller gain matrices, K̃e and K̃∆wp , have

to be recalculated by using the equations (2.148), (2.149) and by considering the new updated Lu

and Lw matrices. However, this procedure is very time consuming and demands high computational

load, which increases by system dimension [68]. On the other hand, applying the PE input signals

to the system can interrupt the system operation at the steady-state mode and may cause a biased

estimate when applying to the closed-loop system [100, 134]. It will be advantageous for SPC to

update the controller gains K̃e and K̃∆wp without the mentioned drawbacks.

In this chapter, a Particle Swarm Optimization-based Fuzzy Gain-Scheduling (PSO-based FGS)

method is proposed to update the SPC gains for time-varying systems in the presence of constraints

and noise. The method is denoted by PSO-based FGS-SPC. In the proposed method, instead of up-
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dating the predictor matrices by applying the PE signals, only SPC gains are re-tunned by applying

PSO-based FGS technique. Consequently, the decrease in computational load makes the proposed

method more suitable and time efficient for industrial applications. Moreover, the proposed PSO-

based FGS technique overcomes the problem of controller gain ranges (CGRs) calculation in FGS

algorithm. In PSO-based FGS-SPC the CRGs are determined optimally by minimizing the SPC

cost function.

4.2 Re-arranging SPC Gain Formula

Considering the incremental control law for unconstrained SPC in equation (2.150), this equation

can be rewritten as below [135],

∆u(k + 1) = −k̃e(y(k)− r(k + 1))− k̃∆wp

 ∆yp

∆up

 (4.1)

= −k̃ee(k)− [k̃∆yp k̃∆up ]

 ∆yp

∆up

 (4.2)

where e(k) is the tracking error between the piecewise constant reference input and the output,

and k̃∆yp and k̃∆up are defined as [135],

k̃∆yp = k̃∆wp(:, 1 : Ml) (4.3)

k̃∆up = k̃∆wp(:,Ml + 1 : M(m+ l)). (4.4)

and k̃∆wp has been defined in Section 2.2.2 as the first m rows of the matrix K̃∆wp in (2.149). Here,

by considering a piecewise constant reference input, variation of the tracking error, ∆e(k), can be

obtain as follows,

∆e(k) = e(k)− e(k − 1) (4.5)

= (y(k)− r(k + 1))− (y(k − 1)− r(k)) (4.6)

= y(k)− y(k − 1) (4.7)

= ∆y(k) (4.8)
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Then, the vector of incremental past I/O data, ∆wp in (2.143) can be modified as 4.9. This re-

arranging of the standard SPC control signal formula enables us to illustrate flexibility of SPC

technique in automatically updating the controller gains [135].

∆wp =

 ∆yp

∆up

 =



∆y(k −M + 1)
...

∆y(k − 1)

∆y(k)

−−−−

∆u(k −M + 1)
...

∆u(k − 1)

∆u(k)



=



∆e(k −M + 1)
...

∆e(k − 1)

∆e(k)

−−−−

∆u(k −M + 1)
...

∆u(k − 1)

∆u(k)



=

 ∆ep

∆up

 (4.9)

Here, the control law in equation (2.151) is obtained when the constraints are not active, but it

can be applied to the constrained SPC by using the formulation in Section 2.2.2.

By considering the incremental control law in (4.2) and (4.9), it can be seen that Ke is the

proportional gain of the tracking error, e(k), and k̃∆yp is the proportional gain of its variations,

∆ep. Therefore, this part of the controller has similar structure as the Proportional-Derivative

(PD) controller.

Remark 4.2.1. Note that, the vector ∆ep is not only the variation of error at the current time

instant, but also it consists of the variation error for past output data. This feature makes the

controller much more sophisticated than a simple PD control algorithm.

Motivated by this observation the controller gains k̃e and k̃∆yp can be easily updated in real-

time by applying one of the existing advanced model-free GS techniques [136–139] with no need

to apply PE signals and update the subspace linear predictor matrices. Here, a Particle Swarm

Optimization-Based Fuzzy Gain-Scheduling (PSO-based FGS) method is proposed to update the

SPC gains k̃e and k̃∆yp . The method is denoted by PSO-based FGS-SPC.

Remark 4.2.2. The SPC gain, k̃∆up, in (4.2), is the proportional gain of current and past varia-

tions of controller signal, ∆up, in closed-loop system. Therefore, the gain k̃∆up can also be updated

according to e(k) and ∆wp at each time instant by considering the aforementioned PSO-based FGS-

SPC algorithm.
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4.3 PSO-based FGS-SPC

Updating the SPC controller gains k̃e and k̃∆wp in (2.150) by applying Particle Swarm Optimization-

Based Fuzzy Gain-Scheduling (PSO-based FGS) method is proposed in this section. Unlike the

existing SPC methods, the proposed algorithm does not need applying PE signals to update the

subspace linear predictor matrices, Lu and Lw. Instead, it re-calculates the controller gains k̃e and

k̃∆wp based on the PSO-based FGS technique. The proposed technique can optimally calculate

the controller gain ranges (CGRs) for FGS-SPC by minimizing the SPC cost function via the PSO

algorithm. As a result, the PSO-based FGS-SPC can eliminate the time consuming and disruptive

procedure of applying PE signals to the system, and updating the SPC gains optimally by improving

the time efficiency. These features of PSO-based FGS-SPC method make it a suitable approach for

industrial applications.

4.3.1 FGS-SPC Procedure

In the proposed PSO-based FGS-SPC method, the SPC gains k̃e, k̃∆yp and k̃∆up can be updated

real-time by applying a fuzzy-logic based GS algorithm, [117], [112]. In this scheme, it is assumed

that the controller gains are in the following prescribed ranges [135],

k̃e ∈ [k̃e,min, k̃e,max] (4.10)

k̃∆yp ∈ [k̃∆yp,min, k̃∆yp,max] (4.11)

k̃∆up ∈ [k̃∆up,min, k̃∆up,max] (4.12)

where k̃e,min, k̃e,max, k̃∆yp,min, k̃∆yp,max, k̃∆up,min and k̃∆up,max are called the controller gain ranges

(CGRSs). In FGS-SPC the CGRs are vectors with compatible dimensions as the corresponding

gains.

