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Abstract

A spatial model for the spread of influenza within the human
respiratory tract

Nada P. Younis

Master of Science, Biomedical Physics

Ryerson University, 2012

Several mathematical models with varying degrees of complexity are dedicated to charac-

terizing influenza virus infection kinetics. The majority of existing mathematical models

of in-host kinetics are based on ordinary differential equations (ODEs) and do not in-

corporate viral transport modes. In this work, a spatial model was developed in order

to explore, for the first time, the effect of viral transport modes in-vivo: diffusion and

advection. Cellular regeneration and a simplified immune response were also included in

this model. Although severe and chronic infections sometimes occur in humans, most of

the existing models can only reproduce seasonal infections. This new model has success-

fully reproduced observed infection profiles within realistic biological parameters. The

changes in parameters required to shift the infection kinetics from a seasonal to a chronic

infection, for example, is consistent with the factors believed to be responsible for the

establishment of such infections.
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Chapter 1

Introduction

Influenza is an infectious disease that affects between 3–5 million people annually caus-

ing 250,000–500,000 deaths [83]. Due to the financial burden on the workforce and

health care system caused by seasonal infections, studying and understanding influenza

virus kinetics in humans is very important for proper treatment planning and pandemic

preparedness.

While experimental studies are key for the proper understanding of influenza, even

more information can be extracted from them when aided by quantitative models. Math-

ematical and computational modelling was previously used in characterizing other infec-

tious viruses. With the aid of mathematical models, subtype differences and treatment

efficacy were determined for hepatitis C virus (HCV) [20,55,56]; virion half life, produc-

tion rate, infectious cell lifespan, and treatment kinetics were estimated for the human

immunodeficiency virus (HIV) as well as for the influenza A virus [2, 12, 22, 35, 59, 60].

Thus, mathematical modelling has proved to be successful in quantifying the parameters

governing infection and in improving our understanding of infectious disease kinetics.

Increasing interest in using these tools to complement experimental data on influenza

led to the development of numerous mathematical and computational models. The

mathematical models of influenza are mainly based on ordinary or delay differential

equations (ODEs) that describe the temporal evolution of infection [2, 12, 21, 30, 31, 47,

53,67] with implicit well-mixed system assumptions, this means in the case of infectious

disease kinetics that the various cell populations and virus are uniformly distributed

over space [6]. For example, the study of cell tropism, i.e. certain host cell types being

selectively subject to infection by a certain viral strain, by Dobrovolny et al. assumes

that both cell types are equally accessible to virus [21], whereas known histology suggests

a variation in cell type distribution, size, density, and tropism in the different parts of
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CHAPTER 1. INTRODUCTION

the respiratory tract [16,52,57,69,73,77,85].

Another approach is to use agent-based models which treat the dynamics of each

cell individually [7, 8, 75]. However, these models are computationally intensive and

complicated, as they include a large number of interacting components and mechanisms,

which hampers the interpretation of simulation results [4,9]. More recently, attempts at

using partial differential equations (PDEs) to study infection kinetics have started. For

example, Holder et al. studied influenza kinetics in a two-dimensional cell culture and

provided insights into spatial and temporal evolution of infection dynamics and assessed

the in vitro fitness of a viral strain by estimating its viral production rate, duration

between infection and viral production and time required by freshly produced virions to

infect susceptible cells [38].

1.1 Infection milieu

The respiratory tract is made up of three regions: the extra thoracic region made up

of the nasal passage, larynx and pharynx; the tracheobronchial region made up of the

trachea, bronchi, bronchioles and terminal bronchioles; the alveolar region made up of

respiratory bronchioles and alveolar ducts and sacs surrounded by alveoli. The alveolar

region is responsible for the respiratory gas exchanges at the level of individual alveoli,

whereas the other two regions are conducting regions only. The trachea is a cylindrical

tube referred to as the first generation. Its bifurcation into the main bronchi forms the

second generation which further bifurcate into the third generation and so on till the

25th generation at the alveoli [36].

The respiratory epithelium consists of more than 40 different cell types classified

into 4 main types: ciliated cells, non-ciliated cells, Clara cells and basal cells. They

are distributed in a monolayer, called the epithelium, everywhere except in the trachea

[62]. Several studies have shown that the cells susceptible to influenza infection are the

ciliated and non-ciliated cells with varying degrees of susceptibility depending on the

origin of the viral strain [49, 50, 57, 77, 85]. The involvement of two different cell types

in infection dynamics is a possible contributor to infection severity by some strains [21].

Influenza virus exists in many strains that can infect different animal species besides

humans, and each strain is adapted to its host species. Infections due to human-adapted

strains are known to cause pathology predominantly, but not exclusively, localized in the

upper part of the respiratory tract (trachea and bronchi), whereas avian-adapted strains

predominantly, but not exclusively, cause pathology in the lower respiratory tract (bron-

chioles and alveoli), particularly in the alveolar region [46]. It is not clear weather the

2



CHAPTER 1. INTRODUCTION
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Figure 1.1: Infection milieu of within-host influenza infection. The four main cell
type classes are Clara, basal, ciliated and non-ciliated cells. The cells are covered by a
thin layer of PCF, virus present in this layer can infect epithelial cells while it diffuses
uniformly and moves upwards driven by the mucosal escalator. Figure modified from [5].

selective prevalence of influenza strains in different parts of the respiratory tract is due

to cell tropism or due to the depth of deposition of these two types of virus. Typi-

cally, human influenza is transmitted from coughed droplets from an infected individual,

whereas avian influenza is transmitted from infected birds. This may affect the depth of

deposition.

The epithelium is covered by a layer of fluid called the periciliary fluid (PCF) whose

height is about 6 µm followed by a mucus layer whose height is approximately 25 µm.

Fig. 1.1 shows the epithelial monolayer of cells covered by layers of periciliary fluid and

mucus. The mucus layer moves upwards driven by ciliary propulsions at a speed that

ranges between 13–213 µm · s−1 [11, 51, 82, 86]. It serves as a protection against foreign

pathogens by trapping and transporting them outside the respiratory tract. Mucus

binds influenza virions via sialic acid receptors [3]. Due to cilia propulsion and mixing

between the mucus and PCF layers the latter was found to be driven upwards by the

mucus at an equal speed [51,70]. This means that any virus particles found in the PCF

will be transported upwards and away from the lower parts of the respiratory tract.

Additionally, virions diffuse within the PCF.

Resting epithelium is characterized by a slow turnover rate. However, in case of injury

to the tracheal and bronchial epithelium, such as a viral infection or bacterial infection,

exposure to an oxidizing agent, or mechanical damage, a common, rigorous and complex,

regeneration process is triggered within 0–1 day post injury [15,80]. Differentiated cells

such as ciliated cells do not divide directly. Instead, they first de-differentiate, then

spread to cover the wound and replicate. Basal cells also migrate to the site of injury,
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CHAPTER 1. INTRODUCTION

divide and differentiate into the different cell types until the epithelium is restored to

its initial, uninjured, state. In a study involving healthy humans, regions 0.8–2 cm in

diameter, located in the second and third generation bronchi were denuded by brushing.

As determined by bronchoscopy and study with real time polymerase chain reaction

detecting and quantifying gene expression, the epithelium was restored into a very similar

state to its resting condition approximately by 14 days post-injury [18, 34]. Clara cells

are believed to be among the progenitor cells in the bronchi, and alveolar type II cells are

precursors for alveolar cells of type I and II. The full picture of epithelial regeneration

and progenitor-progeny relationships is a subject of current scientific investigation [78].

1.2 Infection dynamics

Infection is initiated by virions that cross the mucus barrier and proceed to infect suscep-

tible cells in the respiratory tract. Virions are absorbed into the cells through endocytosis

approximately 20 min post-infection after they attach to cell receptors through their sur-

face proteins called hemagglutinins [62]. Viral genetic material is unpacked inside the

cell and transported to the cell nucleus. The virus takes control over the cell’s replication

machinery to make copies of the viral genome and to produce viral proteins. The viral

proteins, along with the virus’ genetic material, are assembled within the cell and then

released outside the cell by a process called “apical budding”, and the cell surface bears

viral proteins and forms newly released virions’ membrane. A schematic illustration of

viral replication cycle is shown in Fig. 1.2. The delay between virus entry into the cell

and viral release to infect other cells is called the eclipse phase, and is estimated to be

about 6 h [2]. The infectious cell will continue to produce virions until it dies when its

membrane is consumed or gets killed by the host immune response after 12–24 h [2,12].

