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Abstract 
 

An essential objective in low-dose Computed Tomography (CT) imaging is how best to preserve 

the image quality. While the image quality lowers with reducing the X-ray dosage, improving the 

quality is crucial. Therefore, a novel method to denoise low-dose CT images has been presented 

in this thesis. Different from the traditional algorithms which utilize similar shared features of CT 

images in the spatial domain, the deep learning approaches are suggested for low-dose CT 

denoising. The proposed algorithm learns an end-to-end mapping from the low-dose CT images 

for denoising the low-dose CT images. The first method is based on a fully convolutional neural 

network. The second approach is a deep convolutional neural network architecture consisting of 

five major sections. The results of two frameworks are compared with the state-of-the-art methods. 

Several metrics for assessing image quality are applied in this thesis in order to highlight the 

supremacy of the performed method. 
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Chapter 1  Introduction 
 

 

 

 
 

 

 

 

 

1.1. Background 

X-Ray Computed Tomography (CT scan) is a method used to produce cross-sectional 

images from different parts of an object non-invasively and is widely used in diagnosing various 

medical conditions.  A CT scan is a collection of X-ray images taken from various angles around 

a single axis of rotation. Although CT imaging is used in many application areas such as industry 

and archeology, the most common application of CT imaging is in medical diagnosis. The use of 

CT has been on the rise in many countries due to its application in a variety of diagnostic and 

therapeutic purposes. The quick and comprehensive insight into the patient’s body noninvasively 

makes CT examinations significantly ubiquitous in the medical systems. 
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1.2. Problem Statement 

A single CT scan can have 100 to 1000 times higher radiation dose than conventional x-rays. 

Substantial growth in the number of CT scans causes increasing in radiation dose in the patients. 

Moreover, the amount of x-ray needed to produce a high-quality CT image is relatively high which 

may result in an increasing risk of developing cancer. Moreover, a high amount of radiation dose 

can damage DNA, which may lead to various disease. One way of reducing the risk of radiation-

induced cancer is using lower radiation dose during CT examination. However, reducing the 

radiation dose leads to excessive noise and image artifacts, so low dose CT images are highly noisy 

which makes them unreliable for diagnostic purposes. Removing noise and artifacts from CT 

images are considered a challenging task due to the complex patterns of noise. X-ray CT images 

are reconstructed using special algorithms from the X-ray projection data. The primary source of 

noise in X-ray projection data is the statistical fluctuations of X-ray quanta reaching the detectors, 

which later form a sinogram and is known the quantum noise, which can be modeled as a Poisson 

process. However, after the application of image reconstruction algorithms and image processing 

steps to the sinogram, the noise cannot be considered as a known distribution. As a result, using 

traditional image denoising methods are not effective in removing noise from CT images. As an 

example, by applying low-pass filters, high-frequency components of artifact can be eliminated 

but small tissues might be eliminated, and edges will be smoothed and blurred. The goal is to 

enhance the quality of the low-dose CT images similar to the corresponding normal-dose images. 

Employing deep neural networks on low-dose CT images, while preserving major content without 

any loss of diagnostically relevant details and underlying image structures will be an approving 

way to reduce the noise distortions in low-dose CT images.  

1.3. Techniques adopted 

Deep learning is an emerging area in AI with many successful applications in recent years. 

Deep learning is based on multilayer neural networks with backpropagation in which the weights 

of the network are adjusted iteratively based on an appropriate loss function. Deep neural networks 

are characterized by having a large number of layers and neurons. However, unlike traditional 

multi layer NNs, which are fully connected, deep neural networks have sparse connections. 

Convolutional neural networks (CNN) are a subset of deep neural networks. A CNN consists of a 

number of convolutional layers and some other optional layers such as activation and pooling. 
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Deep learning has recently gained attention in various fields including medical image analysis 

such as classification, segmentation, detection, and registration. The problem of denoising can be 

considered as a designing task in which an appropriate filter is constructed to remove the noise. 

This view aligns well with CNN in which a combination of filters in different layers is learned 

through real examples. The nonlinear property of the overall filter lends itself to complex 

distributions, which otherwise are hard to design. 

1.4. Framework 

The first proposed CNN network is comprised of four convolutional layers. The task of each 

layer is compared to the corresponding stage in dictionary learning algorithms. Notwithstanding 

the fact that using the methods that rely on learning will be more appropriate in this scenario since 

the noise model is learned from the actual data rather than by estimating the complicated noise 

model. 

The second approach is proposed in order to boost the performance in terms of accelerating 

the network speed and improving the CT denoised image quality. The main issue regarding the 

adaptive and learned CT denoising technique is that the patch averaging step in the end will flat 

the image patches and produce the over-smoothed CT denoised image from the image patches. 

However, the CNN-based approaches are exhibited promising results as the last layer filter 

coefficients are learned through the backpropagations to modify the most optimized values. Even 

though, the second approach can obtain the best performance by introducing deeper structures and 

smaller filters. Applying additional layers capture the nonlinearity property of the image more 

effectively and the reduced filter banks eliminate the over-smoothing issue of the similar 

algorithms.  

1.5. Major Contributions 

Inspired by the requirements for processing the low-dose CT images and tackling the 

technical issues confronted and by considering an excellent performance of deep learning on image 

processing, our research illustrates the use of convolutional neural networks for denoising low-

dose CT images. 

In this thesis, two convolutional neural frameworks are proposed in order to remove noise 

distortions from low-dose CT images efficiently. The first approach can be considered as the 
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combination of the dictionary learning approaches, which is a widely used in low-dose CT image 

denoising, and deep learning methodologies. This correlation provides a guideline for creating the 

CNN architecture. For instance, a function is assigned to each of the convolutional layers in order 

to illustrate the role of the layer based on the corresponding stage in dictionary learning. Since the 

architecture is completely a feed-forward, it is not required to solve the optimization problem. It 

has a concise structure and adjustable design without modifying the core structure of the network.  

The deep convolutional approach was proposed in order to improve the LDCNN method in 

twofold. First, the structure was modified to obtain the deeper framework and smaller-size filters. 

As the deep CNN framework tries to estimate the noise distortion, the deeper structure assists the 

network to capture the non-linear artifacts better. Moreover, by employing smaller-size feature 

maps, the over-smoothing characteristic of deep learning method was alleviated, and the results 

are comprised of sharp edges and more visually pleasing. Second, the number of parameters were 

reduced, which significantly decreased the training time and model computational complexity.  

Moreover, the frameworks present end-to-end mapping solutions and all the network 

parameters such as the number of convolutional layers, the size of feature maps, and the number 

of filters in each layer were investigated to find the optimal values. 

1.6. Overview of this thesis 

This thesis is organized as follows. Chapter 2 provides an introduction to x-ray computed 

tomography imaging, the radiation dose measurement and the sources of noise in CT. A literature 

review on various low-dose CT image denoising is performed in this chapter as well. In chapter 3, 

the convolutional neural network is introduced, and the major components of the framework and 

libraries are illustrated in detail. Furthermore, the most prevalent deep CNN structures, which were 

recently published and influence the proposed low-dose CT denoting architectures are introduced. 

Chapter 4, provides the algorithmic methodologies thorough analysis on network parameters and 

experiments, which are conducted to gain the optimal settings, are illustrated. The function of each 

layer is studied, and the correlation between the proposed deep learning architecture and the 

dictionary learning approaches is demonstrated in detail. Chapter 5, contains the main results of 

each of the two performed convolutional networks along with the demonstration of the contributed 

CT. Finally, concluding summary, remarks and avenues for possible future research studies are 

presented in Chapter 6. 
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Chapter 2 X-Ray CT Image denoising 

Techniques 
 

 

 

 

 

 

 

 

2.1. X-Ray Computer Tomography Imaging 

X-ray Computer Tomography (CT) is a medical diagnostic device, which is utilized to scan 

the inner parts of body objects based and display biological tissues by image-pixels or volume-

voxels. The images are produced by changing the of points of views (angles) and based on the x-

ray photon absorbance of different body tissues. This device has various medical diagnostic and 

even industrial applications. The former has been becoming a striking subject due to the effect of 

the x-ray photons on a human body. X-ray beams are highly-energized photons, which are capable 

of releasing electrons from their resting orbits and produce charged ions. These ions can be 

hazardous to human tissues such as DNA that can intensify the harm of cancer[1]. Several studies 
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in CT scan imaging from 1990 to 1999, demonstrating that about 0.5% of the cancers in the United 

States are associated with previously CT imaging usage [2], [3].  

CT scan imaging has various merits over traditional 2D x-ray radiography. 2D x-ray 

radiography, which was admired in the late 1990s, creates a 2D image based on the mathematical 

superposition of several waves of all the human tissues during scanning, in contrast to the CT 

imaging which produces image series, which can be inspected as image slices. As a result, the 

image contrast is improved and provides radiologist for inspecting the structures located inside the 

tissues.  Researches indicated that in the North America, 120 million CT scans were conducted in 

2008 [2]. Notwithstanding the fact that harm of the radiation of CT scans is negligible, by 

considering the popularity of performing CT scans, which each person might undergo for several 

times for a year, this topic has been becoming a public health concern and initiative plans need to 

be taken in order to decrease its risk. A wise method of decreasing the x-ray dosage absorbed by 

human tissues is to reduce the radiation, which accordingly generates more noise distortions and a 

low Signal to Noise Ratio (SNR) [4]. The concentrate of this research is to study algorithms of 

reducing artifacts in low-dose CT imaging.  

 

Figure 2.1 Fundamentals of CT imaging [5] 
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2.1.1. Fundamentals of CT imaging 

CT scan imaging includes a motorized bed for a patient with a revolving x-ray scanner. An 

x-ray generator directs high-energy photons in a fan-shaped beam to a patient and numerous 

detector cells in the reverse position, achieve the photons that passed through the tissues. This 

procedure which is indicated in Figure 2.1, lasts as the generator and the detector plane revolves, 

and the motorized bed is passing through the center. Subsequently, a series of image slices are 

created, which associated with 2D human tissue planes.  Each slice series can be regarded as a 2D 

image-pixels or a voxel-based 3D corresponding the body tissue produced by CT software. 

The raw image data generated by the detector cells is known as sinogram, which is comprised 

of various projection from the variety of point of views of a specific human organ. Such projections 

are fundamentally formed by the radon transform of the body slice. The well known Shepp-Logan 

[6] phantom and its radon transform are indicated in Figure 2.2. Mathematically, to generate the 

image, the inverse radon transform of the sinogram data have to be computed. 

2.1.2. CT Image Quality and Radiation Dose 

CT scan images are prone to various noise distortions, which are destructive to image quality. 

A number of elements are associated with these deformities such as patient movement during the 

scan, metallic implant in body organs, and inaccurate calibration of the scanner components. The 

most frequent noise distortions are generated by Compton scattering, photon starvation, and beam 

hardening.   

          

Figure 2.2 Left: A sample CT Shepp–Logan phantom [7] , Right: Corresponding sinogram 
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X-ray CT imaging is operated by following the fact that different body organs collect x-ray 

photons in a specific range of energy in various degrees. Most of the x-ray CT scan imaging use 

multichromatic x-ray photon beams expressing particular scope of photon energies. This matter is 

capable of introducing a beam hardening noise distortion, which arises when the lower energy x-

ray photons are collected further than higher energy photon beams[5]. This artifact contributes as 

fluctuating structures in the uniform tissue structures. Notwithstanding the beam hardening noise 

is not large most of the time and not very conspicuous, it can get notable near metallic implants or 

large bone tissues[8]. Iterative and reconstructive algorithms have been presented to remove this 

artifact [9], [10].  

Compton scattering is comprised of radiation photons, which are associating with free 

negative charged particles or the last orbit electrons. Consequently, the interacted photons are 

leaded in a divergent path and terminate in a non-aligned detector cell. This issue can introduce 

streak artifacts. 

Generally speaking, the number of photons arrive at the detector cells is the major part, which 

influences the CT image quality and also the x-ray dose utilizes in conducting CT scans. 

Theoretically, by no means of noise distortions, the radiated photon particles arriving at the 

particular detector cells, follow the Poisson distribution. As a result, the insufficient number of 

photon counts, can introduce a low CT image quality. Because the CT scan projections 

transforming into pixel-based images, the artifact distortion becomes complex and undetermined 

and generate streak artifacts majorly along the image gradients and near the object corners.  

There are some factors widely influencing the arrived photon counts. A number of them can 

be determined by the radiologists and the body organs of the patient. First, the voltage of the x-ray 

CT tube, known as a peak kilovoltage (kVp), determines the greatest energy of the discharged x-

ray spectrum and can affect the absorbed radiations by the body organs. Second, the current of the 

x-ray CT tube in milliamperes (mA), which affect the x-ray signal power and the number of 

reached photon particles to detectors. Third, the scanning time, which defines as the exam duration 

and can be represented in combination with the tube current by the milliampere-seconds (mA). 