For convenience, the SPC gains, k̃e, k̃∆yp and k̃∆up , are normalized into the range between zero

and one by considering the following linear transformations,

k̄e =
k̃e − k̃e,min

k̃e,max − k̃e,min
(4.13)

k̄∆yp =
k̃∆yp − k̃∆yp,min

k̃∆yp,max − k̃∆yp,min

(4.14)

k̄∆up =
k̃∆up − k̃∆up,min

k̃∆up,max − k̃∆up,min

(4.15)
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where k̄e, k̄∆yp and k̄∆up , are the normalized SPC gains.

In FGS-SPC strategy, the normalized SPC gains are determined based on the tracking error,

e(k), and the variation of the past I/O data vector, ∆wp, by a set of rules of the form,

if e(k) is AAi and ∆wp(j) is BBi, then k̄e is CCi, k̄∆yp is DDi and k̄∆up is EEi

where, AAi, BBi, CCi, DDi and EEi are Fuzzy Subsets for input and output variables. The fuzzy

subsets are also called Membership Functions, and the Membership Degree is denoted by µAAi(X)

for each variable like X.

In general, FGS procedure consists of three main parts: Fuzzifier, FGS Rules and Defuzzifier

as shown in Figure 2.7. First, the crisp input variables are converted to fuzzy numbers in fuzzifier,

then they are used to determine updated controller gains by considering GS rules. Finally, the

resultant fuzzy numbers representing the controller gains are converted to crisp values.

Fuzzification

The procedure of converting crisp input variables to fuzzy numbers is called fuzzification. Here,

the fuzzy subsets are in triangular shape with seven different fuzzy subsets representing linguistic

fuzzy variables negative big (NB), negative medium (NM), negative small (NS), zero (ZZ), positive

big (PB), positive medium (PM), and positive small (PS). The shape of the fuzzy subsets are all

the same for e(k), ∆yp, and ∆up. However, the minimum and the maximum ranges are different for

them, and selected according to the process characteristics [135, 140]. The fuzzy subsets of input

variables, e(k), ∆yp and ∆up are shown in Figure 4.1.
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Figure 4.1: Fuzzy subsets for e(k), ∆ep and ∆up
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These subsets for each input variable like X can be represented as below,

µNB(X) =



1 if X ≤ Xmin

3
Xmin

X − 2 if Xmin < X ≤ 2
3Xmin

0 if otherwise

(4.16)

µNM (X) =



−3
Xmin

X + 3 if Xmin < X ≤ 2
3Xmin

3
Xmin

X − 1 if 2
3Xmin < X ≤ 1

3Xmin

0 if otherwise

(4.17)

µNS(X) =



−3
Xmin

X + 2 if 2
3Xmin < X ≤ 1

3Xmin

3
Xmin

X if 1
3Xmin < X ≤ 0

0 if otherwise

(4.18)

µZZ(X) =



−3
Xmin

X + 1 if 1
3Xmin < X ≤ 0

−3
Xmax

X + 1 if 0 < X ≤ 1
3Xmax

0 if otherwise

(4.19)
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µPS(X) =



3
Xmax

X if 0 < X ≤ 1
3Xmax

−3
Xmax

X + 2 if 1
3Xmax < X ≤ 2

3Xmax

0 if otherwise

(4.20)

µPM (X) =



3
Xmax

X − 1 if 1
3Xmax < X ≤ 2

3Xmax

−3
Xmax

X + 3 if 2
3Xmax < X ≤ Xmax

0 if otherwise

(4.21)

µPB(X) =



1 if Xmax ≤ X

3
Xmax

X − 2 if 2
3Xmax < X ≤ Xmax

0 if otherwise

(4.22)

where X is representing one of the input variables e(k), ∆yp, and ∆up. Note that, here Xmin =

−Xmax and the input variables ∆yp, and ∆up are considered in a single vector form of ∆wp =

[∆yp ∆up]
T .

FGS Rules

After the fuzzy numbers representing each input variable are obtained, the fuzzy numbers of the

normalized output variables k̄e, k̄∆yp and k̄∆up are determined using the rule decision tables. The

rule decision table defines the rules to update each of the normalized SPC gains. Generally, the

membership degree of normalized output variable Y is obtained by the product of membership

degrees of input variables X1 and X2 as below,

µi(Y ) = µAAi(X1) · µBBi(X2) (4.23)
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Tables 4.1, 4.2 and 4.3 show the FGS rules to update the normalized SPC gains, k̄e, k̄∆yp and

k̄∆up , respectively [135, 140]. Note that, the rules are derived experimentally based on a piecewise

constant reference input.

Table 4.1: Rule decision table to update k̄e

e(k)

∆wp
NB NM NS ZZ PS PM PB

NB B B B B B B B

NM M B B B B B M

NS S M M M M M S

ZZ S S S S S S S

PS S M M M M M S

PM M B B B B B B

PB B B B B B B B

Table 4.2: Rule decision table to update k̄∆yp

e(k)

∆wp
NB NM NS ZZ PS PM PB

NB S S S S S S S

NM M S S S S S M

NS B M S S S M B

ZZ B B M M M B B

PS B M S S S M B

PM M S S S S S M

PB S S S S S S S

Table 4.3: Rule decision table to update k̄∆up

e(k)

∆wp
NB NM NS ZZ PS PM PB

NB B B B M M S S

NM B B M M S S M

NS B M M S S M M

ZZ M M S S S M M

PS M M S S M M B

PM M S S M M B B

PB S S M M B B B
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Defuzzification

In defuzzifier the fuzzy number of normalized SPC gains which are obtained based on FGS rules

are converted to the crisp gain values. Here, three different triangular-shape fuzzy subsets with

linguistic fuzzy variables big (B), medium (M) and small (S) are defined for the normalized output

variables, k̄e, k̄∆yp and k̄∆up . The membership functions of normalized output variables are shown

in Figure 4.2 [135,140].
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Figure 4.2: Fuzzy subsets for k̄e, k̄∆yp and k̄∆up

In general, the normalized output variable Y corresponding to µi(Y ) is obtained from the

following equation,

Y =

∑
i
µi(Y )Yi∑
i
µi(Y )

, i = 1, 2, . . . , number of rules (4.24)

where Yi is the value of the normalized output variable Y corresponding to the µi(Y ) for ith rule.

In the proposed FGS-SPC method, the output variables can be determined using the following

defuzzification formula,

k̄e =

49∑
i=1

µi(k̄e)k̄ei

49∑
i=1

µi(k̄e)

(4.25)
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k̄∆wp(j) =

49∑
i=1

µi(k̄∆wp(j))k̄∆wp(j)i

49∑
i=1

µi(k̄∆wp(j))

(4.26)

where ∆wp(j) = [∆yp(j) ∆up(j)]
T .

