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Abstract

Detection and Monitoring for Cancer and Abnormal Vasculature by
Photoacoustic Signal Characterization of Structural Morphology

Jason Zalev

Master of Science, Biomedical Physics

Ryerson University, 2010

Photoacoustic systems can produce high-resolution, high-contrast images of vascular

structures. To reconstruct images at very high-resolution, signals must be collected from

many transducer locations, which can be time consuming due to limitations in trans-

ducer array technology. In this thesis, a method is presented to discriminate between

normal and abnormal tissue based on the structural morphology of vasculature and per-

mits data to be acquired quickly. To demonstrate that the approach may be useful for

cancer detection, a special simulator that produces photoacoustic signals from 3D mod-

els of vascular tissue is developed. Validation of the simulator is performed against a

derived exact equation for finite-length cylindrical photoacoustic sources and through

FEM models. Results show that it is possible to differentiate tissue classes even when it

is not possible to resolve individual blood vessels. Performance of the algorithm remains

strong as the number of transducer locations decreases and in the presence of noise.
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Introduction

About this work

This work investigates using a functional classifier for detecting cancer and vascular

disease through photoacoustic methods. The primary focus is on examining the effect

of changes in vascular morphology on photoacoustic signals. In this work, theoretical

models are used to test if changing specific morphological parameters in vasculature

will lead to detectable changes in photoacoustic signals and to devise a method for

discriminating between different tissues.

It is known that normal vascular tissue has a highly organized branching structure

whereas abnormal tissue, as in cancer, usually has an erratic branching pattern [1–3].

It has been predicted that photoacoustic methods will soon enter mainstream use for

clinical cancer detection because of a strong affinity for imaging vascular structures [4].

The underlying physics of photoacoustic imagery allows very high resolution images

of these structures to be produced, and for multi-wavelength systems, the ability to

measure the concentration of oxygen in blood. Although images of micro-vasculature

can be produced in-vivo, the formation of such images is currently quite time consuming

which is a major limitation of photoacoustic microscopy [5].

As an alternative to resolving vascular structures, current quantitative functional

photoacoustic methods can detect regions of tissue with high blood concentration and

high blood oxygenation that may indicate the presence of cancer [4, 6, 7]. However, in

quantitative approaches, the underlying vascular structure is not necessarily resolvable.

In other work, photoacoustic methods are being used to detect metastasized melanoma

in blood [8]; however, it is only the presence or absence of an indicative optical absorber

in circulating blood cells and not reconstructive imaging that is used for this type of

test.

To the author’s best knowledge, the mechanism of using detectable changes in pho-

toacoustic signals related to explicit structural changes in vascular morphology has never

1



INTRODUCTION

been exploited as a quantitative method for subresolution photoacoustic tissue classifi-

cation with application toward the detection of cancer or other vascular abnormality. In

addition, the author is unaware of any published work involving large scale photoacoustic

simulation of vascular networks or the reconstruction of images from such simulations.

Problem Statement

There are several difficulties to overcome with current high-resolution photoacoustic

imaging systems.

Adequate data acquisition is one of the current bottlenecks in the process. Fully

reconstructing 3D micro-vascular images may require measurements from a large number

of transducer locations. However, when the number of transducer locations is reduced,

the system resolution is also reduced.

High resolution images require high-frequency transducers. Limitations in high-

frequency transducer array technology require that mechanical scanning is performed

across the tissue sample, which can be a time-consuming process. Also, limitations in

laser pulse-repitition rate can impose an excessive delay between subsequent measure-

ments.

When quantitative functional measurements are used to measure blood oxygenation

and concentration of a region, the actual structural morphology of the tissue is not

explicitly evaluated.

Motivation for Hypothesis

It is known that the information content of a transducer signal is related to the frequency

response and field profile of the transducer (see Section 1.1.4.2). However, as the number

of transducer sampling locations becomes sparse, thereby reducing the system resolution,

the information content from each individual signal remains the same. Methods from

compressive sensing have shown that there is a great deal of information regarding high

resolution detail contained in just a few transducer samples [9, 10]. However, in recon-

structed images, most of the sub-resolution information is lost after image reconstruction

[11].