Fourth, the slice thickness, which is the width of the entering of the tube and influence the spatial 

CT image resolution. In this study, the X-ray CT properties are remained fixed, and the 

concentration is in the reconstructed CT image from sinogram to improve its quality.  
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Expressing the x-ray dosage in CT can be performed by utilizing various techniques such as 

tissue dosage and scanner radiation output dose. Volume CT dose index (𝐶𝑇𝐷𝐼𝑣𝑜𝑙) is a prevalent 

method of expressing the CT output dosage. It concentrates on the radiation current emitting form 

the tube rather than x-ray dosage absorbing from the body tissues. Mathematically, the Energy 

dosage (𝐷) which is affected by the patient age and sex, defines by the following equation: 

 𝐷 =
𝐸𝑛𝑒𝑟𝑔𝑦 𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑

𝑀𝑎𝑠𝑠 𝑜𝑓 𝑡𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑖𝑠𝑠𝑢𝑒
 (2.1) 

Where the unit of 𝐷 is Gray (Gy). By employing different factors to this equation, equivalent 

dose and the effective dose can be proposed. In the equivalent dose, the tissue environment is 

taking into accounts and in effective dose, the total organs which are on the path of the emitted x-

ray to the detectors, are taking into accounts.     

Filtered Back Projection (FBP) is a widespread technique of acquiring a CT image from the 

raw scanner input. It is comprised of the imposing a sinogram by a high-pass filter and applying 

the inverse radon transform afterward. The first step substantially prevents the blurring noise 

distortions. This method, however, preserves the steak artifacts and other conventional CT noise 

distortions, as complicated filtering tools have been introduced in order to improve the CT image 

quality. 

2.2. CT Noise Reduction Methods 

Methods used for removing noise from Low-dose CT images can be divided into two main 

groups; denoising applied to sinogram (projection data), and denoising applied to the reconstructed 

image.  

2.2.1. Sinogram Denoising 

There are a number of methodologies which attempt to affect the sinogram to create a high-

quality CT images. This method generally involves applying a smoothing filter on raw sinogram 

and imposing the FBP algorithm afterward. Another approach is applying statistical iterative 

reconstruction algorithms on sinogram, which iteratively compute the optimization parameters. 

The penalized likelihood sinogram denoising method was illustrated in [11], and poly-dimensional 

iterative framework was introduced in [12] in order to improve the raw projection data. 
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Although removing noise from the sinogram is much more effective, this is not always 

possible since the sinogram and the raw projection data is not readily available and accessible. 

Therefore, in this paper, the focus is on the methods used to denoise the reconstructed image in 

the image space in which the noise distribution is unknown, which is referred to as CT image 

denoising throughout this paper.  

2.2.2. Total Variation Image Denoising  

The total variation (TV) algorithm is a mathematical function utilized for fluctuation 

measurement. In image processing, it is expressed as a method to decrease the unassociated local 

fluctuations in an image, which was created by noise distortions. In general, the prevailing 

mathematical definition of TV algorithm can be written as: 

 min
𝑢

∫|∇𝑢(𝑥, 𝑦)|𝑑𝑥𝑑𝑦         𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜           ||𝑢(𝑥, 𝑦) − 𝑢0(𝑥, 𝑦)||2 ≤ 𝜎 (2.1) 

Which 𝜎 is the distortion variance, ∇ denotes to the gradient, 𝑢(𝑥, 𝑦) is the desired clean 

image, 𝑢0(𝑥, 𝑦) is the noisy image. The goal of the TV in CT image denoising is to decrease 

fluctuations in the reconstructions process from the raw projection data by considering the 

minimum error. Recently, [13] proposed an improved algorithm by introducing an additional non-

negative parameter 𝜆 as a Lagrange multiplier in order to robust the existing TV algorithms. By 

increasing the variable 𝜆, more detail in the reconstructed image can be seen yet preserving more 

oscillations.   

 min
𝑢

∫|∇𝑢(𝑥, 𝑦)|𝑑𝑥𝑑𝑦 +  
𝜆

2
 ||𝑢(𝑥, 𝑦) − 𝑢0(𝑥, 𝑦)||2 (2.3) 

The major benefit of this algorithm is conserving of the high-frequency components in the 

reconstructed image. This algorithm is also gained from the local properties and can be applied as 

a local image reconstruction technique by adopting Euler-Lagrange equations. Consequently, it 

accurately models the high-frequency components (mostly sharp edges) of the image, while 

preserving some low-frequency tissues from the low-dose CT images.  

Since the noise in CT images are mainly localized and fluctuated, such as the white Gaussian 

noise and salt-and-pepper noise distortions, separation of the noise and clean image continuously, 

especially along the sharp edges are not feasible. As a result, by considering the oscillation nature 
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of the low-dose CT noise, linear isotropic diffusion TV [14] was presented to improve the image 

quality.  

2.2.3. Wavelet Thresholding for Image Denoising  

The wavelet transform is widely employed in image denoising that incorporates spatial-

frequency data of image structures. The discrete wavelet transform (DWT) is expressed as the 

discrete product of image pixels and orthogonal wavelet transform and contains the mutual 

correlation of CT images. It decomposes the image to a course part, which is comprised of the 

low-frequency information and high-frequency components of all the diagonal directions.  

This approach assumes that the noisy CT image incorporates the white Gaussian noise and 

wavelet thresholding is applied in order to recover the sharp edges of tissues. A prevalent wavelet-

based algorithm is illustrated in Figure. 2.3. The low size wavelet coefficients are corresponding 

the noise distortion and can be reduced to a zero-centered function by applying a thresholding 

strategy in order to improve the CT image quality. The Bayesian function is among the suggested 

threshold functions. The 2D wavelet functions are utilized by generalizing one-dimensional 

wavelets in a way that it applied in every four directions (row, column, and diagonals) [15]. 

Furthermore, by introducing stationary functions and including wavelet coefficients translations 

with wavelet transforms, the approach became prevalent to rotational computations.  

2.2.4. Statistical Iterative Reconstruction Algorithms (SIR) 

These approaches were developing after the filtered back propagation (FBP) method and 

they are widely employed by the recent CT scanner machines in order to continuously enhance the 

image reconstruction technique by introducing an iterative statistical framework of the noise 

distortions [16]. It is assumed that the arrive radiation photons are suffered from the poison noise 

distribution. Consequently, the emitted x-ray tube current is modelized by the Poisson noise and 

the linear integral is applied to capture the total noise passing through all the body organs to find 

the pixel value of the reconstructed CT image. 
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Figure 2.3. A wavelet approach for low-dose CT image denoising. 

Representative statistical iterative reconstruction algorithms (SIR) applied in low-dose CT 

denoising are depicted in Figure. 2.4.  A scanner descriptor is used to include the scanner 

properties, such as the geometry of the tube. These approaches involve the Taylor series expansion 

of the Bayesian framework for the maximum estimation of the reconstructed CT image. It 

introduces a significant computational cost due to extensive iterations and requires a large 

memory. 

2.2.5. Dictionary Learning and Sparse Representation  

Dictionary learning algorithms have been proposed in order to alleviate the main issue of the 

previously performed methods, to reduce the model complexity and to discover the optimal and 

remarkable approach to be irrelevant to the CT scan properties. Consequently, an iterative 

approach was presented to modify self-activating to capture the image parameters. The dictionary 

learning algorithms exploited from offline computing and applied on CT images while possessing 

low model complexity and enhanced result on the trained dataset. It is based on applying the 

sparsity on region-based CT image patches by utilizing the learned dictionary atoms. The approach 

can be represented by the following formula. 
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Figure 2.4. Iteratively statistical reconstruction techniques. Coronal CT with the radiation dose of 50 

mA and reconstructed with FBP method (Top left), CT reconstruction with FBP in radiation dose of 750 mA 

(Top right), comparing to Advanced Statistical Iterative Reconstruction (ASIR) in Bottom left and Model-

Based Iterative Reconstruction (MBIR) in Bottom right with the radiation dose of 50 mA in [17] 

 min
𝐷,𝑥𝑖

∑ ||𝑦𝑖 − 𝐷𝑥𝑖||2
2

𝑖

       𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜         ||𝑥𝑖||0 < 𝑇 (2.4) 

Which 𝐷 is the learned dictionary and 𝑥𝑖 consists of the sparse representations of the low-

dose CT image region-wise pixels 𝑦𝑖,  ||. ||0 is the 𝑙0 −norm, which is the number of the non-zero 

entries, 𝑇 is the threshold of the 𝑙0 −norm and this formula incorporates the non-zero atoms in the 

reconstructed dictionary. In the beginning, the dictionary parameters are initialized and remain 

constant while sparse coefficients 𝑥𝑖 iteratively getting optimized in order to create the sparse 

vector. Afterwards, the sparse coefficients remain constant and dictionary atoms will iteratively 

update until the formula condition is satisfied.   

During the sparse coding, sparse vectors from the image patches are calculated. The 

prevalent approach is utilizing the Orthogonal Matching Pursuit (OMP)[18]. Afterwards, by 

applying the formula, the dictionary components will have updated to minimize the reconstructed 

error and to obtain the high-quality CT image. In the proceeding stage, the denoising structure by 
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expressing the image as the addition of the clean image and the noise distortions, will commence. 

It attempts to minimize the cost function by introducing a Lagrange multiplier.  

A common algorithm in low-dose CT denoising is known as block matching and filtering 

(BM3D) [19], which merge the block-matching with the sliding patches. The algorithm looks for 

the matching sliding windows within the images and is the correlated patches are stacked afterward 

to form 3D arrays and a suitable transform is applied to denoise the image.  

The recent approach, which is known as Simultaneous Sparse Coding (SSC-GSM) [20] is 

utilizing the greedy sparse representations for image denoising. In order to calculate the sparse 

coefficients, it is iteratively modifying a group of randomly chosen coefficients and the cost 

functions to reduce the computational complexity.  

It is worth stating that the quality of the output image using sparse coding algorithms is 

highly dependent on the dictionaries. As a result selecting the suitable adaptive dictionaries is a 

challenging task in the dictionary learning methods.  
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Chapter 3 Convolutional Neural Network 

(CNN) 
 

 

 

 

 

 

 

 

 

Figure 3.1. The LeNet-5 network architecture, which was designed for the digit classification task [21]. 

It consists of the Conv layers, sample pooling, Sigmoid nonlinearity and fully connected layers and was 

trained on MNIST digit dataset with about 60,000 training images. 



[16] 
 

3.1. Convolutional Neural Network (CNN) 

Convolutional Neural Network (CNN) is a distinguished field in deep learning motivated by 

human biological vision systems. The formation of the prevailing CNN architecture can be traced 

to 1990s which LeNet [21] was designed for handwritten and machine-printed character 

recognition. It consists of the basic CNN components such as convolutional layers and back 

propagation learning methods. The convolutional network detected recurrent instinct patterns from 

image pixels. However, due to the absence of training data, the prevalent issue was the 

implementation of big databases. By creating a large-scale image database ImageNet, the well-

known CNN framework called as AlexNet [22] was presented for ImageNet classification. It 

demonstrated substantial enhancements along with the deeper structure in the computer vision 

area. Subsequently, with arriving complex computing powers, advanced CNN structures such as 

VGGNet[23], GoogleNet [24], and ResNet  [25]emerged in various applications. In order to get a 

better grasp,  

The well-known convolutional natural network, the LeNet-5 framework is depicted in 

Figure. 3.1. This architecture is comprised of the three types of layers. It commenced with some 

convolutional layers. The convolution layers are designed to extract feature representations from 

the image through learning epochs. Each of the feature map cells is associated with the neighboring 

regions in the preceding layer. As a result, feature maps were produced by convolving the learned 

kernels with the previous layer and associated pair-wise with nonlinear activation functions. 

Specifically, each kernel weight is shared by all the spatial locations (sub-images) of the image. 

The sharing property of the convolutional structures reduce the computational complexity of the 

network and the number of parameters and alleviate the training process. Through presenting 

nonlinearity to the architecture by utilizing activation functions, CNNs become capable of 

capturing nonlinear structural features. Therefore, the activation functions such as sigmoid, 

tanh[26], and ReLU [27] apply to the convolved layer output. Consequently, the pooling layers 

were designed to decrease the size (resolution) of the feature maps in order to introduce the shift-

invariant kernels. The pooling layers are normally positioned among convolutional layers. 

Elements in the pooling layers are associated with the corresponding feature maps in the previous 

convolution layer. The well-known max pooling [28] was utilized in the LeNet-5 framework. By 

assembling several of the mentioned patterns (conv layer following activation function following 
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pooling layer), the designed framework is learned to capture low-level feature maps (such as 

curves and edges) to high-level filters (more abstract structural features) in the last convolutional 

layers. A sample of the learned feature maps is depicted in Figure. 3.2. 

 

Figure 3.2. Visualization of the Learned hierarchical features in the LeNet-5 framework [21]. Each 

feature can be considered as a filter. Left is from the first layer filters of the size 6×28×28 and the right is the 

second conv layer filters of the size 16×10×10. 

Following the stacked convolutional layers, fully-connected layers are usually placed in the 

deep neural networks especially in the computer vision tasks (detection and classification). A fully-

connected layer can be thought of a single- sized convolutional layer as they associated all the 

elements in the preceding layer to the next layer. The output of the network is created by the last 

layer of the convolutional network. In the classification and segmentation task, the well-known 

softmax operator and Support Vector Machine (SVM) are exploited. They attempt to minimize the 

loss function which is predefined for the particular task through training epochs are obtaining the 

optimal parameters of the network. Stochastic gradient descent is the prevailing approach for the 

CNN optimization tasks [29].  