Once the crisp values of the normalized SPC gains, k̄e, k̄∆yp and k̄∆up , are obtained, the actual

SPC gains k̃e, k̃∆yp and k̃∆up are calculated from the following equations by having the CGRs,

k̃e = (k̃e,max − k̃e,min)k̄e + k̃e,min (4.27)

k̃∆yp = (k̃∆yp,max − k̃∆yp,min)k̄∆yp + k̃∆yp,min (4.28)

k̃∆up = (k̃∆up,max − k̃∆up,min)k̄∆up + k̃∆up,min (4.29)

Figure 4.3 shows block diagram of the PSO-based FGS-SPC system.

 

 

 

 

 

 
predicted 

output 

SPC 

 

reference 

input u(k) 

Predictor 

Matrices 

output control 

signal 
 ̂(k) 

y(k) 

PSO-based Fuzzy 

Gain-Scheduler 

System 

Tuning parameters 

and Constraints 

Optimization 

Procedure 

Subspace 

Predictor 

Figure 4.3: SPC system with PSO-based FGS
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4.3.2 PSO-based FGS Technique

In FGS procedure, the CGRs in (4.10), (4.11) and (4.12) completely depend on the process and

may vary by variation of the process parameters [112]. In conventional FGS, the CGRs are usually

determined by rule of thumb and the designer’s experience at the beginning of the FGS procedure

[117], which is a time consuming procedure, especially for time-varying and nonlinear systems. Here,

we proposed a PSO-based FGS-SPC technique to optimally-automatically calculate the CGRs and

update the SPC gains k̃e, k̃∆yp and k̃∆up [140].

By utilizing the aforementioned Constriction PSO algorithm in (2.177) and (2.178), the CGRs

in (4.10), (4.11) and (4.12) can be selected as PSO particles. All PSO particles and parameters

are initialized according to PSO commendations. At each iteration, the controller gains k̃e, k̃∆yp

and k̃∆up are calculated based on particle information and defuzzification results from the FGS

algorithm. Next, the calculated controller gains are used to evaluate the PSO fitness function.

Here, SPC cost function in (2.117) is selected as the PSO fitness function. This selection enables

us to optimize the CGRs in FGS and SPC cost function, simultaneously. Finally, the global best is

updated based on the evaluation results. The algorithm continues until the convergence condition

is met. Here, an iteration limit is considered to terminate the PSO algorithm. Moreover, to avoid

the increase of the computational time, a criterion is set to terminate the algorithm when there is

no significant changes in particle movements. Algorithm 4.3.1 presents the PSO-based FGS-SPC

procedure [140].

Remark 4.3.1. Unlike the existing FGS algorithms in PSO-based FGS technique, the CGRs in

(4.10), (4.11) and (4.12) are not manually selected as constant values, but they are calculated and

updated optimally-automatically at each iteration according to the PSO fitness function. Therefore,

the proposed PSO-based FGS technique by itself is a valuable package, which can be applied to any

control algorithm that requires CGRs tuning for FGS.

Remark 4.3.2. Note that since the re-arranging of SPC control law in Section 4.2 has been done by

considering a piecewise constant reference input; therefore, to met the PSO convergence condition

the input constant intervals need to be not smaller than the PSO convergence time.
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Algorithm 4.3.1. PSO-based FGS-SPC Method

Phase I: Calculation of normalized SPC gains via FGS procedure
Inputs: Tracking error, e(k), variation of past output data ∆yp and variation of past control
signal ∆up
Outputs: Normalized SPC gains, k̄e, k̄∆yp and k̄∆up

Step 1: Fuzzification using input membership functions in Figure 4.1
Step 2: Applying fuzzy rules from Tables 4.1, 4.2, 4.3
Step 3: Defuzzification using output membership functions in Figure 4.2 to obtain the normalized
SPC gains k̄e, k̄∆yp and k̄∆up

Phase II: Calculate the optimum CGRs via PSO Procedure
Inputs: Normalized SPC gains, k̄e, k̄∆yp and k̄∆up from Phase I, and the presumed CGRs, k̃e,min,

k̃e,max, k̃∆yp,min, k̃∆yp,max, k̃∆up,min and k̃∆up,max

Outputs: The optimum CGRs
Step 1: Initialize PSO parameters and set CGRs as particles
Step 2: Calculate SPC gains based on CGRs info and the normalized SPC gains from Phase I
using (4.27), (4.28), (4.29)
Step 3: Evaluate SPC cost function and update the personal best and the global best
Step 4: Check the convergence (the iteration limit or particle movement threshold). If YES
goto Phase III. If NO update the CGRs using the new global best and personal best then goto Step 2

Phase III: Calculate actual SPC gains
Inputs: Normalized SPC gains from Phase I, k̄e, k̄∆yp and k̄∆up and the optimum CGRs from
Phase II
Outputs: The SPC gains k̃e, k̃∆yp , k̃∆up

Step 1: Calculate SPC gains based on optimally selected CGRs from Phase II by using (4.27),
(4.28), (4.29)

4.4 Simulation Results

In this section, we demonstrate the performance and efficiency of proposed PSO-based FGS-SPC

technique by applying it to the SISO Dryer System [4,141].

4.4.1 System Description

Dryer System: SISO Minimum phase fourth-order system

The proposed PSO-based FGS-SPC method was tested on data set collected from a SISO laboratory

scale “hairdryer” system [4, 141]. In this system, air is fanned through a tube and heated at the

inlet. Input of the system is the voltage over the heating device, which is a mesh of resistor wires.

Output of the system is the air temperature, which is measured by a thermocouple (or rather

the voltage from the thermocouple). The sampling time was set to Ts = 0.08sec throughout the
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simulation. Figure 4.4 shows the collected open-loop I/O data for this system from [20].
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Figure 4.4: Dryer System: Collected input-output data from open-loop system

The open-loop system can be identified as a forth order system by applying subspace identifi-

cation method [20]. Eigenvalues of the system are located at,

λ1,2 = 0.4735± j0.2037, λ3 = 0.7439, λ4 = 0.9475

Remark 4.4.1. In PSO-based FGS-SPC algorithm there is no need to identify the open-loop system.

Here, the eigenvalues are only provided to test the robustness of the proposed method in simulation.

4.4.2 Stability Analysis

First, the technique in Table 3.1 is applied to determine the FR of Np and NSFP . The DC-gain is

determined from the open-loop I/O data as Kol = 0.97802 > 0. Figure 4.5 shows the SPC stability

graph for this system.