For uncomplicated influenza infection, viral titer grows rapidly and peaks 2–3 days

post-infection (dpi), and is cleared 6–8 dpi [2, 12, 62, 84]. Cell death accompanies the

infection, and at the peak of infection 30–50% of these cells are destroyed. Clinical

symptoms are typically observed once approximately 10% of the epithelium in the upper

airways has been desquamated [12].

Clinical symptoms of influenza are caused by cell death as well as the immune re-

sponse. They include a sudden onset of high fever, headache, muscle and joint pain, dry

cough, severe malaise (feeling unwell), sore throat and runny nose [83]. Symptoms usu-

ally manifest themselves starting from 1–2 dpi for human-derived strains and disappear

around 5-6 dpi [26,33] without any medical intervention in most cases [83].

Sometimes, in the case where the host encounters a pandemic strain with increased
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CHAPTER 1. INTRODUCTION

Figure 1.2: Influenza viral replication cycle.. The virus invades the cell through its
hemagglutinin, once inside it unpacks its viral genome which is then transported into
the nucleus. Copies of the viral genome are made and translated into viral proteins
which, once assembled into virions, are released outside the cell by apical budding. Viral
proteins are now expressed on the cells surface. Figure from the Wikimedia artwork
called “Virus Replication large.svg” modified by Dr. Catherine Beauchemin.
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Figure 1.3: The three types of influenza infections. Left panel shows viral titers
characteristic of acute seasonal and severe infections adapted on a time scale up to 10
days post infection, figure is a courtesy from Dr. Hana Dobrovolny. The right panel
shows the profile for a chronic infection on a time scale up to 100 days post infection
adapted from [65].

severity, infection may be accompanied by high viral loads, and lasts longer until the

host’s immune response effectively clears the pathogen. An immunocompromised pa-

tient, however may be unable to clear the infection without treatment. The resulting

infection is characterized by a high and sustained viral titer1 that can last up to months.

The general picture for the viral kinetics over the course of these three types of infection

observed in patients are shown in Fig. 1.3.

The immune response against influenza virus plays an important role in shaping the

infection. In most cases of infection with a human adapted influenza, immune response

resolves the infection into an uncomplicated, seasonal, form within around one week

of infection. In case of more severe strains, for example an avian influenza, infection

resolution may require additional time and infection could be characterized by significant

viral loads. In the absence of immunity, a chronic infection characterized by a sustained

viral load is observed that is not terminated unless effective treatment is implemented.

Hence, the immune response should be necessarily included in an influenza model in

order to be capable of reproducing the full spectrum of infection profiles observed in

patients.

1Viral titer is an experimental measure of the concentration of virus in a sample.
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1.3 Immune response induced against influenza infections

The immune system is responsible for defense against foreign agents such as viruses.

Foreign antigens are recognized as harmful agents by the immune system. In order to

eliminate foreign pathogens and prevent them from colonizing host cells, the immune

system recruits a wide range of cellular and molecular agents. The immune response

acts on two time scales; the innate immunity, which is the first to step, is followed by

a slower adaptive immune response. A thorough overview of both components of the

immune response is provided in [28].

1.3.1 Innate immunity

The innate immunity is not antigen-specific and does not require previous acquaintance

with the antigen. It consists of cells such as monocytes, phagocytes, macrophages, and

dendritic cells. These cells communicate with other immune cells through molecules

known as cytokines. Cytokines act as messengers between different immune and host

cells involved in the infection. An antigen stimulates cytokine secreting cells to release

cytokines. These cytokines are captured by cytokine receptors on their target cells.

These target cells in turn respond to cytokines resulting in biological effects, such as an

up-regulation or down-regulation of specific genes, or an increase in the number of their

receptors for other molecules.

Cytokines encompass a large number of different molecules such as interleukins, tu-

mor necrosis factor–α, transforming growth factor β, and interferons. Interferons are

known to induce an antiviral state in cells and down regulate viral production by in-

fected cells. They consist of two main types: interferon type I consist of interferon–α

which are produced by macrophages, and interferon–β by fibroblasts. Interferon type I

acts by inducing an antiviral state in most nucleated cells and activating natural killer

cells. Interferon type II mainly consists of interferon–γ, which is secreted by T helper

cells, T killer cells and natural killer cells. Type II interferon activates macrophages.

Both types of interferon increase antigen expression.

The innate immune response is known to play an important role in reducing viral titer

early during the infection. Several studies have measured interferon (IFN) concentration

during experimental influenza infections. Sample IFN titers, as well as a sample viral

titer in the presence and absence of IFN, are shown in Fig. 1.4. Since a lot is known

about their properties and behavior, several modelling studies chose interferon as a

representative of the entire immune response [2, 67]. IFN is chosen to represent innate

immunity in this project.
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Figure 1.4: Sample interferon time courses in humans and animals and their
effect on viral titer in mice. The left hand panel shows interferon (IFN) titers as
extracted from published studies by Hoshino et al., 2008 and Iwasaki et al., 1977 whose
experiments were conducted in mice [39,41], by Fritz et al., 1999 in humans [26] and by
Saenz et al., 2010 in horse [67]. All data peaks are scaled to 1. The right hand panel shows
viral titer for immunocompetent mice with IFN (solid lines) and immunocompromised
mice in whom IFN was suppressed (dashed lines). This figure is a courtesy of Dr. Hana
Dobrovolny.

1.3.2 Adaptive immunity

Activated by the presence of an antigen and by the innate immune response, the adaptive

immune response steps in to help clear the intruder. This type of immune response is

antigen-specific. It has the ability to recognize new antigens, stimulate an effective

elimination mechanism, and retain memory of the intruder. Hence, it can elicit a faster

and stronger response upon subsequent encounters with an antigen.

The adaptive immune response has two main components; the humoral adaptive

response which is mainly mediated by antibodies secreted by plasma cells, and the cell-

mediated response which is mainly mediated by helper and cytotoxic T cells and natural

killer cells. Helper T cells activate B cells to differentiate into plasma, antibody secreting

cells, whereas cytotoxic T cells induce death in cells presenting foreign antigens. B

cells and T cells, once activated, proliferate and differentiate into effector cells actively

involved in clearing the pathogen. Some of these cells become long-lived memory cells.

Thus, a primary encounter with an antigen leads to immunization against this particular

antigen.

Antibodies can be cell-bound or free immunoglobulins (Ig). Based on differences in

their structure, antibodies can be classified into the isotypes: IgG, IgM, IgA, IgE and

IgD. IgG is the most abundant class of antibodies in serum. IgMs are produced in serum

8
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Figure 1.5: Sample antibody time courses in mice and their effect on viral
titer in mice. The left hand panel shows antibodies’ (Abs) titers as extracted from
published studies by Miao et al., 2010, and Iwasaki et al., 1977, whose experiments were
conducted in mice [41, 53]. The peak of antibody measurements are scaled to 1. The
right hand panel shows viral titer for immunocompetent mice with Abs (solid lines) and
immunocompromised mice in whom Abs were suppressed (dashed lines). This figure is
a courtesy of Dr. Hana Dobrovolny.

before sufficient amount of IgG is produced. IgA is the main antibody class present in

mucosal areas. IgG, IgM and IgA are the main antibody classes found in the lung [42].

Between the humoral- and cell-mediated immunity, the former appears to have the

most pronounced impact in limiting an influenza infection. A previous model of influenza

infections in mice by Miao et al. showed that IgG antibodies had the most relevant effect

in suppressing the influenza infection compared to a very limited effect of for cytotoxic

T cells [53]. Antibody (Ab) measurements are also common when studying influenza

infections, sample antibody time courses, as well as a sample viral titer in the presence

and absence of Abs, are shown in Fig. 1.5. These antibodies are known to become

detectable at around 5 dpi, peak at 7 dpi [42], and persist at elevated levels for several

weeks after primary contact with antigen [12]. They form immune complexes with virions

thus preventing them from binding to, and invading, host cells or they tag antigens so

that other immune cells can eliminate them.

1.4 Motivation

In constructing a realistic spatial model of influenza infection, several biological processes

must be considered. For example, there are two possible viral transport modes: diffusion

in the periciliary fluid (PCF) and its upwards advection. The mucus layer is known to

drive the entire bulk of the PCF upwards driving along with it virus. Viral diffusion in
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a cell culture was previously studied in a PDE model by Holder et al. [37], but to this

date no similar model exists for an in vivo situation. Furthermore, to my knowledge

the effect of virus advection due to entrainment by the mucosal escalator has not been

previously evaluated. A spatial model for in-host dynamics of influenza infection, which

takes virus diffusion and advection into consideration, is evidently needed.