3.2. CNN components and structures 

3.2.1. Convolutional Layer 

In spite of the various created CNN structures, they all are comprised of the similar 

components. They consist of several convolutional layers. The goal of the conv layers is to learn 

feature patterns from the image pixels. Employing traditional neural networks in image processing 

area is injudicious due to an obvious logic. As an instance, for a 2D image with the size of 

300 × 300, in the traditional NNs, there will be 90,000 input nodes. By considering a hidden layer 

of size 50,000, the size of the input parameters will be 4.5 billion. Furthermore, by increasing the 
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size of the network, this amount will dramatically increase. Furthermore, by applying traditional 

NNs, the 2D spatial structures will be ignored. Convolutional layers by definition have the 

advantages of local connectivity and weight sharing. Convolution layers benefit from sharing 

weight filters to reduce the complexity.  

In some variations, they extracted feature maps become invariant to scale and rotation. As 

an instance, the transposed convolution which is known as deconvolution and becomes popular 

for visualization tasks acts as a reverse function than a traditional convolution method by 

associating a single input activation function with several output kernels. Specifically, in the 

deconvolution process, the image regions first are up-sampled by a factor of padding and strides 

and then associate with output by convolution. Figure. 3.3. illustrated the deconvolution technique 

along with the typical convolution method.  

                        

Figure 3.3. Illustration of the Convolution (left) and the Deconvolution (Right) 

3.2.2. Pooling layer 

Generally, convolutional layers follow by pooling layers, especially in large-scale databases. 

The aim is to decrease the network complexity by decreasing the amount of feature maps 

interconnections and filter sizes. There have been a variety of pooling layers. Max, Min, and 

Average pooling were the most favorable types. Max pooling which is inspired by a neuron 

complex cells, replacing each region components by the max value. So, it selects the highest 

activation output in each local region, which leads to neglected spatial invariance in the output 

layer. Furthermore, it decreases the size of the next layer, which leads to reducing the training 

parameters. Recently the generalized method called 𝐿𝑃 pooling was introduced which relies on a 

feature map value and location and its functions change by the value 𝑝. 𝐿𝑃  pooling can be 

formulated as: 
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 𝑦𝑚,𝑛,𝑘 = [ ∑ 𝑔𝑚,𝑛,𝑘
𝑝

(𝑖,𝑗)∈ℛ𝓂𝓃

]1/𝑝 (3.1)  

Which 𝑔𝑚,𝑛,𝑘 is the 𝑘-th feature map at position (𝑖, 𝑗) within the pooling region ℛ𝓂𝓃. By 

changing from 𝑝 = ∞ to 𝑝 = 1, this function acts as max pooling to average pooling. 

3.2.3. Activation Function 

The next component of the deep neural networks is the activation functions. The main aim 

is to detect the nonlinear feature structure of images. The most remarkable activation function is 

the Rectified Linear Unit (ReLU). It is a piecewise linear function which omits the negative 

response of the activations. It consists of a simple max function which makes it much swifter than 

tanh and sigmoid functions in general. The ReLU can be represented as: 

 𝑓𝑚,𝑛 = Max(𝑔𝑚,𝑛, 0) (3.2)  

Where 𝑔𝑚,𝑛 is the output of the convolution or pooling layers at location (𝑖, 𝑗).  

Due to its instinct characteristic, which creates zero gradient for non-positive activations so, 

in backpropagations, stochastic gradient descent technique cannot update the affected parameters 

(weights and biases), several alternatives have been proposed in research studies afterward. The 

earliest option was introducing an extra constant parameter 𝜆 in order to alleviate the referred issue 

known as Leaky ReLU (LReLU). Notwithstanding its advantages, 𝜆 is a normalized variable 

which its optimal value is different in experiments and has to be determined for each examination. 

Formally, this function is defined as: 

 𝐿𝑅𝑒𝐿𝑈𝑚,𝑛 = Max(𝑔𝑚,𝑛, 0) + 𝜆 Min(𝑔𝑚,𝑛, 0) (3.3)  

A further technique known as Parametric ReLU (PReLU) was determining 𝜆𝑖 by stochastic 

gradient descent which improved the LReLU. The leaned variable 𝜆𝑖 can be updated within 

backpropagations along with other network parameters with trivial model complexity. This 

function is expressed as: 

 𝑃𝑅𝑒𝐿𝑈𝑚,𝑛 = Max(ℎ𝑚,𝑛, 0) + 𝜆𝑖 Min(ℎ𝑚,𝑛, 0) (3.4)  

Another presented approach was introduced, which named Randomized ReLU (RReLU). In 

this method, the negative area of ReLU are determined by assigning random sampled from a 
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uniform distribution, 𝜆𝑖
𝑗
. This approach was examined in the CNN face detection and indicated an 

improved result rather than ReLU. Mathematically, the RReLU is defined as: 

 𝑅𝑅𝑒𝐿𝑈𝑚,𝑛
𝑗

= Max(𝑔𝑚,𝑛
𝑗

, 0) + 𝜆𝑖
𝑗

Min(𝑔𝑚,𝑛
𝑗

, 0) (3.5)  

3.2.4. Loss Function 

The principal part of the convolutional neural networks is the loss functions. The primitive 

approach is the Hinge Loss. It is mostly applied in classification tasks such as multi-class Support 

Vector Machine (SVM). Mathematically, the hinge loss can be represented as: 

 𝐿𝑜𝑠𝑠𝐻𝑖𝑛𝑔𝑒 =
1

𝑇
∑ ∑ [Max(1 − 𝛿(𝑦(𝑛), 𝑚)𝑔𝑇𝑥𝑛]

𝑇

𝑚=1

𝑇

𝑛=1

𝑃

 (3.6)  

Where 𝑦(𝑛) is the label indicator for each class for total T classes. Specifically, when 𝑦(𝑛) =

𝑚  then 𝛿(𝑦(𝑛), 𝑚) = 1, otherwise 𝛿(𝑦(𝑛), 𝑚) = −1. 𝑔𝑇 indicates the transpose of the network 

weights.  𝑃 determine the level of the loss function. When  𝑃 = 1, the function is called 𝐿1- loss, 

if  𝑃 = 2, the function is called 𝐿2- loss, and so on. 𝐿2- loss represents more flexibility than the 

first order hinge-loss and the studies demonstrated the supremacy of 𝐿2- loss over the softmax and 

the first order hinge-loss on MNIST dataset.  

A prevalent alternative loss function is a softmax loss. It can be considered as a combination 

of the polynomial logistic regression and the softmax. By definition, the softmax function is 

defined as 𝑠𝑘
𝑛 = 𝑒𝑥𝑘

𝑛
/ ∑ 𝑒𝑥𝑘

𝑛𝐾
𝑙=1 , which 𝑥𝑘

𝑛 = 𝑤𝑘
𝑇𝑝𝑛 + 𝑞𝑘 is the activations of the associated layers 

and 𝑤 is the network weight matrix. Considering the training set {(𝑥𝑛, 𝑦𝑛); 𝑛𝜖[1, 𝑁]}, each input 

is assigned to the specific output label between 1 and 𝐾. As a result, softmax equation transfers 

the assigned output labels onto the normalized positive coefficients to form a probability 

distribution over the label groups. Consequently, the distributed values are utilized in calculating 

the softmax loss (multinomial logistic loss) based on the following equation: 

 𝐿𝑜𝑠𝑠𝑆𝑜𝑓𝑡𝑚𝑎𝑥 =
1

𝑁
[∑ ∑ 1{

𝑇

𝑘=1

𝑇

𝑛=1

𝑦(𝑛) = 𝑘} log 𝑠𝑘
(𝑛)] (3.7)  
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3.2.5. Regularization 

Regularization is an impactful technique in order to prevent the overfitting issue. The 

primitive regularization method was 𝐿𝑝-norm regularization. In general, regularization techniques 

wisely alter the loss function to avoid over fitting by introducing additional parameters to 

discipline the computational complexity. Mathematically, the  𝐿𝑝-norm regularization can be 

expressed by the following expression. 

 𝐿𝑝(𝜃, 𝑖, 𝑗) = ℒ(𝜃, 𝑖, 𝑗) + 𝜆𝑅(𝜃) (3.8)  

Where ℒ(𝜃, 𝑖, 𝑗) is the network loss function, 𝜆 is the regularization parameter, and 𝑅(𝜃) is 

the generalized 𝐿𝑝-norm regularization function. Specifically, 𝐿𝑝-norm term can be represented as 

𝑅(𝜃) = ∑ ||𝜃𝑖||𝑝
𝑝

𝑖 . The additional parameter 𝑝 controls the regularization term. When 𝑝 ≥ 1, the 

regularization term becomes convex, which alleviate the optimization technique [30]. A weigh 

decaying 𝐿𝑝-norm is a conventional term ascribed to when 𝑝 = 2, which produces 𝐿2-norm 

regularization. When 𝑝 < 1, the 𝐿𝑝-norm regularization term becomes non-convex and introduces 

the sparse network weight filters.  

3.2.6. Optimization techniques 

3.2.6.1. Data Augmentation 

Deep convolutional networks are exceedingly influenced by the sizable data. In variety of 

the computer vision and image processing applications, CNNs are suffering from lack of big and 

established training data and such as medical image processing. Data augmentation is an ingenious 

solution to reduce the dependability of the lack of data with the number of network parameters. 

This methodology is comprised of reorganizing the accessible information into an alternative 

dataset in the absence of modifying their constitution. Prevalent producers are consisting of 

uncomplicated geometric pixel-wise transformation such as mirroring, spatial shifting, angular 

rotating, and upsampling. The recent study introduced a novel technique in order to choose some 

optimum transformations among spatial geometric pixel-wise transformations [31], but it was 

comprised of computationally costly iterations.  



[22] 
 

3.2.6.2.  Network Initialization 

Network initialization is substantially important in order to make the network to acquire the 

accelerated convergence and prevent zero-gradient issues due to the availability of large number 

of network parameters and non-convex characteristic of the loss function [32]. The bias parameters 

are usually zero-initialized, and the weight variables have to be asymmetrically initialized to 

improve the functionality of the hidden layers. When the deep convolutional architecture is not 

satisfactory initialized, either over-fitting or vanishing gradient issues will occur. A zero-mean 

Gaussian distribution is the most popular technique for weight initialization. Krizhevsky [22]was 

proposed the standard deviation of 0.001. Later on, the recent method which was called as Xavier, 

the mean value of the input and output of each hidden layer was suggested for the variance of the 

Gaussian distribution. This methodology is an adaptive method for each network convolutional 

layer and can prevent the saturation. The recent research [32] proposed the orthogonal weight 

matrix which can iteratively set the standard deviation of the Gaussian distribution.  

3.3. Caffe 

 Performing convolutional neural networks from the base is a tiresome and non-essential 

task. For instance, employing the backpropagation method accurately necessitates computing the 

gradient descent of each hidden layers precisely. Subsequently, after computing the reverse 

propagations, it required the validation by gradient and compared to the forward results. 

Furthermore, effective employment of CNNs on Graphics Processing Unit (GPU) is a rigid task. 

As a result, employing a reliable library is a wise decision. Among all the libraries and framework 

available in deep learning, Caffe is among the established and well-structured framework, which 

is extensively used in a variety of research studies.  

The Caffe framework is initiated by Berkeley AI Research (BAIR) in C++ and it uses the 

Compute Unified Device Architecture (CUDA) framework for implementing all the mathematical 

computations on GPU. It also exploits the CUDA Deep Neural Network (cuDNN) library for 

performing convolutional neural network such as weight matrix. Consequently, CNNS are 

implemented by employing cuDNN as well as CUDA on accelerated processing units. Moreover, 

Caffe has graphical interfaces and expressive architectures for MATLAB and Python.  
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Implementing a deep convolutional network in Caffe is by utilizing text files known as 

Protocol Buffers library. The primary text file is called as net.prototxt which consists of the 

properties of each layer such as a learning rate, a number of outputs, kernel size, strides and 

paddings, weight filters, biases, and activation functions and the layers have to be defined in 

sequence. The attached text file, which is called solver.prototxt as have to be provided to define 

the optimization algorithms.  A sample solver file for CNN implementation in Caffe depicted in 

Figure. 3.4. 

 

Figure 3.4. A sample solver file for CNN implementation in Caffe 

3.4. Deep learning medical applications  

3.4.1. Medical image classification  

The most prominent contribution to deep learning in medical imaging is the image 

classification. The topic consists of classifying a medical diagnosis based on the patient medical 

exams. Due to the fact that medical exams are comprised of the small datasets, utilizing transfer 

learning methodology is a traditional approach in this area.  

Transfer learning is a machine learning approach, that information attained during training 

in a large-scale dataset is exploited to create a pre-trained network and applied to different subjects. 

As a result, all the layers except a few last layers in the pre-trained network is used as a feature 

extractor network [33]. The prominent topic in this field is the classification of the patients whether 

they have Alzheimer or not, by using brain Magnetic Resonance Imaging with convolutional 

neural networks and softmax [34]. 
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Another compelling topic is the lesion classification which concentrates on the specific 

object in the medical imaging systems. Arindra et al. [35] utilized local object and global structural 

information to implement a multi-stream network for nodule classification in chest Computer 

Tomography.  

