
Versatile Medium Access Control (VMAC)

Protocol for Mobile Sensor Networks

by

Vincent Ngo

B.Eng., Ryerson University, 2007

A Thesis

Presented to the School of Graduate Studies at

Ryerson University

in partial fulfillment of the requirements for the degree of

Master of Applied Science

in the Program of Electrical and Computer Engineering

Toronto, Ontario, Canada

© Vincent Ngo 2010

PROPERTY OF
RYERSON UNIVERSITY LlBP.AHY

Author's Declaration

I hereby declare that I am the sole author of this thesis.

I authorize Ryerson University to lend this thesis to other institutions or individuals for the
purpo~e of scholarly research.

I further autfionze Ryerson University to reproduce this thesis by photocopying or other means,
in total or in part, at the request of other institutions or individuals for the purpose of scholarly
research.

ii

Abstract

Versatile Medium Access Control (VMAC) Protocol for Mobile Sensor Networks

© VincentNgo 2010

Master of Applied Science
Electrical and Computcr Engineering

Ryerson University

In this thesis, the problem of mobility handling in wireless sensor network is introduced

with an appreciation for the applications that may be possible once the problem is resolved.

Mobility handling is solved with a simple priority backoff technique inspired by novel MAC

protocols. To incorporate this technique for stationary and mobile sensor nodes, a hybrid MAC

protocol called VMAC is designed with a fixed frame length. VMAC combines the advantages

of scheduled-based MAC for energy savings and contention-based MAC for short transmission

delays. To exploit network bandwidth, channel reuse is encouraged and is readily integrated

into the protoco\. To evaluate VMAC and its performance when compared to other MAC

protocols, an implementation inside NS-2 is conducted with simulations of various topologies.

These topologies vary in hop-count from source to destination and also contention levels.

Simulation results show that VMAC with certain frame lengths are suited for selected

topologies, but the frame length of cne can always provide sufficient performance. The backoff

technique is shown to be fair when nodes contend for medium access and it is even resourceful

in speeding up hardware address resolution and routing.

III

Acknowledgement

There are many people I need to thank for their help, support, and encouragement. First,

I would like to thank my M.A.Sc. supervisor, Dr. Alagan Anpalagan, for keeping me on track

and guiding me throughout the course of this thesis. He is definitely a great supervisor and a

very easygoing person that I can approach for help whenever I need, even though his schedule

is overly cramped. I would like to thank the committee members for reviewing my thesis within

a short notice and their constructive feedbacks which have improved the thesis overall. Next, I

have to thank my research group in the WINCORE lab for being great friends, great colleagues,

and great people.

Of course, I have to thank my parents and my sisters for their support through the

rough times of graduate studies, and their effort to comprehend the stress involved. My parents

have done a lot to allow me to focus my time on research and I can never thank them enough,

especially my mom. Here is the lyric to a song from Beyond, a Hong Kong band, called Truly

Love You which they dedicated to their mother and I would like to dedicate this to my parents:

Beyond -li(j{J~1~ (Tntly Love You) :

* ~j!PI~~ffi~-lUEf. m tJj 5JiABilk ~ tE jj 1&
*ilt1i Om Ilj ~fJ *~ rm;1 1'1IJ~m:;tpg~