According to the SPC stability graph and the DC-gain, we have NSFP = 4 and FR of Np is

4 ≤ Np ≤M . In this simulation, the number of row blocks in data Hankel matrices has been chosen

as M = 30. Then, the efficient values of prediction horizon and control horizon are determined by

using the technique in Table 3.2 as NEC = 5 and NEP = 14.
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Figure 4.5: Dryer System: SPC stability graph for Q = I, R = 30I and Nc = Np − 1

4.4.3 Simulation Initialization

The appropriate choice of the initialization parameters has a significant impact on the stability

and performance of the designed control system. In this simulation, the controller parameters are

considered as follows:

- SPC parameters and constraints:

Np = NEP = 14 , Nc = NEC = 5 , Q = I , R = 30I , −10 ≤ u(k) ≤ 10 , −1 ≤ ∆u(k) ≤ 1

- FGS parameters:

emax = −emin = 50 , ∆ypmax = −∆ypmin = 1 , ∆upmax = −∆upmin = 0.5

- PSO parameters:

κ = 1 , φ1 = φ2 = 2.05 , population size = 100 , iteration limit = 100

In order to eliminate the adverse effect of fluctuations at the output signal, specifically for SPC

method, a user-defined tolerance, ε = 0.1, is applied to the tracking error.

103



CHAPTER 4. SPC GAINS UPDATING: PSO-BASED FGS-SPC

4.4.4 Robustness and Adaptiveness Test

To study the adaptability of the controllers in the presence of the time-varying systems, we assume

that there are some changes in the eigenvalues of the system at sampling instants k = 200 and

k = 800, respectively, as follows:

λ1,2 = 0.9238± j0.2441, λ3 = 0.2939, λ4 = 0.9468

λ1,2 = 0.9486± j0.2042, λ3 = −0.6184, λ4 = 0.6096

Figure 4.6 shows the input and output of the closed-loop system for PSO-based FGS-SPC,

FGS-SPC and SPC methods with previously mentioned constraints on control signal, u(k), and its

variation ∆u(k).
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Figure 4.6: Dryer System: Reference input and outputs for PSO-based FGS-SPC, FGS-SPC and
SPC

According to the results, by changing the system dynamics at k = 200 and k = 800, all three

aforementioned methods start to adapt their controllers with the new conditions. However, Figure

4.6 shows that SPC starts applying PE input signals to identify the new model of the system to

update the subspace predictor matrices Lu and Lw, and then calculates the new controller gains

k̃e and k̃∆wp . It can be seen that this process makes large fluctuations in the output of the system
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and takes a lot of time to capture the new model. Also, overshoots and undesired fluctuations at

the step response indicates that SPC also needs to update and re-tune the weighting matrices Q

and R to obtain a smooth response for new systems.

0 500 1000 1500
0

1

2

3

4

sample

co
nt

ro
l s

ig
na

l

 

 

0 500 1000 1500
−0.1

0

0.1

0.2

0.3

sample

co
nt

ro
l s

ig
na

l v
ar

ia
tio

n

PSO−based FGS−SPC
FGS−SPC
SPC

Figure 4.7: System I: Control signal u, and its variation ∆u for PSO-based FGS-SPC, FGS-SPC
and SPC

Control signal, u(k), and its variation, ∆u(k), are shown in Figure 4.7 for each of the control

algorithms. The results in Figures 4.6 and 4.7 show that both PSO-based FGS-SPS and FGS-SPC

methods can adapt the controller gains, k̃e, k̃∆yp and k̃∆up , much faster than the SPC with less

fluctuation, and manage to comply with the specified constraints on u(k) and ∆u(k). Moreover,

PSO-based FGS-SPC has faster response than the FGS-SPC method due to optimally tunning of

the CGRs by using the PSO algorithm.

Figures 4.8, 4.9 and 4.10 demonstrates how the controller gains k̃e, k̃∆yp and k̃∆up were adjusted

for each of the above-mentioned methods.

The fluctuations in tuning of the controller gains for the SPC method is observable in Figure

4.10, which is because of applying PE signals in SPC. Figure 4.9 shows that FGS-SPC technique

arranged the controller gains inside a small boundary to ensure the stability of the algorithm
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Figure 4.8: Dryer System: Updating the controller gains for PSO-based FGS-SPC method
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Figure 4.9: Dryer System: Updating the controller gains for FGS-SPC method
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Figure 4.10: Dryer System: Updating the controller gains for SPC method

without considering its optimality. Figure 4.8 shows flexibility of the proposed PSO-based FGS-

SPC method in optimally tuning the controller gains compared to the FGS-SPC method in Figure

4.9. Consequently, PSO-based FGS-SPC can provide both optimal and stable closed-loop system

by utilizing the PSO technique.

To investigate the robustness of the proposed PSO-based FGS-SPC algorithm in the presence

of noisy data, a Gaussian noise with SNR = 25db is added to the I/O data in simulations. Also,

the user-defined tolerance is changed to ε = 0.4 to eliminate the adverse effect of fluctuations in

the presence of noisy data. Figure 4.11 illustrates the input and output of the closed-loop noisy

system for each aforementioned method. Although all three methods can adapt the controller

gains according to their control algorithm, but having a large overshoot in the response of the SPC

method shows that it needs to re-tune the weighting matrices in the SPC cost function. PSO-

based FGS-SPC has faster response compared to FGS-SPC, and less fluctuations compared to SPC

method that shows its superiority with respect to other methods.
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Figure 4.11: Dryer System: Reference input (dashed) and outputs for PSO-based FGS-SPC, FGS-
SPC and SPC methods for noisy system

4.4.5 Performance Evaluation

In order to compare the performance of each method, performance points are depicted in Figure

4.12. The results show that PSO-based FGS-SPC has the best performance among these three

methods. PSO-based FGS-SPC has smaller tracking error variance and variation of control signal

variance than SPC method which shows superiority of the proposed method. In comparison with

FGS-SPC, the PSO-based FGS-SPC can significantly decrease the variance of the tracking error,
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but it has a small amount of increase in the variance of the incremental control signal.
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Figure 4.12: Dryer System: Performance points for each method

To show the optimality of proposed PSO-based FGS-SPC method, cost function evaluation, J of

the methods for each sample time is depicted in Figure 4.13 as the performance index. Convergence

results of the performance index in Part(a) and Part(b) of the Figure 4.13 are shown in Table 4.4.

