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ABSTRACT

DETERMINATION OF OPTIMAL SCANNING AREA FOR ICP
BASED POSE ESTIMATION OF SPACE STRUCTURES

Master of Applied Science 2006, Kamran Shahid

School of Graduate Studies, Ryerson University

Future autonomous satellite repair missions would benefit from higher accuracy pose
estimates of target satellites. Constraint analysis provides a sensetivity index which can be
used as a registration accuracy predictor. It was shown that point cloud configurations
with higher values of this index returned more accurate pose estimates than unstable
configurations with lower index values. Registration tests were conducted on four satellite
geometries using synthetic range data. These results elucidatec a means of determining the
optimal scanning area of a given satellite for registration with the Iterative Closest Point

(ICP) algorithm to return a highly accurate pose estimate.
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Chapter 1

INTRODUCTION

Manned spaceflight repair missions are far too costly and are only reserved for the most
expensive spacecraft, such as Hubble and the ISS, and restricted in range to low earth orbit.
There are many communications satellites that are in a geosynchronous orbit and beyond the
reach of the Space Shuttle. The servicing of these satellites using manned missions is not
possible. Also, the communications lag and limited bandwidth between ground and on-orbit
satellites make teleoperated servicing vehicles unreliable. Geosynchronous communications
satellites are a vital link in the terrestrial communication chain. In the future, the ability to
reach, repair and return problematic satellites back to active service in a short turn around time
will be highly advantageous. The solution is the development of maintenance satellites that
will be capable of executing these complex repair missions. Consequently, repair satellites
will be required to possess a high degree of autonomy and be able to conduct the required
servicing operations with minimal assistance. Future satellites will be designed for servicing
by these autonomous servicing systems by including the proper interfaces for docking,
berthing, fluid transfer and installation of new computer hardware and software. These
modifications will come at an added cost. However, this cost is offset by the ability to correct
any future operational issues. This added functionality will extend the life of satellites, reduce
launching, production and operating costs. Also impaired satellites that would ordinarily be

lost will be able to be recovered.



INTRODUCTION

1.1 Space Vision System

1.1.1 Satellite Capture

Satellite capture is preformed using a robotic arm capture and berthing technique. The lag
time between satellite and ground station is generally several seconds [Inaba & Oda, 2000]
rendering a closed loop control that includes a ground station unstable. Hence, an on-board
autonomous machine vision system is necessary to conduct satellite capture. This calls for the
development of a means to estimate satellite motion using on-board sensors combined with a
closed loop control of the manipulator. Satellite capture is a difficult challenge as it involves a
full six degree problem in a zero gravity environment. This task is further compounded since
the motion of a manipulator capture arm will induce motion in the servicing satellite. A failed
satellite capture could cause a spin in the target satellite. If this state cannot be corrected

through stabilization, the satellite may be permanently lost.

1.1.2 Why Vision?

To conduct rendezvous, docking and repair missions, a high degree of accuracy is required for
estimating the relative translation and orientation (pose) of target satellites. Active systems
such as radar and differential GPS systems can be used for relative position, but these systems
give little information regarding the rotational orientation of the target satellite. For a
servicing satellite to have the required level of autonomy, it needs to be able to replicate the
human ability to recognize complex objects in arbitrary orientations over a range of distances
and lighting conditions [Hollander, 2000]. Currently, it is not possible to grant a machine the
full abilities of human vision. However, it is possible to bestow some basic vision
functionality, such as depth and range, to a semi-automated system. Most robotic operations
are inherently risky thus driving the need for considerable amounts of sensing data to improve
reliability. The ever changing space environment can cause conditions to change
unexpectedly requiring a reassessment of operational plans. Visual processing will allow

ground controllers to quickly react to these changing conditions.
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1.1.3 Space Visual Environment

The space environment poses many challenges for an operational orbital vision system. For
thermal protection, spacecraft are usually covered with a thermal blanket or a loosely attached
reflective foil. When illuminated, this foil causes shadowing and reflectivity that pose
problems for imaging systems. The range of illumination can vary from full solar exposure to
complete eclipse. The effects of solar illumination and Earth albedo! can cause some satellite
geometric features to be undetectable in images. This degrades the imaging accuracy and
reliability. Variables affected include imaging dynamic range, poor signal quality, saturation
and shadowing. Compensation for these effects require extended dynamic range and

sophisticated processing algorithms.

Camera vision systems are affected by both over illumination and the lack of ambient light.
Lasers scanners are robust to lighting conditions and are effectively 100% operational
regardless of sun interference, saturation, shadowing and insufficient ambient light. Figure 1.1
shows the effect of extreme illumination and Earth albedo. Also, examples of artificial targets

can be seen on the satellite body.

Figure 1.1 Example of extreme space lighting conditions - full solar Illumination and Earth albedo from
[Blais et al, 2000].

1. the fraction of incoming sunlight reflected back into space



INTRODUCTION

1.1.4 Vision System Range

[Jasiobedzki et al, 2001] outlined the ideal operational range of a space vision system. The
operational range of a vision system for satellite proximity operations is from 100m to
contact. This distance is further subdivided into three categories: long, medium and short. The

operational requirements for these ranges are outlined in Table 1.1.

TABLE 1.1 Computer Vision Ranges for Satellite Capture

Range Distance Function
Long 100-20m determine satellite bearing and distance
Medium 20-2m accurately determine satellite pose
Short 2m to contact track docking interface

Based on these range designations, a vision system must be capable of returning accurate pose

estimates for the medium and short ranges.

1.2 Computer Vision

1.2.1 Processing Methods

The three main methods of determining the position and orientation of one spacecraft relative

to another differ in the type of features utilized. These are:

1. artificial targets on spacecraft [Thorsley et al, 2004]
2. matching of 2D/3D features to 3D models [Gelfand et al, 2005]
3. matching of 3D surface data to 3D models [Besl & McKay, 1992]

Single or stereo cameras can be used to detect specially designed, high contrast fiducial marks
affixed to the target satellite body. Vision processing algorithms are designed to detect these
artificial targets in the satellite image and determine the pose of the given satellite. The use of
artificial markers is limited by the distance and viewing angle. All flight operational steps
including tracking and motion have to be designated at the pre-mission design stage. This

method is not robust to unexpected events requiring additional tasks. Also, an unforeseen
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occlusion of the targets by a satellite appendage or a sudden change in lighting conditions can

render this type of vision system inoperable.

Detecting natural 2D/3D features eliminates the need for the use of artificial targets. This
format matches the detected feature with a known CAD model of the satellite to establish its
pose. However, correct feature correspondence is difficult to establish under certain
conditions and may lead to an inaccurate pose estimate. This method is best suited for short

range distances.

The most promising approach are systems that will match the satellite 3D surface geometry
with a known 3D CAD model. This method makes use of all of the geometric information
available from all visible surfaces and eliminates the need for maintaining correspondence
between a small number of geometric feature elements. This method is less sensitive to
shadowing, illumination conditions and surface reflectivity and is best suited for medium
range operations. 3D systems are scale and rotation invariant unlike 2D perspective projection
methods. Llght Detection And Ranging (LIDAR) imaging systems are now capable of
acquiring data at speeds equivalent to video rates making range imagery a viable option for

space robotics.

1.2.2 Laser Range Scanners

A laser range scanner acquires the three dimensional geometry of an object by projecting rays
of laser light and determining the intersection with a target body. The data produced is a set of
3D coordinates of the intersection points. A range scanner operates by emitting a beam of
laser light onto a target, collecting and projecting the reflected beam onto a linear detector'.
Two high speed galvanometers are used to steer the laser beam onto a target within the field of
view of the camera. This process returns two angular positions of the reflectors and the

location of the laser spot on the detector. These values can be used to determine the xyz

1. a photo diode array or a charged couple device
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Cartesian coordinates of the intersection point in reference to the camera frame. The range of
the target can be obtained by using triangulation based on the geometric arrangement of the

internal laser components, or by measuring the time of flight of the laser beam.

1.3 Current NASA Projects

1.3.1 Orbital Express

The Boeing Company is developing the Orbital Express system aimed at demonstrating a
fully autonomous on-orbit satellite servicing system. The Orbital Express system consists of
two satellites: the Autonomous Space Transport Operations (ASTRO) servicing spacecraft
and the NextSat modular serviceable target satellite. The system aims to demonstrate a fully
functional autonomous rendezvous system operating at a distance of 7m to contact. Proximity
operations such as soft capture, station keeping, on-orbit refuelling and component
replacement will be demonstrated. The Baseline Integration Systems Test (BIST) of the
ASTRO spacecraft was recently completed. This test included the operation of all major
spacecraft subsystems and software individually and collectively for the first time. The

Orbital Express launch is scheduled for October 2006.!

1.3.2 Rendezvous Laser Vision System

Optech and MD Robotics have developed the Rendezvous Laser Vision System (RELAVIS).
The primary function of this integrated laser-based vision system is to support autonomous
satellite rendezvous and docking operations. RELAVIS is a time-of-flight laser scanner that
has the ability to produce highly accurate data over a range of 0.5 metres to 3 kilometres
[Martin et al, 2004]. More specifically, it provides the bearing and range data of a target

spacecraft which can be process to provide very accurate pose estimates of a target satellite.

1. Aerospace Daily and Defense Report www.aviationnow.com
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1.4 Thesis Framework

1.4.1 Motivation

The broad focus of this thesis is to improve the accuracy of pose estimation for the purpose of
satellite rendezvous. This aim could be realized in many different ways by suggesting changes
in overall system design, hardware components or processing algorithms. It is the latter
method of on-board processing that will be examined. It is hoped that with minor changes, a

more efficient LIDAR scanning system will result.

Current registration' techniques make use of the total scanning area. However, little work has
been done which examines if this strategy is best. This leads to posing the following

questions:

» How does model geometry affect registration?
« Isit possible to predict the registration accuracy of a given data set?

« Are some scanning regions better suited for registration than others?

Particular attention is placed on the last question. When looking at a given satellite geometry,
one can intuitively select a good scanning area. However, this intuitive human ability to select
a scanning location is based on the local geometry of candidate scanning regions. In order to

pass this intelligent selection ability on to a LIDAR system, a mathematical basis for

quantifying regional geometry is needed.

1.4.2 Solution Approach

This section gives an overview of the testing scheme developed in this thesis in order to meet
the objectives outlined in the next section. Figure 1.2 shows the solution approach in the form

of a block diagram. The three major blocks that need to be developed are highlighted. The

1. the process of transforming different sets of data into one coordinate system thereby determining the
transformation between the starting frames.
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LIDAR scanner will be the first system to be developed. This block intakes the specified
inputs and outputs a 3D range image. These input parameters will also specify a particular
scanning region. Once the registration block has been formulated, the generated point cloud

data can be processed by the registration algorithm to determine the pose accuracy.

The final block to be developed will be the intelligent region selection block. At first this stem
will be linked to the registration block in order to demonstrate the utility of this method, but
this link will be severed once this relationship has been established. The purpose of this
system will be to estimate the registration accuracy of a point cloud configuration without
requiring the use of the registration algorithm. This will allow the bypass of the registration

system to reach the accuracy block. The utility of this block is the focus of this thesis.

There will also be a clear dividing line that will separate the simulation zone from the
processing zone. The zones cannot be completely isolated from each other since both zones
require the use of the same satellite model. Unfortunately, there is no current solution that can
totally separate these zones. A possible future solution would be to use a physical LIDAR
scanner with a physical scaled model of a satellite. For now, the only available option is to

represent the satellite model in two different formats.