m ~$1i~ y ~i§' ~ l' ~:ltlt £HJi~~Wlk*)1!~
jj~;II)lij ~ II) $ w:tL ~JiJ~t~PI¥~~

~mitf:f:iB.i~:fi~IC.\ -~~iift~ ~ it!2i!~\!

+ ~~~~;JiA~~El* ~:fi~~1'lFi1l:iJ~
QT~:fi~ffIJ1'Bl1&~ ;Slj!~~*,~ PI ¥&~UJi,~
~~JlL*~~~H ~~*:fi~}u~li~~~

~n~ *
1J!J~c~;JiA~~-~t-¥ ~u~ ~ :fiP.~iift* ~lH*
!!~~;R*!1i~~¥IJ ~¥*~HltftHIj

~o~ #,+,#,+,+

Last but not least, I would like to thank my friends for their encouragement and the

great times we had together and hopefully many more great memories to come.

IV

m

Acronyms

ACK Acknowledgement

AODV Ad-Hoc On-Demand Distance Vector

ARP Address Resolution Protocol

BER Bit Error Rate

BPSK Binary Phase Shift Keying

CBR Constant Bit Rate

CPU Central Processing Unit

CSMA/CA Carrier Sense Multiple Access with Collision A voidance

CTS Clear to Send

C\V Contention Window

DCF Distributed Coordination Function

DSSS Direct-Sequence Spread-Spectrum

EKF Extended Kalman Filter

FL Frame Length

FTP File Transfer Protocol

G-MAC Gateway MAC

GPS Global Positioning System

IP Internet Protocol

LEACH Low-Energy Adaptive Clustering Hierarchy

MAC Medium Access Control

MACA Multiple Access with Collision Avoidance
I • .. MACAW MACA for Wireless

MANET Mobile Ad-Hoc Network

MEMS Micro-Electro-Mechanical System

MMAC Mobility-Adaptive, Collision-Free MAC

MS-MAC Mobility-Aware Sensor MAC

MSN Mobile Sensor Network

NAV Network Allocation Vector

;\IS-2 Network Simulator version 2

v

w

OSI Open System Interconnection

OTci Object Tool Command Language

PER Packet Error Rate

RSS Received Signal Strength

RTS Request to Send

S-.MAC Sensor MAC

SNR Signal-to-Noise Ratio

SYNC Synchronization

TCP Transmission Control Protocol

TDMA Time Division Multiple Access

TRAMA Traffic-Adaptive Medium Access

UDP User Datagram Protocol

VMAC Versatile MAC

WSN Wireless Sensor Network

Z-MAC Hybrid MAC

vi

List of Figures

Fig. 1.1 Example ofWSN with Uniformly Scattered Sensor Nodes (clear circles) 2

Fig. 2.1 Simplified OSI Model ... 6

Fig. 3.1 Traditional Contention-based MAC Flowchart.. ... 16

Fig. 3.2 a) Hidden Terminal Problem, and b) Exposed Terminal Problem 17

Fig. 3.3 S-MAC Possible Sender and Receiver Timing Relationships (source: [8]) 19

Fig. 3.4 MS-MAC Active Zones formed for Four Virtual Clusters (source: [18]) 22

Fig.3.5 MS-MAC Average Energy Consumption at 5 mls (source: [18]) 23

Fig.3.6 MS-MAC Average End-to-End Delay at Various Speeds (source: [18]) 23

Fig.3.7 MS-MAC Packet Drop Rate at Various Speeds (source: [18]) 24

Fig.3.8 SMAC with EKF Average Power Consumed at Low RSS (source: [16]) 26

Fig.3.9 SMAC with EKF Average P'ower Consumed at 50 mph (source: [16]) 27

Fig.3.10 SMAC with EKF Average Power Consumed at 75 mph (source: [16]) 27

Fig. 3.11 Scheduled-based MAC Flowchart.. ... 28

Fig. 3.12 MMAC Average End-to-End Delay at Various Speeds (source: [19]) 32

Fig. 3.13 MMAC Percentage of Packets Received at Various Speeds (source: [19]) 33

Fig. 3.14 MMAC Average Energy Used at Various Speeds (source: [19]) 33

Fig. 3.15 G-MAC Frame Structure (source: [23]) .. 34

Fig. 3.16 G-MAC Network Lifetime at Various Numbers of Nodes (source: [23]) 37

Fig.3.17 Z-MAC Multi-hop Throughput at Various Data Rates (source: [26])42

Fig.3.18 Z-MAC Multi-hop Fairness Index at Various Data Rates (source: [26])42

Fig. 3.19 Z-MAC Multi-hop Throughput/Energy at Various Data Rates (source: [26])43

Fig. 4.1 VMAC Flowchart .. 45

It 11"1' Fig. 4.2 VMAC Frame Structure .. 46

Fig. 5.1 Two-hop Topology with Centered Sink (shaded circle) ... 54

Fig. 5.2 Four-hop Topology with Cornered Sink (shaded circle) ... 55

Fig. 5.3 Example of VMAC Channel Reuse ... 56

Fig. 5.4 Throughput of the Three Topologies ... 57

Fig. 5.5 Utilization of the Three Topologies ... 58

Fig. 5.6 Transmission Delay in the Three Topologies .. 59

Fig. 5.7 Average Fairness of VMAC in One-hop Simulation .. 60

vii

•

Fig.5.8 Average Fairness ofVMAC in Two-hop Simulation .. 60

Fig.5.9 Average Fairness ofVMAC in Four-hop Simulation ... 61

Fig. 5.10 Node Energy Remaining in One-hop Simulation .. 62

Fig. 5.11 Node Energy Remaining in Two-hop Simulation ... 62

Fig. 5.12 Node Energy Remaining in Four-hop Simulation ... 63

viii

Table of Contents

1. INTRODUCTION ... 1

1.1 WIRELESS SENSOR NETWORKS .. 1

1.2 THESIS MOTIVATION ... 3

1.3 CONTRIBUTION AND ORGANIZATION .. 4

2. TECHNICAL BACKGROUND .. 5

2.1 NETWORK LAyERS .. 5

2.2 NETWORK SIMULATOR 2 (NS-2) ... 7

2.2. J Mobile Networking: Features ... 8

2.2.2 Mobile Networking: AlAC Protocols .. 10

2.2.3 Mobile Networking: Routing Protocols .. 10

2.2.4 Wireless Channel lI-fodeis ... 12

3. STATE-OF-THE-ART LITERATURE REVIE\V .. 14

3.1 CONTENTION-BASED MAC PROTOCOLS .. 16

3.1.1 Sensor-MAC (S-MAC) .. 16

3.1.2 Mobility-aware Sensor MAC (MS-MAC) .. 21

3.1.3 S-MAC with Extended Kalman Filter (EKF) .. 24

3.2 SCHEDULED-BASED MAC PROTOCOLS ... 27

3.2.1 Mobility-adaptive, collision-free MAC (MMAC) .. 29

3.2.2 Gateway MAC (G-MAC) 34

3.2.3 Hybrid !vIAC (Z-lvlAC) .. 38

4. VERSATILE MAC (VMAC) PROTOCOL ... 44

4.1 Vl'v1AC METHODOLOGY .. 44

4.2 VMAC IN PSEUDO-CODE FORMAT .. 47
11 till!

4.3 MOBILITY HANDLING IN VMAC ... 50

5. VMAC PERFORMANCE EVALUATION ... 53

5.1 SIML;LATION SETUP ... 53

5.2 SIMULATION RESULTS ... 56

5.2.1 Throughput 56

5.2.2 Utilization of Bandwidth 57

5.2.3 Source to Destination Delay ... 58

5.2.4 Fairness of Medium Access .. 59

IX

5.2.5 Energy Consumption 61

6. CONCLUSION AND FUTURE·'VORK .. 64

REFERENCES .. 6S

APPENDIX: OTCL AND C++ CODES ... 67

x

1. Introduction

In the past decade, wireless communication has brought about many new applications.

Recently, a lot of excitement has been built up around sensor communication, where sensors

not only sense different phenomena but also forward their findings to a remote station. As

applications require different features of sensor nodes, supporting a network of them becomes a

great challenge.

1.1 \Vireless Sensor Networks

A wireless sensor network (WSN) is a special case of ad hoc networks where nodes can be

interactive with their surrounding environment in terms of sensing and actuating. Generally, a

sensor network has sensor nodes and base stations, but the amount of sensor nodes is a lot more

than base stations. Sensor nodes have sensing and wireless communication capabilities, and

they are the main data generators or sources in the network. The data is created from the

elements sensed and these elements include temperature, light, sound, and motion. Base

stations are sinks that collect data from the nodes and they process them to test for occurrences

of irregular events. To minimize cost and size, nodes are limited in sensing, computing,

communicating, and power (small battery supply) while base stations are powerful computers

with connection to a continuous power source.

Research on WSNs has grown rapidly in the past several years and new techniques have

been developed for the physical, data link or medium access control (MAC), and network

layers. This popularity is the result of technological advancements in micro-electro-mechanical

systems (MEMSs) for sensing, microelectronics for computation and communication, and

wireless networking techniques for efficient transmission [1]. A WSN consists of a large

number of wireless sensor nodes scattered among an area of interest, and are networked

together to collaboratively gather data from the environment (or object in the case of

monitoring a target). Nodes can be uniformly or non-uniformly distributed depending on the

application and Fig. 1.1 below shows an example with uniform distribution and one sink node.

Collaborative gathering between adjacent nodes is needed since sensed data from one node is

not accurate and must be compared with others, which improves fault tolerance of the system

and allows data fusion [2]. This gives the intuition of moving sensors closer to the objects

being monitored to improve the accuracy of collected data. Each sensor routes the sensed data

towards the base station by using other sensors as intermediate hops. This multi-hopping

method is preferred since it helps minimize the transmission power required, but suffers from

increased delay.

Base Station (sink node)

•
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Fig. 1.1 Example of WSN with Uniformly Scattered Sensor Nodes (clear circles)

The primary goal of WSNs is to meet the application needs while maintaining low

power consumption, in order to extend network lifetime. Protocols for minimizing power

consumption have been developed for the network layer by performing data aggregation at

intermediate hops [3],' but these protocols assume the sensor nodes are stationary. Current

research on WSNs mainly focuses on stationary s'ensor nodes or controlled mobility for hop

count reduction in data collection [4]. Mobile sensor nodes are needed in applications where

sensors are deployed on randomly moving objects for monitoring purposes, such as ZebraNet

[5] where zebra positions are tracked, or to maneuver around for discovery purposes. Other

applications can involve humans as participants such as flu-virus tracking or air-quality

monitoring [6]. Mobility handling in WSNs is an important issue and it should be addressed at

different layers of the network, but the focus here is on the MAC layer since it can control and

synchronize node radio states for energy efficiency [7]. In general, some challenges affecting

the operation of WSNs are self-organization after deployment (i.e. synchronization and

scalability), robustness towards topology changes (Le. node joins and failures), and energy

efficiency. These challenges also exist in mobile sensor networks (MSNs) where they are even

more difficult to solve.

2

I ", I,

The radio interface of sensor nodes is designed with three modes or states: receiving (or

idling), transmitting, and sleeping (i.e. radio turned off). Commonly, transmitting consumes'

almost double the amount of power required by receiving, and sleeping uses about a thousand

times less power than receiving. Transmitting and receiving spends about tens of milliwatts and

sleeping requires only tens of microwatts [8]. Thus, almost all energy-efficient MAC protocols

put nodes to sleep during idle periods. Data delivery models are application specific and they

can be categorized into periodic, event-driven, and query-driven [9]. In the case of periodic,

data is generated once per period so the radio should only be awake at those times, and it can be

aslcep in betwecn two data generations. In event-driven, data is created when a node senses a

particular event, and to delivery it, a path towards the base station or sink is found on demand.

Query-driven is similar to event-driven, but instead of sensing an event, a node receives a query

and replies to it with the data type specified in the query. Both driven models are random

models where data flows are created on demand. For all models, putting nodes to sleep

increases the chance of intermediate nodes being asleep when needed and delay is largely

dependent on the sleep period. Sleep synchronization in the periodic model is simpler to

execute than in the other two and it is crucial in exploiting the sleep mode for energy

conservation. The MAC protocols examined here approach this sleeping problem differently.

1.2 Thesis l\lotivation

Versatile medium access control (VMAC) is a protocol designed to be efficient in both

stationary and mobile scenarios by utilizing sleep synchronization, therefore, making it

versatile to different application needs. The design is influenced by the current state-of-the-art

tactics in WSNs and builds on it by providing mobility handling. As mentioned earlier,

considering mobile nodes in the network can broaden the range of applications of sensor nodes.

Mobile nodes are conceived as having higher priority in communication than stationary nodes,

because their random or controlled movement leave them minimal amount of coimection time

to other nodes, which may be in motion or not. Current mobility handling techniques can be too

cumbersome due to the large amount of control overhead. In addition, some techniques go

beyond the responsibilities of the MAC layer" which is shown to be unnecessary by the

methodology of VMAC. For testing purposes, VMAC has been implemented in the Network

Simulator version 2 (NS-2). To be efficient in the stationary instance, VMAC performance

3

approaches the MAC protocols of IEEE 802.11 distributed coordination function (DCF) [10]

and time division multiple access (TDMA). For the mobile case, YMAC insist on maintaining a

performance level close to the stationary case by using a simple yet effective method to handle

mobility.

1.3 Contribution and Organization

The main work and contribution of the thesis is summarized below:

• proposed YMAC for stationary and mobile sensor networks through efficient mobility

handling with a technique that is resourceful even in the stationary case

• verified the perfonnance of YMAC through implementation in NS-2 and NS-2

simulations with detailed wireless configurations

• showed that various frame lengths of YMAC are effective under certain contention

levels and the frame length of 1 merges the advantages ofTDMA and 802.11

The rest of the thesis is organised as follows. In Chapter 2, the technical background of

wireless networking is briefly discussed and the NS-2 simulator is introduced with focus on

wireless and mobile communication. Chapter 3 goes through an extensive list of novel MAC

protocols that have inspired YMAC. Chapter 4 is the creation of YMAC through ideas sprung

out by analyzing the readings conducted. Chapter 5 provides an elaborate evaluation of YMAC

and relates the performances to YMAC methodology. Chapter 6 is the conclusion and possible

future work for more in-depth testing of YMAC and foreseeable improvements.

4

2. Technical Background

To understand the importance of the MAC layer and its functions in sensor networks, the

background infoffi1ation is provided here. This chapter goes through the general network layers

that comprise the communication system used in contemporary wireless networking, but adds

the modifications required by their counterparts in sensor networks. The NS-2 simulator is also

explained to comprehend the correctness of its use in testing the performance of VMAC and

other protocols. Wireless channel models in the NS-2 distribution are introduced with detailed

explanations on received power.

2.1 Network Layers

The open system interconnection (OSI) model divides the responsibilities of a communication

network into seven separate layers, and thus, simplifies the implementation of each layer. With

responsibilities decomposed, each layer must support the layers above it in order for the system

to be functionally correct. Support from lower layers is assumed when each layer is

constructed, so the layers depend on each other and work together to form a communication

network. Fig. 2.1 shows the OSI model with only five layers since the other two layers,

presentation and session, can be combined together with the application layer. Applications,

such as web browsing and the file transfer protocol (FTP), are designed with the assumption

that communication between two ends is sustained by other layers below. The applications

depend on the transport layer to segment and transport the large amount of data from the source

to the destination. The user datagram protocol (UDP) [11] does segmentation for applications

and uses the Internet protocol (IP) [12] to deliver the segment. UDP is efficient in delivering

segments with small processing delay, which is important in mission critical applications in

sensor networks. Delay is minimal since acknowledgements (ACKs) are not realized, and

reliability and in-order delivery of segments are not guaranteed. These services are provided by

the transmission control protocol (TCP), along with flow control to prevent receiver buffer

overflow and congestion control to prevent network congestion [13).

TCP provides many services, but they are unnecessary in sensor networks. Sending

acknowledgements back to the source may interrupt other data flows to the sink, and the same

5

.

rrr 77-

data may be sent by multiple sources (due to close spacing of sensors) so missing it is highly

unlikely. In addition, the MAC layer may perform ACK making it repetitive and waste of

bandwidth if TCP does it as well. Also, reliability and in-order delivery of segments are not

needed when data is typical1y time-stamped and only the most recent ones matter. TCP also

depends on IP to deliver the segments, whieh are called packets at the network layer. IP

supplies the upper layers with a best-effort delivery service, because it tries to route the packet

to the destination over a number of hops (intermediate routers or nodes) and the packet can be

dropped at any hop due to congestion or some admission policy.

In networks where the medium (wired or wireless) is shared, a MAC protocol is used to

schedule the access time of each user. IP passes the packet to the MAC layer, where it is called

a frame and is stored in a buffer until it gets scheduled to access the medium. Upon accessing,

the physical layer modulates the bits of the frame using a technique that is efficient for the

medium in terms of energy and bandwidth, and it does this before the frame is sent out to the

next hop towards the destination. Additionally, transmit power can be adjusted to reduce

probability of errors or to save energy, depending on the channel condition.

Application (Web Browsing, FTP)

Transport (TCP, UDP)

I Network OP)

Data Link or MAC

Physical

Fig. 2.1 Simplified OSI Model

In traditional networks, the TCPIIP network stack is sufficient but in resource

constrained sensor networks a routing architecture based on unique IP addresses is not

practical. Even routing in ad-hoc networks is still address-centric, where specific node

identities are the main concerns rather than what data each node carries. The objective of sensor

networks is the timely delivery of sensed data to the destination, so it can be categorized as

being data-centric [2]. Thus, the source that generated the data is not important and similar data

can be aggregated by routers along the route to the destination. The node itself only becomes

6

vital when the application requires information from nodes in a certain location, in which case

this becomes location-based routing [7]. Design of the routing protocol can be crossed over

with the MAC protocol to optimize the overall performance. The MAC protocol used in ad-hoc

networks is typically IEEE 802.11, and this protocol has several features that may not be

favoured in sensor networks. These inelude sending acknowledgements of received packets and

non-periodic (non-scheduled) data transmission which prevents sleep synchronization.

2.2 Network Simulator 2 (NS-2)

NS-2 [14] is an object-oriented, discrete-event simulator for testing protocols by manipUlating

and recording the properties of packets according to the network configuration (the protocols

and settings involved). The status of the packets, whether sent, received, or dropped, are traced

and outputted to a trace file for analysis conducted later. The network could be wired or

wireless (local or satellite) or both (wired-cum-wireless), and there is even support for mobility

in ad-hoc networks. Nodes inside the defined network topology can establish connections and

disconnect with each other at any moment. The network settings cover all layers of networking

and there are multiple choices for each layer, which are still growing as research continues to

bring about new protocols and architectures. Although NS-2 is a powerful tool, development

work such as implementing VMAC is difficult and reusing code in real-life systems is

impossible. However, the currently under development and expansion NS-3 covers these issues

and much more, but since it is still in its beta stage it is not used here.

NS-2 is written in C++ and simulations are written in OTel (Object Tool Command

Language) scripts that act as an interpreter frontend for the simulator by calling NS-2 functions.

The point of using two languages is to have a fast simulation run-time and allow quick

variations to the network configuration since these objectives are important to research. C++

executes rapidly but requires a lot of time to alter settings. OT el is slow in execution but can be

easily and quickly changed for different tests. Thus, the combination of the two is perfect and

also provides a separation between two different purposes. For simulations with the current

functions provided, it is best to program with OTcl. For developing new protocols, C++ must

be utilized for writing new objects and functions that can be called upon by OTel scripts. The

C++ and OTel codes written for VMAC are provided in the Appendix. In the following

7

d

sections, the mobile networking features and protocols in NS-2 will be discussed in detail. The

information is mainly from Chapter 16 and 18 of the NS manual [15J.

2.2.1 .Mobile Networking: Features

For mobility support, a mobile node is constructed as child of a normal node in C++ and it has

additional functionalities for movement, and transmission/reception on a wireless channel that

can be configured according to different simulation environments. However, the channel

models implemented only considers path toss and does not take into account the signal-to-noise

ratio (SNR) or Doppler shift that are significant in mobile scenarios. These parameters

determine the packet error rate (PER), or more specifically, the bit error rate (BER). Thus,

Raviraj et al. [16] have developed and implemented a physical layer model for wireless

channels in NS-2 that includes the effects of SNR and Doppler shift. Also, with physical

models that affect bit error rate, channel coding and modulation can be included and tested for

their effectiveness. Currently, binary phase shift keying (BPSK) is the only modulation

implemented in NS-2.

Energy consumption is an important aspect in protocol design so the energy model in

NS-2 logs the current energy level of mobile hosts especially after a transmission or reception.

Each node is initiated with an energy level value and energy usage is dependent on the power

setting for transmission and reception of packets. However, energy consumed during central

processing unit (CPU) usage for computations is not considered and this is important to

accurately calculate the energy required by complex functions, such as mobility prediction for

mobile ad-hoc networks (MANets) and WSNs. If the energy model can take into account the

energy savings of putting the CPU to sleep, then protocols can utilize this in their simulations

and comparisons between their results become more practical. The following is a general

overview of the options and tools available for mobile nodes:

Link Layer (LL): The LL is the same as the one used for normal nodes, but it is attached with

an address resolution protocol (ARP) module that resolves hardware addresses when given a

destination IP address. This is required since links for wireless networks are not defined, so not

enough information is known about the receiving node for actual transmission.

8

iIi. r~,n "Pil" in!

Address Resolution Protocol (ARP): The ARP is implemented in BSD (Berkeley software

distribution) style and its responsibility is just to resolve the hardware address of the destination

when queried by the LL.

Interface Queue: Several network interface queues can be chosen for different purposes such

as fair queuing and first-in first-out (FIFO). One queuing scheme that is important for smooth

routing protocol execution in MANets is the priority queue (PriQueue). The PriQueue places

routing protocol packets at the head of the line, which shortens the delay for resolving a route

and minimizes the packet loss due to disconnection. However, this has been tested to be

problematic in NS-2 since ARP needs to resolve the hardware addresses needed by the route

first.

MAC Layer: Traditionally, the protocol for wireless MAC is IEEE 802.11 DCF. Now, in the

current release NS-2.33, several other 802.11 implementations are available.

Network Interface: The network interface is a hardware interface used to determine access to

the wireless channel. The transmitter interface receives all packets to be transmitted and stamps

each one with information regarding the transmission power, wavelength, and etc. The receiver

intcrface uses the propagation model to determine if the minimum power for reception

(receiving threshold) or detection (carrier-sensing threshold) is met. The model is an

approximation of the direct-sequence spread-spectrum (DSSS) radio interface from Lucent

WavcLan.

Radio Propagation Model: The Friss free-space model 0/r2) and the two-ray ground

reflection 0/r4) model for attenuation are used extensively in NS-2 for near distances ~nd far

distances, respectively.

Antenna: Currently, only oruni-directional antennas are supported by NS-2. Other

implementations of directional antennas exist outside of the NS-2 distribution and they require

more testing.

9

a

2.2.2 Mobile Networking: MAC Protocols

Two types of MAC protocols for mobile networking are available in NS-2 and they are IEEE

802.11 DCF and TDMA. IEEE 802.11 DCF is a traditional contention-based MAC and its

implementation includes both physical and virtual carrier sensing. Furthermore, unicast packets

use the RTS/CTS/DATA/ACK pattern while broadcast packets are sent without any RTS/CTS

exchange. Although these components are integrated, the 802.11 implementation in NS-2 is far

beyond the actual one governed by the standards. Thus, in the current NS-2.33 release, 802.11

has been extended to incorporate a lot of these missing features. The TDMA MAC protocol is

preamble-based (scheduled-based) and it is still in the preliminary stage, so contention during

the preamble slot and time slot reuse in a multi-hop scenario are not supported. Instead, the

protocol provides a global TDMA schedule by assigning a permanent time slot to each node.

The preamble slot is used to mimic contention where source nodes announce their destination

node IDs, but no actual information exchange through packet transmission takes place. All

nodes listen during this preamble and they record the time slots of when they are suppose to

receive the packets. Nodes that are not receiving or transmitting in certain time slots can go to

sleep, but must be awake when they are suppose to send or receive packets. Collisions are non

existent since nodes only transmit on their own permanently reserved time slot.

2.2.3 Mobile Networking: Routing Protocols

There are four different ad-hoc routing protocols implemented in NS-2 for mobile networking.

The first one is based on proactive routing where periodic route discovery is performed to store

routes before they are needed. The other three are based on reactive routing where on-demand

route discovery is used when the route is required. They are briefly summarized below:

Destination-Sequenced Distance Vector (DSDV): This protocol is table-driven, so all

exchanged routing information are kept even when the routes are never used. Routing updates

are done periodically unless a change in the routing table advertised by a node triggers the

