Ryerson University

Digital Commons @ Ryerson

Theses and dissertations

1-1-2003

Automatic target matching

Michael Leslar
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations

b Part of the Computer Sciences Commons

Recommended Citation
Leslar, Michael, "Automatic target matching” (2003). Theses and dissertations. Paper 15.

This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by

an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.


http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/15?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

In compliance with the
Canadian Privacy Legislation
some supporting forms
may have been removed from
this dissertation.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the dissertation.






AUTOMATIC TARGET MATCHING

by
Michael Leslar, B.Eng,
Ryerson Polytechnic University, 2001
A thesis
presented to Ryerson University
in partial fulfillment of the
requirement for the degree of
Master of Applied Science
in the Program of

Civil Engineering

Toronto, Ontario, Canada, 2003

©Michael Leslar 2003



g

National Library Bibliotheque nationale

of Canada du Canada

Acquisitions and Acquisisitons et
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

[ Dot ]

Canada

Your file Votre référence
ISBN: 0-612-87145-2
Our file  Notre référence
ISBN: 0-612-87145-2

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.



AUTHOR'S DECLARATION
I hereby declare that I am the sole author of this thesis.

[ authorize Ryerson University to lend this thesis to other institutions or
individuals for the purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or
by other means, in total or in part, at the request of other institutions or
individuals for the purpose of scholarly research.

il



BORROWER’S PAGE
Ryerson University requires the signatures of all persons using or photocopying this

thesis. Please sign below, and give address and date.

iit



Automatic Target Matching by Michael Leslar, 2003
Master Of Applied Science, Civil Engineering Dept., Ryerson University

ABSTRACT

Many photogrametric processes require a large number of points to be collected from
numerous digital images. It is imperative that these points be collected accurately, so that
precise real-world coordinates may be assigned to points captured in the image. To this
end, many techniques have been developed to locate, track and identify image targets.
This thesis outlines many of these techniques and presents a target matching solution that
has been developed in C++, for the subpixel target location program INDMET. The
target matching solution is composed of three elements: an epipolar line program, a cross
correlation program and a template least squares matching program. The epipolar line
program is used to limit the search area in the right image of a given stereo pair, to the
vicinity of a single line. The cross correlation program searches this line to locate
possible targets and the template least squares matching program is used to determine the
target centre of a black and white image target, once it has been located. It was found
that these three programs, working together, had between a 20 and 70 percent chance of
locating the correct target, depending on the similarity of elliptical targets in each image.
Once found, the program could calculate the target centre to an accuracy of

approximately 1/10" of a pixel.

v



ACKNOWLEDGEMENTS
I would like to acknowledge the significant amount of assistance provided to me
by Dr. Michael Chapman, P.Eng. In addition, the digital images provided by the
Applanix Corporation were invaluable in the completion and testing of the target

matching program.



TABLE OF CONTENTS

TITLE PAGE ...ttt ettt saa e et te e teeeteeeeaae s i

DECLARATION . ....cooiii ettt e s 1

BORROWER'’S PAGE ......oooiiiiiiiiiieee ettt iit

ABSTRACT ...t ettt ettt e eaa e e eee e e teeeateeerseenrneeenns iv
ACKNOWLEDGEMENTS .....cotitiiiiiteeee ettt eaee e e v

LISTOF TABLES .. .ottt ettt e vi

LISTOF FIGURES ...ttt et et ere e vi
1.0 INErOAUCHION ..oiiiiiiiiiiiciceee ettt ettt ert e ere e aee e 1
I.1  Objective and SCOPE .....ovoevierieeieeieeceee e 1
1.2 Applications of Automatic Target Matching ...............cccooeiieiiiiiiiiiiiiiii, 2
1.3 Thesis Orgamization .........c..cccooeevivieniiiiiiiie ettt et 6
2.0 Automatic Target MatChing...........cccoeeiiiiiiieiiiiiecee e 8
2.1 The Human Visual SYSIEIMN ........cc.eocviiieeiiiieiieiiecee e e 9

2.2 Signal Based MatChing ..........cocoooviiviioiiiiiiie e 11

22,1 Euclidean DIStance............ccceeiieriiiniieniiiiienienie et er e 13

222 Cross COITElAtioN .........ccoviiiiriieniieiieie ettt eae e 14

223 Least Squares MatChing .........cccoocueviviriinniieciieeieeeece e 17

2.3 Feature Based MatChing ..........cccccovirieniiiniiiiece e 19

2.3.1  Epipolar GEOMELIY .....cc.ccouivieiiiiiiieieereeteeeree et 21

2.3.2 The Forstner Interest OPerator..............ceeevevveevreoieineiensieieeeiieeeenneennns 24

2.3.3 The Dreschler Interest Operator ................coooevvveieieerveoeereeeeeeeeeeens 26

2.3.4 The Marr-Hildreth Interest Operator.............c...oocvovvveevieicneeiineeeeeeeenen. 27

2.3.5 The Moravec Interest Operator ............cceeevvevieeiiieiieeeieeireeereeeree e 28

2.4 Relation Based MatChing...........ccccooveiiriiiiniiiiieie e 30

24.1 Multiresolution Image Matching..........cccceevvvvviviinieeicciiiiececeeee, 33

242 The Tree Search Method..........cccoovviiiiiiiiiciiciiciecee e 38

2.4.3 Automatic Target Recognition by Matching Oriented Edge Pixels.......41

2.4.4 Relaxation MatChing ........c.ccoeooviviiieiiiecieiieeee e 45

3.0 INDMET ...ttt sttt sttt et ts et e et e et e eteesaeseveenereenees 50

Bl TAFZELS vttt et eeateeere e 50

3.2 Mathematical Basis for INDMET .............ccccocoiiiiiiiiiieiicce e 53

vi



4.0 A Target Matching Solution for INDMET...........ccooiiiiiiiiiiieecceesveeive 57
4.1 A Method for The Calculation of Epipolar Lines..........ccccccoeveoiiincncciinnnnnn. 57
4.2 Cross Correlation ANALYSIS .........oovervieirieriiniiiiiieenieieeiieie e 61
4.3 A Method for Performing Template Least Squares Target Matching ............... 62
5.0 Algorithm Implementation in INDMET ..........c.cccociiiiiiiiniiiiieie e 65
5.1 EPIPOlar LINES.......cc.oooiiiiiiiieieicee s 66
5.2 Cross Correlation ANalySis .......ccocvviiiieiiiiiiiiieeiiieecie et 68
5.3 Template Least Squares Matching ..............cccoooiiviiiiiiiiiiiecccceee e 72
6.0 Testing Procedures and ReSUILS ..........ccccoeiiiiiiiiiiii e 79
6.1 The Epipolar Line Module............ccoccoiviiniiiiiiiiiiiiieiiceee e 79
6.2 The Cross Correlation Module.............cooooiiiiiiiiiiiiiiiicceeeeee e 82
6.3 The Template Least Squares Matching Module..............cc.coooovriiiiiinniinn, 84
7.0 Conclusions and Recommendations .............occcovieiienrerienienieneesr e 88
7.1 CONCIUSIONS ....iniiiiiiiiieit ettt et e sttt esseeebeeseeesseenees 88
7.2 RecoOmMMENdAtiONS. ........cooiieiiieiiirieiite ettt et iee e sate e eeteeeteeeae e aane e 91
REIEIEICES ...ttt ettt ettt ettt et 93
BIblio@raphy.....cc.ooiiiiiiiiiee et 96
Appendix A: Source Code For The INDMET Upgrade ...........ccccooveeveviieiieiiieieeeee 99
Appendix B: Image Information For Digital Images Used In Program Testing................... 124
Appendix C: Digital Images Used In Program Testing..............c..cccoovvevveeiieiiiieciiecceeeee 129

vil



LIST OF TABLES

Table 6.1: Results of Epipolar Line Routine for Images AHO and CHO ........................... 80
Table 6.2: Results of Epipolar Line Routine for Images CHO and CLO ...............coo......... 80
Table 6.3: Results of Cross Correlation Routine for Images AHO and CHO ...................... 82
Table 6.4: Results of Cross Correlation Routine for Images CHO and CLO ...................... 82
Table 6.5: Template Least Squares Results for Four Targets ...........cccccooocovvvvvieieiivennennnen, 87

viii



LIST OF FIGURES

Fig 1.1: Applications of Image Matching (Luhmann and Altrogge, 1986.) ..........ccceeeuvinn. 2
Fig 1.2: As-Built Survey of Industrial Piping (Russell, 2003.) ........ccccociviiiiiviiiiiieecies 4
Fig 1.3: Satellite Image Block with Terrestrial Control of Vatnajokull Glacier (Bacher et

AL, 1999.) ettt ettt e eateae s 4
Fig 1.4: Example of Vehicle Vision Stereo Pair (Olson, 2000.) ......cccccooevieieieciiieiii e 5
Fig 1.5: Example of Fingerprint Stereo Pair (Mital and Teoh, 1997.) .......c.ccoovevvieiiiii e 5
Fig 2.1: The Human Early Visual Processing System (Luhmann and Altrogge, 1986.) ........ 10
Fig 2.2: An Example of a Window Mask for Image Sample Extraction (Bourke, 1996.) ...... 12
Fig 2.3: The Epipolar Matching Method ..............ccooiieiiiiiiii e 21
Fig 2.4: A Regular Image Pyramid of a Target Field .............ccocoooiviiiiiiiiiiccce 34
Fig 2.5: Structure of a Regular Image Pyramid (Kropatsch et al., 2000.) ............c..ccoeovenn.n. 35
Fig 2.6: Relationships of a Pixel (Kropatsch et al., 2000.) ........cccooveiiiiniiiiiiiieceieeeeee 36
Fig 2.7: Search Tree Containing Relationships between Two Relational Descriptions
(Vosselman, 1994.) ..o e, 38
Fig 2.8: Broken Edge Segments That Match Original Line (Pajares et al., 2000.) ................ 48
Fig 3.1: Circular Target (actual size) (Cosandier and Chapman, 1992) .............c.cccoeinnn, 50
Fig 3.2: Representations of Target Edges (Cosandier and Chapman, 1992) ..........c............. 51
Fig 3.3: Digital Image Target EAZES .......ccccooiiriiiiiiicece st 52
Fig 3.4: Skewed Circular TArget .........ccoocoviiiiiiieiiie ettt 53
Fig 4.1: Intersection Of Epipolar Plane With Images (Lii and Zhang, 1988.) ........................ 58
Fig 4.2: Epipolar Geometry (Lii and Zhang, 1988.)...........c..ccoooiiiiiiiiiieceeeeeeeeeeee 58
Fig 4.3: Epipolar Lines (Lii and Zhang, 1988.)...........ccccooviiiiiiiiiiiiiice e 59
Fig 5.1: Portion of INDMET Control File OnLButtonDown that Operates the Automatic
Target Matching FUNCHONS ........ccooiiiiiiiiiicciecce et 65
Fig 5.2: Diagram of the Operation of the Epipolar Line Function ..............c...cccooevvivinin.n. 67
Fig 5.3a: Diagram of the Operation of the Cross Correlation Function ................................. 69
Fig 5.3b: Diagram of the Operation of the Cross Correlation Function Continued................. 70
Fig 5.3c: Diagram of the Operation of the Cross Correlation Function Continued ................ 71
Fig 5.4a: Diagram of the Operation of the Template Least Squares Matching Function ....... 73
Fig 5.4b: Diagram of the Operation of the Template Least Squares Matching Function
CONUNUE ..ot ettt ae et ettt etsereeteteeesare e 74
Fig 5.4c: Diagram of the Operation of the Template Least Squares Matching Function
CONUIUEA ..ottt ettt e sttt ettt eb e teeteeat e e eae e eneansans 75
Fig 6.1: Radial Lens Distortions For Epipolar Line Test ..........cc.cccoooiiiieiiiiiieiieiieereceeeen, 81
Fig 6.2a: Difference in Results of X Coordinate Due to X Axis Shift in Window ................. 84
Fig 6.2b: Difference in Results of Y Coordinate Due to X Axis Shift in Window ................. 84
Fig 6.2c: Difference in Results of X Coordinate Due to Y Axis Shift in Window ................. 84
Fig 6.2d: Difference in Results of Y Coordinate Due to Y Axis Shift in Window ................. 84
Fig 6.3a: RMS Values as Target Window Shifts Along X AXiS ........cceevvviieieeeoeeeeeeenn, 86
Fig 6.3b: RMS Values as Target Window Shifts Along Y AXiS .......cccevviviiieieiieciiieeennn 86
Fig 6.4a: Iterations as Target Window Shifts Along X AXiS .....ccocoevieieeiiviiioicicceee e, 86
Fig 6.4b: Iterations as Target Window Shifts Along Y AXiS .......ccccvevvevviviiiireiiicceccen, 86

1X



1.0 Introduction

Automatic target matching can be loosely defined as the process where a
computer can use preprogrammed algorithms to identify, locate and track the objects of
interest that occur in multiple digital images. In photogrammetry, it often occurs that
numerous points need to be located for the purposes of rectifying digital imagery. This
can be a tedious and time consuming task. Added to this is the danger that one
misidentified point could destroy the accuracy of the final results. This can be extremely
prohibitive to performing a photogrammetric solution in a given situation. The
development of a computer program which utilizes the well established algorithms and
concepts of automatic target matching could be very useful in solving this problem. By
incorporating these concepts into the previously developed software package INDMET, it
1s hoped that a solution to this problem may be found.
1.1 Objective and Scope

This thesis developed a complete automatic target matching system using the
methodologies for the calculation of epipolar lines, cross correlation matching and
template least squares matching. These methodologies were programmed and applied
using the pre-existing target locator, INDMET. Due to the vast number of target
matching algorithms available, the solution presented here is the only possible solution.
The development of a complete target matching program was beyond the scope of this
thesis; therefore, the previously programmed user interface from the software package
INDMET was used as the platform upon which a target matching solution was built.

This thesis also contains a literature review, which describes many of the

common target matching algorithms, and methodologies that have been developed, as



well as some of their common uses. It is, however, beyond the scope of the thesis to

delve too deeply into the applications of automatic target matching. A brief summary of

these applications in Section 1.2 is all that will be presented.

1.2 Applications of Automatic Target Matching

Automatic target matching is a multidisciplinary field which is concerned with the

identification, location and/or tracking of targets by intelligent computer programs.

Figure 1.1 shows the fields of study for which image matching is of interest and indicates

how these fields are interconnected.

Photogrammetry Map Remote Sensing
Any Remotely Sensed magery
point determination
map projection/updating change detection

digital terrain modeling classification

]
$
£
3
EJ

Image Matching

Image Understanding

Robotics

object monitoring
object following

vision

Neurophysiology
Psychophysics
theory of human

Computer Vision
Pattern Recognition

algorithms
systems

Fig 1.1: Applications of Image Matching (Luhmann and Altrogge, 1986.)

Each of these professions needs computers to automatically perform target

matching for different reasons. Photogrammetry is concerned with performing high



precision measurements on digital imagery for the purpose of calculating the real-world
coordinates of those objects that appear in those images. Remote sensing, on the other
hand, is interested in automatically detecting broad pattern changes between two time
lapsed images. These changes in pattern can be taken as indications of such things as
changes in environmental conditions and human land usage patterns. Neurophysiology,
for example, uses automatic target matching to develop better theories on how the human
visual system works. Computer vision specialists are concerned with developing systems
that are capable of performing menial tasks faster, longer and more efficiently than
humans do now. Examples of such tasks would be manufacturing, quality control,
driving and piloting. Finally, robotics specialists are interested in developing machines
that can mimic human actions and behaviors for the purposes of creating automated
workers.

Just as there are numerous algorithms and theories concerning target matching,
there also exist numerous uses and applications of target matching. As previously stated,
photogrammetry is a field in which vast numbers of points need to be gathered on a
regular basis. One example of such a use would be industrial metrology, which is the
reason that INDMET exists. Industrial metrology involves the precise alignment of high-
tech industrial machinery. This alignment is critical since a misalignment can cause
premature machine failure, which can be very costly. Automatic target matching can be
used to locate targets on such machinery, greatly reducing the time required to perform
these alignments. Another application, similar to industrial metrology, would be as-built
surveys of industrial sites. Figure 1.2 shows an image of an industrial piping set up. The

lower right of Figure 1.2 shows an actual image taken of the piping, while the upper left



Fig 1.2: As-Built Survey of Industrial Piping
(Russell, 2003.)

shows a three-dimensional (3-D) model that was created after points were gathered from
the images. The number of points needed to produce this detailed model would have
been excessive. An automatic target matching model would make the gathering of these
points faster and more efficient. A third photogrammetry application of automatic target
matching involves the collection of image tie points for the purpose of creating
orthographic images from multiple aerial or satellite images. Figure 1.3 demonstrates
how the 92 Landsat satellite images of the Vatnajokull glacier fit together.

These images were collected to monitor changes in the glacier, which is Europe’s largest

- rcrth

1l

i I\

SR

Fig 1.3: Satellite Image Block with Terrestrial Control of Vatnajokull Glacier (Bacher et
al., 1999.)

and is located off the coast of Iceland. The use of an automatic target matching system,



which can recognize and use ground features as targets, would make the collection of
these points fast and easy.

Many applications of automatic target matching exist outside of the
photogrammetry field. The computer vision community has developed many automatic
target matching algorithms for the purpose of automating many common tasks currently
performed by humans. Figure 1.4 is a stereo pair of images that were taken for the

purpose of allowing a car to steer itself.

Fig 1.4: Example Of Vehicle Vision Stereo Pair (Olson, 2000.)

If the onboard computer of the vehicle in question was able to detect and track solid
objects in the images, such as other vehicles on the road, the vehicle itself would be able
to react to avoid collisions. Of course, the point has not yet been reached where a reliable
automatic system has been developed and proven safe for vehicle use. Another use that

the computer vision community has made of target matching algorithms is for fingerprint

. -' Y
2)

M) !

i /,a;g i
LA i "?'."""‘H
=

Fig 1.5: Example Of Fingerprint Stereo Pair (Mital
et al., 1996.)

searches. Figure 1.5 shows the type of fingerprint images that would be compared, to

determine if they are close matches. This type of automatic target matching routine



would be used by police departments to narrow the search through digital fingerprint
databases. Lastly, computer vision specialists have used automatic target matching to
perform electronic component verification. This implies that newly assembled electronic
boards would be passed under a camera to obtain an image, which would be compared to
a master image, thereby checking that all electronic components are present.

Only a few examples of the applications of automatic target matching have been
presented in this section. Applications of the type of uses that two of the five fields of
study mentioned earlier have been presented. The other three fields have equally
plentiful examples of how automatic target matching is used. Since the purpose of this
thesis is to develop an automatic target matching program for the purposes of
photogrammetry, this section has been mainly limited to photogrammetric applications of
this technology. The computer vision applications were added simply to provide some
contrast to the photogrammetric work. Automatic target matching has been applied to a
wide variety of subjects and the number of applications will only increase over time.

1.3 Thesis Organization

The thesis begins by examining what automatic target matching is, who uses it
and how it is applied to real world situations. The definition of automatic target matching
has already been given in the introduction to this chapter; the other two questions will be
dealt with in the next section. Knowing what it is and how it is used leads to the question
of how can it be performed. To answer this, a detailed investigation into mathematical
methods for the matching of targets in different images is needed. This research presents
many of the common methods used in the identification, location and/or tracking of

targets in digital images. An extensive literature review can be found in Chapter 2.



Chapter 3 is dedicated to describing the foundations of the software package INDMET.
This is important since INDMET will be the platform upon which the target matching
solution will be built. It was determined, through research, that a program consisting of
subroutines that calculate epipolar lines, performs cross correlation analysis, and uses
template least squares matching, would create a suitable matching routine. Mathematical
methods of performing these three subroutines, as well as other issues related to the
programming of these subroutines are presented in Chapters 4 and 5, respectively. After
programming of the three target matching modules in the C++ language was completed,
and these modules were successfully incorporated into INDMET, testing began. Using
data supplied by the Applanix Corporation, each module was tested individually to
ensure that it is performing as expected. The results of this testing can be found in

Chapter 6. Conclusions and recommendations were made and presented in Chapter 7.



2.0 Automatic Target Matching

There is no complete unifying theory that has yet been created to automatically
extract needed information from digital images. Approaches that work well to solve one
problem have proven to not be general enough to solve other problems. This lack of a
generalized theory on how automatic target matching can be performed, has led to the
development of a wide diversity of approaches by both the photogrammetry community
and the computer vision community.

The idea of target matching is a very general notion because it is unknown in
advance which phenomena in one observed set correspond to thatin another set. In
matching, it is important to realize that corresponding phenomena are actually the same
object, viewed from different positions. It is also true that, in many cases, the counterpart
of an element in one image might not even appear in some or all of the other images
contained in that set. In addition, a correspondence problem can be created by the fact
that no transformation is known and the image set has to be adjusted.

The term matching refers to identifying corresponding visual phenomena in image
sequences, caused by the same phenomena in object space (Lemmens, 1988.). The
purpose of target matching is surface recovery of 3-D object space from conjugate image
pairs. It provides a better depth determination than passive mono techniques and its
passive state makes it more generally applicable than active ranging (Lemmens, 1988.).
Through the 3-D surface description of objects in the real world, it becomes possible, for
instance, to compile orthophotos from single frames or 3-D impressions of spatial mono
images by superposition. An example of what is meant by a 3-D impression of spatial

mono images would be satellite imagery. Many of these approaches to target matching



have been developed for the use of the United States military. They are used in
applications such as guiding fire-and-forget missiles to their targets. For the application
that is intended here, these approaches need only locate and match specific elliptical,
black and white targets. The methods that are detailed here can be adapted for this
purpose.

The algorithms that have been developed to match targets in digital imagery can be
divided into three distinct categories. These categories are based on the way that an
individual can look at a digital image. The first way would be to consider an image as
simply a 2-D spatial distribution of functions of Electromagnetic intensities (Lemmens,
1988.). In other words, a group of grey values or signals that have been measured and
recorded from a real life object. The second category can be referred to as feature-based
matching. This method relies on matching features that exist in both images, such as
points, lines or areas. The last category takes feature matching a little further and
examines the relationships between phenomena. It is called relational matching.

2.1 The Human Visual System

Before methods designed to allow a computer to perform target matching are
discussed, it seems appropriate to outline how we, as humans, perform target matching
using our own eyes. All of the methods that have been developed to perform target
matching are, in effect, a very poor attempt to reproduce human recognition and
identification abilities. Human vision is a complex and efficient system that has an
almost universal image processing capability. By comparison, the most state of the art
artificial vision system can only cope with very specific tasks and applications. While

many computer target matching systems can store and compare a specific pattern, the



human visual system has the ability to learn, adapt and draw conclusions, when trying to
locate or identify an object. Added to that, is the human’s ability to store high-capacity
information and draw upon this knowledge-based memory.

Much of photogrammetry deals with the extraction of 3-D information from 2-D
images. Human stereo vision works in a similar fashion. Correspondence between the
left and the right eyes produces an internal 3-D picture, which is Korn’s so-called
‘cyclopic eye’ (Luhmann and Altrogge, 1986.). Due to its complexity, the human visual
system is a matter of interest for many diverse fields. These fields were previously

discussed in Section 1.4.

Right

Images

Edge
Detection

Sketch

Interpolation

Sketch

Full 2'%%-D
Sketch

Fig 2.1: The Human Early Visual Processing System
(Luhmann and Altrogge, 1986.)