3.4.2. Medical image denoising 

Deep learning frameworks in low-dose CT image denoising, are the latest and state-of-the-

art techniques. Due to the complication of modeling the low-dose CT noise distortions, the existing 

iterative methods and dictionary learning approaches couldn’t accurately remove the artifacts.  

Chen et al. [36]proposed a convolutional neural network framework consisting of three 

convolutional networks. The filter numbers were 64,32,1 respectively, and the size of the feature 

maps was 9,5,5 respectively. Another study was proposed in [37], utilized wavelet domain deep 

framework in order to recover the structural detail of the low-dose CT images.  

Although both the presented architectures could surpass the dictionary learning and total 

variation techniques, they suffer from huge computational cost as the performed networks are 

comprised of the thousands of parameters to learn. Also, the output image was still over-smoothed, 

especially in the autoencoder framework due to utilizing large receptive fields.  
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Chapter 4 Proposed Methodologies 
 

 

 

 

 

 

 

 

4.1. Convolutional Architecture for Low-Dose CT 

Noise Reduction (LDCNN) 

4.1.1. Problem Formulation 

In low-dose CT imaging, the noise makes the edges, and fine image features blurred and 

distorted. The goal of low-dose CT image denoising is to map the noisy and distorted image onto 

the clean image such that the noise is decreased or entirely eliminated. The research has been 

focused on the real low-dose CT images (not interfering normal-dose CT images by Poisson or 

white Gaussian noise) and the corresponding normal-dose CT images.  
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Let 𝑌 be the low-dose CT images and 𝑋 denote the corresponding normal-dose. Given a set 

{𝑌(𝑚), 𝑋(𝑚)}
1

𝐾
, the aim is to learn the denoising function 𝐹 based on the following. 

The objective here is to determine the function that creates the closest image to 𝑋 from noisy 

image 𝑌. Function 𝐹 can be considered as a nonlinear filter whose coefficients are not known but 

can be learned through training images. In this study, convolutional neural networks are used to 

learn such a filter.  

Let us denote {𝑓𝑖}𝑖=1
4  as the filter size and {𝑚𝑖}𝑖=1

4   as the filter number of the four layers, the 

computational complexity of the presented CNN architecture can be approximately represented as 

follows: 

 𝑂 {(𝑓1
2𝑚1 + 𝑚1𝑓2

2𝑚2 + 𝑚2𝑓3
2𝑚3 + 𝑚3𝑓4

2)𝑆𝐶𝑇 (4.1)  

Where 𝑆𝐶𝑇 is the size of the CT image. It worth noting that the complexity is directly 

proportional to the size of the CT images and the formula is mostly influenced by the middle layers.  

4.1.2. Overall Framework 

The presented mapping function 𝐹 is theoretically comprised of three stages: 

1. Feature Extraction: This stage extracts sub-images (patches), in the way that patches are 

overlapping, from the low-dose image 𝑌. Each sub-image then can be represented as high-

dimensional feature maps (vector), which the length of each feature vector is the number 

of the feature maps.  

2. Mapping: In this stage, each feature vector from the low-dose patch maps to another set 

of high-dimensional feature vector (Normal-dose features). We can consider nonlinear 

mapped feature vectors as the normal-dose feature vectors. Depicted vectors representing 

another set of feature maps.  
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3. Restoration: This stage assembles the produced normal-dose sub-images to form the 

output image. The patch-wise features are aggregated in order to generate a normal-dose 

image. We wish that this image to be equivalent to the ground truth desired normal-dose 

image 𝑋.  

Next, we explain our definition of each stage. 

4.1.2.1. Feature Extraction 

A prevalent approach to image restoration is to extract sub-images and then represent them 

by feature vectors such as principal component analysis (PCA), discrete cosine transform (DCT), 

discrete wavelet transform (DWT), Haar wavelet, etc. We can conceptually consider this operation 

as convolving the image by a set of pre-trained filters (bases). In our strategy, we include the 

optimization of proposed filters into the optimization of the architecture. In conclusion, the first 

convolutional layer can be considered as follows: 

 𝐺1(𝑌) = 𝑀𝑎𝑥( 𝐹1 ∗ 𝑌 + 𝐶1, 0) (4.2)  

Here 𝐹1 and 𝐶1 denote the filters (bases) and biases respectively, and ∗ represent the 

convolution operation. In this context,  𝐹1 contains 𝑚1 filters of the kernel size 𝑛 × 𝑤1 × 𝑤1, where 

𝑤1 is the spatial filter size in the first layer and 𝑛 corresponds the number of channels (RGB, 

YCbCr, Grayscale) of the input images.  We utilize the Rectified Linear Unit (ReLU) as an 

activation function in the first layer after the convolution. Conceptually, 𝐹1 operates 𝑚1 

convolutions on the input image so that each convolution has a size 𝑛 × 𝑤1 × 𝑤1. Hence, the 

output is comprised of 𝑚1 feature vectors. 𝐶1 corresponds to vector of a size 𝑚1-dimension that 

each component correlated to a filter.   

4.1.2.2. Mapping 

In the output of the first layer, we have 𝑚1-dimensional feature maps for each sub-image 

(patch). In the second stage, these 𝑚1-dimensional feature vectors are mapped onto 𝑚2-

dimensional vectors.  We can conceptually consider this operation as convolving with 𝑚2 filters 

with the spatial size 𝑤2 × 𝑤2. In summary, the second convolutional layer can be considered as 

follows:  
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 𝐺2(𝑌) = 𝑀𝑎𝑥( 𝐹2 ∗ 𝐺1(𝑌) + 𝐶2, 0) (4.3)  

  Where 𝐹2 denotes to 𝑚2 filters of the kernel size 𝑚1 × 𝑤2 × 𝑤2, and 𝐶2 corresponds to 

vector of a size 𝑚2-dimension. Theoretically, these 𝑚2-dimensional feature maps correspond to 

each normal-dose patch to form an output image in the Restoration operation. 

4.1.2.3. Restoration 

In the dictionary learning and sparse coding approaches, weighted averaging is the most 

prevalent method to form a final output based on the overlapping sub-images. Conceptually, the 

averaging acts as a pre-trained filter on feature vectors. Since the products of the proposed 

convolutional neural network are in the spatial domain, all the representations, which reshape to 

form normal-dose patches, are in the image domain and the filters can be considered as a weighted 

averaging. Regarding this, the ultimate normal-dose image can be considered as follows:  

 𝐺(𝑌) =  𝐹3 ∗  𝐺2(𝑌) + 𝐶3 (4.4)  

Where 𝐹3 denotes to 𝑛 linear filters of the kernel size 𝑛2 × 𝑤3 × 𝑤3, and 𝐶3 corresponds to 

bias of a size 𝑛-dimension that each component correlated to a filter.   

4.1.3. ReLU Nonlinearity 

Nonlinear processing as an activation function accompanied by the pooling layer makes 

crucial improvements to feature extraction and makes the network rotation, shift, and scale 

invariant. Apart from the traditional logistic sigmoid function as an activation function, a number 

of nonlinear rectifying functions were introduced including the absolute positive functions. Among 

all the activation functions, we decided to choose Rectified Linear Unit (ReLU), since several 

studies on deep convolutional neural networks have indicated discernible development by applying 

rectified nonlinear processing, and non-saturating nonlinear functions are greatly accelerated 

compared to saturating activation functions. By definition, the Rectified Linear Unit (ReLU) 

model for every input 𝑥 is 

 𝐺(𝑥) = 𝑀𝑎𝑥(0, 𝑥) (4.5)  

 Mainly due to the non-saturating and linear form of ReLU, the convergence of the stochastic 

gradient descent is much faster than the hyperbolic tangent (tanh) and Sigmoid functions. 
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Therefore, the training time becomes noticeably shortened. Furthermore, it does not have any 

reciprocal and exponential computation. That is just a simple thresholding, so its implementation 

is much less expensive than other available alternatives. In addition, studies indicated that to 

acquire a high convergence rate RLU could be applied as an activation function. We have detailed 

our results in Figure. 4.1. Indicates that by applying ReLU a greater PSNR can be achieved. 

Besides, in order to get a low error (RMSE) of 0.02 in the validation set, it needs much less number 

of backpropagations, 9 × 107 for ReLU as 3.6 × 108 for tanh function on the thoracic dataset 

 

Figure 4.1. Comparison of tanh and ReLU as an activation function in LDCNN. 

4.1.4. Correlation to dictionary learning algorithms 

In this section, we will demonstrate that dictionary learning algorithms, can be considered 

as deep learning structures.  

As a generic rule in sparse representations approaches such as Feature-Sign or example-

based image regions are obtained from each image and mapped onto a compact dictionary. In 

convolutional neural network algorithm, 𝑤1 × 𝑤1 sub-images produced from the image by linear 

spatial support through the convolutions. Therefore, the first layer in thenetwork (and the 

normalization step as a pre-processing), can be considered as the same form of extracting patches 

and mapped on a low-dose dictionary. 

The second stage in dictionary learning is optimization procedures of the low-dose dictionary 

components to produce the elements of the constitution of the normal-dose dictionary. This step 

can be considered as the mapping stage in ConvNets with the single size filter. Furthermore, due 
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to the feed-forwards and backpropagations of the gradient descent, deep learning approaches is 

more cost-effective than dictionary learning algorithms which rely on iteration. 

In dictionary learning, the elements of the second stage mapped onto a normal-dose 

dictionary learning to form normal-dose sub-images. Mean operation then applied to these regions. 

The same concept rules in deep neural networks. Linear spatial support of the same size of the sub-

images is applied to produce the normal-dose patches. 

The stated confabulation proved that the deep learning is a generic term which embraces 

dictionary learning approaches. The only difference is exploiting learning of optimization 

parameters rather than iteration processes. Therefore, the proposed approach is comprised of an 

end-to-end mapping that all the parameters are learned effectively. It is also worth noting that as 

the layers are getting sparser, it is sensible to assign the number of coefficients in the second layer 

to be smaller than the first layer (𝑚2 < 𝑚1 ). 

4.1.5. Overall Structure 

The denoising convolutional neural network is a modified CNN whose its parameters, e.g. 

weights and biases should be learned and calculated with the backpropagation training. An 

overview of the framework is shown in Figure. 4.2. 

The network that we have utilized in this study consists of four layers. Each of these layers 

consists of a number of convolution filters followed by an activation layer. The loss function is 

calculated at the end of every feed-forward step to update the parameters (weights and biases). The 

number of feature maps that are used from the first to the last layer is 64, 32, 32, and 1 

respectively. The size of all convolutional filters is 9 × 9. The input of the network is the low-dose 

noisy image (𝑌), that passes through some convolutional layers to extract sets of feature maps to 

produce a denoised image F(Y). Function F denotes the mapping network which learns all the 

spatial weight filters and biases. The widely-used mean square error is considered as a loss 

function. 

The loss function is calculated by stochastic gradient descent along with standard 

backpropagation as follows: 
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 ∆𝑚+1= ∆𝑚 × 0.9 + 휀
𝜕𝐾

𝜕𝑊𝑚
𝑘 ∙   𝜕𝑊𝑚+1

𝑘 = 𝜕𝑊𝑚
𝑘 +  ∆𝑚+1  (4.6)  

In which 𝑚 corresponds to each layer, 휀 denotes to the learning rate.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. A network structure of the end-to-end 

nonlinear mapping denoising LDCNN. 

 

A a number of feature maps, which requires going through the activation function, form the 

first convolutional layer. The subsequent convolutional layers receive the output of the previous 

layer then pass its results through activation functions for nonlinear processing to make higher-

level feature maps in order to create a corresponding noise free image. The proposed deep neural 

network can be implemented with the arbitrary size of images. As a result, the network trained 

hierarchically structured feature maps from low-level (blobs, edges, etc.) to high-level (more 

complex and detailed shapes). Moreover, we came up with a pre-train convolutional network, 

which can be used as a transfer learning. 

It is worth noting that, notwithstanding the fact that in the proposed algorithm, each layer is 

influenced by independent and distinct intuitions. Therefore, we gather all three operations to 

produce a deep convolutional architecture. Besides, all the biases and filter weights have to be 
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iteratively optimized. Regardless of the concise and simple architecture, the presented network 

could have achieved a great result, and it was based on the discovering of the notable correlation 

between dictionary learning and deep learning. 

4.1.6. Implementation Details 

The proposed deep convolutional neural network can be implemented by using a large set of 

low-dose and the corresponding normal-dose CT images. Due to a lack of sample data, low-dose 

CT images have been created inaccurately by adding Poisson or Gaussian noise to the normal-dose 

CT images. We implemented our method based on real low-dose and normal-dose datasets. We 

adopt widely known peak signal-to-noise ratio (PSNR), root mean squared error (RMSE), and 

Structural similarity (SSIM) [38] as quantitative evaluation metrics which express high correlation 

with the human perceptual scores to compare the result 𝐹(𝑌) to the normal-dose image (𝑋). 

Weights and biases, which are the network parameters are updated by standard stochastic gradient 

descent via backpropagation.  

Figure. 4.3 demonstrates first layer filters which are trained on the axial thoracic CT images. 

We can infer that each learned filter has distinct functionality. As an example, the filters a, and d 

act like edge detectors at different angles. Similarly, the filters b, c, and e act like Gaussian and 

Laplacian filters. Throughput the network, we can observe the hierarchy structures from low-level 

(first order filters) to high-level feature maps. 