update. There is traffic overhead even when the network topology has not changed. When a

route to the destination is unknown, the packet is cached in a buffer and query for the route is

sent out. Once the buffer is full, incoming packets are dropped. The destination 'replies to the

query and sets a sequence number for the route.

\0

Dynamic Source Routing (DSR): The protocol checks the header of every data packet for

route infonnation inserted by the source. Forwarding is based on the next hop indicated by the

source, but if that infonnation is not there then intennediate nodes can provide the source route

if it is known or send a query for it. Routing queries are broadcasted and replies can be sent by

intermediate nodes or the destination if the route is known. The complete route is kept in the

header of the data packet as it traverses the network and this is substantial when the path is

long.

Temporally Ordered Routing Algorithm (TORA): The protocol is based on a link reversal

algorithm and it is similar to DSR. When a packet needs a route, a QUERY is broadcasted and

it traverses the network until the destination or an intennediate node that knows the route is

reached. The recipient of the query replies with a broadcasted UPDATE message that indicates

its height (distance) from the destination. The distance information is incremented as it

traverses the network and the source node will have several paths to the destination. These

paths are directed links that begin at the source and end at the destination. Unreachable

destinations have a defined maximum height and network partitions are announced using a

broadcasted CLEAR message. TORA runs on top of the Internet MANet encapsulation

protocol (IMEP), which provides reliable delivery of routing messages and notifies TORA of

changes made to links.

Ad-hoc On-Demand Distance Vector (AODV): This protocol combines DSR and DSDV

since it implements route discovery and route maintenance of DSR, and perfonns hop-by-hop

routing with sequence numbers and beacons ofDSDV. When a packet needs a route, a ROUTE

REQUEST is sent and intennediate nodes forward the request until it reaches a node that

knows the route to the destination. The request is replied with a ROUTE REPLY that coptains

the hop count, and nodes forwarding the reply increments the hop count and records the

forward path to the destination. The next hop node is kept for each destination and not the

entire route.

11

•

· "" .

Another routing protocol worth stating is Directed Diffusion [3] and it is a protocol that

does not run on top of IP, but instead replaces it. It is designed for WSNs and applicable for

periodic data gathering. It differs from IP since sensed data is important to the application and

not the individual node addresses. Thus, Directed Diffusion is data-centric and sinks send out

interest messages to request for data in specific areas of the network. Sensors in those areas

respond when the data generated from sensing (attribute-value pair) matches these interests.

The data flows towards the sinks and intermediate nodes can aggregate similar attribute-value

pairs to save energy.

2.2.4 Wireless Channel Models

There are three propagation models included in the NS-2 distribution and they are the Friis

free-space model, two-ray ground reflection model, and shadowing model. These models are

taken directly from Rappaport's textbook on wireless communication [17]. The models predict

the received signal power of each packet. A receiving threshold is set during the physical layer

configuration in OTcl simulation, and packets are dropped if their received power is below this

threshold. The free-space model assumes ideal propagation so it only considers the line-of-sight

path between the transmitter and receiver. According to the model, the following equation is

the received signal power at a distance, d, from the transmitter:

P (d) = ~GIGrA2
r (4n:)2d 2L

(I)

where f>t is the transmitted signal power, Gt is the transmitter antenna gain, G r is the receiver

antenna gain, A is the wavelength, and L is the system loss (usually assumed to be 1). The

free-space model is only accurate for short distances and requires a different model for long

distances. The two-ray ground reflection model considers both the line-of-sight and ground

reflection paths so it is more accurate than the free-space model. The reflection model can only

be used when the distance is beyond a certain threshold and is not as accurate as free-space for

small distances. The received signal power according to this two-ray ground reflection model is

as follows:

(2)

12

where hI is the transmitter height and hr is the receiver height. Equation (2) does not require

the wavelength, because at far distances wavelength does not affect attenuation. The cross-over

distance separates the free-space and ground reflection models, and helps to determine the

better model for the current transmittcrlreceiver separation. This distance is the result of

equation (I) being equal to equation (2) and it can be calculated with the following equation:

d == 41lhl hr

C A (3)

The above two models predict from a deterministic function the received signal power

and they represent the transmission range as an ideal circle. The received power becomes a

random variable at certain distances because multi-path propagation effects create this

randomness. The equation that considers such probabilistic phenomena is the shadowing model

and it is simplified and shown below:

(4)

where do is a reference distance at which the received power is known, X dB is a Gaussian

random variable with zero mean and standard deviation, a dB' P and a dB are tabulated values

and depend on the selected wireless environment (indoor or outdoor).

After an elaborate background of the network layers and the simulator involved, it is

now critical to review novel MAC protocols for sensor networks. Chapter 3 is a literature

survey that covers MAC protocols exploiting the nature of stationary sensor networks to save

energy. More interestingly, protocols that attempted to handle mobility are built upon these

techniques and their insights are identified.

13

•

3. State-of-the-art Literature Review

The review on preceding protocols has provided new ideas based on the successes and failures

of each protocol. Some of these protocols have been referenced extensively and others have not

gained enough recognition, but they are all important and are briefly introduced here.

A popular contention-based scheme for sensor networks is Sensor-MAC (S-MAC) [8].

S-MAC is an energy-efficient protocol that tries to save energy by periodically coordinating

sensor nodes to sleep for most of the time, and wake up only for a short duty cycle to listen for

transmissions (i.e. the nodes idle until they receive packets) or to transmit sensed data. The two

states, listen and sleep, form a frame time which is usually 1 s (second). Nodes form a virtual

cluster by synchronizing the start and end of their listen and sleep schedules using broadcasted

synchronization (SYNC) packets. Border nodes in between two clusters can communicate with

either cluster, as long as the border nodes have knowledge of both schedules. To prevent

network partitions when nodes miss each other due to non-overlapping listen intervals, sensor

nodes leave 10 s after every 2 min (minute) of periodic listening and sleeping for neighbour

discovery or after a short period if the sensor node has no neighbours. The same method is used

to synchronize with new sensor nodes joining the network or from other clusters (i.e. border

nodes). This means a mobile node moving into a new cluster can wait up to 2 min to connect

with nodes in that cluster.

To handle mobility while keeping the energy benefits of putting nodes to sleep, the

mobility-aware sensor MAC (MS-MAC) protocol [18] adaptively changes the synchronization

period to be lOs after every 30 s of listening and sleeping when mobility is detected. MS-MAC

is an extension to S-MAC made by other researchers [18] in hope of providing better mobility

handling. Detection of mobility is based on the received signal level of SYNC packets from a

mobile node. An active zone is created around the mobile node and border nodes also form

active zones with nodes around them. All nodes inside the zones are within two hops from the

mobile or the border nodes, and they perform synchronization for 10 seconds after every 30

seconds of listen and sleep cycles. As the mobile moves, the active zone move~ along with it

and nodes within two hops of it join the zone as the mobile node approaches. Distance (in hop

14

It ,»1< ._

count) from the mobile and border node IDs are stored in SYNC packets so nodes can assume

detection of mobility when they are within two hops.

Mobility increases frame errors due to low SNR or high Doppler shift. Low SNR and

high Doppler shift increase BER, which in turn increases the number of frame errors. Thus,

another approach to handle mobility is to use extended Kalman filter (EKF) (16J to make the

frame size smaller when the channel condition is harsh, and larger when the channel has high

SNR and low Doppler shift. This method is based on adaptively estimating the frame size to be

used for transmission, and requires knowledge of previous frame size and channel conditions.

On the other hand, mobility has been considered as an improvement to channel capacity, but

instead of assuming random mobility or predicting it, mobility is controlled for data delivery to

sinks [4). Another prediction approach similar to S-MAC with EKF is the mobility-adaptive,

collision-free MAC (MMAC) protocol [19] which adaptively changes the frame time according

to the dynamic change in mobility. The protocol is scheduled-based or TDMA based, so there

is no collision. Instead of using a fixed frame time like S-MAC or MS-MAC, MMAC shortens

the frame time when mobility is high and lengthens it when mobility is low. The protocol is an

extension to the traffic-adaptive medium access (TRAMA) protocol [20), which uses a hash

table to provide distributed scheduling and utilizes a fixed frame time. Mobility is estimated

using a probabilistic autoregressive model and it produces a prediction on the mobility of two

hop neighbours.

The following sections will be focused on the analysis of each approach and comparison

of their effectiveness in handling mobility, whether the technique is changing the rate of

synchronization, frame size, or frame time. Effectiveness will be based on the time required to

connect with a mobile node and the scalability of the technique in handling many mobile nodes

or even a network of entirely mobile nodes. Also, the complexity or protocol overhead of each

approach will be compared, such as computation time and memory requirements. When

appropriate, possible mobility handling techniques are proposed and the trends set for future

MAC protocols will be discussed.

15

•

3.1 Contention-based MAC Protocols

Data to Transmit

Carrier Sense. Channel Busy?

No Yes

Transmit Data Wait for Random Backoff

Fig.3.1 Traditional Contention~based MAC Flowchart

In a single-channel wireless network, there are two predominant types of MAC protocols and

they are contention-based and scheduled-based. In contention-based (see Fig. 3.1 above), nodes

contend for the channel whenever they have data to transmit, so carrier sense is usually used to

avoid collisions by ensuring the channel is free before transmitting. To support fairncss and

prevent collisions once the channel is free, a random backoff period is initiated when the

channel is busy so contending nodes wait for a random amount of time before executing carrier

sensing again. An example of such a MAC protocol is IEEE 802.11, which is one of the most

commercially used multiple access schemes. IEEE 802.11 differs from Fig. 3.1 since it

performs a RTS/CTS exchange before transmitting the data and it supports virtual carrier

sensing using RTS/CTS control packets.

3.1.1 Sensor-l\lAC (S~MAC)

The goal of S-MAC [8] is to minimize energy usage for prolonging network lifetime of a

stationary network. The four major sources of energy consumption are: collision that occurs in

a contention-based MAC, overhearing other transmissions, control packet overhead, and idle

listening. S-MAC is a contention-based protocol that is similar to the IEEE 802.11 DCF

protocol, so it utilizes carrier sensing and RTS/CTS to prevent collisions. Carrier sensing is

done both physically within a fixed contention window and virtually by inserting a network

allocation vector (NA V) value in each RTS and CTS. The NAV value is the transmission time

for one data packet with a corresponding ACK. The RTS/CTS exchange is first 'developed for

minimizing the cost of hidden tcrminal problems, and it is based on the carrier sense multiple

16

It t~" _

access with collision avoidance (CSMAICA) protocol. The hidden terminal problem occurs

when there are two transmitters separated by two hops (such as Node 1 and 3 in Fig. 3.2a), and

there is a node in between them that is the receiver for one of them (Node 2 is the receiver for

Node I while Node 4 is the receiver for Node 3). Both RTS transmissions will overlap at the

receiver (Node 2) and cause co-channel interference, but with RTS the cost of this loss is far

less than if a data packet is transmitted directly. Multiple access with collision avoidance

(MACA) further used RTS/CTS to prevent the expos cd terminal problem and it also added

virtual carrier sensing. The exposed terminal problem happens when two adjacent transmitters

try to transmit to their corresponding receivers (such as Node 2 transmitting to Node 1 and

Node 3 transmitting to Node 4 as shown in Fig. 3.2b) and their transmissions do not overlap at

the receivers, but one (such as Node 3) is prevented to reuse the channel and transmit since the

other (Node 2) is already transmitting. To solve the exposed terminal problem, if Node 3 has

received a RTS from Node 2 but not a corresponding CTS, then it is two hops from the receiver

and will not interfere so it can transmit as well.

- R TS Transmission

cS\0v
234

(a)'

R TS Transmission

CTS Transmission

,.. ,

~ UJ
I

, I

2 3 '~-'4

(b)

Fig.3.2 a) Hidden Terminal Problem, and b) Exposed Terminal Problem

In S-MAC, unlike unicast packets, broadcast packets like SYNC do not utilize

RTS/CTS. Even though DCF is one of the best in avoiding collisions in a contention-based

environment, collisions still occur especially when the contention window is fixed. Fixing the

window has the advantage of simplifying the computation involved and thus leads to energy

savings. Also, the fixed window, adopted from the analysis done by MACA for wireless

(MACA W) [21 J, promotes some amount of fairness for medium access since all nodes have an

17

•

equal opportunity unlike varying contention windows, where nodes with failed transmissions

have to wait even longer.

Overhearing is receiving data packets that are destined for other nodes and this is an

energy waste in support of virtual carrier-sensing, because nodes listen to all transmissions to

find the transmission end times. Continuous listening to other transmissions is unnecessary

when the reception of the RTS or CTS packet indicates the duration of the transmission in the

NAV, so a node receiving either of them can go to sleep until the end of transmission. For now,

assume the node wakes up at the next listen interval. When sleeping, the transceiver of the node

is turned off and the CPU is kept on. The CPU would basically keep track of the sleep timer

and wakes the node when the timer expires. A possible improvement to this can be assigning

the task to a specific hardware and allow the CPU to sleep as well. Although interference

occurs at the receiver and receiving a RTS but not a CTS means a node can still transmit (the

MACA approach for avoiding the exposed node problem), receiving a RTS puts a node into

sleep mode since the node may interfere the ACK packet destined for the sender or the sender's

reception of CTS. When a node fails to capture the medium using physical carrier-sensing, it

also sleeps until the next listen interval begins. The duty cycle (ratio between the listen period

and the frame time) can be configured from 1 % to 99%.

Minimizing control packet overhead is done by synchronizing the coordinated sleeping

of nodes in a distributive and local manner. Nodes choose and maintain their schedules by

following an algorithm and keeping schedules of neighbours in a table. When deployed, each

node listens for the duration of the synchronization period of 10 s for SYNC packets. Ifnone is

found, then it chooses its schedule and begins to follow the periodic listen and sleep cycle.

During the first listen interval, it announces its schedule by placing its address and next sleep

time (a relative value rather than absolute) in a SYNC packet. A node receiving a SYNC packet

before announcing its schedule will follow the received schedule, and announce the schedule at

the next listen time. This way the first schedule in the network will propagate through the

network. A node receiving a SYNC packet after announcing its schedule can do one of two

things: if the node has no neighbours, it will follow the new schedule received or else, it will

adopt both schedules and wake up on both listen intervals by becoming a border node.

18

• m

Nodes following the same schedule form a virtual cluster and border nodes have two

schedules so two different virtual clusters may communicate. Virtual clusters may overlap in

physical space but cannot communicate unless their listen intervals overlap as well or border

nodes link them. This method drains the batteries of border nodes faster than others since they

sleep less in order to keep the network together. Also, border nodes may fail to adopt two

schedules if the SYNC packet from another virtual cluster is corrupted, by collisions or

interference, or delayed by the wait for medium access. Furthermore, border nodes may be

asleep while nodes from other clusters try to synchronize with them. To prevent network

partitions due to failure of border nodes in adopting two schedules, a neighbour discovery

period, which is the synchronization period, is executed every 2 min when a node has at least

one neighbour and every 30 s when it has no neighbours. Neighbour discovery puts nodes in

listen mode and forces them to announce their schedules with SYNC packets, so energy

consumption is higher and during this time data transmission is stopped. Synchronization also

prevents clock drift, which is a small value when compared to the listen period.

Receiver I.i:-.rcn

i
fo,' SYNC for RTS for CTS !.. SI~",p

Sender I T"SYNC

CS

Tx RTS Gnt CTS

cs II D -
Scnd.:r 3 Tx S"I'NC Tx RTS Gnt CTS

CS CS Send data

Fig. 3.3 S-l\IAC Possible Sender and Receiver Timing Relationships (source: (8])'

Idle listening is reduced greatly by coordinating the sleep time of nodes and waking

them up only when necessary. Fig. 3.3 shows the complete listen and sleep cycle with three

possible timing relationships between sender and receiver. During the listen interval, if there is

data to be sent, a sender can announce its schedule and try to access the medium using physical

19

d

,.
"II -

Nodes following the same schedule form a virtual cluster and border nodes haw two

schedules so t\VO different virtual clusters may communicate. Virtual clusters may overlap in

physical space but cannot communicate unless their listen intervals overlap as well or border

nodes link them. Thi s method drains the batteries of border nodes faster than others since they

sleep less in order to keep the network together. Also, border nodes may fail to adopt two

schedules if the SYNC packet from another virtual cluster is corrupted, by collisions or

interference, or delayed by the wait for medium access . Furthermore, border nodes may he

asleep while nodes from other clusters try to synchronize with them. To prevent network

partitions due to failure of border nodes in adopting two schedules, a neighbour discovery

period, which is the synchronization period, is executed every 2 min when a node has at least

one neighbour and every 30 s when it has no neighbours . Neighbour discovery puts nodes in

listen mode and forces them to announce their schedules with SYNC packets, so energy

consumption is higher and during this time data transmission is stopped. Synchronization also

prevents clock drift, which is a small value when compared to the listen period.

Recei v er I ,i ,,[ell

, fl.. lI - SYNC fll" RTS r,,,- <..' TS Skt:p

Scr)(Jcr' I Tx SY N C

~'S[Skcp

- - -

SCllder' ~ Tx RTS CO,H C" I S

C S Sc:nd du , ,,

Sellder' _ ~ Tx SY NC T" RTS C;,)I CTS

CS L_ CS l 0 S e nd d :lI "
- - - -

Fig. 3.3 S-MAC Possible Sender and Receiver Timing Relationships (source: [8])

Idle listening is reduced greatly by coordinating the sleep time of nodes and waking

them up only when necessary. Fig. 3.3 shows the complete listen and sleep cycle with three

possible timing relationships between sender and receiver. During the listen interval, if there is

data to be sent, a sender can announce its schedule and try to access the medium using physical

19

..... ~ -;:..-~ .-~ :'. ---' - : ":: ~ • -;. - "" w -:::.::... ----: '

,: ~.;,;:-;" ~-4';'''''_,.,-:-'-:-'-:-:~::~~:-~-:~~..;~-;.::-:..;~.;. ..

carrier sensing and RTS/CTS exchange. If the medium is capturcd, then data transmission

occurs during the sleep interval, or else, the node sleeps until the next listen interval. This poses

the problem of a long delay to pass data across multiple hops, because each listen and sleep

cycle can only move the data one hop closer to a sink (base station), or not at all if the medium

is busy. To speed up the hopping, an adaptive listen period is incorporated where a node that

hears a RTS or CTS stays awake for a short period at the end of the transmission. With this

method, neighbours of current sender and receiver assume the possibility of being the next-hop

after the transmission. For adaptive listen, the SYNC interval in the second listen interval is not

included since nodes only synchronize during the first listen interval. If a node does not hear a

packet for it after the adaptive listen period ends, then it sleeps until the next regular listcn

interval. The sleep interval should be long enough for several data transmissions to happen

continuously, but most likely only two data transmissions can occur since nodes that are two

hops away from the first receiver cannot hear its CTS and will be asleep when they are needed

during adaptive listen. Thus, this method shortens the delay by half when compared with S

MAC without adaptive listen.

Looking at the aspect of mobility handling, S-MAC has not proposed anything specific

in this category since it is designed for applications over stationary nodes. To handle mobility, a

single mobile moving across virtual clusters must somehow discover that it is entering a new

cluster and needs to proactively synchronize with the nodes inside. Assuming a node knows its

speed (can be easily achieved using a global positioning system (GPS) receiver) and the

topology consist of several clusters with each one in a specific area, so when the node speed is

above a certain threshold it will try to synchronize with others since it might have moved out of

the current cluster.

Proactive synchronization would be fast, that is within a frame time (e.g. Is), if the

mobile continuously broadcast a PROSYNC packet during the frame time and nodes receiving

the PRO SYNC respond with their schedules using SYNc. If the schedules received are the

same as the mobile, then it is still within the cluster, or else, it could have entered a new cluster

or is located between two clusters. This method can quickly synchronize a single mobile, but

with multiple mobiles the SYNC interval must be longer (maybe adaptively extended when

20

t

more and more mobiles are detected or fixed for a certain node density), or else the RTS/CTS

interval will be interfered and delay will accumulate. The assumption is practical when nodes

are deployed in separate areas at different times, but this method should only be effective when

a certain percentage of nodes are mobile and others are stationary for the main purpose of

sharing the schedule. If the whole network is one big virtual cluster, then synchronization

would not be a problem but mobility may cause adaptive listen to fail.

The memory requirement of S-MAC is proportional to n, the number of neighbours,

since a schedule table entry is kept for each neighbour. The schedule table is built locally

without any central controller so synchronization is simplified. Neighbour discovery prevents

network partitions and adaptive listen reduces packet delivery delay. The overall protocol is

simple and energy efficient since it does not require any rigorous computations, but its ease

fails to handle mobile nodes. A mobile moving across two virtual clusters can wait up to 2 min

to obtain the new schedule and during this time it is disconnected from the network.

3.1.2 l\lobility-aware Sensor MAC (MS-MAC)

MS-MAC [18J is one of the first protocol to handle mobility in WSNs and it extends the S

MAC protocol. The goal of the protocol is to be energy-efficient in both stationary and mobile

cases, so nodes sleep more when they are stationary and sleep less when they are mobile. When

stationary, the protocol is the same as S-MAC, but when mobility is detected, nodes go directly

into synchronization or neighbour discovery. MS-MAC identifies that in S-MAC a node with

no neighbour increases its frequency of synchronization, but the rest of the network stays the

same. A fast moving mobile node will most likely lose all its current neighbours and this may

lead to high data loss, because it is disconnected from the network. Thus, groups of nodes

around the mobile perform neighbour discovery after every 30 s of listen and sleep cycles when

a mobile is detected. The indication of mobility is based on the received signal strength (RSS)

of the SYNC packet, which is not an accurate estimation but the results from simulations show

that it can support one mobile. To assist the mobile in capturing a new schedule when it enters a

virtual cluster, border nodes and nodes two hops away from them must always form an active

zone (see Fig. 3.4). In this zone, neighbour discovery is lOs for every 30 s of listen and sleep.

For nodes to discover their distance from the mobile, the SYNC packet now carries a hop count

21

=

relative to the mobile. While the mobile is inside the new cluster, nodes two hops away from

the mobile must also form an active zone. If the signal level of the received SYNC packet from

a node is below a certain threshold for example, then it is declared as a mobile.

o 0. 0. ;0. a

0. o

0. 0. 0. 0. 0.
@ Mobile

0. o 0. 0...' 0.

o '! 0 a a
~

o lOve 20

o i 0 a 0.
l

010 0. 0.
i
,f

o 0. 0. 0 0. o/~o. 0. 0.
.-... ~.-::::.~:~ ... :.: .. ,..-.~.--.... ~ : ... ' 'l/~'--O--O-~':'

0. 0. 0. 0. 0. 0. 0 Vc 4 VC3
0. 0. 0. 0. 0. 0 0 0. 0.

~~ . . '.

Fig.3.4 l\IS-MAC Active Zones formed for Four Virtual Clusters (source: (18])

The MS-MAC simulation results in NS-2 are compared with S-MAC and they show