Using a three-stage hierarchical structure, Marr and Poggio (1979) demonstrated
their theory of how human vision actually functions. Once lines and edges are extracted
from the view, the human eye performs a correspondence analysis of these features. This

creates what is referred to as the ‘primal sketch’. Then a raw 2%-D sketch is created, that

10



uses all of the primitive features of the image. This is where motion, stereo and textural
features enter the process. Interpolation is then used to recover 3-D surface information.
The random dot stereograms that were developed by Julesz in 1971 have been used to
prove this theory and Grimson successfully implemented this model in a computer vision
system in 1981. Figure 2.1 outlines this human early visual processing system. A
network of photosensitive cells is used by the human visual system to detect lines and
edges. The sensitivity of these cells can be described by a combination of Gaussian
functions (Luhmann and Altrogge, 1986.). High-level structures are created through the
combination of linear features, and symbolic descriptions are used for the correspondence
of images.
2.2 Signal Based Matching

Signal matching, or area matching, as it is sometimes called, relies on the
relationship between the brightness or grey values in the neighbourhood of the target
point. The resemblance between grey values is used to determine whether the image
points are similar. Signal matching may be considered the digital continuation of the
analog approach, which used cathode ray tubes and was introduced by Hobrough in the
late 1950’s (Lemmens, 1988). This type of matching is frequently applied since it has the
advantage of being fully compatible with the tried and tested concepts of signal
processing. Radiometric restoration, smoothing and edge detection are particularly
enhanced through the use of a signal based solution. When low resolution image pairs
are used, signal matching works well for smooth terrain with low relief. However, signal
matching is not very reliable for high resolution image pairs where features, such as

artificial buildings exist.

11



The disadvantages of signal matching are twofold. Firstly, only in the case of a
simple shift does a correct match occur. Secondly, the grey value distributions don’t
correspond to physical entries. In other words, the first disadvantage refers to the
geometric transformations and the second disadvantage refers to radiometric

transformations.

Image

Q ii Mi-1

O Mask

)

My-1

Fig 2.2: An Example of a Window Mask for Image Sample
Extraction (Bourke, 1996.)

The simplest way of accomplishing this would be to use a statistical measure,
such as cross correlation, to search the second image, comparing each search window
with the template taken from the first image. The size of the search area is dependant on
the size of the window mask chosen by the user and the precision to which the exterior
orientation parameters are known. An example of a window mask is shown in Figure
2.2. The windows are based around the pixel located at the window’s centre and the

windows on the first and second images that best match, are taken as corresponding

12



points. It is usual that a threshold value is set, which determines when the two matches
are sufficiently similar.
2.2.1 Euclidean Distance

This type of matching is also known as the sum of squared distance (ssd)
technique. Along with cross correlation analysis, Euclidean distance is a standard
statistical technique that is used in target matching. This method is based on the
assumption of square target and search areas. Using N to denote a single dimension of
these target and search areas, indicates that the number of pixels in the area under
consideration is simply N2. Keeping this assumption in mind, the mathematical formula

for performing the Euclidean distance technique can be expressed as follows.

N N 2
ZZ(& txj+y—Txy) [2.1]

ssdij = iz
N x=1 y=1

Where T denotes the target area and S denotes the search area. The coordinates of each
pixel in the target area are given by x and y, while the coordinates of the pixels in the
search area are represented by i and j respectively.

Unlike cross correlation analysis, where the maximum correlation value is looked
for, the Euclidean distance technique searches for the minimum value of ssdij. When the
minimum occurs, the best matching target in the search area will have been found. It is
possible to expand Equation 2.1 so that minimizing the ssd;; surface can be equivalent to

maximizing the expression (Dew and Holmlund, 2000.). This expanded form is shown as

Equation 2.2.
N N N )
pseudo _ ssdj :2'ZZ(Si+x,j+ y'Tx,y)—Z(Si+x,j+ y)  [2.2]
x=1 y=1 y=1

13



If bias and normalization terms are added to the terms T and S in Equation 2.2, then the
second half of the equation (2.S?) becomes invariant and the pseudo_ssd value becomes

equivalent to the cross correlation value (p). Therefore, the only real separation between
the Euclidean distance technique and cross correlation analysis is the addition of the
normal and biasing terms. This would seem to indicate that cross correlation is a better
search engine, since it takes these factors into account. The addition of normalization and
bias terms are not necessarily a good thing. In low contrast search areas, where the
correlation surface has shallow slopes and broad maxima, normalization may degrade the
accuracy of the surface peak location (Dew and Holmlund, 2000.). In fact, in the extreme
case of no contrast, the cross correlation expression becomes undefined. Therefore, the
Euclidean distance technique should provide better quality results in this situation.
2.2.2 Cross Correlation

Also known as grey value correlation analysis, this type of signal analysis is very
common in image analysis. It is used as a similarity measure to search the image, finding
regions that closely resemble a given target area. Since the spatial type of this analysis
was used in the addition to INDMET, a mathematical model of how cross correlation
analysis is performed is discussed in Chapter 4. For now, this section will deal with the
topics of autocorrelation and how Fast Fourier Transforms can be used in cross
correlation analysis.

Autocorrelation is when the correlation is calculated between a series and a
lagged version of itself. If a high correlation value is found, it possibly could indicate a

periodicity in the signal of the corresponding time duration. To find the correlation

14



coefficient of a series, denoted by {X,...,Xa1}, at a time delayed lag of k, the following

formula can be used (Bourke, 1996.).

"z_l:(xl-—}c)-(xi+k—x)

autocorr(k) = =2 [2.3]

Where x is the mean average of the image pixels series and n is the number of terms in
the series. The counter i+k will eventually expand past the end of the series, at which
point two options will be available. The series can either be considered to become zero
or, as is standard with the Fourier approach, it could wrap back on itself (Bourke, 1996.).
This would mean that the index would become (i+k) mod (n). When the correlation
coefficient is calculated for all lags, k = {0,...,n-1}, the resulting series is called the
autocorrelation series, or the correlogram (Bourke, 1996.). This new series could be

calculated using Equation 2.3 or using the Fourier transform shown below

2 [2.4]

fourier|attocorr(k)] = ‘ Sfourier| xi]

In other words, one could transform the series into the frequency domain, taking the
modulus of each spectral coefficient and then perform the inverse transformation.
Depending on the normalization factor used with the Fast Fourier Transform (FFT),
scaling by N may be needed. This particular method of performing autocorrelation is
especially useful for long series where the time to compute each correlation value can
become excessive. It is important to note that the Fourier model shown here is a special

case and that the Fourier transform for the cross correlation function is the product of the

15



Fourier transform of the first series and the complex conjugate of the Fourier transform of
the second series (Bourke, 1996.).

Many spatially based cross correlation algorithms have been used in template
matching solutions because no simple and efficient expression of the normalized form of
correlation has been developed in the frequency domain. Lewis (1995) proposed a
correlation technique employing Fast Fourier Transforms, which he used to track target
images. His model is based on the denominator of the spatial cross correlation technique,
which can be found as Equation 4.6 in Chapter 4. Assuming that we have images g; and

gr, in which the mean value has already been removed.

8L'(x, y) = gu(x, y)~ gt [2.5a]
8R'(x, y) = gr(x,y) — §R [2.5b]

Rewriting Equation 4.7 from Chapter 4 into this form gives the following equation

mm o, ' ' . . [2.6]
y (6 0) =) 8 (x,y) gr (x=i,y—j)

Where, x, y are the image coordinates and i,j are the position of the masking window
containing the relevant feature. Assuming that the mask window has a size of M2 pixels
and the feature of interest, which is contained in the window, has a size of N2 pixels, then
Equation 2.6 requires N2 (M - N + 1)? additions and N2 (M - N + 1)2 multiplications.

Equation 2.6 is a direct convolution of the image with the reversed feature gg’(-x,-y). It

can be computed through the Fourier transform equation

_ *
fourier 1{ fourier(gr)- fourier (gr)} [2.7]
The complex conjugate reverses the feature via the Fourier transform property (Lewis,

1995.)

16



fourier - gL*( -x) = F*w) [2.8]
To implement most FFT algorithm, it is necessary that images g; and gg be padded with
zeros to a common power of two. To compute the transform then requires 12M?2log,(M)
multiplications and 18M?log>(M) additions or subtractions. This means that if M is
significantly larger than N, the spatial domain only requires N2M? total operations and is,
therefore, faster than operations in the spectral domain. The transforms in the spectral
domain become more efficient the closer N is to M and when N and M are both large
numbers.
2.2.3 Least Squares Matching

Due to the fact that a template least squares matching solution was implemented
in the addition to INDMET, a model of this type of matching is presented in Chapter 4.
Least squares matching is an extremely versatile approach to target matching. As such, it
is widely used and applied in many target matching solutions. Least squares matching is
a technique where the optimum match is defined by the transformation of the elements of
one array into another, which minimizes the residual differences between the remaining
grey values. This produces the optimal transformation, which is required to find the
optimal match.

There are four factors that contribute to grey values. These factors are
illumination, reflectivity, geometry and viewpoint. All of these factors should be
considered when performing a target matching solution, if unambiguous matches are to
be made. However, it is almost certain that only the position and orientations of the
camera will be known. Attempts have been made to describe the surface reflectivity, by

introducing an optical density function (Lemmens, 1988.). The formulation of this

17



function is very complex and to obtain a tractable method, simplifications are needed.
Added to this, is the fact that there will always exist geometric and radial distortions in
the camera that need to be corrected. To improve matching accuracy and deal with these
distortions, Gruen (1985) and Rosenholm (1987) recommend the least squares method.
The study conducted by Rosenholm (1987) involved the effect of window size on the
precision and reliability of least squares matching solutions. He found that window sizes
of 21x21 pixels and 31x31 pixels were optimal for precision and that larger window sizes
optimized reliability.

There are two main disadvantages to using least squares matching. The
resampling that is required can be time-consuming, tying up computer resources. The
second disadvantage is that very accurate initial approximates are required for the least
squares iteration process to converge. On the other hand, least squares can return highly
precise answers. The precision of the answers returned by this method has reach 1/20" of
a pixel. Measures that indicate the precision and reliability of each answer are easily
obtainable from the least squares calculation. Least squares matching requires no image
rectification before it is applied since simultaneous geometrical image shaping and
radiometric adjustment are performed by the adjustment. It is able to perform area based
and edge based analysis. It can function in hierarchical mode (Gruen, 1985.). It is usable
as a derivative operator based matching procedure, since the first order derivatives that
can generate the vector of observations leads to the coefficients of the design matrix,
which are the second order derivatives (Gruen, 1985.). Least squares can eliminate low

signal regions that will not provide a reliable solution.

18



2.3 Feature-Based Matching

Unlike signal matching procedures, features can be detected in both images,
which allow the primal sketch to be created. Features can be points, lines or areas
(Lemmens, 1988). These features are usually combined with the epipolar geometry to
limit the amount of area in which features are to be considered. The search for points is
done by one of several characteristic point detectors, or interest operators, that have been
developed over the years. The search for lines and shapes is commonly accomplished
through the use of edge detectors combined with line following and vectorization
techniques (Lemmens, 1988). Since this thesis is primarily concerned with automatically
gathering points on stereo pairs of images, little attention will be paid to the matching of
lines or areas.

To use feature matching techniques, several criteria must be met. The first is that
the feature must be well defined on the image. This is needed for the correspondence
analysis. Localization is the next criteria. The positional precision of the feature must be
defined. Next, the attributes that are suitable for matching must be defined. Finally, the
noise, geometric and radiometric distortion tolerances must be determined.

Selecting corresponding feature takes several steps, the first of which is the
determination of an upper bound for the parallaxes. This is done to limit the search space
and reduce computation time. Then a measure of the similarity between the two points is
determined and used as a set of initial weights or costs (Lemmens, 1988). An example of
this would be to define a window of n pixels by n pixels around each feature in each
image and perform a cross correlation analysis with possible counterparts. The value of

the correlation coefficient p can then be used as a likelihood measure. It is possible,

19



however, that this similarity measure might not be enough to lead to a unique match.
Techniques based on relaxation, minimal path computation using dynamic programming,
robust statistics and simulated annealing have been shown to be successful at solving this
problem (Lemmens, 1988).

The success or failure of a matching routine based on features in the images is
influenced by three properties (Lemmens, 1988). The discreetness of individual points,
which is a measure of the distinction of the point from its surroundings, is critical to a
feature matching solution. The more discreet the point, the better chance the computer
has to match it in the second image. Next, the similarity, which is a measure of how
closely two points resemble each other. Finally, the consistency provides a measure of
how well a particular match conforms to surrounding matches, based on some general
object model. An example of such a model would be if the object surface is smooth,
attended by a limited number of surface discontinuities or the surface is a tiled plane
(Lemmens, 1988).

These properties indicate that there must be three stages to a feature-based target
matching solution. Firstly, distinct features must be located and selected from the image.
This corresponds to the distinction property and can be accomplished through use of
some sort of interest operator. Next, candidate features, which may form possible
matches, should be compared and selected based on one or more similarity measures.

Finally, the candidate list must be thinned, consistent with some pre-chosen object model,
until only unique matches remain. This corresponds to the consistency check, which is

designed to determine which candidates are the correct matches.

20



Many feature-matching based routines have been created over the years. These
routines employ a wide variety of techniques to find targets, but they all involve one
principle, the use of image features to locate targets. The following subsections detail
many of the common feature matching routines, which are available. Each routine by
itself is not a target matching solution, they are designed to be mixed and matched,
depending on the user’s particular matching needs. Some, like epipolar geometry, limit
the search area, while others locate points, but they all depend on image features to
function.

2.3.1 Epipolar Geometry

A method for calculating Epipolar lines is described in Section 3.1. The epipolar
constraint is the most common method for solving the correspondence problem in digital
photogrammetry. Forlani et al used epipolar geometry to automatically determine the
location of tie points in digital close range images. The idea behind the epipolar
constraint is to project the intersection of the epipolar plane onto the image plane. The
epipolar plane is formed from the rays emanating from the object (A) pointing toward the

optical centres (O1, O2) of the camera stations (see Figure 2.3). By locating the target on

Epipolar Line

image 1 Image 2

Fig 2.3: The Epipolar Matching Method

21



the first image and projecting this intersection of planes onto the second image plane, a
line will be formed that should be coincident with the corresponding target on the second
image. This method contains two steps. First, the estimation of the relative orientation
parameters of the cameras in question must be performed. Second, the matching of
corresponding target images must be performed. To match a target image in one view
with the corresponding image in another view, the coordinates of the first target view and
the orientation parameters are used to calculate coordinates for the target in the second
view (Chen et al., 1994.).

Problems may arise with using the epipolar line method due to a number of
factors. Firstly, geometric and radiometric distortions might interfere with the line-target
intersection. This, coupled with poor estimation of the camera orientation parameters,
could throw the epipolar line off the target. Secondly, the object might not appear in all
images in the set, due to the fact that some other object might cause the target to be
occluded. Thirdly, ambiguities may arise due to the fact that other target images may lie
along the epipolar line. This can have the effect of causing incorrect matches. The cost
of computing the epipolar lines increases exponentially as the number of images in the set
increases.

A number of methods have been developed to deal with the problems that occur
when using epipolar geometry. The first uses multi-view constraints, such as the
geometric epipolar constraints and uniqueness constraints. These constraints improve the
reliability of matching by doing such things as eliminating targets that are occluded or
ambiguous in some images. It is also possible that these constraints could be used to

combine the matching process with a bundle adjustment (Chen et al., 1994.). The

22



orientation information is usually difficult to accurately obtain. Without this information
the correspondence problem cannot be solved. This problem can be overcome by
combining epipolar target matching with the bundle adjustment technique.

When computing the epipolar line, one of two matrices must be created from
known information. The fundamental matrix is used when interior and/or exterior image
information is unavailable. This information covers such topics as the orientation angles,
camera station locations, lens distortion and the location of the principal point within the
image. It encodes all the geometric constraints available, given two images locked in a
ridge scene. To define the fundamental matrix, it is first necessary to define two images,
I; and I, with points locations, p1 = (X1, yi1, z)" and p2 = (X2, y2, zv)". If these points are
homogeneous coordinates, then the relationship between these points, assuming they are

projected from the same scene point, is as follows.

p, ‘Fp, =0 =

Where F is the 3x3 fundamental matrix. Both the photogrammetry community and the
computer vision community have developed many techniques for the computation of F.
Zhang (1998) presents many of these techniques as well as methods for computing how
well the fundamental matrix has been determined. The second matrix, called the
essential matrix, can be created when the interior and/or exterior image information is
known. It is equivalent to the matrix when the image orientations are known. The

essential matrix can be defined as the following.

23



Where R is the rotation matrix that can convert between the two images and [T] is the
cross product of the translation vector between the two images. What is meant by the

cross product of the translation vector is demonstrated below.

T, 0 -T, T, |
T=|T, |, [T,=| T, 0 -T, (2.11]
T, -T, T, O

2.3.2 The Forstner Interest Operator

Forstner developed an interest operator in 1986, based on evaluation of the
covariance matrix (C) of the gradient images of a neighbourhood of pixels. For the
purposes of this Section, the gradient images will be called g, and g,. The assumption
will also be made that a 5x5 pixel sample window has been extracted from the original

image. The covariance matrix is therefore the following

C- { DR-NNDY gxgy} [2.12]
Z Ex8y Z g’

The gradient terms gy and gy can be calculated using normal, Roberts, Pewitt or Sobel
gradient techniques. Since the covariance matrix of the gradients is being used to find the
match, it determines the precision to which the match is made. This becomes a distinct
advantage because it allows the user to select features beforehand, based on their
suitability to give precise matches. Unfortunately, this type of interest operator is
perturbed by edges, where the match will not be defined in the direction along the edge.
To combat this, the error ellipse associated with the match, must be kept small and

closely equivalent to a circle.

24



The error ellipse is determined by the eignvalues A; and A,, where A, is greater

than A. Equation 2.13 can be used as a measure of how elongated the error ellipse has

become.

. ( A jz [2.13]
A2

Alternatively, the eignvalues computation can be avoided by computing a direct measure

(Lemmens, 19838).

ZI_(ﬂl—/lz}z _ 4- A1 A2 [2.14]
7 A+ A2 (Ai+ A2)?
[2.15]
ﬂ«l . 12 = Cxx . ny — ny2
[2.16]

ﬂl'i"/12=C)cx+ny

Using Equations 2.14, 2.15 and 2.16 the direct measure for determining the shape of the

error ellipse becomes

g= 4-det(C) [2.17]
(Cc")?

The size of the error ellipse can be determined by Equation 2.18.

det(C) [2.18]
W =
CT

Unlike the Moravec operator (see Section 2.3.5), this operator is not dependant on the
orientation of the feature in question, it is rotationally invariant. It also has been proven
that this operator has some useful properties when detecting features such as edges and

circles (Forstner and Giilch, 1987.). This operator has been used with cross correlation as

25



a measure of similarity and centre of gravity calculations to determine subpixel locations
of the centre of features (Lemmens, 1988).
2.3.3 The Dreschler Interest Operator

Grey values may be looked at in the same way that digital elevation models are
viewed. In other words, they can be seen to create a curved plane, where the actual grey
value is a ‘height’ above a datum. Differential geometry tells us that Gaussian curvature
is invariant with respect to transformation (Lemmens, 1988). This is a very good
measure to have when performing stereo matching. A second differentiable, smooth,
surface can be represented by the following equation
) = (v, y(u,v), 20, 1) 2191
Where x, y and z are Cartesian coordinates and u and v are surface coordinates. Using

the explicit expression for a smooth surface, g = f ( x, y ), allows the following equation,

equivalent to Equation 2.19, to be written

r(u,v)=(u,v, g(u,v)) [2.20]
This means that the second partial derivatives of Equation 2.20 become
rov =(0, 0, guv)
rov =(0, 0, guv) [2.21]
rvw=(0, 0, gw)
The curvature information is now enclosed in a symmetric tensor (Lemmens, 1988).
gUU gUV
J1+gz/2+gv2 \/1+g(/2+gv2 [2.22]
guv gw

\/1+guz+gv2 \/1+gU2+gv2
The principal curvature can now be found from eignvalue analysis of the symmetric

matrix. This is true because the third coordinate of the partial derivatives is the only one

26



to differ from zero and the kind of curvature, not its absolute value, is what is being

sought.

gxx  gxv [2.23]
gxr gy

The principal curvatures, k; and k, are now calculated using Equation 2.24. Note k;

must be greater than k.

2.2
ki, k2= %-(gxx+ gvyt \/(gxx +gvy)® —4-(gxx-gvy —gxy’)) [2.24]
The principal direction of the curvature can be calculated using Equation 2.25.
D= l atan __zgi_ [2'25]
2 (gxx — gvr)

The signs of ki and k, can now be used to perform a similarity check. An example case
would be that k; is positive and k; is negative, which would indicate a saddle point.
2.3.4 The Marr-Hildreth Interest Operator

Marr and Hildreth based their interest operator on the operation of the human
visual system. It is designed to detect grey level changes across a digital image. It does
this by smoothing the input image with a Gaussian kernel and then locating the edges by
searching for zero-crossings of the Laplacian of the smoothed image. It uses the second

derivative of the Laplacian of a Gaussian function.
V2S(x, y)XG(x, y) [2.26]

Where S(x,y) is the 2-D normal distribution in 1-D form (Lemmens, 1988). S(x.y) is

given by the following equation.

27



2
—X

1 20°
Sxy)=——e~° [2.27]

05
o(2m)

The Laplacian operator VZ, which is used on the image G, can be calculated by Equation

2.28.

2 2
vie=9C94C pign [2.28]

dx dy

The repeated convolution of a two by two unweighted smoothing filter can be used to
approximate the needed Gaussian.

By convoluting the Gaussian with the Laplacian, VS can be found. When a point
of inflection is found, the Laplacian operator will give zero. Generally, on a raster image,
the point of inflection can be precisely found, since it will likely lie within a single pixel.
Therefore, searching for a positive and a negative response and then linearly interpolating
between these values will identify the point of zero crossing. The sign and orientation of
the line that contains the zero crossing can be used to perform the similarity check. The
sign is determined by taking the first operator response, either positive or negative, when
moving along an epipolar line (Lemmens, 1988).

2.3.5 The Moravec Interest Operator

The Moravec interest operator is designed to locate unique points in images by
using the assumption that there will be high variances in all directions outward from the
point in question (Luhmann and Altrogge, 1986). To reduce computation time, the test
for high variance is only conducted on samples that are taken in the four cardinal

directions as well as the two diagonal directions. The variance is calculated as the sum of

28



the squared grey value difference between neighbouring pixels (Lemmens, 1988).
Originally the Moravec interest operator was defined for a 5x5 window and the equations

are as follows:

M (i, J)‘—I—Kimiz(g(mk JHD—gli+k, j+l+1)° [2.29a]
Mo, j)=— Kzllzliz(g(wk j+D-gli+k+1,j+0D) [2.29b]
Ms(i, j)=— KZﬂZ(g(Hk D —gli+k+1,j+1+1)° [2.29¢]
M4(i,j)——1—Kzzlzz(g(z+k jHl+D)—gli+k+1j+0)° [2.29d]

The feature that is the object of the search (M), will be located at the minimum of these
four values.
M =min(M); i =(1.2.3.4) [2.30]

A threshold is set, so that any point (i,j) that exceeds the threshold will be excepted as a
characteristic point (Lemmens, 1988). This will cause a series of responses from the
operator. A distinct point requires that non-maximum suppression be used. The test for
similarity between characteristic points of conjugate images that this operator offers,
involves the use of the sum of the squares of the differences between surrounding
windows.

Dreschler-Fischer (1987) detailed how this method of point matching could be

modified so that is could operate on colour images. Basically, two methods were

suggested, the first involved the breaking of the single grey value into its three
component colours, and operating on each of these colours separately. The colour band

that gives the maximum response is the one to consider when point matching. The

29



second approach involves calculating the directional variances of the spectral band
vectors. Here, the squared differences of the vectors are calculated and, like the single
band approach, the response should exceed some predetermined threshold (Lemmens,
1988).