All the input images are in Digital Imaging and Communications in Medicine (DICOM) 

format. The output images are also saved in DICOM format. The only pre-processing step is the 

normalization of all images between o and 1. Furthermore, we randomly cropped the training, 

validation and tested sets as 33 × 33 pixels sub-images with the stride of 11. Therefore, we obtain 

several thousand created small sub-images rather than overlapping patches, and we do not input 

the original size images through the network.  
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Figure 4.3. Trained first layer filters in LDCNN 

The biases are initialized to zero. The filter weights of each layer for the deep convolutional 

neural network are initialized by drawing randomly from a Gaussian distribution with zero mean 

and standard deviation 0.001. Furthermore, the learning rate for the first three layers are initially 

set to 0.01 and is going to decrease by a factor of 0.9 every 10000 iterations. For the last 

convolution layer, the learning rate is initialized to 10−3 with the same decaying factor as the other 

layers, as well as the momentum term of 0.9. 

The proposed algorithm is implemented using the Caffe package and Matlab R2016a. The 

processor is Intel core 𝑖7 CPU 3.4𝐺𝐻𝑧 and 16𝐺𝐵 memory and the Graphics Card is GeForce GTX 

1070. The training time is about 12 hours and the test time was forty seconds for each image.  In 

the presented deep neural network, there is a compromise between speed and effectiveness. It is 

worth stating that even the fastest proposed model achieved better results than the other state-of-

the-art algorithms. In the context of speed, the dictionary learning and the optimization algorithms 

are to deal with complicated optimization difficulties but the presented network has to be learned 

through a great number of backpropagations. The performed approach is completely flexible to 

modification of the parameters in order to gain better performance.    
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4.1.7. Network parameters and Efficiency 

Starting from the favored settings (𝑚1 = 64, 𝑚2 = 𝑚3 = 32, ∀𝑤𝑖 = 9 , 𝑖 = [1,4], ) , some 

influential parameters are being changed purposefully and steadily to inspect the overall result of 

the network and achieve the most efficient setting.  

4.1.8.1. Number of layers 

As comprehensively illustrated, deep convolutional neural networks can produce better 

results by increasing the number of layers. Therefore, another framework is being examined by 

adding an extra layer to the existing architecture. By determining the parameters of an additional 

non-linear layer, number of filters could be 𝑚5 = 32 or 𝑚5 = 16. The first option add a significant 

complexity to the network due to the equation 4.1. Hence, it would be judicious to stick with the 

latter choice. Another parameter to determine is the filter number which could be 𝑤5 = 9 or    𝑤5 =

7. To come to the point, we examined 9-9-9-9-9, 9-9-9-7-9,9-7-7-9-9,9-7-7-7-9. Other parameters 

such as learning rate are remained the same. In the context of speed (training time), it is evident in 

Figure.  4.4. that adding an additional layer will reduce the convergence speed of the architecture. 

By considering the performance, both settings will roughly converge to the same number in which 

the 4-layers network is comprised of much less parameters. We also noticed that bigger 

architecture not necessarily results in better performance unlike the image classification (ImageNet 

challenge) as in Figure 4.5. the result of the 5-layers network decayed and couldn’t exceed the 

corresponding 4-layers architecture. This may cause by the structure of the network which doesn’t 

consist of full connected layers and large-scale datasets. 
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Figure 4.4. Comparison between five-layer and four-layer LDCNN architectures 

4.1.8.2. Number of feature maps 

On the whole, a network result should ameliorate by expanding its size such as appending 

more feature vectors. By considering the initial filter numbers in the proposed architecture was 

𝑚1 = 64, 𝑚2 = 𝑚3 = 32, we implemented two settings. First was expanding the network to 𝑚1 =

128, 𝑚2 = 𝑚3 = 64. Second was shrinking the architecture to  𝑚1 = 32, 𝑚2 = 𝑚3 = 16. The 

network was trained on the real thoracic phantom CT dataset. The performance is taken at 8 × 107 

backpropagations and illustrated in Table 4.1. As we expected the greater result was attained by 

expanding the filter numbers to the expense of speed (training time). As the initial network 

contained around 256,000 parameters and the expanded network was consisted of almost 

1,000,000 parameter sand shrined network was comprised of nearly 66,000 parameters to train. 

Therefore, the computational complexity of the network would increase by four times by 

implementing the larger network but it achieved the superior result. 
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Table 4.1. Comparison of LDCNN networks with different filter numbers 

𝑚1 = 128, 
𝑚2 = 𝑚3 = 64 

𝑚1 = 64, 
𝑚2 = 𝑚3 = 32 

𝑚1 = 32, 
𝑚2 = 𝑚3 = 16 

PSNR 

(dB) 

RMSE Parameters PSNR 

(dB) 

RMSE Parameters PSNR 

(dB) 

RMSE Parameters 

32.14 0.16 1,000,000 32.11 0.19 256,000 32.01 0.27 66,000 

4.1.8.3. Filter size 

The performance of the network is explored by modifying the feature vector sizes. By and 

large, by increasing the feature vector sizes, deeper referred neighborhood information is collected, 

that successively superior performance is achieved. The default settings of the network was set to 

the filter sizes ∀𝑤𝑖 = 9, 𝑖 ∈ [1: 4], abbreviated to 9-9-9-9. First, the mapping layer filter sizes were 

modified from 9 to 11 and 7 (9-11-11-9 and 9-7-7-9).  The performance is remarkably improved 

by increasing from 7 to 9 and marginally enhanced from 9 to 11. The investigation was extended 

to modifying the filter size of the feature extraction layer from 9 to 7 and 11 (11-9-9-9 and 7-9-9-

9.) The result was faintly improved by increasing the first layer filter sizes. Finally, the filter size 

of the restoration layer was altered and the same pattern was achieved as the previous experiment.  

As a result, the most significant impact of filter numbers was in the mapping layer which 

increased filter numbers were encompassed more extensive neighborhood information that 

generated superior performance. It is also worth noting that increasing the filter number would 

enhance the computational complexity which in turn increases the training time. Therefore, 

selecting the wider network which the performance was improved insignificantly but it involved 

much more parameters over the optimal network is not cogent. 
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Figure 4.5. Comparison between different filter sizes in LDCNN 

4.2. Deep Convolutional approach for Low-Dose 

CT Image Noise Reduction (Deep-LDCNN) 

4.2.1. Proposed network 

The proposed algorithm is designed to learn an end-to-end mapping function 𝐹 between low-

dose images and medium-dose images. The overall structure consists of eight convolutional layers. 

The recommended deep learning architecture is inspired by the sparse coding algorithm for 

denoising low-dose CT images and the deep learning structures in image processing. As illustrated 

in Figure. 4.6. the network comprised of five parts- feature extraction, compressing, mapping, 

enlarging, and reassembling.  

4.2.1.1. Feature extraction 

With the same approach as in LDCNN, the first convolutional layer can be considered as the 

convolution of a set of filters with the input image (𝑌) then adding with the biases. This stage 

extracts sub-images (patches), in the way that patches are overlapping, from the low-dose image 

𝑌.  
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4.2.1.2. Compressing 

Due to the fact that the computation complexity of the network relies on the filter numbers 

of the two following layers and the filter size to the power two, placing another layer with lower 

filter size between mapping and feature extraction layers is advantageous in order to reduce the 

computation complexity of the network.  

4.2.1.3. Mapping 

Heretofore, we have multi-dimensional feature maps for each sub-image (patch). In the third 

stage, these multi-dimensional feature vectors are mapped onto other multi-dimensional vectors. 

This convolutional layer can be considered as the convolution of a number of filters with the output 

of the second layer then adding with a set of biases. Theoretically, these multi-dimensional feature 

maps correspond to each normal-dose patch to form an output image in the reassembling operation.  

4.2.1.4. Enlarging 

As the number of feature vectors is reduced by the compressing layer, enlarging layer is 

adopted in order to expand the number of filters to boost the performance of the network. This step 

can be considered as a reverse procedure of the compressing step. This layer can be considered as 

a well-known pooling layer, but it was employed by convolutional kernels. As a result, the weights 

are updated in each iteration and can produce a better result than a traditional pooling layer. 

4.2.1.5. Reassembling 

With the same approach as in LDCNN method, the ultimate  normal-dose image can be 

considered as the convolution of a number of filters with the output of the second layer then adding 

with a set of biases.  

This stage assembles the produced normal-dose sub-images to form the output image. The 

output is desired to be an equivalent to the ground truth desired normal-dose image X.  
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It is worth noting that, each network layer in the Deep-LDCNN is influenced by independent 

and distinct intuitions. Therefore, we gather all five operations to create a deep convolutional 

architecture. Besides, all the biases and filter weights have to be iteratively optimized. Each layer 

follows an activation function which is Parametric Rectified Linear Unit (PReLU) in the proposed 

research. All the parameters are updated after calculating the loss function in each iteration and 

during the backpropagation. The feature vectors obtained in each convolution layer from the first 

to the last layer are 64,16,16,16,16,16,64, and 1 respectively. The size of convolutional filters is 

9,1,3,3,3,3,1,5 respectively. It is also worth stating that, the proposed convolutional neural 

network created low-level feature vectors such as edges following hierarchically high-level feature 

maps (more complicated and detailed shapes).  

Let us denote {𝑓𝑖}𝑖=1
7  as the filter size and {𝑚𝑖}𝑖=1

7   as the feature number of the network 

layers, the computational complexity of the presented CNN architecture can be approximately 

represented as follows: 

 𝑂 {(𝑓1
2𝑚1 + ∑ 𝑚𝑖𝑓(𝑖+1)

2𝑚(𝑖+1)

5

𝑖=1

+ 𝑚6𝑓7
2) 𝑆𝐶𝑇 (4.7)  

   

 

Figure 4.6. The structure of the denoising Deep-LDCNN. 

Where 𝑆𝐶𝑇 is the size of the CT image. The parameters of PReLU was neglected due to its 

insignificant computational cost.  

It is worth noting that the complexity is directly proportional to the size of the CT images 

and the formula is mostly influenced by the middle layers.  
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4.2.2. Parametric Rectified Linear Unit (PReLU) 

PReLU was invented to alleviate the issue of the well-known Rectified Linear Unit (ReLU). 

By definition, ReLU is a piecewise linear function that preserves the positive side and cut off the 

negative areas. Due to its non-elaborated operation, a computational process would be much faster 

than tanh or sigmoid activation functions. However, due to its pruning structure, ReLU has a 

probable drawback which is every time the function is inactive, the gradient becomes. This point 

can effect on some units so that they will not contribute to the optimization to adjust the filter 

weights.  

Regarding this non-trivial issue, Parametric ReLU has been introduced by He et al.[39]. This 

activation function exploits the advantage of an extra parameter 𝜆 and it defines as: 

 𝐹(𝑥𝑖,𝑗) = 𝑀𝑎𝑥(0, 𝑥𝑖,𝑗) + 𝜆𝑀𝑖𝑛(0, 𝑥𝑖,𝑗)  (4.8)  

Which 𝜆 is adopted as a learned parameter for the negative part which can be trained together 

with other parameters from training data by adding a trivial computational cost. Compared with 

ReLU, the Parametric ReLU has an advantage of producing small, non-zero gradients by 

possessing a non-zero negative part. The result of applying PReLU and ReLU on the thoracic 

dataset is shown in Figure. 4.7.  

 

Figure 4.7. Comparison of PreLU and ReLU on the validation set in Deep-LDCNN. 
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4.2.3. Comparison between Deep-LDCNN and 

LDCNN 

The first algorithm is named Low-dose Convolutional Neural Network (LDCNN) and the 

second algorithm is called Deep-Low dose Convolutional Neural Network (Deep-LDCNN). The 

presented network has better performance to the previous network in two ways. First, we improve 

the performance of the network by obtaining a deeper structure in producing higher SSIM and 

PSNR outputs. Second, we accelerate the performance by decreasing the number of parameters to 

learn. It proved that the performance of the network can be improved by replacing a single wide 

layer with several narrower layers with fewer feature maps. The following details are explaining 

these modifications. In the first layer, as the number of filters in the first layer (low-level feature 

maps) is sizable, it makes the computational complexity of the network significantly high. 

Therefore, in order to boost the speed of the methodology, Lin et al. [27] suggested adding another 

layer with single-size feature maps. By following the same concept, the compressing layer is 

connected to the first layer of the network (patch extraction) with single-size feature maps. 

Furthermore, as achieving sparser image descriptors by moving to next layers, the number of 

outputs in this layer should be less than the first layer. The next two layers in LDCNN which can 

be considered as mapping layers with feature size 9 (from Low-dose to normal-dose), modified 

into four layers with feature size 3. As mentioned earlier, this part is the most influential to the 

network complexity. In spite of the fact that we tried deeper networks in LDCNN, there were not 

enough experiments on producing more efficient outcomes due to not modifying the depth and the 

width of the mapping layer simultaneously. During experiments on Deep-LDCNN, we could reach 

to the balance between the number of layers (depth) and the number of feature maps (width). We 

inputted the width to be three as a medium filter size for all the layers in this part for consistency. 