that the protocols have similar average energy consumption when the mobile speed is 5 mls

(see Fig. 3.5) and delay when the mobile speed varies from 0 to 20 mls (see Fig. 3.6). When

considering the packet drop rate, the performances differ and, at some points between 0 and 20

mls (see Fig. 3.7), MS-MAC has nearly half the drop rate of S-MAC. The simulations ran for

only the case of a single mobile and under the scenario of multiple mobiles there will be many

active zones being formed. In this case, energy consumption can be significant. Also, border

nodes always stay active so. they will most likely empty their battery supplies first. The

advantage of the signal level being the indicator of mobility is that no extra energy is used. The

additional use of the SYNC packet in passing distance information is simple and does not add

any major complexity to the protocol. In terms of memory requirements, schedule table size is

still proportional to n, the number of neighbours.

For handling mobility, this protocol assumes most nodes are stationary and some nodes

are mobiles that traverse the network to collect data from stationary nodes. The function of

22

relative to the mobile. While the mobile is inside the new cluster, nodes two hops away from

the mobile must also form an active zone. If the signal level of the received SYNC packet from

a node is below a certain threshold for example, then it is declared as a mobile .

. -\c·t i\ .':'. l"I IL·

0 0 0 0 0 0 0 0 0

0 0 o 0
VC 1

0 0 0

VC2
0

0 0 0 0 0 0 0 0 0
@ Mobile

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 ··. 0 0 0
. ,,, " .

/
--_ .. ; .

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

~C4 VC3
0 0 0 0 0 0 0 0 0

Fig.3.4 MS-MAC Active Zones formed for Four Virtual Clusters (source: 1181)

The MS-MAC simulation results in NS-2 are compared with S-MAC and they show

that the protocols have similar average energy consumption when the mobil e spced is 5 m/s

(see Fig. 3.5) and delay when the mobile speed varies from 0 to 20 m/s (see Fig. 3.6) , When

considering the packet drop rate, the performances differ and, at some points between 0 and 20

m/s (see Fig. 3,7), MS-MAC has nearly half the drop rate of S-MAC. The simulations ran for

only the case of a single mobile and under the scenario of multiple mobiles there will be many

active zones being formed, In this case, energy consumption can be significant. Also, border

nodes always stay active so they will most likely empty their battery supplies first. The

advantage of the signal level being the indicator of mobility is that no extra energy is used . The

additional use of the SYNC packet in passing distance information is simple and does not add

any major complexity to the protocol. In terms of memory requirements, schedule table size is

still proportional to 11, the number of neighbours .

For handling mobility, this protocol assumes most nodes are stationary and some nodes

are mobiles that traverse the network to collect data from stationary nodes, The function of

22

I.~, _

• 'if !"Y,'fft - 5·

mobiles here is in data collection, which reduces hopping to sinks. Even though

synchronization rate is increased, mobiles can still wait up to 30 s to capture a new schedule

when entering a cluster. Thus, packet drop rate can be large when multiple mobiles exist and

are disconnected from the network. Also, the zone around the mobile is needless since border

nodes would have already delivered the new schedule.

t;.:)~

:'rl
~

t;.:)t.$" :::?
<=
0
'g ---r·.1sr,."AC
EO
:;::,

t;.:)"::> <.<')

c= 0;:)'
0

-SMAC

<..>
~

~ &-
-1.' t;.:).
D'>
(2
.:1;>

:o-w c)'
t;.:).

t;.:)
0 1000 2OJO 3000 4000

Time (se<:)

Fig.3.5 MS-MAC Average Energy Consumption at 5 m/s (source: [IS])

50 .,
1' __ ._.

40
I . - ~

it- "* -
I:

~
\;

<n r
~

30 ~
;

<1' .;.
-0 • <1) t g 20

,
tD r

--- -.- SMAC
• r .. ·1S-I\·1AC

~

10

0
0 5 10 15 20

r·" obI! e speed (In/s)

Fig.3.6 MS-MAC Average End-to-End Delay at Various Speeds (source: [18])

23

•

- -." . -. -- .----,,.. ::.~. --:.-. -.~ .;;-;- _.--..... :-10. .-- •. ~'"'.-~.::. , -~_~~~-... _.: •. •. ~- _. .' ,L-' --:;., •• : ••••• • __

I, , .. ~ -

mobiles here is in data collection, which reduces hopping to sinks. Even though

synchronizatiOn rate is increased, mobiles can stIli wait up to 30 s to capture a new schedule

when entering a cluster. Thus , packet drop rate can be large when multiple mobiles exist and

are disconnected from the network. Also , the zone around the mobile is needless since border

nodes would have already delivered the new schedule.

<:::)cS

))
~

c,'"" "2. <:::) .

. 2
rs...
E
~ 6"::> '-'?

5 C) .

<...>

~

2. &~
• 1> <:::) .
0'
£S1
'.1.>
~-

LU
cS-<:::).

c-..

.,

0 1 000 2 0JO

Ti Ine (se:::)

1-
MSMAC I

- S MA':::

4 000

Fig.3.5 MS-MAC Average Energy Consumption at 5 m/s (source: [18])

4 0

~
0,;

'-:.'. r
;:.-. :30 .
~ :
<1>
~ r
<1> ,
g' 20)r;

1---"'-'- Sr-.·'AC 1
• r,." S -MA C

~

10

0
() 5 1 0 20

r, • ., obil >3- S p~r:1 .: ll1 s)

Fig.3.6 MS-MAC Average End-to-End Delay at Various Speeds (source: [18])

23

S'l
~

~
-0

.::.c:.
a..

20

...... -. SMAC

• MS-MAC
15

. -."
."

10

5

.
. .1

. .
........ .. ' .

... .. ' .
A..

O~---------.---------r--------~--------~
o 5 10 15 20

Mobile speed (In's)

Fig.3.7 MS-MAC Packet Drop Rate at Various Speeds (source: [18])

3.1.3 S-MAC with Extended Kalman Filter (EKF)

The EKF is used with the S-MAC protocol [16] to predict the frame size of every data

transmission according to the previous frame size and channel condition, and the current

channel condition (i.e. SNR and Doppler shift). The idea is to minimize the number of frame

losses (retransmissions) caused by Doppler shifts when mobility exist. MS-MAC fails to

consider frame losses due to bit errors, since NS-2 assumes correct frame reception when

received power is above the receiver and carrier-sense thresholds. In other words, only path

loss is considered in NS-2 and simulations conducted in NS-2 must incorporate bit errors (and

therefore frame losses) due to non-ideal channel conditions. Thus, the NS-2 physical layer is

replaced by an accurate Mica-2 (a sensor node developed by University of California,

Berkeley) physical layer. The BERs for various SNRs and relative velocities (velocity between

transmitter and receiver) are calculated from simulations in MA TLAB using the transceiver

parameters of Mica-2. These BERs are used as a lookup table in the NS-2 physical layer whcn

simulations are conducted for the Mica-2 layer. The BER is used to calculate the packet crror

free reception probability with Manchester coding, since this coding scheme is used by Mica-2

and the equation for this calculation is available. One minus the packet error-free reception

probability is the PER, and if the PER is above a certain threshold then the frame is dropped.

24

· ~.' -~' .. "" "'," '~""" .~J' _·r ". • . .: -:...-.-,.-...... '. .:.-~-~_ •• ' : •••.•. . ~ -_ • ..:-: __ .:- ~ •..• -- --:;':' ___ '. '::..' " .

2J

l
is

-.-.-_. SMAC

• r,,'S-MAC

.... ...
A '

:
4- ••

-.0 o ·

.m
... '

~
10

~
'"0

-.::.::
Ci-

S

o ~---------r---------.---------.,---------.
o S 10 15 20

Mobile speed (In/s:,

Fig.3.7 MS-MAC Packet Drop Rate at Various Speeds (source: (18))

3.1.3 S-MAC with Extended Kalman Filter (EKF)

The EKF is used with the S-MAC protocol [16] to predict the frame size of every data

transmission according to the previous frame size and channel condition, and the cunent

channel condition (i.e. SNR and Doppler shift). The idea is to minimize the number of frame

losses (retransmissions) caused by Doppler shifts when mobility exist. MS-MAC fails to

consider frame losses due to bit errors, since NS-2 assumes correct frame reception when

received power is above the receiver and canier-sense thresholds. In other words, only path

loss is considered in NS-2 and simulations conducted in NS-2 must incorporate bit enors (and

therefore frame losses) due to non-ideal channel conditions. Thus, the NS-2 physical layer is

replaced by an aCCl!rate Mica-2 (a sensor node developed by University of California,

Berkeley) physical layer. The BERs for various SNRs and relative velocities (velocity between

transmitter and receiver) are calculated from simulations in MA TLAB using the transceiver

parameters of Mica-2. These BERs are used as a lookup table in the NS-2 physical layer when

simulations are conducted for the Mica-2 layer. The BER is used to calculate the packet enor

free reception probability with Manchester coding, since this coding scheme is used by Mica-2

and the equation for this calculation is available. One minus the packet enor-free reception

probability is the PER, and if the PER is above a certain threshold then the frame is dropped.

24

Reducing frame losses leads to increased energy conservation and smaller frame sizes

have two advantages: (1) cost of losing smaller frames is less than larger frames, and (2) PER

in smaller frames is less than larger frames. Although small frames are beneficial, using small

frames when the channel condition is good leads to bandwidth underutilization. The EKF is

distributive and calculates the optimal frame size for each transmission using the current and

previous channel conditions (BERs), previous frame length, and overall protocol overhead.

Channel conditions are obtained in the NS-2 simulations using the knowledge of the transmitter

and receiver positions and their speeds to find the relative velocity. Maximum Doppler shift is

assumed so the relative velocity divided by the wavelength is the Doppler shift. This Doppler

shift and a constant SNR are used to index the lookup table for the BER and, finally, calculate

the PER. When S-MAC with EKF is implemented, relative velocity can be calculated using

GPS, but transmitter and receiver must exchange measured positions and speeds. Also, instead

of BER, the EKF equation must be modified to account for realistic channel gain, which can be

obtained using methods such as training sequences and this requires sensor nodes to have a

digital signal processor (DSP).

The simulations involve five nodes and one of them is a base station node that can

communicate with others directly (multi-hopping is not simulated). In all of the simulations, the

Mica-2 physical layer is used so in the case of low SNR or RSS (see Fig. 3.8), normal S-MAC

consumes a lot of power since it does not adapt to channel condition by using a smaller frame

size, which leads to many frame losses. However, the lowest frame length is not mentioned and

this is important since S-MAC uses the RTS/CTS exchange so its control packet can easily

exceed the data portion. For high mobility (see Fig. 3.9 and 3.10), S-MAC with EKF conserves

energy by accurately setting the frame length and achieves about 24% in energy savings when

compared to regular S-MAC at average node speed of75 mph. Although S-MAC with EKF is a

great solution to handle high-speed mobile scenarios, the EKF is not a protocol and its

algorithm will be better if position and speed information exchange is explained in detail. Such

information can be carried in the header of the RTS/CTS exchange when GPS is incorporated,

which simplifies the protocol overhead.

25

The memory requirements are more than S-MAC and MS-MAC smce channel

conditions, frame size, and protocol overhead are needed. Computation time of the optimal

frame size is not mentioned in the paper and this can cause an extended delay, but the equation

is straight forward and should be implemented by a application specific integrated circuit

(ASIC). Most importantly, only a single cluster is considered so synchronization across clusters

is not analyzed at all. Thus, S-MAC with EKF is similar to S-MAC and should require up to 2

min to synchronize with a new cluster.

8 ~--~
_ - SI ... 1AC

7 -SMAC withEKF

-
Data RHtlYed (B:t1es)

Fig.3.8 SMAC with EKF Average Power Consumed at Low RSS (source: (16])

26

Thl: m~mory rl:quirements are more than S-MAC and MS-MAC sincl: channel

conditions , frame size, and protocol overhead are nel:dcd. Computation time of the optimal

frame size is not mentioned in thl: paper and this can cause an extended delay, but the equation

is slraight forward and should be Implemented by a application specific integrated circuit

(ASIC). Most importantly, only a single cluster is considerl:d so synchronization across clusters

is not analyzed at all. Thus, S-MAC with EKF is similar to S-MAC and should require up to 2

min to synchronize with a new cluster.

8 ~--~

7
!

o ' 0., j

--SMA!:' 1.l'ith ELF

Fig.3.8 SMAC with EKF Average Power Consumed at Low RSS (source: (16))

26

U"i"a::;rrz' 'i! 5'

h- t1ilh _

,
'1

45

~ 4
;;
.~ 3.5
"<l ..
§ 3 (\
c
c

25 ()
~ .,
~ 1 0
"'-
~ 15 :; .,
~ I «

0.5

0

0 5000 10000 15OCO 20000 2$000 JOX10 3501.10

Data Rewved tByl~S)

Fig.3.9 SMAC with EKF Average Power Consumed at 50 mph (source: (16])

7~--~------------------------------~
SMAC

6 --3!.1AG wllh Et:F

o 5000 10000 15000 20000 25000 30000 35000

Fig.3.10 SMAC with EKF Average Power Consumed at 75 mph (source: (16])

3.2 Scheduled-based ~lAC Protocols

In scheduled-based, time is slotted for each transmission and transmitters reserve slots if they

have a packet to send while receivers are notified for their participation in the corresponding

time slot (see Fig. 3.11). Reservation and transmission intervals form a frame and this frame

time/length can be fixed or varied. In the case of central scheduling, a central scheduler collects

all time slot allocation requests and distributes the final schedule back to the transmitters and

27

It, •

~ 3S

~ 3
c

i~ 2 5

~)
o -
"-
• I '
~ .'

~r: I

0:

--- ::M .. _

--SMAC \nth EKF

O *---~----~---''----r----'---~--~

Xl..'(J 10000 1500) 20000 2500) 3)QO 35000

[lala Rec.,ved ~B,1. ~)

Fig.3.9 SMAC with EKF Average Power Consumed at 50 mph (source: [16!)

~ "

'. ~ 2
>

-<I.:

S, II>.('

sooe : :()Oo 1:000 201))) 2501) ~ooor 35000

Fig.3.10 SMAC with EKF Average Power Consumed at 75 mph (source: [16])

3.2 Scheduled-based MAC Protocols

In scheduled-based, time is slotted for each transmission and transmitters reserve slots if they

have a packet to send while receivers are notified for their participation in the corresponding

time slot (see Fig. 3.11). Reservation and transmission intervals form a frame and this frame

time/length can be fixed or varied. In the case of central scheduling, a central scheduler collects

all time slot allocation requests and distributes the final schedule back to the transmitters and

27

receivers. Nodes that are not participating in the transmissions can go to sleep until the next

round of schedule distribution. During the collection interval, contention-based (random

access) MAC is typically used when nodes are not assigned fixed time slots for sending

requests, and this is beneficial in maximizing the use of available time slots. In the case of

distributed scheduling, nodes schedule themselves based on the reservations they received

within their two-hop neighbourhoods. This is because carrier-sensing range is twice the

communication range so only one node transmits within a two-hop radius. VMAC is based on

distributed scheduling and its method is discussed in Chapter 4. Once a node successfully

reserves a slot or receives a notification, it waits for the transmission interval to begin and

sleeps until its reserved slot or until needed in reception. When there are no more available

slots, the node with data sleeps until needed in reception and wakes up for the next reservation

period to contend for channel access.

Fig. 3.11 Scheduled-based MAC Flowchart

28

recc:ivers. Nodes that are not participating in the transmissions can go to sleep until the next

round of schedule distribution. During the collection interval, contention-based (random

access) MAC is typically uscd when nodes are not assigned fixeu time slots for sending

requests , and this is bencticial in maximIzing the use of available time slots. In the case of

distributed scheduling, nodes schedule themselves based on the reservations they received

within their two-hop neighbourhoods . This is because caITier-sensing range is twice the

communication range so only one node transmits within a two-hop radius. YMAC is based on

uislributed scheduling and its method is discussed in Chapter 4. Once a node successfully

reserves a slot or receives a notiJ~cation, it waits for the transmission interval to begin and

sleeps until its reserveu slot or until m;eded in reception . When there are no more available

slots , the node with data sleeps until needed in reception and wakes up for the next reservation

period to contend for channel access.

Fig. 3.11 Scheduled-based MAC Flowchart

28

5" "

Jr ..

• f ;n . f h B 1 ;Z
5

For large wireless networks that use central scheduling, clustering is usually utilized for a

simpler and less~hopping request collection procedure. Cluster heads are the schedulers and

nodes within a cluster send their request to the cluster head. The cluster head schedules the

transmissions based on the requests and distributes the time slot assignment to the cluster

members. Packets that are destined for the sink must either hop through the cluster heads which

[onn the second tier of nodes or transmitted directly to the sink using long~range radio.

Generally, techniques based on clustering do not explain communication between cluster heads

in detail, and cluster fonnation and interference between clusters are vague.

3.2.1 Mobility-adaptive, collision-free MAC (MMAC)

MMAC [19] is a mobility-adaptive, collision-free protocol since scheduled access during data

transmission guarantees this absence of collisions. MMAC follows the design of TRAMA [20]

where a frame time is separated into two parts: random access for signalling of two-hop

neighbourhood topology infonnation, and scheduled access for data transmission. TRAM A

does not require clustering but instead uses a self-election algorithm to select the transmitter

and receiver(s) of each time slot in a two-hop neighbourhood. There are three important

protocol components in TRAM ,-\: (1) neighbour protocol is executed during the random-access

period for propagation of one-hop neighbour infonnation to neighbouring nodes, (2) schedule

exchange protocol is executed periodically during the beginning of scheduled intervals to

exchange traffic infonnation (i.e. the intended receiver(s) of each transmitter) within the two

hop neighbourhood, and (3) distributed adaptive election algorithm to select the transmitter and

receiver(s) in a two-hop neighbourhood during the beginning of each scheduled-time slot. The

election algorithm calculates the priority of the nodes within the two-hop neighbourhood using

a fair hash function, which depends on unique node IDs and the current time slot number. The

highest priority node can transmit if it has data to send and this transmission is collision-free

since lower priority nodes must back-off. The algorithm also places the lower priority nodes

into receive or sleep mode by using the infonnation gathered earlier with the neighbour and

schedule exchange protocols. A node selected for transmission but has no data to send can give

up its time slot by announcing this to others.

29

..

s

e

d

e

g

e

e

:s

d

e

29

p

TTT .; 11 r· ·?TT m

For mobility handling. MMAC uses a dynamic (adaptive) frame time based on the

predicted mobility of two-hop neighbours. Mobility is separated into two types: (1) weak

mobility which is topology changes caused by node joins and failures, and (2) strong mobility

which consists of concurrent node joins and failures, and physical mobility. Fixed frame time,

such as that used in TRAMA, in mobile environments is described to have three disadvantages:

(l) mobile nodes must wait for a long period for connectivity in a new neighbourhood, (2)

packet collisions increase dramatically in a contention-based MAC scheme, and (3) two-hop

neighbourhood information is inaccurate during this mobility period in a scheduled-based

MAC scheme. To overcome these drawbacks, the dynamic frame time is set inversely

proportional to the level of predicted two-hop neighbourhood mobility. An autoregressive (AR)

model [19] is used to predict the mobility of the two-hop neighbours, but it requires current

node position, velocity, and acceleration at time t, which can be assessed when each node is

integrated with a GPS receiver. Mobility estimation requires this information in their

corresponding x and y coordinates. The AR-l model [19] predicts this information for time J +

1 by using this equation:

(5)

where S t is the 6 x 1 mobility state vector with current position, velocity, and acceleration in

the x and y axis, A is a 6 x 6 transformation matrix, and WI is a 6 x 1 discrete-time zero mean,

white Gaussian process with autocorrelation function Rw(k) = gkQ, where go = 1 and gk = 0

when k;fc O. The matrix Q is the covariance matrix of WI and both A and Q are found using

training data in the Yule-Walker equations [19).

The mobility-adaptive algorithm is distributive and each node changes its next frame

time based on the number of expected nodes entering and leaving its two-hop neighbourhood.

First, each node uses the AR-l model to calculate predicted mobility states of the node in time

t, J + 1, t + 2, ... , up to t + ma.:'{, where max frame time. Thus, mobility states are predicted

for the entire frame time beforehand, and the expected coordinates (x and y) from the average

of these states is used in calculating the expected number of nodes entering and leaving. Nodes

entering during the next frame time are not added to the two-hop neighbour list, while those

that are leaving are removed from the list. The exact times when nodes leave and enter are

30

.
" !r

;t
}:
I .

« .,

uncertain, so it is best to exclude them from the list during the next frame time, and packets to

those mobile nodes are dropped. If the number of entering and leaving nodes is above a

maximum threshold value, then the new frame time is the original frame time minus by a

percentage of the original, where the percentage can vary depending on, for example, the

number of nodes in the network. On the other hand, if the number falls below a minimum

threshold value, then the original frame time is increased by a certain percentage. Both the

scheduled access and random access slots are increased or decreased proportionally when the

frame time changes.

There are several problems associated with the mobility-adaptive algorithm since each

node requires the future mobility states of the whole network (current and potential two-hop

neighbours), and individually calculated frame times can be different leading to

synchronization errors. To solve these two issues, clustering is introduced and the cluster head

selection/rotation mechanism is a variation of the low-energy adaptive clustering hierarchy

(LEACH) protocol [22]. At the end of each round, where a round is several frames, all nodes

send their expected coordinates in the next frame to the cluster head. After collecting all this

information, the cluster head brvadcasts the expected coordinates to all nodes in the cluster

using a BROADCAST message. Each member node calculates the new frame time individually

and sends it to the cluster head. All member frame times are collected by their cluster heads and

the average frame times are calculated and sent to a single second level head. The period when

all of this occurs is called the global synchronization period (GSP). The second level head

calculates the average of the average frame times and disseminates it to the entire network.

During the frames when GSP does not occur, mobility is adapted by varying the number of

scheduled access and random access slots according to the BROADCAST message sent by the

cluster head, while keeping the frame time constant. More mobility means less scheduled

access and more random access and vice versa, so nodes have more chances to synchronize.

The simulation results ofMMAC from NS-2 are compared with TRAMA, S-MAC, and

regular carrier sense multiple access (CSMA). The simulation scenario is a 500 m (meter) x

500 m plane with mobile nodes having a transmission range of 100 m and sinks being in one

comer only. Average node speed is varied from 0.1 mls to 1 mls. From the simulation results

31

(see Fig. 3.12), MMAC has better average delay performance than TRAMA, but since MMAC

is scheduled-based, its delay is above all contention-based protocols. Percentage received

(packet success rate) is the highest for MMAC (see Fig. 3.13) since it is the only protocol that

handles mobility, and number of received packets lower slightly as compared with others when

mobility increases. With TDMA and mobility handling, MMAC suffers less collisions and

packet drops making it the most energy-efficient (see Fig. 3.14) among these protocols.

Ie

-,
n. le
;>

.:(

Ie ~

~-.------------~------
- - - --.,,- - ---

--
.---+--

+---_ -

...... - - - -------
- . -

Fig.3.12 MMAC Average End-to-End Delay at Various Speeds (source: (19])

32

(see Fig. 3.12), MMAC has better average delay performance than TRAMA, but since MMAC

is scheduled-based, its delay is above all contention-based protocols . Percentage received

(packet success rate) is the highest for MMAC (see Fig. 3.13) since it is the only protocol that

handles mobility, and number of received packets lower slightly as compared with others when

mobility increases. With TOM A and mobility handling, MMAC suffers less collisions and

packet drops making it the most energy-efficient (see Fig. 3.14) among these protocols .

:.,

'" -;r,
.;::,

1(" .---~--~----.---~----r---~--~----'----'----'

- - - - -"'-- --- --

~ TF~~.'.'.A
-u- ::: ':
-to- I:: .~ ~"'A

~.IM;..::

-~ - - - - - - ~ - - - -

_....0-----

a ile I -----,.
'.1 ---()-- - - -- -+- - -

- - - - - - -+- -
1C ; ..-----

1C 3L-__ _L __ ~ ____ ~ __ ~ ____ ~ __ _L __ ~~--~--~~~.

C :'..._ U J.4 :c C. : J7 :i; ~:~
S pe eel (I' Pt6 rs :' 58 conei :

Fig.3.12 MMAC Average End-to-End Delay at Various Speeds (source: 119])

32

~ .. -

:m •• ; , 'I : , "

JIl

J 9

~ -
~ -

J7 ----- - - - -"fI...

~ H :.
~J

1!l H' :L
~,

-v- :tA~·l;'.

-0- SM"!'.::
-+- ::SMA

"~,1oliIo"AC

[').
"l J.I. 1'.'
;»
u
:u J3

J'::
..... - - - - -- - -

J 1

:;

-J 1 - C'. , J3 :;.:. :! ::e c., C.c
Speed (n~e:ers .1 second)

Fig.3.13 l\I:\IAC Percentage of Packets Receind at Various Speeds (source: (19])

f.~.-----r-----r-----~----r-----r-----r-----r-----r-----.-----~

.. !

- 4

~
.: 2.!·
.:(

C
hl ::
<~

:::
>- :.:.

'" :J'
c
w .:
C'J'>
':>

.:(..

C.!

- - -

'"""""" TRAM."
-0- SkIA:
-+- c;sr,IA

"''.''1.:

_------v

__ ...r;;r

- --..... - _
..... - - -_

- -
_

_ ... - -- - -

-.-
G~·~--~G~.1-----J~:-----C~.3----~J~,:,-----c~.~-----J~e-----c~.7-----J~~-----c~~----~

Speed (meters; seccnd:·

Fig.3.14 :\I:\IAC Average Energy Used at Various Speeds (source: [19])

33

•

I

J 9

J '3

) ;

':)

:Ie I)
:.
if,
.)

~l J
) :-r

~,

~ J.!
,tJ
.>

jJ j 2

) ~

J 1

:

-) 1
':

~ ~.A "" ''''
-<. ':;,.,1 ::
~ ::S l":'.

'/ '.-'::'::

.... -

-- -

--

J.2

-v-

,,-

-~

--0.

- - +- -- - -- -- T - - - -- -________ -_ ~

(.:

Fig.3.13 MMAC Percentage of Packets Received at Various Speeds (source: [19])

: . ~ r-----.-----'------.-----.-----'r-----.-----.------r-----.-----'.

- : ~

" :t
c
UJ :.

: .
. -1: • ~

(~

.... - -

-'9- TR.'; ~I.';

">-- ~ '\ 1 ':'.:':
-+- (:-':'1,1t.