The results show effectiveness and superiority of the proposed PSO-based FGS method with respect

to SPC and FGS-SPC methods, and superiority of the proposed technique in terms of optimality.

Although SPC method shows faster response than the other two methods, it has large deviation

at the beginning and slow convergence pace due to the fluctuation. These fluctuations are generated

by applying PE signals, and SPC needs to re-tune its parameters, such as weighting matrices and

horizons in the cost function. In some cases, one of which has been shown in Figure 4.14, the

fluctuations can result a non-convergence situation for the SPC method.

Table 4.4: Dryer System: Performance index value for each method
Performance Index PSO-based FGS-SPC FGS-SPC SPC

Figure 4.13(a) 5.87× 10−16 4.33× 10−12 5.21× 10−7

Figure 4.13(b) 1.82× 10−16 1.06× 10−4 1.35× 10−16

To demonstrate the computational time saving feature of the proposed PSO-based FGS-SPC
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Figure 4.13: Dryer System: Performance index value for each of the methods

algorithm, Monte-Carlo simulations consisting of 30 runs were conducted for all methods with

different row dimensions of data Hankel matrices, M . Figure 4.15 shows the average computational

time that is required to complete the updating algorithm through the MATLAB programming.

The results show that the computational load increases by increasing the row dimension of the

past and future data Hankel matrices. However, the PSO-based FGS-SPC algorithm needs much

less computational time than SPC method. In addition, it shows that time efficiency of the PSO-

based FGS-SPC is much less sensitive to the increasing of Hankel matrix orders. Moreover, Figure

4.15 shows PSO-based FGS-SPC needs more computational time than the FGS-SPC method, which

is because of applying the PSO procedure. However, Figure 4.15 also shows that by increasing the

M , the gap between two graphs decreases. As a result, for large values of M , the PSO algorithm

is computationally more efficient.
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Figure 4.14: Dryer System: Reference input and outputs for SPC method in non-convergence case
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Figure 4.15: Dryer System: Monte-Carlo simulations consisting of 30 runs for PSO-based FGS-SPC
and SPC
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4.5 Summary

In this chapter, an algorithm has been provided to eliminate the requirement of disruptive and

time consuming process of applying PE signals in SPC. The proposed method, denoted by PSO-

based FGS-SPC, is based on optimally-automatically tuning of SPC controller gains by applying

the proposed PSO-based FGS technique. In this technique, the CGRs of the FGS algorithm are

calculated and updated optimally by applying the PSO technique. In PSO-based FGS-SPC, by

considering the SPC cost function as PSO fitness function, the SPC controller gains and the CGRs

of FGS algorithm are simultaneously tuned. Moreover, the proposed PSO-based FGS technique

by itself is a valuable package, which can be applied to any control algorithm that requires CGRs

tuning for FGS. Robustness and efficiency of the method have been illustrated by simulation on a

time-varying SISO system in the presence of constraints and noisy data. Simulation results indicate

the superiority of the proposed PSO-based FGS-SPC method over FGS-SPC and SPC in achieving

an optimal solution and in providing a fast and robust tracking performance. In addition, the main

advantage of PSO-based FGS-SPC over SPC is that it does not require applying disruptive PE

signals; therefore, it provides a time-efficient control strategy.
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Chapter 5

Time-delay and Order Selection for

SIM and SPC

5.1 Problem Statement and Chapter Summary

Since SPC is a black-box data-driven approach, it has no need to collect prior knowledge about the

system for designing the controller, making it appropriate for automatic control purposes. However,

prediction results and the closed-loop performance can be deteriorated in the presence of noisy I/O

data. In this scenario, integrating a priori information about the system characteristics, such as

time-delay and system order can help to appropriately select the SPC parameters and enhance the

performance. Moreover, order selection and time-delay estimation are still open problems in the

SIM framework. There are some threshold-based techniques in the SIM framework to estimate

these parameters, which are discussed in Section 2.3. However, the estimation of these parameters

from noisy I/O data by threshold-based techniques is a tricky task, and sometimes utilizing more

powerful statistic methods would be helpful.

In this chapter, we show that using the new approach, denoted by RE-based TDE [142], is

a robust method of time-delay estimation that outperforms the existing approaches of time-delay

estimation. In addition, we propose to utilize a new method denoted by MSEE [143] for order

estimation and show the advantages of this method over the conventional thresholding approaches.

It is shown that MSEE also outperforms existing non-thresholding methods.
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5.2 Data-driven Approaches for Time-delay Estimation and Order

Selection

In this section Reconstruction Error based (RE-based) method and Mean Squared Eigenvalue Error

Method (MSEE) are presented for time-delay estimation and order selection for SPC design in the

presence of noisy I/O data.

5.2.1 Reconstruction Error based (RE-based) Method

The Reconstruction Error (RE) has been introduced in [144] as below,

eRE =
1

N
||ȳ − ŷ||22 (5.1)

which is the error between the N samples of true unavailable noise-free output data, ȳ, and the

estimated output, ŷ.

The RE-based time-delay estimation (RE-based TDE) method is an statistical data-driven

method proposed to estimate the RE for a possible range of time-delays (0 ≤ Nd ≤ N) [142]. Then

it determines the optimum time-delay as the one that minimizes the upper bound of the RE in

(5.1). The RE has been used in finding the optimum length of the estimated impulse response

coefficients (IRCs) in [144]. In the RE-based TDE, the same approach is utilized to estimate the

optimum time-delay simultaneously.

Therefore, in the RE-based TDE, the optimum IRCs length and the time-delay can be estimated

by solving the following minimization problem [142],

(N∗d , L
∗
h) = arg min

Nd,Lh

eRE (5.2)

where N∗d is the optimum time-delay estimation, L∗h is the optimum length of IRCs and eRE is the

upper bound of the RE in (5.1), which is defined in [142,144].

Application of RE-based TDE Method for Time-delay Estimation in SIM

In Section 2.3, the Subspace-based approach for time-delay estimation has been shown by using the

estimated impulse/step response coefficients (IRCs and SRCs) in (2.166) and (2.167) by selecting

an appropriate threshold. However, in noisy scenarios the estimated IRCs and SRCs are corrupted

by noise; therefore, estimating the time-delay is a tricky task. This issue can be resolved by
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applying the presented RE-based TDE method to the noisy IRCs of the system. Therefore, correct

estimation of the system time-delay by the RE-based TDE method can improve the performance

of the designed SPC for time-delay systems.