A realistic model should be able to reproduce the kinetics of different categories of

influenza infections. Influenza infection takes one of three forms shown in Fig. 1.3: a

seasonal infection with a human-derived strain of limited severity that is resolved within

one week, a severe infection characterized by a sustained high viral titer load lasting a

few weeks that is typically caused by a novel pandemic strain, and a chronic infection

that lasts for extended periods of time, up to several months, due to an impaired or non-

functional immune response [10, 13, 23, 45, 79]. One particular problem with previously

published models is their inability to reproduce the three types of infection encountered

by patients as was shown by Dobrovolny et al. [24].

Cellular regeneration following cell death is speculated to be necessary for the estab-

lishment of a chronic infection, where immune interference is expected to impede and

terminate the infection into a seasonal or a severe form. The presence of preexisting

immunity, on the other hand, was found to delay the onset of disease and facilitate

recovery [30, 47]. While a few ordinary differential equation models incorporate both

cellular regeneration and some form of immunity, they do not replicate a chronic infec-

tion when immune interference is turned off in the model, and a seasonal infection with

reasonable parameters when the immune interference is turned back on except for one

model by Bocharov et al., consisting of 13 equations and more than 40 parameters, in

which antibodies have a very limited effect [12, 24]. Furthermore, some of the existing

models consist of a large number of variables and parameters. A model that can capture

all three types of infection without excessive complication and over-parametrization will

be a useful tool for characterizing influenza infections.

In order to avoid over-parameterization of models, several models with simplified as-

sumptions for the immune response were developed by many researchers. For example,

Saenz et al., 2010, constructed a model with an immune response that consists of inter-

ferons only, which were found to limit the peak of viral titer and hence reduce infection

severity [67]. Miao et al., 2010, included antibodies in their model without modelling the

activation of B cells, their proliferation and differentiation, and finally antibody release

[53]. Instead, Abs measurements over time were used. Similarly, Handel et al. mod-

elled the effect of Abs and used a mathematical function of their concentration fitted

to experimental measurements in mice. The effect of antibodies and antibody titer was

10
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modelled explicitly in the system of ODEs [31].

In this work, we construct a spatiotemporal model of influenza infection in a human

host by using partial differential equations (PDEs). By implementing a simplified, one-

dimensional representation of the respiratory tract (RT), this model will allow us to study

in vivo viral transport modes. We incorporate two variants of cellular regeneration into

our model as well as simplified innate and adaptive immune responses, via an interferon

and antibody response, respectively, in order to better account for the infection kinetics.

11



Chapter 2

Methods

2.1 Mathematical model

The model proposed by Baccam et al. is extended to include spatial effects by explicitly

modelling viral transport in the human respiratory tract [2]. The respiratory tract which

is modelled with a simplified geometry as a one dimensional tract. A partial differential

equation model tracks the system’s temporal and spatial evolution, to account for diffu-

sion of virus in the PCF as well as its upward advection due to entrainment by mucus.

The basic model is given by:

Target :
∂T (x, t)

∂t
= −βT (x, t)V (x, t)

Eclipse :
∂E(x, t)

∂t
= βT (x, t)V (d, x)− kE(x, t)

Infectious :
∂I(x, t)

∂t
= kE(x, t)− δI(x, t) (2.1)

Dead : D(x, t) = N(x)− T (x, t)− E(x, t)− I(x, t)

Virus :
∂V (x, t)

∂t
= pI(x, t)− cV (x, t) +DPCF

∂2V (x, t)

∂x2
+ va

∂V (x, t)

∂x
.

where N(x) = T (x, 0)+E(x, 0)+ I(x, 0)+D(x, 0), since cells can only be in one of these

states and it is assumed that the epithelium cannot overgrow.

The boundary conditions at the top, x = 0, and bottom, x = xmax, of the RT, are:

∂V (x=0,t)
∂x = 0, and ∂V (x=xmax,t)

∂x = 0.

12



CHAPTER 2. METHODS

Target cells, T , become infected by virus, V (TCID50/mL1), at a rate β ((TCID50/mL)−1 · d−1).

Once infected, these cells start replicating viral components although they are not yet

producing virus; this is called the eclipse phase, E. They then become infectious cells,

I, at a rate k (d−1). During this phase, infectious cells produce virus, V , at a rate p

(TCID50/mL · d−1) and die at a rate δ (d−1). The virus diffuses uniformly across the

respiratory tract with a diffusion DPCF (m2 ·d−1) and advects upwards towards the top

of the respiratory tract (decreasing x) at a speed va (m · d−1), it is cleared at a rate c

(d−1). In this model, target, eclipse, infectious and dead cells are stationary and evolve

with time only. Hence the equations governing them involve derivatives with respect

to time only. The virus equation involves spatial derivatives that explicitly govern its

transport through the respiratory tract. Through these transport modes virus becomes

available to susceptible target cells which can lead to their infection.

2.2 Parameter estimates

The baseline infection kinetics parameters are those estimated by Baccam et al [2].

The parameters were obtained by fitting their model to patient data from experimental

infections with influenza A/Hong Kong/123/77 (H1N1) and are presented in Table 2.1.

Virus particles, called virions, of radius R diffuse uniformly in the PCF with a diffu-

sion rate DPCF which is determined by the Stokes-Einstein relationship

DPCF =
kBT

6πRη

where kB is the Boltzmann constant, kB = 1.38× 10−23 m2 · kg · s−2 ·K, T is the human

body temperature T = 310.5 K, η = 1.43× 10−3 kg · s−1 ·m−1 which is approximately

that of plasma (assumed to be similar to that of the PCF), and the virion’s radius, R is

approximately 50 nm [44]. Hence, the biologic diffusion rate for virions in the periciliary

fluid is estimated as DPCF ≈ 10−12 m2 · s−1 [8]. The rate of diffusion was varied in the

absence of advection to study its effect but otherwise was kept fixed at 10−12 m2 · s−1

throughout the rest of the simulations.

From the literature, it was found that the speed of the mucosal blanket ranges be-

tween 13 µm/s and 213 µm/s as measured by detecting inhaled florescent or radioactive

markers [11, 51, 82, 86]. An intermediate value of va = 40 µm/s was chosen for our

simulations [51].

1tissue culture infectious dose: the amount of a pathogenic agent that will produce pathological change
in 50% of cell cultures inoculated.
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Table 2.1: Default initial conditions and parameter values of the target cell limited
model. All parameters are from Baccam et al. except for the viral production p which
is what we used in all of the simulations except for the simple diffusion-only simulations
in which production is pBaccam = 0.046 TCID50/mL · d−1.

symbol parameter value

T0 number of initially available target cells 4× 108 cells
E0, I0 number of initially infected cells 0
D0 number of initially dead cells 0
V0 initial viral inoculum 7.6× 10−2 TCID50/mL

1/k length of eclipse phase 6 h
1/δ lifespan of productively infected cells 4.6 h
1/c time required for clearance of virions 4.6 h
β infection rate of cells by virus 3.2× 10−5 (TCID50/mL)−1 ·d−1

p virus production rate 0.49 TCID50/mL · d−1

2.3 From zero-dimensional to 1-d formulation

The respiratory tract (RT) is represented as a one-dimensional grid with the top of the

respiratory tract at x = 0 cm and the bottom at x = 0.3 m. In this model of the RT, we

include the conducting airways only up to the end of the bronchi (first generation) while

excluding the nose. The length of the nasopharyngeal tract was estimated by dividing

the naso-pharyngeal tract volume by its surface area as estimated by Guilmette et al.,

1997, [29] for a human of 170 cm height, which is the height of the reference man [40]

assuming a cylindrical geometry where a directly measured value could not be found;

the consecutive lengths of the nose, larynx, trachea, and bronchi were obtained from

morphometric measurements [63, 74, 81]. The total length was found to be ≈ 30 cm.

When presenting our results, we show the fraction of cells from the entire RT. For virus,

we show the amount present in the top 5 cm of the RT as virus is typically sampled from

the top of the RT via nasopharyngeal swabs.

Since influenza infection is typically initiated by respiratory aerosols from infected

individuals, we emulate this by setting an initial spatial distribution, V (x, 0), of the

amount of virus deposited, V0. We choose the initial virus distribution to be a Gaussian

function centered at the droplet deposition depth, xd with a size determined by the

standard deviation, σ:

V (x, 0) =
V0√
2πσ2

exp− (x−xd)
2

2σ2 .
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The initial number of target cells, T0, as well as virus, are distributed uniformly in

computational boxes of length ∆x, and the total length of the RT is L such that

T (x, 0) =
T0

Nx
,

where

Nx =
∆x

L
,

for simulation accuracy Nx ≥ 1000.