''''.'AC

: .1) :

- ... -
- - - - - ---

,

__ .JiT

- - -
(; J..! c.:)e c.

Spee-d (n"eters .. second

Fig. 3.14 :\nlAC Average Energy Used at Various Speeds (source: [19])

FiE ,f Iii r j • Iii nli II rr: '''pm

On top of the protocol overhead of TRAMA, MMAC adds its own complex procedures

and calculations for mobility prediction, which can dramatically affect performance on a real

sensor node that has minimum computing power. The problems with simulations in NS-2 are

exclusions of modeling sensor node computation time and power consumed by the GPS

receiver. Thus, the actual delay associated with MMAC can be extremely high when

implemented and energy consumption with the use of GPS can be significant. In terms of

memory requirement, each node needs its current and future position, velocity, and acceleration

information along with the expected coordinates of its cluster members. This uses a lot of

memory when compared with MS-MAC and S-MAC. Up to this point, MMAC seems to be the

most effective in handling a network of slow moving mobile nodes, and TRAMA is

comparable since it updates neighbourhood information for every frame. However, inter-cluster

communication for forwarding data to the sink has not been discussed, and this is crucial for

reception success when cluster heads are mobile.

3.2.2 Gateway MAC (G-MAC)

G-MAC [23] is an access control scheme for cluster-based WSNs and it combines the

advantages of contention and contention-free MACs similar to TRAMA. Unlike TRAMA and

its complex scheduling algorithm, G-MAC simplifies the scheduling and only transmitters are

awake during the contention period to reserve time slots. The G-MAC frame structure is shown

in Fig. 3.15. There are three sections: contention section for nodes to send transmission requests

(inter-network or intra-network) to the gateway (cluster head), gateway traffic indication

message (GTIM) section for the cluster head to broadcast the schedules, and contention-free

section for scheduled transmissions within the cluster.

." .. '"

Contention Cl Contention·free
RTS [.,kif ... twori<) Msg& :::! ~

FRTS lintro.nelWOf1r.l MSl}S iii: Intr...-wort ITafflc

J-- Collection -'*'oio- Distribution --1
Period Period

Fig.3.15 G-:\lAC Frame Structure (source: [23])

34

1

i
t !
j

On top of the protocol overhead of TRAMA, MMAC adds its own complex procedures

and calculations for mobility prediction, which can dramatically affect performance on a real

sensor node that has minimum computing power. The problems with simulations in NS-2 are

exclusions of modeling sensor node computation time and power consumed by the GPS

receiver. Thus, the actual delay associated with MMAC can be extremely high when

implemented and energy consumption with the use of GPS can be significant. In terms of

memory requirement, each node needs its current and future position, velocity, and acceleration

information along with the expected coordinates of its cluster members. This uses a lot of

memory when compared with MS-MAC and S-MAC. Up to this point, MMAC seems to be the

most effective in handling a network of slow moving mobile nodes, and TRAMA is

comparable since it updates neighbourhood information for every frame . However, inter-cluster

communication for forwarding data to the sink has not been discussed, and this is crucial for

reception success when cluster heads are mobile.

3.2.2 Gateway MAC (G-MAC)

G-MAC [23] is an access control scheme for cluster-based WSNs and it combines the

advantages of contention and contention-free MACs similar to TRAMA. Unlike TRAMA and

its complex scheduling algorithm, G-MAC simplifies the scheduling and only transmitters are

awake during the contention period to reserve time slots. The G-MAC frame structure is shown

in Fig. 3.15 . There are three sections: contention section for nodes to send transmission requests

(inter-network or intra-network) to the gateway (cluster head), gateway traffic indication

message (GTIM) section for the cluster head to broadcast the schedules, and contention-free

section for scheduled transmissions within the cluster.

Ef cr:,:,.'-cB
...............

.' .. '

Contention Cl Contention-free
RTS (int !WOrk) M.gs :! sch.(h~e<l

FRTS (intr •• ,elWOrll) Msg. 3: Intra.network truffle

I-- Collection _ _ Distribution ---I
Period Period

Fig.3.15 G-MAC Frame Structure (source: (23))

34

H

.'1

~ .. - "

•

The contention section is the collection period since both inter-network (non-local) and

intra-network (local) traffic requests are collected in this interval. Inter-network traffic carries

messages destined for nodes in another cluster, and intra-network traffic contains messages to

be exchanged between nodes within a cluster for data fusion. The two types of traffic are

differentiated using RTS as the request message for non-local traffic and FRTS (future RTS)

for local traffic. Fair scheduling is supported by the random exponential backoff that each

sender must wait for before sending the RTS or FRTS, and of course, carrier-sensing is

perfonned before each transmission. The probability of request collision depends on the size of

the contention window and the number of senders. For inter-network messages, the sender and

gateway message sequence is RTS/CTS/DATAJACK and this happens immediately during the

collection period, since the gateway is the receiver. CTS is only used for inter-network

messages and this reduces protocol overhead. After all transactions are completed, the gateway

uses time slots at the end of the distribution period to forward all inter-network messages out of

the cluster, and then goes into sleep mode. During the distribution period, all nodes are awake

to receive GTIM messages which carry the current time, the next collection period, the next

distribution period, and traffic exchange slots described by source, destination(s), and relative

time offset. Nodes sleep during the contention-free interval and wake up only on the time slots

they are scheduled to transmit or receive. After each exchange slot, both transmitter and

receiver(s) return to sleep mode. If a node is not scheduled, it remains asleep until the

distribution period ends.

In addition to defining a communication scheme, G-MAC proposes a resource adaptive

voluntary election (RAVE) method for cluster head selection, RAVE considers current node

energy and memory unlike LEACH [22] where the goal is to ensure every node serves as the

cluster head the same amount of times. LEACH is strictly based on probability calculation

while RAVE perfonns self-election based on resource (battery power) levels (see Table 3.1).

Memory level can be categorized in a similar fashion and this is important since memory is

limited for inter-network traffic moving through the gateways. The resource level (RL) is a

number from 0 to 3 and this number is used to offset the start of the self-election random

backoffby multiples of 128 as shown in the equation below [23]:

ElectionBackoff = Random(27) + (RL * I 28) (6)

35

where ElectionBackofJ is the wait time before a self-election message is broadcasted, and

Randorn(2
7

) is a number from 0 to 127. This election procedure happens when: (1) the

gateway transitions to a lower power level and initiates election by setting an election flag bit in

the GTIM, (2) the gateway is at a critical memory level and initiates election, and (3) the

default gateway changeover frequency is reached. The new gateway is the first node that

transmits a self-election message during the beginning of the GTIM period. The departing

gateway acknowledges the new gateway and continues distributing the schedule, and then

finally changes to regular node status. In the case of gateway failure, three consecutively

missed GTIMs will trigger an election and this method of self-election is used during self

configuration of the cluster.

G-MAC, S-MAC [8], Timeout MAC (T-MAC) [24], Berkeley MAC (B-MAC) [25],

and IEEE 802.11 MAC are modeled and simulated with 40 nodes in one cluster and bandwidth

of 62.6 kbps. Power consumption is based on the CC2420 transceiver from Chipcon

Corporation, which requires 19.7 rnA for receiving, 17.4 mA for transmitting, and 0.02 rnA for

sleeping. Also, the frame time for all MAC protocols is 500 ms. For G-MAC, the size of the

GTIM is 33 bytes + (three bytes * number of packets/frame) and its average duty cycle is

0.95%. The S-MAC has a fixed duty cycle of 10%. The T-MAC has adaptive sleep timeout set

at 10.2 ms and contention period fixed at 5 ms for every packet, so its duty cycle is 2.1 %.

Battery Power Leyel Voltage Range (\'OlfS)

P\\r Lewl ~omendamre

00 HiQ'h ~.6 < P\\T <: (3.0-3.6)
01 :'\fed 2.4,' P\\T::.2.o

10 Low 2.1 < P\\T <: ::;.4
11 :'\·-!ill P\\T::: 2.1

Table 3.1 G-MAC Battery Resource Levels (source: (23])

The B-MAC senses the channel for 0.35 ms during each 14 ms check interval, so its

duty cycle is 2.5%. The modeled IEEE 802.11 MAC does not perform power saving, which is

typically not implemented in commercial products, so its duty cycle is 100%. Less duty cycle

results in more energy conservation and this is shown in Table 3.2.

36

• .

oj
b", __

Nenyork Lifetime (days)
).,f.;\C Empty Unica'>1 I Broadea:.t

Protocol Network Traffic Trame
(110 tuffic)

80~.ll 6 6 6
$-).,1AC 63 SS 63
B-I\L;\(244 87 Si
T-!\[AC 295 130 lOS
G-I\L.l,.C 480 -1-55 203

Table 3.2 G-MAC Network Lifetime at Various Traffic Patterns (source: [23J)

The unicast and broadcast traffics are modeled by four 32-byte messages per second.

Since only transmitters are awake during the contention period, G-MAC is more energy

efficient than the other protocols. Also, G-MAC does not require a densely populated cluster to

save energy by distributing the gateway cost to all cluster members, and this is shown in Fig.

3.16 by the slow variation on network lifetime between 25 nodes and 100 nodes. On the other

hand, although the scheduling algorithm is said to be simple, the actual scheduling procedure is

not explained (which could be first-come-first-serve). Also, global synchronization and

communication (inter-network message exchange) between clusters is not considered at all. For

G-MAC, each cluster head should leave a fixed number of time slots for inter-network

messages .

4!>Oj

!
4001-

i

i
3501.-

~:\OO

II
;; 250·

" jj
:::J 200'

150!

100

.
"

UntCAst Nl&twork Ufetlme vs Numher 01 Non~s ('four 32 bytl!"t PAcktl'lt~lS~
I '

:.'

• -+-- •

~

Tot,,1 Numb 01 Nod"$

.~. GRMAC
T-MAC
$-MAC
IFF:F 1102 11

.-:.

101>

Fig.3.16 G-MAC Network Lifetime at Various Numbers of Nodes (source: [23])

37

• • • • '.' _ ' _" ' 0:" ." .~' • _ • _ _ ~_ ._ . :.. .. _ • .. ~ .. ". •

---- -- ~ ..

Network LifeHlllc (days)

:\LO\C Empty Lllica<;t Broadcast
Protocol Net\y('rk TrJffic TrafI:"I l'

I,tl~ It .:\ fr'i.:)

302 .11 6 6 6
<;-:\1AC 63 8S 63
B-:\IAC 2-l-l 87 87
T-:\ [A(29:~ 13 U 1 (IS

G-I\L-\C -1- 30 -+.;; " 203

Table 3.2 G-MAC Network Lifetime at Various Traffic Patterns (source: [23])

The unicast and broadcast traffics are modeled by four 32-byte messages per second.

Since only transmitters are awake during the contention period , G-MAC is more energy

effici ent than th other protocols. Also, G-MAC does not require a densely populated cluster to

save energy by distributing the gateway cost to all cluster members, and this is shown in Fig.

3.16 by the slow variation on network lifetime between 25 nodes and 100 nodes. On the other

hand , although the scheduling algorithm is said to be simple, the actual scheduling procedure is

not explained (which could be first-come-first-serve) . Also, global synchronization and

communication (inter-network message exchange) between clusters is not considered at all. For

G-MAC, each cluster head should leave a fixed number of time slots for inter-network

messages.

500

4 ,,0 - - - . - "

,-
400 -

.,.
3 5 0 -

1 50

100

flO

G-MAC
T-VAC
,s-MAC
IF =F nc,=, 1 1

°O~~=1~~~~~W~~~3~O~==4~O~==~~==~~G~===7~O====~OU==2c=3~~~O~~~1 0U
- e te l Nu"Tl e r of NOde~

Fig.3.16 G-MAC Network Lifetime at Various Numbers of Nodes (source: (23))

37

3.2.3 Hybrid MAC (Z-MAC)

Z-MAC [26] also combines contention and contention-free methods, but time slots are assigned

at deployment and will only be reassigned when significant changes in topology (physical

relocation of nodes) occur. Cluster formation is not required for scheduling since nodes run a

distributed scheduling algorithm known as DRAND or distributed RAND. The algorithm takes

in the two-hop neighbourhood information and uses local message passing within the

neighbourhood to generate a time slot assignment, where no two nodes are given the same slot

to prevent the hidden terminal problem. Protocols, such as S-MAC, uses RTS/CTS to reduce

the hidden terminal problem, but research results show that it can use 40-75% of channel

capacity since sensor network packets are usually very small (e.g. 40 bytes). Although each

time slot has an owner, non-owners can transmit on any time slot but higher priority is given to

owners and this is guaranteed by the difference in contention window size. As with other

protocols, carrier sensing with backoff is used as a technique for overcoming synchronization

errors. For low contention level (LCL) the protocol works as CSMA and for high contention

level (HCL) the protocol behaves like TDMA.

After deployment, each node runs a neighbour discovery protocol which uses

broadcasted ping messages to one-hop neighbours to collect their one-hop neighbour list. Each

ping message carries the current list of one-hop neighbours belonging to the sender and

overtime this protocol will gather the two-hop neighbour list needed by each node. In the

implementation, each node sends a ping randomly per second for 30 s. DRAND is capable of

generating slot numbers (starting from 0) that does not exceed the size of the two-hop

neighbourhood. The complexity ofDRAND is upper bounded by 0(8), where 8 is the size of

the neighbourhood, so its energy consumption is proportional 8. Even when a small number of

nodes join after DRAND has assigned the time slots, additional slots can be assigned without

changing the previously assigned slots. Details of DRAND can be found in [27]. With the

assigned slots, time framing is required for proper transmissions on those slot periods. Global

time framing is not efficient since the maximum slot number needs to be propagated throughout

the network, and it becomes costly when topology changes (node joins and failures). Thus,

local time framing occurs within each two-hop neighbourhood according to the following time

frame rule [26]:

38

,"",IDn q

..

· !
• : ·

Let a node i be assigned a slot Si and the maximum slot number of its two-hop neighbourhood

is Fi • Set i'S time frame to 2a where a is a positive integer satisfying the condition

2,,-1 ::; F, < 2" I. This means i 's slots are '·2" Hi> for all 1=0,1,2,3

With this rule, only one node in a two-hop neighbourhood will own a time slot in every

frame. By using the local maximum slot number, channel usage is higher and delay is lower.

On the downside, empty slots will always be created by the time frame rule and only global

time framing can remove them. For networks with many sparse areas and a few dense areas, the

local time framing is more efficient, but even if the network is sparse, empty slots can still be

contended since CSMA is used during every slot. After running DRAND for slot assignment

and using the time frame rule, the frame size and slot number of each node is forwarded within

the two-hop neighbourhood. Every node then synchronizes to slot O. Local and global

synchronizations will be discussed later.

The two contention levels, LCL and HCL, are used by the transmission control of Z

MAC for channel utilization and fairness purposes. If a node receives an explicit congestion

notification (ECN) message from a two-hop neighbour, then the node changes its state from

LCL to HCL. It stays in HCL until the t ECN period expires and receiving another ECN will

refresh this timer. After the t ECN period expires, the node goes back to LCL. All nodes in LCL

can contend for transmission in any slot, but in HCL, only slot owners and one-hop neighbours

of those owners can contend. If a slot is empty or if the owner has no data to send, then the slot

is open for competition to non-owners. For every slot, the owner with data to transmit must

perform a random backoff within a fixed time period To and carrier sense the channel before

transmitting. A busy channel will force the node to wait for a clear channel and perform

random backoff again. Empty slots are contended fairly by LCL and HCL nodes and this is

ensured by having them wait for To, and then random backoff within the contention window

To to Tno' The values of To and Tno are chosen based on stochastic analysis for maximizing

throughput. They can also be chosen intuitively by noting that if a synchronization error is no

more than one slot size, then there are either two or three owners and a contention window of

39

•

=

eight slots for To can optimally overcome this issue. Tno is set as 32 slots since this is the

common initial size of the contention window in IEEE 802.11.

ECN messages are sent by the owner of a slot to remove hidden terminals (two-hop

neighbours) from contending for the channel when contention level is high. Having the carrier

sensing range nearly twice the communication range can help to measure the two-hop

contention level. Under this case, a node's carrier-sensing range can sense if any of its two-hop

neighbours is transmitting, and if one of them is then it will back off. The number of backoffs

can be used as an indication of the current two-hop contention level. When there is high

contention, a one-hop ECN is unicasted to the destination and if there are multiple destinations,

then a one-hop ECN is broadcasted with the destinations included in it. A node that receives the

one-hop ECN will check if it is the destination of the ECN message, and if it is then it will

broadcast this ECN to its one-hop neighbours (this ECN now becomes the two-hop ECN). If it

is not the destination, then it will discard the message. To prevent ECN implosion, if a node

during random backoff receives an ECN with the same destination as its ECN, then it cancels

the ECN transmission. Forwarding nodes will also cancel their transmissions if they previously

forwarded an ECN with the same destination and within the tECN period. After every tECN

period, if a node still experiences high contention, it will send an ECN message again. In all

cases, receivers will maintain a short listening duty cycle similar to B-MAC [25], which has a

short check period for the transmitter to send a preamble to the receiver. Preambles are as large

as the check periods and they are sent before any data transmissions. This means a time slot

should be longer than the sum of the check period, To, Tno ' carrier-sensing period, and one

packet propagation time.

Under low contention, Z-MAC works like CSMA even without synchronization and

only under high contention is synchronization needed since the protocol behaves like TDMA.

Nodes transmitting at higher data rates will transmit more frequent synchronization messages

that carry the current clock value since neighbouring senders require it. Receivers will

passively synchronize with their senders using a weighted moving average of its current clock

and the received clock value. One synchronization packet is sent for every 100 data packets.

Since only senders transmit synchronization packets, low traffic areas will have high clock

40

..
..
· !
; · · ·

drifts apart from the high traffic areas. Thus, the averaging weight is determined by a trust

factor Pt of the sending node. The minimum synchronization interval required to achieve the

maximum clock error or less is lsync = Eclock/rdrijt , where Eclock is the maximum acceptable

clock error and rdrijt IS the maximum clock drift rate. The trust factor

Pt == min {a, S x/sync x a sync }, where a is the current moving average weight, S is the

average rate of receiving and sending synchronization messages, and a sync is the maximum

weight of the new clock value received. The weighted moving average of the new clock value

received is Cavg = (1- Pt)Cavg + Pt' Cnew ·

Experiments include NS-2 simulations and Mica-2/TinyOS implementations for Z

MAC and B-MAC [25]. B-MAC has been shown to have better performance than both S-MAC

[8J and T-MAC [24). Other NS-2 simulations are done for PTDMA and Sift, but B-MAC is a

better comparison to examine since Z-MAC is built on top of B-MAC. There are three separate

benchmarks: one-hop, two-hop, and multi-hop. For better comparisons between the two

protocols and a realistic setting, the multi-hop results for Mica-2 experiments are shown and

discussed. The multi-hop benchmark includes 42 Mica-2 nodes with the maximum two-hop

neighbourhood size at 27 and the maximum local frame size at 32. One of the 42 nodes is a

sink while the rest are sources, and data rate is varied to analyze the protocol behaviour in both

low and high contention scenarios. Fig. 3.17 shows the throughput of both protocols at various

data rates (packets per second where each packet is 36 bytes). Up to four packets per second, B

MAC performs slightly better than Z-MAC, but above that data rate, high contention occurs

and Z-MAC continues to deliver higher throughput while B-MAC suffers from added

contention (possibly added collisions). Fairness is also important so it is studied by measuring

how packet delivery to the sink is uniformly distributed among the sources, where uniform

distribution will result in a fairness index of one. From the results shown in Fig. 3.18, increase

in data rate has significant impact on fairness, but HCL mode with ECN messages help

alleviate this since slot owners (every node) have higher chances of transmitting on their slots.

Finally, the throughput per energy in Fig. 3.19 again reveals the advantages that Z-MAC brings

41

r", ~,. • -- ";;,~. ~ ~ ~~ ~

~ .. ":"-:-:' "'-.. ~~:..;:;~~ ~---.... ~ ~~::.:'":~; ... :-~":,~;:~ ..

when contention is high. Since Z-MAC does not update neighbourhood information per frame

time, mobility will cause its performance to degrade significantly .

..
II•.. "

if>
$

~ •
>..

" 5 i< g.
,~

~ .,
i6 . " iii
>

,
• .0(

2
l/

05 2 4 16 32

Pac<Qrs p,o"oC::rd

Fig.3.17 Z-l\1AC Multi-hop Throughput at Various Data Rates (source: (26])

<
~
.£'.

~
EO
jlj

09

O.S

07

0.0

0.5

0.4

'.,
.. .

Z-MAC,,,,CL . To' 8. Tno • 32 - -.
B-MA~ - Inl:lJl = 32, C()~ges:lCn = 16

. -....
" .

03 L..1------'-----'-----L
4
----''::----:1'::'6 -'--~3:;-2--'

C5
PacKe:s P<lf second

Fig.3.18 Z-MAC Multi-hop Fairness Index at Various Data Rates (source: (26])

42

whi:n contentIOn is high. Since Z-MAC does not update neighbourhood infonnation per frame

time, mobility will cause its perfonnance to degrade significantly.

Multl-"'I0P Tl"\r:, gh~ut M c~1 2 E ~ p€ri .. nEont

l-f~AC-HC . Tc = 3, Too = 32 - -. -
8 -M",C - 1 'tlJ ;; 32 Congest1 :) !"' ;; c ··.··· ...

.. ,,, ,

, .

. '

... --

16 32

Fig.3.17 Z-MAC Multi-hop Throughput at Various Data Rates (source: 126])

0.9

0.8

0 7

~
.so

~ 0 ,1)

E

0. 5

0.4

0.3 c:

. .. ' ..
. .

Z-MAC.f-CL . T,) = 8 - nc = 32 - -• . -
6· /·.1 '; :: - Im:1JI = 3L. CCI''''IQ8s:lVn = 1 to ,-

.. -.- .

F· 3 18 Z-MAC Multi-hop Fairness Index at Various Data Rates (source: 126]) Ig. .

42

.. -

•
!
;

· · I · I

•
I

r.. _ ~

-·rcughout:Ener;lY in :t1e Multi'"'Cp MCJ2 Exp€>rinent

J 32
Z·',~AC+CL· 0:: B. 7no = 32 •

B·MAC· I~i:ial:: 32. Co'ges:ion :: 16 •

. J 3
e'

.. ,• -- .. ~.

? ::J.2c '
:;
E • ...
~

,.. :)'" _t
!'l>

~ ••
,OJ
;;;,

J.~J :;

" ~
:)

n:

C2
•

::J.'a
3.5 2 4

Fa:~ets oer second

Fig.3.19 Z-:\IAC :\lulti-hop Throughput/Energy at Various Data Rates (source: (26])

In the next chapter, the proposed MAC for stationary and mobile sensor networks,

called versatile MAC (VMAC) is explained in detail. The methodology is provided along with

the pseudo-code of the actual implementation.

43

J 32

... 3

? n~

]
li
:.:

>-
D~

"I

~
:.J
::.

J~j :J

"I

~

- J.~2

:2

J ' :

"

"

}S

• . , . _ . . ' - -·1 . .
. a .

4

Pao..€iS :>ef sec:w1d

I

I ,

....

I

Fig.3.19 Z-MAC Multi-hop Throughput/Energy at Various Data Rates (source: (26))

In the next chapter the proposed MAC for stationary and mobile sensor networks

called versatile MAC (YMAC) is explained in detail. The methodology is provided along with

the pseudo-code of the actual implementation.

43

4. Versatile MAC (VMAC) Protocol

Although all the protocols mentioned earlier have their own flaws when it comes to mobility

handling, the study of them has lead to the development of YMAC. YMAC is an ex tension of

the TDMA protocol implemented in NS-2 and adds support for mobility handling.

4.1 VMAC Methodology

The NS-2 implemented TDMA frame length is global and thus has as many transmission slots

as the network size plus one. The plus one is for the reservation period where transmitters share

receiver addresses, but thi s period is not sufficiently long enough to encompass all message

exchanges. Such a message would be a RTS since it is only 40 bytes and can carry source and

destination addresses . TDMA does not transmit any messages but instead assigns each node a

permanent time slot in the frame length, and each rec iver is notified directly which time slot to

wake up on. VMAC realizes the message passing and minimizes RTS collisions by using a

suitable contention window (CW) size as backoff. After waiting for a random number of

backoff slot times within the range of the CW size, a node tries to transmit a RTS. If another

node has already begun transmitting (due to that node randomly choosing a shorter backoff

number) , then it waits for the next reservation slot. The number of reservation slots is the same

as the number of data transmission slots. If two nodes chose the same backoff number and the

backoff is the shortest in the two-hop neighbourhood, then a RTS collision results.

The flowchart for YMAC is shown in Fig 4.1 and it is similar to the scheduled-based

MAC flowchart of Fig. 3.11 . However, the receiver is notified with a RTS and RTS collision

means unsuccessful reservation, so nodes with data to transmit must contend for another slot

during the next slot reservation. This flowchart makes the scheduled-based MAC practical

since a notification is actually sent, and this notification may collide with others leading to a

slot being unused during the transmission or scheduled period. RTS collisions happen at the

receiver and this is explained earlier as the hidden terminal problem, but since the transmitter

does not have to wait for a CTS before assuming Sllccess of the RTS, both transmitters wake up

during the unreserved slot to transmit while the receiver is still sleeping. This is inefficient but a

CTS is also 40 bytes in size and can be significant if the data packet size is only 40 bytes as

44

':: -.-

..
!
~ . -,
.. ..
~

,J
~ .. --

'f

well. No matter if the RTS is received or collided, both receiver and transmitter keep track of it

and this allows the current reserved slot to be synchronized across the network.

RTS Collision

Fig.4.1 VMAC Flowchart

The CW is similar to IEEE 802.11 DCF but is fixed instead of doubling after every

failed attempt (failed either because of RTS collision or another node choosing a shorter