1.4.3 Objectives

The primary objective of this thesis is to establish a heuristic for finding the ideal scanning
area of a given satellite geometry using a LIDAR scanner. A particular region is designated as
ideal if it returns a highly accurate pose estimate over all candidate regions when processed
with a registration! algorithm. Before registration tests can be conducted, a suitable

registration algorithm will be established based on the different forms currently used. Also a

1. the process of transforming different sets of data into one coordinate system thereby determining the
transformation between the starting frames.
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Figure 1.2 Solution Approach Block Diagram

ranking measure will be established that will determine how suitable a given geometric region

is for registration purposes.

To ensure that any results are not model specific, the Stardust, Deep Space 1" and Space

Shuttle* models are included along with the Radarsat model.

To accomplish the main objective, a method of generating synthetic LIDAR data will be
developed. Differing raytracing techniques will be investigated to determine an efficient
means to extract point cloud data from the satellite mesh structures. Noise will then be added

to these ideal data sets in accordance with an actual LIDAR instrument.

The emphasis of this study is to develop a method that can be used to improve the accuracy of

satellite pose estimates for autonomous operations.

1. Caltech Laboratory for Spacecraft and Mission Design http://www.Ismd.caltech.edu/tools/drawcraft/
spacecraft.htm
2. NASA Liftoff to Space Exploration http:/liftoff.msfc.nasa.gov/vr/vr.html
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1.4.4 Outline

The raytracing method used to generate synthetic range data is outlined in Chapter 2. The
method used to add noise to this data in accordance with the RELAVIS LIDAR unit is
presented in Chapter 3. The Iterative Closest Point algorithm (ICP) is discussed in Chapter 4
along with the experimental environment used to conduct registration trials. Chapter 5
outlines constraint analysis and introduces the noise amplification index used to predict

registration accuracy. Finally, results and conclusions are reported in Chapter 6.

10



Chapter 2

RANGE DATA SYNTHESIS

2.1 Introduction

In order to investigate registration on 3D point clouds!, a method to derive point cloud
LIDAR data was needed. A lack of readily available LIDAR equipment and physical satellite
models lead to the development of techniques for generating simulated data. The computer
graphics method of raytracing simulates the behaviour of a laser range scanner by projecting
virtual rays to intersect with a model composed of a triangular mesh. Such a mesh structure
can exactly represent planar features, but is only an approximation to curved surfaces.
However, as the mesh is made more fine, the mesh geometry more accurately represents the
curvature. Raytracing is a technique for rendering 3D graphics with complex light interactions
producing realistic computer images. The basics of raytracing involves projecting a ray of
light from a virtual point, through a pixel on an image plane and into the scene to determine
object intersections. The pixel is then set to the colour value of the intersection surface. The
full functionality of raytracing reflections, refractions and shadowing are not utilized in this
thesis since only the ray-model intersection point is required. The raytracing method was used
along with the Open GL library [Woo et al, 1997] to produce a program capable of 3D
synthetic LIDAR point cloud data. The outline of the development of this program is

contained within this chapter.

1. aset of three-dimensional points describing the outline or surface features of an object such as the data
produced by a LIDAR scanner

11
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2.2 Raytracing Preliminaries

2.2.1 Model Simplification

The Radarsat, Deep Space 1, Stardust and Shuttle models were all originally available in
VRML 1.0 format. The mesh geometry as originally defined in VRML format was not
suitable for raytracing methods used in this thesis. The mesh is overly complex with many
internal surfaces that will never be visible. These surfaces were erased manually in order to
reduce the overall number of surfaces. As outlined in Section , raytracing involves numerous
ray/triangle intersection tests. Three dimensional models with a minimal number of surfaces
are preferable to reduce the number of these intersection tests. Once all redundant surfaces
were removed, the mesh is further simplified by using a triangle decimation software which
reduces the number of triangles in the mesh, but preserves the original object topology.

Table 2.1 shows the triangle mesh reduction for each satellite model used in this thesis.

TABLE 2.1 Triangle count of satellite models before and after simplification.

Model Original Simplified
Deep Space 1 8852 1976
Radarsat 8566 2046
Stardust 5606 1896
Shuttle 2476 1778

Figure 2.1 Shows the result of mesh reduction on the Radarsat docking ring. Mesh reduction
and manipulation was done using a combination of Catia, AutoCad, Lightwave 3D,

Rhinoceros, CXC and Crossroads.

2.2.2 Bounding Box

A bounding box that encapsulates the satellite model helps to decrease raytracing time by
eliminating the need to test for ray/model intersection if the ray misses the object entirely. The
ray is first tested for intersection with the bounding box and further model intersection is only

conducted once this test passes. Figure 2.2 illustrates the bounding box on the Stardust
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Figure 2.1 Radarsat Docking Ring Mesh Reduction

satellite model. Voxel raytracing (Section 2.5) makes use of the enter and exit locations
returned by the bounding box intersection test. The pose estimate of the satellite is always in”
reference to the camera frame, thus it is natural to consider this frame as the intertial

raytracing frame. However, this choice will severely hamper raytracing efficiency.

Figure 2.2 Raytrace Bounding Box Figure 2.3 Raytracing Camera and Target Frames

The satellite mesh geometry is defined in terms of its own body frame T as shown in
Figure 2.3. It is more prudent to define the target frame as inertial and consider the camera

frame mobile. This eliminates the need to apply a transformation to all of the mesh vertices in
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order to reference them to the camera frame. There will be two transformations per ray,

however this is significantly less than having to transform the entire mesh geometry.

2.3 Open GL Viewing Volume

The rays required for raytracing are generated in accordance with the Open GL viewing
volume as shown in Figure 2.4. The parameters of the viewing volume define perspective
projection matrix used to project the model onto the viewing screen. Only parts of the model
that lie within this volume are visible. The image plane lies on the near plane and has a width
of nCols and height nRows in pixels. The angle o defines the vertical field of view in the
yz camera plane. Specifying the viewing volume also establishes the internal perspective
projection matrix within the Open GL graphics pipeline. The viewport transformation
establishes the relationship between the 3D world space to the 2D pixel space by overlaying a
grid of pixels onto the near plane. An image screen is established that extends from —H to H

in the x direction and from — to W in the y direction where:

_ nCols

2.1
nRows @1)

H= Ntan(%) W=H
The screen has nCols by nRows of pixels on the viewport [Hill, 2001]. The relationship
between screen pixel coordinates (¢, ) and screen world coordinates (u,, v,) is given by:

2¢c

= W+ W =0,1... - :
u, w W(nCols-—l) , ¢=0,1...nCols—1 2.2)

v,=-H+H 2r

(nRows — 1) = ..nRows—1
(nRows —1) ,  r=0,1...nRows

2.4 Raytracing Algorithms

The different methods of finding ray/triangle intersections are outlined in this chapter. The
two geometric entities are defined as a ray originating at 17(; passing through P, having the

parametric equation:
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P = Py+1(P,-Py) 2.3)

and a triangle having vertices 7, V| and 7; with normal vector R (see Figure 2.5). The

Far Plane

Near Plane

Image Plane

Figure 2.4 Open GL Perspective Viewing Volume

transformation from the camera to the target frame T-; is specified.

The steps involved in raytracing to produce a 3D point cloud data set are:

1. specify the scanning area on the image plane (see Figure 2.4) (the full image
plane is used for a full view scan)

2. select a pixel from the scanning area and convert the pixel coordinates into
world coordinates using Equations (2.1) and (2.2) designating this point as P]
and the origin is designated PO as defined in the camera frame

3. both }_’; and }_’(\, are transformed to the target frame using (TCT)_'

4. the parametric ray equation is specified by using these transformed points using
Equation (2.3)
5. ray/triangle intersection tests are conducted for every triangular mesh element

6. the intersection with the smallest parametric value ¢ is designated as the point of
intersection

15



RANGE DATA SYNTHESIS

7. the intersection point is defined in the camera frame so use T~ to reference it
back to the camera frame

8. repeat steps 2-8 to generate a point cloud data set { ;i}

2.4.1 Sunday Algorithm

The three vertices of a triangle define a plane. The technique proposed by [Sunday, 2001]
begins by determining the point of intersection ﬁ, between the ray and this plane. A plane

with a normal » passing through point VO has the equation:

n-(P-Vy) =0 2.4)

Combining Equations () and (2.4) gives ¢; the parametric value of the intersection point:

{7

(V.-P.
(= o=l es)
'(Pl_P())

Sy

Equation () can be used to determine the actual hit location 1?, The inclusion of point 1-5:
within the triangle boundary now needs to be established. The parametric plane equation of a

triangle, see Figure 2.5, is given by:
P-T, = MV, - V) +w(V,=Ty) = M+ pd 2.6)
where A and p are the barycentric coordinates.The values A and p are obtained using:

k=ﬂ”-ghxb) u=®-!hxl‘l! @)
n-(nx?v) V- (Rx 1)

where @t = VI—VAO, V= ?2—70, W= ﬁi—?o, and A the plane normal. A point that is

within the triangle must fulfill the conditions:

A20,p20and A +p<1 (2.8)
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f
o

Vi

A
Vo

Figure 2.5 Ray-Triangle Intersection using Barycentric Coordinates

Thus, an intersection point 1_’: can be tested for inclusion [Ericson, 2004] within a triangle by

comparing its parametric values against the aforementioned conditions.

2.4.2 Badouel Algorithm

[Badouel, 1990] begins by finding the intersection of the ray with the triangle plane in the
same manner as [Sunday, 2001] using Equation 2.5. Equation 2.6 is then expanded into a

system of linear equations:

xp—Xg = Mxp—xp) + p(x, —xp)

yp—Yo =AY =¥ TR —Yp) (2.9)
Only two of the equations from (2.9) are needed to obtain A and p. This is analogous to
projecting the triangle onto one of the primary planes xy, xz or yz. If the triangle is
perpendicular to one of the primary planes, its projection will degenerate into a line. To avoid
this problem and to select the largest possible projection, the dominant axis of the triangle
plane normal is determined. The projection plane is composed of the two remaining axes.

Given a plane normal »?, the dominant axis is found using:
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i i n] =max(n],|n).|n.)) g, =j.q,=k
go = | j if |n)=max(n],|n).|np) g, =ig,=k (2.10)

ko if  |n|=max(|n], In)s|nl)  q1=igq,=J

The projection plane is given by g, and g, . Let (u, v) be the two dimensional coordinates of

a vector on this plane. Equation (2.9) can be reduced to:

to = hay ¥ iy @11)
Vo = Av,+uv,

where :

llO = qu - Voql lll = qul - VOql u2 = qul - Voql (2'12)
vo=Pp-V, n=r,-", V2=V, =",
The solutions of A and p are:
llo 112 ul uO
Vo V v, Vv
0oVY2 1Yo
A= and p= (2.13)
uy u, Uy Uy
Vi V2 Vi V2

These values can now be used to test for the inclusion of I_’\, within the triangle using the

conditions of Equation (2.8).