In order to retain dynamics equivalent to the ODE model in each computational box

the parameter β needs to be rescaled locally as

β → β ×Nx.

This rescaling is due to a changed number of target cells and amount of virus in each

computational box.

The system behaviour was tested by spatial simulations to verify proper and accurate

transport of virus across the respiratory tract.

2.4 Numerical formulation

To solve the system of equations shown in Eq. (2.1) we use Euler’s method for the

ordinary differential equations for cellular populations. First, we transfer the differential

equations into a finite difference form, such that ∂t → ∆t and T (x, t) → Tni , Tni is

the number of target cells present at the ith position at the nth time step, for example,

T (x−∆x, t+ ∆t)→ Tn+1
i−1 . Hence the target cell equation above can be rewritten as

Tn+1
i − Tni

∆t
= −βTni V n

i ,

which can be rearranged into

Tn+1
i = Tni −∆tβTni V

n
i .

Similarly, all cell population equations can be rewritten as

Tn+1
i = Tni −∆tβTni V

n
i

En+1
i = Eni + ∆t [βTni V

n
i − kEni ]

In+1
i = Ini + ∆t [kEni V

n
i − δIni ] .
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For the virus equation which depends on both space, x, and time, t, we use the uncondi-

tionally stable Crank-Nicolson method while disregarding the advection. The boundary

condition can be written in the finite form at the nth time step at i = 0 and i = ixmax

location as

V n1 −V n0
∆x = 0, and

V nixmax+1−V nixmax
∆x = 0.

The reasoning outlined below results in the unconditionally stable solution of the

diffusion problem by the Crank-Nicolson implicit method. Eq. 2.2 is solved with diffusion

only then virus advection is enforced by moving the virus at each site by distance, ∆x,

at every time step, ∆t, such that ∆t is determined by ∆t = ∆x/va. This condition is

necessary for the stability of the advection equation.

In the case where only diffusion is considered, the boundary condition at both ends

of the RT is ∂V (x,t)
∂x = 0, or in finite form as:

V ni+1−V ni
∆x = 0. In the presence of advection,

however, this boundary condition is not important as the solution moves at the great

speed of advection, va. At the boundaries, the moving solution progresses undisturbed.

Combining the advection by translation of the solution to the Crank-Nicolson scheme

for diffusion yields

∂V
∂t = DPCF

∂2V
∂x2

V n+1
i −V ni

∆t = DPCF
2

[
V n+1
i+1 −2V n+1

i +V n+1
i−1 +V ni+1−2V ni +V ni−1

(∆x)2

]
2V n+1

i − 2V n
i = DPCF∆t

(∆x)2
[(V n+1

i+1 − 2V n+1
i + 2V n+1

i−1 ) + V n
i+1 − 2V n

i + V n
i−1)]

−αV n+1
i−1 + (2 + 2α)V n+1

i − αV n+1
i+1 = αV n

i−1 + (2− 2α)V n
i + αV n

i+1

where α = DPCF∆t/(∆x)2.

In matrix form the virus equation can be written as

[A][V n+1] = [B][V n],

where the matrices [A] and [B] have the following forms,
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[
A
]
=



2 + α −α 0 . . . 0

−α 2 + 2α −α . . .
...

0 −α 2 + 2α
. . . 0

...
. . .

. . .
. . . −α

0 . . . 0 −α 2 + α


[
B
]

=



2− α α 0 . . . 0

α 2− 2α α
. . .

...

0 α 2− 2α
. . . 0

...
. . .

. . .
. . . α

0 . . . 0 α 2− α


.

The equation is solved as:

[V n+1] = [M]× [V n]

with

[M] = [A−1]× [B]

Now advection is enforced by moving the virus at each site by a distance ∆x at every

time step, ∆t:

V n+1
i = V n

i+1

In addition to diffusion and advection, the virus, V (x, t), is also subject to infection

kinetics which can be treated separately after the virus diffuses and drifts. Infection

kinetics are accounted for by integrating the virus equation with respect to time by

separation of variables

∂V (x,t)
∂t = pI(x, t)− cV (x, t)

∂V (x,t)
pI(x,t)−cV (x,t) = dt∫ Vt+dt

Vt

∂V (x,t)
pI(x,t)−cV (x,t) =

∫ t+dt
t dt

ln [pI(x, t)− cV (x, t+ dt)]− ln [pI(x, t)− cV (x, t)] = −cdt

ln
[
pI(x,t)−cV (x,t+dt)
pI(x,t)−cV (x,t)

]
= e−cdt

V (x, t+ dt) = pI(x,t)
c (1− e−cdt) + V (x, t)e−cdt.

The final form of the virus equation can be written finitely

V n+1
i =

pIni
c

(1− e−cdt) + V n
i e

−cdt.
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Viral transport modes

3.1 Virus diffusion in the periciliary fluid

The epithelial cells of the human RT are covered in a thin layer of liquid called the PCF.

Infection of cells by the influenza virus, and the subsequent release of influenza virions,

occurs almost exclusively at the apical surface of the epithelium [14,54] and therefore the

PCF mediates the spread of an infection throughout the RT. When directional motion

of the PCF is neglected, virions can be assumed to follow Brownian motion and the

virus concentration in the PCF will be governed by diffusion with coefficient given by

the Stokes-Einstein equation DPCF ≈ 10−12 m2 · s−1.

Typical influenza models are mostly based on ordinary differential equations. In

such models, the system evolves in time and assumes a homogeneity in the distribution

of cell populations and virus which means that any amount of virus becomes immediately

available to all target cells. Since we explicitly model the transport of virus via diffusion

DPCF , which is an essentially different situation from the infinite diffusion assumed

implicitly in ODE models, we first explored the effect of changing the rate of diffusion

DPCF on infection kinetics. Fig. 3.1 shows a study of the effect of the viral diffusion

coefficient ranging from 10−8–10−12 m2 · s−1 in the absence of advection (i.e. va = 0)

while depositing viral inoculum at depths of xd = 0.01 m and xd = 0.15 m. Spatial

simulations show that virus becomes available to target cells gradually as it diffuses

away from the site of deposition such that neighboring cells become infected first, and

further cells follow (results not shown). When compared to the ODE model, target cell

infection takes place at a slower pace as the rate of diffusion, DPCF , is decreased.

Due to asymmetry in the site of deposition with respect to the RT when xd = 0.01 m,

virus diffuses out of the top of the RT (x = 0) before it reaches the bottom of the RT
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Figure 3.1: The effect of varying the rate of viral diffusion. Consumption of target
cells (leftmost column) and viral titer, sampled from the entire RT (middle column) and
from the top 0.05 m (rightmost column), for different diffusion rates is shown. Virus
is deposited at xd = 0.01 m and xd = 0.15 m in the top and bottom rows respectively.
The colours red, orange, green, cyan, and blue correspond to diffusion rates decreasing
from 10−8 m2 · s−1 to 10−12 m2 · s−1 in steps of one order of magnitude respectively. The
blue line corresponds to the biologic diffusion of 10−12 m2 · s−1. The black line shows the
consumption of target cells and viral titer profile under infinite diffusion, as is assumed
by ordinary differential equations using parameters from Baccam et al., 2006.

(x = 0.3 m). This can be seen as a slight drop in the viral titer followed by a decay

once virus has crossed the lower end of the RT as well. When target cells are completely

depleted, viral titer decay is observed, and occurs sooner as the diffusion rate increases.

When virus is deposited at xd = 0.15 m, it reaches opposite ends of the RT at the same

time and one phase of decay is observed.

As we sample virus from the top 0.05 m, when virus is deposited deeper, it will need

more time to travel to the top of the RT and peak there. This travel is further delayed

by a slow rate of diffusion DPCF as can be seen in Fig. 3.1. There is no delay when virus

is deposited at 0.01 m, and the time and rate of decay depends on the rate of diffusion

DPCF . This does not mean, however, that the infection cannot proceed deeper in the RT

when not accounting for the effect of advection which will be shown in the next section.

19



CHAPTER 3. VIRAL TRANSPORT MODES

3.2 Virus entrainment in the mucosal elevator and a thresh-

old for infection

Entrainment of influenza virus particles in the rapidly-moving PCF has the potential to

dramatically alter the kinetics of an infection (for example, from that of a stationary cell

culture), both in the initiation of an infection and its progression. We consider infection

initiated by virus deposition at 0.15 m, in the presence of both isotropic diffusion at

10−12 m2 · s−1 and upward advection at 40 µm · s−1 (Fig. 3.2). Using the same param-

eters used to successfully fit an ODE model to patient data, a sustained infection did

not arise and nearly the entire target cell population was protected. To determine the

strength of this protective effect, we therefore increased the viral production rate, p.