backoff time and winning the transmission slot). Having a fixed CW allows a fair distribution

of medium access time for each node since failed attempts do not make winning even more

difficult. Also a fixed CW is deterministic and global time synchronization is possible when the

maximum backoff time, RTS transmission time, and data transmission time are all known. The

reservation period becomes a practical random-access, slot-reservation period (with reservation

slots equal to transmission slots) since now it is long enough for backoff and RTS transmission

for each and every transmission slot. Therefore, a reservation slot is split into a CW period for

random backoff and a RTS transmission period as depicted in Fig. 4.2.

45

mz lit;

-

Fixed # of Reservation Slots
4 .4

Random

Fixed # of Transmission Slots

Scheduled

CW of Prioritized Mobile Nodes

and ARP/AODV Packets

Fig.4.2 VMAC Frame Structure

7 ITZwrr

As shown on Fig. 4.2, VMAC is a scheduled-based MAC protocol that does distributed

scheduling with a first-come first-serve basis. VMAC can be configured for periodic, event

driven, and query-driven data delivery models. Also, VMAC can exploit sleep synchronization

which is more difficult in contention-based. This minimizes energy consumption of the radio

by turning it on only when necessary. There are two parts to the frame structure: (1) a random

period for contention-based reservation of a fixed number of transmission time slots, and (2) a

scheduled period for collision-free transmission of data on reserved slots. All nodes with data to

send compete for a time slot in the two-hop neighbourhood during the random period. The CW

is a fixed number of possible wait times a node randomly picks before it performs carrier

sensing (for sensing transmissions already taking place) and transmits a RTS to reserve a time

slot.

The CW of mobile nodes (and also ARP/AODV packets smce data cannot be

transmitted without a hardware address or route) is half of the CW of stationary nodes,

therefore giving mobiles priority in sending data. Stationary nodes have a wait time' greater than

the CW of the mobiles so stationary nodes can never compete with mobiles. During the random

period, all nodes are awake and if they are the receiver of a time slot they will receive aRTS

from the transmitter for that particular slot. Even if they are not the receiver, they are still

listening to the RTS to keep track of the current reserved slot, so that when they do receive a

46

F"" tE

..
!
~ --
f .. • • • ... -

RTS they will know what time slot to wake up on during the scheduled period. After the

random period, a node sleeps if it is neither sending nor receiving and wakes up in the

beginning of a slot if it is the transmitter or receiver. After each transmission or reception, the

node is placed in sleep mode again until it is needed in transmission or the start of the next

random period. Time synchronization can be provided by simple techniques that can be added

to the protocol, but currently it is assumed to be time-error free.

4.2 Vl\IAC in Pseudo-code Format

The following is the pseudo-code of the actual process conducted in C++. At the beginning of

the reservation period, all nodes are woken up and they call the function reserveSlot () .

(line 1) First. the function checks the node to see if it has a packet to transmit, and it enters a

contention process if it does. (line 2) The contention process is only continued if a slot is still

available, i.e. the last reserved slot is not equal to the frame length, but since it is the start of the

period all slots should be available. (Line 3) A random positive integer is returned by the

backoffCalculator (), and the range of random backoff numbers for prioritized packets

is between 0 to 60 while regular packets range from 61 to 121. If priority is turned on, then

priority is given to a node if its speed is greater than zero (in motion) or the packet to be sent

belongs to ARP or AODV. To provide numbers within the range of 0 to 60 in a unifonn

distribution. randomly generated numbers are divided by the prime number 61 and its

remainder becomes the random backoff. Regular packets are backed off the same way, but are

ollset by 61, therefore separating the packets into two ranges. Using a prime number is

necessary to minimize RTS collisions since each node is equally likely to receiYe anyone of the

numbers in the range specified .

(Line 4) Next. the random backoff is checked and if it is zero then (Line 5) the time left

in the reservation slot is recorded as the reseryation slot time, and (Line 6) the node goes into

the backotT handler without waiting. (Line 8) If the random backoff is nonzero, (Line 9)

random is decremented by one since the node is only waiting for one backoff slot time. and

then it enters the backotT handler. (Line 10) Time left in the reseryation slot is recorded after

subtracting one backoff slot time from the reseryation slot time. (Line II) The node waits for

one backotT slot time and the backoff handler is called.

•

=

The backoffHandler () handles the event when the backofftimer expires and will

repeat the contention process until the node wins out or all slots are reserved. (Line 16) As a

precaution, the existence of a packet is checked again and the reserved time cannot be expired.

(Line 17) If a slot is still available, the contention process continues or else it is stopped until

the next random period. (Line 18) The time left in the reservation slot is checked and if it is

nonzero, then the node is still in contention with its given random backoff. (Lines 33 to 42) If it

is zero, then the node is in a new reservation slot and must repeat the previous procedure taken

in Lines 3 to 11. (Line 19) If the node is still in the same reservation slot, the channel status is

checked. (Lines 20 to 22) If the channel is idle and the random backoffhas reached zero, then a

RTS is transmitted with the receiver set the same as the receiver of the packet, and the

contention process stops. (Lines 28 to 30) If the channel is busy due to another node sending a

RTS, then that time slot has been reserved and the node waits until the start of the next random

period. (Lines 24 to 26) If the random backoff is nonzero, then the backoff is decremented and

the time left is updated, and the node waits for another backoff slot time.

Sending a RTS during the contention process does not guarantee the slot is reserved,

because a RTS collision could have occurred. If a RTS collision occurred, the transmitter

wakes up during the unreserved slot and will try to send a packet even though the receiver is

still sleeping. As explained earlier, this is a trade-off that must be taken since the control

overhead of RTS/CTS exchange is overwhelming for small data packets. If no RTS collision

occurred, then the transmitted data packet will be received successfully without collision since

both nodes will be awake at that specific slot. Each node may only send one RTS per frame

whether it is collided or not, and it may only reserve one slot per frame.

reserveSlot() II Called upon at the start of reservation period

1 if (packet pending) {

2 if (last_reserved_slot_ != frame_length_)

3 random backoffCalculator();

4 if (random == 0) {

5 restimeleft = RESERVE_SLOT TIME;

6 backoffTimer.start(O);

7

48

"'~ ----,:'

..,~

· · -~
::: .. -,
· Ii
t ,.

" .. - -

i I' : ::: i:i :. i

9 ra~do~--;

:-estineleft RESERVE SLOT TIHE - Backoff SlotTime

~ack2ffTiDer.start(Backoff_SlotTime);

cacKoffEar.dler() /1 Ear.dles event when Backoff Tiner expires

::6
, -...
., Q,
.I.~

; C)
.I..

-',
... v

21
...,.,
.:.<..

23
.., ,
,-,,±

25
... ,,-
,,;..'0

r-,_

,,-'

~.::
'- ~

29

3J

31
., ..,
.J_

33

~,
_'t

35

36

37

38

"'0 .),

. " 'tv

if (~acket Fer.dir.g ££ reserve tine not expired)

if (restine:eft != Q)

if (char.r.el idle) {

if (rar.do~ == 0) {

sendRTS();

return;

rar:d0r:1---;

restimeleft = restineleft - Backoff_SlctTine;

cackoffTiner.start(Backoff_SlctTine);

else

ba~k~ffTi~er.start(res~i~eleft);

rest~~e:eft = 0;

e152 t

rar.jc:w tacKoffCalc~lator();

i: (::-a::-.dc::1 == C)

restineleft - RESER~E SL~: T:~S; - -
bacKoffTiner.start(O);

else

PR~rtR7YCF
;;;rnSOM UNJ'iEFiSm UEP...\RT

41

42

43

44

45

46

WE !5

restimeleft = RESERVE SLOT TIME - Backoff SlotTiDe - - -
backoffTimer.start(Backoff_SlotTime)i

4.3 !\1obility Handling in VMAC

11'[

Sensor nodes become mobile either randomly or under controL Random movement is expected

when nodes are placed on mobile targets for monitoring purposes. Controlled movement is

initiated either for discovery purposes when nodes are placed on remote-controlled Yehic1es or

for data collection when sinks maneuver around to gather data from sourccs. Randomized

mobility can be detected or predicted, and exploiting detection is the focus of this thesis.

Controlled mobility sometimes require added infrastructure, such as tracks or cableways, for

tractability of paths taken by sinks and it is out of the scope of the materials covered here. Out

of all the examined approaches, handling randomized mobility can be broken down into three

schemes: (1) using explicit detection of mobility such as with RSS or GPS. (2) predicting

mobility with the help of GPS, and (3) adaptive rate of two-hop neighbourhood update. RSS is

inaccurate in estimating mobility when more than one node is mobile. Thus, GPS is tbe

common factor of the first two schemes when there are several or evcn a network of mobile

nodes. Updating the two-hop neighbourhood provides an indication of overall node

movements, but performing neighbour discovery is the task of the routing protocol so it is

inefficient if the MAC protocol repeats it. For efficiency, a cross-layer technique ben'.een tbe

MAC and routing protocol should be considered. However, neighbour discovery requires a Jot

of message passing; and v."hen used to dynamically change frame time of the neig!1bourblX'>d.

global synchronization becomes a major issue.

The methods from the literature survey ha\'e their 0\\11 pros and cons and it is briefly

summarized here. S-MAC is energy efficient, but suffers performance degradation \\ ben nodes

are mobile since the protocol is designed for stationary nodes. ~tS-~IAC .adds IT.lobilil)'

handling to S-MAC, but can only detect a single mobile node since RSS is not st:.fficie::::l for

•

50

L24

~,
!':
~ --

detection. S-MAC with proactive synchronization requires GPS and it is theoretically believed

to be able to accommodate several mobiles. S-MAC with EKF also requires GPS in real

implementations and can significantly reduce frame losses during high-speed mobile scenarios,

but it is only tested with single hopping and within a single cluster. MMAC also requires GPS

and it is a complex protocol, but it supports a network of slowly moving mobiles. G-MAC

requires clustering and does not constantly gather the neighbour list. TRAMA and Z-MAC

does not require clustering, but TRAMA should be more effective in mobile scenarios since it

updates neighbourhood information during every frame. Mobility handling is still a new topic

in the research community of WSNs. Future protocols should combine a straightforward

mobility detection scheme such as GPS with contention-based or scheduled-based MAC.

Prediction requires too much control overhead and may greatly extend end-to-end delay.

Detecting mobility in VMAC requires the use of GPS, but each node only needs to

know its own speed and not the speed of others in the two-hop neighbourhood. Also, this speed

is only required when it has data to send. VMAC does not require clustering nor constant

neighbourhood update. Mobility is viewed as a communication problem between a transmitter

and a receiver, and their relationship can be classified into four cases:

1. Stationary transmitter and receiver

2. Stationary transmitter and mobile receiver

3. Mobile transmitter and stationary receiver

4. Mobile transmitter and receiver

Case 3 and 4 are given priority over the other two cases when mobiles have data to send,

because high mobility leads to network partitions so mobiles must take advantage of their

current connections. Each case also reflects on the application it supports. For instance, Case 1

represents the stationary scenario where nodes are placed in specific areas and are kept there

throughout their lifetime. For this type of application, mobility handling is unnecessary and the

protocol approaches the performance of TDMA. In Case 2, the receiver is mobile and it could

represent the situation when sinks move around to collect data from stationary sensor nodes,

which does not necessitate mobility support. For Case 3, the sensor node could be moving

because it is attached to a moving target or it is placed on a vehicle for searching purposes. At

any point, this mobile could lose connection to the network so it is best to give it priority in

51

-

•

sending its data. Case 4 is similar to Case 3 so it is treated equally. Providing mobile

transmitters with high priority is simple and effective in handling the different cases.

The carrier-sensing threshold is set to be twice the receiver threshold so each node can

sense twice the range it can transmit. With this setting, carrier-sensing can detect transmissions

within the two-hop neighbourhood which helps prevent collisions of RTS during reservation.

RTS/CTS exchange is not required since the sender of the RTS can detect if the RTS is

corrupted by other transmissions at the receiver (by carrier-sensing the RTS) and retransmit it if

collision occurs. Larger CW sizes can also help prevent RTS collisions but leads to longer

random period and overall end-to-end delay for data transmissions. The size of CW and the

number of transmission slots should be proportional to the average node density or number of

nodes in the two-hop neighbourhood. The number of time slots can be more or less than the

number of neighbours because nodes can be constantly moving in and out of the two-hop

neighbourhood. Less transmission slots still lead to utilization of bandwidth since it achieves

only a small amount less than having the transmission slots equal to the neighbourhood size.

More transmission slots result in bandwidth underutilization and longer delay. Less

transmission slots than number of neighbours is therefore more beneficial in high mobility

environments.

In the next chapter, the performance of the proposed VMAC is evaluated using the NS-

2 simulator. To implement VMAC in the simulator, two new C++ files (one source and one

header) are written and added to the MAC directory of NS-2. These files are created by

modifying the TDMA files already provided in the NS-2 distribution. All the features of

VMAC mentioned earlier are covered by the code and its performance compared to other

protocols is shown in the following chapter.

52

IT' E .~.-=wz . Z55Tn U5nTRY- ED

5. VMAC Performance Evaluation

5.1 Simulation Setup

To test various properties of VMAC and its comparison with other MAC protocols, it is

simulated in three topologies that differ by the maximum number of hops required to reach the

base station, and also the contention levels between source nodes. For all three topologies, the

network configurations are the same except for the rate of data generation and protocol-specific

parameters, such as VMAC frame length. The general network configuration used is tabulated

below:

Channel Model Friis free-space with Tx/RX gain of 1.0 !
Antenna ! Omni-directional

I
Carrier Frequency 914 MHz

Communication Range 40m

I Interference/Carrier-sensing Range 80m
I

Data Rate (Bandwidth) 200 kbps

Interface Queue Holds 50 packets with drop-tail (FIFO) queuing

Routing Protocol I AODV
I

Traffic Generator Constant bit rate (CBR) with 100 Bytes of data

Rate of Traffic Generation 10 packets/s per node for one-hop, and 1

packet/s per node for two-hop and four-hop

Contention Window Slot Time 20 J.ls

Simulation Time 150 s

Initial Energy 200J

Idle/Receive Power Consumption 1 W [1 J/s]

Transmit Power Consumption 2W

Sleep Power Consumption 0.001 W

Transition Power Consumption 0.1 W (transition from sleep to active only)

Time Required for Transition 0.001 s

Number of Nodes 21 (20 source nodes and 1 sink node)

53

. .,

The three topologies are one-hop, two-hop, and four-hop. Each stands for the farthest a

sensor node can be from the base station. For one-hop, all 20 source nodes are randomly placed

within one hop of the sink and all are within each others' transmission range of 40 m. The

topologies for two-hop and four-hop simulations are illustrated in Fig. 5.1 and 5.2, respectively,

and Nodes 0 through 19 are source nodes while Node 20 is the sink node. For the one-hop

simulation, packet generation rate is 10 packets/s per node and this rate produces a traffic of 10

packet/s/node * 20 node * 172 Byte/packet * 8 bit/Byte = 275.2 kbps, which is more than the

amount the bandwidth (200 kbps) can handle. Each packet is 172 Bytes with 100 Bytes of data

and 72 Bytes of control header, made up of 52 Bytes for VMAC and 20 Bytes for IP. The other

protocols simulated with VMAC are TDMA and 802.ll with RTS/CTS exchange and their

control header are 52 Bytes and 58 Bytes, respectively. TDMA represents the extreme of

scheduled-based, while 802.11 represents the extreme of contention-based MAC. All control

headers carry 28 bytes of preamble and frame check sequence (FCS), which are included to

simulate synchronization between transmitter and receiver and error checking.

20

0 0 0 0 0
15 16 17 18 19

0 0 0 0
10 11 13 14

0 0 0 0 0
5 6 7 8 9

0 0 0 0 0
0 2 3 4

Fig. 5.1 Two-hop Topology with Centered Sink (shaded circle)

,I'
~\ ., , _.
~: .,
-:' ~
~ ~

JI
'.
:I
II ,

54

I
gi

• 20

0 0 0 0 0
15 16 17 18 19

0 0 0 0 0
10 11 12 13 14

0 0 0 0 0
5 6 7 8 9

0 0 0 0 0
0 I 2 3 4

Fig.5.2 Four-hop Topology with Cornered Sink (shaded circle)

The one-hop simulation creates a high contention level around the sink and places great

pressure on the MAC protocol to resolve it. For the two-hop and four-hop simulations, packet

generation rate is lowered to 1 packet/s per node but this is enough to cause congestion all over

the network. The congestion is massive because nodes one-hop from the sink are now

forwarders for other source nodes in the network, but these forwarding nodes also have their

own data to send. To relief the congested network, VMAC utilizes channel reuse by allowing

nodes three-hop from the transmitter to also transmit on the same time slot. This is possible

because again the carrier-sensing range is twice the receiving range so if the receiver of aRTS

senses another RTS transmission the slot reservation is still valid. An example is shown in Fig.

5.3, where two transmitters (clear circles) are contending for the same time slot and they

transmit the RTS to their receivers (shaded circles). The dashed lines in the figure represent the

sensing range, while the shaded lines represent the receiving or transmission range. The

receivers can still receive a RTS properly while disregarding the sensed RTS. Since TDMA is a

centralized scheduler with a global frame time, channel reuse is not possible. 802.11 with

RTS/CTS exchange can also exploit channel reuse as well since it resolves the exposed node

problem as discussed earlier in Chapter 3.

55

?

Sensing Range

RXITX Range
11/

II>

Fig.S.3 Example ofVMAC Channel Reuse

5.2 Simulation Results

The simulations are conducted with Windows Vista 64-bit Home Premium with Service Pack 2

running on the HP Pavilion dv6700 Notebook PC. The CPU is Intel Core 2 Duo with clock at

1.83 OHz and 4 OB of DDR2 memory. NS-2 is installed on and ran through Cygwin (a Unix

like environment) which runs on top of Vista. Data points are extracted from the logged trace

files of each protocol and topology using OTcl scripts, and finally plotted with MA TLAB.

5.2.1 Throughput

The throughput of the three simulated topologies is shown in Fig. 5.4 with various VMAC

frame lengths (FLs). Throughput is defined here as a measure of the total amount of successful

data transmission (data carried by constant bit rate (CBR) packets) after the topology is

completely simulated. For the one-hop simulation, TDMA rises above 802.11 and VMAC since

it utilizes a global frame time that is perfect in this topology where channel reuse is impossible;

but TDMA does not simulate the exchange of receiver address as mentioned in the previous

chapter. Therefore, a real implementation of TDMA will reduce its overall performance.

VMAC has similar throughput to 802.11 since both have similar overhead such as RTS

transmission and random backoff. The various FLs of VMAC differ by a small amount in

throughput since reservation time is proportional to frame length, meaning the overhead is the

same but longer frame lengths lead to less R TS collisions and therefore more throughput.

56

j .
• 'I
~~
'I' l<!

l' J
:1
11 ,

Ii '5 :

For the two-hop simulation, all protocols have similar throughput because again channel

reuse cannot be utilized often, and TDMA suffers from having a global frame time when the

average two-hop neighbourhood size is much less than 21. Also all protocols can take

advantage of the sink being placed in the center of several forwarding nodes instead of being in

the corner of the network. For the four-hop simulation, multi-hops are required to reach the sink

node that is only reachable through two forwarding nodes. Channel reuse can be utilized here

since forwarding near the sink is far from data generation in the opposite corner. Thus, VMAC

with FL of 1 and 802.11 can maximize the throughput of this congested network, while others

suffer from having large frame lengths. VMAC with a small frame length proves to be

effective, in terms of throughput, throughout all three topologies.

14

12

Throughput oflhe Three Topologies
I
I
I

I
I - - -1_ VMAC Fl=1 - - - - - - - -

___ h_n _____ ~ ~~~;t:~~ ____ nn _ n

! _ 802,11 with RTSICTS I
I , ---,

-1- - - -- - -
I
I

2
Maximum Hop Count

Fig.5.4 Throughput ofthe Three Topologies

5.2.2 Utilization of Bandwidth

I T----- -

I
--1----

I

---+--

The utilization of bandwidth in the three topologies is shown in Fig. 5.5 with various VMAC

FLs. Bandwidth utilization is a measure of the amount of bits transmitted and successfully

received throughout the course of the simulation, and broadcasted packets such as ARP and

AODV are counted as many times as they are received. Therefore, this is a measure of whether

57

-

For the two-hop simulat ion, all protocols have sim ilar throughput because aga in channe l

reuse cannot be util ized often, and TDMA suffers from hav ing a global frame time when the

average two-hop neighbourhood size is much less than 2 1. Also all protoco ls can take

advantage of the sink being placed in the center of several forwarding nodes instead of being in

the corner of the network. For the fo ur-hop simu lation, mul ti -hops are requi red to reach the sink

node that i on ly reachable through two fo rwardi ng nodes. Channel reuse can be uti lized here

since fo rwarding near the sink is far fro m data generation in the opposite corner. Thus, VMAC

\,vith FL of I and 802.11 can max im ize the throughput of this congested network. while others

suffer from having large frame lengths. VMAC with a sma ll frame length proves to be

effect ive, in terms of throughput, throughout all three topologies.

106 Throughput of the Three Topologies
16 ~x~ ____ -. ________________ ~ ________________________________ -. ______ -.

I

1 2 ~---- ---~-
I

~ 10 ~
& I
'5
a.
~

g' S f--
e
~

f--
Iii
15
f--

+===-----------.-------------------- --------
_ VMACFL=1

,

I

_ VMAC FL=10
_ VMAC FL=21
_ TDMA
_ S02.11 withRTS/CTS

----,---------- ---------------------T--------

I

----,----------------------------- - ------T--------
I I
I I

I

----------;------------------------------------~------ --
I

2 4
Maximum Hop Count

Fig.5.4 Throughput of the Three Topologies

5.2.2 Utilization of Bandwidth

The ut ilization of bandwidth in the three topologies is shown in Fig. 5.5 with various VMAC

FL . Bandwidth uti lization is a measure of the amount of bits transmitted and successfully

received throughout the course of the simulat ion, and broadcasted packets such as ARP and

AODV are counted as many ti mes as they are received. Therefore, th is is a measure of whether

57

the medium is exploited by the protocols. These bits could belong to data packets such as CBR

or for hardware address and routing purposes such as ARP and AODV. Examining the

bandwidth utilization and their throughput in the previous figure, it can be concluded that high

bandwidth utilization can lead to the misconception of higher throughput. It also shows that

high bandwidth utilization with low throughput is a result of constant ARP and AODV

transmissions. Thus, a lot of important routing and address resolution packets must have been

dropped in the forwarding process leading to more transmissions. Again, channel reuse can

help lower this drop rate by lowering congestion.

c o
~
.!::!

5
~ 1
I-

Utilization of the Thee Topologies

-r==------,- - - - - - - - --
_VMACFL=1
_VMACFL=10
c:.:IVMAC FL=21
1,~"dTDMA
.. 802.11 with RTSICTS

Maximum Hop Court

Fig. 5.5 Utilization of the Three Topologies

5.2.3 Source to Destination Delay

I
--T----

I

The average delay of packet delivery, from when the packet is first sent at the source to when

the packet is received at the destination, is shown in Fig. 5.6. For the one-hop si.mulation, the

scheduled-based protocols, VMAC and TDMA, have very minimal delay (near zero) since

scheduled access prevents delay easily in one-hop scenarios. As the number of hops increase,

scheduled access is no longer as fast as contention-based because unutilized long frame lengths

cause delays to linger. Also inability to reuse the channel is a major disadvantage. Only VMAC

58

r;""F,,-;ezr

I •• ,

the medium is exp loited by the protocols. These bits could belong to data packets such as CBR

or for hardware address and routing purposes such as ARP and AODY. Examining the

bandwidth util izat ion and their throughput in the prev ious fi gure, it can be concluded that high

bandwidth util ization can lead to the misconception of higher throughput. It also shows that

high bandwidth utilization with low throughput is a resu lt of constant ARP and AODY

transmiss ions . Thus, a lot of imp0l1ant rout ing and address resol ution packets must have been

dropp d in the forwarding process leading to more transmissions. Agai n. channel reuse can

help lower th is drop rate by loweri ng congestion.

o

Utilization of the Three i apologies
------------------~----

l
_ VMACFL=1
_ VMAC FL=1 0

5~~ ::2~,,~", -- --------: -----1

2 4

Maximum Hop Count

Fig. 5.5 Utilization of the Three Topologies

5.2.3 Source to Destination Delay

The average delay of packet de livery, from when the packet is fi rst sent at the source to when

the packet is received at the destination, is shown in Fig. 5.6. For the one-hop simulation. the

scheduled-based protoco ls, YMAC and TDMA, have v ry minimal delay (near zero) si nce

scheduled access prevents d lay easily in one-hop scenarios. As the number of hops increase.

scheduled access is no longer as fast as contention-based because unuti lized long frame lengths