2.4.3 Moller-Trumbore Algorithm

[Moller & Trumbore, 1997] use a technique that delays the calculation of the intersection

point. Equations () and (2.6) are combined to give:
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Po+1(P|-Py) = Vy+ MT, = Vp)+ (V- V) 2.14)

The strategy here is to solve for the barycentric parameters (£, A, p) directly without first
having to find the point of intersection as do the methods of Sunday and Badouel. Equation

(2.14) can be rearranged to give:

t
Al =T 2.15)

_

where D = 17;—17(\),173; = 7;—7(\),5;; = V,-V,and T= F(\)"V(\)

The solution of Equation (2.15) is:

‘ B
NI EAT 2.16)
B

with 4 = DxE_'—; and B = T'x E_’I The use of 4 and B increase the efficiency of the
algorithm by only evaluating the respective cross products once and reusing the result. The
triangle inclusion test using the conditions from Equation (2.8) can now be conducted. The
point of intersection needs only be calculated if it is determined that the point does indeed lic
within the triangle boundary. Also, the order in which the parametric values are actually
calculated are (A, p, ). This allows early termination of the intersection test as soon as one of

the parameters do not fall within the allowable range of:
A20,n20,120 2.17)

2.4.4 Held Algorithm

[Hill, 2001] begins by reducing the dimension of the intersection problem to a planar case as
does [Badouel, 1990] (see Section 2.4.2). The inclusion of the point within the triangle

boundary is conducted by examining the sign of the determinants det(vgy, v,p;),
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det(vy, v,, p;) and det(v,, v, p;) . If a point p; is contained within a 2D triangle vyv;v, , the
three determinants will have the same sign. This concept is based on the signed area of a

triangle:

| X, 1
A= ii Xy ¥y 1 (2.18)
X3 V3 1

2.4.5 Segura Algorithm

[Segura & Feito, 2001] use the definition of the signed volume of a tetrahedron to conduct an

intersection test. The signed volume of a tetrahedron! with vertices D, 4, B and C is given
by:

A A A ]
B, By B, 1
C, Cy C, 1
D, D, D, 1

[ABCD] = (2.19)

N

Consider a triangle ABC in R® and O and Q' be two points on opposite sides of the plane
ABC. The vertices of ABC need to be ordered in a counter clockwise orientation. This
condition is easily accommodated as triangles in Open GL have a consistent counter
clockwise or clockwise orientation. A counter clockwise orientaion can be arranged so that

the plane normals point outward from the object model. The segment QQ" cuts ABC iff:

sign([Q'ABQ]) 20 and sign([Q'BCQ])20 and sign([Q'CAQ])20  (2.20)

These conditions allow for an early termination of the test if at any point one of these

conditions is violated. Segura only evaluated this algorithm against those of Badouel and

1. a 3D pyramid-like shape made up of four triangular faces, three of which meet at each vertex
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Moller-Trumbore in terms of intersection detection only. This method is included here to

evaluate its performance when the intersection point is actually required.

2.4.6 Raytracing Method Comparison

The five different raytracing methods presented were all programmed into a raytracing
algorithm in order to determine which method is the fastest. Figure 2.6 shows the results for
the Stardust satellite model, with the results for the Radarsat, Deep Space 1 and Space Shuttle
models presented in Appendix A. The five methods can be divided into two categories: those
that conduct calculations in 3D space and those that project onto 2D space. The algorithms
show different performance due to varying complexities used in their formulation. Some of
the algorithms need the triangle plane normal and if not provided have to calculate this vector.

Other algorithms need the intersection point of the ray and the triangle plane. Table 2.2

TABLE 2.2 Raytrace Algorithm Comparison

Method Algorithm I‘{eed raylplane Need Normal? Complexity
intersection?
Sunday Yes Yes 5
3D Moller-Trumbore No No 2
Segura No No 4
Badouel Yes Yes 3
2D
Held Yes Yes 1

compares the five raytracing algorithms. The algorithms were tested by using similar
programming implementations in order to provide a common computational overhead. The
2D methods are simpler than the 3D methods due to a reduction in dimension. The Moller-
Trumbore and Segura algorithms have the advantage that the ray/plane intersection
calculation can be delayed since the test for inclusion within the triangle boundary does not
require the actual intersection point. However, the Segura algorithm shows poor performance
due to its complexity. The Sunday algorithm fails across all categories and should not be used.

When normals are precalculated, the Held algorithm is the fastest method. The satellite

21



RANGE DATA SYNTHESIS

meshes all had normals defined thus the Held algorithm was used. These run times are for a

C++ implementation of the algorithms on a AMD Opteron Dual Processor 1.79 GHz.

2.5 Voxel Raytracing

The first raytracing method that was developed used a brute force approach to conduct ray/
triangle intersection tests. For each ray, all of the mesh elements were tested to find the closest
intersection. To increase efficiency, a reduction in the number of intersection tests was
needed. Bounding volumes and space partitioning are the two main methods used for
intersection culling. The concept of the first method was presented in Section 2.2.2. Bounding
boxes can be placed around complicated model regions to avoid intersection tests with this
region if there is no intersection with the bounding volume. The second approach is to
partition the model into voxels! with each voxel containing a list of triangular mesh elements
that intersect or lie within the voxel region of space. This subdivision allows for the prediction
of the path that the ray will follow thereby finding the intersection point once the model is

reached.

2.5.1 Voxelize Model

This is a pre-processing step which involves subdividing the model into small 3D volumetric
cubes at a predetermined size. The size of the voxel is small enough so as to allow the capture
of the finer details within the model. Small voxel sizing produces voxels that contain fewer
mesh elements. The Open GL structure of indexed arrays (see Figure 2.7) allows for easy
storage of the triangle elements that occupy a given voxel space. An example of how to access

the first three triangle elements based on this mesh structure is shown in Figure 2.7.

1. 3D volumetric element
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Time (s)

Stardust = Time vs Intersection
Normal Given

8 T T T T T
= — —Badouel
Held
7+ Moller 4
— —-Sagura
—+— Sunday

L 1

0 1 1 1

0 0.5 1 1.5 2 25 3
Number of Intersection Tests x 107
Stardust — Time vs Intersection
Normal Calculated
10 T T T T T
— — -~ Badouel
Held 4
or - Moller
— - —-Sagura
gk L—— Sunday i

1 15 2 25 3
Number of Intersection Tests x 10’

Figure 2.6 Comparison of Raytracing Methods on Stardust Satellite Model
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A voxel is designated by its XYZ coordinates of its centre along with all of the triangle
numbers that intersect or are contained within that particular region of space. The triangle

number can be converted to its index elements and then the vertices, along with the normal,

Triangle Mesh Element

GLushort Index[ n ] = { 6.2,4)6,7.5, .

Glfloat Vertex[1[6] = {
{-0.9982, -0.060, 0, -5.250, -1.100, -0.075},
{-0.9982, -0.060, 0, -5.250, -1.099, 1.574},
{-0.9982, -0.060, 0, -5.250, -0.949, 1.574},
. A

h -\ h
Normal Vertex
Triangle 1 Triangle 2 Triangle 3
Vertex[ Index[0] ][0...5] Vertex[ Index[3] ][0...5] Vertex[ Index[5] ][0...5]
Vertex[ Index[1] ][0...5] Vertex[ Index[1] ][0...5] Vertex[ Index[2] ][0...5]
Vertex[ Index[2] ][0...5] Vertex[ Index[4] ][0...5] Vertex[ Index[4] ][0...5]

Figure 2.7 Open GL Indexed Mesh Array Structure

which make up that particular triangular mesh element can be recovered. Voxel pre-

processing of models has two steps:

1. Loop over the entire mesh, bounding each element with voxels and recording the
XYZ coordinates and triangle number of voxel/element intersection.

2. Process the list and combine duplicate voxel entries.

The second steps ensure that for a given voxel location, all elements that intersect that region
of space are accounted for. The triangle/box intersection code of [Moller, 2001] was utilized
to conduct the intersection tests. Only those voxels that contain a portion of the satellite

geometry are stored on the list.
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2.5.2 kd Trees

For the voxel raytracer, a data structure was needed for the model voxel list to be able to
quickly determine if a given voxel location exists on the list and what triangle elements are
contained within the voxel. A kd tree! structure [Friedman et al, 1977] is a spatial subdivision

scheme that is an efficient method for conducting nearest neighbour queries. Figure 2.8 shows

e
3 Sjojolo

Figure 2.8 2D Conceptual kd Tree

the structure of a simple 2 dimensional kd tree. The dots in Figure 2.8A are points having xy
coordinates.  The  subdivision  scheme starts by examining the value
Max(|% o0 = XpinlVmax = Ymin]) - In this example, the x direction has the largest range of
values. The splitting plane value is the mean value of the coordinates having the largest range.
For node A, the x values will be averaged and stored within node A. Points having an x
coordinate less than this splitting plane value are defined to be in the left region, while the
remaining points are in the right region. This process continues for each sub-region until the

number of points in a given region fall below an established threshold (eg. 5 points). The

1. k dimensions - in this case 3D
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branch is terminated and is designated as a bin storing the coordinates of the points within that

region.

A nearest neighbour search can now be conducted. Given an input query point, the goal is to
find the point contained within the kd tree structure that has the closest distance to the query
point. At node A, the x coordinate is compared to the x-plane splitting value. Assume that the
query point x coordinate is less than the x-plane splitting value. The left branch from node A
would be descended to reach node B. Node B stores a y-plane splitting value, thus the y value
of the query point would be compared to this value. The left branch is always descended if the
query point coordinate is less than the respective splitting value with the right branch
descended for values greater than the splitting plane value. This process continues until a bin
is reached where a quick check of all points contained within the bin can be made to
determine the closest point. It is possible that the true closest point is contained in another bin.
If the distance between the query point and the nearest point found is greater than the distance
between the query point and a node splitting plane, then that node branch needs to be checked
as well. The example outlined here was for a 2D case, but the same concept applies for any k
number of dimensions. Each line of the voxel list generated as outlined in Section 2.5.1 has
the xyz coordinates of the centre of the voxel as well as the triangle numbers (see Figure 2.7)
of any mesh elements that occupy or intersect that region of space. The kd tree subdivision

method outlined in this section is applied to this voxel list.

Initially a kd tree constructor and traversal code was written, however the ANN: A Library for
Approximate Nearest Neighbour Searching [Mount & Ayra, 2005] code was used. This kd
tree code returns the coordinates of the point closest to the query, the index of the closest point
as well as the squared Euclidian distance. The return of the index allows access to other data

associated with the closest point.

26



VOXEL RAYTRACING

2.5.3 Voxel Traversal

Once the satellite model has been subdivided into voxels, a method of predicting which voxel
a given ray passes through is needed. The technique used in this thesis is similar to the work of

[Amanatides & Woo, 1987].