The profile of target and infectious cells and virus for different production rates is

shown in Fig. 3.2. Advection dominates the dynamics (the timescale on which diffusion

acts is much longer than the time to sweep virus out of the RT) and it indeed demon-

strates that mucus is an effective physiological mechanism to suppress infection. Viral

titers of an influenza infection typically peak between 2–3 dpi [2, 12, 62, 84]. We found

that an increase of ≈ 11 fold in the production rate is sufficient for an infection to em-

bark and progress despite the overwhelming drift of virus while peaking at day 2 post

infection. We will use this new value of p (p ≈ 11 fold greater than the value estimated

by Baccam et al., 2006) for the remainder of our investigations as this value reproduces

qualitatively the profile for an influenza infection in our model.

Once production is large enough to cause infection, the eventual damage to the RT

is limited to the regions through which virus was entrained. Since we deposited virus

at xd = 0.15 m, mainly the top 0.15 m of the RT gets involved in the infection. The

infection starts at the top of the RT as the cells located there are exposed to all the virus

produced by infection of cells at sites lower in the RT as shown in Fig. 3.3. The infection

proceeds downwards very slowly and finally localizes at a depth ≈ 0.11 m at day 7 post

infection and does not proceed any further. It finally dies off at ∼ 12 dpi.

Although infection does take off, it is supported by a very limited fraction of in-

fectious cells and the sustained viral loads observed are due to the high production of

virus by an extremely small fraction of infectious cells. Chronic infections observed in

immunocompromised patients with a limited or impaired immune response are charac-

terized by long lasting, sustained viral titers [13,45,61,79]. The viral loads shown in Fig.

3.2 decay due to target cell limitation, and thus do not describe a true chronic infection.
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Figure 3.2: The effect of changing production on infection kinetics in the
presence of both advection and diffusion. Here production is either pBaccam

(red), 6 pBaccam (orange), 11 pBaccam (magenta), 32 pBaccam (green), 178 pBaccam (cyan),
1000 pBaccam (blue) where pBaccam = 0.046 TCID50/mL ·d−1 chosen because it fits the
ODE model to experimental infections.
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Figure 3.3: Early infection spatial profile. The target and infectious cells profile in
the top row shows that infection commences at the top of the RT. The viral titer profile
shows that the virus impulse reaches the top of the RT within one hour post infection.
Viral growth then is observed at the top of the RT which was exposed to the traversing
virus and the virus produced by the very small fractions of cells it infected along its way.
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Respiratory tract epithelium

regeneration and chronic

infections

As target cell limitation was shown to be a main cause of infection termination, when

trying to emulate a chronic infection, cellular regeneration needs to be included in the

model. Basal cells are the main progenitors of tracheal and bronchial epithelium in

the human RT but they are not targeted by influenza virus [77, 85]. This suggests

that cellular regeneration should not depend on the target cell population. However,

these basal cells proliferate and differentiate into infectible cells until the epithelium

is restored into its normal state [17, 27, 80]. The fact that susceptible cells arise from

the basal cells which are responsible for epithelium replenishment implies that cellular

replenishment may be actually dependent on the target cell population. In order to

account for cellular regeneration, two variants of repopulation dynamics were explored:

a density-independent, and a density-dependent cellular regeneration.

4.1 Density-independent regeneration

The first variant is density-independent target cell regeneration model and assumes that

cellular regeneration takes place at a rate, rD, and is proportional to the damage in the

RT (i.e. dead cells),

∂T (x, t)

∂t
= −βT (x, t)V (x, t) + rDD(x, t− τD),

22
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where we allow for a proliferation delay τD.

This type of regeneration was also implemented by others without a delay (τD=0)

[12,31,47,53]. This model represents a reservoir of uninfectible and pluripotent cells that

are responsible for repairing epithelial damage due to the infection, meaning that there

is no damage beyond repair by the reservoir cells. The delay τD is biologically justified as

a lapse of time before the proper pathways lead to the start of the regeneration process.

This is estimated to take between 0–1 d [80].

Using Euler’s method to solve this equation, we have

T (x,t+∆t)−T (x,t)
∆t = −βT (x, t)V (x, t) + rDD(x, t− τD)

T (x, t+ ∆t) = T (x, t) + ∆t× [−βT (x, t)V (x, t) + rDD(x, t− τD)] .

Following the notation introduced in Section 2.4, the above equation can be written as

Tn+1
i = Tni + ∆t×

[
−βTni V n

i + rDD
n−m
i

]
,

where m=round( τD∆t ), is the number of time steps corresponding to τD or the closest

integer to it.

The delay, τD, requires that dead cells from previous time steps are stored. Since

the time step, ∆t = ∆x/va, is of the order 10−4 d, continuous storage of the dead cells

vector for each time step leads to a growing matrix (time × space) which can exhaust

the memory allocated by Octave when long simulations are run. To solve this issue, only

the last m time steps in the dead cells matrix are stored.

At the beginning of the simulation, the delay, τD, is determined, which sets the

variable m. The built-in Octave function “sparse” is used to minimize the memory re-

quirement in creating this two-dimensional matrix. The algorithm employed in reducing

the memory requirement of the program is illustrated in Fig. 4.1. In this model, it is en-

sured that the epithelium does not overgrow. This is achieved by choosing the minimum

of Dn
i and ∆t · rD ·Dn−m

i .

The following range of regeneration rates is explored: rD = 0.5 d−1, 1 d−1, 10 d−1 and

100 d−1; and of differentiation delay τD = 0 d, 1 d and 3 d in Fig. 4.2. The regeneration

rate rD affects the level of chronic viral titer, the greater the rD the higher the chronic

viral titer that changes by one order of magnitude within the shown range. The delay, τD,

determines how smooth the viral kinetics are. When regeneration begins immediately

upon any amount of cell death (i.e. when τD = 0) infection kinetics are smooth. However,

when the delay is set to 1 d or 3 d, pronounced loss and replenishment is observed in
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Figure 4.1: The algorithm utilized in reducing the size of the stored dead cells
matrix. An example case where m = 5 is considered for a single site of size ∆x. The
length of the time steps vector for a single site in the dead cells vector should be m+1 = 6
so that the current time, “cur”, step is stored in the last cell of the array. The element in
n−m is read, “r”, then overwritten with the current value, “w”, in order to be accessed
later on as the loop over time steps continues to iterate. The variables “r” and “w”
are set as the integral part of the remainder of the division of n by m. This algorithm
reduces the memory requirement for a single site from n cells instead of m+ 1 cells.

the target and infectious cells populations translated as sharp growth and decay in the

viral titer. This can be explained by the fact that the longer delay between cell death

and replenishment results in more dead cells being accumulated and hence triggering a

stronger regeneration response to damage. During the time when death of the infectious

cells occurs without replenishment viral titer begins to decay as the infectious cells die

off gradually without being replaced. When regeneration takes effect, fresh infectible

cells are generated that, once infected, will produce virus in a sustained manner. The

main difference between the no-delay and delayed cellular regeneration is the temporary

uncompensated loss of infectious cells leading to a dip in the otherwise high and sustained

viral titer. This behavior is further pronounced when the regeneration rate is high (e.g.

10–100 d−1). Experimentally, the uncertainty in viral titer measurements can be up to

2 orders of magnitude [26], therefore, it would be difficult to validate the observed non-

smooth behaviour given that in humans, virus is rarely sampled more frequently than

daily.

When regeneration of dead cells is instantaneous (i.e. τD = 0), it is found that a

regeneration rate of 1 d−1 is sufficient to establish a chronic infection for an infection

that peaks at day 2. The chronic infection is characterized by a sustained production of

virus by ≈ 4% of cells of the RT as shown in Fig. 4.2. Upon close inspection, a very slow

recovery of target cells (or loss in the dead cells) is noticeable, so we do not produce a

truly steady-state chronic infection.
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Figure 4.2: Exploring infection dynamics in the density-independent model.
The regeneration rate varies from top to bottom as 0.5 d−1, 1 d−1, 10 d−1 and 100 d−1.
The left hand column shows fraction of target cells, the middle column shows fraction
of infectious cells and the right hand column shows viral titer. colour scheme as follows:
black for τD = 0 d, red for τD = 1 d and blue for τD = 3 d.
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4.2 Density-dependent regeneration

The second variant is density-dependent target cell regeneration model and assumes that

cellular regeneration is proportional to damage as well as to available target cells that

are capable of proliferation and differentiation, which takes place at a rate, rDT ,

∂T (x, t)

∂t
= −βT (x, t)V (x, t) + rDT

T (x, t)

T (x, 0)
D(x, t− τD),

where τD is the proliferation delay.