Next step was adding an enlarging layer with an inverse approach of the compressing layer. Due 

to limiting the feature maps, the output would be a low-quality. Thus, enlarging feature maps after 

the mapping layer would considerably improve the image-quality (by 0.5dB in [22]). With the 

consistency with the compressing layer, filter sizes would be 1 × 1.  The issue last but not least, 

the last layer (reassembling layer) variables were altered by a fewer outputs and feature maps. As 

a result, we decreased the number of parameters from 256000 in the current network to 18000 in 
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the proposed network which is an outstanding improvement in the training time. We also utilize 

the parametric Rectified Linear Unit (PReLU) as an activation function instead of widely-known 

ReLU due to null features caused by zero gradients in ReLU. In summary, the new architecture is 

entirely symmetric, and it is narrow in the middle and wide at the ends.  

In order to the idea of elaborating the earlier convolutional network to achieve the Deep-

LDCNN, the process of the transformation was presented in three steps. First, in the reassembling 

layer, filter sizes were changed from 9 to 5. This step accelerates the network by 1.5 based on the 

equation 4.1. Second, the two nonlinear mapping layers in LDCNN are transformed to the 

combination of the four mapping layers with fewer parameters, a compressing layer beforehand 

and an expanding layer afterward. Altogether, the parameters were reduced from 190000 to 18000. 

Moreover, the architecture obtained a speed up of 8.2. This achievement proves that the depth of 

the network is the prominent factor in boosting the performance. Therefore, hick mapping layers 

in LDCNN were replaced with six thin layers in Deep-LDCNN. Hitherto, the performance was 

strengthened by 1.7 dB. As a result, the performance (average PSNR) was enhanced by 1.9 dB, 

and the speed of the network has been enhanced by 18.3 by providing evident and comprehensible 

steps. It is also worth stating that the Deep-LDCNN outperformed LDCNN both in speed and 

performance by a large margin. The performance was achieved by training on the CATPHAN600 

dataset.  

4.2.4. Network parameters and Efficiency  

In order to validate the proposed Deep-LDCNN structure and to find the optimal settings for 

the best performance, a number of experiments have been managed. Due to the general rule in 

deep convolutional neural networks, it is unfeasible to analyze all the network parameters; mainly 

feature map size and number of filters in each layer. As a result, the most dominant parameters 

which have the most significant impact on the network efficiency have been identified and other 

parameters would leave unaltered. These sensitive parameters have been investigated which their 

minor adjusts would notably influence the performance of the network. By preserving the 

symmetric property of the network since it is narrow in the middle and wide at the ends, like an 

hourglass, all the layers which were considered as the mapping layers, kept identical. Moreover, 

the compressing layer and the enlarging layer had the reverse structure. Therefore, the number of 
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filters and the number of channels in the compressing layer corresponded the number of channels 

and the number of filters in the expanding layer respectively. As a result, three variables have been 

investigated as sensitive parameters—the number of feature maps in the patch extraction layer, 

𝑚1, the number of filters in the compressing layer, 𝑚2, and the number of mapping layers, 𝑘. As 

a consequence, the overall framework of the network which consists of five parts can be noted by 

the following formula: 

𝐶𝑜𝑛𝑣 (9, 𝑚1, 1) − 𝑃𝑅𝑒𝐿𝑈 (9, 𝑚1, 1) − 𝐶𝑜𝑛𝑣 (1, 𝑚2, 𝑚1) − 𝑃𝑅𝑒𝐿𝑈 (1, 𝑚2, 𝑚1) − 𝑘 ×

[𝐶𝑜𝑛𝑣 (3, 𝑚2, 𝑚2) − 𝑃𝑅𝑒𝐿𝑈 (3, 𝑚2, 𝑚2)] − 𝐶𝑜𝑛𝑣 (1, 𝑚1, 𝑚2) − 𝑃𝑅𝑒𝐿𝑈 (1, 𝑚1, 𝑚2) −

𝐶𝑜𝑛𝑣 (5,1, 𝑚1)                                                                   (4.9) 

Furthermore, the computational complexity of the proposed network computed as: 

 𝑂 {(𝑤1
2𝑚1 + ∑ 𝑚𝑖𝑤(𝑖+1)

2𝑚(𝑖+1)
5
𝑖=1 + 𝑚6𝑤7

2)𝑆𝐶𝑇} → 𝑂{(92𝑚1 + 𝑚2𝑚1 + 𝑘(32𝑚2
2) +

𝑚1𝑚2 + 52𝑚1)𝑆𝐶𝑇} = 𝑂{(2𝑚1𝑚2 + 9𝑘𝑚2
2 + 106𝑚1)𝑆𝐶𝑇}                                                      (4.10) 

In order to validate the proposed Deep-LDCNN structure and to find the optimal parameters 

for the best performance, a number of experiments regarding the selected sensitive parameters 

have been managed. Table 4.2. Summarize all the twelve experiments which have been conducted. 

The sensitive variables were set to 𝑚1 = 56,64,  𝑚2 = 12,16, and 𝑘 = 3,4,5. Average PSNR was 

used as a quantitative criterion and the anthropomorphic thoracic phantom (TCIA) was used as a 

CT dataset. First, by considering the fact that deep convolutional neural networks can produce 

better results by increasing the number of layers, the effect of the number of layers was been 

studied. Therefore, the value of 𝑘 was modified while 𝑚1  and  𝑚2 were remain fixed. The result 

was not unexpected and was aligned with the CNN general rule. 𝑘 = 5 produced higher PSNR 

rather than 𝑘 = 4 and 𝑘 = 3. The performance was indicated in Figure. 4.8. Notwithstanding, we 

should take it into account that adding and extra layer will introduce more complexity to the 

network and will reduce the convergence rate. Furthermore, the trend between 𝑘 = 3 and 𝑘 = 4 

was more considerable than between 𝑘 = 4 and 𝑘 = 5.  

In another parameter settings, the performance of the network is explored by modifying the 

sensitive variables 𝑚1  and  𝑚2. On the whole, a network result should ameliorate by expanding 

its size such as appending more feature vectors and filter sizes. On the contrary, it will include 

more parameters in training stage which will increase the training time. The results were indicated 
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in Table 4.2. and Figure. 4.9. compared the results of the high-ranked parameter settings. As it is 

obvious, the improvements in 𝑘 = 5 was marginal rather than 𝑘 = 4. By and large, there is a 

balance between the number of parameters and the network performance. It is also with stating 

than in all the parameter settings, the results were better than LDCNN and, the parameters were 

reduced at least. 

 

Figure 4.8. Comparison between Deep-LDCNN architectures by fixing 𝒎𝟏 and 𝒎𝟐 and changing 𝒌 

(Number of mapping layers) 

 

Table 4.2. Comparison of parameter settings and a trade-off between the parameters and performance 

in Deep-LDCNN 

Parameter 

Settings 

𝒎𝟏 = 𝟓𝟔 𝒎𝟏 = 𝟔𝟒 

 𝑚2 = 12 𝑚2 = 16 𝑚2 = 12 𝑚2 = 16 

𝒌 = 𝟑 34.134 34.167 34.178 34.187 (15,744 parameters) 

𝒌 = 𝟒 34.223 34.238 34.239 34.3 (18,048 parameters) 

𝒌 = 𝟓 34.302 34.305 34.306 34.306 (20,352 parameters) 
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Figure 4.9. Comparison between Deep-LDCNN architectures by fixing 𝒌  and changing 𝒎𝟏 and 𝒎𝟐 

4.2.5. Implementation Details 

   By training, the network parameters such as weights and biases in the regression objective 

were optimized via backpropagation by standard stochastic gradient descent. The presented deep 

convolutional neural network required sets of low-dose CT images as an input and the 

corresponding normal-dose as an output. Ascribable to insufficient sample data in medical 

imaging, low-dose CT images were generated imprecisely by imposing White Gaussian noise or 

Poisson on the normal-dose CT images which make the approach unrealistic. However, the 

performed research relied on real low-dose and normal-dose datasets. 

It is worth noting that all the images were cropped to achieve several thousand sub-images 

to train the deep network. The biases were set to zero initialed. The filter weights were initialized 

by producing vectors randomly from a Gaussian distribution with zero mean and standard 

deviation 0.001. Moreover, the learning rate of all the layers except the last layer was initiated to 

0.01 was lessening in every 10000 iterations by a factor of 0.9. For the last layer, the learning rate 

is initialized to 0.001 with the same decaying factor as the other convolutional layers, and the 

momentum was set to 0.9. 
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Chapter 5 Results and Discussions 
 

 

 

 

 

 

 

 

 

5.1. Convolutional Architecture for Low-Dose CT 

Noise Reduction (LDCNN) 

The proposed algorithm was validated by experiments using phantom CT datasets, and the 

results are compared with BM3D [19] and Simultaneous Sparse Coding (SSC-GSM) [20]which is 

claimed as the state-of-the-art image restoration by the authors. 
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We randomly shuffle images in each dataset in order to reflect enough diversity in the 

training, validation, and test data. The training, validation, and test data include 50%,20%, and 

30% of each dataset respectively.   

5.1.1. CT Datasets 

In order to certify the performance of the proposed architecture, a widely used CT phantom 

named CATPHAN600 was utilized in this experiment. This prevalent standard phantom consists 

of 583 images which images involve line pairs of different spacing and spheres with varying 

contrast and is used for evaluating spatial resolutions. All the images have the size of 512×512 and 

the slice thickness of 0.625 mm. Normal-dose images have the exposure rate of 210 mA, and the 

one with the 60 mA can be considered as low-dose CT images. The convolutional neural network 

was trained with the portion of the normal-dose and low-dose image pairs and the rest of the CT 

images considered in validation or testing phase.   

In Another dataset, 407 normal-dose and the corresponding low-dose CT images were taken 

from The Cancer Imaging Archive (TCIA)[40]. All the images have the size of 512×512 and the 

slice thickness of 0.75 mm. The exposure rate of normal-dose is 200 mA, and the low-dose is 25 

mA. This dataset was focused on the large nodules and put efforts on factors which influence the 

precision and accuracy of nodule size detection, and the images were taken with the Siemens 64-

row scanner. In this anthropomorphic thoracic phantom, artificial nodules with different 

characteristics (size, density, shape, location) were inserted and studied. 

5.1.2. Evaluation Metrics and Quality Assessment 

Models 

5.1.2.1. Peak Signal-to-Noise Ratio (PSNR) 

The long-established and most favorable image evaluation technique is the peak signal-to-

noise ratio (PSNR). In this algorithm, the noisy image (target) is compared pair-wise to the 

reference image by pixel. Mathematically, the mean square error is initially computed by averaging 
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the squared intensity pixel-wise differences (𝐿2-norm) of the distorted image and the reference 

image. As a result, MSE can be represented as: 

 𝑀𝑆𝐸 =
1

𝑃𝑄
∑ ∑(𝑚𝑖𝑗 − 𝑛𝑖𝑗)2

𝑄

𝑗=1

𝑃

𝑖=1

 (5.1)  

Which 𝑚𝑖𝑗 and 𝑛𝑖𝑗 are the pixel values at the location ( 𝑖, 𝑗) in the noisy and source images 

and 𝑃, 𝑄 is the size of the image. Afterwards, the PSNR is calculated by considering the maximum 

value of the pixels (which is one in this study since we normalized all the CT images).  PSNR can 

be calculated by the following formula: 

 𝑃𝑆𝑁𝑅 = 10 × log (
12

𝑀𝑆𝐸
)  𝑑𝐵 (5.2)  

Where the images were normalized so the gray level intensities are in the range [0,1] and 

the maximum gray level is 1.  

The popularity of this method is due to its high accessibility, possessing a comprehensible 

physical definition, being independent of the viewing conditions, and the capability to evaluate the 

white noise. Notwithstanding, a number of recent studies declared the ineffectiveness this method 

on the wide range of noise distributions. Furthermore, this algorithm is not aligned with the human 

visual perception due to its dependencies to the energy of errors instead of structural distortions.   

5.1.2.2. Structural Similarity Index (SSIM)  

An improved method for evaluating images is the similarity index (SSIM) [38]. Images are 

significantly structured. The image pixels indicate high correlation, especially in the neighbor 

regions and these dependencies exhibit precious information about the objects in the visual scene. 

It indicates that the image noise distortions can be discerned by determining the degraded structural 

patterns information. SSIM was introduced based on comparing the local pattern structures of 

normalized pixel intensities by contrast and luminance. SSIM can be computed as the following: 

 𝑆𝑆𝐼𝑀 =
(2𝜇𝑖𝜇𝑗 + 𝐶1)(2𝜎𝑖𝑗 + 𝐶2)

(𝜇𝑖
2 + 𝜇𝑗

2 + 𝐶1)(𝜎𝑖
2 + 𝜎𝑗

2 + 𝐶2)
 (5.3)  
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Which 𝐶1 = (𝐾1𝐿)2, 𝐶2 = (𝐾2𝐿)2, 𝐿 correspond to the grayscale pixel intensities of the 

source images and 𝐾1 and 𝐾2 are the positive constant parameters. 𝜇𝑖and 𝜇𝑗 are the mean values, 

and 𝜎𝑖  and 𝜎𝑗 are the standard deviations of the distorted and source images respectively. SSIM 

has been applied to various noise distortions such as mean shift, contrast stretching, speckle noise 

and Gaussian white noise and exhibit promising results.  