cause delays to linger. Also inability to reus the channel is a major disadvantage. Only YMAC

58

" .
j.

I ~
I ~

r .0
~
dill

~'" -"

with FL of 1 behaves like the contention-based protocol of 802.11. VMAC with FL of 1 and

802.11 are very much alike since they both transmit RTS and utilize random backoff for only

one data transmission. Furthermore, they are both capable of channel reuse which speeds up the

rate of forwarding data.

"" '"

8

Transmission Delay in the Three Topologies

I
I

~
_ VMAC FL=1 1-" - --
_VMAC FL=10 I I

- ~ VMAC FL=21 - -, -

r:::::ITDMA I:
t~80211W1th~ __ -,

I

I ----,---
I
I

-'
I

~ 4 --------~---
'" OJ

~ 3 --
<{

2 - --

1 - - -

I

I
____ i __

I

_L _ _______________ ~ __

I
I

I ___ L ___ _

I
I
I

2
Maximum Hop Count

Fig. 5.6 Transmission Delay in the Three Topologies

5.2.4 Fairness of Medium Access

Individual node fairness is a measure of how successful a node is in accessing the medium

when it makes an attempt, and the results from simulation of VMAC are shown in Fig. 5.7 to

5.9. For the one-hop (Fig. 5.7), a FL of 21 produces near unity fairness since the 21 nodes in

the network have a really high chance of capturing a slot. Any FLs below 21 will have their

fairness proportional to the FL divided by 21. A FL of 42 produces unity fairness since

collisions may happen during a nodes attempt to capture a time slot, but having a FL way

beyond the two-hop neighbourhood size makes those collisions negligible. For the two-hop and

four-hop simulations, the average neighbourhood size is much less than 21, and fairness for FL

of 1 is quite astonishing since it is able to reuse the channel.

59

with FL of I behaves li ke the contention-based protocol of 802. 11 . YMAC with FL of I and

802 . 11 are very much alike since they both transmit RTS and uti lize random backoff fo r only

one data transmission . Furthermore. they are both capable of channel reuse which speeds up the

rate of forwarding data.

Transmission Delay in the Three Topologies
---------r

I

, I

9 r --~ _ VMAC FL=1 ~ - - -, - - - - - - - - - - - - - - -

S r --------= ~~~g ~~:~~ [- --: ------ -------- --
_ mMA : .i 7r_u __ u_: _ S0211with RTS/CTS I_ : ________ u __ u _u --- _u -----

Q; I
o 6 --------7----------- -----~--------------------------------
]1 I ~ I I

~ 5~--------t------ ----------~--------------------------------

C\l
Q;
o

2
Maximum Hop Count

Fig. 5.6 T ransmission Delay in the Three Topologies

5.2.4 Fa irness of Medium Access

.
I

4

----l
----1
----l
----1

Indi vidual node fa irness is a measure of how successful a node is in access ing the medium

when it makes an attempt, and the results from si mulation of YMAC are shown in Fig. 5.7 to

5.9. For the one-hop (Fig. 5.7), a FL of 2 1 produces near un ity fairness since the 2 1 nodes in

the network have a really high chance of capturi ng a slot. Any FLs below 2 1 will have their

fairness proport ional to the FL di vided by 2 1. A FL of 42 produces uni ty fairness since

co lli sions may happen during a nodes attempt to capture a time slot, but having a FL way

beyond the two-hop neighbourhood size makes those colli sions negligible. For the two-hop and

fo ur-hop simulations, the average neighbourhood size is much less than 2 1, and fai rness for FL

of I is qu ite astonishi ng si nce it is able to reuse the channel.

59

-

.is
a.
E

~
'0 OS '!!' .

'" ~
'" B
~ 0.6
'0
~

'" '" Q)

------~-------r===vMA~~

I
I I

T-------!-------~----
I I
I

I I
--7-------j-------~--

I
I

- - - -!-
I

.~ 0.4e----
LL
IV

I

I
'0 os
~ .
ill
'" .,
g
~ 0.6
'0
:!!'.
'" '" '" E
'm 0.4
LL
Q)
Ol
~
<D
> «

10
NodelD

Fig.5.7 Average Fairness of Vl\<fAC in One-hop Simulation

VMAC: Average Fairness of Two-Hop Simuavon

------~-------r==~~1T
-1- - - - - /'"" - - - - - - 1" - - - - - - -I--

I

- - - - - -1 - - - - - -: -

0.2 - - - - - -

,..--

I

I ,------

l

I

r
I

00~------L2------~4------~6------~S-------1~0~----·:1~2~----~1~4------~1~6------~1~S------~20
NodelD

Fig.5.8 Average Fairness ofVl\fAC in Two-hop Simulation

60

I
1

,~~-~

VMAC: Average Fairness of One-Hop Simcjation
--.- ----,---

VMAC FL=1
VMAC FL=1 0

,
, ,
l' - - - - - - -,- - - - - - - r

T

~
, --VMAC FL=2 1

0.6 ______ ~ _ _ _ _ _ _ _ _ VMAC FL=42 ~ __ + ,
,

---.---------- - - - ...: - - - - - - -'- - - - -
'0 I

~ I

'" '" Q) ,

, , ,

, I

~---1------- . _______ _ - - - - -.-1

, , , i :1--~ -: : -- --~ ----. -------~ ---
--r------,------ I------- r -

~
a.
E
Q)
;:
..:
'0
:I!
'" Q)

::l
Q)
u
U
:J

U)

'0
~

'" '" Q)

E
iii
u-
Q)

I

oL-'
o 2 4 6 8 10

Node 10
12

,
--.

I

14

I

---.
I

16

Fig. 5.7 Average Fairness of VMAC in One-hop Simulation

VMAC : Average Fairness of Two-Hop Simcjation

-~-

I

18 20

r-------.------r------.------~- -------.--------.-------~------_r------_.

-r - --
I

0.6
,

----1"----

,J-

---b-VMAC FL=1 ..,.. -
VMAC FL=10

--VMAC FL=21 ,
-----,--

---,...------,-
, I

---r-----
I

I,+ ___ _
0'-o

I ' ..L- __ ~ __ ----1-
24 6

---"-
8

_______ LI ________ ~ ___ ·~ ____ ~

10 12 14 16
---'--

18
----'

20

Node 10

Fig.5.8 Average Fa irness of VMAC in Two-hop Simulation

60

, ;aer=e •. ":g

VMAC: Average Fairness of Four-Hop Simulation
-------,----,-----,.----'I-----,..----r----,-------,-----,-----,

------1-
- - - - - -, --VMAC FL=1 I - :-

1

-- VMAC FL=10 I

, --VMAC FL=21 I
r- I

I I I I
-, - - -1- r-- - T

I

I I
j-- - --I -
I I

10
Node ID

l"

I

I

r
I ,-

---1- -----r-
I

r/\
-- -v-- -

-,---- --'---
I

Fig.5.9 Average Fairness ofVMAC in Four-hop Simulation

5.2.5 Energy Consumption

Individual node energy consumption is traced throughout the course of the simulation by

monitoring its current energy remaining, and the results from simulations are shown in Fig.

5.1 0 to 5.12. The energy consumption level for the one-hop simulation (Fig 5.10) is quite stable

and the sink (Node 20) has the lowest energy remaining in all protocols and topologies since it

is always on and participating in transmission. All three figures show that even though 802.11

performs well in all evaluations, its biggest drawback is not utilizing sleep in energy reduction.

On the other hand, the two-hop and four-hop simulation results are wavy due to some nodes

being forwarders and consuming more energy than others. Also, decrease in FL of VMAC

leads to a small increase in energy consumption since smaller FLs transition more from sleep to

active, which consumes a negligible amount of energy.

61

•

- ' :- ~ ._ , " - :" -~.-:. ';:: ' .. :.;-:. -::' -..... -. ~ .., -.. " .. -.'---'. -':" " ;;.-:;- ~ ..•. "~-:,~",,,, -.~ - . ,"

2 4 6

VMAC: Average Faimess of Four-Hop Simulation
-,--~

I
- -,

I
~---- - -~ - -----4-------~---- -~

12 14 16 18 20
Node 10

Fig.5.9 Average Fairness of VMAC in Four-hop Simulation

5.2.5 Energy Consumption

Individual node energy consumption is traced throughout the course of the simu lation by

monitoring its current energy remaining, and the results from simulations are shown in Fig.

5. 10 to 5. 12. The energy consumpt ion level fo r the one-hop simu lat ion (Fig 5.1 0) is quite stable

and the sink (Node 20) has the lowest energy remaining in all protocols and topo logies since it

is always on and participating in transmission. All th ree figures show that even though 802. I 1

performs we ll in all evaluat ions, its biggest drawback is not util izing sleep i!1 energy reduction.

On the other hand, the two-hop and four-hop simu lation results are wavy due to some nodes

being forwarders and consuming more energy than others. Also, decrease in FL of YMAC

leads to a small increase in energy consumption since smaller FLs transi t ion more fro m sleep to

active, which consumes a negl igib le amount of energy.

6 1

n

802.11
RTS/CTS

160

~ 140
c
'c
.~

'" !l:

'" ~ 80 c:
UJ

802.11 with:_6_O-+)ooo
RTSICTS

40

20
o

":

Node Energy Remaining in One-Hop Simulation

20 150

Time [sl
Node ID

Fig.5.10 Node Energy Remaining in One-hop Simulation

Node Energy Remaining in Two-Hop Simulation

20 160
Time [s]

Node ID

Fig.5.11 Node Energy Remaining in Two-hop Simulation

180

160

140

100

,
t
1
I
I

180 • "\ : ~
'" i,!

160 ~ • •
, 140 ~ • - ,

!
I

, 120
L - - __ I ,

--I
100

62

200 -r - - - -

IDMA -

802.11
RTS/CTS

s: 140 - - --
0>
C

.~ 120
E
'" a:: 100
»
e>
'" c
W

Node Energy Remairing In One-Hop Simulation

20 150

Time [sl
Node ID

Fig.5.10 Node Energy Remaining in One-hop Simulation

Node Energy Remairing in Two-Hop Si mulation

20 160
Time [sl

Node ID

Fig.5. 11 Node Energy Remaining in T, o-hop Sim ulation

180

160

140

120

100

80

60

40

200

180
"
~ ,
I'

160

I;
140

120

100

80

62

Node Energy Remair; ng in Four-Hop Simulation

140

120

100

40

TIme[s]

Node 10

Fig. S.12 Node Energy Remaining in Four-hop Simulation

63

bz

6. Conclusion and Future Work

The task of examining the current state of mobile sensor networks and developing a better

solution has been fulfilled with the design of VMAC. The simplicity of VMAC without

clustering and constant neighbourhood update is appreciated especially when it is implemented.

As mentioned in Chapter 3, protocols based on clustering and neighbourhood updates can be

vague with their ideas on inter-clustering interference, message passing overhead, and inter

cluster communication. Reverting back to the original purpose of MAC has revealed flaws to

the novel MAC protocols. Complex solutions generally require a greater amount of

computation time and energy consumption, which sensor networks cannot risk. VMAC with a

fixed frame length has been shown to be effective in different scenarios that have various

contention levels. Under extreme congestion, VMAC with a frame length size of one has

combined the advantages of scheduled-based and contention-based MAC, which are the energy

savings of scheduled-based and the short delay of contention-based. The current VMAC

mobility handling technique provides uniform fairness amongst mobiles and non-mobiles with

just a remainder operator. The mobility handling technique is useful even in the stationary case

because ARP and AODV can utilize it to quickly route packets.

Future work will be focused on evaluating VMAC under mild to extreme mobile

environments and compare its performance to other hybrid MAC protocols. Another interesting

evaluation will be based on individual throughput rather than overall throughput, which should

be similar since the random backoff is fair. Also, even though the remainder operator is

effective in having the backoff fall into any number in the contention window uniformly, ratios

of various prime numbers to two-hop node density can be studied further. Finally, as research

brings about new ideas, integration of these innovations into VMAC can be examined, but

simplicity and efficiency are definitely the goals.

64

=

~"t,
~ !!1 .~,.

~~:l
,-:'
"'4~
r'

Qi
!:r:
~: -'. -~
f~i
,~

.~
~ .. _.

References

[1] R. Shorey, A. Ananda, M.e. Chan, and W.T. Ooi, Mobile, Wireless, and Sensor
Networks: Technology, Applications, and Future Directions, John Wiley & Sons, Inc.,
Hoboken, New Jersey, 2006.

[2] 1. A. Stankovic, T. F. Abdelzaher, C. Lu, L. Sha, and 1. C. Hou, "Real-Time
Communication and Coordination in Embedded Sensor Networks," Proceedings of the
IEEE, vo!' 91, no. 7, July 2003.

[3] e. Intanagonwiwat, R. Govindan, and D. Estrin, "Directed diffusion: a scalable and
robust communication paradigm for sensor networks," A CM Int. Con! on Mobile
Computing and Networking (Mobicom), pp. 56-67, August 2000.

[4] A. Kansal, M. Rahimi, D. Estrin, WJ. Kaiser, GJ. Pottie, and M. B. Srivastava,
"Controlled Mobility for Sustainable Wireless Sensor Networks," IEEE Con! on Sensor
and Ad Hoc Communications and Networks (SECON 2004), pp. 1-6, October 2004.

[5] P. Juang, H. Oki, Y. Wang, M. Martonosi, L.S. Peh, and D. Rubenstein, "Energy
Efficient Computing for Wildlife Tracking: Design Tradeoffs and Early Experiences
with ZebraNet," ACM SIGOPS Operating Systems Review, vo!' 36, no. 5, pp. 96-107,
December 2002.

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]
[14]
[15]

[16]

H. Wu, Y. Wang, H. Dang, and F. Lin, "Analytic, Simulation, and Empirical Evaluation
of Delay/Fault-Tolerant Mobile Sensor Networks," IEEE Trans. on Wireless
Communication, vo!' 6, no. 9, pp. 3287-3296, September 2007.
W. Ye and J. Heidemann, "Medium Access Control in Wireless Sensor Networks,"
USC Information Sciences Institute, Technical Report, October 2003.
W. Ye, 1. Heidemann, and D. Estrin, "Medium Access Control With Coordinated
Adaptive Sleeping for Wireless Sensor Networks," IEEEIACM Trans. on Networking,
vo!' 12, no. 3, pp. 493-506, June 2004.
K. Akkaya and M. Y ounis, "A Survey on Routing Protocols for Wireless Sensor
Networks," in the Elsevier Ad Hoc Networks Journal, vo!' 3, issue 3, pp. 325-349, May
2005.
IEEE-SA Standards Board, "Part 11: Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) specifications: Higher-Speed Physical Layer Extension in
the 2.4 GHz Band," IEEE, New York, September 1999.
1. Postel, "User Datagram Protocol," RFC 768, USC/Information Sciences Institute,
August 1980.
1. Postel (ed.), "Internet Protocol - DARPA Internet Program Protocol Specification,"
RFC 791, USClInformation Sciences Institute, September 1981.
1. Postel, "Transmission Control Protocol," STD 7, RFC 793, September 1981.
The Network Simulator Homepage [Online]. Available: http://www.isi.edulnsnamlns/
The Network Simulator Manual [Online]. Available: http://www.isi.edulnsnamlns/ns
documentation.html
P. Raviraj, H. Sharif, M. Hempel, S. Ci, H.H. Ali, and 1. Youn, "A Mobility Based Link
Layer Approach for Mobile Wireless Sensor Networks," IEEE Int. Con! on Electro
Information Technology, pp. 1-6, May 2005.

65

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28)

T. S. Rappaport, Wireless Communications: Principles and Practice, 2nd ed., Prentice
Hall PTR, New Jersey, 2002.
H. Pham and S. Jha, "Addressing Mobility in Wireless Sensor Media Access Protocol,"
Intelligent Sensors, Sensor Networks and Information Processing Con! (ISSNIP 2004),
pp. 113-118, December 2004.
M. Ali, T. Suleman, and Z.A. Uzmi, "MMAC: A Mobility-Adaptive, Collision-Free
MAC Protocol for Wireless Sensor Networks," IEEE International Performance,
Computing, and Communications Conference (IPCCC 2005), pp. 401-407, Apri12005.
V. Rajendran, K. Obraczka, and J.1. Garcia-Luna-Aceves, "Energy-Efficient, Collision
Free Medium Access Control for Wireless Sensor Networks," ACM Int. Con! on
Embedded Networked Sensor Systems (SenSys 2003), pp. 181-192, November 2003.
V. Bharghavan, A. Demers, S. Shenker, and L. Zhang, "MACAW: A Media Access
Protocol for Wireless LAN's," ACM Special Interest Group on Data Communications
Con! (SIGCOMM 1994), vol. 24, issue 4, pp. 212-225, October 1994.
W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, "Energy-efficient

communication protocol for wireless microsensor networks," Annual Hawaii Int. Con!
on System Sciences, vol. 2, pp. 1-10, January 2000.
M. 1. Brownfield, K. Mehrjoo, A. S. Fayez, and N. 1. Davis IV, "Wireless Sensor
Network Energy-Adaptive MAC Protocol," IEEE Consumer Communications and
Networking Con! (CCNC 2006), vol. 2, pp. 778-782, January 2006.
T. van Dam and K. Langendoen, "An Adaptive Energy-Efficient MAC Protocol for
Wireless Sensor Networks," ACM Int. Con! on Embedded Networked Sensor Systems
(SenSys 2003), pp. 171-180, November 2003.
1. Polastre, 1. Hill, and D. Culler, "Versatile Low Power Media Access for Wireless
Sensor Networks," ACM Int. Con! on Embedded Networked Sensor Systems (SenSys
2004), pp. 95-107, November 2004.
1. Rhee, A. Warrier, M. Aia, and 1. Min, "Z-MAC: a Hybrid MAC for Wireless Sensor
Networks," ACM Int. Con! on Embedded Networked Sensor Systems (SenSys 2005), pp.
90-101, November 2005.
1. Rhee, A. Warrier, and L. Xu, "Randomized Dining Philosophers to TDMA
Scheduling in Wireless Sensor Networks," North Carolina State University, Computer
Science Department, Technical Report, 2004.
W. Ye, 1. Heidemann, and D. Estrin, "A Flexible and Reliable Radio Communication
Stack on Motes," USC Information Sciences Institute, Technical Report, September

2002.

66

I

Appendix: OTcl and C++ Codes

Vl\fAC OTcJ One-hop Simulation File

OTcI simulation files of other hops and TDMA and 802.11 are similar to this file shown

below. Differences are only minor changes to parameters and input and output file names.

Energy model parameters# VMAC simulation of21 nodes within one hop from each other

Node parameters
set val (chan)
set val(prop)
set val (ant)
set val(lI)
set val(i fq)
set val(ifqlen)
set val(netif)
set val(mac)
set val(rp)
set val(nn)

ChanneVWirelessChannel ; # channel type
PropagationlTwoRayGround ; # signal propagation model
AntennalOmniAntenna ; # antenna type
LL ; # link layer type
Queue/DropTail/PriQueue ; # priority queue
50 ; # max number of packets in queue
Phy/WirelessPhy ; # network interface type
MacNmac ; # MAC type
AODV ; # ad-hoc routing protocol
21 ; # number of nodes

set val(energymodel) EnergyModel
set val(radiomodel) RadioModel
set val(initialenergy) 200 ; # Initial energy in Joules (Joule = Power x Time)

Write initial energy to file for reading later by Energy Tel
set iEnergyFile [open "-/metricTcl/dirOutFiles/iEnergyOneVmac.outtl "w+"]
puts $iEnergyFile "$val(initialenergy)tI
close $iEnergyFile

Priority is given to routing protocols (AODV, DSR, TORA, and MESSAGE) by default if priority queue is used.
This can be modified in -/queue/priqueue.cc
Queue/DropTail/PriQueue set Prefer_Routing_Protocols 0; # ARP should be more important than routing packets

Unity gain, omni-directional antennas
Set up the antennas to be centered in the node and 1.5 meters above it)
AntennalOmniAntenna set X _ 0
AntennalOmniAntenna set Y _ 0
Antenna/OmniAntenna set Z_ 1.5
Antenna/OmniAntenna set Gt_ 1.0
Antenna/OmniAntenna set Gr_ 1.0

Initialize the SharedMedia interface with parameters to make
it work like the 914MHz Lucent WaveLAN DSSS radio interface
NOTE: Although TwoRayGround is assigned, Friis free space is used since
the frequency is 914e+6
Phy/WirelessPhy set CPThresh_ 10.0
Phy/WirelessPhy set CSThresh_ 9.1538e-11 ; # for 80m carrier sensing range
Phy/WireiessPhy set RXThresh_ 3.652e-J 0 ; # for 40m Xmission range using Friis free

67

Phy/WireiessPhy set bandwidth_ 0.2Mb
Phy/WireiessPhy set bandwidth_ 2e4

; # in bits per second
; # in bits per second

Phy/WireiessPhy set Pt_ 8.5872e-4 ; # Transmit power in watts
Phy/WireiessPhy set fre'L 9 J 4e+6 ; # Carrier frequency
Phy/WirelessPhy set L_ 1.0

Mac set bandwidth_ O.2Mb ; # Change 2Mb default in ns-mac.tcl (should be same as Phy bandwidth_)
Mac set bandwidth _ 2e4

Protocol specific variables
MacNmac set slotpackeUen_ 173 ; # CBR I OOB + IP 20B + VMAC 52B I72B but 173B needed
MacNmac set max_node_num_ $val(nn)
MacNmac set scheduleJength_ I

Create instance of simulator and setup trace files
set ns [new Simulator]
set namfd [open oneHopVMAC.nam w]
$ns namtrace-all-wireless $namfd 120 120
set tracefd [open oneHopVMAC.tr w]
$ns use-newtrace; # For new trace format for wireless traces (see 16.1.7 in manual)
$ns trace-all $tracefd

Create and configure topography of environment or boundaries
in metres wide (X) and metres long (Y)
set topo [new Topography]
$topo load _ flatgrid 120 120

Create god instance which is llsed by MAC objects in this case
create-god $val(nn)

Configure nodes with parameters
$ns node-config -adhocRouting $val(rp) \

-IIType $val(ll) \
-macType $val(mac) \
-ifqType $val(ifq) \
-ifgLen $vai(ifglen) \
-antType $val(ant) \
-propType $val(prop) \
-phyType $val(netit) \
-topolnstance $topo \
-channel [new $val(chan)] \
-agentTrace OFF \
-routerTrace OFF \
-macTrace ON \
-energyModel $val(energymodei) \
-idlePower 1.0 \
-rxPower 1.0 \
-txPower 2.0 \

-sleepPower 0.001 \
-transitionPower 0.1 \
-transition Time 0.00 I \

-initialEnergy $val(initialenergy) .,
Transition time may cause problems in synchronization of SImulatton
Transition should only involve sleep to idle (active)
-> check this http://www.isi.edulilense/software/smac/ns2_energy.html

68

Create an array of nodes with no random motion since nodes are stationary in this case
for {set i O} ($i < $vaJ(nn)} {incr i} {

set node_($i) [$ns node]
$node_($i) random-motion 0
set mac_($i) [$node_{$i) set mac_CO)]

source".f I-hop-topology. tcl"

set nuJUO) [new AgentINulJ]
$ns attach-agent $node_(20) $nuIUO)

for {setiO} {$i<20} {incri} (
set udp_($i) [new Agent/VDPl
$ns attach-agent $node_($i) $udp_($i)
$ns connect $udp_($i) $nuIUO)

set cbU$i) [new Applicationffraffic/CBR]
$cbr_($i) set packetSize_ 100 ; # Default VDP maximum segment size is 1000 bytes
$cbr_($i) set interval_ 0.1
$cbr_($i) set random_ 0
$cbr _($i) attach-agent $udp _($i)

$ns at 0 "$cbU$i) start"
$ns at (expr $i * .05] "$cbU$i) start"
$ns at 50 "$cbr_($i) set intervat 0.1" ; # Interval calculated to approach max capacity
$ns at 150 "$cbr _($i) stop"

for {set i O} {$i < 21 } {incr i} {
$ns at 151 "$node _($i) reset"
$ns at 151 "$mac _($i) print-stat"

}

$ns at 151.0 "finish"

Finish procedure to flush and close all traces
proc finish {} {

global ns namfd tracefd
$ns flush-trace
close $namfd
close $tracefd
exit 0

puts "Simulation Begins ... "
$ns run

VMAC C++ Header File

1*

69

* File: vmac.h
* Author: Vincent Ngo
* Sum~1ary: Crea~ed. with mods to mac-tdma.h to add declarations of variables and
* filOctlOns for priOrIty slot reservation
*/

#ifndef _ VMAC_H
#define _ VMACJI

#include "marshall.h"
#include <deJay.h>
#include <connector.h>
#include <packet.h>
#include <random.h>
#include <arp.h>
#include <1I.h>
#include <mac.h>

Ii Vince: For time(l\ULL) which returns current time in seconds used in seeding
II random number generator
#include <time.h>

II Vince: VMAC slot time based on DSSS SlotTime
jl#define VMAC_SlotTime 0.0000)0 II in-seconds
#define VMAC _ SJotTime 0.000020 /1 in seconds

1/ Vince: Variable added to turn priority scheduling ONIOFF (can be binded to OTcI)
#define PRIORITY I

1/ Vince: Congestion window range for each type of packet (must be prime)
#define PRIORITY _ CW 61
#define REGULAR _ CW 61
#define TOTAL_CW (PRIORITY_CW + REGULAR_CW)

/I Vince: DATA transmission time when given length in bytes
#define DATA_Time(len) (8 * (len) I bandwidthJ

II Vince: Reservation time (RTS packet with MAC header is only 40 bytes)
#define RESERVE TIME \
«(TOTAL_CW-I) '* VMAC_SlotTime * scheduleJengthJ + (DATA_Time(40) * scheduleJength_)

II Vince: Length of time allowed for each reservation slot
#define RESERVE_SLOT_TIME RESERVE_TlME/scheduleJength_

II Vince: Same specs for PHY layer as 802.11
II IEEE 802.11 Spec, section 15.3.2 - default values for the DSSS PHY MIB
#define DSSS CWMin
#define DSSS - CWMax
#define DSSS - SlotTime
#define DSSS CCA Time
#define DSSS RxTxTurnaroundTime
#define DSSS - SIFSTime
#define DSSS - PreambleLength
#define DSSS =PLCPHeaderLength

31
1023
0.000020 II 20us
0.000015 1I15us

0.000005 II Sus
0.000010 /IIOus
144 11144 bits (18 bytes)
48 1148 bits (6 bytes)

/1 Vince: stmct hdr_mac_ vmac header size is 26 bytes minus 2 bytes for body

70

err

te. _

II offset, Preamble is 18, PLCP is 6, FCS is 4 = Ethernet header length of 52 bytes
#define ETHER_HDR_LEN \

«phymib_->PreambleLength» 3) + \
(phymib_->PLCPHeaderLength» 3) + \
offsetof(struct hdr_mac_ vmac, dh_body[O)) + \
ETHER]CS_LEN)

II Vince: Frame control is 2 bytes in size (same header structure as 802.11)
struct frame_control {

u_char fc_subtype : 4;
u char fc_type : 2;
u_char fc-protocol_version: 2;

u char fc order : I;
u_char fc_wep : I;
u char fc_more_data : 1;
II char fc-pwr_mgt : \;
ll_char fCJetry : I;
u char fc_moreJrag : I;
ll_char fc from_ds : I;
u char fc_to _ds : I;

};

II Vince: VMAC header is 26 bytes
struct hdr_mac_vmac {

struct frame_control dhJc; /12 bytes
u_intI6_t dh_duration; 1/2 bytes
u_char dh_da[ETHER_ADDR_LEN]; 116 bytes
u_char dh_sa[ETHER_ADDR_LEN]; /16 bytes
u_char dh_bssid[ETHER_ADDR_LEN]; 1/6 bytes
u_intI 6_t dh_scontrol; 1/2 bytes
u_char dh_body[I]; 1/ XXX Non-ANSI 1/2 bytes

} ;

// Vince: RTS frame structure is 20 bytes but 16 ifFCS (frame checksum) is not used
struct rts_frame {

struct frame_control rCfc; /12 bytes
u_intI6_t rCduration; /12 bytes
u_char rf_ra[ETHER_ADDR_LEN]; 116 bytes
u_char rCta[ETHER_ADDR_LEN]; /16 bytes
u char rfJcs[ETHER]CS_LEN]; 1/4 bytes

} ;

II Vince: Not used in any function except constructor
class PHY _MIB {
public:

u_int32_t
u_int32_t
double
double
double
double
ujnt32_t
ujnt32_t

CWMin;
CWMax;

SlotTime;
CCATime;
RxTxTumaroundTime;
SIFSTime;
PreambleLength;
PLCPHeaderLength;

in line u_int32_t getPLCPhdrLenO {

71

retum«DSSS]reambleLength + DSSS]LCPHeaderLength)>> 3);
}

inline ujnt32_t getRTSlenO {
retum(getPLCPhdrLenO + sizeof(stmct rtsJrame»;

}
};

1*
* Vince: Frame format parameters
*1

#define MAC]rotocolVersion OxOO
#define MAC_Type_Data Ox02
#define MAC_Subtype_Data OxOO

/1 Vince: Added for RTS reservation
#define MAC_Subtype_RTS OxOB
#define MAC_Type_Control OxOI

II Vince: For initializing all Tx/Rx time slots to start at unreserved status
#define NOTHING_TO_SEND -2

II Vince: For initializing slot count to first round so reservation slot begins
#define FIRST_ROUND -I

II Vince: Tum radio ONIOFF
#define ON 1
#define OFF 0

II Vince: Quoted from MAC-802.11
#define DATA_DURATION 5

1/ Vince: May be needed later for caching
class Host {
public:

LlST_ENTRY(Host) link;
u int32 t index;
ujnt32_t seqno;

} ;

/1 Vince: VMAC class declaration
class Vmac;

II Vince: VMAC timer definition
class VmacTimer : public Handler {
pUblic:

VmacTimer(Vmac* m, double s = 0) : mac(m) {
busy_ = paused_ = 0; stime = rtime = 0.0; slottime_ = s;

virtual void handle(Event *e) = 0;

virtual void start(Packet *p, double time);
virtual void stop(Packet *p);
virtual void pause(void) { assert(O); }
virtual·void resume(void) { assert(O); }

72

" II
I-

il
,~

! q
I
I
I

~

-

inline int busy(void) { return busy-; }
inline int paused(void) { return paused_; }
inline double slottirne(void) { return slottime_; }
inline double expire(void) {

return «slime + rtime) - Scheduler::instanceO.clock());

protected:

};

Vmac
int
int
Event intr;
double
double
double

*mac;
busy_;
paused_;

stime; II Start time
rtime; II Remaining time
slottime_;

II Vince: Slot Timer to switch slot length accordingly
class SlotVmacTimer : public VmacTimer {
public:

} ;

SlotVmacTimer(Vmac *m) : VmacTimer(m) {}
void handle(Event *e);

II Vince: Receive Packet Timer to reset parameters after a packet is received
class RxPktVmacTimer: public VmacTimer {
public:

};

RxPktVmacTimer(Vmac *m) : VmacTimer(m) {}
void handle(Event *e);

II Vince: Transmit Packet Timer to reset parameters after a packet is transmitted
class TxPktVmacTimer : public YmacTimer {
public:

} ;

TxPktVmacTimer(Vmac *m) : VmacTimer(m) {}
void handle(Event *e);

II Vince: RTS BackoffTimer to sync reservation slots and provide proper backoff
class RTSBackoffTimer : public VmacTimer {
public:

} ;

RTSBackoffTimer(Vmac *m) : VmacTimer(m) {}
void handle(Event *e);

II Vince: RTS Transmit Timer to reset parameters after a RTS is transmitted
class RTSTxTimer : public VmacTimer {
pUblic:

}:

RTSTxTimer(Vmac *m) : VmacTimer(m) {}
void handle(Event *e);

II Vince: VMAC definition
class Vmac : public Mac {

II Vince: Timer classes

73

friend class SlotVmacTimer;
friend class TxPktVmacTimer;
friend class RxPktVmacTimer;
friend class RTSBackoffTimer;
friend class RTSTxTimer;

public:
Vmac(PHY _MIB* p); II Constructor
-VmacO; II Destructor (does not get called for some unknown reason)

II Vince: Receive packet handler for packets going UP/DOWN
void recv(Packet *p, Handler *h);