This method of point matching has many inherent problems. While it is easy to
implement, it does not find the actual feature. A shift is introduced that is proportionally
equal to the size of the operator. If the target is of low resolution, an extended operator
signal could result. Lastly, the operator is rotationally dependant.

2.4 Relation-Based Matching

Also known as structural matching, this method of performing target matching
has become increasingly popular over the last few years. This type of matching
establishes a correspondence or homomorphism between primitives of two structural sets.
A structural description is defined as a set of primitives and their interrelationships
(Wang, 1998.). This means that a structural description of an image might consist of
image features and information on how these features relate to each other. Due to the
nature of structural image matching techniques, no a-prior information is required and
therefore, structural matching may be considered a fully automated technique. This is
true because structural image matching techniques are able to utilize topological and
geometrical relations among image features. The main problems to be solved when
implementing a structural matching solution involve the efficient acquisition of structural
descriptions and the operational approach for their matching (Wang, 1998.).

Primitives, which are the bases for structural matching, are simple image features

that when combined form more complex features. Therefore, points, lines and areas are

30



primitives. Each primitive and relation can be described by several attributes (Wang,
1998.). To describe a point primitive, one might refer to its coordinates, i.e. (X , y), or its
grey value (g) or possibly its gradient (t ). The relation between two lines can possibly be
described by their point of intersection (p), if there is one, or vectors that lie on the line
(V1, V), or the angle at which the lines intersect (0 ).

The overall goal of structural matching is to find the best possible match, or
correspondence, between the primitives and relations of the two structural sets. The
sheer number of primitives and relations that can be generated by the two images can be
enormous. Added to this is the fact that the two images will probably be partially over
lapping. Therefore, the correct match may consist of only a partial correspondence
between all the primitives and relations. Since one primitive or relation may match
several, one or no primitives or relations from the second image, there exists the
possibility that several target candidates may exist. This means that the time needed by
the computer to search for a suitable match may be excessive. To ensure that the
structural matching search is performed quickly and correctly, thought must be given to
such topics as evaluation functions, search methods, correctness checks and efficient
extraction of structural descriptions.

Evaluation functions are designed to test the goodness-of-fit of a possible match.
They give a quantifiable value, which is necessary for the computer to select the best
match, based on the structural sets under consideration. An example of an evaluation
function would be maximum-likelihood estimation. Assuming that you have two

structural sets, Dy and Dg, the theory of maximum-likelihood estimation indicates that

31



the best match hy, should have the maximum conditional probability among all possible

matches. Using Bayes’ formula the probability function can be written as follows:

P(DL’DRJ-P(hi)
P( hi j: hi [2.31]

Dr, Dr P(Dv, Dr)

Equation 2.31 can be maximized by simply maximizing the term P( D, D&/ h:).
Therefore, the joint probability P( Dr, Dr/ ki) can become the evaluation criteria, upon

which the goodness-of-fit between two structural sets can be judged. In reality, the joint

probability distribution P( Dz, Dr/ hi) is calculated through the similarity of the attributes

of the primitives and relations (Wang, 1998.). A different weight is usually assigned to
each attribute.

The method used to search the image becomes very important in a structure-based
matching solution because it, above all else, determines how fast the program will run.
Most structural matching routines that currently exist employ a tree structure to search
their images. Tree structures can be broken down into two types. The first is a blind
search, which treats every node in the tree structure equally. This means that the search
could potentially take a long time, since the program will methodically investigate each
node on the tree structure in the order that they appear. The second type is an informed
tree structure search. This type of tree search uses some measure to assess the probability
of finding a match and testes the nodes that have the highest probability of success.
Vosselman (1994) performed an investigation into tree search methods.

Once the search has located a possible match and the evaluation function has
refined that match, a check must be performed to see if the match is actually correct. The

check can be performed by using the magnitude of the match’s probability and any

32



existing geometric conditions (Wang, 1998.). The coplanarity condition is an example of
a check that can be performed, when two perspective images have been used. Once the
coplanarity condition has been enforced, the parameters of the coplanar equation and the
variance can be determined. The variance can be used to ascertain the correctness of the
match, since the a-priori variance of the points is available from the point extraction
algorithm (Wang, 1998.).

Extraction of points, lines and areas, along with their corresponding relationships
from an image, is vital to performing a structural matching solution. Due to the large size
of the majority of the original images used in matching, a Gaussian image pyramid is
created to reduce the amount of information fed into the program. The structural
matching routine will only be applied to the highest level of the pyramid. This level
should contain all the prepossessed information, which will have undergone such
procedures as edge-preserving smoothing. After structural matching has successfully
been performed on this pyramid layer, the matched point will be transferred to the next
level and new points will be added between each pyramid level until the original image is
reached. In this way, points can be extracted from an image for structural matching
purposes. Extraction of other lines and areas can be performed by previously described
procedures, such as the Forstner Interest operator.

2.4.1 Multiresolution Image Matching

This technique is also known as coarse-to-fine image matching. As discussed
previously, pyramid matching can be a very useful technique for quickly locating and
extracting image features. Like epipolar geometry, multiresolution image matching is a

technique that is designed to reduce the amount of image area that is to be searched.

33



Fig 2.4: A Regular Image Pyramid of a Target Field

Unlike epipolar geometry, which simply limits the search area, multiresoultion image
matching adapts the image to the search process, by minimizing the noise and extraneous
detail that will interfere with the matching process. At the same time, disk space is not
sacrificed. Using even the smallest possible reduction factor of 2, the amount of data
storage only increases by 30% of the original image.

The idea behind an image pyramid is that the same scene will be represented at
different resolutions, as shown in Figure 2.4. This idea of a stack of digital images
depicting the same scene with decreasing resolution is closely related to the concept of
scale space, where the scale is simply an additional continuous dimension of the image in
question (see Figure 2.5). The reduction of the original image can be performed by using
either a Gaussian or a Mean smoothing filter. These filters both perform averaging on a
neighbourhood of pixels, allowing these pixels to be compressed into a single grey value.
The difference is that the Gaussian filter uses a different kernel from the Mean filter; it is
specifically designed to approximate a 3-D bell-curve or ‘hump’.

Since all levels of the pyramid are derived from the original image, it is this image

that will have the greatest resolution and, therefore, will be located at the base of the

34



-7 2]

Level 3
Level 2

Level 1

Level

Fig 2.5: Structure of a Regular Image Pyramid
(Kropatsch et al., 2000.)

pyramid. Using a low pass filter, such as Gaussian filter, the image pyramid can be

created through iteration of the following formula.
I — I 2.31
i+l GG i . ]

Where G is the Gaussian kernel for the particular standard deviation 6. The variable L,
represents the pyramid image at level i and Li,; represents the next pyramid level. The
degree to which the image is smoothed at each level, depends on the standard deviation
that is used. In many cases Gg is approximated by an M x M binomial filter. The value
of M in the binomial filter determines what the standard deviation is for the approximated
Gaussian filter. If M =3, then 6 =0.71 orif M =5, 0 = 1. No matter what filter is used
the size of Gq is referred to as the reduction window. The second control factor on the
creation of an image pyramid is the reduction factor (n). The reduction factor controls
how low the resolution will go on each iteration and how pixels relate to each other
between pyramid layers. Once the iteration process has been completed, an image
matching routine, such as the Forstner Interest operator, is used on the apex image to

locate those image features that are of interest.

35



There are two relationships between pixels that exist in this scheme. Each pixel
has a ‘horizontal’ neighborhood relationship within the levels of the pyramid and a
‘vertical’ father-son relation between adjacent levels (Kropatsch et al., 2000.). Each pixel
in the pyramid, except for the base image, has a set of children. These children are
always contained in a higher resolution image than their father. Each pixel, except for
the image at the apex, has a father in the level above it. These relationships are shown in

Figure 2.6. This type of pyramid is known as a regular image pyramid.

—  Father

Fig 2.6: Relationships Of A Pixel
(Kropatsch et al., 2000.)

Another type of image pyramid exists, the so-called irregular image pyramid. In
the irregular image pyramid scheme cells are considered instead of pixels. These cells
can contain the original image grey values to symbolic information, such as the
representation of an image edge that was extracted with some feature extraction
algorithm. Also, the neighbor and parent relationships become generalized due to the
fact that the cells contain generalized information. These relationships are now contained
in a graph, where the nodes of the graph correspond to the cells of the pyramid and the
edges indicate relationships. These edges need to be labeled so the ‘vertical’ father-son
relationships can be distinguished from the ‘horizontal’ neighborhood relationships. A
more general creation process is needed to allow for non-grey value data. This process
can still include the idea of smoothing followed by the selection of surviving cells, but

new criteria need to be used to accomplish this. An example of this would be a pyramid

36



of edge segment cells, where an edge strength is assigned to each cell (Kropatsch et al.,
2000.). The routine could then check the neighbors of a cell to see if any have a stronger
edge strength. The strongest cells then survive to move up the pyramid and the weaker
neighbors get assigned to that cell as children.

These irregular image pyramids, which can process image features in a
hierarchical way, might also be called feature pyramids. However, digital
photogrammetry uses the term feature pyramid to refer to the extraction of features from
all levels of an iconic regular pyramid. Therefore, all features that have been extracted
from the same level of this image pyramid form a similar level of the feature pyramid. In
a sense, this means that the photogrammetric feature pyramid represents a hierarchical
structure that contains symbolic information about the digital image. The major
difference between feature and irregular pyramids is that the feature pyramid contains
fewer relationships than in the irregular pyramid structure. This is due to the fact that the
feature pyramids, while maintaining the ‘horizontal’ neighbor relations, does not
explicitly contain any information about the ‘vertical’ parental relationships. Feature
pyramids do not contain this ‘vertical’ information because the features forming
individual levels were created independently. While this might seem like a disadvantage
of feature pyramids, the inherent smoothing associated with irregular pyramids, which
causes the strongest features to graduate up the pyramid, can cause some important image
features to disappear from certain pyramid levels. This means that relevant features

could be lost from consideration.

37



2.4.2 Tree Search Matching

Also called relational matching, this type of search procedure is very similar to
the irregular pyramid previously discussed. It is designed to find common features by
comparing the attribute values between two relational descriptions. The search tree
contains all possible combination of features, but only certain paths along the tree will be
followed. Since common tree search algorithms have combinatorial or exponential
complexity, the time needed to complete the search rapidly increases as the number of
levels in the tree increase. Due to the inherently large nature of a search tree it is
common practice to incorporate heuristic search strategies with the standard search
method. This is done to reduce the average computation for a tree search.

Figure 2.7 represents the mapping of two structural sets, p; € P and g; € Q, where
all possible mappings of P to Q are shown. These two relational descriptions could

describe many things. In image matching, it is usual that P would represent features and

T

RE q q
/ N\ / N\
qr q 9> BE q
/ N\
gs gs O gs
N

P4 q Q2 qs (s

P3

Fig 2.7: Search Tree Containing Relationships Between Two Relational Descriptions
(Vosselman, 1994.)

38



Q would represent the segmented image. This would mean that the features of set P are
called the units of the tree search and the segments are called the labels (Vosselman,
1994.). In each level in the search tree, which is shown in Figure 2.7, a label (q;) is
sought for each unit (p;). Once a label q; is found for unit p; then a label for unit p, is
sought on that particular branch of the tree. An example of this would be if label q4 were
chosen for unit p; then only labels q2 and qsz are considered for unit po. Therefore, each
mapping of the root node to a leaf node represents a different mapping of P to Q
(Vosselman, 1994.). The idea behind a tree search algorithm is to identify the path along
the tree structure that contains the best similarity between the attributes of corresponding
features and their relations. Once the search is completed the location of the object can
be inferred from the corresponding features (Vosselman, 1994.).

Cost or merit values are usually incorporated with search tree edges, to guide the
algorithm along the optimal path. Examples of such merit functions would be gradient
strengths or similarity values. These types of searches, which take advantage of a merit or
cost function, are called informed searches. Tree searches that do not take advantage of a
cost or merit function must use some sort of geometric reasoning function to search the
branches of the tree. These types of searches are known as blind search methods.

Both types of searches perform several tests at each node. These tests ensure a
variety of conditions are met, including a check to make sure the label has not been used
before, that the label is consistent with prior labels and a check to make sure that the
attributes of the unit and label are compatible. If these tests are successful, then the nodes
of the next lower level will be generated. The order in which these lower level nodes are

generated is unique to the tree search method that is used.

39



Blind search methods scan the search tree in a systematic order, looking for the
optimal path. There are two ways in which this is done. The first method of searching
the tree is called a depth-first search. This type of search, as the name implies, starts at
the root node and scans down each path until a node fails a test. Once this occurs, the
algorithm moves back up to a higher level in the tree and continues along other branches.
The second method of scanning the search tree is called the breath-first search. This type
of search scans all the nodes in a particular level and only proceeds to the next level after
all nodes on the current level have been explored. These blind search methods usually
take a considerable amount of time to find a solution. That is why, if possible, an
informed search method is preferable.

Informed searched methods use information about the features to locate the best
path through the search tree. This information is usually in the form of costs or merits.
The optimal path in such a system would be the path, from root to leaf, which has the
lowest sum of the costs, or the highest sum of merits. As stated previously, these costs or
merits are associated with the edges of the search tree, not the nodes. The three most
common methods of performing an informed search are the hill climbing approach, best
first search and the A” algorithm. These three routines differ in the amount of
information that is needed to select the nodes to be expanded. Also, the A" algorithm
defines the admissibility as the condition that occurs when the sum of the non-explored
edges never exceeds the actual costs (Vosselman, 1994.).

Several search strategies have been developed to reduce the search effort and
speed up the tree search method. The most common of these strategies are unit ordering,

forward checking, relaxation of the admissibility and beam search. Since each unit is

40



labeled at each level of the tree and the ordering of these labels will not affect the final
solution, these labels can be reordered so that the minimum number of nodes are present.
This is how unit ordering can be used to reduce the number of nodes and, therefore, the
time taken by the program to search the tree. Forward checking is used at every optimal
path node to ensure that there is one label left for each node left in the tree. This prevents
wrong labeling occurring, which will only be caught at the end of the optimal path and
saves time because the search process will not have to start over again. Relaxation of the
admissibility has to do with relaxing the criteria that ensures the costs of the sub-trees
below a node (the future costs), never exceeds the costs of the optimal path through the
tree, the so called ‘actual future costs’. If the user can guarantee that the overestimates of
the future costs will never exceed €, then in the worst case, the A algorithm will only
select a path that is € higher than the optimal path. This strategy is alright if the tree is
extremely large and there are many near optimal solutions that will be acceptable. The
beam search method selects only the best candidates when a node is expanded and
discards the rest. This strategy can be dangerous since it is possible that the optimal path
might be pruned. Both the beam search method and the relaxation of the admissibility
strategies can result in the failure of the routine to find a match. They are, however,
sometimes necessary, since the search tree can grow too large for the available computer
resources.
2.4.3 Automatic Target Recognition By Matching Oriented Edge Pixels

Olsen and Huttenlocher (1997) described a method for performing target
recognition and matching through the use of an objects edge map. It is difficult to model

small irregularly shaped targets. In order to do this, target objects and images need to be

41



represented by their edge maps, where a local orientation is associated with each edge
pixel. To model a 3-D object, a series of two-dimensional views are needed. To
accomplish a full 3-D view of the object, translations, rotations and scaling of the 2-D
views are required. A form of the Hausdorff measure is used to determine which
positions of object models contain a possible target. This Hausdorff measure contains
both location and orientation information. A hierarchical cell decomposition of the
transformation space is used to efficiently determine the positions of these possible
targets. A catalog of object models is used to match the possible target locations. This
decreases computation time required by this method.

There are many benefits to implementing this type of target recognition model.
Since edges are robust to changes in sensing conditions and edge based techniques can be
used to locate many types of image pattern, the technique is general enough to be applied
in a wide range of subjects (Olsen and Huttenlocher, 1997.). Using the pixelated edge of
the target, instead of straight-line approximations, allow small irregularly shaped objects
to be located. Also, many matching techniques have already been developed for edge
maps. These techniques are able to handle such obstacles to matching as occlusion,
image noise and clutter. Edge maps are also capable of working with many of the
intelligent search strategies that have been developed to rule out much of the search space
with little computer processing work. A large drawback to this matching model is that

images with considerable clutter can cause numerous false alarms of the target location.

To combat this, a modified version of the Hausdorff measure is used.

The unmodified form of the Hausdorff measure can be described as follows

h(M, 1) = max mlln | m—i [2.32]

42



Where M and I are point sets, and the measurement is being made from M to I. The
effect of this equation is that the maximum distance of a point in set M is located from
the nearest point in set I. This allows the Hausdorff measure to determine the quality of a
match between an object model and an image (Olsen and Huttenlocher, 1997.). To
generalize the Hausdorff measure to incorporate oriented edge pixels, it is necessary to
consider each edge pixel in sets I and M to be a vector. This vector contains three terms,
px and py give the location of the point and p, represents the local orientation of the point.
Since our concern is focused on the edge points, the x and y values of the vector fall into
discrete sets (Olsen and Huttenlocher, 1997.). Similarly, the orientation parameters p,
can be mapped into discrete sets. The Hausdorff measure now must be expanded to
include pixel orientation. This new measure should reduce to the old Hausdorff measure
presented in Equation 2.32, when the pixel orientations are all the same. It also should
use the old measure as a lower bound. A measure that fulfils these requirements is as

follows.

Mx — ix Mo — io
ha(M, I) = max min max ,I— [2.33]

mcM  icl my — iy o

The form of Equation 2.33 is the same as that of the Hausdorff measure, but it now
computes the distance between M and I based on the maximum distances in translation
and orientation of the edge pixels. In this measure, o denotes the normalized factor that
makes the orientation values implicitly comparable with the location values (Olsen and
Huttenlocher, 1997.). This means that a maximum deviation in translation and
orientation for two pixels to match, can be set, allowing the number of pixel matches to

be counted and kept. By adjusting the threshold of an acceptable match and the

43



parameter ., the proximity required by the Hausdorff measure can be accomplished. To
obtain a partial measure of oriented points that is robust to occlusion, the parameter o is

set to one (0=1), and L, norm is applied. This means the Hausdorff measure can be

simplified to a form that is closely related to Equation 2.32.

h(M, ) = max min || m—i . [2.34]

A hierarchical cell decomposition of the transformation space is used to search the
image for possible targets. To start, the image is made discrete to improve efficiency.
This is done in such a way as to ensure that adjacent transformations do not map any
object pixel more than one pixel apart in the image. It is done this way so that no good
matches are missed. The image is then divided into rectilinear cells on the discrete grid
of transformations. These rectilinear cells have three dimensions, the orientations, the
shift in x and the shiftin y. The discrete transformation that is closest to the cell centre is
tested to determine if a match has been found. If the match at the centre is poor, the cell
is pruned and further consideration in this cell ceases. Otherwise, the cell is divided into
sub-cells and each sub cell is similarly considered. When a cell is found that contains
only one transformation, it is tested and, no matter the outcome, no further subdivisions
will be made in this cell.

The probability of a false alarm using this hierarchical cell decomposition method

is given by the formula that follows.

W .
1-TTa-Pxip* [235]
i=0

44



Where Py is the probability of a false alarm of size K in a window containing i edge
pixels. The number of image windows containing i edge pixels is represented by the term
di and W is the size of the window in pixels. Therefore, i must be greater or equal than
zero but less than or equal to W (0 <1< W). Estimating the probability of a false alarm
requires that the discrete nature of the transform space must be taken into account.
Unlike transformation, rotation and scaling do not move every pixel a uniform distance.
However, discrete rotations and scales can be considered to move the farthest pixels no
more than one pixel in the image. This corresponds to the requirements mentioned for
the correct operation of the hierarchical search strategy.
2.4.4 Relaxation Matching

Relaxation labeling is a technique that was developed to cope with uncertainty in
sensory data interpretation so that the best possible match could be made in a stereo pair
of images. Contextual information is used as an aid to classify sets of interdependent
objects (Pajares et al., 2000.). Unique labels are assigned to matches taken from a list of
features that are suspected of corresponding to the given template. In this way, each
feature is assigned a value based on its disparity, so that it remains consistent with the
predefined constraints that have been set by the user. There are two main types of
relaxation matching. The first involves optimizing an energy function, which is
formulated from the applicable constraints, so that the minimum value is found. The
second technique uses initial probability estimates, which are established from a local
stereo correspondence process and computed from the similarity in the feature values, to
iteratively update these probabilities based on the matching probabilities of neighbouring

features and the preset constraints.

45



One method for optimizing an energy function was proposed by Barnard in1987.
He proposed to use sympathetic annealing to optimize the 1-D intensity profiles of the

two images in the stereoscopic set. He defined an energy function as follows.
E; =|I, G, j)~ Iy (i, j+ DG, )| +1- VDG, j) [2.36]

Where Ii, denotes the intensity function of the left image at the i row and jth column. Ig
denotes the intensity function of the right image at the i row and (j+D(i,j))th column.
D(i,)) is the disparity value, which is simply a horizontal shift in this case. The disparity
value in this equation is the constraint that must be optimized, so that the minimum
change in the disparity value is found (D(i,j), Vi,j). This type of constraint is commonly
known as the continuity constraint. The advantage to using this type of intensity-based
technique in relaxation matching is that a dense disparity map will be output by the
procedure. This means that a dense depth or range map can also be created. The
problem with using this technique is, like all optimization problems, whether the routine
will converge to the global minimum, or will local minima confuse it. The use of a
multiresolution approach has been reported to improve the speed at which this method
operates and helps avoid local minima (Robert et al.,1992.).

The probabilistic approach to relation matching was developed in a Bayesian
framework. Assuming that a set of objects, labelled A, are to be matched, where N is the
number of objects in the set and A = {ay, a, a3, ... , an}. The object of this procedure is
to match this scene to a mathematical model. Each object in A will be assigned a
corresponding label. These labels will be represented by 8. Therefore, the object a; will

take on the label 6;. Each 0 can take on any of the M model labels that comprise the set

Q:Q={w, w, 0, ..., oy}. The notation we; means that this model label is

46



associated with a particular object label, 6; (Pajares et al., 2000.). Once labelling has
been completed, every object label will have one unambiguous value. For the sake of
simplicity, two indices must now be defined. The value N, is an indice that can take on
values as follows, N, = {1, 2, ...,N}. Similarly, the value N; is an indice that can take on
values as follows, N; = {1, 2, ..., 1-1,i+1, ...,N}.

The implementation of the probabilistic approach consists of a number of steps.
The first step involves the organization of image features into pairs of edge segments.
Each pair must contain a difference in the direction of the gradient of less than +45° and
can be characterized by its initial matching probabilities. These initial matching

probabilities can be calculated from the following formula.

p(x) = 10.5 : GXp[—% (x—p)' Y (x - p)} [2.37]

]

Where, L is the corresponding learned cluster centre, X is the covariance matrix, X is the
dimensional difference measurement vector and t indicates that the transpose needs to be
taken. Next, let the variable npair represent the number of match pairs that have been
modified. To start with, npair is given the value of zero. The probabilistic relaxation
technique for object labeling will then be performed. This technique operates by giving
the label 6; of an object a; the value g;, if, and only if, it is the most probable label that
contains all the unary measurements and binary relationships between the image objects

(Pajares et al., 2000.). This probability is computed from the following formula.

PO, = o, | XN Ajien) = IBE%X P, = o, | Xj,jeNo’Aij,jeNi) [2.38]

47



Where P(6; = wg;) and P(6; = my) represent the probabilities that object label 0; matches
the model labels wg; and @y, respectively. At the n™ iteration the probability of a match
can be computed from Equation 2.39.