It is also known that self similar fractal structures have unique spatial frequency

characteristics [12] that would lend themselves to multi-scale wavelet analysis. Since

fractal geometry can be used to model normal and abnormal vascular tissue [2, 13, 14],

an approach using wavelet packet classification may be able detect sub-resolution vascular

features from raw data prior to reconstruction.

2



INTRODUCTION

Hypothesis

Based on structural morphology, it is possible to distinguish between nor-

mal and abnormal vascular tissue using photoacoustic methods without re-

constructing all of the vessel structures that contribute to the photoacoustic

signal.

Objective

The objective of this work is

� to determine if cancer can be detected photoacoustically based on its vascular

structural morphology, and

� to develop a method suitable for classification of such tissue.

Significance

This work provides analysis regarding the effect that structural morphology has on pho-

toacoustic signals. A method for simulating large scale photoacoustic models of vascular

tissue is developed, which may find application in further related research.

This work suggests that tissue classification with sparse transducer arrangement is

possible even when images cannot be reconstructed.

Outline

In Chapter 1, the background and theory related to the methods used in this thesis

are provided. Section 1.1 discusses photoacoustic imaging. Section 1.2 discusses the

vasculature in normal and abnormal tissue. Section 1.3 discusses current methods for

tissue classification.

In Chapter 2, the methods used in this thesis are described. Section 2.1 describes

the models used for vascular tissue and how they were generated or obtained. Section

2.2 discusses the photoacoustic wave simulations that are implemented in this thesis

and how they are validated. Section 2.3 describes the classification algorithm that is

developed to classifiy tissue.

Chapter 3 provides results and analysis. Chapter 4 contains relevant discussion.

Chapter 5 is the conclusion.

3



INTRODUCTION

Related Work

There are thousands of published works involving biomedical tissue classification and

similar problems in engineering and geophysics. Frequency domain tissue classification

is the most common approach used in ultrasound [11, 15].

In this work, simple wave propagation methods are used to simulated large vascular

networks modeled by fractal tree shapes. Another study [16] used fractal trees to model

radar backscatter from forest canopies to determine species of plant life. In the work of

Karshafian [2], fractal trees are used to model the flow and ultrasound backscatter of

ultrasound contrast agents through vascular networks.

This approach uses feature vectors extracted from dual-tree wavelet packet decom-

position [17]. Wavelet packets are a common method for producing feature vectors for

classification [18]. The support vector machine approach, which is used in this thesis, is

a common method used to produce a classifier from a set of example features [19].

4



Chapter 1

Background and Theory

1.1 Photoacoustic Imaging

Photoacoustic imaging (a.k.a optoacoustic imaging) involves the generation of ultrasound

waves from a short laser pulse. In layperson’s terms the process is analogous with using

the noise of thunder that is heard following a bolt of lightening to determine its distance.

In photoacoustic imaging distances are also calculated by measuring the time delay

between an optical stimulus and an acoustic response. In photoacoustic imaging, a laser

pulse heats an optically absorbing medium causing a rapid thermal expansion. This

creates a source of pressure that propagates through the medium as an acoustic wave.

Ultrasonic transducers that are positioned at several locations on the boundary of the

medium are able to detect the acoustic wave as a time-domain photoacoustic signal,

known as a radio-frequency line or an RF-line. Since the acoustic wave travels at the

speed of sound (∼= 1500m/s) through the medium, the RF-lines can be used to create a

3D spatial map proportional to the optical absorption strength of the medium.

Comparison of Imaging Modalities The laser pulses used in photoacoustic imaging

are not a form ionizing radiation, making it a safe imaging technology. In X-ray, CT,

and PET, the patient is exposed to ionizing radiation that can damage DNA or cause

cancer.

The resolution and depth penetration of the common imaging modalities are summa-

rized in Table 1.1. These properties make each imaging modality suitable for a specific

set of tasks.

In terms of cost, photoacoustic imaging would be in line with the cost of ultrasound

imaging, which is considered relatively inexpensive. MRI imaging machines can cost in
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excess of 1 million US dollars. MRI also does not use ionizing radiation so it is very safe.