Next Hofizontal Plane /
\

Y /]
f + K
YL i / It" Next Vertiaal Plane

X

tENTER»

Figure 2.9 2D Voxel Traversal

The method presented here is for the two dimensional case, but has a straightforward
extension into three dimensions. The traversal method is initialized by using the entry point of
the bounding box, see Figure 2.3, to identify the voxel that the ray first enters. The coordinates
of this voxel are designated (voxX,voxY) and the entry parametric value of the ray is stored as
the current value ¢.,....; = tgper- Given aray of the form &+ ¢ = 0, and half of the voxel
size designated by #, the voxel coordinates will be incremented according to
AvoxX = 2h-sign(v,) and AvoxY = 2h- sign(vy). The sign of » allows the
determination of the direction that the ray will travel and how the voxel will be incremented.
The next horizontal and vertical planes that the ray will encounter (see Figure 2.9) are
designated as pX and pY with ApX = h-sign(v,) and ApY = h- sign(v,). The traversal

stage begins by calculating:

X —u Y—-u
t =2 ] t 2T (2.21)
X v, Y v,
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The next voxel that the ray passes through is determined by min(t,t ). The basic voxel

traversal loop is shown in Figure 2.10. The loop continues until an intersection is encountered,

while( nohit & tcurrent<texit)
tx (pX-Ux) /Vx
ty (pY-Uy) /Vy

if( tx < ty)
voxX = voxX + vDeltaX
pX = voxX + pDeltaX
tcurrent = tx

else
voxY = voxY + vDeltaY
pY = voxY + pDeltaY
tcurrent = ty

endif

checkVoxel ( voxX, voxY )

endloop

Figure 2.10 Basic 2D Voxel Traversal Loop

or the ray leaves the bounding box without hitting the satellite. When a voxel is entered, it
needs to be established if a part of the satellite geometry lies within this voxel region of space.
This is done by using the centre point of the current voxel as a query point to search the kd
tree generated as outlined in Section 2.5.2. The size of the voxels is known and the kd tree
returns a closest point as well as the distance from the query point to this closest point. If this
distance is less than the width of a voxel, the closest point actually equals the query point.
This indicates that the current voxel contains a portion of the satellite mesh. The Held
algorithm (see Section 2.4.4) is then used to test for ray/triangle intersections with all mesh

elements contained with the current voxel to find the true intersection point.
There is one further condition which must be imposed in order to determine the true

intersection point. This situation is illustrated in Figure 2.11. When the ray enters voxel B, the

existence of triangle 2 will be detected and once the intersection between the ray and the
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triangle is determined, a false intersection point will be found to be in voxel D. To avoid this
situation, any intersection point must reside in the current voxel. Voxels in regions of complex
geometry will contain multiple triangle mesh elements. The ray is tested for intersection with
all triangles that exist in the voxel and the ray paremetric value ¢ (see Equation (Chapter 2.3))
is used to determine the absolute closest point. The following two conditions need to be

satisfied for a point to be considered the true intersection point:

* the lowest parametric value ¢ of all intersections within the voxel

e the intersection point must lie within the current voxel space

Figure 2.11 Point in Voxel Condition

2.5.4 Voxel Size

There is a tradeoff between the computational cost of voxel traversal and ray/triangle
intersection tests. As the voxel size is increased, each voxel element contains more triangle
mesh elements within its region. Also, as the voxel size increases, the number of voxel
traversals decrease while the number of ray/triangle intersections increase. Figure 2.12
illustrates the relationship between voxel size and raytracing time. As the voxel size is
increased the computational cost of voxel traversal is reduced. However, the number of
triangles per voxel is increasing. Once the curve flattens, there is no need to keep increasing
the voxel size since this will cause more ray-triangle intersection tests and increase

computational time.

29



RANGE DATA SYNTHESIS

Radarsat ~ Time vs Voxel Size
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Figure 2.12 Raytracing Time vs Voxel Size

2.5.5 Performance

As expected, the optimized voxel raytracer outperforms the brute force raytracing method as
shown in Figure 2.13. The voxel traversal occurs very quickly with a smaller number of
computations. This slight addition in computation cost yields a large return in the overall
computational time since fewer intersection tests are need to be conducted to determine the
ray intersection point. The purpose of developing a high speed raytracing technique is

explained in Chapter 6

2.6 Summary

This chapter outlined the techniques used in order to generate synthetic range data of satellite
models for use with the ICP algorithm. Five different ray/triangle intersection methods were
tested to determine their computational speed. From this test, the Held algorithm was deemed
the fastest. The brute force method of raytracing was originally used and was satisfactory in
producing a few thousand points in a few seconds. However, as work progressed, the need for

a faster method of raytracing developed, hence the development of the voxel raytracer. The
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SUMMARY

Held algorithm is used in conjunction with the voxel raytracer because triangle intersection
tests still occur, but at a significantly reduced rate. Figure 2.14 demonstrates the cloud point
generation ability developed for the Radarsat, Stardust, Deep Space 1, and Space Shuttle

models..

Held vs Voxel Raytracing

Held
— = —Voxel

0 1000 2000 3000 4000 5000 6000 7000 8000
Number of Points

Figure 2.13 Held vs Voxel Raytracing Comparison
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5244 Points

3976 Points

2894 Points

Figure 2.14 Satellite Models With Their Respective Point Clouds
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Chapter 3

LIDAR MODEL

3.1 Introduction

The previous chapter outlined the method used to generate 3D cloud point data for a given
satellite model. For this data to have value, it needs to be corrupted in a manner that replicates
the operational performance of an actual LIDAR system. The instrument used for the noise
model baseline is the Rendezvous Laser Vision (RELAVIS) LIDAR system developed by
Optech. The goal was not to simulate the exact performance of this instrument, but rather to

generate point cloud data that is comparable to the accuracy of RELAVIS.

3.2 Model Equations

Figure 3.1 shows the optical geometry of a laser scanner in the triangulation mode of
operation. The light ray produced by the laser is deflected by a mirror and scanned on an
object. With some simple trigonometry, the coordinates of the illuminated point can be

calculated. The range scanner used in this thesis is based on the work of [Blais et al, 2000].
The range R can be calculated using the triangulation method:

-d
Ryvian = foTcosG +dsin® (3.1)
where p is the image of the target point on the position detector, 0 is the deflection angle of
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the laser beam, d is the triangulation base and £, is the effective distance between the position

detector and the lens. £, is related to the focal length of the lens.

Laser

Deflector Mirror
‘1F - _C _________________

Position
Detector

Figure 3.1 Triangulation Geometry from [Beraldin et al, 1993]

For a LIDAR using a time of flight method, the range is a function of the speed of light ¢ and
the delay t of a laser pulse:

T
RTOF =cC ‘5 (3'2)

Figure 3.2A shows the astigmatism effect between the X & Y scanning axis. These rotation
axes are actually the rotation axes of the galvonometers that steer the laser beam. Due to the
spacing among the internal LIDAR components, these axes do not coincide with the position
detector array. These component offsets are small as compared to the measured bearing and
range to a given target. Therefore, a simplified geometric model is used as shown in

Figure 3.2B. The xyz coordinates of a point are:
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YA x CCD Lens
f/ X Rotation Axis

Y Rotation Axis

YA x
z
CCD Lens
A
1/,
X o
(o
s
O
1
\Y Rotation Axis

X Rotation Axis

Figure 3.2 Astigmatism Between X & Y Axes and Simplified Geometrical Model Figade
from [Blais et al, 2000].

x sin@
y| = R- (cosO —y)sind (3.3)
z (1 —cos¢)y + cosBcosd

where 6 and ¢ are the deflection angles and y = D,/R were D, is the separation between

the two scanning axes. Error propagation can be approximated by:

RZ
ARpyign = 7d P (3.4)

since D,«R. Ap is the uncertainty associated with the laser spot measurement and

contributes the most to the overall LIDAR error. The overall system distortions and
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astigmatism caused byDg are not negligible and induce error in the measurements for pose
estimation. However Equation 3.4 is still a good approximation for random noise analysis.

The total error of the laser scanner becomes :

Ax sin® cos0 0
Ay| = | cosO - sing| AR+ |_sin® - sing| - R- A0+ | cosg | - RcosO - Ad (3-5)
Az cosO - cosd —sin6 - cos¢ —sin¢

Thus given the error in (R, 0, ¢), the error in the (x, y, z) coordinates can be determined.

3.3 Baseline Range Scanner

The RELAVIS scanner, a time of flight LIDAR instrument, has been developed for the
explicit purpose of obtaining the relative position and orientation of a target space vehicle.
The specifications for this instrument is shown in Table 3.1. Of most interest are the last two
items which show the measurement accuracy of RELAVIS measurements. Traditional lidar
scanners have a range accuracy which is proportional to the range magnitude. However

RELAVIS is unique with regards to its range accuracy being independant of the range itself.

TABLE 3.1 Lidar RELAVIS Instrument Specifications®

Minimum Range m 0.5
Maximum Range km 5
Mass kg <15
Volume litres <9
FOV +/-deg| 10
Power \YY% <125
Update Rate Hz 5
Attitude Accuracy deg 1
Range Accuracy cm 1
Bearing Accuracy mrad | 0.35

a. Optech Incorporated http://
www.optech.on.ca/prodspace.htm

The errors were simulated as Gaussian noise with zero mean and standard deviations of the
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bearing and range accuracy of Table 3.1. These values were used in conjunction with

Equation 3.5 to generate the xyz coordinate perturbations. This method was also used by
[Pelletier et al, 2004].
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Chapter 4

RANGE IMAGE REGISTRATION

4.1 Introduction

The Iterative Closest Point (ICP) algorithm is a widely used method for the determination of

the rigid body transformation between two:

* point sets

* line segments

* implicit curves

* parametric curves

* triangle sets (meshes)
* implicit surfaces

* parametric surfaces

This method iteratively refines a transformation estimate by generating a set of matching
points from the models and using these to minimize a given cost function. It is a simple
method, but works very effectively when given a good initial estimate. Since this method
deals with point clouds, it is the natural choice of processing method for use in conjunction
with laser range scanners which return data in the form of point clouds. Also, the use of speed
enhancements such as kd trees, closest point caching and iteration acceleration can

significantly enhance the speed of the basic algorithm for use in a real time tracking scenario.
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The advantages of the ICP algorithm are:

* handles full 6 DOF
* independent of surface representation

* does not require any derivative estimation or feature extraction

The main disadvantage is the requirement of a good initial guess to bring the point clouds into

close relative alignment.

There are two distinct problems that can be addressed by using ICP. The scene-scene case
arises when multiple scans of the same objects need to aligned in order to generate a full 3D
model of the object. The scene-model case arises when an exact model is available and and a
scanned scene point cloud needs to be registered. The second problem type is addressed in this

thesis.

4.2 Overview

The ICP algorithm was developed by [Besl & McKay, 1992] and is based on minimizing the
distance between point pairs. The independent work of [Chen & Medioni, 1992] (see
Appendix B) involves a similar iterative technique but use a pairing procedure based on
surface normals. Since its development, many ICP variants have been proposed with differing

techniques for various stages of the algorithm.

There are several strategies available for the selection of points to form the respective point
clouds. [Besl & McKay, 1992] proposed a straightforward method of making use of all
available points. However, [Turk, 1994] used a uniform subsampling of the available points
while [Masuda et al, 1994] choose a random sampling with a different sampling of points for
each iteration. [Rusinkiewicz & Levoy, 2001] tested these three methods and showed only a

marginal improvement in performance using normal-space sampling.

Researchers have also turned their attention to the point correspondence problem as this is the
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most expensive stage of the ICP algorithm. [Besl & McKay, 1992] preferred the closest point
to the other geometric entity as a matching criteria. The alternative method of [Chen &
Medioni, 1992] is based on the intersection of the ray from a given point in the direction of the
point’s normal with the other mesh surface. Another interesting method involves using the
focal point of the range scanner used to produce a point cloud. [Blais & Levine, 1995] project
a ray from the source point through this focal point to find the intersection with the other mesh
surface. The original closest point matching is by far the most widely used method and is used

in this thesis.