P”(0,=0,)-Q" (6, =0,)

Z(MGQP(H) (61 = 0‘)6‘1 ) ) Q(n) (91 = (091)

(n+1)

P 0, =0,)= [2.39]

Q” (6, =)= I1 Zp(n) 0, =0,)p(A,; |0, =0,,0, =n,) [240]

ENi 0peQ
Where, P™(6; = o)) is the probability of a match at iteration n, between label 6; and
model label wy. The quantity Q™(8; = ) indicates the amount of participation from
surrounding objects at iteration n, for the probability of a match between label 6; and
model label wgi. The density function p(Ajj| 6; = q, 6 = wg) is a compatibility
coefficient that will take on a value between O and 1. It quantifies the compatibility
between this match (6; = ®) and a neighbouring match (6; = wg). A test is now made to
determine if the absolute value of the difference between P™(0; = wg) and P™(0; = wg)

is greater than some user defined error value (€). If the error is too great then npair is

without
overlapping
\' /
u [ Y R O S
overlapping
W/
B A T ..................................
Left Image ) . Right image
Epipolar Line

Fig 2.8: Broken Edge Segments that Match Original Line (Pajares et al., 2000.)

48



increased and the iteration process starts over again.

This procedure has many possible outcomes. A left edge segment can, in the
unambiguous case, be assigned to a unique right edge segment, or in the ambiguous case,
it can be matched to several right edge segments (Figure 2.8). The unambiguous case
provides only one probability value, so identifying the line is easy, however the
ambiguous case will provide many probabilities and choosing the correct segment is
simply a matter of choosing the highest probability. A threshold value will also have
been set by the user, which limits probabilities that are examined when determining the

correct line.

49



3.0 INDMET

INDMET was designed for performing high precision target location in industrial
metrology. The black circular targets on retroreflective backings were chosen because
they have been shown to be effective for close range applications (Cosandier and
Chapman, 1992). When these targets are viewed at an angle, they appear as ellipses and
are recorded as such by the camera. The edge observations are determined by using a
single dimensional sub-pixel edge locator based on moments. A non-linear least squares
adjustment is then used to determine the centre coordinates based on these edge
observations. INDMET is capable of locating the centre of a target to accuracies of
1/20" to 1/50™ of a pixel.
3.1 Targets

To achieve subpixel accuracy, it is absolutely imperative that any target used
appears in several pixels. This is the reason that specialty targets were designed, to be

used with INDMET, over other conventional surveying targets. The target consists of a

Fig 3.1: Circular Target (actual size)
(Cosandier and Chapman, 1992)

50



black circle placed on a white background. An example target is displayed in Figure 3.1.
Circle roundness and non-uniformities in background intensity are important problems
that have to be addressed if subpixel accuracies are to be achieved. To address these
problems, a retro-reflective film was used for the target background. It was decided that
3M Scotchlite #7610 would suffice for the retro-reflective film (Cosandier and Chapman,
1992). This material has a high degree of reflectance and reflects light directly back
(within 1°) toward the source. This means that the light source has to be rather close to
the camera and that the retro-reflectivity sharply drops if the light source is more than 50°
from the perpendicular to the surface (Cosandier and Chapman, 1992).

To achieve subpixel accuracy within the image, it is imperative that the targets be
well defined. In an ideal world the contrast difference that distinguishes the ellipses

edge, would be as simple as black and white. Unfortunately, there will always be a

8]
]
ghz ’§ hy —':—T—"—“—"
K
= > .
ph . § p e
&) > »
k o k= —_— ——
Spatial Pixels P Pyt
a) Ideal Edge b) Observed Edge

Fig 3.2: Representations Of Target Edges (Cosandier and Chapman, 1992)
region between the black ellipse and the white background. Figure 3.2a shows the ideal
edge, where at a pixel value k, the grey values in the image will jump from black to
white. Figure 3.2b represents reality, where the plotted points represent the rise that
occurs in the CCD pixel array and the solid line indicates an average location of the
image edge. There are a number of reasons why the ideal edge and the observed edge do

not match. These reasons include the edge failing to fall on the border between pixels,

51



\

S

a) Well Defined Edge b) Poorly Defined Edge
Fig 3.3: Digital Image Target Edges

the edge not being perpendicular to the operator axis and the inherent noise in CCD
arrays. The idea is to try and minimize the number of pixels over which this rise occurs.
Figure 3.3a shows a target that is well defined, where the contrast edge is only two pixels
deep. Figure 3.3b shows a poorly defined target. This edge is a very gradual transition
from white to black, which makes identifying the actual edge very difficult. Without a
precise location for the edge of the target, the calculated target centre will lose precision,
probably to the point where subpixel accuracy is lost.

Another problem that can be encountered is when the target becomes too skewed
in the image. As stated before, the retro—reflectivity of the target drops off sharply if the
light source is greater than 50° from the perpendicular to the target surface. An example
of this type of poorly defined target is shown in Figure 3.4. The result of this skewness is
that light was not reflected back at the camera and therefore the contrast difference
between the ellipse black and white target background is not great. This will also hurt the

ability to achieve subpixel accuracy on the calculation of the target centre.

52



Fig 3.4: Skewed
Circular Target

3.2 Mathematical Basis for INDMET

The target described above can be best approximated by a rotated ellipse on the
image plane. To be valid, the distance between the camera and the target must be
sufficiently great to completely display the target. The equation for the rotated ellipse is

as follows.

{Ax-coséwAy-sinHT_{Aycos@+Ax-sin9T:1 [3.1]
b

a
Where Ax=x-xc, Ay=y—yc
In Equation 3.1, x and y are the edge coordinates in pixels, xc and yc are the centre of the
ellipse in pixels, a and b are the horizontal and vertical ellipse axes in pixels and 0 is the
rotation of the ellipse in radians.
Equation 3.1 is implemented in an iterative non-linear least-squares adjustment.
Due to the fact that the orientation of a circle is ambiguous, convergence on 0 fails when
a is approximately equal to b (Cosandier and Chapman, 1992). To solve this problem,
the weighted constraint 1/6* was added. Therefore, when © equals zero, ¢ becomes /2.

Equation 3.1 must also be weighted. To do this it is assumed that a and b will be nearly

53



equivalent, O is close to zero and the measuring accuracies on the x and y axes are the
same (Cosandier and Chapman, 1992). Using these assumptions Equation 3.1 can be

simplified to become Equation 3.2.

2
fr= H 1321

Where r is the measured radius and R is the true radius. Taking the partial derivative and

then assuming that r = R, Equation 3.3 was created.

2 [3.3]
& (r) ~EO-’

This equation is used to scale the adjustment’s residuals into values that will be useful in
post-processing. INDMET uses the RMS of the residuals as the indicator of the
measurement quality of each target (Cosandier and Chapman, 1992).

Due to the fact that a non-linear least squares adjustment is used to calculate xc,
yc, a, b and 0, initial approximates need to be made. The edge locator requires that fairly
accurate (i.e. 20% of the ellipse size) initial approximates have to be used (Cosandier and
Chapman, 1992). The centre of the ellipse, represented by the terms xc and yc, can be
fairly accurately approximated by calculating the centroid of the circular portion of the
target. The calculation of the centroid is greatly disturbed by dark patches outside the
target. To solve this problem, the user can either select a region within the target or use
the auto box routine to have the computer construct a box within the target. The ellipse
axcs arc approximated by searching outwards from the selected point, to the inverse
target background (Cosandier and Chapman, 1992). The ellipse rotation is estimated to

be zero.

54



It is absolutely imperative that precise edge coordinate observations are made if
subpixel accuracy is to be achieved. The one-dimensional edge operator that is used by
INDMET was first presented by Tabatabai and Mitchell and is based on the method of
moments. In this method, the edge location, k, is the number of pixels from the vertical

axis with intensity h;. To calculate the edge observations, the following equations are

used.
A== ) =1 10 3 [34]
n‘4
j=1 J
3.6
ptp,=1 1361

Where m;is the i™ order sample moment, x is the array of grey values, p is the unit length

of each edge and h is the brightness values of each edge. Using the equations above,

expressions for pj, hy and hy can be formed.

ho=m -5 |22 [3.7]
P
h = —a |2 [3.8]
P
P [3.9]
=—|1+s
P 2{ 4+§2:|
Where,
_ m,+2m] +3mm, [3.10]
s = —
(e}
o, [3.11]
o =m,—m,

55



The edge can be now calculated by (k = n-p;). These equations will only calculate to sub-
pixel accuracy if p; is a non-integer value. To account for this, the first pixel is

positioned at ¥2 and pixel locations are incremented by 1 (Cosandier and Chapman,

1992).

56



4.0 A Target Matching Solution for INDMET

A target matching solution has been added to INDMET. This solution
incorporates an epipolar line module, a cross correlation module and a template least
squares module. The solution assumes that a stereo pair of images is present. The user
will choose a target on the left template image and the corresponding target will be found
on the right image. The coordinates of the user chosen point and the image orientations
will be used by the epipolar line module to calculate the epipolar line, along which the
corresponding target lies. This limits the search area to a 1-D case, greatly decreasing
search time. The cross correlation module will then be used to search the right image,
comparing each search window with the template image taken from the left image.
Finally, the template least squares module will be used to locate the target centre to
subpixel accuracy.

This Section describes the mathematical theory behind these three modules and is
designed to walk the reader through the calculation process. Information specific to the
programming of the routines can be found in Chapter 5, ‘Algorithm Implementation In
INDMET".

4.1 A Method For The Calculation Of Epipolar Lines

Epipolar lines are created through the intersection of the epipolar plane and the
two image planes (see Figure 4.1). The epipolar plane is created by the basis vector; the
vector joining the two image centres, and the ray vectors intersecting the image planes
(see Figure 4.2). This implies that corresponding image points must lie on corresponding

epipolar lines. The advantage to doing this is that a match for the point on the left image

57



Fig 4.1: Intersection Of Epipolar Plane
With Images (Lii and Zhang, 1988.)

should be found to lie somewhere along the corresponding epipolar line on the right
image. This has come to be known as the epipolar constraint.

Figure 4.2 shows the epipolar plane SS’A. Where S is the image centre for the
left image, S’ is the image centre for the right image and A is the object point. Figure 4.1
also shows the left image, labelled p. Image t is the normalized form of p, which has
been rotated so that it is parallel to B. Using this projective geometry, it is possible to

form the following relationship (Lii and Zhang, 1988.).

Fig 4.2: Epipolar Geometry (Lii and Zhang, 1988.)

58



ar d2 a3 | X
=\bt b2 bs|y

ca c2 c|—f

[4.1]

T < =

Where u, v, w are the object coordinates of point A in image p; a, b, ¢ are the direction
cosines that orient image p in relation to the basis vector B; x, y are the coordinates of
point A in image p, and f is the focal length of the camera when it captured image p.

It is then possible to derive the coordinates of point A on the normal image t,

using Equation 4.1 and Figure 4.2.

urzu(_f]:—f ax+a:y—asf [4.2a]

w ax+cy—cif

v:=v[i]=—f bix+b2y—bsf [4.2b]
w cx+cy—cif

Alternatively, the coordinates of point A in the original image p can be calculated by the

following formula.

__pautbvi—cf [4.3a]
asur+bwvi—csf
_ oot bawvi—cof [4.3b]

asu: +bave — C3f

On the original image p, it is expected that all epipolar lines will be convergent, while on
image t, the normal image, the epipolar lines are expected to be mutually parallel (see

Figure 4.3). Given that the exterior orientations of the camera at S and S’ are known, all

/ TA\
|11

Original Image Normal Image

Fig 4.3: Epipolar Lines (Lii and Zhang, 1988.)

59



the points on image p can be projected onto the normal image by Equations 4.2. This is
conventional digital rectification. It is important to realize that these projection equations
rearrange the epipolar lines on the normal image. This means that the transfer of the
epipolar line to the normal image and then to the right image must be done point by point.
Using the coplainarity condition for three lines, the following relationship can be

made.

- [4.4a]
S§'-(SaxSb)=0

Alternatively, the coplainarity condition can be written as:

B 0 0
U a Va Wa = B
U Vo Ws

Ve We
Ve Ws

0 [4.4b)

By combining Equation’s 4.1 and 4.4b, the following determinant can be created.

bixa+b2ya—bsf cixatcrya—caf [4.5]

=0

bixo+b2yo—bsf cixv+cryp—cif

Given the user defined point (x,, ya) and using an appropriate value for xp, it becomes
possible to find the epipolar line on the left image, by solving Equation 4.5 for y,. Once
these two points are known, it becomes a simple matter to transfer the line to the right
image. By transferring the two points on the epipolar line in the left image to the normal
image t (Equations 4.2) and given the fact that epipolar lines in the normal image are
mutually parallel, it becomes possible to use those points on the right image. After that,
all that needs to be done is to reorient the two points from the normal image into the

plane of the right image using Equations 4.3.

60



4.2 Cross Correlation Analysis

Cross Correlation analysis is one of the standard techniques used in target
matching. To perform this analysis, it is necessary to create a template image sample, and
a test image sample. The correlation coefficient, denoted by p, reflects the degree of
correlation between these two samples. The value of p will lie between —1 and +1, where
a —1 indicates that the test sample is the exact opposite of the template sample and a +1
indicates that the test sample is a perfect match for the template sample. Another way of
stating this is that if |p| = 1, then there exists perfect linear correlation and if you plotted
the template image grey values against the test image grey values, the result would be a
straight line. The closer that p is to zero, the less similarity or the less correlation the two
1mages have.

An estimate of the correlation coefficient can be computed in the same way as the

sample variance and the sample covariance would be. The following formula is applied.

SLR [4.6]
SL- SR

p=

Where ,5 is the estimate of the correlation coefficient, sy is the sample covariance
between the left template image sample, and the right test image sample, sp, is the
estimated standard deviation of the left template image sample and sy is the estimated
standard deviation of the right test image sample. To obtain the standard deviations and

the covariance information, the following formulas are used.

(L—L)(R—R)
s (88 g g [4.7]

SLR =

(gL - gL) 4.8
Z [4.8]

61



) Z (gr—gr)* [4.9]

Sk~ n—1

Where g, 1s the grey value of the pixels in the template left image sample, gg is the grey
value of the pixels in the test right image sample and n is the number of grey values in the
sample.
4.3 A Method For Performing Template Least Squares Target Matching

There are many statistical estimation models that can be used to perform a
template matching solution. The model presented here is a simple least square
adjustment that performs grey level matching. While it is possible to apply this type of
estimation model to a multi-photo arrangement, this model is described for a two-photo
system only.

Given two grey level patches that are of equal size and contain an identical

number of pixels, the following grey level matching observation equation can be

formulated.

—e(x,y) = R(x, y)~ L(x, y) [4.10]

Where, e is the true error vector, L is the grey level function of the left image patch and R
is the grey level function of the right image patch. Assuming that the left template image
will be fixed and that an affine transformation can be used for the right image, the

following equations can also be formulated.

XL = XLo [4.113]
yL = yLo [4.11b]
xr =Txr+ Sx - xro+ Ux - YRo [4.11c]

[4.11d]

Y& =T+ Uy - xro+ S¥ - yro

62



Where x10, y10 are the initial pixel coordinates of the left image patch, xgrg, yro are the
initial pixel coordinates of the right image patch, Txgr, Tyr are the calculated shift
parameters of the right image patch, Sx, Sy are the calculated scale parameters for the
right image patch and Uy, Uy are the calculated sheering parameters for the right image
patch. It is important to note that the parameters Xy, y1.0, Xro, Yro refer to the centralized
pixel coordinates of the template left image patch and the test right image patch (Gruen
and Baltsavias, 1986). By linearizing Equation 4.10, the following equation can be
created.

—e(x,y)=R%(x,y)—L°(x,y)+ Rx -ATxx + Ry - ATw + Rx - xg . ASx + Ry . yr . ASy  [4.12]
+ Rx.yr AUx + Ry xr AUy

Where
0
Ry = dR’(x, ) [4.13a]
OXR
0
Ry = R (6 y) [4.13b]
Jyr

Rewriting this equation in matrix form, results in the following
4.14
—e(x,y)=Ax—1; P [ I

Where

A_|:RX Rr Rx-xk Ry-yr Rx-yr RY‘.XR:|

[ATxr |
AT
ASx
ASy
AUx
AUy

63



. {U (x, ) -R"(x, y)}

P is a weight matrix that can be used to force the adjustment into assigning more value to
some of the observations. In this case, the weight matrix will be left as an identity matrix
ensuring all observations are treated equally. The least squares solution for Equation

4.14 can be calculated as follows.

£=(ATPA) (AT PD [4.15]

It is important in most engineering application to know how well the estimates of
Equation 4.15 are determined. This normally could be accomplished through the use of
the covariance matrix which can be incorporated into the least squares formulation.
However, due to the fact that the covariance matrix would contain error estimates
calculated in the spatial domain and not the spectral domain, a different method is needed
for error estimation. This alternative method of error estimation involves the use of
vector | which is defined above. By squaring and then summing the terms of vector 1, it
is possible to obtain an error estimate. Through the use of Equation 4.16, this error

estimate can be calculated.

\/IZnO:(li)z \/g(ﬁ) (x, y)—RO(x, }’))2 [4.16]

Error = 1= =
n n

Where n is the number of pixels used to determine the estimates of Equation 4.15 and

Error is the root mean square error estimate which determines the goodness-of-fit of the

data.

64



5.0 Algorithm Implementation in INDMET
Three new subroutines have been added to Indmet. These subroutines give
Indmet the added ability to perform a complete target matching solution, which can

determine the centre of a target to subpixel accuracies. The flow chart in Figure 5.1

Input pointx,
pointy,
nFlags

———>@

A

Call MatchTarg
Subroutine To Find xc,
y¢, rms Using Imagel
Grey Values As
Template

?

Call LocateTarg
Subroutine To Find
targetx, targety

m_EpipLine = false

Call CalcEpipolarLine
Subroutine To Find
ml, bl m2, b2

v

Call SizeTarg Subroutine
To Find TargSizex,
TargSizey, TargCenterx,
TargCentery

!

TargSizex = 1.3*TargSizex
TargSizey = 1.3*TargSizey

Input Imagel Grey
Values From
Template Window

If
TargSizex
Is Even

TargSizex = TargSizex + A
1

Obtain Current
Scrollbar Position

ki

i
J

(]

[¢]
(o]

>

If
TargSizey
Is Even

TargSizey = TargSizey |
+1 Dimension Template
¢ Window Using TargSizex,
-

TargSizey, TargCenterx,
. TargCentery To Get
-

(row, col)

Fig 5.1: Portion of INDMET control file OnLButtonDown that operate the
automatic target matching functions

65



diagrams the overall structure of the automatic target matching program that has been
created and added to INDMET. It incorporates and utilizes the three subroutines that
have been programmed to calculate epipolar lines, perform cross correlation analysis and
perform template least squares matching. The programming considerations, including the
logical order flow chart diagrams, for these three subroutines are presented in the
subsections to this chapter.

5.1 Epipolar Lines

An epipolar line subroutine was added to INDMET to allow the computation of
an epipolar line, based on the target chosen and the image’s exterior orientation data.
This orientation data is entered through the use of an exterior orientation dialog box,
which appears when the images are first opened. The module is based on the
mathematical method presented in Section 4.1 and the code for the module and the
images used in the testing of this module can be found in the appendix. Figure 5.2
present the flow diagram for the logical operation of the epipolar line subroutine.

Using images of a target field, it was found that the epipolar line routine was not
passing through the corresponding targets on the images. It was determined that the
cause of this problem was principal point and lens distortion errors associated with the
camera. The principal point problem was simply corrected by having the user input the
principal point in pixels from the upper left corner of the image and shifting the image
coordinate system so that the origin is at the principal point. To correct lens distortion, a

new subroutine was added that reads in lens distortion data and then computes and
applies the appropriate correction. Since the lens distortion data that was received with

the images was in the form of regularly spaced radial distance readings of the distortion,

66



|

Xa = xa + xpp2
ya=yppZ-ya

xa = xa + 1/2*ImageWidth
ya = 1/2*ImageHeight - ya

E

Input pointx, pointy,
omegal, phil, kappal,
%01, yol, zol, focal
length1, xppl, yppl,
DistortionFile1

If
xppZ =-1or
yppZ = -1

Tnput omega?2, phi2,
kappaZ, x02, yo2, zo2,
focal length2, xpp2,
ypp2, DistortionFile2

If

Calculate Two Points
On Epipolar Line In

Image 2 Using ua, va,
ub, vb in Eq'ns 4.3

!

No

xgg}l) 1::-3101" va = -1/4*ImageWidth
ub = 1/4*ImageWidth
vb=va
A
A Calculate Normalized
xtrans = 1/2*ImageWidth xtrans = xppl y Coordinate (va)
ytrans = 1/2*ImageHeight ytrans = yppl Using xa, ya In Eq'n
42b
Xa = pointx - xtrans Calculate Slope And
ya = ytrans - pointy ——— Intercept For Epipolar
Line In Imagel
(ml, bl)
If Yes Call Calculate yb Using A,
DistortionFilel CorrectLensDistortion xa, ya, xb In Eqn 4.5
Not= "N/A" Subroutine

Call CalcRotMatrix
Subroutine To Find
The 3x3 Rotation Matrix
For Image2

+

Bvectorx = xo1 - x02
Bvectory = yol - yo2
Bvectorz = zol - 202

A

Yes

Calculate Slope And
Intercept For Epipolar
Line In Image2

(m2, b2)

Qutput
DistortionFile2,
xpp2 and ypp2

v

Qutput Slope and
Intercept For
Epipolar Lines In
Images 1 & 2

(ml, bl, m2, b2)

Stop

xb =xa+
1/2¥ImageWidth

xb=xa -
1/2*ImageWidth

Yes

Bvectorx = x02 - xol

Bvectory = yo2 - yol

Bvectorz = zo2 - zol

A

Calculate The Angle Call CalcRotMatrix

) Of The Basis Vector > Subroutine To Find
To The Object The 3x3 Rotation Matrix
Coordinate System For Imagel

Fig 5.2: Diagram of the operation of the Epipolar Line function

67



an interpolator to fill in the missing data was necessary. It was decided that a simple
linear interpolator, applied between distortion points, was the best option. The linear
interpolator has the advantage of working in a general context, where all forms of
distortion can be represented. It has the disadvantage of inaccuracy, since linear
interpolation between points, can displace a great distance from the actual distortion
value. This becomes even more pronounced when the data points are farther apart.
5.2 Cross Correlation Analysis

A cross correlation subroutine was added to Indmet so that images can be scanned
to find targets along a given epipolar line. Since the routine needs to orient the template
and test image samples along the appropriate epipolar line, two sets of line parameters, m
and b, are required. These lines represent the epipolar lines in each of the two images.
The mathematical basis for this analysis is discussed in Section 4.2 and the code for the
subroutine, as well as the images used in the testing of this subroutine, can be found in
the appendix. Figures 5.3a, 5.3b and 5.3c present the flow diagram for the logical
operation of the cross correlation subroutine.