Table 5.1. indicates the average denoising results for the proposed deep convolutional neural 

network algorithm, BM3D, and SSC-GSM for the thoracic CT dataset. We include the same results 

for the CATPHAN 600 phantom data in Table 5.2. As it is evident in Tables 5.1, and 5.2, the 

proposed deep learning method provides the highest scores in all quantitative metrics. It is worth 

noting that the result of our proposed method is based on the output from 108 backpropagation. 

Thus, it has the best performance amongst all the mentioned methods. 

Table 5.1. Comparison of performance of LDCNN on the thoracic CT dataset 

Eval. Mat Proposed Algorithm SSC-GSM BM3D 

PSNR 32.112 28.754 28.298 

SSIM 0.834 0.786 0.736 

RMSE 0.248 0.365 0.385 
 

Table 5.2.Comparison of performance of LDCNN on the CATPHAN 600 CT dataset 

Eval. Mat Proposed Algorithm SSC-GSM BM3D 

PSNR 41.234 38.967 38.578 

SSIM 0.941 0.913 0.919 

RMSE 0.008 0.011 0.011 

 

Figure. 5.1. Demonstrates how the number of backpropagations can improve the result of 

our proposed LDCNN method. It is worth noting that after the 7 × 107 backpropagations, the 

PSNR is quite constant. 
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Figure 5.1.The validation convergence curve of the LDCNN network and the results of BM3D and 

SSC-GSM. 

The detailed result of algorithms is depicted in Figure. 5.2. in order to visualize the edge- 

preserving feature of the performed LDCNN network. 

 

Figure 5.2. Zoomed images of the result of the denoising methods. Top left: BM3D, Top right: SSC-

GSM, Bottom left: LDCNN network, Bottom right: normal-dose CT 

Figure. 5.3. to Figure. 5.6. Visualize performance of sample output images for different 

methods to grasp more intuitive feeling. All the images are drawn randomly. The first two rows 

are from the thoracic CT dataset. The last row is from the CATPHAN 600 CT dataset.  As can be 

observed, BM3D and SSC-GSM perform better on the CATPHAN 600 phantom data due to its 

structured pattern of the spheres. However, our proposed method still produces better images as it 

removes more artifacts and creates sharper edges.  
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Figure 5.3. Visual comparison of denoising outputs on CATPHAN 600 with different contrast. From 

left to right: Low-dose, Normal-dose, LDCNN, BM3D method, SSC-GSM method 
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Figure 5.4.Visual comparison of denoising outputs with on CATPHAN 600different line spacing. From 

left to right: Low-dose, Normal-dose, LDCNN, BM3D method, SSC-GSM method 
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Figure 5.5. Visual comparison of denoising outputs on the Thoracic dataset. From left to right: Low-

dose, Normal-dose, LDCNN, BM3D method, SSC-GSM method 
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Figure 5.6.Visual comparison of denoising outputs on the Thoracic dataset. From left to right: Low-

dose, Normal-dose, LDCNN, BM3D method, SSC-GSM method 
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5.2. Deep Convolutional approach for Low-Dose 

CT Image Noise Reduction (Deep-LDCNN) 

The presented approach was evaluated by medium-dose CATPHAN 600, piglet and thoracic 

datasets. Also the outcome is quantitatively and qualitatively compared to the widely known and 

state of the arts methods in image denoising BM3D [19], Simultaneous Sparse Coding (SSC-

GSM),  Learning to Separate Morphological Diversity (TV-MCA) [20], Chen CNN[36], and the 

previous research on CT image denoising (LDCNN).  

5.2.1. CT Datasets 

5.2.2.1. Simulated Dataset 

For creating the simulated dataset, we use normal-dose CT images taken from The Cancer 

Imaging Archive (TCIA), CATPHAN 600 and the piglet datasets. All the images have the size of 

512 × 512.  

The sonograms were simulated from the normal-dose CT images using fan-beam geometry. 

Since it was studied that the noise distribution in CT sonograms containing the Poisson noise, 

Poisson noise were added to the normal-dose images in order to create the corresponding low-dose 

CT images. As a result, the distribution can be considered as: 

 𝐼𝑚𝑎𝑔𝑒~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝐼𝑜𝑒−𝑟) (5.4)  

Which the noise levels can be controlled by the factor 𝐼𝑜 widely known as blank flux and 𝑟 

is the sinogram simulation factor.  

5.2.2.2. Clinical Dataset 

A CT image dataset, was acquired from piglet with a variety of doses by GE scanner 

(Discovery CT750 HD), 906 normal-dose and the corresponding low-dose CT images with the 

slice thickness of 0.625 mm. CT images with 300 mA correspond to the normal dose while 5%, 

10%, and 25% can be considered as the current reductions images, low-dose CT. A sequence of 

tube currents was utilized in the scanning process in order to provide CT images with various dose 
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levels. All the images have the size of 512×512. The detail of the piglet dataset is illustrated in 

Table 5.3. 

In order to certify the performance of the proposed architecture, a widely used CT phantom 

named CATPHAN600 and the anthropomorphic thoracic phantom are utilized as clinical datasts.  

Table 5.3. Piglet dataset setting with four different radiation doses and 0.625 mm slice thickness. 

Dose Level Normal 25%  10%  5%  

Tube current (mA) 300 75 30 15 

CTDIvol (mGy) 30.83 7.71 3.08 1.54 

DLP (mGy-cm) 943.24 235.81 94.32 47.16 

Effective dose (mSv) 14.14 3.54 1.41 0.71 

 

Therefore, by using three datasets, various CT images which demonstrate clinical CT 

imaging applications were used. Moreover, we could experiment various noise intensities by 

changing the suitable factor in the simulated dataset and validate the performed network. A number 

of typical CT images which were studied in this research are in Figure. 5.7. 

As a means to provide large-scale datasets to satisfy the deep convolutional architectures 

and fathoming the limitation of the medical datasets mainly concerning the privacy of thoracic 

phantoms, image-patches extracted from this dataset in order to expand the CT image dataset. The 

sub-images were taken with the size of  33 × 33 with the stride of 11. Moreover, training, 

validation and testing images were taken randomly shuffled from the normal-dose and the 

corresponding low-dose CT images by 50%, 25%, and 25% respectively. Furthermore, the data 

augmentation was used in order to double the thoracic images with the scale transformation. 
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Figure 5.7. Samples of studied normal-dose CT image datasets in Deep-LDCNN. 

5.2.2. Evaluation Metrics and Quality Assessment 

Models 

In this study, a number of recently established image evaluation metrics were employed. 

Image quality is calculated through different quality assessment models in order to compare the 

output of the proposed network F(Y) to the normal-dose image (X). The established peak signal-

to-noise ratio (PSNR), structural similarity (SSIM), root mean squared error (RMSE), universal 

quality index (UQI), multi-scale SSIM index (MSSIM), weighted signal-to-noise ratio (WSNR), 

visual information fidelity (VIF), noise quality measure (NQM), information fidelity criterion 

(IFC) were applied as quantitative evaluation metrics.  
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5.2.2.1. Multi- scale SSIM (MSSIM) 

SSIM takes a whole image as one block while MSSIM is applied on image region windows 

and calculating the average value at the end in case of the locally non-stationary spatial noise 

distortions. MSSIM can be expressed as the following expression: 

 𝑀𝑆𝑆𝐼𝑀 =
1

𝑇
∑ ∑ 𝑆𝑆𝐼𝑀(𝑖, 𝑗)

𝑗𝑖

 (5.5)  

Where 𝑇 is the total number of SSIM windows. MSSIM indicated high correlation with the 

human visual system.  

5.2.2.2. Universal Quality Index (UQI) 

Universal quality index (UQI) which was proposed by Bovik et al. [41]is a normalized 

approach which was presented to compare the distorted image and the reference image in terms of 

the luminance (mean values), contrast and correlation (standard deviations) and it is consistent 

with the human visual system (HVS). This approach applies to the image patches (regions) to 

capture image local features with sliding window algorithm and then combines them together. This 

metric exhibits an inconsistent and poor result when the image has small first and second order 

statistics. 

5.2.2.3. Visual Information Fidelity (VIF) 

Visual information fidelity (VIF) was presented by Sheikh et al. [42] which is determined 

by the amount of the mutual (relative) information between the target (noisy) image and the 

reference image using the luminance component of the image and the wavelet decomposition. 

Specifically, this algorithm quantifies the ratio of the shared information between the clean input 

image and the source image, and the shared information between the noisy image and the source 

image. It depends on the effect of the distortion on the image pattern statistics and the amount of 

the relative structural information which can be extracted by the human visual perception. This 

method exhibits the promising results on the cross-distortion performance and resemblance to 

HVS. 
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5.2.2.4. Weighted Signal-to-Noise Ratio (WSNR) 

Weighted signal-to-noise ratio (WSNR) which was suggested by [43] is another recent image 

quality metric, which mathematically defines as the ratio of the of the average weighted signal 

power to the average weighted noise power. In this method, weighting is derived from a frequency 

response, called the contrast sensitivity function (CSF) which is a linear approximation to the HVS 

and higher WSNR is a resemblance to higher image quality.  

5.2.2.5. Noise Quality Measure (NQM) 

Noise quality measure (NQM) was proposed by Venkata et al. [43]is based on the fluctuation 

in contrast sensitivity with image dimensions, spatial frequency, and distance and average local 

luminance based on the Peli’s contrast pyramid [44]. It consists of the two main steps: first, the 

noise and the reference images are modeled through a nonlinear contrast pyramid pixel-wise. 

Second, the traditional signal-to-noise ratio of the distorted image is computed concerning the 

modeled target image. This algorithm doesn’t depend on the orientation sensitivity which results 

in an improved computational complexity. Moreover, this method is highly correlated with human 

visual results. 

5.2.2.6. Information fidelity criterion (IFC) 

Information fidelity criterion (IFC) was performed by Sheikh et al.[38] represents the 

information that could ideally be recognized by a human brain from a particular sub-band in 

distorted and the source images. It considers the shared information between the reference and 

noisy images in a specific sub-band and generalizes the result for the whole frequency bands.  

The network was trained using the Caffe package and Matlab R2017a. The machine 

properties are Intel core i7 CPU 3.4GHz and 16GB memory and the Graphics Card is GeForce 

GTX 1070. Figure 5.8. indicated how by increasing the number of backpropagations, the better 

results can be obtained. It would be valuable to state that after the 8 × 107 backpropagations, the 

PSNR is quite constant.  
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Figure 5.8.The result of the different algorithms on the CATPHAN 600 with different line spacing in 

Deep-LDCNN. 

 

5.2.3. Clinical dataset 

5.2.3.1. CATPHAN 600  

Two illustrative CT image frames from CATPHAN 600 dataset were selected to analyze the 

performance of the proposed architecture. The first result is depicted in Figure. 5.9. which more 

focused on the different spacing lines with a variety of resolutions. The second result is depicted 

in Figure. 5.10. which more focused on the different spheres with a wide variety of contrast. It is 

clear that the proposed network acquired the superior performance in noise cancellation and 

structure conservation. In other methodologies, BM3D, SSC-GSM, and TV-MCA introduced 

some noise distortion, blurred contrast regions, or low identifiable parts. However, the previous 

network (LDCNN) and Chen CNN provided better results but it still some blurred lesions 

remained.  Furthermore, the proposed network could preserve the detailed edges and corners. It 

can be due to the small feature map sizes in the proposed algorithm compared to Chen CNN and 

the previous algorithm. The convolutional filters, especially in the last layer, due to the averaging 

characteristics of this mathematical method, introduces blurred edges and by increasing the filter 

map sizes, this blurring artifact elevates. In the proposed network, the feature map sizes in the last 

layer are smaller than the other studied CNNs and as a result, it yields better results.  
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Table 5.4. summarized the performance of the utilized mythologies. It is obvious that the 

proposed network achieved superior performance regarding the evaluation metrics. Stating that 

the network result was based on the 8 × 107 backpropagations. By providing signal-based 

evaluations and visually-pleasing quality metrics, the proposed method exhibits a promising 

performance.  It is also worth stating that due to the spherical structures of the CATPHAN 600 

dataset, which is a resemblance to the Gaussian filters, all the methods provide an excessive noise 

suppression and can acquire higher PSNR among all the other datasets.  

 

Table 5.4. The average results of quality metrics on the CATPHAN 600 in Deep-LDCNN performance. 