5.2.2 Mean Squared Eigenvalue Error (MSEE) Method

MSEE method is a statistical data-driven approach to denoise the eigenvalues, which are derived

from noisy data [143, 145]. The optimum order selection is based on the calculation of eigenvalue

estimates using the available noisy data, then sorting these estimated eigenvalues and thresholding

them with a consistent criterion. The proposed criterion is obtained by minimizing the following

reconstruction error (RE) [143],

eRE =
1

N
||λ̄− λ̂m||2 (5.3)

where λ̄ is the vector of the true unavailable sorted noise-free eigenvalues and λ̂m is a vector with

the first m largest estimated eigenvalues and zero for the rest of the vector. The MSEE method

determines the optimum order of the system as the one that minimizes the upper bound of the

RE in (5.3). The RE has been first introduced in [144] to determine the optimum length of the

estimated IRCs.

Therefore, in the MSEE method the optimum order of system can be estimated by solving the

following minimization problem [143,145],

m∗ = arg min
m

eRE (5.4)

where m∗ is the optimum order selection and eRE is the upper bound of the RE in (5.3).

Application of MSEE for Order Estimation in SIM

According to Section 2.3, in SIM framework the system order is defined as the number of dominant

singular values of the subspace predictor matrix Lw in (2.168). However, in the presence of noisy

data, Lw is not a rank deficient matrix. Since noise magnifies the small singular values of Lw,

estimating the system order by selecting an appropriate threshold is not straightforward. In these

scenarios, motivated by the MSEE method, the system order can be estimated with sufficiently

accuracy for SPC design by applying the presented MSEE method to the noisy singular values of

matrix Lw.
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5.3 Simulation Results

In this section, the effectiveness of applying the proposed RE-based TDE and MSEE methods in

the SIM framework are presented on time-delayed SISO and MIMO processes with noisy data.

Moreover, the superiority of presented RE-based TDE and MSEE methods are illustrated over

other existing techniques by utilizing them to estimate the time-delay and system order in noisy

scenarios.

5.3.1 Systems Description

System IV: SISO time-delayed noisy system

Consider the following transfer function of System IV in Section 3.4.1 with additive noise [55],

Y (s) =
e−50s

(150s+ 1)(25s+ 1)
U(s) + Ew(s) (5.5)

where Ew is a Gaussian noise with zero mean and variance of σ2. Appropriate variances are selected

for simulation to obtain the desired SNRs.

Distillation System: MIMO time-delayed system with disturbance

Following disturbance model is added to the Distillation System model in Section 3.4.1 [53],

 Y1(s)

Y2(s)

 =


12.8e−s

16.7s+1
−18.9e−3s

16.7s+1

6.6e−7s

10.9s+1
−19.4e−3s

14.4s+1


 U1(s)

U2(s)

+


3.8e−8s

10.9s+1

4.9e−3s

13.2s+1

Ed(s) (5.6)

where Ed is an independent white noise with covariance of diag{4.4582, 4.9898}. The discretized

model of the disturbance channel (by using zero order holder) with Ts = 1min is obtained as,

Gd(z) =

 z−9 0.331
1−0.9123z−1

z−4 0.3575
1−0.927z−1

 (5.7)
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5.3.2 Impulse/Step Response Estimation from Noisy Data

Estimated IRCs and SRCs for both systems are obtained by using the Subspace-based approach in

(2.166) and (2.167).

System IV: SISO time-delayed noisy system

Figures 5.1 and 5.2 show the estimated IRCs and SRCs for System IV from noisy data for SNR =

0db and SNR = 10db, respectively.
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Figure 5.1: System IV: Estimated IRCs and SRCs from noisy I/O data for SNR=0db

Distillation System: MIMO time-delayed system with disturbance

Figures 5.3 and 5.4 show the estimated IRCs and SRCs for each subsystem of the Distillation

System with disturbance by using the Subspace-based approach in (2.166) and (2.167). Here, each

subsystem of the MIMO system, Gpij is denoted according to the description in Remark 3.2.1.
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Figure 5.2: System IV: Estimated IRCs and SRCs from noisy I/O data for SNR=10db

5.3.3 Time-delay Estimation

In the presence of noisy data, the first Nd terms of estimated IRCs and SRCs are corrupted by noise.

Therefore, selecting an appropriate threshold to estimate the time-delay is not straightforward, and

threshold-based methods may not be applicable. Here, the RE-base TDE method presented in

Section 5.2.1 is applied to estimate the IRCs and the time-delay.

System IV: SISO time-delayed noisy system

Figures 5.5 and 5.6 show the RE-based estimated IRCs for System IV. True IRCs and Subspace-

based estimated IRCs are also plotted to compare.

It can be seen that the presented RE-based method provides better estimation of IRCs than

Subspace-based approach in Section 2.3, and it can estimate the correct time-delay of N∗d = 11 for

both SNR cases.

Moreover, Table 5.1 shows the estimated time-delay for noisy System IV in (5.5) via different
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Figure 5.3: Distillation System: Estimated IRCs for each subsystem by Subspace-based method

existing time-delay estimation methods, such as Cumulative Sum (CUSUM) method [74], Sepa-

rating Frequency Method [75] and Subspace based method [76]. The results show that CUSUM

overestimates the time-delay, but Freq.-based method underestimates the time-delay drastically.

Time-delay is not detectable (N/D) by using the Subspace-based method. Therefore, the results

indicate outstanding performance of the presented RE-based TDE method over the other compared

methods.
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Figure 5.4: Distillation System: Estimated SRCs for each subsystem by Subspace-based method

Table 5.1: Time-delay estimation for System IV from noisy I/O data via different methods
SNR RE-based CUSUM Freq.-based Subspace-based

0db 11 17 3 N/D
10db 11 15 6 N/D

Distillation System: MIMO time-delayed noisy system

Figure 5.3 and 5.4 show that estimated IRCs and SRCs are highly corrupted due to the additive

noise, therefore, time-delay estimation via threshold methods is not a straightforward task. How-

ever, by applying the proposed RE-based TDE method the time-delays can be estimated accurately
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Figure 5.5: System IV: True noise-free IRCs and estimated noisy IRCs for SNR=0db
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Figure 5.6: System IV: True noise-free IRCs and estimated noisy IRCs for SNR=10db
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for each subsystem. Figure 5.7 shows application of RE-based TDE method for this noisy system.