This is equivalent to the standard logistic model of population growth modified by

the proliferation delay, τD. The second variant of the regeneration model assumes that

the infectible cell population is also responsible for the replenishment of lung epithelium.

This model was used by Hancioglu et al., 2007, [30] without the delay. It was also used

to model hepatocyte (liver cells) regeneration in models of hepatitis C virus infections

(HCV) by others [19,64,71].

The density-dependent regeneration equation can be written in Euler’s formulation

as

T (x, t+ ∆t)− T (x, t)

∆t
= −βT (x, t)V (x, t) + rDT

T (x, t)

T (x, 0)
D(x, t− τD)

T (x, t+ ∆t) = T (x, t) + ∆t×
[
−βT (x, t)V (x, t) + rDT

T (x, t)

T (x, 0)
D(x, t− τD)

]
Following the notation introduced in Section 2.4, the above equation can be written as

Tn+1
i = Tni + ∆t×

[
−βTni V n

i + rDT
Tni
T 0
i

Dn−m
i

]
,

where m=round( τD∆t ), is the number of time steps corresponding to τD or the closest

integer to it. This model is solved using the same algorithm described in section 4.1,

also with the constraint on regenerating no more cells than there are dead cells in the

current time step.

The effect of varying the regeneration rate, rDT , and differentiation delay, τD, is

explored in Fig. 4.3. A similar effect of regeneration rate and delay to those observed

in the density-independent target cell regeneration variant can be seen in this model as

well. In this model, however, a larger regeneration rate is required for the establishment

of a chronic infection. Chronic viral titer changes by two orders of magnitude within the

shown range of regeneration rates. This is due to the fact that cellular replenishment in

this variant is proportional to target and dead cell populations.
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Figure 4.3: Exploring infection dynamics in the density-dependent target cell
regeneration model. The regeneration rate varies from top to bottom as 0.5 d−1,
1 d−1, 10 d−1 and 100 d−1. The left hand column shows fraction of target cells, the
middle column shows fraction of infectious cells and the right hand column shows viral
titer. colour scheme as follows: black for τD = 0 d, red for τD = 1 d and blue for
τD = 3 d.
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For this model we find that a regeneration rate rDT = 10 d−1 is sufficient to maintain

a chronic infection in the case of immediate regeneration of dead cells as shown in Fig.

4.3 for an infection peaking at 2 dpi. The elevated, sustained, viral titer is due to a

sustained fraction of infectious cells maintained at ≈ 2%.

The regeneration of target cells depends on the abundance of target cells as they are

assumed to constitute the progenitor cell population. Hence, if the damage caused by

the infection before regeneration becomes involved is too large, no efficient replenishment

occurs. This may occur when the regeneration process does not commence soon enough.

Upon introducing a delay of 1 d, as reported in the literature, non-uniform dynamics

are observed as in Fig. 4.3. Regeneration is triggered by damage but necessitates that

a sufficient fraction of the target cell population, capable of cell division, has survived.

Since neither the target cell density nor the dead cell density remain constant throughout

the infection course, the regeneration process exhibits alternating intervals of strong

activity and idleness.

For the remainder of the simulations in this project, regeneration rate of 1 d−1 and

delay of 0 d are used in the density-independent regeneration model and regeneration

rate of 10 d−1 and delay of 1 d are used in the density-dependent regeneration model. It

is noteworthy to point out that both models have similar predictions with a difference in

the regeneration rate required to establish a chronic infection. The higher regeneration

rate in the density-dependent model is compensated by the fraction of target cells.
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Chapter 5

The effect of inoculum deposition

on infection kinetics

Influenza infections are mainly initiated by respiratory droplets that land at some depth

in the RT. Typically exhaled droplets from individuals infected with influenza virus are

less than 1 µm in diameter [25]. Upon landing in the RT of another individual, these

droplets may further shrink in diameter due to evaporation. Depending on their size,

the likelihood and the favorable location of landing in the RT is determined. Particles

of less than 1 µm in diameter have an almost equal probability of being deposited in the

conducting and pulmonary regions, and lesser probability of landing in the pulmonary

region [58]. The likelihood of deposition increases with decreasing particle size. The

exact size, and consequently the depth, of the coughed particle when it lands in the

RT is not determined. Therefore, in this section, the depth of deposition effect on the

infection kinetics was explored.

We explored the effect of changing the depth of deposition of viral inoculum in the

RT on the infection kinetics while incorporating cellular regeneration. It can be seen

in Fig. 5.1 that the deeper the virus is deposited, the larger the fraction of target cells

consumed (up to 80% of the RT), and infectious cells involved in the infection (up to

13% at peak). This, in turn, leads to higher viral titers. The fraction of target cells

consumed does not reach the fraction of RT depth above the initial depth of deposition

of the coughed droplet. This is due to the sweeping effect of mucosal advection. When

virus is deposited at xd = 0.01 m infection is swept out of the RT before it has any

chance to diffuse or infect susceptible cells, given our choice of base parameters (Table

2.1).

Comparing the dynamics of different deposition depths, it can be seen that chronic
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Figure 5.1: The effect of changing the depth of deposition. The depth of deposition
varies as 1 cm, 5 cm, 10 cm, 15 cm, 20 cm, 25 cm, and 29 cm as shown in colors: red,
orange, magenta, green, cyan, blue and violet respectively. The results are shown in the
density-independent model with regeneration rate rD = 1 d−1 and no delay, the viral
production rate p ≈ 11pBaccam. Note that, in all other Figures, virus is deposited at a
depth of 15 cm corresponding to the green line in this Figure.

infection is achieved for xd ≥ 0.1 m and peaks earlier as xd increases. These results

suggest that there is a minimum depth of viral deposition that must be exceeded for

infection to embark in the RT and develop into a chronic infection.

While virus is deposited at some depth xd in the RT, infection embarks at the top

of the RT first as indicated by spatial simulations. The initial pulse of virus traversing

the RT leads to primary infections along its path. The virus produced by these very

limited infections is swept upwards, and the very top of the RT is exposed to all the

virus produced since it is located downstream of those primary infections.
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Chapter 6

Innate and adaptive immune

responses and the resolution of

infection

Hitherto, infections in our model are either resolved due to target cell limitation, or due

to the sweeping effect of advection. The infection can also develop into a chronic form

by virtue of cellular regeneration. Although target cell limitation is speculated to play

an important role in resolving influenza infections, very likely it is not the only cause

for infection to be terminated. If this was the case, infections with the 2009 pandemic

H1N1 strain should not result in the severe infections that were observed. Hence, the

immune response is speculated to play an important role in resolving and terminating

the infection.

As explained in Chapter 1, we decided to limit the immune response components

incorporated in this model and focus on one representative of innate immunity and

another for adaptive immunity. We introduce a simplified immune response described

by:

• innate immune response: consisting of interferons (IFN); and

• adaptive immune response: consisting of antibodies (Ab),

and determine whether they can model infection resolution.
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Figure 6.1: The time courses of IFN. The left panel shows experimental titers of IFN
in humans and some animals. The center panel shows influenza modelling predictions
of IFN time course during the infection. The right panel shows the IFN time course as
simulated in this project. The modelled IFN time course here peaks at 2 dpi.

6.1 Interferon

Interferons are an important class of cytokines and a lot is known about their action

and properties, and hence they are chosen in this project to represent innate immunity.

In general, they are known to become elevated early during the infection [26, 33, 43, 68].

They appear and become active no later than 24 h post infection, and their concentration

peaks by 1 d post the viral titer peak [26,33,66]. Experimental data from humans, horses,

and mice show that they disappear by day 3 to 10 post infection [26,39,41,67].

Since most experimental data suggests a monotonic rise and fall of IFN [26, 31, 39,

41,67], we model the amount of IFN with a semi-logarithmic triangular function:

F (t) =
2

e−λg(t−tp) + eλd(t−tp)
, (6.1)

where λg and λd are the growth and decay rates of IFN respectively (d−1), the peak

amount of IFN is 1 at the time of peak, tp (d). The IFN time course is shown in Fig. 6.1,

where it is also compared to experimental measurements and simulations predictions.

Experimental error in these measurements can be up to 2-fold in some experiments [26].

In our simulations we set λg and λd to be 2 d−1 as the growth and decay rates of IFN

titers are not significantly different for most data sets as shown in Fig. 6.1.