Imaging Method Typical Typical

Resolution Depth

Computed Tomography (CT) 0.5 mm > 300 mm

Magnetic Resonance Imaging (MRI) 0.2 mm > 300 mm

Ultrasound (@ 5 MHz) 1 mm 100 mm

Optical Coherence Tomography (OCT) 0.01 mm 1.5 mm

Confocal Microscopy 0.001 mm 0.2 mm

Photoacoustic Tomography (PAT) (@ 5 MHz) 1 mm 50 mm

Photoacoustic Microscopy (PAM) (@ 50 MHz) 0.01 mm 3 mm

Photoacoustic Microscopy (PAM) (@ 200 MHz) 0.005 mm 0.2 mm

Photoacoustic Microscopy (PAM) (@ 1000 MHz) 0.0005 mm 0.02 mm

Table 1.1: depth penetration and resolution of imaging modalities. Sources: [4, 20–24].

Photoacoustic Imaging of Vascular Structures Photoacoustic imaging has three

main physical characteristics that give it a unique advantage for imaging vascular struc-

tures in tissue. First, the vascular images that are produced will endogenously have a

natural high-contrast. This is because the light-absorption (and hence the photoacoustic

signal strength) from blood is much greater than in the surrounding tissue. This causes

the detected pressure wave from the blood vessels to be much stronger than from the

other structures. This is contrary to standard pulse-echo ultrasound imaging, where

blood vessels will usually have a low image contrast.

Second, with photoacoustics, high-resolution is possible at greater depths than what

is attainable using optical imaging methods. This is because the acoustic scattering in

tissue is much less than the optical scattering. In tissue, photons cannot penetrate deeply

without scattering, which has a blurring effect in other optical methods. However, in

photoacoustic imaging, optical scattering can actually help in forming the image because

it leads to a more uniform illumination of the tissue. Photoacoustic microscopes have

been used to image micro-vascular structures on the order of 10µm and are capable of

resolving sub-cellular structures smaller than 0.5µm. Rui et al. [24] have been able to

photoacoustically image a single biological cell (see Figure 1.1).

Third, since optical absorption is dependent on the wavelength of light (see Figure

1.2b), multi-wavelength photoacoustic systems can be used in functional imaging to

measure molecular concentrations including blood oxygen saturation levels [7].

6



1.1. PHOTOACOUSTIC IMAGING

For these reasons, it has been predicted that photoacoustic imaging will emerge as a

mainstream method for detecting certain forms of cancer [4].

Limitations of Photoacoustic Imaging Laser light has limited depth penetration in

tissue. This introduces a limit on how deep photoacoustics can penetrate into tissue (see

Table 1.1). Furthermore, attenuation of an acoustic wave increases at high frequencies so

this places a further limit on the depth penetration, with high-resolution systems being

able to penetrate less deeply.

Another current major limitation is that data acquisition in is time consuming due

to limitations in laser pulse repetition rates and transducer array technology. A single

transducer element usually must be mechanically scanned across a sample which is a

slow process [25]. It is difficult to fabricate high frequency transducer arrays that have

the performance needed to image micro-vascular structures. CMUT technology [26,

27] and Fabry-Perot transducers [5] may offer significant advantages to piezo-electric

transducers, however there are still technological limitations so data acquisition remains

time consuming. Furthermore, pulse repetition rates of lasers suitable for photoacoustic

imaging are relatively slow [5]. Although the technology is developing rapidly, it is still

a limiting factor.

Before photoacoustic microscopy can be applied to clinical examinations of micro-

vasculature, technologies for quickly processing data acquired from photoacoustic micro-

scopes must be developed.

Current Clinical Applications of Photoacoustics Photoacoustic methods can be

used to detect metastasized melanoma cells circulating in the blood [8]. These cells, which

would not otherwise be circulating in the blood stream, contain high amounts of melanin

that causes them to absorb light strongly at specific wavelengths. The photoacoustic

contrast from melanin is apparent in Figure 1.1. When blood is circulated through

a controlled fluidic system one cell at a time, the laser illumination of a melanoma

cell produces a detectable spike in the time-domain photoacousitc signal indicating its

presence [8].