Due to the fact that the pixel areas are aligned with the axes and not the epipolar
line, rotation and interpolation become necessary to obtain a proper sample along the
aforementioned epipolar line. To reorient the pixels under consideration, coordinates
around the centre of the image sample are rotated so that they are aligned with the
epipolar line. An interpolator is then used to determine a grey value for each of these
coordinates. The interpolator is the same bi-linear interpolator that is described in the

template least squares matching section. It was used in this application because it was

68



Start

linex = (ImageHeight - 0.5%cols -b2)ym2
liney = ImageHeight - 0.5*cols
Option =3

Input x1, y1,
ml, bl, m2, b2,

XPP, YPP,
DistortionFile

Call SizeTarg
Subroutine For User
Selected Target On

Imagel

A

Dimension Template
Window
(rows, cols)

A

Calculate Coordinates Of
Center Of Template
Window
(boxCenterx, boxCentery)

!

angle = arctan(m1)
counter =0
averagex =0
i=0
j=0

Y

Obtain Current Scrollbar
Position

\

xi = cos(angle)*(j - boxCentrex) -
sin{angle)*(i - boxCentrey)

yi =sin{angle)*(j - boxCentrex) +
cos(angle)*(i - boxCentrey)

ImageHeight >= b2
and b2 >=0

linex = 0.5*rows
liney = m2*0.5*rows+ b2
Option=2

xpp = 1/2*
JYes ImageWidth
ypp = 1/2*
Imagelieight

If
xXpp=-lor
ypp=-1

[

Yes

If

linex = (0.5*cols - b2)/m2
liney = 0.5*cols
Option =1

A

Yes

If
DistortionFile
Not="N/A"

Input Lens
Distonition

Data Into
Matrix D

SwitchWindow Is

Not Successful Yes

Call SwitchWindow
Subroutine

A

averagex =
averagex/(counter+1}

A

Truncate x1, yi To
Form xint, yint

!

Input Pixel Grey
Values Located At
(xint, yint),
(xint + 1, yint),
(xint, yint + 1},
(xint+ 1, yint + 1)

counter2 =0

xtemp = linex - xpp
ytemp = ypp - liney

Y

raddist = (xtemp “+ ytemp %'

No +

Search Distortion
Data For Position Of
raddist

If
DistortionFile
Not="N/A"

Y

correct =Dy + Dy

- Di,l) / (DH-I,O - Di,o) *
(raddist - D;o)

A
' xtemp = xtemp + correct
. :
pointx ~ linex xiemp / raddist
inty = liney ytemp = ytemp + gorrect
pointy * ytemp / raddist
| counter = counter + | | ‘
+ pointx = xtemp + xpp
Add Interpolated Value To pointy =ypp - ytemp
averagex
Main Line
Call Interpolate Subroutine Retum Loop #1

Fig 5.3a: Diagram of the operation of the Cross Correlation function

69



Dimension Window The Same
As Template Window
(rows, cols)

!

Calculate Coordinates Of
Center Of Template
Window
(boxCenterx, boxCentery)

'

Call SetScrollPos
Subroutine To Scroll To
Point (pointx, pointy)

angle = arctan(m?2)
counter = 0
averagey = 0
i=0
j=0

Obtain Current Scrollbar
Position

'

x1 = cos(angle)*(j - boxCentrex) -

sin(angle)*(1 - boxCentrey)

yi = sin(angle)*(j - boxCentrex) +

cos(angle)*(i - boxCentrey)

=i+

counter = counter + 1 |

Numerators Of Eq'ns 4.7,
> ! b 4.8, 4.9 Using The

!

Calculate The

Interpolated Grey Values
And averagex, averagey,
sumx2, sumy2, sumxy

i

sumx2 = 0
sumy?2 = 0
sumxy = 0
counter = 0
i=0
71=0

!

averagey =
averagey/(counter+1)

'

Truneate x1, y1 To
Form xmt, ymt

Input Pixel Grey
Values Located At
(xint, yint),
(xint + 1, yint),
(xint, yint+ 1),
(xint + 1, yint + 1)

counter = counter + 1 |

+

Add Interpolated Value To
averagex

!

Call Interpolate Subroutine

Calculate Variances
And Covariance
sumxy = sumxy/cournter
sunx2 = surmx2/counter
sumy2 = sumy?2/counter

If
sumx2 < 0.000001
or sumy?2 <
0.000001

1o = sxy/(sx2%sy2) 2

If
ro>
largestro

Store Correlation Value
And Coordinates In
The 3x3 Matrix trial

If
trialy, > trialy
and

Retum Loop

linex = line.x + 1
liney = m2*(line.x) + b2,

largestro = ro
targetx = pointx
targety = pointy

trial; o>trialy o

Call mbsort
Subroutine

StoreTarget Canidate
In Canidate List

Fig 5.3b: Diagram of the operation of the Cross Correlation function continued

70



If
Option = 1 and liney
>= mageHeight - cols

Checkline = false

If
Option = 2 and linex
> =~ ImageWidth - rows

Checkline = false

Output largestro,
A g, argety

If
Option = 3 and liney
<= cols

Checkline = false

linex = line.x + 1
liney = m2*(linex) + b2

If
Checkline = true

Fig 5.3c: Diagram of the operation of the Cross Correlation function continued

convenient; being that it had already been programmed for use in the template least
squares matching routine.

Similar to the lens distortion correction, mentioned in the epipolar line section
above, a method to match the epipolar line to the image had to be added. In this case, the
‘perfect’ epipolar line had to be reshaped to fit on the distorted image. To do this, a
distortion is added to the coordinates of every point that is calculated from the line. This
ensures that the centre of the target, which is being searched for, lies close to the

coordinates calculated from the line. Exactly as was laid out in the previous Section, for

71



the lens distortion correction, the correction data points are read in and a linear
interpolator is used to determine the distortion for the point under scrutiny. Exactly for
the reasons previously stated, a linear interpolator was chosen to do this job. Unlike
before, the distortion is added to the point, instead of being removed, since the ‘perfect’
line is now being related back to the ‘imperfect’ image.

5.3 Template Least Squares Matching

The template least squares matching subroutine was created and added to Indmet
to provide an alternative method of subpixel target location. Given that there are now
two views of the same target loaded into Indmet, the required information to perform
template least square matching is at hand. The way in which this information is used to
obtain a subpixel target location in the second image is described in Section 4.3. The
code for the program that was written to perform this operation, as well as the images
used in the testing of this module, can be found in the appendix. Figures 5.4a, 5.4b and
5.4c present the flow diagram for the logical operation of the template least squares
matching subroutine.

To perform the template least squares matching routine, it was necessary to
program an interpolator that could determine grey values at decimal pixel locations. This
allows the routine to shift its window under scrutiny by fractions of a pixel, so that
subpixel accuracy can be achieved when determining the target centre. The interpolator
that was used is the bi-linear interpolator shown in Equation 5.1.

grew=(1-x)-(1-y)-gitx-(1-y)-g2+(l-x)-y-gs +x-y-g+& [51]
Where, g; to g4 are the grey values of the four pixels that contain the point in question

and x, y are the decimal coordinates of the point. This is not the only type of interpolator

72



Start

Input Image! Grey
Values, row, col,
targetx, targety

Call SetScrollPos
Subroutine To Scroll
To (targetx, targety)

!

Window To Same Size As

Dimension Search

Template Window
(row, col)

!

i=0
i=0

A

Obtam Current Scrollbar
Position

Input Iimage2 Grey
Values From
Search Window

jmivl

Call Interpolate

If
(xi>0Qand xi <
col-1) and (yi> 0
and yi <row-1)

Truncate x1, yl To Find
i, y1

i

xl =x1 +¢c2
yl =yl +12

!

x1 =Tx+ 8x * (j-¢2) + Rx * (i-r2
yl = Ty + Ry * (j-c2) + Sy * (i-r2) 4——%

i

!

counter = 0
sumsq = 0

!

iter =0
check =0

i

2 =(row - 1)/2
¢2=1(col -1)2

1=0
j=0

!

Set Initial
Approximations
Tx=0
Ty=0
Sx=1

X2 =Tx+8x * (j-1-¢2) + Rx * (i-12

Subroutine To Find gl _ * (] W ¥ (s
routl ¢ {2 =Ty + -1-c2) + -
Using Pixe! Locations y2 =Ty + Ry " (1-a2) + 8y ¥ ir2)

(xi, y1)
(xi+1,yi)
(x,yit1)

xi+1,y1+1)

v

x2=x2+¢c2
y2=y2+12

Y

Truncate x2, y2 To Find
i, yi

i
(x1> 0 and xi <
col-1) and (yi > O
and yi < row-1)

j=i+l

Call Interpolate
Subroutine To Find g2
Using Pixel Locations

(xi, yi)
(xi+1, y1)
(x1, y1+1)

(xi+1,yi+1)

,

x3 =Tx+ Sx * (j-¢2) + Rx * (1-1-12
y3 =Ty +Ry * (j-c2) + Sy * (i-1-12)

- v

X3 =x3+¢2
y3=y3+12
A
Truncate x3, y3 To Find
X1, yi
j=j+1

If
(xi> 0 and xi <
col-1)and (yi > 0
and yi <row-1)

Sy=1 Return
Rx=0 Loop
Ry =0 #1

A

Retum Main Line
Loop #
#2

Fig 5.4a: Diagram of the operation of the Template Least Squares Matching function

73



Main Line
#1

Call Interpolate
Subroutine To Find g3
Using Pixel Locations

(xi, y1)
(xi+ 1, yi)
(xi, yi+ 1)

x+lyi+1)

'

Return
Loop

x4 =Tx + 8x * (j+1-¢2) + R * (1-r2)
y4 = Ty + Ry * (j+1-62) + Sy * (i-12)

'

x4 =x4+c2
yd=yd +12

A

Truncate x4, y4 To Find
«, yi

If

(> 0and xi <
col-1) and (yi >0
and yi <row-1)

Call Interpolate
Subroutine To Find g4
Using Pixel Locations

(x, yi)
(xi+ 1, yi)
(d, yi+1)

(d+1,yi+1)

A

X5 =Tx + 8x * (j-¢2) + Rx * (i+1-r2)
y5 =Ty + Ry * (j-c2) + Sy * (i+1-12)

v

x5=x5+c2
yS=yS+r2

Y

Truncate x5, y5 To Find

j=i+l

counter = counter + 1

f

SUmMsq = sumsq + (L counler)z

!

L,

‘counter

= Imagel Grey Value ; - gl

T

acounter,O = (g4 - gz)/ 2
a'colmier,l = (g5 - g3)/ 2
Bcounter,2 ((g4 - 82)/2)*()(1-&,2)
Acounter;3 = (85 -83)/2)*(y112)
acotmter,tl = ((g4 - gZ)/ 2)*(}’1 -IZ)
Acounter,s ((g5 - g3)/2)*(x1 -(32)

f

Call Interpolate
Subroutine To Find g5
Using Pixel Locations

(xi, yi)
(xi+1,vi)
(xi, yi+ 1)

(d+1yi+1)

If

(xi> 0 and xi <
col-1) and (yi> 0
and yi < row-1)

4, yi

template_matching
Subroutine To Find
Vector X

v

Adjust Initial

Approximations
Tx=Tx+X,
Ty=Ty+X,
Sx=8x+X,
Sy=Sy+X ,
Rx=Rx+X,
Ry=Ry+X,

If
Xl <0.0land
%, <0.01 and

[X,] < 0.0001 and

%3] < 0.0001 and

[X4] < 0.0001 and

[Xs] < 0.0001

Print Error
Message

check = 1

Fig 5.4b: Diagram of the operation of the Template Least Squares Matching function continued

74




Main Line
#2

x¢ = Tx + targetx
ye = Ty + targety
ms = (sumsq) 172 joounter

Print Error
Message

v

Set Up The Solution
Dialog Box

Output
xc, y¢ and rms

Fig 5.4c¢: Diagram of the operation of the Template Least Squares Matching function continued

that could have been used. Other types, such as a sinc function interpolator are common
when interpolating between image pixels. The advantage of using a bi-linear interpolator
is that it is a fast method of interpolation that requires little computational expense. This

becomes a valuable asset considering that every pixel in the template and test regions

have to be interpolated.

Another challenge that was encountered during the writing of the template least
squares matching routine, involved the determination of the derivatives for the left and
right image, grey level functions. Since no mathematical functions were formulated to

describe these grey value functions, it was necessary to use numerical derivation to

75




calculate these derivatives. To perform this type of derivation, it was necessary extract,
in addition to the pixels own grey value, the four grey values that were directly above,
below, to the right and left of the pixel in question. The derivatives that were used are

shown in Equation 5.2 below:

R (x,y) _ (gr+1-g:-1) [5.2]
OXR 2

R’ (x,y) _ (gr+1-gv-1) [5.2b]
OYR 2

Where R(x,y) is the grey value function of the right search image and x, y are coordinates
of the point under consideration. Using the surrounding pixels, it was possible to
determine the slope of the function at any particular point in the search window, with one
exception. Due to the fact that the pixels at the edge of the search window are not
completely surrounded by other pixels, it was necessary to remove these pixels from
direct least squares computation. They were only used to determine the point derivatives
of the pixels in the adjoining layer.

Template least squares matching is, by nature, an iterative process. It is
necessary, therefore, that appropriate exit conditions be chosen. This is important so that
the answer is sufficiently close to the target centre, while at the same time not tying up
computer resources and thereby slowing execution of the program. As shown in Section
4.3, the adjustment has unknown parameters. These parameters are the shift, in the x and
y directions, the scale in the x and y direction and the rotation in the x and y directions.
The adjustment provides corrections for these parameters, based on the initial

assumptions of

76



T, =0
Ty =0
Se=1
Sy=1
R =0
R,=0

Where Tx and Ty are the shift parameters, S and Sy are the scale factors, and Ry and R,
are the rotation parameters. The program is adjusted so that the iteration loop that
encompasses least squares adjustment will exit when the calculated corrections satisfy the
following criteria

IAT,| < 0.01
IAT,| < 0.01
AS, | < 0.0001
IAS, | < 0.0001
IAR,| < 0.0001
IAR,| < 0.0001

These criteria were chosen based on the first derivatives of Equations 4.11c and 4.11d
from Chapter 4 and the fact that answers more accurate than 1/100™ are not possible
using this method. Taking the first derivatives of Equation 4.11c, with respect to Ty, Sg
and Ry, then splitting this derivative into its component differentials, results in the

following equations.

dx = dT: (53]
dx = x-dSx (53]
dx=y-dRx [S-3c]

Now, having already chosen 1/100™ of a pixel as the absolute value of the smallest
accuracy possible and assuming that the largest target that will be matched is 100 pixels

by 100 pixels, the exit limits for the template matching routine can be determined.

77



|dTx = |dx = 0.01 [5.4a]

as = &l _ % = 0.001 [5.4b]
X

Ry = &2 00 _ 00 [5.4c]
y 100 '

Similarly, Equation 4.11d is differentiated and split, to obtain the error limits for the
remaining three adjustment parameters. These error limits will provide answers that will
be sufficiently accurate, while limiting the number of iterations so as to limit the amount
of time each matching session takes. If these criteria are not met within a predetermined
iteration limit of 50, the program prints an error message to the screen and returns control

of the program to the user, so more target matching can be done.

78



6.0 Testing Procedures and Results

To ascertain if the three modules that have been added to INDMET are operating
as expected, tests have been performed. These tests have been conducted on each module
separately to ensure that every part of the target matching solution is functioning as
expected. The tests involve the use of digital images that were kindly supplied by the
Applanix Corporation. A box-like target rig, upon which white targets containing black
circles have been logically dispersed, is the subject of these images. Information on focal
lengths, camera orientations, camera positions and camera distortions, associated with the
images, has also been provided. This information is imperative for the proper
functioning of the target matching solution.

The tests come in three stages. The epipolar line test is designed to determine
how well the calculated epipolar line overlaps the desired target. The cross correlation
test is concerned with the success rate of locating targets well enough for the template
least squares module to operate. Finally, the template least squares tests are concerned
with finding how much of the target must be in the search window for a reliable match to
be made and how accurately subpixel values can be determined from the target images.
6.1 The Epipolar Line Module

The accuracy with which epipolar lines are calculated was tested by determining
the distance from the closest point on the calculated line, to the centre of the
corresponding target in the second image of the stereo pair. To perform this test, two
stereo pairs were used, and ten targets were located within each stereo pair. This means
that an overall total of twenty targets were used. The centres of these targets were

determined, using the subpixel moment method that was already a part of the INDMET

79



program. Each stereo pair that was used demonstrates a unique situation. The first stereo

pair, which uses AHO as the left template image and CHO as the right search image,

demonstrates a situation where two images are taken at equal heights, but one image is at

a significant angle to the rig, while the other image is more or less flat. This means that

targets in the skewed image, i.e. AHO will be far more elliptical than the targets in the

second image. In the other situation, both images are flat to the target rig, but were taken

at differing heights above the datum. This means that the targets in each image are more

or less similar in respect to shape and size. All four of these images can be found in the

appendix, along with their associated orientation and distortion data.

Table 6.1: Results of Epipolar Line Routine for Images AHO and CHO

Target |Point On Epipolar Line (Pixels) Target Centre (Pixels) Difference (Pixels)
No. X Y X Y RMS | Type X Y
101 1464 1482 1465.081 | 1485.241 | 0.034 | Auto Box | -1.081 | -3.241
102 1453 469 1453.454 | 471.502 |0.032| Auto Box | -0.454 | -2.502
104 1067 1462 1069.487 | 1465.011 |0.032 | Auto Box | -2.487 | -3.011
117 711 505 710.564 | 508.852 [0.044| Auto Box | 0.436 | -3.852
119 398 1462 396.427 | 1465.909 {0.028 | Auto Box | 1.573 | -3.909
120 379 631 379.763 | 633.775 |0.045| Auto Box | -0.763 | -2.775
218 767 2681 767.466 | 2684.742 |0.034 | Auto Box | -0.466 | -3.742
221 447 2670 448.85 | 2668.641 |0.019 Box -1.85 | 1.359
237 555 2491 553.369 | 2492.576 | 0.02 Box 1.631 | -1.576
312 2760 2897 2763.238 | 2898.328 [0.017 Box -3.238 | -1.328

Table 6.2: Results of Epipolar Line Routine for Images CHO and CLO

Target {Point On Epipolar Line (Pixels) Target Centre (Pixels) Difference (Pixels)
No. X Y X Y RMS | Type X Y
206 1021 3192 1022.043 | 3187.659 | 0.037 | Auto Box | -1.043 | 4.341
217 721 3592 722.942 | 3595.645 |0.038 | Auto Box | -1.942 | -3.645
236 506 3268 506.567 | 3263.936 |0.045| Auto Box | -0.567 | 4.064
321 3225 2771 3223.304 | 2765.179 |0.022 Box 1.696 | 5.821
336 2910 3290 2913.444 | 3294.582 |0.042 | Auto Box | -3.444 | -4.582
407 2985 1653 2987.106 | 1657.43 [0.028 | Auto Box | -2.106 | -4.43
408 3013 869 3015.978 | 869.296 |0.035| Auto Box | -2.978 | -0.296
411 2624 981 2626.594 | 976.998 (0.028 | Auto Box | -2.594 | 4.002
419 3276 1654 3278.472 | 1652.901 [0.045 | Auto Box | -2.472 | 1.099
420 3318 897 3314.687 | 891.823 [0.044 | Auto Box | 3.313 | 5.177

80




Table 6.1 shows, out of ten trials, the epipolar line is never more that 4 pixels
away from the target centre. Table 6.2, on the other hand, shows a maximum deviation
of almost 6 pixels. This amount of deviation is acceptable, since the target images that
were used are already assumed to appear in multiple pixels, so that INDMET’s subpixel
routines can find the centre. In fact, the larger the target in the image, the more
accurately the target centre should be determined. Therefore, if the target is only 6 pixels
wide, it is highly dubious that the results could be obtained from either subpixel locator
and, if they are, it is doubtful they will be of much practical use.

To achieve this level of accuracy, when creating the epipolar line, the module has
to incorporate corrections for lens distortion and the principal point offset. While
calculating a straight epipolar line is useful, comparing it to large images that contain
these errors will result in significant deviation of the line from the target in the image.
For the test, the image that was used contained lens distortions that are shown in Figure
6.1. The radial lens distortions contained in this image can reach up to 37 pixels near the
edges. This represents a significant deviation from the epipolar line and can cause the

matching process to fail, if not corrected.

Fig 6.1: Radial Lens Distortions for
Epipolar Line Test

14 16 18 20 22 24 26

Radial Distortion (Pixels)
)]
(=]

Radial Distance (mm)

81



6.2 The Cross Correlation Module

The ability of the cross correlation module to locate the required target was tested
by simply running the matching algorithm and recording the results. The same sets of
stereo pairs, as well as the same twenty targets were used. The results of this test are
shown in Tables 6.3 and 6.4. The cross correlation routine stores the top five correlation
values in a list. The table column entitled, ‘List Position’, refers to the position of the
actual corresponding target in this list. The entries that are labelled ‘Did Not Appear’
refers to the fact that the corresponding target in the second image of the stereo pair did

not appear as one of the top five correlation values.

Table 6.3: Results of Cross Correlation Routine for Images AHO and CHO

Target No.| List Position |Matched?|X (Pixels)}|Y (Pixels)| RMS (Pixels)
101 Did Not Appear No - - -
102 3 No - - -
104 Did Not Appear No - - -
117 2 No - - -
119 5 No - - -
120 1 Yes 380.251 | 633.654 0.16
218 2 No - - -
221 Did Not Appear No - - -
237 1 Yes 554.027 |2492.684 0.315
312 Did Not Appear No - - -

Table 6.4: Results of Cross Correlation Routine for Images CHO and CLO

Target No.| List Position |Matched?|X (Pixels)|Y (Pixels)| RMS (Pixels)
206 1 No - - -
217 1 Yes 723.331 |3595.901 0.202
236 1 No - - -
321 Did Not Appear No - - -
336 1 Yes [2913.147]3295.219 0.376
407 1 Yes |2987.123[1657.349 0.16
408 2 No - - -
411 1 Yes |2626.783| 977.353 0.247
419 1 Yes [3278.454(1653.781 0.241
420 Did Not Appear No - - -

Table 6.3 clearly shows that 4 out of 10 matches did not appear in the top five.

These targets, while having high correlation values, did not have high enough correlation

82



values to make the list. Another 4 out of the 10 matches made the top five correlation
list. The remaining two targets went through the entire target matching solution and were
correctly identified and matched. This represents a matching success rate of
approximately 20%, when one image sits at a skewed angle with respect to the other.

Table 6.4, on the other hand, shows a much higher success rate. Out of the ten
targets that were tested in this stereo pair, no less than five were successfully matched.
Two more of these targets appeared number one in the cross correlation list, but due to
the fact that the template least squares matching routine reached its preset iteration limit,
no target centre information was generated. One of the targets was number two on the
list, indicating that it was a strong contender as a target match. Finally, only two failed to
make the list. Therefore, due to the fact that a total of 7 targets appeared first in the list, a
matching success rate of 70% was achieved, for the case where image targets have
similar elliptical dimensions.

Unfortunately, targets are not the only things that the module correlates as a
match. The target field is set up on a steel cube structure, where the targets are attached
to the posts. The cross correlation module routinely finds high correlation values when
scanning over these posts. In many instances, these posts can make the top five list
which confuses the module. The results of Table 6.4 partially occur because the image
geometry of this stereo pair dictates that the epipolar lines will run fairly vertical,
meaning that far fewer of the prominent vertical posts will be crossed by the routine. It
also means that fewer targets will be encountered by the routine, since these targets are

attached to the posts.

83



It should be noted that the images used in this cross correlation test were of poor
quality. The targets were generally blurred and the target contrast edges were not well
defined. These images were used since images of better quality, that had all the
necessary associated orientation and distortion information, could not be obtained.