Other researchers have focussed on improving the minimization efficiency of ICP by using
alternate transformation representations. [Arun et al, 1987] developed a technique using the
singular value decomposition of a covariance matrix to obtain the required transformation. A
method that makes use of the orthonormal properties of the rotation matrix is presented by
[Horn, 1988]. The basic ICP method uses a unit quaternion representation, but [Walker et al,
1991] expanded this idea and made use of a dual quaternion representation. The choice of

transformation method used is outlined in Section 4.3.

Alternative minimization techniques can be applied to the ICP framework since it is an
optimization problem. [Mitra et al, 2004] used an approximation to the squared distance
function to minimize a cost function using a pure geometric approach. Genetic algorithms for
minimization was the choice of [Brunnstrom & Stoddart, 1996]. A hybrid ICP method using
simulated annealing was proposed by [Luck et al, 2002]. These alternative formulations are

more computationally expensive and are not appropriate for real-time usage.

Most of the above modifications attempt to improve upon robustness, convergence and

precision. For this thesis the basic ICP method was used with some minor modifications.
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4.3 ICP Background

The ICP algorithm begins with an input point cloud data set {13\,.} . For each point in the set
i = 1...n, the corresponding closest point is found on the base model producing a second
point cloud set {t?i} . These point clouds are related by a by a 3x3 rotation matrix R and a 3D

translation vector 7 such that:

m,=R-p+T @.1)

The optimal transformation [R’, f’] is determined by minimizing the mean square error of

alignment given by:

MSE = %Z”'ﬁ—R' =T’ (42)
i

This cost function can be further simplified by introducing the centroids of the point sets:

n

n
B e S
m= ;‘,2”',- P= ;ZP,- 4.3)
1 1
and using the transformed coordinates:
W= m B=Pe-p "
reducing to:
N O el Y
MSE = ;Z”mi‘R P
i 4.5)

n

] T A'T_) T
= ;Z(m'f m';+p'. pi=2m'; Rp')

The use of the point cloud centroids decouples the rotation and translation components of the
transformation. The cost function is minimized when the last term in Equation (4.5) is

maximized. This is equivalent to maximizing Trace(R'M) [Arun et al, 1987] where:
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" AT Sx.\' Sxy Sx:
M = Zp'im',- = 1S)x Spy Sz (4.6)
1 S.\': S.'.' 4 S::
with:
n n
Sex = 2 X5 ¥ m,i Sy =X, Vi o .7)
1 1

In the works of [Besl & McKay, 1992] and [Horn, 1988], a 4x4 covariance matrix was used
to obtain the unit quaternion representing the optimal transformation. However, [Arun et al,
1987] used a singular value decomposition technique to obtain the desired rotation. The
justification for using the SVD method of [Arun et al, 1987] is derived from the work of
[Eggert et al, 1997] and summarized in Table 4.1.

TABLE 4.1 Qualitative comparison of algorithm performance (1=best, 4=worst). N-Noise, ID-No Noise, IN-
Isotropic Noise, AN-Anisotropic Noise.

Method Accuracy 2D Stability 1D Stability 0D Stability Time
ID | N | ID | IN |[AN|[ID [ IN | AN | ID | IN | AN |Smll) faree
SVD 1 1 1 1 1 2 2 2 3 1 1 2 2
Orthonormal Matrix| 3 1 4 4 4 1 1 1 1 1 1 1 4
Unit Quaternions 2 1 2 1 1 3 3 3 1 1 1 2 3
Dual Quaternions 4 1 3 1 1 4 4 4 4 4 4 4 1

The SVD technique was selected since it ranks high in all categories and is the simplest

method to implement.
The singular value decomposition of M is given by M = UA " . Thus the rotation matrix

that maximizes Trace(R'M) is given by R' = VU". The translation vector can be

determined using the rotation matrix and the point cloud centroids:
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T =m-R-p 4.8)
4.3.1 Closest Point Matching

The ICP algorithm attempts to determine the transformation that will align two point clouds.
However, the satellite models used are represented by triangular meshes. Therefore, a method
was needed that would extract a set of i = 1...n points {n_;,.} from the model such that the
distance to their corresponding points {13:} in the input point cloud is minimal. The closest
point matching concept developed here stemmed from the use of the voxel raytracing method

for producing the input point clouds (see Section 2.5). A kd tree search method along with a

P Q

Vs
Vo

Figure 4.1 Normal Point to Plane Projection

voxelized model was used in order to quickly reach the voxel coordinate that is closest to the
query point. The satellite model is voxelized with a reasonably small voxel size. This size
cannot be made too small since every time the voxel size is reduced by half, the number of
voxels in the model increase by a factor of 8. With a finely discretized voxel space, the voxel
coordinate will be a close approximation to the actual closest point. However, the actual
closest point lies on the portion of the model surface contained within this closest voxel.
Consider a point P and a triangle mesh element with vertices V;, 7; , 7; with a normal 7.

The normal distance to the plane of the triangle is:

d=n-(P-7,) 4.9)
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which can be used to find the surface point 13_;

p, = P—dn (4.10)

If the projected point lies within the boundaries of the triangle, then this will be the closest
point. However, if the projected point lies outside the triangle boundaries (see Figure 4.1), the
closest point to the triangle will be either one of the vertices or the projection onto the closest
line segment. To determine where the projected point lands, the triangle parametric

coordinates (A,u) are determined by using the algorithm of [Badouel, 1990]. The parametric

Region |A<0 |p<O0 [A+p>1| Closest Point

E . A Yes | Yes No Vo

N\

) B No | Yes No Project on 1V,

F Vz D C No | Yes Yes Vo
G D No | No Yes Project on v, v,

Vo VI
e - = E Yes | No Yes Vo
A s/ \ C :

~ B * F Yes | No No Project on v, v,

G No | No No Ps

Figure 4.2 Triangle Parametric Regions

coordinates can be used along with Figure 4.2 to determine where the closest point lies
[Ericson, 2004]. Figure 4.3 shows the method of projecting a point p onto a line segment
ab For each point {E;} in the scanned point cloud, the closest point is found by first using a
kd tree method to locate the closest voxel coordinate. The closest point is further refined by
searching through all of the triangular mesh elements contained within this voxel in order to
determine the actual closest point. This process is repeated for all points { ﬁ;} to construct the

closest point set {m;} .
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a 0L=@"Z})'(l;—z\’)
) . (b-2)-(b-2)

’\‘.'r‘N' a' = max(0,min(o,1))
P ?=p+a'(3—&)

Figure 4.3 Project Point P onto line segment ab

The steps for finding the closest point are as follows:

1. take one point from the point cloud {‘;;.} and designate this point as the query
point

2. use the kd tree structure to find the closest voxel from the voxelized satellite
model list

3. find the closest point to each triangle element contained within the voxel by first
projecting the query point onto the plane formed by a given triangle (see
Figure 4.1) this gives you the point projecton p

4. use p_; along with the Held algorithm (see Section 2.4.4) to calculate the
barycentric coordinates (A,nt) and use these to determine where the candidate
closest point lies by using Figure 4.2

5. repeat steps 3 and 4 for all triangles contained in the closest voxel to produce a
set of closest candidate points

6. the point from the candidate points that has the smallest distance to the query
point is designated as the closest point and is placed in the corresponding point

set {m;}
7. steps 1-6 are repeated for all points in point cloud {EI.} to generate the
corresponding point cloud {m;}

Admittedly, this point matching scheme is not a very fast technique and would not be
appropriate for use in a real-time situation. However, this method was used in this thesis due

to its accuracy of returning the closest point on the satellite mesh surface.
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4.3.2 Registration Error

The goal of registration is to determine the transformation between the camera frame and the
target frame Tr. However, the transformation determined by ICP registration T~p will
have an associated transformation error Tz due to noisy input point cloud data (see

Figure 4.4).

X
//" z Target Frame
y

‘\;
Te

Ter

z Ticp
X

Camera Frame

Figure 4.4 Registration Error Transformation
The registration transformation error can be expressed as:

Ty = (T,C,,)'l Ter @.11)

The rotational registration error is expected to be small allowing the approximations cos0 ~ |

and sin0 ~ 0 to further simplify and express T’ :

I -0, o, 1

T, = | ®: b-o, o (4.12)
-0, o, 1
(0 0 0 1|

Where T is composed of the rotational and translational pose parameters

[(,)x ®, 0,11, zz] . The error in rotation and translation can be expressed as the norms of the
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rotation and translation components of Equation (4.12):

I1E] = Ji +’;+ £ (4.13)

and:

|E] = Joli+o)+o? (4.14)
4.3.3 Initial Pose Estimate

ICP requires an initial pose estimate that puts the input point cloud in close alignment with the
base model. The transformation returned along with the clout point data is the transformation
from the camera frame to the target frame. First, the point cloud is transformed using the
inverse of the actual transformation (T)_1 . This puts the point cloud in exact alignment with
the model. A second transformation Ty, is applied in order to put the point cloud in a close
alignment state. The transformation Ty, is generated by using the axis-angle rotation
representation and maximum translation and rotation angle values of t,,,, and 6,
respectively. A uniformly distributed random number generator ran(a, b) is used to generate
values in the range [a, b]. Thus the rotation and translation components are determined as

follows:

t:c =ran (_tMax’tMax)
t)’ = ran(_tMa.\"‘tMax)
t:: =r an(—TMax’Tl\lax)

0 =ran (_eMax’eMax)

(4.15)

The axis-angle rotation representation is used along with the value 6 and the rotation axis

derived from:
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m, = ran(-1,1)
m, = ran(-1,1)

m_= ran(-1,1)

(4.16)

.. . . - T
Normalizing the components of M by |7 gives the unit vector n = [n‘ n, n:l that defines

<

the axis of rotation. The transformation TS,”.f, is now defined as:

1+(1=cO)(r’x—1)
n,s0 + nxny(l -c0)

—nyse +n,n(1-c0)
0

With this, the initial pose for the ICP algorithm becomes:

—n,s0+ nxny(l -c0)
I +(1=-c0)(n’y—1)

n,s8+nn(1- cO)
0

-1
Tinit = Tspin - (T)

n),se +nn_(1-c0) 1,

-n,s0 +nyn.(1-c0) ¢, 4.17)
L+ (1=cO)(n’==1) 1
0 1
(4.18)

Unless otherwise specified, the value of 0,,,  was set to 10 degrees while t,,,  was set to

10% of the translation magnitude. More care was placed on the initial rotation state since ICP

is very sensitive to the initial rotation state, while insensitive to the initial translation state

[Besl & McKay, 1992].

4.3.4 The ICP Algorithm

With a given point cloud {;3\,.} and a good initial guess T,;,, the ICP algorithm can be stated

as follows:

» Compute the closest points to { ‘5:-} to generate a model point cloud {h?i}
Generate the covariance matrix M

Use singular value decomposition to M to compute the rotation and translation
Apply the rotation and translation to the point cloud { [';,-}

Record the rotation and translation
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« Iterate until convergence or termination criteria is met

e Determine the registration error

The criteria used to measure convergence was the relative change of the cost function MSE

(see Equation 4.2):

MSE,— MSE,_,
MSE,

1

" <0.0001 (4.19)

This high threshold was used to gain further accuracy from the ICP algorithm. An iteration
limit of 400 was also imposed for the case where an unstable point cloud input will not yield a

converged ICP solution.

4.4 Experimental Method

This section outlines the experimental method used to demonstrate the relationship between

constraint analysis (Chapter 5) and ICP registration.