II Vince: Called by ARP to set MAC header parameter. If called without
II parameter Gust header pointer), returns the parameter already stored
inline int hdr_dst(char* hdr, int dst = -2);
inline int hdr_src(char* hdr, int src = -2);
inline int hdr_type(char* hdr, u_int16_t type = 0);

II Vince: Timer handlers
void slotHandler(Event *e);
void recvHandler(Event *e);
void sendHandler(Event *e);
void backoffHandler(Event *e);
void sendRTSHandler(Event *e);

protected:
PHY _MIB *phymib_;

II Vince: DATA slot length and max slot num (max node num) can be configured
int slot-packetJen_;
int max_node_num_;

II Vince: Variable added to control schedule length (or frame length)
int schedule_length_;

II Vince: Keeps track of residual time left until next synced reservation slot
double restimeleft_;
int random_;

II Vince: Event added for RTS backofftimer
Event rtsinit_;

private:
II Vince: Command function to link OTcl commands to C++ functions
int command(int argc, const char*const* argv);

II Vince: Reserve slot function for transmitter nodes to contend
void reserveSlotO;

II Vince: Switch radio ONIOFF
void radioSwitch(int i);

II Vince: Functions to take care of received packet that is going UPIDOWN
void sendUp(Packet* p);
void sendDown(Packet* p);

74

"' :,
I'

il
'0

••
Ii

II Vince: Random backoff generator with priority
void backoffCa1cO;

II Vince: RTS creation/transmission functions and packet pointer
void createRTS(ujnt32_t dst);
int sendR TSO;
Packet *pktRTS_;

II Vince: RTS collision resolution functions
void recvCollision(Packet *p);
void discard(Packet *p, const char* why);

II Vince: Print statistics of fairnesss through Vmac::command
void printStatO;

II Vince: Function called to pass data up after receive packet timer expires
void recvDA T A(Packet *p);

II Vince: Sends buffered DATA packet
void sendO;

II Vince: Checks transmitter/receiver idleness
inline int is_idle(void);

/1 Vince: Debugging functions
void trace-IJkt(Packet *p);
void dump(char* fname);

/1 Vince: Sets MAC log target
void macJog(Packet *p) {

logtarget_->recv(p, (Handler*) 0);

II Vince: DATA transmission time when given packet pointer
inline double TX3ime(Packet *p) {

double t = DATA_Time«HDR_CMN(p»->size());

Ilprintf("<%d>, packet size: %d, tx-time: %fm", index_, (HDR_CMN(p»->sizeO, t);
if(t < 0.0) {

drop(p, "XXX");
printf("Error inside TX_ Time function.\n");
exit(I);

return t;

1/ Vince: Timer variable declarations
SlotVmacTimer mhSlot_;
TxPktVmacTimer mhTxPkt_;
RxPktVmacTimer mhRxPkt_;
RTSBackofITimer mhBackofC
RTSTxTimer mhRTSTx_;

II Vince: Internal MAC transmitter/receiver states
MacState rx_state_; /1 incoming state (IDLE, RECV, or COLL)

75

~?--------------------------~--------------""""----"iI

} ;

MacState tx_state_; II outgoing state (SEND, RTS, or COLL)

II Vince: Radio active indicator
int radio_active_;

NsObject* logtarget_;

II Vince: The time duration for each DATA transmission slot
static double slot_time_;

II Vince: Track number of active nodes as they are initialized
static int active_node_;

/1 Vince: The start time for whole TDMA scheduling (may be useless)
static double start_time_;

/1 Vince: Individually, each node keeps track of last reserved slot for VMAC
/Istatic int last_reserved _ slot_;
int last_reserved_slot_;

int success_; II Individual success counter
int attempt_; II Individual attempt counter
int col_count_; 1/ Keeps track of RTS collisions

II Vince: Transmitter/receiver schedules
Iistatic int *tdma_ transmitter_;
int *tdma_transmitter_;
Iistatic int *tdma_receiver_;
int *tdma_receiver_;

II Vince: Keeps track of current transmission slot
int slot_ count_;

II Vince: Output file for writing fairness to file
static FILE *outFile_;

II Vince: How many packets has been sent out?
Ilstatic int tdmays_;
Iistatic int tdmayr_;

double Vmac::slot time = 0;
int Vmac::active ~ode :" 0;
double Vmac::st;rUi~e_ "" 0;

Ilint Vmac::last reserved slot = 0;
Ilint *Vmac::td;;a trans~itter- = NULL;
Ilint *Vmac::tdma=receiver_ =-NULL;

FILE *Vmac::outFile_ = NULL;

llint Vmac::tdmays_ = 0;
lfint Vmac::tdmayr_ = 0;

#endif 1* _ VMAC_H *1

76

:1
4'
-I
g
" ..
Ii

VMAC C++ Source File

1*
* File: vmac.cc
* Author: Vincent Ngo
* Summary: Created with mods to mac-tdma.cc to add priority slot reservation
*1

#include "delay.h"
#include "connector.h"
#include " .. /commonlpacket.h" II . .!commonlpacket.h for HDR_MAC_ VMAC(Packet *)
#include "random.h"

#include "arp.h"
#include "ll.h"
#include "mac.h"
#include "vmac.h"
#include "wireless-phy.h"
#include "cmu-trace.h"

#include <stddef.h>

II For speedO which returns speed of mobile node in double
#include " . .!commonlmobilenode.h"

#define SET_RX_STATE(x)
{

#define SET _ TX_ST ATE(x)
{

1* Phy specs from 802.11 *1
static PIlY _MIB PMIB == {

} ;

DSSS_CWMin, DSSS_CWMax, DSSS_SlotTime, DSSS_CCATime,
DSSS _ RxTxTurnaroundTime, DSSS _ SIFSTime, DSSS]reambleLength,
DSSS _ PLCPHeaderLength

1*==='
TCL Hooks for the simulator

static class VmacClass : public Tc1Class {
public:

VmacClassO : Tc1Class("MacNmac") {}
TclObject* create(int, const char*const*) {

return (new Vmac(&PMIB));

====*1

77

II Vince: Vmac constructor
Vmac::Vmac(PHY_MIB* p):

MacO, mhSloUthis), mhTxPkUthis), mhRxPkUthis), mhBackofUthis),
mhRTSTx_(this) {

time_t seconds;

II Vince: Seed to random number generator to randomize the outcome of every simulation
seconds = time(NULL);
Random: :seed(seconds);

1* Global variables setting. *1
II Setup the phy specs.
phymib_ =p;

II Vince: Get the simulation parameters from Tel file
bind("slotyacketJen _fl, &slotyacket_len,];
bind("max_node_num_", &max_node_num,];
bind("schedule _length_", &schedule Jength,];

1/ Vince: Initialize the tdma transmitter and receiver data structures
tdma_transmitter_ = new int[schedule_length_l; /1 Holds node IDs ofTXs
tdma_receiver_ = new int[scheduleJengthJ; /1 Holds node IDs ofRXs

/1 Vince: Initialize the fairness counters
success_ 0;
attempt_ = 0;

/1 Vince: Initialize the collision counter
col_count_ 0;

II Vince: Keep track of the number of active nodes
active_node_ ++;

if(active_node_ > max_node_num,] {
printf{"Too many nodes taking part in the simulations, aborting ... \n");
exit(-I);

II Vince: Initialize channel/transceiver states
tx_state_ = rx_state_ = MAC_IDLE;

II Vince: Initialy, the radio is off, but can't use radioSwitch(OFF) here
radio_active_ = 0;

II Vince: Initialize slot count to beginning of first round
slot_count_ = FIRST_ROUND;

II Vince: Pass 0 remaining time so slot handler is called right away
mhSlot_.start«Packet *) (& intf,], 0);

if (index = 0) { ..
outFile_ = fopen("fairVmac.out", "w"); II Vince: Open the file for wntmg

78

"
II
j'

-I
!I -,
OJ

ft

-.

Vmac::-VmacO {
printf("Destructor called\n");
printf("<%d>, %f, destructor ca\led\n", index_I NOW);
fclose(outFile.J;

II Vince: VmacTimer definition (a1\ timers in Vmac follow this)
void VmacTimer::start(Packet *p, double time)
{

Ilprintf("<%d>, %f, start function called\n", index_, NOW);

Scheduler &5 = Scheduler::instanceO;
assert(busy _ = 0); II Check if busy_is zero or else abort

busy_ = J;
paused_ 0;
stime s.c1ockO; II Set slot start time to simulation time
rtime = time; II Set slot remaining time
assert(rtime >= 0.0); II Check if rtime is positive or else abort

s.schedule(this, p. rtime);

void VmacTimer::stop(Packet *p}
{

/Iprintl't"<%d>, %f, stop function called\n", index_, NOW};

Scheduler &5 = Scheduler::instance();
assert(busy _);

if (paused_ = 0)
s.cancel«Event *)p);

Packet: :free(p);

busy_ = 0;
paused_ 0;
stime 0.0;
rtime = 0.0;

1/ Vince: Slot Timer to administrate start and end of scheduled slots
void SlotVmacTimer::handle{Event *e)
{

Ilprintf("<%d>, %f, SlotVmacTimer::handle function called\n", index_, NOW);

busy_ == 0;
paused_ = 0;
slime 0.0;
rtime= 0.0;

mac->slotHandJer(e);

79

II Vince: Slot Timer Handler for node ONIOFF transitions and send/receive
void Vmac::slotHandler(Event *e)
(

llif(index_ = 0)

II printf(I!<%d>, %f, slotHandler function ca\led\n", index_, NOW);

if «slot_count_ = scheduleJength.J II (slot_count_ = FIRST_ROUND» {
// Vince: Wait for reservation time to end, then begin scheduled period
mhSlot_.start«Packet *)e, RESERVE_TIME);

Ilprintf(I!<%d>, %f, reservation time is %f.\n", index_, NOW, RESERVEJIME);

}

II Vince: Tum the radio ON for whole reservation time (random period)
radioSwitch(ON);

for(int i=O; i<scheduleJength_; i++) {
tdma_receiver_[iJ NOTHING_TO_SEND;
tdma_transmitteUiJ = NOTHINGJO_SEND;

1/ Vince: Initializations needed for each frame
slot_count_ 0;
lastJeserved_slot_ = 0;

reserveSlotO; /1 Reservation happens only if a packet is queued for TX
return;

else {
// Vince: Set timer to wait for transmission slot time
mhSlot_.start«Packet *)e, slot_time.J;

1/ Vince: If it is the sending slot for me, then transmit
if (tdma_ transmitter _[510t_ countj index.J {

/1 Vince: Wake up to send packet
radioSwitch(ON);

sendO; II Calling send without packet generates no packet buffered warning

slot_count_ ++;
return;

// Vince: If! am supposed to listen in this slot, then simulate
1/ the reception period by staying awake .
if«tdma_receiveUslot_countj == index.J II «ujnt32_0tdmaJecelVer_[slot_countj == MAC_BROADCAST» (

/1 Vince: Wake up to receive packet
radioSwitch(ON);

slot_count_ ++;
return;

/1 Vince: If! don't send/receive in this slot, then sleep
radioSwitch(OFF);
slot_count_ ++;

80

:1

;i
" ••
Ii

-

Vince: Tum the radio 01\: OFF
void Ymac::radioSwitch(int i)

prmltt"<"od>, ~of. radioSwitch function called\n", index_. NOW);

if(i = Or\) {
Phy *p;
P netiC
((WirelessPhy *)p)->node _ wakeupO;
i pr1ntfl"<%d>. ~of, node_wakeup function called\n", index_, NOW);
return;

1f(i = OFF) {
Phy *p;
p= netiC
«WirelessPhy *)p)->node_sleepO;
/printt("<o,od>. %f, node_sleep function called\n", index_, NOW);
return;

" Vince: BackoffTirner for contention collision resolution
void RTSBackofITimer::handle(E\'ent *e)

l
, printfl"<~Od>. °of. backofITimer::handle function called'n". index_, I\:OW);

bUSL =0;
paused_ 0;
stime 0.0;
rtime 0,0;

mac->backotnlandler(e);

Vince: BackoffTimer Handler to send RTS after waiting for backotT
\ oid Vmac::backotnlandler(Event *e)

ujnt32_t dst;
struct hdr _mac _ "mac * dh;

iprintt("<I!/Od>, %f. backotnlandler function caIled\n", index_. 1'0W);

" Vince: IfpktTx_ is not 0 then a packet is butTered, and make sure this
i/ is still the reservation slot and it has not expired
if (pktTx_ && slot_ count_ = 0 && mhSlot_.expireO > 0) {

if (Iast_resened_slot_ != schedule_length-.l {
if Vince: If residual time left for current resen'ation slot
1/ did not expire. check channel
if lrestimeleft_ != 0) {

II Vince: Check channel status and minus random by I ifidle
if(is_idleO) {

SI

,.

1/ Vince: If random expires then transmit IUS
if (random_ = 0) {

I/printf("<%d>, %f, random backoff expired\n". index. NOW):
dh = HDR_MAC_ VMAC(pktTx); -
dst = ETlIER_ADDR(dh->dh_d<D: II DA should be set by IP layer

1/ Vince: Check channel status and create RTS
createRTS(dst);

II Vince: Send RTS
sendRTSO;
return;

random --' - ,
restimeleft_ -= VMAC _ SlotTime;
mhBackofCstart«Packet "')e, VMAC_SlotTime);

/1 Else, wait for next reservation slot since another node took it
else {

mhBackofT_,start«Packet *)e, restimeleft.J;
restimeleft_ = 0;

/1 Vince: Else, generate new backoff to reserve a slot
else {

backoffCa1cO;
if (random_ 0) {

}

restimeleft_ RESERVE_SLOT_TIME;
mhBackofCstart«Packet *)e, 0);

else {
random_--;
restimeleft_ "" RESERVE_SLOT_TIME. VMAC_SlotTimc;
mhBackofCstart«Packet "')e, VMAC_SlotTime);

IJprintf("<%d>, %f, RETRY residual time left of%f,n", indcx_, NOW, rcstimclcfU;

II Vince: Reserve slot if a packet is buffered
void Vmac::reserveSlotO
{

Ilprintf("<%d>, %f, reserveSlot function called'n", index_, NOW);

II Vince: If there is a packet buffered, contend for a slot
if (pktTx.J {

attempt_ ++;

II Vince: Check to see if a slot is available before badwff
if (last_reserved _slot_ != schedule Jength.J {

backoffCa1cO:
/1 Vince: If random is lero, just enter backoffhandk-r

~I

II
" '. Ii

if (random_ 0) {
restimeleft_ = RESERVE_SLaT_TIME;
mhBackofCstart«Packet *) (& rtsinit.J, 0);

i
II Else, decrement random and wait for one CW slot
else {

random_--;
restimeleft_ = RESERVE_SLaT_TIME - VMAC_SlotTime;
mhBackoff_.start«Packet *) (& rtsinit.J, VMAC_SlotTime);

I/printf("<%d>, %f, residual time left of%f\n", index_, NOW, restimeleft.J;

II Vince: Backoff calculator with priority ON/OFF
void Vmac::backoffCaIcO
{

double speed;
struct hdr cmn *ch HDR_CMN(pktTx.J;

II Vince: Implement priority scheduling ifit is turned ON
if(PRIORITY) {

Phy *p;
Node *n;
MobileNode *m;
p netiC;
n = p->nodeO;
m = (MobileNode *)n;
speed = m->speedO;

if (ch->ptypeO = PT_ARP II ch->ptypeO = PT_AODV II speed> 0) {
random_ = Random::randomO % PRIORITY _ CW;
/lprintfC'<%d>, %f, priority backoffof%d\l1", index_, NOW, random.J;
return;

II Vince: Offset by priority CW so regular packets have their own range
random_ = (Random::randomO % REGULAR_CW) + PRIORITY_CW;
Ilprintf("<%d>, %f, regular backoff of %d\n" , index_, NOW, random.J;

II Vince: Create RTS packet by allocating memory and setting headers
void Vmac::createRTS(u_int32_t dst)
{

Packet *p = Packet::allocO;
hdr_cmn* ch = HDR_CMN(p);
struct rtsJrame *rf= (struct rts_frame*)p->access(hdr_mac::offset.J;

Ilprintf("<%d>, %f, createRTS function called\n", index_, NOW);

assert(pktTx.J;
assert(pktRTS_ = 0);

83

I ...

II Vince: Perform carrier sense
if (!isjdle()) {

printf("<%d>, %f, transmitting RTS, but the channel is not idle, RX %x, TX %x\n".
index_. NOW, rx_state_, tx_state_);

Packet:: free(p);
return;

ch->uidO = 0;
ch->ptypeO PT _MAC;

II Vince: RTS length is 40 bytes in total since RTS frame structure is 16
II with no FCS, Preamble is 18, and PLCP is 6
ch->sizeO = 40;

ch->ifaceO = -2;
ch->errorO = 0;

bzero(rf, MAC_HDR_LEN);

rf->rf_fc.fcj)rotocol_ version = MAC _ProtocolVersion;
rf->rCfc.fc_type = MAC_Type_Control;
rf->rUc.fc_subtype = MAC_Subtype_RTS;
rf->rf_fc.fc_to_ds 0;
rf->rtfc.fcjrom_ds = 0;
rf->rCfc.fc_morejrag = 0;
rf->rfjc.fc_retry = 0;
rf->rfjc.fcj)wr_mgt = 0;
rf->rfjc.fc_more_data = 0;
rf->rCfc.fc_wep = 0;
rf->rf fc.fc order = 0;

II Vince: Set receiver address
STORE4BYTE(&dst, rf->rf_ra);

II Vince: Set transmitter address
STORE4BYTE(&index_, rf->rUa);

II Vince: Set transmission time with packet size
ch->txtime{) = DATA _ Time(ch->size());

pktRTS_ =p;

II Vince: Send RTS packet by passing packet downwards to physical layer
int Vmac::sendRTSO
{

double stime;

Ilprintf("<%d>, %f. sendRTS function called'Il1", index_. NOW);

if (pktRTS_ = 0)
return -\;

84

I

stime TX_Time(pktRTS.J;

/1 Vince: Start RTS transmission timer so MAC Tx state is reset to idle after tx
mhRTSTx _.start(pktR TS _ ->copyO, stime);

II Vince: Packet is sent by this function by passing it downwards
downtarget_->recv(pktRTS_, this);

pktRTS_ 0;

return 0;

II Vince: Send RTS Timer for checking success/failure of RTS transmission
void RTSTxTimer::handle(Event *e)
{

Ilprintf("<%d>, %f, RTSTxTimer handle function called\n", index_, NOW);

busy_ = 0;
paused_ 0;
slime = 0.0;
rtime = 0.0;

mac->sendRTSHandler(e);

1/ Vince: Send RTS Handler to reset MAC Tx state and check RTS transmission
void Vmac::sendRTSHandler(Event *e)
{

Ilprintf("<%d>, %f, sendRTSHandler function cal\ed\n", index_, NOW);
I/printf("<%d>, %f, RTS packet sent\n", index_, NOW);

/1 Vince: If no collision then set schedule for transmitter
if(lX_state_!= MAC_COLL) {

}

success _ ++;
Ilprintf("<%d>, %f, successes is %d\n", index_, NOW, success.J;

tdma_transmitter_[lastJeserved_sloU = index_; II index_ is node ID/MAC addr
//printf("<%d>, %f, traffic exchange slot is %d\n", index_, NOW, lasueserved_slot.J;
lastJeserved_slot_ ++;

Packet::free«Packet *)e);

II Vince: Else, collision happened so retry by waiting for beginning of
II next reservation slot (which is the restimeleft_ minus RTS Tx time), Set
II restimeleft_ to zero so a new backoffis chosen
else {

pktRTS_ (Packet *)e;
mhBackofCstart(pktRTS_, (restimeleft_-TX_Time(pktRTS.J»;
restimeleft_ 0;

II Vince: Receive function which receives all packets going UP or DOWN

. 85

void Vmac::recv(Packet* p, Handler* h) {
u_int32_t dst, src;
struct hdr _ cmn *ch HDR_ CMN(p);
struct hdr_mac_vmac *dh = HDR_MAC_ VMAC(p);

/Iprintf("<%d>, %f, recv function called\n", index_, NOW);

dst ETHER_ADDR(dh->dh_da); II Convert node ID into 4-byte address
src = ETHER_ADDR(dh->dh_sa);

/1 Vince: If incoming packet from PHY layer, then send up to LL layer if
II sendUp finds no collision during reception and it is not RTS packet
if (ch->directionO = hdr_cmn::UP) {

II Vince: Ifradio inactive (sleeping), then free packet
if(!radio_active~ {

free(p);
printf("<%d>, %f, I am asleep\n", index_, NOW);
return;

sendUp(p);
Ilprintf("<%d> packet recved: %d\n", index_, tdmayr_ ++);
return;

II Vince: Else, packet is coming down from LL layer and needs to be sent
II down to PHY layer according to MAC protocol
callback_ = h; II callback for end-of-transmission (each node has one)
sendDown(p);
I/printf("<%d> packet sent down: %d\n", index_, tdmays_ ++);

II Vince: Iftransitting and receiving or collision due to receiving
II from two sources, then packet is dropped after reception completes (recvHandler)
void Vmac::sendUp(Packet* p)
{

struct hdr cmn *ch = HDR CMN(p);
Ilprintf("<%d>, %f, send Up function called\n", index_, NOW);

II Vince: If transmitting, then a cotlision occurred if the
1/ packet is received, therefore set transmitter state
if(tx_state_!= MAC_IDLE && ch->errorO = 0) {

Ilprintf("<%d>. %f, can't receive while transmitting!\n", index_, NOW);
SET _ TX _ ST A TE(MAC _ COLL);

col count ++;
Ilprlntf("<%d>, %f, transmitter collision (%d)\n". index_. NOW, col_counU;

} ;

II Vince: If not receiving, then receive packet and if transmitter collision happened
II the packet will be dropped after it is received fully
if {rx_state_ = MAC_IDLE) {

pktRx_ p;

double rtime TX_Time(p);
assert(rtime >= 0);

"~I

:t

~j
Ij

"
'i

86

SET _RX_STATE(MAC_RECV);
m.hRxPkt_,start(p, rtime);

1/ Vince: Else, receiving from two sources so collision
else {

stmct hdr_cmn *chNew HDR_CMN(p);
stmct hdr_cmn *chOld HDR_CMN(pktRx->;

II Vince: If CS threshold passes and receiving threshold fails,
/I error flag should be set already, Therefore, check error flag of the
II new and old packet and decide if collision is negligible
if (chOld->errotO 0 && chNew->errorO 1)

return; II New packet can be ignored because it is only CS
else if (chOld->errorO I && chNew->errorO 0) {

II Vince: Old packet is only CS and new packet is receivable
II so drop old and receive new
rnhRxPkt_,stop(pktRx->;
Packet: :free(pktRx->;
pktRx_ == p;
mhRxPkt_,start(pktRx_, TX_ Time(pktRx.J);

return;

II Vince: Receiver collision since both packets are receivable
col_count _ ++;
IIprintf("<%d>, %f, receiver collision (%d)\n", index_, NOW, col_counU;

recvCollision(p);

II Vince: Set receiver state to collision and drop shorter packet and receive
II longer packet, but eventually longer packet is dropped as well
void Vmac::recvCollision(Packet *p)
{

SET_RX_STATE(MAC_COLL);

assert(pktRx->;

II Vince: Since collision, both packets will eventually be discarded.
/! Expire() returns residual amount of time left in timer
if(TX_Time(p) > mhRxPkLexpire()) {

}
else

II Vince: Old packet is dropped since old packet is corrupted by new packet
mhRxPkt_,stop(pktRx .J;
discard(pktRx_, DROP _MAC_COLLISION);

pktRx_ = p;
rnhRxPkt_,start(pktRx_, TX_ Time(pktRx.J);

discard(p, DROP _MAC_COLLISION);

void Vmac::discard(Packet *p, const char* why)

87

II Vince: If the received packet contains errors, a real MAC layer couldn't
II necessarily read any data from it, so toss it now
if (ch->errorO != 0) {

Packet:: free(p);
return;

II Vince: Packet from receiver collision is dropped with reason
drop(p, why);

II Vince: Receive Packet Timer to check successlfailure of reception and pass
II packet upwards to LL layer is successful
void RxPktVrnacTimer::handle(Event *e)
{

Ilprintf("<%d>, %f, RxPktVmacTimer handle function ca\led\n", index_, NOW);

busy- 0;
paused_ =: 0;
stime = 0.0;
rtime 0.0;

mac->recvHandler(e);

II Vince: Receive Packet Handler to remove collided RTS or DATA packets, but
II increment last reserved slot if RTS collision. IfRTS received successfully,
II then set receiver schedule or if DATA packet then pass upwards
void Vmac::recvHandler(Event *e)
{

ujnt32_t dst, src, size;
struct hdr_cmn *ch HDR_CMN(pktRx.J;
struct hdr_mac_vmac *dh = HDR_MAC_ VMAC(pktRx.J;
struct rtsJrame *rf= (struct rts_frame*)pktRx_->access(hdr_mac::offset.J;

assert(pktRx.J;

dst = ETHER_ADDR(dh->dh_da);
src = ETHER_ADDR(dh->dh_sa);
size = ch->sizeO;

II Vince: Check for RTS packet
if (rf->rfJc.fc_subtype = MAC_Subtype_RTS) {

II Vince: If RTS collision, discard with drop reason
if (rx_state_ = MAC_COLL II tx_state_ = MAC_COLL) {

discard(pktRx_, DROP _MAC_COLLISION);
I/printf{"<%d>, %f, exchange slot skipped is %d\n", index...., NOW, last_reserved_slot.J;

}
II Vince: Else. set receiver schedule
else {

tdmaJeceiver_[last_reserved_s1oU = ETHER_ADDR(rf->rCra);
Packet: :free(pktRxJ;

II

88

I

last_reserved_slot_ ++;
go to RESET;

// Vince: If DA T A packet not destinated for me, then free it
if«dst!= MAC_BROADCAST) && (dst!= (u_int32_t)index~) {

Packet::free(pktRx~;

goto RESET;

// Vince: Tum the radio off only after receiving DATA packet
radioSwitch(OFF);

II Vince: Forward packet upwards
recvDATA(pktRx_);

RESET:
/1 Vince: Reset receiver state to idle
SET_RX_STATE(MAC_IDLE);

/1 Vince: Strip off MAC header and pass DATA packet upwards to LL layer
void Vmac::recvDATA(Packet *p)
{

struct hdr_cmn *ch '" HDR_CMN(p);

I/printf("<%d>, %f, recvDA T A function called\n", index_, NOW);

ch->sizeO ETHER_HDR_LEN;
ch->num_ forwardsO += I; II Increment forward count

uptarget_->recv(p, (Handler*) 0);

II Vince: Send packet down to PHY layer. Setup MAC header and packet will be
1/ sent when slot reservation is successful
void Vmac::sendDown(Packet* p)
{

u_int32_t dst, src, size;

struct hdr_cmn* ch = HDR_CMN(p);
struct hdr_mac_ vmac* dh = fIDR_MAC_ VMAC(p);

I/printf("<%d>, %f, send Down function ca\led\n", index_, NOW);

/I Vince: Check if another packet already exist and stop if it does
assert(pktTx_ = 0);

II Vince: Update the MAC header (same as 802.11)
ch->sizeO += ETHER_HDR_LEN;

dh->dh _ fc.fc jJrotocol_ version MAC _ProtocolVersion;
dh->dhJc.fc_type MAC_Type_Data;
dh->dhJc.fc_subtype '"' MAC_Subtype_Data;

89

II Vince: All control bits are not used
dh->dhJc.fc_to_ds = 0;
dh->dh_fc.fc_from_ds = 0;
dh->dhJc.fc_moreJrag = 0;
dh->dhJc.fc_retry = 0;
dh->dh_fc.fcywr_mgt 0;
dh->dhJc.fc_more_data = 0;
dh->dhJc.fc_wep = 0;
dh->dhJc.fc_order 0;

if«u_int32_t)ETHER_ADDR(dh->dh_da) != MAC_BROADCAST)
dh->dh_duration = DATA_DURATION;

else
dh->dh_ duration 0;

dst = ETHER_ADDR(dh->dh_da); II Convert node ID into 4-byte address
src = ETHER_ADDR(dh->dh_sa);
size = ch->sizeO;

II Vince: Since TDMA, packet is sent only during the reserved slot
pktTx_ = p;

II Vince: Actually send the DATA packet by passing it to PHY layer
void Vmac::sendO
{

ujnt32_t dst, src, size;
stmct hdr_cmn* ch;
stmct hdr _mac _ vmac * dh;
double stime;

Ilprintt{"<%d>, %f, send function called\n", index_, NOW);

II Vince: Check if there is any packet buffered
if(!pktTx~ {

printf("<%d>, %f, no packet buffered.\n", index_, NOW);
return;

II Vince: Perforn1 carrier sense (should not have collision since TDMA)
jf(!is_idle()) {

printf("<%d>, %f, transmitting, but the channel is not idle. RX %x. TX %x\n",
index_, NOW, rx_state_. tx_state~;

return;

ch = HDR_CMN(pktTx~;
dh = HDR_MAC_ VMAC(pktTx~;

dst ETHER_ADDR(dh->dh_da);
src ETHER_ADDR(dh->dh_sa);
size = ch->sizeO;

stime TX_Time(pktTx~;
ch->txtimeO stime;

90

IE

II Vince: Set transmitter state to send
SET _TX_STATE(MAC_SEND);

II Vince: Start transmission timer
mhTxPkt_.start(pktTx_->copyO, stime);

II Vince: Transmit by passing packet down to PHY layer
downtarget_->recv(pktTx_, this);

pktTx_ = 0;

/I Vince: Test if the channel is idle
int Vmac::is_idJeO

I
Ilprintf("<%d>, %f, is_idleO function called\n", index_, NOW);

if(rx_state_ != MAC_IDLE)
return 0;

if(tx_state_!= MAC_IDLE)
return 0;

return I;

II Vince: Send DATA Timer to reset transmitter state and switch radio OFF
void TxPktVmacTimer::handle(Event *e)
{

Ilprintf("<%d>, %f, TxPktVmacTimer handle function called\n", index_, NOW);

busy_ 0;
paused_ = 0;
stime = 0.0;
rtime = 0.0;

mac->sendHandl ere e);

II Vince: Send DATA Handler for freeing sent packet and unlocking the IFQ
void Vmac::sendHandler(Event *e)
{

Ilprintf("<%d>, %f, sendHandler function called\n", index_, NOW);
Ilprintf("<%d>, %f, DATA packet sent\n", index_, NOW);

II Vince: Reset transmitter state and free sent packet
SET_TX_STATE(MAC_IDLE);
Packet::free«Packet *)e);

II Vince: Tum radio off
radioSwitch(OFF);

/I Vince: Unlock IFQ so other packets can be sent downwards
if(callbackJ {

Handler *h = callback_;
callback _ = 0;
h->handle«Evenl*) 0);

, - ;r -Z?"Pi'S1i!

91

II Vince: Binded function to Tel to print successes and attempts for each node
void Vmac::printStatO
{

II Vince: Prevent division by zero
if (attempt_ != 0) {

printf(H<%d>, %f, %d successes, %d attempts, %f. %d cols\n",
index_. NOW, success_, attempt_, double(success.]/attempt_, col_count.];

fPrintf(outFile _, !I%f H, double(success .]lattempU;

II Vince: Similar to 802.1), no cached node lookup. Create commands that are
II linked to Tel object commands for access into C++ functions
in! Vmac::command(int argc, const char*const* argv)
{

I/printf("<%d>, %f, command function called\n", index_, NOW);

if (argc 2) {
if(strcmp(argv[I], "print-statH} = 0) {

printStatO;
return TCL_OK;

if(argc = 3) {

}

if (strcmp(argv[I], "jog-target") = 0) {
logtarget_ (NsObject*) TelObject::lookup(argv[2J);
if(logtarget_ 0)

return TCL_ERROR;
return TCL_OK;

return Mac::command(argc, argv);

II Vince: Debugging routine trace packet
void Vmac::trace-pkt(Packet *p)
{

liprintf("<%d>, %f, trace-pkt function ca\led\n", index_, NOW);

struct hdr cmn *ch HDR CMN(P);
struct hdr=mac_ vmac* dh';; HDR_MAC_ VMAC(P);
ujntl6_t *t = (ujntI 6_t*) &dh->dhJc;

fPrintf(stderr, "\t[%2x %2x %2x %2x] %x %s %d\n",
*t, dh->dh duration,
ETHER ADDR(dh->dh da), ETHER_ADDR(dh->dh_sa),
index_, packeUnfo.name(ch->ptype()), ch->size());

II Vince: Debugging routine dump
void Vmac::dump(char "'fname)
{

92

-

Ilprintf("<%d>, %f, dump function called\n", index_, NOW);

fprintf(stderr. "\n%s --- (INDEX: %d, time: %2.91)\n", fname,
index_. Scheduler::instanceO·c1ock());

fprintf(stderr, "\ttx_state_: %x, rx_state_: %x, idle: %d\n",
tx_state_, fX_state_, is_idle());

fprintf(stderr, "\tpktTx_: %Jx, pktRx_: %lx, callback: %Ix\n",
(long) pktTx_, (long) pktRx_. (long) callback.J;

II Vince: Called by ARP to set MAC header parameter. If called without
1/ parameter (just header pointer), returns the parameter already stored
int Vmac::hdr_dst(char* hdr, int dst)
{

I/printf("<%d>, %f, hdr_dst function cafJed\n", index_. NOW);

struct hdr_mac_ vmac *dh = (struct hdr_mac_ vmac*) hdr;
if(dst> -2)

STORE4BYTE(&dst, (dh->dh_da»;
return ETHER_ADDR(dh->dh_da);

int Vmac::hdr_src(char* hdr, int SfC)

{
Ilprintf("<%d>, %f, hdr_src function ca\led\n", index_, NOW);

struct hdr_mac_ vmac *dh = (struct hdr_mac_ vmac*) hdr;
jf~src > -2)

STORE4BYTE(&src, (dh->dh_sa»;
return ETHER_ADDR(dh->dh_sa);

int Vmac::hdr_type(char* hdr, u_intI6_t type)
{

//printf("<%d>, %f, hdr_type function called\n", index_, NOW);

struct hdr_mac_ vmac *dh = (struct hdr_mac_ vmac*) hdr;
if(type)

STORE2BYTE(&type,(dh->dh_body»;
return GET2BYTE(dh->dh_body);

93

I
I
I ,
,
{ , ,
f

l
(
1
t
(

1
{
{
i
I
I
t

SF