6.3 The Template Least Squares Matching Module

The first test that was performed involved using two identical images of a target
to test whether the least square adjustment was adequately correcting for shifts in the
target. Therefore, the pixel window was shifted from the centre of the target on the right
image by increments to ensure that the program corrected each shift. This was done in

the four cardinal directions, along the axes, to make sure that all possible shifts were dealt

Fig 6.2a: Difference in Results of X Coordinate Fig 6.2b: Difference in Results of Y Coordinate 1
Due to X Axis Shift in Window Due to X Axis Shift in Window 1
0.002 - 40 -
=] =]
S S 30 -
& 0.001 - = —_—
2 @ 20 ?
E E
2 2 10
g3 g 0
= S) 40 30" 2y -10 10 20 {30 40 g8 9 =
8 0.001 - 5% 0004 0002 - g 0002 0.004
5} L |
2 0.002 - 2 e
A = 2301
-0.003 - 40 -
Window Distance From Centre (pixels) Window Distance From Centre (pixels)
Fig. 6.2¢ : Difference in Results of X Coordinate Fig 6.2d: Difference in Results of Y Coordinate
Due to Y Axis Shift in Window Due to Y Axis Shift in Window
0.001 - 40

=] g
g 2
p % 20
B 3
2 2 10
L W W W
~ 5 ~ B
'S é M E é | ‘0 e LA 1
&é 10 ¥ 2 0 40 § -0.004 -0.002 0.002 0.004
L [ .
a =)
‘ 40
Window Distance From Centre (pixels) Window Distance From Centre (pixels)

34



with. It was found that the template least squares matching subroutine had a pull-in range
of approximately half the target size. The four graphs in Figure 6.2, show the difference
between the centre coordinates produced by the template least squares matching program
and the known target centre. These graphs show how the calculated points vary as the
comparison window is moved first along the x axis, then along the y axis. The graphs of
Figure 6.2 demonstrate how the calculated error increases, as parts of the target edge are
lost to the adjustment. These graphs also show that there is little variation in the answers
that are being returned by the program, and that these errors are well within the accuracy
range of INDMET’s original sub-pixel location routine (1/20™ to 1/50™ of a pixel). The
routine also provides estimations of the accuracy for which the target centre is located.
Using the root mean square (RMS) formulation on the difference between the grey values
of the template and the search images allows this estimate to be calculated. Figure 6.3
shows that for each comparison window location, the estimated RMS error for the match
was always below 0.004 of a pixel. Again, this value is well within the expected
accuracy for the system. Lastly, the number of iterations, which is an indication of the
running time of the program, must be kept low to ensure that the routine is practical. The
graphs shown in Figure 6.4, represent the number of iterations of the routine at each
window location. The graphs end when the iteration limit is reached. As can be seen in
the graphs of Figure 6.4, the number of iterations that the routine requires is less than one

hundred, right up to the point where the routine can no longer match the target accurately.

85



Fig 6.3a: RMS Values as Target Window Shifts
Along X Axis

0.0045 -
0.004 -

RMS

-40 -20 0 20 40

Window Distance From Centre (pixels)

Fig 6.3b: RMS Values as Target Window Shifts
Along Y Axis

0.0045 4
0.004 -

RMS

-20 0 20 40

Window Distance From Centre (pixels)

-40

Fig 6.4a: Iterations as Target Window Shifts Along

X Axis
600 -
E 500 -
g 400 1
= 300
3
g 200 -
Z 100
-40 20 0 20 40

Window Distance From Centre (pixels)

Fig 6.4b: [terations as Target Window Shifts Along

Y Axis
600 -
g 500 4
-
g 400 -
S 300 -
2 ]
£ 200
=
z 100 -

-20 0 20 40

Window Distance From Centre (pixels)

The second test that was preformed involved seeing how the template least

squares matching routine compared to INDMET’s moment routine. An image containing

four targets was used and the four targets were compared to one another. Each target

served as the template image as well as the search area image. Table 6.5 lists the results

of this analysis, where the targets serving as the template image are listed in the first

column and the targets serving as the search area image, are listed in the first row. The

column labelled ‘Moment Method’ presents the target centre as calculated by the original

INDMET subpixel centre location routine. As the table shows, the two routines do not

precisely agree in terms of the centre of the targets. The two methods are within less

86



Table 6.5: Template Least Squares Matching Results for Four Targets

Target
No.

1

2

3

4

Moment Method

xc = 92.277 pixels
yc = 237.579 pixels
RMS = 0.142 pixels

xc = 93.043 pixels
yc = 237.768 pixels
RMS = 0.103 pixels

Failed To
Converge

xc = 92.329 pixels
yc = 237.887 pixels
RMS = 0.011 pixels

xc = 406.632 pixels
yc = 154.362 pixels
RMS = 0.121 pixels

xc = 406.716 pixels
yc = 154.121 pixels
RMS = 0.113 pixels

Failed To
Converge

xc = 405.923 pixels
yc = 154.181 pixels
RMS = 0.012 pixels

XC = 545.957 pixels
yc = 401.252 pixels
RMS = 0.127 pixels

xC = 545.169 pixels
yc = 400.916 pixels
RMS = 0.167 pixels

Failed To
Converge

xc = 545.258 pixels
yc = 401.227 pixels
RMS = 0.009 pixels

x¢ = 359.725 pixels
yc = 390.798 pixels
RMS = 0.114 pixels

xc = 358.752 pixels
yc = 390.241 pixels
RMS = 0.116 pixels

xc = 359.825 pixels
yc = 390.315 pixels
RMS = 0.114 pixels

xc = 359.152 pixels
yc = 390.933 pixels
RMS = 0.007 pixels

than a pixel of one another and the RMS error for the template least squares indicates that

these values are determined poorer than the values determined from the moment method.

In fact, the results show that the template least squares matching routine can locate

targets to approximately 1/10™ of a pixel, while the original INDMET moment routine

was able to achieve accuracies of 1/20™ of a pixel or better. This discrepancy could

possibly be caused by the fact that the simplest least square adjustment was used to match

the targets. The use of a more complicated mathematical model might be suggested by

this discrepancy. It is also of note that template four failed to converge when the other

targets were being used as the template. This is almost certainly due to the fact that target

four is nearly twice the size of the other targets. Being twice the size of the other targets

means, parts of the target edges might have been clipped out of the comparison window,

since the routine determines the window’s size based on the template target’s dimensions.

87




7.0 Conclusions and Recommendations
7.1 Conclusions

The thesis presented here demonstrated a single target matching solution to locate
specific targets for the purpose of high precision photogrammetric measurement. This
solution included the programming and detailed testing of three specific subroutines in
the C++ language. Testing was conducted on poor quality images to prove that these
subroutines could handle images of this type and still function. Completion of this thesis
has provided future Ryerson students with access to high precision target location
software. While researching this topic, a large volume of information was gathered on
automatic target matching algorithms. This information has been presented here to
educate readers in the goals and methodologies of target matching, as well as provide a
platform upon which future researchers may build.

Target matching is an ever-expanding field of study. Numerous organizations and
professions specifically deal with a machine’s ability to locate, track and identify targets
from digital images. These groups include photogrammetrists, computer vision
specialists, robotics experts, neurophysiologists and those interested in remote sensing.
Through these groups, numerous matching techniques, search methods and other
mathematical theories have been developed. These techniques can be broken down into
three categories; signal based matching, feature based matching and relation based
matching. Each of the techniques, which are contained within these categories, tries to
duplicate a specific aspect of the human visual system. The first purpose of this thesis

has been to describe many of these techniques, illustrating how each uses different

88



properties, inherent to the digital image, to locate, track, or identify specific items within
the image. It now seems appropriate to summarize these categories.

Signal-based matching uses the relationship between the brightness, or grey
values in the neighbourhood of the target point. The resemblance between grey values is
used to determine whether the image points are similar. The most popular signal
matching routines include least squares matching, cross correlation and Euclidean
distance. One of the advantages of using signal based matching is that it is fully
compatible with the tried and tested concepts of signal processing. Radiometric
restoration, smoothing and edge detection are particularly enhanced through the use of a
signal based solution. The two main disadvantages that exist with signal matching
routines are that a match only occurs if the target image has undergone a simple shift and
that grey value distributions do not correspond to physical entities.

Feature-based matching uses image features, such as points, lines and areas, to
locate and match targets. Most feature based systems are combined with the epipolar
geometry to limit the amount of area that is to be considered. The actual searching is
performed by one of a number of interest operators that have been created over the years.
The most common of these operators are the Forstner, Dreschler, Marr-Hildreth and
Moravec interest operators. The success of feature based matching depends on three key
properties. First, the discreetness of individual points is critical. The more discreet the
point, the better chance the computer has to match it in the second image. Second, the
similarity, which is a measure of how closely two points resemble each other. Third, the
consistency provides a measure of how well a particular match conforms to surrounding

matches, based on some general object model.

89



Relation-based matching is the most complex of the three matching schemes. It
uses image features and information on how these features relate to each other, to create
structural sets. These structural sets are used to compare the images and establish the
location of image targets. Due to the nature of structural image matching techniques, no
a-prior information is required and, therefore, relational matching may be considered a
fully automated technique. This is true because relation based matching techniques are
able to utilize topological and geometrical relations among image features. The main
disadvantages of relation based matching are that efficient acquisition of structural
descriptions is difficult and the operations used to match them are very complex.

The second purpose of this thesis was to demonstrate how a precise target
matching solution might be performed. The software package INDMET was used as the
basis for applying this target matching solution. The software upgrade included three
major sub-routines involving epipolar lines, cross correlation and template least squares
matching. These routines limited the search area, search for target matches and
performed subpixel target location respectively. It was found that this target matching
solution was able to locate the correct targets between 20% and 70% of the time,
depending on how similar the elliptical targets appeared in the images. Once found, the
program was able to perform subpixel target centre location, accurate to about 1/ 10" of a
pixel. Different mathematical models for the cross correlation and template least squares
matching modules might produce better results. Automatic target matching is a field
where there is always a better way to perform the matching. Despite the fact that this is a
multidisciplinary field, with many people working on ways to improve computer vision,

no model, algorithm or program has yet been able to approach the human ability to

90



recognize and associate objects. This will probably remain the case until people are able
to create a machine that can think and reason for itself. Until then, automatic target
matching will continue to develop, adding new algorithms to the plethora that already
exist.

7.2 Recommendations

Due to the nature of target matching and the plethora of matching routines
available, there are many changes to a target matching solution that are possible. The
routine presented in this thesis has a number of areas where improvement is possible.
The cross correlation module has problems identifying the true target from the other
targets and similar objects that lie along the epipolar line. Some sort of consistency
check would seem to be needed. An example of such a check would be the coplanarity
condition. Since the images can be linked by the epipolar line, which is simply a
representation of the intersection of the epipolar plane with the image planes, the true
targets in each image must lie precisely in the same epipolar plane. Another option
would be to use a different form of the cross correlation method, such as the Fast Fourier
Transform method that is outlined in Section 2.2.2.

The template least squares matching module also has a number of features that
could be changed to improve its performance. Even though a simple least square
adjustment was used, a more complicated mathematical model might bring better results.
Gruen and Baltsavias (1986) presented a model that not only adjusts the search area
target, but also adjusts the template target. This might bring better results when the
template target is significantly smaller than the search area target or when the template

target is significantly skewed. Also, considerable interpolation is required for the

91



purposes of resampling the image whenever a shift is made. The interpolator that was
chosen was of a bilinear nature. This type of interpolator is fast but rather simplistic. It
is unable to compensate for aliasing errors, which represent the bulk of the interpolation
errors. A better interpolator would be the so-called ‘sinc’ function. This type of
interpolator has a smoothing effect on the interpolated pixels, producing a clearer
interpolated image. Clear interpolated images mean that the target edges will be better

defined, allowing more accurate determination of target locations to subpixel values.

92



References

Applanix Corporation. 2002. Camera Orientation Data. Personal Communication.
www.applanix.com

Bacher, U., Bludovsky, S., Dorrer, E. and Miinzer. 1999. Precision Aerial Survey of
Vatnajokull, Iceland by Digital Photogrammetry. In: Altan, M.O. & Gruendig, L. (eds.):
Towards a Digital Age. — Proceedings of the Third Turkish German Joint Geodetic Days,
Istanbul, pp. 127-136.

Barnard, S. T. 1987. Stereo Matching by Hierarchical Microcanonical Annealing.
Proceedings of the International Joint Conference on Artificial Intelligence, Milan, Italy,
pp- 832-835.

Bourke, P. 1996. Cross Correlation.
http://astronomy.swin.edu.au/~pbourke/analysis/correlate/auto

Chen, J., Clarke, T.A., Robinson, S. and Grattan, K.T.V. 1994. An Optimized Target
Matching Based on A 3-D Space Intersection and A Constrained Search for Multiple

Camera Views. Conference on Videometrics III, Boston, USA, SPIE Volume 2350, pp
324-335.

Cosandier, D. and Chapman, M. 1992. High Precision Target Location for Industrial
Metrology. Presented at Videometrics, SPIE OE/Technology. Boston, Mass., Volume
1820, pp. 111-122.

Dew, G. and Holmlund, K. 2000. Investigations of Cross-Correlation and Euclidean
Distance Target Matching Techniques in The MPEF Environment. EUMETSAT
(Europe's Meteorological Satellite Organisation), Proceedings of the Fifth International
Winds Workshop, Session V, Lorne, Australia. pp. 235-244.

Dreschler-Fischer, L. 1987. A Blackboard System For Dynamic Stereo Matching.
Intelligent Autonomous Systems, Elsevier Science Publishers, Amsterdam. pp. 189-202

Forstner, W. 1984. Quality Assessment of Object Location and Point Transfer Using
Digital Image Correlation Techniques. invited paper to Commission III, 15" ISPRS
Congress, Rio De Janeiro, pp. 169 - 191

Forstner, W. and Giilch, E. 1987. A Fast Operator for Detection and Precise Location of
Distinct Points, Corners and Centres of Circular Features. Proceedings of ISPRS
Intercommission Conference on fast processing of photogrammetric data, Interlaken,
pp-281 - 305

Forlani G. Giussani A., Scaioni M. 1996. Target Detection and Epipolar Geometry for

Image Orientation in Close-Range Photogrammetry. ISPRS, Commission V, pp. 518 —
523

93



Grimson, W. E. L. 1981. From Images to Surfaces: A Computational Study of the Human
Early Visual System. MIT Press, Cambridge, MA.

Gruen, A.W. 1985. Adaptive Least Squares Correlation: A Powerful Image Matching
Technique, South Africa Journal of Photogrammetry, Remote Sensing and Cartography.
pp. 175-187.

Gruen, A.W. and Baltsavias, E.P. 1986. High Precision Image Matching for Digital
Terrain Model Generation. ISPRS, Commission I, Helsinki Finland.

Julesz, B. 1971. Foundations of Cyclopean Perception. Univ. of Chicago Press, Chicago,
IL.

Kropatsch, W., Bischof, H., and Englert, R. 2000. Digital image analysis: selected
techniques and applications. Springer, New York. pp. 211-230.

Lemmens, M. 1988. A Survey On Stereo Matching Techniques. Proceedings of the
ISPRS, vol. 27, pp. 11-23.

Lewis, J.P. 1995. Fast Normalized Cross-Correlation. Vision Interface, pp. 120-123

Luhmann, T. and Altrogge, G. 1986. Interest-Operator For Image Matching. Invited
PAPER, symposium COMM. III, Rovaniemi, pp.459-472.

Marr, D. and Poggio, T. 1979. A Computational Theory Of Human Stereo Vision.
Proceedings of the Royal Society of London, Volume B 204, pp 301-328.

Milgram, D.L. and Rosenfeild, A. 1978. Algorithms and Hardware Technology for Image
Recognition. Final report to U.S. Army Night Vision and Electro-Optics Lab., Fort
Belvoir, Va.

Mital, D.P., Teoh, E.K. and Amarasinghe S.K. 1996. Automated Matching Technique for
Identification of Fingerprints. SPIE Proceedings, Volume 2908, pp. 58-64.

Olsen C.F. and Huttenlocher D.P. 1997. Automatic Target Recognition by Matching
Oriented Edge Pixels. IEEE Transactions On Image Processing, Vol.6, No.1, pp.103-113.

Olson, C.F. 2000. Maximum-Likelihood Image Matching. IEEE Transactions On Pattern
Analysis And Machine Intelligence, Vol. 24, No. 6, pp. 853-857.

Pajares, G., Manuel de la Cruz, J. and Lopez-Orozco, J.A. 2000. Relaxation Labeling In
Stereo Image Matching. Pattern Recognition, pp. 53-68.

Robert, L., Deriche, R. and Faugeras, O. D. 1992. Dense Depth Map Reconstruction
Using Multiscale Regularization. Proceedings Of The Singapore International
Conference on Image Processing, Singapore, pp. 123-127.

94



Bibliography

Candocia, F. and Adjouadi, M. 1997. A Similarity Measure for Stereo Feature Matching.
IEEE Transactions On Image Processing, Vol. 6, No. 10, pp. 1460-1464

Chai, J.and Ma, S. 1998. Robust Epipolar Geometry Estimation Using Genetic
Algorithm. Pattern Recognition Letters, pp. 829 - 838

Chen, J. Clarke, T.A. & Robson. S., 1993. An alternative to the epipolar method for
automatic target matching in multiple images for 3-D measurement. Optical 3-D
measurements techniques II, Pub. Wichmann, Karlsruhe, pp. 197-204.

Cho,W. and Shenk,T. 1992. Resampling Digital Imagery to Epipolar Geometry.
Presented At the XVII Congress of ISPRS, Columbus, Ohio, pp.37-43

Di Stefano, L., Marchionni, M., Mattoccia, S. and Neri, G. 2002. A Fast Area-Based
Stereo Matching Algorithm. 15th IAPR/CIPRS International Conference on Vision
Interface, Calgary, Canada.

Forstner, W. 2000. New Orientation Procedures. Proceedings of the 19th ISPRS
Congress, Amsterdam.

Hahn, M. and Forstner, W. 1988. The Applicability of a Feature Based and a Least
Squares Matching Algorithm for DEM Generation. International Archives of
Photogrammetry and Remote Sensing, Volume 27, No. 3, pp.137-150

Jin, L.W., Chan, K.P. and Xu, B.Z. 1995. Consistent Relaxation Matching For Hand
Written Chinese Character Recognition. Proceedings of the Fifth IEEE International
Conference on Image Processing and Its Application, Edinburgh, U.K., pp. 55-59

Okutomi, M. and Kanade, T. 1992. A Locally Adaptive Window For Signal Matching.
International Journal of Computer Vision, Vol. 7, No. 2, pp.143-162

Pla, F. and Marchant, J.A. 1997. Matching Feature Points in Image Sequences through a
Region-Based Method. Computer Vision And Image Understanding, Vol. 66, No. 3,
pp- 271-285

Sainath, S. and Sarkar S. 1998. An Approximate Algorithm For Structural Image
Matching. Proceedings of the IEEE International Conference on Image Processing,
Chicago, Illinois, Vol. 1, pp. 798-802

Suel, M., O’Gorman, L. and Sammon, M.J. 2000. Practical Algorithms For Image

Analysis Description, Examples, Code. Cambridge University Press, New York, New
York, U.S.A,, pp. 106-109

96



Zhang, 7. 1988. A New Approach of Epipolar-line Matching for Improving the
Performance of SODAMS system. ISPRS 16th, Commission III, Kyoto, Japan.

Zitnick, C.L. and Kanade, T. 1999. A Cooperative Algorithm for Stereo Matching and
Occlusion Detection. Robotics Institute, Carnegie Mellon University, Pittsburgh, PA

97



Appendices

Appendix A: Source Code For The INDMET Upgrade..........ccoccevveeriinirinirninnieniineeneenne.

Appendix B: Image Information For Digital Images U

Appendix C: Digital Images Used In Program Testing

98

sed In Program Testing...................



Rosenholm, D. 1987. Empirical Investigation of Optimal Window Size Using the Least
Squares Image Matching Method. Photogrammetria, pp. 113-125.

Russell D. 2003. Beca Simons Photogrammetry Web Site.
http://www.becasimons.co.nz/Photogram.htm

Tabatabai, A.J. and Mitchell, O.R. 1984. Edge Location to Subpixel Values in Digital
Imagery. IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume
PAMI-6, No. 2, pp.188-201.

Vosselman, G. 1994. Use Of Tree Search Methods In Digital Photogrammetry.
International Archive Of Photogrammetry And Remote Sensing, Commission III
Symposium, Munich. pp. 886-893.

Wang, Y. 1998. Principles And Applications Of Structural Image Matching. ISPRS
Journal Of Photogrammetry & Remote Sensing, Volume 53, pp. 154-165.

Lii,Y. and Zhang, Z. 1988. Fast Implementation For Generating Epipolar Line Images
With One-Dimensional Resampling. 16™ ISPRS Congress, IAPRS 27, B3, Com. III,
Kyoto Japan, pp. 511-520.

Zhang, 7.. 1998. Determining The Epipolar Geometry And Its Uncertainty: A Review.

International Journal Of Computer Vision, Volume 27 No.2, Kluwer Academic
Publishers, Netherlands, pp. 161-195.

95



Appendix A
Source Code For The INDMET Upgrade

To keep the size of the appendices within reason, the complete program code will not be
presented here. The main program functions are listed in their entirety, but the numerous
other functions and procedures, which are used by the main functions, are not. These
little routines will be introduced by their function headers and accompanied by brief
descriptions of their function. The main control functions are also listed here. These
control functions set up and use the main functions to perform the target matching
solution. They also will only be introduced by function heading and briefly described.
The full code for all these functions can be found on the CD accompanying this thesis.