4.4.1 Satellite Subsection Scanning

The method by which subsections of the satellite models are scanned to produce the input
cloud point data for the ICP algorithm is represented by Figure 4.6. The cloud point
generation begins by positioning the satellite and establishing the translational portion of the
transformation. To be sure that all sides of the satellite are viewed in order to examine all
geometric features from different viewpoints, 30 different rotation states were used. The x-

axis was rotated so as to point in 30 different directions as shown in Figure 4.5.

The parameters that affect that spacing and sizing of the subsection scanning is shown in
Figure 4.5. Windows lie on the image plane and are specified in pixel coordinates (see
Figure 2.4). The window spacing is the centre to centre distance between each window and

also determines how many windows are generated per given satellite pose. This value is
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specified such that approximately 50 to 75 windows are generated per pose state. The window
size determines the amount of satellite model coverage. This sizing is somewhat arbitrary.
The size is picked to be able to cover 20% of the availalbe model area. The resolution
establishes the number of points that will be generated per window. This parameter is set so
that when a window fully covers the satellite model, about 1200 points will be generated.
Point clouds with too few points tend to to cause higher ICP error while point clouds with a
very high number of points require longer computation time. The value of 1200 cloud points
was selected as a compromise between these two extremes. Windows having point cloud
counts of less than 100 were rejected. For each satellite model, 4 translation states along with
30 rotation states were combined to generate 120 pose states with each pose state having 50 to

75 point cloud windows.

. — .
o, VVindow Spacing

Figure 4.5 Window Scanning Parameters

4.4.2 ICP Registration

The outline of the ICP registration tests are shown in Figure 4.7. Each point cloud data file
generated in the previous section was processed using ICP. The noise free data was input and
corrupted in the manner as outlined in Chapter 3. An appropriate initial pose estimate was
generated and applied to bring the point cloud in close alignment to the satellite model (see
Section 4.3.3). The core ICP algorithm ran until convergence, or termination criteria was met.

The pose error was determined by using the method described in Section 4.3.2. Each point

51



RANGE IMAGE REGISTRATION

Rigs
-Spacify Window Spacing,
Window Size and Scanning

Determine Pose
Estimation E

A
Output Cloud Polnt Data to

Figure 4.6 Window Scanning Flowchart Figure 4.7 ICP Registration Flowchart
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cloud was processed 25 times using ICP with the results averaged.

4.5 Summary

ICP is a non-linear local search algorithm that will find the nearest local minimum of a mean-
squared distance metric. A good initial estimate helps to avoid these local minima and arrive
at the global minimum. Other factors affecting ICP convergence include the magnitude of
noise in the data and the geometric stability of input cloud point data. Tdoes not require any

derivative estimation or feature extraction

ICP was used in its basic form with the small modification of using the SVD method of [Arun
et al, 1987] to determine the rotation transformation at each iteration stage. An accurate
method of closest point matching was developed which utilized the triangular mesh structure
of the satellite models. The rotation and translation norms of the error transformation matrix

were used to measure the accuracy of the ICP registration results.
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Chapter 5

CONSTRAINT ANALYSIS

5.1 Introduction

The constraint analysis method outlined in this chapter is based on the work of [Simon, 1996].
A sensitivity measure called the Noise Amplification Index (NAI) will be introduced which
will be shown to be a good predictor of registration accuracy. There are many different
engineering concepts that share the underlying mathematical concepts of constraint analysis.
More specifically, there is a similarity between robot dexterity measures of sensitivity and
registration sensitivity. The robotic Jacobian relates the rate of change of the end effector
position to the rate of change of the joint variables. Similarly, a matrix will be derived that
relates the rate of change of a squared distance to the rate of change of the pose estimation
variables. Therefore, the scalar measures of sensitivity as used for robotics by [Nahvi &

Hollerbach, 1996] can be adapted for use in the context of registration accuracy.

There is another method of estimating pose uncertainty based on the work of [Stoddart et al,
1996]. However, the indicator that they used is embedded within the ICP algorithm and is
only available once registration has taken place. This method cannot be decoupled from the
ICP algorithm to provide a predictive method of registration accuracy. Hence, it was not used.
[Gelfand et al, 2003] formulated a stability measure similar to the constraint analysis method
used in this thesis (see Appendix B). However, they used this measure only to determine the

contribution of individual points to the overall solution stability.
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5.2 Sensitivity Vector

In order to derive the sensitivity vector that will be used for constraint analysis, the orthogonal
distance from a given point to a given model surface is required. If the implicit form of the
surface is available, the simplest method of obtaining this distance is to substitute the
coordinates of the point into the surface equation f(x, y,z) = 0 giving the algebraic distance
D = f(x,,z). This approach can work for simple surfaces, but does not return the exact
orthogonal distance when d4ealing with higher order surface equations. [Sampson, 1982]
showed that normalizing the algebraic distance with respect to the gradient at the surface point

better reflects the desired orthogonal distance.

Thus, the distance between a given point p = (x, y,z) and a surface denoted by the implicit

equation f(x, y,z) = 0 can be approximated as:

_ _Jx,y,2)
PO = ey 2 G-D

If f(x,y,z) = 0 is the exact equation of a plane, then Equation 5.1 becomes the exact

equation for the point to plane distance.

Consider a point p, that lines on the surface such that D(p,) = 0. A differential
transformation 7 applied to the point will cause a perturbation from the surface. The
transformation 7 is a function of the parameters (¢,, Ll Oy, O, ®,) where (©,, o, ®,) are
rotations and (1, £, 1) are the translations with respect to the X, Y and Z axes. The six vector

of transformation parameters is defined as:

T
t= [t_‘r 1,1, 0, 0, mz] (-2)

The corresponding homogeneous transformation matrix is:
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ca)xca)y —S0,c0_+cw xscoysm: S0 so. + ccoxsm},ccoz I

T = smxca)y co,cm, + smxs(oysm: —c0. S0+ swxs(oyco): ty 5.3)
=S, COSO, CO,cm. [,
0 0 0 1

where cw, = cos(w,), so, = sin(w,) and similarily for the y and z components. The
variation of the distance D as the point is perturbed is given by the gradient of D about

t=0"

T
2 6 0 0 o o 2]
=D(T “ 3 3 3
3 (T(py)) [atx o, or, dw, O, a(on (5.4)
t=0

Using the quotient rule to take the partial derivatives of:

AT(py))

VAT ¢-3)

D(T(py) =

with respect to each of the parameters of ¢ gives, after simplifying using f( T(p’))l 0" 0:
’ =

) _ 1 d

= (5.6)

Now the chain rule is used to find the partial derivatives with respect to /:

1 oT

a = e— .
E;D(T(ps)) - ||Vf(T(ps))]]6t,ps Vf(T(ps)) (5.7)

=0

The unit gradient at a given point on the surface is simply the surface normal at that point:

1. this indicates no rotation or translation thus the local gradient about t=0 represents a small transformation
change
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nps

VAT®y)

VAT@,_,

(5.8)

This simplification allows the final result to be independent of the implicit surface. The

rotations involved in the transformation are infinitesimal, thus the expansion of g—tT gives:
(=0
~ ~ (5.9)
0001 0000 0000
aT _ 10000 T _ 10001 or 0000
o, 10000 0ty 10000 o, 10001
0000 0000 0000
0000 (0010 0-100
or _[00-10 or 0000 oT 1000
Oto, 101 0 0 Otw, |_1000 Oto, 10 0 00
0000 (0 000 0000
The Jacobian of the transformation can now be expressed as:
10 0]
010
J 001 (5.10)
0 -z y
z 0 —x
-y x 0
Combining Equations (5.7), (5.8) and (5.10) gives:
aD T\ =J 5.11
=D(T(py) = Jn,, (510

This equation can be further simplified and expressed as:
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V _ a _ nm
(py) = ED(T(pS)) = (5.12)
psxn,

s

Equation (5.12) expresses the change in distance of a point on the surface subject to a small
change in position. This result does not depend on the implicit surface representation, but
rather on the location of the surface point and the corresponding normal at that point. Equation

5.12 can be further simplified by using Equation 5.2 to obtain:

dD(T(p,)) = V' (p,)dt (5.13)

Equation (5.13) represents the change between a point and a surface under the influence of a

small arbitrary transformation. By squaring this equation, the following results:

dDX(T(p)) = di" V(p )V (p)dt = di" M(p,)di (5.14)

where

T
Mpy) = Vp)V (py) (5.15)
is symmetric, positive semi-definite 6x6 matrix.

Notice the similarity between Equation 5.14 and Equation 4.2. Here lies the connection
between ICP and constraint analysis. Equation 5.14 is a local approximation of the ICP cost
function. The ICP cost function is summed over all of the point, so similarily Equation 5.15 is

summed over the set of surface points P giving:

Ex(T(p) = 3 dD(T(p,) = dtT[ T M(p,) Jdt = d" Y i (5.16)

pseP ps€P

where Ep is the sum of the squared distance errors between the surface and points P and ‘¥,

is the sum of the M(p,) matrices evaluated for each point. £, also represents a first order
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approximation of the ICP registration error. The matrix ¥, is a scatter matrix which

represents the distribution of V(p_) over all points P.

Performing principle component analysis on ¥, gives:

i [ ]
q,

T
A, 0 q,
T
As q3

Moo lag

= T _
¥p=0AQ = [‘11 92 93 94 95 ‘16] (5.17)

T
qs

T
K

where A > X, >A;> A, > As> A are the eigenvalues of W) and g; are the corresponding

unit eigenvectors. Thus Equation (5.16) can be expressed as:

0

Ex(T(p)) = 3 2(d"q)’ (5.18)

i=1
The largest eigenvalue A, represents the transformation that will result in the largest possible
change in E, from all possible transformations. This is also the underlying concept used by
the ICP algorithm. Finding this maximum transformation is the key step to minimizing the

ICP cost function (see Section 4.3).

The smallest eigenvalue A, represents the transformaiton of maximum freedom. This
transformation will return the smallest possible change in E . It is this eigenvalue that is most

problematic for the ICP registration process.

It will be shown that point clouds that have well conditioned ¥, matrices tend to result in

more accurate ICP registration results.
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5.3 Scale Dependence

Constraint analysis attempts to combine rotations and translation into a single representation
despite the different units of measure. However, the constraint analysis formulation as
described in the previous section is highly dependent upon the scale of the underlying surface

geometry. The scale dependency stems from the term p_x n, contained in Equation (5.12).

1
P
As shown in Equation 5.12, the displaced distance d induced by a rotation a. is dependent
upon the distance of the point p_ from the origin, which is the centre of rotation. Translations

do not suffer the effects of scale as shown in Figure 5.1.

A normalization is needed that will negate the effects of scale, and cqualize the cffects of
rotation and translation. Consider the situation when ||do = ||dt|. The desired result is
D, (p,) = D.(p,). This condition will be satisfied only when ||p || = 1 which implies that a

unit magnitude of translation or rotation will cause the same displacement.

Ps d'a(py)
Ps dn(ps) dOL(pS) * d'OL(ps)

Rotational Scale Dependence

o~

di(p,) = d't(py)

q

4

ps

Translational Scale Independence

Figure 5.1 Scale Effects on Rotation and Translation
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The normalization begins by first shifting the centroid of the point cloud to the origin in order
to be sure that scaling occurs about the centroid. A scaling factor is applied to all point cloud
coordinates such that the average distance between all points and the centroid is one. The

normalizing scale factor (NSF) is for n points is:

NSF = —"— (5.19)

2. I

This scaling factor is applied to a given point cloud prior to conducting constraint analysis in

order to equalize the contributions of rotation and translation.