Although IFN is known to have many effects [72], we model the effect of IFN as

reducing the rate of viral production, p, homogeneously (independent of x) [2, 31]:

p→ p

1 + F
IC50

, (6.2)

where IC50 is the amount of IFN required to reduce the viral production rate to one
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Figure 6.2: The effect of interferon on infection kinetics. Various values for the
effectiveness of the IFN response are considered by varying IC50 in Eq. 6.2 as 1, 5, 10,
15, 20, 50, 100-fold the IFN peak (scaled here to equal 1), corresponding to red, orange,
magenta, green, cyan, blue and violet respectively and black corresponds to no IFN.
Note that the IC50 is inversely proportional to IFN efficacy with IC50=100 being the
least efficacious, and IC50=1 being the most efficacious. The IFN peaks at day 3 post
infection with growth and decay rates of 2 d−1. Kinetics are in the absence of any Ab
activity, they are explored in: (a) the density-independent model with rD = 1 d−1 and
τD = 0 d, and (b) the density-dependent model with rD = 10 d−1 and τD = 1 d.
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half of its initial value (p → p
2 when F = IC50). Other models such as: Saenz et al.,

Hancioglu et al., and Bocharov et al. incorporate IFN effect as causing target cells to

become resistant to infection [12, 30, 67]. Our approach, however, is simpler and similar

to that adopted by Handel et al. and Baccam et al. who incorporate IFN effect by

down-regulating production [2,32], where Baccam et al., in addition to down-regulating

production also lengthen the duration of the eclipse phase [2]. Addition of the effect of

IFN to the model does not require a new solution to the equations. It is sufficient to

allow the viral production rate, p, to be time dependent since F is time dependent.

The effect of IFN in the presented model is shown in Fig. 6.2. Viral titer peak is

reduced due to IFN presence with smaller IC50, having a greater impact on the viral

titer peak. However, once IFN starts to decay its effect rapidly disappears and the new

target cells, that have replaced the dead cells, become infected by virus and rekindle the

infection. This is translated into a rise in the viral titer in the absence of specific immune

response as predicted by Hancioglu et al. [30]. Previous studies that couple modelling

of IFN and in-host viral titer data suggest that peak viral load reduction and sparing of

epithelial cells correlates with increasing IFN efficiency [67].

Upon investigation of the effect of the time of IFN peak in Fig. 6.3 shows that an

early action of IFN delays viral titer peak such as for tp=1–2 d. On the other hand, if

IFN peaks later, i. e. on 3–4 dpi, a reduced primary peak is observed with temporary

viral decay followed by titer rebound. As can be seen in Fig. 6.1, most experimental

measurements of IFN time course predict a peak between 2–3 dpi, a peak at 5 dpi was

also reported by Iwasaki et al., 1977 [41]. Mathematical models, however, predict an

IFN peak that can arise almost immediately after infection till 3 dpi. Prior to IFN peak,

it has an increasing effect on the viral production. IFN effect is maximum at its peak

and p → p
2 , hence its time of peak corresponds to an anticlimax in the viral titer. The

innate immune response in our model impedes viral production during the first 1–4 days

post infection rendering infection less severe at early times. However, it does not lead to

infection resolution which is therefore left up to the adaptive immune response.

6.2 Antibodies

Several experiments measure the antibody titers over time. It is noteworthy to mention

that Ab levels measurements in blood can only detect the free Ab and whatever Ab

have formed immune complexes with an antigen will not be counted. Hence, released

Ab levels are probably higher than what is measured, particularly early post infection.

Mathematical models of influenza also incorporate Ab into their kinetics and predict
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Figure 6.3: The effect of changing the time of IFN peak on infection kinetics.
The panels from left to right represent fraction of target cells, fraction of infectious
cells and viral titer. In the top row, infection kinetics are demonstrated in the density-
independent model at rD = 1 d−1, τD = 0 d and IC50 = 10. In the bottom row, infection
kinetics are demonstrated in the density-dependent model at rDT = 10 d−1, τD = 1 d
and IC50 = 10. Interferon peaks at day 1 post infection (black), day 2 post infection
(red), and day 3 post infection (blue).
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Figure 6.4: The time courses of Ab. The left panel shows experimental titers of
Abs in mice. The center panel shows influenza modelling predictions of Ab time course
during the infection. The right panel shows the Ab time course as simulated in this
project. The modelled Ab time course here grows at α = 1.36 d−1.

their time course. In general, Abs are known to grow into elevated levels after infection

and peak at around 7 dpi. In this project, the amount of antibodies is modelled to be

spatially homogeneous (independent of x) at any given time, t, as:

A(t) =
1

1 +
(

1
A0
− 1
)
e−αt

, (6.3)

where A0 is the initial amount of antibodies, and α is the growth rate of antibodies (d−1)

and it is set in our simulations so that Ab reach 99% of their maximum concentration

at 7 dpi, the Ab time course as measured by experiments and predicted by models,

including this project, is shown in Fig. 6.4

Antibodies form immune complexes with the virus that reduce the number of free

virions capable of infecting target cells [76]. Contrary to the case of IFN, where there is

a large variation in the mode of implementation, most mathematical models of influenza

implement antibodies as a clearance term in the virus equation. Similarly to the approach

adopted by [12,30,31,47,53], we model this effect as an additional clearance term in the

virus kinetics shown in Eq. (2.1):

c→ c+ kvA(t) (6.4)

where kv is the binding affinity of antibodies at saturation (d−1). Modelling the effect

of antibodies does not require re-solving the virus equation. We implement their action

by incorporating the additional clearance term, kvA(t), to the clearance, c.

As can be seen in Fig. 6.6, low binding affinity Abs (kv = 103 d−1) are not capable

of clearing the infection. When kv increases from 2× 103 d−1 to 5× 104 d−1 viral titer

decay rate increases leading to viral titer decay within 10–21 d. Previous estimates of
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Table 6.1: Estimates of antibody clearance in mathematical models∗.

Model k Abm kv
Bocharov et al., 1994 8.6× 1011 mol−1d−1 8.5× 10−13 mol 0.73 d−1

Hancioglu et al., 2007 619.2 mol−1d−1 7.2× 10−11 mol 36× 10−9 d−1

Lee et al., 2009 4× 10−3 titer−1d−1 3× 104 titer 120 d−1

Miao et al., 2010 7.8× 10−2 mL ·pg−1 ·d−1 4× 102 pg ·mL−1 31.2 d−1

Handel et al., 2010 1.8 titer−1d−1 21× 105 titer 38× 105 d−1

∗The clearance term in all these studies is identical to this model (−kV A) where k is the binding affinity

between virus and antibodies, Abm is the amount of antibodies at saturation, and kv = k × Abm.

The exception is in the model proposed by Handel et al., 2010 who introduced an “antigenic distance”

variable, S, as −kSV A. S=0.8 at maximum compatibility between virus and antibodies. The values

presented are best fit parameters in the presence of innate immune response extracted from the papers

that present them [12,30,31,47,53].
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Figure 6.5: The effect of initial Ab abundance on the infection kinetics. The
Ab exponential growth rate, α is set so that A(7) = 0.99. Kinetics are shown in the
density-independent model with rD = 1 d−1, τD = 0 d and kv = 104 d−1. The initial
antibody amount varies from 10−8 to 10−2 in steps of one order of magnitude starting
with the black line up to the blue line.

the binding affinity between virus and antibodies vary widely between 10−8–106 d−1 as

shown in Table 6.1. Viral clearance is accompanied by target cell recovery and loss

of infectious cells. Antibodies with a binding affinity sufficient for infection clearance,

kv = 2× 103 d−1, do so more effectively if they are present in abundance at the beginning

of the infection (i.e. A0 ≥ 0.001) possibly due to an earlier encounter with the virus as

shown in Fig. 6.5.

In order to evaluate the relative importance of initial Ab amount as compared to

Ab binding affinity, both parameters are varied and the results are shown in Fig. 6.7.

Starting with an elevated amount of Ab (10−2) with low binding affinity represented

by kv = 103 d−1 does not lead to protection against infection as illustrated in Fig. 6.7.

Starting with an initial amount of antibodies of 10−5 with binding affinity of 104 d−1
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Figure 6.6: The effect of Ab on the infection kinetics. The Ab expo-
nential growth rate is 1 d−1 and Ab0 = 10−4, the binding efficiency of Abs is
103, 2× 103, 3× 103, 4× 103, 5× 103, 104, 5× 104 d−1 for colours starting with red and
ending in blue. The black line corresponds to absence of Ab. Kinetics are shown in: (a)
the density-independent model with rD = 1 d−1 and τD = 0 d, (b) the density-dependent
model with rDT = 10 d−1 and τD = 1 d.
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Figure 6.7: Exploring the effect of preexisting immunity on the infection ki-
netics. Two parameters are varied: Ab0 and kv. colour legend as follows: Ab0 = 0.1
(black), kv = 103 d−1, Ab0 = 0.1, kv = 104 d−1 (red), Ab0 = 100, kv = 103 d−1 (blue),
and Ab0 = 100, kv = 104 d−1 (green). IFN peaks at day 3 and is characterized by an
IC50 = 50.

could not resolve the infection. However, when kv increased to 104 d−1 and starting with

Ab0 = 10−2 infection was completely suppressed.