Main Functions

[ s sk R s sk o sk ok sheskesksksk ok st ok skt sk stk sk sk ok sk sl kol ok kool kol skokokok koo ok ok sk skokok ek slokokok

CALCEPIPOLARLINE : CALCULATES THE PARAMETERS OF THE EPIPOLAR
LINE

range: pointx - x coordinate of the template target
pointy - y coordinate of the template target
m1 - returns the slope of epipolar line on the template image
bl - returns the y intercept of the epipolar line on the template
image
m?2 - returns the slope of epipolar line on the search image
b2 - returns the y intercept of the epipolar line on the search image
xpp - the x coordinate of the principal point
ypp - the y coordinate of the principal point
DistortionFile - the file containing lens distortion data

This function computes the slope and y intercept parameters of the epipolar line. It is
designed to operate in conjuction with CalcEpipolarInput(). The CalcEpipolarInput()
function collects the organizes the size and orientation data for use here. Through use of
the global variables sizeTotal, orien1[4][2] and orien2[4][2], the information is relayed to

this function.
************************************************Michael ]_.eSlar 06/18/2002*/

void CEpipolarDlg::CalcEpipolarLine(double pointx, double pointy, double &m1, double
&b1, double &m?2, double &b2, double &xpp, double &ypp, CString &DistortionFile){

double A[3][3];

double b_vector[3];

double betal, beta2;

double xa, ya, xb, yb, focal,

double ua, va, ub, vb;

double pi = 4*atan(1);

double xtrans, ytrans;

99



// sets the coordinate system to the principal point
// or if no principal point entered, then sets
// coordinate system to the image center
if((orien1[4][0] == -1)||(orien1[4][1] == -1)){
xtrans = 0.5*sizeTotal.cx;
ytrans = 0.5*sizeTotal.cy;
}
else{
xtrans = orien1[4][0];
ytrans = orien1[4][1];
}

Xa = pointx - xtrans;
ya = ytrans - pointy;

// if a lens distortion file entered, CorrectLensDistortion corrects

/ the coordinates entered

if(DistortionFilel !'= "N/A")
CorrectLensDistortion(DistortionFilel, xa, ya,1);

// condition statement to ensure that the direction of
// the basis vector corresponds to the geometry
if(orien1[0][0] > orien2[0][0]){
b_vector[0] = orien2[0][0] - orien1[0][0];
b_vector[1] = orien2[1]{0] - orien1[1][0];
b_vector[2] = orien2[2][0] - orien1[2][0];

}

else{
b_vector[0] = orien1[0][0] - orien2[0][0];
b_vector[1] = orien1[1][0] - orien2[1][0];
b_vector[2] = orien1[2][0] - orien2[2][0];

}

/1 the beta angles are the angles at which the basis vector lies, in

// relation to the object coordinate system

betal = atan(b_vector[1]/b_vector[0]);

beta2 = atan(b_vector[2]/(sqrt((b_vector[0]*b_vector{0]) +
(b_vector[1]*b_vector[1]))));

/I calculates the rotation matrix that will transform points from

// image 1 into a basis vector system

CEpipolarDlg::CalcRotMatrix(orien1[0][1], orien1[1][1], orien1[2][1], betal,
beta2, A);

focal = orien1[3][0];

100



/1 sets a second x coordinate on the epipolar line, half the image
/1 size from the user shosen point
if( xa <0)
xb = xa + (sizeTotal.cx * 0.5);
else
xb = xa - (sizeTotal.cx * 0.5);

// calculates the y coordinate that corresponds to the x coordinate

/1 set above

yb = ((A[1][11*A[2][0]*xb - A[1][1]*A[2][2]*focal - A[2][1}*A[1][0}*xb +
A[2][1]*A[1][2]*focal)*ya + A[2][2]*focal*A[1][0]*(xb-xa) +
A[2][O}*focal*A[1][2]*(xa-xb))/(-A[2][1]*A[1][0}*xa +
A[1][2}*focal*A[2][1] + A[2][0]*xa*A[1][1] - A[2]{2]*focal*A[1][1]);

// calculates the parameters of the epipolar line on image 1
ml = (yb-ya)/(xb-xa);
bl = (ytrans - ya) - (m1*(xa + xtrans));

// calculates the y coordinate of the user selected point on the

/I normalized image

va = -focal*(A[1][0]*xa + A[1][1]*ya - A[1][2]*focal)/(A[2][0]*xa + A[2][1]*ya
- A[2][2]*focal);

/I sets the second y coordinate on the normalized image to be the
//same and the first, the x coordinates are arbitrarily chosen

ua = -0.25*sizeTotal.cx;

ub = 0.25*sizeTotal.cx;

vb = va;

// calculates the rotation matrix that will transform points from

// the basis vector system into the system of image 2

CEpipolarDlg::CalcRotMatrix(orien2[0][1], orien2[1][1], orien2[2][1], betal,
beta2, A);

focal = orien2[3][0];

/I calculates the two points on the image 2 epipolar line from the

// normalized image points

xa = -focal*(A[0][0]*ua + A[1][0]*va - A[2][0]*focal)/(A[0][2]*ua + A[1][2]*va
- A[2][2]*focal);

ya = -focal*(A[0][1]*ua + A[1][1]*va - A[2][1]*focal)/(A[O][2]*ua + A[1][2]*va
- A[2][2]*focal);

xb = -focal*(A[0][0]*ub + A[1][0]*vb - A[2][0]*focal)/(A[0][2]*ub + A[1][2]*vb
- A[2][2]*focal);

yb = -focal*(A[O][1]*ub + A[1][1]*vb - A[2][1]*focal)/(A[0][2]*ub + A[1][2]*Vb
- A[2][2]*focal);

101



// puts the calculated coordinates back in the raster image
/l coordinate system
if((orien2[4][0] == -1)||(orien2[4][1] == -1)){

xa = xa + 0.5*sizeTotal.cx;

ya = 0.5*sizeTotal.cy - ya;

xb = xb + 0.5*sizeTotal.cx;

yb = 0.5*sizeTotal.cy - yb;

}

else{
xa = xa + orien2[4][0];
ya = orien2[4][1] - ya;
xb = xb + orien2[4][0];
yb = orien2[4][1] - yb;

}

// sets the distortion parameters for the next routine
DistortionFile = DistortionFile2;

xpp = orien2[4][0];

ypp = orien2[4][1];

/[ calculates the epipolar line in the raster system
m?2 = (yb-ya)/(xb-xa);
b2 = ya - (m2*xa);

m_EpipLine = true;

}

/***********************************************************************

LOCATETARG : PREFORMS CROSS CORELLATION ANALYSIS

range: pDown - user located target centre on image 1

ml - slope of epipolar line on image 1

bl - intercept of epipolar line on image 1

m?2 - slope of epipolar line on image 2

b2 - intercept of epipolar line on image 2

xpp - x coordinate of principal point

ypp - y coordinate of principal point

DistortionFile - path to the text file containing lens distortion

information

target - estimate of target location in the second image

RETURNS A POINTER TO THE VIEW

Performs cross correlation analysis, along the given epipolar lines, for the purpose of

localizing the target in image 2 that corresponds to the user chosen target in image 1.
This routine uses the bi-linear interpolator to interpolate between grey values, after the

102



search window has been oriented to lie along the epipolar line.

CView* CTargetView::LocateTarg(CPoint pDown, double m1, double b1, double m2,

double b2, double xpp, double ypp, Cstring
DistortionFile, CPoint &target){

CPoint TargCenter;

CSize TargSize;

double **Templmg;

double **Testlmg;

int counter=0, =0, j=0, Option;

double sumx2,sumy2,sumxy;

double sxy=0,sx2=0,sy2=0,ro=0,largestro=0;

double averagex, averagey;

double **TargCanidates;

double trial[3][3];

int counter2=0,largestnum=0;

double boxCentrex, boxCentrey, angle, xi, yi;

int xint,yint;

double gl,g2,23,24;

double xtemp,ytemp;

CDC *pDC,;

CEpipolarDlg pEpip;

CPoint line, point;

int numpts,low,high;

CString TempStr;

double **distortion;

double raddist, correct;

pDC = GetWindowDC();

// call SizeTarg to get dimensions of template target
SizeTarg(pDC, pDown, 128, TargCenter, TargSize);

/I set the dimensions of the template target's window
box_type pBox;
pBox.left = TargCenter.x - 1.9*TargSize.cx;
pBox.right = TargCenter.x + 1.9*TargSize.cx;
if((pBox.right - pBox.left) % 2 == 0)

pBox.right = pBox.right + 1;

pBox.top = TargCenter.y - TargSize.cy-3;

pBox.bottom = TargCenter.y + TargSize.cy+3;

if((pBox.top - pBox.bottom) % 2 == 0)
pBox.bottom = pBox.bottom + 1;

103



int rectdx, rectdy;

rectdx = pBox.right - pBox.left;
rectdy = pBox.bottom - pBox.top + 1;
int dimensions = rectdx * rectdy;

// set up two image matricies
Templmg = AllocMatrix(rectdy,rectdx);
Testlmg = AllocMatrix(rectdy,rectdx);

/! determine the centre of window which was created
boxCentrex = (rectdx - 1)/2;
boxCentrey = (rectdy - 1)/2;

// determine the angle that the epipolar line makes
/I with the x-axis in image 1
angle = atan(ml);
counter = 0;
averagex = 0;
for(i = 0; 1 < rectdy ; i++)
{
for(j = 0; j < rectdx; j++)
{
// rotate the template window around it's centre
// until it lies along the epipolar line
xi = cos(angle)*(j - boxCentrex) - sin(angle)*(i - boxCentrey);
yi = sin(angle)*(j - boxCentrex) + cos(angle)*(i - boxCentrey);

// determine the interger values of the pixel coordinates
// which are contained in the rotated window

xint = (int)(xi + TargCenter.x);

yint = (int)(yi + TargCenter.y);

// read in the pixels surrounding the rotated pixel

gl = RGB_GETBLUE(pDC->GetPixel(xint —
GetScrollPosition().x, yint - GetScrollPosition().y));

g2 = RGB_GETBLUE(pDC->GetPixel(xint+1 —
GetScrollPosition().x, yint - GetScrollPosition().y));

g3 = RGB_GETBLUE(pDC->GetPixel(xint —
GetScrollPosition().x, yint+1 - GetScrollPosition().y));

g4 = RGB_GETBLUE(pDC->GetPixel(xint+1 —
GetScrollPosition().x, yint+1 - GetScrollPosition().y));

// interpolate to find the rotated pixel's grey value
TemplImg[i][j]=Interpolate(xi,yi,g1,22,23,g4);

104



// used to calculate the average of all grey values on image 1
averagex = averagex + TemplImg[i][j];

counter++;

// the average of the grey value's in the template window
averagex = averagex/(counter+1);
ReleaseDC(pDC);

// call switch window to change the programs focus to
/I the second image
CView *pView = SwitchWindow();

if(pView = NULL){

pDC = pView->GetParentFrame()->GetActive View()->GetWindowDC();

CIndmetDoc* pDoc = (CIndmetDoc*) pView->GetParentFrame()->
GetActiveDocument();

ASSERT_VALID(pDoc);

CDib* pDib = &(pDoc->m_dibTarget);

CSize sizeTotal;

sizeTotal = pDib->GetDimensions();

CString title;

// stores the previous title of image 2

title = pView->GetParentFrame()->GetActiveDocument()->GetTitle();
// sets the title of image 2 to "Scanning..."
pView->GetParentFrame()->GetActiveDocument()->
SetTitle("Scanning...");

//DrawLine(pDC, 0, 0, 50, 50, RGB(255,0,255));

// decision structure to deterimine which side of the image frame
// the epipolar line begins on, and to set uo the first search
// window accordingly
if(b2 < 0){
line.x = (int)(0.5*rectdy - b2)/m2;
line.y = (int)0.5*rectdy;
Option = 1;
}
else if(sizeTotal.cy >= b2 && b2 >= 0){
line.x = (int)0.5*rectdx;
line.y = (int)m2*0.5*rectdx + b2;
Option = 2;
}

else {

105



line.x = (int) (sizeTotal.cy - 0.5*rectdy -b2)/m2,;
line.y = (int) sizeTotal.cy - 0.5*rectdy;
Option = 3;

}

// creation of a matrix in which the top 5 highest correlation
// values and thier points can be stored
TargCanidates = AllocMatrix(6,3);
for(i=0;i<3;i++){
for(j=0;j<3;j++)
/Mnitialization of parameter used for creating target
//candidate list
trial[i]{j] = O;
}
for(i=0;1<6;1++){
for(j=0;1<3;j++)
//nitialization for the target canidate list
TargCanidates[i][j] = 0;
}

bool checkline = true;
int scrollposx, scrollposy;
FILE *dis;

/1 if the principal point information was not entered, then
// set the origion of the coordinate system to the center
// of the image
if((xpp == -D|l(ypp == -D){
xpp = 0.5*%sizeTotal.cx;
ypp = 0.5*sizeTotal.cy;
}

// if a lens distortion file was entered, read in the
// lens distortion data
if(DistortionFile = "N/A"){
dis = fopen(TrimFilePath(DistortionFile),"r");
if(dis == NULL)
TRACE("Error: Unable to open
%s" , TrimFilePath(DistortionFile));
else{
fscanf(dis," %s", TempStr);
fscanf(dis," %s", TempStr);
fscanf(dis,"%s", TempStr);
fscanf(dis,"%d",&numpts);
low = numpts - 2;
high = numpts - 1;

106



fscanf(dis," %s", TempStr);
fscanf(dis,"%s", TempStr);
fscanf(dis,"%s", TempStr);
fscanf(dis,"%s", TempStr);
fscanf(dis,"%s", TempStr);
fscanf(dis,"%s", TempStr);

distortion = AllocMatrix(numpts,2);

for(i=0;i<numpts;i++){
fscanf(dis," %", &xtemp);
fscanf(dis," %If",&ytemp);
distortion[i}[0] = xtemp;
distortion[i][1] = ytemp;

}
fclose(dis);

}

do{
if(DistortionFile != "N/A"){
/1 set the coordinate system to the principal point
xtemp = line.x - xpp;
ytemp = ypp - line.y;

// compute the points radial distance from the
// principal point
raddist = sqrt((xtemp*xtemp)+(ytemp*ytemp));

/I search the list of radial distortions until
// raddist has been bracketed
for(i=0;i<numpts-1;i++){
if((raddist >= distortion[i][0])&&(raddist <
distortion[i+1][0])){

low =1,

high=1i+1;

break;

}

/I calculate lens distortion correction, through interpolation

correct = distortion[low][1] + ((distortion[high][1] —
distortion[low][1])/(distortion[high][0] -
distortion[low][0]))*(raddist - distortion[low][0]);

// apply lens distortion correction

107



xtemp = xtemp + correct*xtemp/raddist;
ytemp = ytemp + correct*ytemp/raddist;

/l change coordinate system back to raster grid
point.x = xtemp + xpp;
point.y = ypp - ytemp;

}
elsef
point.x = line.x;
point.y = line.y;
}

/I set up search window dimensions, the same
// as template window dimensions

pBox.left = point.x - 0.5%rectdx;

pBox.right= point.x + 0.5*rectdx;

pBox.top = point.y - 0.5*rectdy;
pBox.bottom= point.y + 0.5*rectdy;

// scroll the view so the current point is
/[ center screen
SetScrollPos(p View,point);

counter = 0;
averagey = 0;

// calculate angle that epipolar line makes
// with x-axis in image 2
angle = atan(m?2);

for(i = 0; i < rectdy ; i++){
for(j = 0; j < rectdx; j++){

// determine the scroll bar positions

scrollposx = pView->GetParentFrame()->
GetActiveView()->GetScrollPos(SB_HOR?Z);

scrollposy = pView->GetParentFrame()->
GetActiveView()->GetScrollPos(SB_VERT);

// rotate the search window so that it lies along the

/1 epipolar line

xi = cos(angle)*(j - 0.5*rectdx) - sin(angle)*(i —
0.5*rectdy);

yi = sin(angle)*(j - 0.5*rectdx) + cos(angle)*(i —
0.5*rectdy);

108



/I determine the interger values of the pixel

// coordinates which are contained in the rotated
/l window

xint = (int)(xi + point.x);

yint = (int)(yi + point.y);

// read in the pixels surrounding the rotated pixel

gl = RGB_GETBLUE(pDC->GetPixel(xint —
scrollposx, yint - scrollposy));

g2 = RGB_GETBLUE(pDC->GetPixel(xint+1 —
scrollposx, yint - scrollposy));

23 = RGB_GETBLUE(pDC->GetPixel(xint —
scrollposx, yint+1 - scrollposy));

g4 = RGB_GETBLUE(pDC->GetPixel(xint+1 —
scrollposx, yint+1 - scrollposy));

// interpolate to find the rotated pixel's grey value
TestImg[i][j]=Interpolate(xi,yi,g1,g2,23,g4);

/ used to calculate the average of all grey values on
// image 2
averagey = averagey + TestImg[i][j];

counter++;

}

// the average of the grey value's in the template window
averagey = averagey/(counter+1);

sumx2 = 0;
sumy2 = 0;
sumxy = 0;
counter = 0;

for(i = 0; i < rectdy; i++){
for(j = 0; j < rectdx; j++){

sumxy = sumxy + (TempImg[i][j] —
averagex)*(TestImg[i][j] - averagey);

sumx2 = sumx2 + (TempImg[i][j] -
averagex)*(TemplImgfi][j] - averagex).

sumy?2 = sumy?2 + (TestImg[i][j] —
averagey)*(TestImg[i][j] - averagey);

counter++;

109



/I the calculated covariance value between template
/! and search windows
$Xy = sumxy/counter;

/I the variance of the grey values in the template image
sx2 = sumx2/counter;

// the variance of the grey values in the search image
sy2 = sumyZ2/counter;

// if either of the variances are close to zero,
// skip this point
if( sx2<=0.000001 || sy2<=0.000001 ){
line.x =line.x + 1;
line.y = m2*(line.x) + b2;
continue;

}

// the correlation value between the two windows
ro = sxy/(sqrt(sx2)*sqrt(sy2));

// the largest correlation value to date is stored here
if(ro > largestro){

largestro = ro;

target.x = point.x;

target.y = point.y;

}

// trial is used to locate local maxima in correlation values, which
// are likely to occur when targets are crossed

trial[0][0] = trial[1][O];

trial[O][1] = trial[1]{1];

trial[0][2] = trial[1][2];

trial[1][0] = trial[2][0];
trial[1][1] = trial[2][1];
trial[1][2] = trial[2][2];

trial[2][0] = ro;
trial{2][1] = point.x;
trial[2][2] = point.y;

// store the top 5 correlation values on the

// caniadate list

if(trial[1][0] > trial[2][0] && trial[1][0]>trial[0][0]){
mbsort(TargCanidates,6);

110



if(counter2<5 )
counter2++;
else
//'i.e. 6 - 1 since the TargCanidates Vector has an
// initial index of zero
counter2 = 5;

TargCanidates[counter2][0] = trial[1][O];

TargCanidates[counter2][1] = trial[1][1];

TargCanidates[counter2][2] = trial[1][2];
}

/I decision structure that uses the previously determined
// side of the frame upon which the epipolar line starts, to
/1 set the exit conditions that stop correlation iterations
Ib<0
if (Option == 1 && line.y >= (sizeTotal.cy - rectdy)){
checkline = false;
TRACE("#1 = %d \n" rectdy);
}
/I 0 <=b <=size
else if (Option == 2 && line.x >= (sizeTotal.cx - rectdx)){

checkline = false;
TRACE("#2 = %d \n" (sizeTotal.cx - rectdx));

}
// b2 > size

else if (Option == 3 && line.y <= rectdy){

checkline = false;

TRACE("#3 = %d \n",(sizeTotal.cy - rectdy));
}

// advances the focus one pixel along the epipolar line
line.x =linex + 1;
line.y = m2*(line.x) + b2;

}while(checkline == true);

/1 restores the title on image 2
pView->GetParentFrame()->Get ActiveDocument()->SetTitle(title);
ReleaseDC(pDC);

if(DistortionFile = "N/A")
FreeMatrix(distortion,numpts);

}
FreeMatrix(TempImg,rectdy);

111



FreeMatrix(TestImg,rectdy);
FreeMatrix(TargCanidates,0);

TRACE("The Largest Correlation Value Is %lf @ ( %d, %d )
\n",largestro,target.x, target.y);

return pView;

}

/***********************************************************************

MATCHTARG : PREFORMS TEMPLATE LEAST SQUARES TARGET MATCHING

range: **Templmg - pointer to the array containing
the template image grey values
row - number of rows in Templmg
col - number of columns in Templmg
*pView - pointer to the view containing the
search window
target - estimate of the target center in
pView's window

Performs template least squares target matching on a given target in a given view, given
a template for comparison. This routine calls on the services of an interpolator sub-
routine, that uses bi-linear interpolation to resample the search window. It also uses a
separate least squares module to perform the adjustment. This routine also uses initial
assumptions of Tx =0, Ty =0, Sx =1, Sy =1, Rx =0 and Ry = 0 in it's operation. It
exits when Tx < 0.01, Ty < 0.01, Sx < 0.0001, Sy < 0.0001, Rx < 0.0001 and
Ry < 0.0001
***********************************************************************/
void CTargetView::MatchTarg(double **Templmg,int row,int col,CView *pView,
CPoint target){
double **Testlmg;
int scrollposx,  scrollposy, message=0;
int i,j,counter,iter, check=0, 2, c2;
double Tx,Ty,Sx,Sy,Rx,Ry;
double gl,g2,23,84,85;
int xi,yi;
double xc,yc,rms;
double x1,x2,x3,x4,x5;
double y1,y2,y3,y4,y5;
double **a;
double *I;
double *x;
double sumsq;
CDC *pDC;

112



pDC = pView->GetParentFrame()->GetActive View()->GetWindowDC();

/1 scroll the view so that the highest correlated
// target is placed in the center
SetScrollPos(pView,target);

CIndmetDoc* pDoc = (CIndmetDoc*) pView->GetParentFrame()->
GetActiveDocument();

ASSERT_VALID(pDoc);

CDib* pDib = &(pDoc->m_dibTarget);

CSize sizeTotal;

sizeTotal = pDib->GetDimensions();

//setting the dimensions of the search window
box_type pBox;

pBox.left = target.x - 0.5*col;

pBox.right= target.x + 0.5*col;

pBox.top = target.y - 0.5*%row;
pBox.bottom= target.y + 0.5*row;

Testlmg = AllocMatrix(row,col);

a = AllocMatrix((row-2)*(col-2),6);

1 = (double *) malloc((row-2)*(col-2)*sizeof(double));
x = (double *) malloc(6*sizeof(double));

// storing grey values from search window
for(i = 0; 1 < row; i++){
for(j = 0; j < col; j++){
scrollposx = pView->GetParentFrame()->GetActive View()->
GetScrollPos(SB_HORZ);
scrollposy = pView->GetParentFrame()->GetActive View()->
GetScrollPos(SB_VERT);

TestImg[i][j] = RGB_GETBLUE(pDC->GetPixel(pBox.left + j -
scrollposx, pBox.top + 1 - scrollposy));

}

}

// Inital assumptions for adjustment
Tx=0;

Ty =0;

Sx=1;

Sy=1;

Rx=0;

Ry=0;

113



// parameters to transform the coordinate system to the
/I search windows centre

2 =(row - 1)/2;

c2 =(col - 1)/2;

iter = 0;

check = 0;

do{
counter = 0;
sumsq = 0;

for(i=1;1 < (row - 1); i++){
for(j = 1; j < (col - 1); j++){
// interpolate grey value for point under observation
x1 =Tx + Sx * (j-c2) + Rx * (i-12);
yl =Ty + Ry * (j-c2) + Sy * (i-r2);
x1 =x1 +¢2;
yl =yl +12;
xi = (int)(x1);
yi = (int)(y1);
if(x1>0 && xi<(col-1)) && (yi>0 && yi<(row-1)))
gl=Interpolate(x1,y1, TestImg[yi][xi],
TestImg[yi][xi+1], TestImg[yi+1][xi]},
TestImg[yi+1][xi+1]);
else
continue;

// interpolate grey value for point above

// the point under observation

x2 =Tx + Sx * (j-1-c2) + Rx * (i-r2);

y2 =Ty + Ry * (j-1-c2) + Sy * (i-r2);

X2 =x2+c¢c2;

y2=y2 +12;

xi = (int)(x2);

yi = (int)(y2);

if((xi>0 && xi<(col-1)) && (yi>0 && yi<(row-1)))
g2=Interpolate(x2,y2, TestImg[yi][xi],
TestImg[yi][xi+1], TestImg[yi+1][xi],
TestImg[yi+1][xi+1]);

else
continue;

// interpolate grey value for point to the left
// of the point under observation

x3 = Tx + Sx * (j-¢2) + Rx * (i-1-r2);

y3 =Ty + Ry * (j-¢2) + Sy * (i-1-12);

114



x3=x3+c2;
y3 =y3 +12;
xi = (int)(x3);
yi = (int)(y3);
if((xi>0 && xi<(col-1)) && (yi>0 && yi<(row-1)))
g3=Interpolate(x3,y3, TestImg[ yi][xi],
TestImg[yi][xi+1], Testimg{yi+1][xi],
TestImg[yi+1][xi+1]);
else
continue;

// interpolate grey value for point below
/I the point under observation
x4 = Tx + Sx * (j+1-¢2) + Rx * (i-12);
y4 =Ty + Ry * (j+1-c2) + Sy * (i-r2);
x4 = x4 + ¢2;
y4 =y4 +12;
Xi = (int)(x4);
yi = (int)(y4);
if((xi>0 && xi<(col-1)) && (yi>0 && yi<(row-1)))
g4=Interpolate(x4,y4, Testlmg[yi][xi],
TestImg[yi][xi+1],TestImg[yi+1][xi],
TestImg[yi+1][xi+1]);
else
continue;

// interpolate grey value for point to the right
/1 of the point under observation
x5 =Tx + Sx * (j-c2) + Rx * (i+1-12);
yS5 =Ty + Ry * (j-¢2) + Sy * (i+1-12);
X5 =x5+c¢2;
yS=y5+12;
xi = (int)(x5);
yi = (int)(y5);
if((xi>0 && xi<(col-1)) && (yi>0 && yi<(row-1)))
g5=Interpolate(x5,y5, Testlmg[yi][xi],
TestImg[yi][xi+1], TestImg[yi+1][xi],
TestImg[yi+1][xi+1});
else
continue;