5.3.1 Unstable Configurations

In this section the ability of constraint analysis to predict unstable shape configurations is
demonstrated. Figure 5.2 and Figure 5.3 show examples of shape configurations that are
unstable, except for the stable corner shape in Figure 5.3 which is included for comparison.
Any unstable shape will have a ‘¥, matrix which will have small eigenvalues, relative to the
largest eigenvalue A, with the corresponding eigenvectors indicating the direction of
instability present. This result is shown in Figure 5.2 and Figure 5.3. Where present, small
eigenvalues are highlighted with the direction of instability highlighted in the corresponding
eigenvector. All of the unstable eigenvalues should actually have values of zero, but a small
non-zero value is present due to discretization errors of the triangular mesh. Mesh structures
only approximate curved surfaces. Point locations and surface normals will deviate slightly

from the true values.

The problem of small eigenvalues can be shown by considering the fundamental problem
Ax = b. Introducing an error db into the measured quantities will result in a solution error of
dx. The perturbations caused by 85 can be determined with 46x = 8b. Any vector 8b is a
combination of the respective eigenvectors x, ..., x,, and the worst error is in the direction of

the eigenvector corresponding to the smallest eigenvalue A . Thus the error magnitude [|85|
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is amplified by the factor 1/A with the amplification being the greatest when A is close to
zero [Strang, 1976]. Thus small eigenvalues are an indication of unstable configurations that
will result in amplified pose estimation errors. Appendix B presents a formulation of the

covariance matrix such that this arguement using the Ax = b format is justified.

5.4 Measure of Stability

With the ‘¥, matrix now defined for a point cloud, a measurement of stable matrix
conditioning needs to be established. Principal component analysis returns the eigenvectors
q; along with the corresponding eigenvalues such that AM>hy>A3> A > s> A, A six

vector p along with the equation:

pT‘I’pp =1 (5.20)

defines a 6D error hyperellipsoid as shown in Figure 5.4 where the principal axes are
eigenvectors of W, lengths are inverse square roots of the respective cigenvalues [Simon,
1996]. The lengths of each axes is a measure of the constraint uncertainty in that direction
where a longer axis indicates a greater uncertainty. The two main geometric features that are

needed to improve registration accuracy are :

8. The length of the largest hyperellipsoid axis needs to be as small as possible
requiring a larger minimum eigenvalue.

9. A smaller hyperellipsoid eccentricy.
The combination of these conditions make the error hyperellipsoid as spherical as possible
while minimizing its volume. This indicates that instability increases as the hyperellipsoid

major axis length and volume increase.

[Nahvi & Hollerbach, 1996] examined different measures of matrix stability and present a
new scalar measure of matrix conditioning called the noise amplification index. Larger values

of these measures of matrix conditioning (see Table 5.1) indicate a more stable point cloud

configuration leading to reduced registration error.
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N Eigenvectors
i ; .
Translation Rotation
5.28 0.00 0.00 0.00 0.00 0.00 1.00
677.81 0.05 0.58 0.00 | -0.81 | 0.07 0.00
677.81 0.58 | -0.05 | 0.00 0.07 0.81 0.00
884.43 0.00 0.00 1.00 0.00 0.00 0.00
e 2039.80 | 0.10 | 0.81 | 0.00 | 0.58 | -0.07 | 0.00
Unconstrained: Z Rotation
2039.80 0.81 -0.10 | 0.00 | -0.07 | -0.58 | 0.00
Eigenvectors
7»1-
Translation Rotation
0 1.00 0.00 0.00 0.00 0.00 0.00
0 0.00 1.00 0.00 0.00 0.00 0.00
z 0 0.00 0.00 0.00 0.00 { 0.00 1.00
vy
l&x 714.64 0.00 0.00 0.00 | -0.71 0.71 0.00
Unconstrained: X & Y TranslationS, 720.20 0.00 0.00 0.00 -0.71 -0.71 0.00
Z Rotation
1536.00 0.00 0.00 1.00 0.00 0.00 0.00
Eigenvectors
}“i
Translation Rotation
0 1.00 0.00 0.00 0.00 0.00 0.00
248 0.00 | 0.20 | 0.00 | -0.97 | 0.00 | 0.00
512.2 0.00 0.00 0.00 0.00 0.00 1.00
512.2 0.00 0.00 0.00 0.00 1.00 0.00
Unconstrained: X Translation, 1620 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00
X Rotation
1688.8 0.00 | 0.97 0.00 0.20 0.00 | 0.00

Figure 5.2 Constraint Analysis Shape Configurations 1

64




MEASURE OF STABILITY

Eigenvectors

Translation Rotation

0.00 0.00 [ 0.00 [ 0.00 | 0.00 | 1.00 [ 0.00

0.00 0.00 | 0.00 [ 0.00 [ 1.00 | 0.00 | 0.00

0.00 0.00 | 0.00 | 0.00 { 0.00 | 0.00 | 1.00

4050.1 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00

40950 | -1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
Unconstrained: XYZ Rotations 7964.1 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00
Eigenvectors
)\'i
Translation Rotation

0.00 1.00 | 0.00 [ 0.00 | 0.00 | 0.00 | 0.00

421.59 0.00 { 0.00 | 0.00 [ 0.00 | 0.00 | 1.00

641.81 0.00 | -0.12 | 0.00 | -0.99 | 0.00 | 0.00

k‘; 1281.10 | 0.00 | 0.00 | 0.00 | 0.00 | 100 | 0.00

Unconstrained: X Translation 1533.50 | 0.00 | 0.99 | 0.00 | 0.00 | -0.12 | 0.00

4622.70 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00

Eigenvectors

A,

l

Translation Rotation

225.89 045 | -0.48 | 0.00 [ 0.01 | 0.01 | 0.75

779.54 -0.26 | -0.23 | 037 | 0.51 | -0.69 | 0.01

1624.70 | -0.62 | -0.67 | -0.19 | 0.01 | 0.36 | -0.74

1744.60 | -0.37 | 0.07 | -0.07 | -0.74 | -0.46 | 0.29

z
Y
X

FULLY CONSTRAINED

2721.30 0.45 | -0.51 | 0.00 | -0.34 | -0.27 | 0.59

3526.30 | -0.05 | -0.03 | 0.91 | -0.26 | 0.31 | 0.00

Figure 5.3 Constraint Analysis Shape Configurations 2
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Figure 5.4 Uncertainty Hyperellipsoid

TABLE 5.1 Scalar Measures of Matrix Stability

Name Equation

Geometric Mean 6«/7“1 Ay Az-hgchsAg (5.21)

A
Inverse Condition Number J;ﬁ (5.22)
1

Minimum Eigenvalue Ag (5:23)

Noise Amplification Index (5.24)

FIl

5.4.1 Unfit Conditioning Measures

This measure of matrix conditioning was proposed by [Borm & Mengq, 1991] and is related to
the hyperellipsoid volume. The goal is to make the volume of the error hyperellipsoid as small
as possible thereby reducing the effect that a noisy input point cloud will have on the pose
estimation parameters. However, this measure does not take into account the eccentricity of
the hyperellipsoid. It is possible for a hyperellipsoid to have a small volume, but still have a
large major axis. Therefore this measure is not a good indication of point cloud stability for

registration purposes.
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This measure is the standard matrix conditioning number, but inverted so as to coincide with
the other matrix conditioning measures that are to be maximized. The inverse condition
number is a good indicator of eccentricity since a decrease in this value leads to a
hyperellipsoid that is more spherical. However, this measure does not take into account the

volume of the hyperellipsoid and is deemed an inappropriate measure of stability.

The effect of the minimum eigenvalue, as shown in Figure 5.2 and Figure 5.3, leads to the
requirement of a larger minimum eigenvalue. However, this measure does not take into

account the effects of the hyperellipsoid volume and eccentricity.

5.4.2 Noise Amplification Index

The noise amplification index was proposed by [Nahvi & Hollerback, 1991] in order to
remedy the deficiencies of the previous conditioning measures. [Simon, 1996] supported this

condition measure and begins his supporting presentation by restructuring Equation (5.16):

Ef(T(py)) = Y dD*(T(py)) = |ADI* = di"¥ (5.25)
pseP

where AD as a vector associated with residuals of each point. The relative pose error is

represented by the vector At . This leads to the following relationship [Strang, 1976]:

l1AD]
Jhe < Tal < JA (5.26)

which can be rearranged to become:

D] = /Aglad (5.27)

This states that as the minimum eigenvalue A, increases, |AD| more accurately reflects the

registration residuals. A more accurate |AD|| vector will result in greater registration

accuracy.
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Next, consider the noise associated with the residuals AD represented by §Ad which in turn
will result in an error 8At in the registration pose components. With these parameters, the

following inequality holds [Strang, 1976]:

I8ad _ MISAD]

< [21 5.28
ladl = |7, Tad] -28)

Therefore, to minimize the errors of the estimated pose parameters ||5Af||, the condition
number A,/A¢ should be made as small as possible. Geometrically speaking, this ratio is a
measure of the eccentricity of the hyperellipsoid where a smaller condition number reduces
the eccentricity of the hyperellipse making it closer to a hypersphere. For accurate
registration, the effect that noisy residuals 8Ad will have on the pose parameter errors At
needs to be minimized. However, minimizing the condition number will only lead to a
reduced relative error At/ At as opposed to the desired reduced absolute registration error

dAt/8Ad. This concern can be rectified by combining Equations (5.27) and (5.28) to give:

1oad _ P lisad]

< [—=4=L (5.29)
IAdl = Nag, agladl
which can be simplified to:
A —“/E (5.30)
I8Ad] ~ Aq
[Nahvi & Hollerbach, 1996] defined the noise amplification index (NAI) to be:
_ 6
NAI = —= (5.31)

It can be understood why this index was coined as the noise amplification index since the NAI

represents the maximum amplification between noise in the residuals and registration
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parameters. Geometrically, a larger NAI forces the minimum cigenvalue to a larger value

while also reducing the hyperellipsoid eccentricity.

Therefore the NAI was deemed an acceptable measure of ¥p matrix conditioning and was
used as in indicator of registration accuracy in this thesis. More specifically, the ideal noise
amplification index was used. Equation (5.12) shows the dependency of the NAI on the
normal of associated with each point. These normals were generated along with the surface
points during the raytracing process. The calculation of normals from a point cloud was
attempted using the method of [Mitra & Nguyen, 2003], however the calculated normals
resulted in highly inaccurate values of NAL Point cloud normals are differential quantitics and
magnifies the effects of error in the xyz point cloud coordinates. Hence, the ideal NAI value

was used for comparative purposes.

5.5 Ideal NAI and Registration

To demonstrate the relationship between the ideal noise amplification index and ICP
registration, a simple test model was generated from which 1080 scans were generated.
Figure 5.5 shows two views of the test model used with a sample scanning area indicated.
Each of the 1080 point clouds were given a random initial posc estimate according to
Figure 4.3.3, and corrupted with Gaussian noise of zero mean and standard deviation of §mm.

The averaged results of 25 ICP trials for each point cloud is shown in Figure 5.6.