6.3 Reproducing the three infection profiles

Chronic infections have been established by virtue of cellular regeneration. Furthermore,

infection can be successfully resolved due to adaptive immunity. It remains to establish

that the resolved infection can take a seasonal or severe form. In the presented model, the

type of the infection is determined by the immune response as can be seen in Fig. 6.8. In

the absence of any immunity, the infection takes a chronic form. When immune response

is present, the infection takes a severe form for low binding affinity Abs (kv = 103 d−1)

that is characterized by an elevated viral titer for more that 14 dpi, or a seasonal form

for Abs with a 50 fold greater binding affinity (kv = 5× 104 d−1) that is resolved within

8 dpi. This is a minor parameter change that behaves consistently with known biology.

The maximum fraction of dead cells for all Ab binding affinities, and in the absence

of antibodies as well, is ≈ 30% which is in agreement with the general picture drawn by

Bocharov et al.,1994, based on studies of Marchuk et al., 1989 [12,48]. According to the

general picture mentioned, cell death of around 10% leads to the onset of symptoms and

subsequently, may accompany disease resolution. Thus, symptomatic infection duration

in our model is between 3–6 dpi for a seasonal infection, and between 2–11 dpi for a
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Figure 6.8: The three infection profiles observed in patients. Chronic infection (black) is
obtained in the absence of an immune response. Severe infection (red) is obtained when
kv = 103 d−1, and a seasonal infection (orange) occurs for kv = 5× 104 d−1. In seasonal
and severe infections, interferon have an IC50 = 50 and peak at 2 dpi, the initial amount
of antibodies is 0.001. It is noteworthy that changing the antibody binding affinity is
sufficient to change infection profile from seasonal to severe.

severe infection.

40



Chapter 7

Discussion

Influenza infections are most frequently modelled with ODEs that do not incorporate any

spatial effects and have implicit assumptions of spatial uniformity that are not realistic.

Within the human RT, virus infects present in the PCF infects epithelial cells. While in

this fluid, virus particles are free to diffuse isotropically and the entire bulk of the PCF

advects upwards, towards the top of the RT, due to entrainment by mucus. Motivated

by the lack of a spatial model that incorporates viral advection and diffusion, a PDE

model was developed. The RT was modelled as a one-dimensional tract that extends up

to a depth of 0.3 m. The advantage of this spatial model is that it allows us to evaluate

their effect on infection kinetics.

As compared to the infinite diffusion ODE models, a biologically realistic diffusion

of 10−12 m2 · s−1 leads to a very slowly progressing infection. Virus advection due to

entrainment by the mucus blanket, on the other hand, results in a fast elimination of

virus from the RT. It therefore provides a very effective defense mechanism against viral

infection besides the attachment of virions to mucus. In fact, in the presence of upwards

entrainment of the PCF, we found that a virus production rate around 11 times larger

than previously evaluated by Baccam et al. [2], is needed for infection to embark while

ensuring that the infection peaks at 2 dpi.

Interestingly, site of deposition of the cough droplet carrying influenza virions played

a major role in determining the extent of RT involvement in the infection as no target

cell consumption is observed below that initial depth of deposition. The depth of initial

viral inoculum deposition plays an important role in shaping the infection. The deeper

the viral deposition the larger the involvement of RT in the infection. Steady state

kinetics are reached faster when depositing deeper. Deposition at the top of the RT

(xd = 0.01 m) does not result in the development of infection as virus is swept out before
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it has any chance to infect cells. Despite the depth at which virus was deposited in the

RT, infection starts at the very top of the RT due to the combined effect of the swept

virus from the initial pulse traversing the RT, and the small amount of virus produced

by secondary infections due to the initial pulse. Perhaps this would not be the case if

cell-to-cell infection contributed to infection.

Cellular regeneration allowed the establishment of chronic infections. The density-

dependent and density-independent models overall resulted in similar kinetics, except

for the case of density-dependent model and a delay of 1 d. In this particular case

non-smooth kinetics were observed where regeneration was driven by cell death but also

limited by the abundance of target cells left. Hence, alternating periods of active regener-

ation and idleness were observed. While known biology does not allow the discrimination

of either model, these models gave us an insight into the possible kinetics resulting from

this biological process.

We modelled immunity via two main components: the innate response via interferon,

and the adaptive response via antibodies. Under the assumption that interferon acts

early during the infection by impeding viral replication, IFN reduced disease severity,

as manifested by decreased viral titer and less cell death, at early times only. The fact

that interferon effect declines at early times is due to modelling its concentration with a

triangular function. Interferon alone, however, is not sufficient to terminate infection at

all efficiencies and antibodies are necessary for the infection to be resolved. The initial

amount of antibodies and their binding efficiency to the antigen (virus) determines how

fast and how efficiently the infection will be stopped. Depending on antibody binding

efficiency, an infection can either take a seasonal, or a severe form. A chronic infection

develops in the absence of antibodies.

One of the limitations of this model is the assumed uniform cell density through the

respiratory tract. Unfortunately, available quantitative data on cell numbers in different

regions of the respiratory tract and their type, is insufficient to permit construction

of an accurate model to realistically represent a depth-varying cell density. Another

assumption in the model is that mucus speed, and the entrained periciliary fluid speed

as well, does not vary as a function of depth in the respiratory tract, although, particles

deposited in peripheral bronchiolar airways clear more slowly than those in more central

airways [1]. Future development of this model to address these issues may provide new

insights into spatial in-host influenza infection kinetics.

The simplified geometry assumed for the RT can be useful in shedding light on other

biological mechanisms. Validation against patient data, however, would be challenging

due to the limited data and long simulation time. The effect of viral transport modes was
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evaluated for the first time and found to play a critical role in protecting the lower RT

against infection propagation. While computational modelling of infectious disease has

proved to be useful in characterizing the disease and optimizing antiviral treatments, it is

very important not to over-complicate and over-parametrize the model with parameters

that are not directly measured and therefore would introduce and propagate imprecision

and error. Our model has the advantage of being able to capture the different types

of infection while retaining its simplicity and capability for further development and

validation against experimental data when available.

As a conclusion, it was found that the mucus affords a great protection to the res-

piratory tract, and the viral production rate is underestimated when not accounting for

advection. It was also shown that the depth of virus deposition is a possible contributor

to infection severity and may also have contribution in the determination of cell tropism.

Furthermore, an infection can possibly be chronically sustained by the virtue of cellular

regeneration in the absence of an immune response of antiviral therapy. A simplified im-

mune response in this model is capable of explaining the discrimination between severe

and uncomplicated (seasonal) infections.
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Glossary

Abbreviations

Ab Antibody.

dpi Days post-infection.

HCV Hepatitis C virus.

HIV Human immunodeficiency virus.

IFN Interferon.

Ig Immunoglobulin.

ODE Ordinary differential equation.

PCF Periciliary fluid.

PDE Partial differential equation.

RT Respiratory tract.

Variables and parameters

A Antibody concentration at any time (unitless).

A0 Initial concentration of antibodies (unitless).

α Antibody growth rate (units: d−1).

β Infection rate of cells by virus (units: TCID50/mL)−1 ·d−1).

c Rate of non-specific viral clearance (units: d−1).

δ Rate of cell death (units: d−1).
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D Dead cell (units: cells).

DPCF Diffusion rate (units: m2 · s−1).

E Eclipse cell (units: cells).

F Interferon concentration (unitless).

I Infectious cell (unit: cells).

IC50 Inhibitory concentration of interferon (unitless).

k Rate of transition from the eclipse to the infectious state (units: d−1).

kv Antibody binding affinity (units: d−1).

λd Interferon decay rate (units: d−1).

λg Interferon growth rate (units: d−1).

p Virus production rate (units: TCID50/mL ·d−1).

rD Density-independent target cell regeneration rate (units: d−1).

rDT Density-dependent target cell regeneration rate (units: d−1).

T Target cell (units: cells).

tp Interferon time of peak (units: d).

τD Proliferation delay (units: d).

va advection speed (units: m · s−1).

V Virus (units: TCID50/mL).

xd Depth of virus deposition (units: m).
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