/I terms of the design matrix, using point derivatives
// to solve the equations

a[counter][0] = (g4 - g2)/2;

a[counter][1] = (g5 - g3)/2;

a[counter][2] = ((g4 - g2)/2)*(x1-c2);

115



a[counter][3] = ((g5 - g3)/2)*(y1-r2);
a[counter][4] = ((g4 - g2)/2)*(y1-r2);
a[counter][5] = ((g5 - g3)/2)*(x1-c2);

// error vector

I[counter] = TempImg[i][j] - g1;

// sum of squares of error vector, used for
// RMS determination

sumsq = sumsq + l[counter}*I[counter];

counter++;

}
}

if(counter > Q)
message=template_matching(a, counter, 6, 1, x);
else{
AfxMessageBox("Template Matching Failure: Interpolation
Failed");
return;

}

if(message != 0){
AfxMessageBox("Template Matching Failed: Unable To Compute
Matrix Inverse");
return;

}

// adjustment of initial assumptions
Tx = Tx + x[0];
Ty =Ty + x[1];
Sx =Sx + x[2];
Sy =Sy +x[3];
Rx = Rx + x[4];
Ry =Ry +x[5];

/1 check to determine if the adjustment has converged
if(fabs(x[0])<0.01 && fabs(x[1])<0.01 && fabs(x[2])<0.0001 &&
fabs(x[3])<0.0001 && fabs(x[4])<0.0001 && fabs(x[5])<0.0001)
check =1;
else{
// if no convergence after 500 iterations, exit
if(iter >= 500)
check =1,
iter++;
}
}while(check !=1);

116



if(iter >= 500)

elsef

AfxMessageBox("Template Matching Failure: Failed To Converge");

/1 set dialog box parameters to final solution
xc = Tx + target.x;

yc =Ty + target.y,

rms = sqrt(sumsq)/counter;

CInsertDialog pDlg;

// set up the dialog

CString pTemp;

pTemp.Format("Point %d", pDoc->GetCount());
pDlg.m_sLabel = pTemp;

pTemp.Format("( %.3f, %.3f )", xc, yc);
pDlg.m_sPoint = pTemp;

pTemp.Format("( %.3f, %.3f )", rms, rms);
pDlg.m_cRms = pTemp;
pDlg.m_sType = "Template Least Squares Matching";

if(pDlg.DoModal() == IDOK){
pDoc->Insert(pDlg.m_sLabel, GetDocument()->m_sImage, xc, yc,
rms, pDlg.m_sType);

if(pView->GetParentFrame()->
IsKindOf(RUNTIME_CLASS(CBothFrame))){
CBothFrame* pFrame = (CBothFrame*)pView->
GetParentFrame();
if(pFrame == NULL){
TRACE("no frame in
CTargetView::MatchTarg()\n");

AfxMessageBox(AFX_IDP_COMMAND_FAILURE);
return;

}
CPointView* pPoint = (CPointView*)pFrame->
m_wndSplitter.GetPane(0,1);

// remove origin element
if(pPoint->GetListCtrl().GetltemText(0,6) == "0")
pPoint->GetListCtrl().Delete Allltems();

CString pTempl;

117



pPoint->GetListCtrl(). Insertltem(pPoint->
GetListCtrl().GetItemCount(), pDlg.m_sLabel);
pPoint->GetListCtrl().SetltemText(pPoint->
GetListCtrl().GetltemCount()-1,1, pDoc->m_sImage);
pTempl.Format("%.3f", xc);
pPoint->GetListCtrl().SetltemText(pPoint->
GetListCtrl().GetltemCount()-1,2, pTemp1);
pTempl.Format("%.3f", yc);
pPoint->GetListCtrl().SetltemText(pPoint->
GetListCtrl().GetltemCount()-1, 3, pTempl);
pTempl.Format("%.3f", rms);
pPoint->GetListCtrl().SetltemText(pPoint->
GetListCtrl().GetltemCount()-1, 4, pTemp1);
pPoint->GetListCtrl().SetltemText(pPoint->
GetListCtrl().GetltemCount()-1, 5, pTempl);
pPoint->GetListCtrl().SetltemText(pPoint->
GetListCtrl().GetltemCount()-1, 6, pDlg.m_sType);
pPoint->GetListCtrl(). Update(0);

}

ReleaseDC(pDC);
FreeMatrix(TestImg,row);
FreeMatrix(a,(row-2)*(col-2));
free(l);

free(x);

}

/********************************************************************

TEMPLATE_MATCHING : PERFORMS A LEAST SQAURE ADJUSTMENT

range: a - the design matrix
rowsa - the number of rows in a
colsa - the number of columns in a
b - the misclosure vector
X - the vector of estimates

RETURN: O - success
1 - not enough memory
2 - cholesky failed

This routine preforms a least squares matching algorithm designed to solve the matrix
equation Ax = B.
********************************************************************/

int template_matching(double **a,int rowsa, int colsa, double *b, double *x){

118



double **at;
double **ata;
double **ata2;
double **I;
double *atb;
int i,j,message;

if( (at=alloc_matrix(colsa,rowsa)) == NULL ){
strcpy( ellstr,"Error: Not enough memory");
return(1);

}

if( (ata=alloc_matrix(colsa,colsa)) == NULL ){
strcpy( ellstr,"Error: Not enough memory");
return(1);

}

if( (atb = (double *) malloc(colsa*sizeof(double))) == NULL ){
strepy( ellstr,"Error: Not enough memory");
return(1);

}

for(i=0;i<colsa;i++){
for(j=0;j<rowsa;j++){
// create the transpose of matrix a

at(i](j] = a[j][il;
}

// multiplies the transpose of the design matrix by
// the design matrix
mult_matrices( at, colsa, rowsa,a, rowsa, colsa, ata);

// multiplies the transpose of the design matrix by
// the misclosure vector
matvect_mult( at, colsa, rowsa, b, rowsa, atb );

// calculates the choleski matrix inverse of the matrix ata
message = dcholeski( ata, colsa );
if(message != 0){
strepy( ellstr,"Error: Cholesky Inverse Failed");
return(2);

}

/[ multiplies the inverse of ata with the matrix atb
// to result in a the vector of estimates
matvect_mult( ata, colsa, colsa,atb, colsa, X );

119



free_matrix( at, colsa );
free_matrix( ata, colsa );
free( atb );

return(0);

120



Control Functions

void CTargetView::OnLButtonDown(UINT nFlags, CPoint point ) - This function is
used to define the actions taken by the program when the user clicks on a point within a
document. This is true for all subpixel target center locators whether they are automatic
or not. Only the section that deals specifically with automatic target matching has been
commented.

void CIndmetApp::OnFileOpenTargetmatching() - This function is used to open and set
up input for automatic target matching to begin. It opens two document images, calls the
orientation input dialog box and passes this information into the file epipolardlg.cpp

void CEpipolarDlg::CreateEpipolarInput(double orien[5][2], CSize Size, CString
DistortionFile, int ImageNo) - This Function is designed to operate in conjuction with
CalcEpipolarLine(). It collects the orientation matrices and the image sizes. It then
squirts them to CreateEpipolarLine() through use of the global variables sizeTotal,
orien1[4][2] and orien2[4][2].

Calculative Functions

void CEpipolarDlg::CalcRotMatrix(double Omega, double Phi, double Kappa, double
betal, double beta2, double A[3][3]) - This function calculates the rotation matrix that
will transform image coordinates into a Base Vector Parallel System. It operates in two
parts, first setting up a rotation matrix to rotate object system coordinates into a base
vector parallel system. It then sets up a standard rotation matrix that converts the image
system to the object system. These two matrices are then multiplied and the result is
output.

int dcholeski( double **a, int nsize ) - This routines finds the inverse of a symmetric
matrix by Choleski algorithm, this is fast but it requires 2 extra normal matricies to be
allocated! If the matrix is less than 3x3, simpler methods than choleski are used.

void CEpipolarDlg::CorrectLensDistortion(CString File, double &x, double &y, int
ApplyCorrection) - This function corrects or adds lens distortion to the point entered. If
ApplyCorrection is O, then the distortion is added to the point, if it is 1 then the distortion
is corrected

void matvect_mult( double **a_mat, int arow, int acol, double *b_vect, int brow, double
*c_vect ) - This routine multiplies a matrix by a vector and returns the results into the
result vector c_vect.

void mult_matrices( double **a_mat, int arow, int acol, double **b_mat, int brow, int

beol, double **c_mat) - This routine multiplies two matricies of appropriate size and
returns a pointer to a third matrix which contains the answer.

121



double CTargetView::Interpolate( double x, double y, double g1, double g2, double g3,
double g4) - Uses bi-linear interpolation to determine grey values for non-integer
coordinates. Is used to perform image resampling for the MatchTarg sub-routine.

int CTargetView::SizeTarg(CDC *pDC, CPoint pDown,int cutoftbv, CPoint
&TargCenter, CSize &TargSize) - Used to estimate the target center and the size of the
target, for which the entered coordinates correspond. To make these estimates, the routine
examines and counts pixels, which extend out in the four cardinal directions, until a
contrast edge is encountered. The routine averages these results and continues until the
average center changes by 1 pixel or less.

Graphical And User Interface Functions

void CTargetView::DrawLine(CDC *DC, long left, long top, long right, long bottom,
COLORREEF color) - Draws a line across the document image in any 256 color that is
desired. It uses pixel coordinates of where the line is to start and end. This was written
incase the epipolar line needed to be drawn on the image.

void CTargetView::SetScrollPos(CPoint pDown) - This is an overloaded function that
repositions the scrolling window so that the x and y coordinates entered will appear in the
centre of the window. This version automatically scrolls the first, default, window that
was opened.

void COrientationDIg::OnFind() - This function opens the standard open file dialog box
so that the user can search for the correct lens distortion file for the open image.

void COrientationDlg::OnLoad() - This function opens and gathers data from preformed
data orientation text files. It then prints this data into the orientation dialog box's
appropriate text boxes. The files were created using the OnSave function.

void COrientationDIlg::OnOK() - This function gathers data entered into the orientation
dialog box's text boxes. It then uses the C++ functions necessary to convert that data
from string data into real numbers.

void COrientationDIlg::OnSave() - This function saves data entered into the orientation
dialog's text boxes. It reads the information that is entered and saves it in a user defined
text file.

void CTargetView::SetScrollPos(CView *pView, CPoint pDown) - This is an
overloaded function that repositions the scrolling window so that the x and y coordinates
entered will appear in the centre of the window. This version allows the user to indicate
which window is to be scrolled when multiple windows exist.

CView* CTargetView::SwitchWindow() - Redirects the program focus to the next
document window in the z-order list.

122



Miscellaneous Functions

double** CTargetView::AllocMatrix( int rows, int cols ) - AllocMatrix first allocates an
array of pointers (one for each row), then for each row pointer it allocates an array of
double values (cols).

void CTargetView::FreeMatrix( double **m, int rows ) - Frees a matrix that was
allocated with AllocMatrix

void CTargetView::mbsort(double **list, int numpts) - Performs a modified bubble sort
on an integer list of numbers, from smallest to largest. At the same time, it rearranges a
vector of coordinates associated with the list

CString CTargetView:: TrimFilePath(CString FilePath) - Removes the associated c:\..\...\

from the file name so that fopen can be used to open the file, given that the file path has
already been stored

123



Appendix B

Image Information For Digital Images Used In Program Testing

All the information in this section was provided by the Applanix Corporation and was
used in the testing of the automatic target matching program.

Table 1: Camera Calibrated Parameters of DSS Serial 0005 (Applanix Corp., 2002.)

Parameter Value Accuracy

f (mm) 55.048 0.009 mm

Pixel Non-squareness 1.0 0.0000001

Xpp (pixels) + 2025.34 0.5 pixel

Ypp (pixels) + 2032.94 0.5 pixel
Xpp© (mm) ++ -0.127 0.0045
Ypp© (mm) ** 0.118 0.0045

* Xpp and Ypp are measured from image upper left corner, (image size 4079 x 4092) see Figure 1
* prC and YppC are measured from image centre (pixel size = 9 microns) see Figure 1

Table 2: Radial Lens Distortion Table of DSS Serial 0005 (Applanix Corp., 2002.)

Radial Distance (mm)

Radial Distortion (Pixel)

Radial Distortion (microns)

2
4
6
8
10
12
14
16
18
20
22
24
26

-0.02
-0.16
-0.53
-1.24
-2.41
-4.15
-6.53
-9.64
-13.53
-18.22
-23.71
-29.92

-36.72

-0.18
-1.41
-4.73
-11.18
-21.73
-37.31
-58.75
-86.72
-121.74
-164.01
-213.40
-269.29
-330.46

Table 3: Camera Station Coordinates And Orientations (Applanix Corp., 2002.)

PHOTO ID[ X (m) Y (m) Z (m) | OMEGA (deg) | PHI (deg) |KAPPA (deg)
A_H 0 [630233.168|4857734.161158.808]  96.50644 24.70634 | 181.96748
C_H_0 |630229.855|4857737.831]158.798] 107.17451 68.68136 | 195.90932
C L 0 1630229.829{4857737.813|157.767] 123.80958 64.12096 | 211.13974

124




Tmage vpper
feft vorner

T~

J{_’J ID

.\J !J ‘l]

092 pixels

ceatre

4

I*

3

4479 pixels

L 4

Figure 1: Principal Point Offsets in a DSS-derived Digital Image
(Applanix Corp., 2002.)

Table 4: Ground Control Coordinates For Image Targets (Applanix Corp., 2002.)

Ground Control Point ID X (m) Y (m) Z (m)
101 630234.66790 | 4857739.16881 | 158.88692
102 630234.66827 | 4857739.16887 | 158.07409
103 630234.66608 | 4857739.17058 | 157.06540
104 630234.77126 | 4857738.86436 | 158.86917
105 630234.77501 | 4857738.86495 | 158.08065
106 630234.77658 | 4857738.86617 | 157.05676
107 630235.20899 | 4857737.57277 | 158.68335
108 630235.21078 | 4857737.57503 | 158.05442
109 630235.21578 | 4857737.57391 | 157.05445
110 630235.28484 | 4857737.34110 | 158.88386
111 630235.28739 | 4857737.34196 | 158.13346
112 63023529512 | 4857737.34252 | 157.06467
113 630235.40356 | 4857739.41705 | 158.89790
114 630235.40907 | 4857739.41768 | 158.13425
115 630235.41924 | 4857739.42316 | 157.05943
116 630235.85972 | 4857738.72338 | 158.88702
117 630235.86093 | 4857738.72401 | 157.96054
118 630235.86599 | 4857738.72621 | 157.05982
119 630235.96745 | 4857738.41292 | 158.88032
120 630235.96975 | 4857738.41729 | 158.07638
121 630235.97516 | 4857738.42371 | 157.06087
122 630236.02869 | 4857737.59014 | 158.87351
123 630236.02760 | 4857737.59354 | 158.15902

125




Ground Control Point ID X (m) Y (m) Z (m)
124 630236.03432 | 4857737.59467 | 157.05591
125 630236.15587 | 4857739.71139 | 158.72338
126 630236.16073 | 4857739.71335 | 158.02745
127 630236.16325 | 4857739.71555 | 157.25418
128 630236.78742 | 4857737.84756 | 158.87833
129 630236.78833 | 4857737.84951 | 158.15513
130 630236.79419 | 4857737.85028 | 157.06192
131 630236.51928 | 4857739.83272 | 158.89295
132 630236.52461 | 4857739.83528 | 158.12270
133 630236.51957 | 4857739.83690 | 157.07364
134 630236.74516 | 4857739.19503 | 158.08343
135 630236.74530 | 4857739.19612 | 157.06305
136 630236.93918 | 4857738.61756 | 158.06396
137 630236.93857 | 4857738.62144 | 157.06811
138 630237.15191 | 4857737.96766 | 158.90208
139 630237.15532 | 4857737.97132 | 158.08798
140 630237.15943 | 4857737.97417 | 157.06530
201 630234.64470 | 4857739.17176 | 161.89525
202 630234.65131 | 4857739.17332 { 161.07718
203 630234.66436 | 4857739.17842 | 160.08213
204 630234.74223 | 4857738.86568 | 161.89277
205 630234.75782 | 4857738.87073 | 160.99254
206 630234.76684 | 4857738.87377 | 160.07486
207 630235.18382 | 4857737.57239 | 161.68838
208 630235.19194 | 4857737.57175 | t61.11311
209 630235.19812 | 4857737.57840 | 160.08711
210 630235.26070 | 4857737.34345 | 161.89919
211 630235.26490 | 4857737.34679 | 161.18486
212 630235.27536 | 4857737.34976 | 160.06673
213 630235.38386 | 4857739.41802 | 161.90930
214 630235.39197 | 4857739.42175 | 161.14420
215 630235.40182 | 4857739.42717 | 160.07047
216 630235.84059 | 4857738.72386 | 161.89907
217 630235.84573 | 4857738.72434 | 161.00023
218 630235.85411 | 4857738.72894 | 160.09124
219 630235.93876 | 4857738.41978 | 161.89737
220 630235.94641 | 4857738.42314 | 161.10855
221 630235.95246 | 4857738.42600 | 160.07379
222 630236.00293 | 4857737.59288 | 161.88833
223 630236.00552 | 4857737.59377 | 161.18546
224 630236.01632 | 4857737.59838 | 160.07438
225 630236.13705 | 4857739.71219 | 161.78275
226 630236.14659 | 4857739.71533 | 161.13412
227 630236.15275 | 4857739.71844 | 160.24826
228 630236.76533 | 4857737.85014 | 161.90860
229 630236.77025 | 4857737.85238 | 161.19397

126




Ground Control Point ID X (m) Y (m) Z (m)
230 63023677815 | 4857737.85325 | 160.07269
231 630236.49833 | 4857739.83493 | 161.89397
232 630236.51269 | 4857739.83821 | 161.10314
233 630236.51690 | 4857739.84127 | 160.07814
234 630236.72684 | 4857739.19369 | 161.09137
235 630236.73303 | 4857739.19470 | 160.07833
236 630236.91884 | 4857738.61967 | 161.07259
237 630236.92482 | 4857738.62121 | 160.07662
238 630237.12676 | 485773797111 | 161.90729
239 630237.13383 | 4857737.97416 | 161.18361
240 630237.13855 | 4857737.97458 | 160.07676
301 630233.70212 | 4857742.00989 | 161.89572
302 630233.70986 | 4857742.01195 | 161.13321
303 630233.71771 | 4857742.01693 | 160.06829
304 630233.80532 | 4857741.70499 | 161.88548
305 630233.81361 | 4857741.71083 | 161.12355
306 630233.82105 | 4857741.71090 | 160.07001
307 630234.21806 | 4857740.48466 | 161.69813
308 630234.22425 | 4857740.48744 | 161.05416
309 630234.25318 | 4857740.41445 | 160.06872
310 630234.31646 | 4857740.17936 | 161.90098
311 630234.32351 | 4857740.18223 | 161.17585
312 630234.33129 | 4857740.18469 | 160.06722
313 630234.44162 | 4857742.26248 | 161.89776
314 630234.44977 | 4857742.26425 | 161.06755
315 630234.45656 | 4857742.26631 | 160.07334
316 630234.89271 | 4857741.56709 | 161.87977
317 630234.90203 | 4857741.56778 | 161.02673
318 63023490503 | 4857741.56971 | 160.07018
319 630234.99548 | 4857741.26268 | 161.87063
320 630235.00105 | 4857741.26465 | 161.14063
321 630235.01073 | 4857741.26629 | 160.07887
322 630235.05870 | 4857740.43456 | 161.90446
323 630235.06362 | 485774043401 | 161.16818
324 630235.06805 | 4857740.43884 | 160.07398
325 630235.21759 | 4857742.48661 | 161.90071
326 630235.22518 | 4857742.48795 | 161.16304
327 630235.23052 | 4857742.48870 | 160.37156
328 630235.82033 | 4857740.69626 | 161.90567
329 630235.82303 | 4857740.69569 | 161.14849
330 630235.83203 | 4857740.69952 | 160.08184
331 630235.57819 | 4857742.60993 | 161.90389
332 630235.58560 | 4857742.61160 | 161.10650
333 630235.58940 | 4857742.61202 | 160.08550
334 630235.80509 | 4857741.96667 | 161.14465
335 630235.81185 | 4857741.96999 | 160.08529

127




Ground Control Point ID X (m) Y (m) Z (m)
336 630235.97431 4857741.46464 | 161.15681
337 63023598018 | 4857741.46492 | 160.08948
338 630236.17612 | 4857740.82157 | 161.91479
339 630236.18676 | 4857740.82045 | 161.02586
340 630236.19114 | 4857740.82311 | 160.10289
401 630233.71433 | 4857742.00996 | 158.87809
402 630233.71760 | 4857742.01005 | 158.16652
403 630233.72261 | 4857742.02066 | 157.04542
404 630233.82181 | 4857741.71139 | 158.87658
405 630233.82300 | 4857741.71403 | 158.13036
406 630233.82872 | 4857741.71767 | 157.06029
407 630234.23147 | 4857740.48840 | 158.70689
408 630234.23595 | 4857740.49057 | 158.05180
409 630234.24006 | 4857740.49872 | 157.06546
410 630234.33111 | 4857740.18300 | 158.89266
411 630234.33594 | 4857740.18756 | 158.14005
412 630234.34072 | 4857740.19252 | 157.05576
413 630234.44958 | 4857742.26277 | 158.88377
414 630234.45245 | 4857742.26080 | 158.10988
415 630234.46742 | 4857742.27068 | 157.06245
416 630234.90782 | 4857741.57042 | 158.88716
417 630234.91244 | 4857741.57293 | 158.17186
418 63023491923 | 4857741.57611 ] 157.07008
419 630235.01260 | 4857741.26546 | 158.88584
420 630235.01466 | 4857741.26665 | 158.12668
421 630235.02007 | 4857741.27063 | 157.06432
422 630235.07425 | 4857740.43794 | 158.89478
423 630235.07479 | 4857740.43904 | 158.19290
424 630235.08130 | 4857740.44201 | 157.06721
425 630235.23216 | 4857742.48887 | 158.87924
426 630235.23359 | 4857742.48846 | 158.05344
427 630235.24313 | 4857742.49305 | 157.07090
428 630235.82784 | 4857740.69333 | 158.89145
429 630235.84197 | 4857740.69966 | 158.12004
430 630235.84369 | 4857740.69903 | 157.07174
431 630235.59277 | 4857742.61233 | 158.87712
432 630235.59665 | 4857742.61097 | 158.07089
433 630235.60454 | 4857742.61549 | 157.07897
434 630235.81481 | 4857741.96546 | 158.07124
435 630235.79853 4857742.04412 | 157.06586
436 630235.98683 | 4857741.46685 | 158.00361
437 630235.99089 | 4857741.46784 | 157.07407
438 630236.18915 | 4857740.81891 | 158.89645
439 630236.19466 | 4857740.81984 | 158.06086
440 630236.20173 | 4857740.81910 | 157.07618

128




Appendix C
Digital Images Used In Program Testing
The Images presented in this section are low-resolution images of the actual images used

in program testing. The high-resolution images can be found on the CD accompanying
this thesis.

2 4y i, m
Figure 2: Image C_H_O (Applanix Corp., 2002.)

129



Figure 4: Image Used To Test Least Squares Matching Subroutine
(Cosandier and Chapman, 1992.)

130



	Ryerson University
	Digital Commons @ Ryerson
	1-1-2003

	Automatic target matching
	Michael Leslar
	Recommended Citation