RE-based TDE method estimates the time-delay correctly for each subsystem with no need for

applying any threshold. Table 5.2 shows estimated sample-delays for each subsystem from noisy

data using RE-based TDE method.
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Figure 5.7: Distillation System: Estimated IRCs from noisy I/O data for each subsystem (RE-based
TDE method and Subspace-based method)

5.3.4 Order Selection

From the literature review in Section 2.3, in Subspace identification framework the order of the

system can be estimated from the dominant singular values of the matrix Lw. Here, drawback of

this method is shown in the presence of noisy data, and the application of the presented new MSEE
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Table 5.2: Estimated Time-delay for Distillation System using RE-based TDE method
Subsystem Sample-delay (Nd)

Gp11 2
Gp21 8
Gp12 4
Gp22 4

method is illustrated for order estimation.

System IV: SISO time-delayed noisy system

Figure 5.8 shows the first 20 singular values of Lw for noisy I/O data with SNR = 0db and

SNR = 10db, respectively. It can be seen that in noisy data the small singular values of the matrix

Lw are magnified, which makes the order estimation difficult by using threshold-based methods.
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Figure 5.8: System IV: Singular values of Lw from noisy I/O data for SNR=0db and SNR=10db

In these noisy scenarios the order of the system can be estimated accurately by applying the
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presented MSSE method in Section 5.2.2. Figure 5.9 shows the RE for System IV in SNR = 0db.

Order selection is performed based on RE minimization by averaging on 100 trials. It is observed

that the MSEE method estimates the order precisely and Figure 5.9 indicates m∗ = 2 for this

system for SNR = 0db and SNR = 10db. Therefore, we have n = 2 for System IV.
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Figure 5.9: System IV: RE upper bound for order selection noisy data with SNR=0db and
SNR=10db

In addition, Table 5.3 shows the estimated order for System IV in (5.5) from noisy data using

two well-known existing order estimation methods, Akaike’s Information Criterion (AIC) [71] and

Minimum Description Length (MDL) [72]. The results show that MDL underestimates the order

for both SNR values. AIC overestimates for SNR = 10db, but by decreasing the SNR value it
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tends to underestimate the order. The results indicate superiority of presented MSEE method to

estimate the system order compared to AIC and MDL.

Table 5.3: Time-delay estimation for System IV from noisy I/O data via different methods
SNR MSEE AIC MDL

0db 2 1.92 1
10db 2 2.67 1.05

Distillation System: MIMO time-delayed noisy system

To estimate the overall order of this MIMO system from noisy data the Subspace-based approach

in Section 2.3 can be applied. The dominant singular values of Lw are depicted in Figure 5.10.

However, selecting an appropriate threshold is difficult due to the noisy data.
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Figure 5.10: Distillation System: Singular values of Lw from noisy data

In noisy cases utilizing the presented MSEE method in Section 5.2.2 as a powerful order selection

technique would be helpful. Figure 5.11 shows the order estimation from MSEE method. The

results show that the MSEE method can estimate the MIMO system order correctly as m∗ = 1

from both available noisy outputs y1 and y2.
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Figure 5.11: Distillation System: RE upper bound for order selection of noisy system

5.4 Summary

In this chapter, a statistical approach was utilized to estimate the time-delay, based on Reconstruc-

tion Error (RE) in subspace identification framework. The method is denoted by RE-based TDE.

Moreover, application of a new statistical approach was presented to estimate the system order.

The method is denoted by MSEE. Comparison of the proposed methods with other classical time-

delay estimation and order selection methods illustrates advantages of the proposed methods in

different SNR scenarios. The results show efficient performance and robustness of RE-based-TDE

and MSEE methods even for very low SNR cases.
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Chapter 6

Conclusion and Future Work

Focus of this dissertation was on analysis and improvement of the Subspace Predictive Control

(SPC). By closely analyzing the SPC in Chapter 3, its closed-loop transfer function was derived

in general form. This enabled us to obtain the necessary and sufficient condition of small-gain

SPC closed-loop stability for open-loop stable systems. As a result, SPC stability graph was

introduced to find the shortest-prediction-horizon and feasible range (FR) of prediction horizon,

which guarantee the closed-loop stability. Next, the efficient control horizon and prediction horizon

were derived based on shortest-feasible-prediction-horizon and by minimizing the SPC cost function.

Simulation results illustrated the efficiency of the proposed techniques in SPC parameter selection.

On-line adaption of SPC gains was studied in Chapter 4 and the problem of applying persistently

exciting (PE) signals in SPC was addressed. This Chapter introduced PSO-based FGS-SPC method

to update the SPC gains using FSG rules with no need for applying PE signals. In addition,

the proposed PSO-based FGS technique overcame the issue of determining controller gain ranges

(CGRs) in FGS method by optimally selecting the CGRs via minimizing the SPC cost function.

Simulation results were provided to show the robustness and efficiency of the proposed method.

Chapter 5 discussed black-box data-driven SPC approach in the presence of noisy data. Draw-

backs of Subspace-based thresholding approaches for order selection and time-delay estimation were

shown in this Chapter. Mean Squared Eigenvalue Error (MSEE) method and Reconstruction Error

based time-delay estimation (RE-based TDE) method were implemented for order selection and

time-delay estimation, respectively. Simulation results show the superiority of presented MSEE

and RE-based TDE methods to other existing approaches.

This dissertation was taking the initiatives to improve the SPC and provide theoretic and

systematic requirement for SPC parameter design. There is a great potential in continuing this
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research direction. For example, extending the SPC stability conditions to open-loop unstable

systems, and SPC design by using closed-loop I/O data are interesting possible future research. In

addition, it is well worthed to study the design of other parameters of SPC, Q and R, through an

optimization approach that is proposed in this dissertation. Lastly, extending the application of

PSO-based FGS-SPC method in systems with non-piecewise-constant inputs might be of interest.
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Appendix A

Re-configuration of SPC Control Law

Recall SPC control law in (2.150),

∆u(k + 1) = −k̃e(y(k)− r(k + 1))− k̃∆wp∆wp (A.1)

and by considering ∆wp in (2.143)

∆wp =

 ∆yp

∆up

 (A.2)

the second part of (A.1) can be rewritten as below,

k̃∆wp∆wp =
[
k̃∆yp k̃∆up

] ∆yp

∆up

 (A.3)

where k̃∆yp and k̃∆up are defined as,

k̃∆yp = k̃∆wp(:, 1 : Ml) (A.4)

k̃∆up = k̃∆wp(:,Ml + 1 : M(m+ l)) (A.5)
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∆wp in (2.143) can be rewritten as follows,

∆wp =

 ∆yp

∆up

 =



∆y(k −M + 1)
...