Eval. Mat Deep-LDCNN LDCNN BM3D SSC-GSM TV-MCA Chen CNN  

PSNR (dB) 43.2701 41.4976 38.9322 37.9603 38.1115 41.403 

RMSE 0.0069 0.0084 0.0113 0.0126 0.0124 0.0085 

SSIM 0.9524 0.9471 0.9297 0.9305 0.9305 0.944 

MSSIM 0.9561 0.9421 0.9278 0.9381 0.9381 0.9445 

UQI 0.8064 0.7694 0.6076 0.6504 0.6703 0.8034 

WSNR (dB) 46.785 44.354 41.3130 32.1156 32.4769 45.589 

VIF 0.9780 0.954 0.8894 0.8545 0.8616 0.9712 

NQM 41.564 35.563 29.1657 28.8546 28.6544 36.6134 

IFC 5.2347 5.167 2.1757 2.1915 2.2047 5.154 
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Figure 5.9. The result of the different algorithms on the CATPHAN 600 with different line spacing in 

Deep- LDCNN performance. From left to right: Low-dose, Normal-dose, Deep- LDCNN, BM3D method, 

SSC-GSM method, TV-MCA method, LDCNN, Chen CNN. 
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Figure 5.10. The result of the different algorithms on the CATPHAN 600 with different contrast in 

Deep- LDCNN performance. From left to right: Low-dose, Normal-dose, Deep- LDCNN, BM3D method, 

SSC-GSM method, TV-MCA method, LDCNN, Chen CNN. 
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5.2.3.2. Piglet Dataset  

Two sample CT images are depicted in Figure. 5.11. and Figure. 5.12. in order to validate 

the performance. Note that the images are drawn randomly to represent two distinctive regions of 

the piglet.  As it is clear, the proposed network can significantly improve the low-dose CT image 

(artifact reduction) and keep the inner structures and edges and fine details, while other 

methodologies, especially BM3D, SSC-GSM, and TV-MCA still seem noisy. 

Table 5.5. provides the comparison of the different algorithms on piglet dataset. The 

proposed network achieved the best performance among all the algorithms.  

 

Table 5.5. The average results of quality metrics on the Piglet dataset in Deep- LDCNN performance. 

Eval. Mat 
Deep-
LDCNN 

LDCNN BM3D SSC-GSM TV-MCA Chen CNN  

PSNR (dB) 42.2701 40.024 34.3748 36.9603 37.546 40.001 

RMSE 0.0077 0.01 0.0191 0.0142 0.0133 0.01 

SSIM 0.943 0.931 0.8856 0.8967 0.897 0.928 

MSSIM 0.941 0.9345 0.8876 0.8976 0.8978 0.9267 

UQI 0.7834 0.7545 0.6734 0.7044 0.7344 0.7411 

WSNR 
(dB) 

42.4532 40.9454 35.6422 37.3912 38.4367 42.4912 

VIF 0.978 0.9611 0.8959 0.9012 0.9011 0.9744 

NQM 27.8868 25.8945 23.4582 24.4581 24.9845 27.1292 

IFC 3.4832 3.4191 2.8745 2.9788 3.0912 3.1245 
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Figure 5.11.  The result of the different algorithms on the Piglet dataset in Deep- LDCNN performance. 

From left to right: Low-dose, Normal-dose, Deep- LDCNN, BM3D method, SSC-GSM method, TV-MCA 

method, LDCNN, Chen CNN 
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Figure 5.12. The result of the different algorithms on the Piglet dataset in Deep- LDCNN performance. 

From left to right: Low-dose, Normal-dose, Deep- LDCNN, BM3D method, SSC-GSM method, TV-MCA 

method, LDCNN, Chen CNN . 
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5.2.3.3. Thoracic Phantom Dataset  

Methodologies are compared on the anthropomorphic thoracic phantom dataset and Figure. 

5.13. and Figure. 5.14. ate two random CT images to be the representatives of the dataset. Figure. 

5.13. concentrates on the outer lung regions and Figure. 5.14. focuses on the inner lung and small 

structures (mainly consists of blood vessels). Notwithstanding the fact that all the convolutional 

neural network approaches are successful in preserving the sharp edges and other algorithms 

cannot provide a reliable contrast robustness and artifact suppression, the proposed Deep-LDCNN 

method can significantly remove the noise within the lung which is a significant achievement. 

Table 5.6. summarize the quality metrics, and it was clear that in all the visual-based 

assessments (such as SSIM, UQI, and VIF) and signal-based metrics (PSNR, and RMSE), the 

Deep-LDCNN approach can attain the highest performance. 

 

Table 5.6. The average results of quality metrics on the thoracic phantom dataset in Deep- LDCNN 

performance. 

Eval. Mat Deep-LDCNN LDCNN BM3D SSC-GSM TV-MCA Chen CNN  

PSNR (dB) 33.3452 31.456 27.4814 26.8704 27.0391 31.241 

RMSE 0.0215 0.0267 0.0423 0.0453 0.0445 0.0274 

SSIM 0.9624 0.9544 0.9044 0.9102 0.9134 0.9599 

MSSIM 0.9641 0.9599 0.9023 0.92 0.9201 0.9611 

UQI 0.8912 0.8811 0.8411 0.8478 0.8522 0.8823 

WSNR (dB) 34.8473 34.123 30.583 31.005 31.194 34.948 

VIF 0.9834 0.9832 0.8034 0.8845 0.9022 0.9782 

NQM 29.453 28.124 25.234 26.983 26.999 28.934 

IFC 3.857 3.276 2.987 2.991 3.002 3.713 
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Figure 5.13.  The result of the different algorithms on the thoracic phantom dataset in Deep- LDCNN 

performance. From left to right: Low-dose, Normal-dose, Deep- LDCNN, BM3D method, SSC-GSM method, 

TV-MCA method, LDCNN, Chen CNN . 
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Figure 5.14. The result of the different algorithms on the thoracic phantom dataset in Deep- LDCNN 

performance. From left to right: Low-dose, Normal-dose, Deep- LDCNN, BM3D method, SSC-GSM method, 

TV-MCA method, LDCNN, Chen CNN . 
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5.2.4. Simulated dataset 

To validate the result of the proposed Deep-LDCNN network, artificial datasets are created. First, 

the CT sinogram is computed from normal-dose CT images by imposing a fan-beam methodology. 

Then, a low-dose CT dataset was generated by applying Poisson noise to the sinogram. The 

advantage of this method is, the noise power can be controlled by adjusting a noise factor. 

Figure. 5.15, 5.16, and 5.17. are sample images for each dataset. In this approach, first four types 

of low-dose CT images are created by applying Poisson noise with different levels of the noise 

factor  𝐼0 = 104,  3 × 104,  5 × 104, 105.The noisiest images 𝐼0 = 105 , which are suffer from the 

critical deterioration and most of the structures cannot be discerned. The random combination of 

all the low-dose levels (200 images from each set) are considered as a low-dose CT, and along 

with the normal-dose CT constitute a training set. Moreover, the noisy images 𝐼0 =

104,  3 × 104,  5 × 104, 105  are considered as a testing and validation sets. In this way, not only 

the stimulated dataset was evaluated which is the ultimate aim, but also the generalization 

characteristic of the network is also examined. Since, one of the issues in CT denoising, is that the 

low-dose CT can be obtained by adjusting all the radiation doses, which are lower than normal-

dose radiation. The proposed Deep-LDCNN can achieve the promising performance by preserving 

the detailed structures and being more pleasant for visual inspection.  
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Figure 5.15. A sample image from the piglet dataset imposed on the simulated low dose and the result 

of the Deep- LDCNN. The first row is the normal full dose. The left column is the created low-dose with 𝑰𝟎 =

𝟏𝟎𝟒, 𝟑 × 𝟏𝟎𝟒, 𝟓 × 𝟏𝟎𝟒, 𝟏𝟎𝟓 respectively and the right column is the output of the Deep- LDCNN on the 

corresponding CT image. 
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Figure 5.16. A sample image from the thoracic dataset imposed on the simulated low dose and the 

result of the Deep- LDCNN. The first row is the normal full dose. The left column is the created low-dose with 

𝑰𝟎 = 𝟏𝟎𝟒, 𝟑 × 𝟏𝟎𝟒, 𝟓 × 𝟏𝟎𝟒, 𝟏𝟎𝟓 respectively and the right column is the output of the Deep- LDCNN on the 

corresponding CT image. 
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Figure 5.17.  A sample image from the CATPHAN 600 dataset imposed on the simulated low dose and 

the result of the Deep- LDCNN. The first row is the normal full dose. The left column is the created low-dose 

with 𝑰𝟎 = 𝟏𝟎𝟒, 𝟑 × 𝟏𝟎𝟒, 𝟓 × 𝟏𝟎𝟒, 𝟏𝟎𝟓 respectively and the right column is the output of the Deep- LDCNN on 

the corresponding CT image. 

 

 

5.2.5. Architecture Robustness  

In this part, the concentrate is on the fact that the piglet dataset, consists of four different radiation 

doses (300, 75, 30, 𝑎𝑛𝑑 15 mA), which each of the last three radiation currents can be considered 

as a low-dose CT dataset. Generally speaking, low-dose CT can be any radiation currents which 

is lower than the normal-dose CT image. Moreover, the medical convolutional neural networks 

are trained based on the specific low-dose and cannot satisfactory perform on different noise levels. 

As a result, we randomly select the low-dose CT images by different noise levels from the piglet 

dataset (600 images from 2 different noise levels, 15 and 30) along with the corresponding normal-

dose CT images to from a training set. A sample test image is depicted in Figure. 5.18. to evaluate 

the result and it proves the performance robustness of the proposed Deep-LDCNN architecture. 

 

 

 

 



[77] 
 

 

 

 



[78] 
 

 

Figure 5.18.  A sample image from the piglet dataset with different radiation dose and the result of the 

Deep- LDCNN. The first row is the normal full dose. The left column is the clinically generated low-dose with 

the dosage 𝟐𝟓%, 𝟏𝟎%, 𝟓% respectively and the right column is the output of the Deep- LDCNN on the 

corresponding CT image. 

 

5.2.6. Computational Cost and Running Time 

In general, deep learning approaches are possessing the computational cost over the 

dictionary learning and iterative statistical methodologies. By introducing high-level GPUs, the 

training time of convolutional neural networks is enhanced. The BM3D method took one minute 

for denoising each CT image. The SSC-GSM method took five minutes to be implemented on each 

image since it exploits a complicated structure to estimate the noise distortions. The Chen CNN , 

which is comprised of three layers, took ten hours to train 106 patches in Caffe framework based 

on the original configuration. Afterwards, it took twenty seconds to test on each CT image in the 

testing set. The LDCNN and Deep-LDCNN took twelve and nine hours respectively to train 106 

patches and the testing time is about forty and eleven seconds respectively as the Deep-LDCNN 

is comprised of about 18,000 parameters while LDCNN consists of 256,000 parameters. Note 

that the training time was calculated until the RMSE of the network reach to 0.01. As a result, the 

deep learning proposed approaches exhibit more efficient performance than other methods 

regarding the computational cost and running time.  
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Chapter 6 Conclusion and Future Works 
 

 

 

 

 

 

 

 

6.1. Convolutional Architecture for Low-Dose CT Noise 

Reduction (LDCNN) 

In this thesis, a fully convolutional framework is presented in order to learn an end-to-end 

mapping between low-dose and normal-dose CT images. It consists of four convolutional layers 

with ReLU as an activation function. All the network parameters are trained by backpropagation 

technique in order to obtain the optional values. The network structure (number of layers, size of 

feature maps, and the number of filters) is investigated in detail. The performed network can be 

considered as the combination of the dictionary learning methods, which was the prevailing 
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methods before deep neural networks, and deep learning frameworks. For each convolutional 

layer, the corresponding function in dictionary learning framework is explained and the dictionary 

learning steps are formulated as the convolutions in the hidden layers. The performance was 

superior to the dictionary learning algorithms in terms of achieving the high-quality CT images. 

The results of the low-dose CT architecture are evaluated by two CT phantom datasets and indicate 

that the proposed architecture is capable of detecting low-contrast objects. 

6.2. Deep Convolutional approach for Low-Dose CT Image 

Noise Reduction (Deep-LDCNN) 

The deep convolutional network is introduced to enhance the training and the performance 

of the LDCNN. The primary element, which makes the Deep-LDCNN better than the LDCNN is 

using multiple convolutional layers in a mapping stage, namely compressing layer, mapping 

layers, and expanding layers. Moreover, the development process can be considered as fine-tuning 

a convolutional network, which is very popular in medical applications. The performance of the 

network is compared with three sparse coding methods along with the Chen CNN, which is a 

recently published paper in low-dose CT denoising. It was demonstrated that the proposed 

algorithm has an outstanding merit due to its simplicity and superiority of performance compared 

to the most commonly used methods. The results of the low-dose CT network indicate that the 

proposed architecture is capable of efficiently denoising low-dose CT images. Due to the presented 

advantages, the proposed structure could be adapted in various computer vision applications such 

as image inpainting and image interpolation.  

In this study, three CT datasets are used to evaluate the results, which each dataset has 

distinct features. In the thoracic dataset, the network is evaluated to detect small objects. In 

CATPHAN 600 phantom, the focus is on the different line spacing and contrast. Furthermore, the 

architecture is evaluated using the piglet dataset. The simulated CT datasets are utilized with 

different noise level in order to demonstrate the robustness of the Deep-LDCNN features. The 

proposed network architecture support input CT images of any arbitrary sizes with variable X-ray 

doses. The network is capable of denoising a variety of radiation dosages.  
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6.3. Future improvements 

As the deep learning is rapidly growing and its performance keep surpassing the previous 

methods, further achievements are gaining, and the deep learning becomes the interest of the 

majority of the researchers in all the fields of science. In order to improve the network structure, 

employing the residual frameworks is suggested. Moreover, utilizing the fine-tuning technique is 

advantageous due to improving the computational complexity of the deep learning approaches. 

Utilizing generative adversarial networks and block-matching CNNs can also be useful, which are 

the recent and updated convolutional frameworks.  
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