Giving each point cloud a different initial guess is an extreme test of the utility of the noise
amplification index since the accuracy of ICP is dependant upon the quality of the initial pose
estimate. Even with this harsh scenario, Figure 5.6 shows that the rotation and translation
error returned from the ICP trials decreases with increasing NAI. There are a few points not
shown on the graphs which have near zero NAI values, but extremely high errors. This
observation confirms that low NAI values correspond to highly unstable point cloud

configurations that lead to amplified pose estimation error.
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Figure 5.5 Test Model

Rotation Error vs NAI
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Figure 5.6 Reduced Rotation & Translation Error with Increased NAI
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5.6 Summary

The derivation of Point-to-Plane ICP [Chen & Medioni, 1992] is shown in Appendix B. This
formulation leads to the same covariance matrix as was obtained in this chapter using

constraint analysis.

The constraint analysis formulation presented here makes use of a local approximation of the
cost function which is only valid in the vicinity of the global minimum. There is no
relationship between registration error and NAI values when ICP converges to a local
minimum. Constraint analysis does not provide a means of determining the absolute
registration error. However, the utility of constraint analysis is the ability to determine the

relative registration error from different point cloud configurations [Simon, 1996].
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Chapter 6

RESULTS & CONCLUSIONS

6.1 Ideal Region

Section 5.5 showed how rotation and translation error diminish with increasing NAI values.
From this result, the ideal scanning area is defined as the region that has the highest NAI
value. The advantage of the NAI value is that it decouples registration accuracy from the ICP
algorithm and provides a tool that can be used to determine how suitable a point cloud

configuration is for registration.

This result is demonstrated experimentally with 100 registration tests on the Radarsat, Deep
Space 1, Stardust and Shuttle models. Figure 6.1 through Figure 6.4 show sample indicative
registration results from these tests. The graphs show the ICP registration accuracy of
different subregions on the satellites. As expected, the region with the highest NAI valuc
returns the most accurate pose estimate. Granted that the highest NAI value does not always
return the most accurate pose estimate as seen by Figure 6.2. However, the trend of decreasing
registration error with increasing NAI is evident. It is certainly clear that the constraint
singularities that occur for point cloud configurations with low NAI values are to be avoided.
The quality of the alignment returned by the ICP algorithm is directly related to the stability of
the input point clouds. Data scanned from geometrically unstable regions will cause slower

convergence, higher registration error or even total divergence.
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Rotation Error vs NAI

0.02(
E o
S 0015f
z
[
o
me 001k o
c & ° 4
g 0005F s, o %o o
m o o o
¢ o‘)"o"m° ° 0% o 50 o ° o
0 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7
NAI
Translation Error vs NAI
0.06
E 0.05F °©
2 : o0
‘g- 0.04p .
Y e 003}, °
S °
T oo o o
[72] ° o
§ o001 ® o o o 0
= o
l': 0000%90 ° o o
° v ° s o
0 1 1 1 L po ° 1 1°
0 1 2 3 4 5 6 7
NAI

Orientation ( -146.3, 25.7, -163.9, 0, 0, -31.5) winSize 36, winSpacing 17, winRes 1.2
Figure 6.1 Radarsat Optimal Scanning Location Sample Result

74



IDEAL REGION

Rotation Error Norm
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Rotation Error vs NAI
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Figure 6.2 Deep Space 1 Optimal Scanning Location Sample Result
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Figure 6.3 Stardust Optimal Scanning Location Sample Result
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6.2 Improved ICP Performance

The performance derived from the ICP algorithm is directly related to the quality of the input
point cloud data. It has been shown in Section 5.5 that using geometrically stable point cloud
configurations yields higher accuracy in the pose estimate. Since ICP responds favourably to
these stable configurations, it would be expected that a higher rate of convergence would also
be realized. To demonstrate this effect, 4 point cloud configurations having different NAI
values were extracted from the Radarsat model. Table 6.1 shows the results of performing
100 ICP trials each on of these data sets with focus on the number of iterations required for

convergence.

TABLE 6.1 Impact of NAI on number of ICP Iterations Required for Convergence

Set Point Count| NAI Mean Std
Cl 1210 5.24 45.96 3.53
C2 1288 2.62 78.28 10.20
C3 1151 1.05 179.58 22.16
C4 898 0.15 216.72 37.60

6.3 NAI Implementation

6.3.1 Predictive Scanner

Using the raytracing methods of Chapter2 and the constraint analysis formulation of
Chapter 5, a program was developed that determines and shows the optimal scanning area. In
a real-time ICP tracker, the pose of the target satellite can be estimated at a rate of 2Hz using a
point cloud of 1000 [Jasiobedzki et al, 2002]. The pose estimate of the satellite position can be

used to determine the optimal scanning location for use in the next time step.

For a given pose, a full point cloud scan of the model is generated. This data is then
subdivided into window regions by using a kd tree structure to segment the point cloud. The
NAI value is calculated for each window and the region with the highest NAI value is deemed

the optimal scanning area. The purpose of developing the voxel raytracer in Section 2.5 was to
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1404 Points 1010 Points
2.51 NAI 2.20 NAI
0.2309s 0.2008s
2.93 Full NAI 1.69 Full NAI
1034 Points 1157 Points
2.84 NAI 2.94 NAI
0.2845s 0.3372s
1.67 Full NAI 3.79 Full NAI

Figure 6.5 NAI Predictive Scanner Output

make this method fast enough for possible real-time applications. Figure 6.5 shows four
orientations of the Radarsat satellite with the optimal scanning area, the NAI value and the
run time. The NAI value of the entire point cloud is also included since there are situations
where the full point cloud will have a higher NAI value than the best subregion. With further
optimization, this program can be made to run even faster and integrated into a real-time ICP
satellite tracker. Figure 6.6 shows a block diagram for implementing an intelligent NAI

regional region selection method with a LIDAR scanner.

To
Gudaree, Navigation

Pose and Cererol
Estimate

Scanning

— ; Lecaran
Initial o
Estimate

Figure 6.6 Predictive Scanner Implementation
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6.3.2 Look Up Tables

An alternate, and probably more realistic, method of designating the optimal scanning area is
to generate off-line lookup tables which define the optimal scanning location for a given
orientation. This option is derived from an observation that is shown in Figure 6.7. As the
window size is increased, the centre point of the window does not shift significantly. The
average location of the centre point can be designated as the optimal scanning location for a
range of window sizes. The translational component of the satellite position can be used to
determine a reasonable window size. The look up table would contain a set of rotation states

with an xyz coordinate that indicates the centre point of the scanning region.

Figure 6.7 Varying Optimal Window Size

6.4 Conclusions

Constraint analysis provides a means of detecting and avoiding geometrically unstable
regions. The contribution of small eigenvalues in the covariance matrix ¥'p from these rather
featureless areas can amplify the noise present in the data coordinates to return highly
inaccurate pose estimates. The goal of determining an ideal scanning area for ICP based

registration was realized with the introduction of the noise amplification index as a measure of
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point cloud stability. It was demonstrated that point cloud configurations with higher values of
NAI returned more accurate pose estimates than those configurations with lower NAI values.
With this result, the NAI was put to use as a predictor of the optimal scanning area on a given

satellite.

Incorporating the NAI registration predictor into a LIDAR based satellite tracking system will
significantly enhance its performance and reduce error due to instabilities. The goal of
developing an autonomous repair satellite capable of tracking, docking with and repairing

imaired satellites can only be realized with a precise pose estimate of the target satellite.

6.5 Future Work

Synthetic data is useful only up to a certain point. To fully test a method’s peformance and
limits of operation, experimental testing in a realistic environment is needed. While
numerically the methods outlined in this thesis will increase ICP performance, other

mitigating factors may negate or perhaps amplify this performance effect.
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Appendix A

RAYTRACE ALGORITHM COMPARISON
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Figure A.1 Radarsat Raytrace Algorithm Comparison

87

3

3s
x10'
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Deep Space 1 - Time vs Intersection
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Figure A.3 Shuttle Raytrace Algorithm Comparison
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Appendix B

POINT TO PLANE DERIVATION

This method of registration is based on the work of [Chen & Medioni, 1992]. The constraint

analysis formulation was put forth by [Gelfand et al, 2003].

The formulation of the cost function of this method is different than that for the Point-to-Point
ICP version as it esplicitly uses point cloud normals in the cost function. The point
correspondences are built using a graphical method as shown in Figure B.1. Starting from the
cloud point p, the normal 7 is followed until it intersects the model at point 7. The tangent
line at point 7 is determined. The point § is found such that it is perpendicular to the tangent

line and passes through the point p.

Figure B.1 Point to Plane Correspondence

The cost function that will be minized for this formulation is:
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APPENDIX B

n
E= Y (Rp+T-q) 1) (B.1)

i=1
The rotation marix for this method is expressed using Euler angles (o,, ©,, ®_) to represent
rotations about the x, y and z axes respectively. The rotation matrix is non-linear since it
utilizes the sines and cosines of the rotation angles. If the rotations are incrementally small, it
is possible to linearize the rotation matrix by using the approximations cos@~1 and

sin@ =~ 0. The rotation matrix can be expressed as:
R=|o 1 -o (B.2)

which allows the cost function to be simplified to:

n

E=|S(G=ap - m+ T h+rrxi), P =lo,0,0.] (B.3)
1

The required transformation is found by taking partial derivatives of Equation (B.3) with

respect to the transformation parameters. The result is a linear system of equations of the form

Ax = b where x is the 6x1 vector of transformation parameters [‘Dx ®, 0, 11, t_]

A is a 6x6 covariance matrix given by

, ;7\ ’_IA (ny) W, xny)
A=vv = oo (6.1)
pl X’11 e pnxnn T

) @)
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Appendix C

EIGENVALUE CONSTRAINT DERIVATIONS

Consider a postive definite mxm matrix 4 and the standard linear equation AX = b.

Expanding matrix 4 using eigen value decomposition gives:
T
OAQ'2 =} (C.1)

where the matrix Q contains the eigenvectors and the matrix A contains the eigenvalues. The

solution vector X can be expanded to give:
OAQ'3 = (C2)

The maximum and minimum values of "l;” occur when X points in the direction of the largest
and smallest eigenvalues respectively. When this happens, QAQrfcllkll returns a vector whose
magnitude is equal to the eigenvalue associated with the given direction. If the smallest

eigenvalue is represented by A, while the largest eivenvalue is A, , the following equations:

b b
hg = H = H (C3)

can be collapsed into the following inequality:

1]
Ag < xS A (C.4)

since the largest and smallest eigenvalues represents upper and lower bounds on "5"/ 21l
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Once again, consider a positive definite mxm matrix 4 and the standard linear equation
A% = b but also include the error 45x = §b. The goal is now to compare the relative error
of the input parameters "8_\b||/ ||B|| with the induced relative error of the solution "S—)\c"/ %]l .
The worst case is when a small error in the input parameters cause a large error in the solution.

This happens when the numerator ||8_)\c|| is large while the denominator ||%] is small.

Simlar to the previous derivation, the standard linear equation and the error equation can be

written as:

QAQxIR] = b oAQsx|5x] = §b (C.5)

[2] has the smallest value when % points in the direction of the largest eigenvalue giving:

1 = L2

> }‘—1 (C.6)

||6_;c" has the largest value when 8x points in the direction of the smallest eigenvalue giving:

I3 < 182 ©
6
Combining these two results yields:
I8x] _ *4 58]
ol < B2l C.8
= o .

where the quantity ¢ = A;/A¢ is the condition number of matrix 4 .
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