∆y(k − 1)

∆y(k)

−−−−

∆u(k −M + 1)
...

∆u(k − 1)

∆u(k)



=



q−M+1∆y(k)
...

q−1∆y(k)

∆y(k)

−−−−

q−M+1∆u(k)
...

q−1∆u(k)

∆u(k)



(A.6)

Therefore, (A.3) is obtained as,

k̃∆wp∆wp =
[
k̃∆ypM

. . . k̃∆yp2
k̃∆yp1

| k̃∆upM
. . . k̃∆up2

k̃∆up1

]



q−M+1∆y(k)
...

q−1∆y(k)

∆y(k)

−−−−

q−M+1∆u(k)
...

q−1∆u(k)

∆u(k)



(A.7)

= k̃∆yp(q−1)∆y(k) + k̃∆up(q−1)∆u(k) (A.8)

where k̃∆yp(q−1) and k̃∆up(q−1) are defined as,

k̃∆yp(q−1) = k̃∆ypM
q−M+1 + · · ·+ k̃∆yp2

q−1 + k̃∆yp1
(A.9)

k̃∆up(q−1) = k̃∆upM
q−M+1 + · · ·+ k̃∆up2

q−1 + k̃∆up1
(A.10)

As a result, the SPC control law in (A.1) can be rewritten as below,

∆u(k + 1) = −k̃e(y(k)− r(k + 1))− k̃∆yp(q−1)∆y(k)− k̃∆up(q−1)∆u(k) (A.11)
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Appendix B

SPC Closed-loop Transfer Function

Recall the open-loop transfer function in (3.1)

Gol(q
−1) =

y(k)

u(k)
=
N(q−1)

D(q−1)
(B.1)

and the SPC control law in (3.2)

∆u(k + 1) = −k̃e(y(k)− r(k + 1))− k̃∆yp(q−1)∆y(k)− k̃∆up(q−1)∆u(k) (B.2)

multiplying both sides of (B.1) by ∆ = 1− q−1 we have,

y(k)D(q−1) = u(k)N(q−1) (B.3)

∆y(k)D(q−1) = ∆u(k)N(q−1) (B.4)

∆y(k)D(q−1) = q−1∆u(k + 1)N(q−1) (B.5)

therefore, ∆u(k + 1) is obtained as follows,

∆u(k + 1) = ∆y(k)
D(q−1)

q−1N(q−1)
(B.6)

By replacing (B.6) in (B.2) we have,

∆y(k)
D(q−1)

q−1N(q−1)
= −k̃e(y(k)− r(k + 1))− k̃∆yp(q−1)∆y(k)− k̃∆up(q−1)∆y(k)

D(q−1)

N(q−1)
(B.7)
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after simplifying, the closed-loop system transfer function is derived as below,

Gcl(q
−1) =

y(k)

r(k + 1)
=
q−1N(q−1)

Dcl(q−1)
(B.8)

where Dcl(q
−1) is the closed-loop characteristics equation as below,

Dcl(q
−1) = ∆k̃−1

e D(q−1) + q−1[∆k̃−1
e N(q−1)k̃∆yp(q−1) + ∆k̃−1

e D(q−1)k̃∆up(q−1) +N(q−1)] (B.9)
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Proof of Theorem 3.2.1

Theorem 3.2.1 is proven by applying small-gain root-locus analysis to (3.11). Recall (3.11) as

follows,

1 +
k̃e
∆

N∗(z−1)

D(z−1)
= 0 (C.1)

Considering its second part without integrator as below,

k̃e
N∗(z−1)

D(z−1)
(C.2)

by having (3.14), DC-gain of the system in (C.2) can be obtained as,

k̃e
N∗(1)

D(1)
= k̃e

N(1)

D(1)
= k̃eKol (C.3)

Therefore, to utilize the root-locus analysis, it is necessary to know the sign of both k̃e and Kol.

The system in (C.2) can be rewritten as,

k̃e
N∗(z−1)

D(z−1)
= k̃e

(z − z1)(z − z2) . . . (z − zn)

(z − p1)(z − p2) . . . (z − pn)
(C.4)

where pis and zis are poles and zeros of the compound system N∗(z−1)
D(z−1)

. From (C.2) we have,

k̃e
N∗(1)

D(1)
= k̃e

(1− z1)(1− z2) . . . (1− zn)

(1− p1)(1− p2) . . . (1− pn)
(C.5)
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Since, open-loop system is stable we have D(1) > 0, therefore, the denominator of (C.5) is positive.

However, sign of the numerator needs to be determined. For complex conjugated zis we have,

(1− zi)(1− z∗i ) > 0, if zi 6= 1 (C.6)

for real zis we have,


1− zi > 0, if zi < 1

1− zi < 0, if zi > 1

(C.7)

Therefore, sign of the numerator in (C.5) can be determine as,

sgn[k̃e(1− z1)(1− z2) . . . (1− zn)] = sgn[k̃e(−1)Nz ] (C.8)

where Nz is the number of real zis that are greater than one. Therefore, from (C.3) and (C.8) we

have,

sgn[Kol] = sgn[(−1)Nz ] →


Kol > 0, if Nz even

Kol < 0, if Nz odd

(C.9)

Rewrite the system with integrator in (3.11) as follows,

1 +
k̃ez

z − 1

(z − z1)(z − z2) . . . (z − zn)

(z − p1)(z − p2) . . . (z − pn)
= 0 (C.10)

For small-gain k̃e the roots of (C.10) are close to the open-loop poles {p1, p2, . . . , pn}. Since, the

open-loop poles are stable, therefore, roots of the system in (C.10) are stable for small-gain k̃e 6= 0.

Here, z = 1 is a simple pole and corresponding root-locus follows the real axis at the beginning.

Since, the open-loop system is stable, total number of poles and zeros to the right side of z = 1 is

equal to Nz. Therefore, according to (C.9):

-If Nz is even, then Kol > 0 and positive-gain root-locus is plotted, therefore, roots of the SPC

close-loop system in (3.11) are inside the unit circle if k̃e > 0.

-If Nz is odd, then Kol < 0 and negative-gain root locus is plotted, therefore, roots of the system

in (3.11) are stable if k̃e < 0.

Therefore, the necessary and sufficient condition for small-gain stability of SPC closed-loop
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system is,

k̃eKol > 0 (C.11)
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