In several systems undergoing clinical trials, transducer arrays have been successfully

applied to photoacoustic imaging. Seno Medical Instruments (San Antonio, TX) has de-

veloped a photoacoustic imaging system that uses a dual-wavelength laser in conjunction

with a linear transducer array to detect regions of increased blood oxygenation in breast

tissue [6, 28] (see Figure 1.2). Benign growths and malignant tumours have different

blood volumes and oxygen concentrations as shown in Figure 1.2c. The approach is able

7
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(a) Optical Image of Cell (b) Photoacoustic Microscope @1 GHz

(c) Photoacoustic Microscope @400 MHz (d) Photoacoustic Microscope @200 MHz

Figure 1.1: Photoacoustic images of a melanoma cell using a photoacoustic microscope.
The melanin pigmentation in the cell produces a strong photoacoustic signal due to its optical
absorption properties. As the acoustic transducer frequency increases, the image resolution
improves but the penetration depth is reduced. Images courtesy of M. Rui, Ryerson Uni-
versity, Toronto, ON

8



1.1. PHOTOACOUSTIC IMAGING

to locate regions of suspicious tissue that cannot be detected from standard ultrasound.

It uses a functional quantitative imaging approach and does not reconstruct the finest

details of the vascular structure.

The system of Ephrat et al. [29] uses a sparse 3D transducer array is for breast

tissue imaging. The system can achieve resolutions of up to 1mm. Algorithms based on

compressive sensing, iterative reconstruction, and matrix optimization allow images to

be produced using few transducers. Similar quality reconstruction would not be possible

with backprojection algorithms.

The work of Zhang et al. [20] uses photoacoustic microscopy with a Fabry-Perot

transducer and multi-wavelength laser for in-vivo functional imaging. Blood oxygenation

of 10µm capillary structures are detectable.

9



(a) a multi-wavelength laser is used to measure blood volume and oxygenation

(b) Absorption spectra in tissue (c) Typical absorption for tumors

(d) Breast tumor reconstruction. λ = 757nm (e) Breast tumor reconstruction. λ = 1064nm

Figure 1.2: Functional imaging method of Seno Medical Instruments. Images courtesy of
Seno Medical Instruments, San Antonio, TX



1.1. PHOTOACOUSTIC IMAGING

1.1.1 Optical Absorption and Thermoelastic Stress Confinement

When a brief laser pulse illuminates a medium with an energy fluence Φ(x), the optical

energy absorbed by the medium is

H(x) = µa(x)Φ(x), (1.1)

where µa(x) is the optical absorption profile. µa(x) may depend on the wavelength of

the laser as shown in Figure 1.2b.

It is assumed that the laser pulse duration is short enough that there will be thermoe-

lastic stress confinement, where thermal conduction and stress propagation are negligible

during the laser firing. Under this condition, an initial excess pressure will be created in

the medium according to

p0(x) = Γ(x)H(x). (1.2)

The parameter Γ(x) = β(x)c2(x)
Cp(x) is known as the Grüneisen parameter, where β(x) is

the thermal expansion coefficient, c is the speed of sound and Cp(x) is the specific heat

capacity.

If the tissue is illuminated equally everywhere, such that Φ(x) is constant, this is

called the wide-field photoacoustic assumption.

1.1.2 Photoacoustic Wave Propagation

1.1.2.1 Homogeneous Media

Simiplfied wave equation Photoacoustic wave propagation in homogeneous media

is governed by the differential equation(
∂2

∂t2
− c2∇2

)
p(x, t) = p0(x)

∂

∂t
δ(t), (1.3)

where p(x, t) is pressure, c is the speed of sound, δ(t) is the Dirac impulse function, and

p0(x) is the initial pressure when the laser is fired at time t0 = 0.

This model assumes that the laser pulse is instantaneous, so that there will be ther-

moelastic stress confinement and that there is no motion within the system.
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Forward solution Solving (1.3) under basic assumptions yields the forward solution

for p(x, t). If the laser is fired at t0, the pressure at any time and position is

p(x, t) =
∂

∂t

∫
g(x− x′, t)p0(x′) dx′

=
∂

∂t

(
g(x, t) ∗ p0(x)

)
,

(1.4a)

where the Green’s function solution g(x, t) is

g(x, t) =
1

c2

δ(‖x‖ − ct)
4π‖x‖

. (1.4b)

Laser pulse profile If the laser pulse profile hpulse(t) is not an instantaneous Dirac

impulse then the pressure is given by

ppulse(x, t) =

∫ ∞
−∞

p(x, t′ − t)hpulse(t
′) dt′

= p(x, t) ∗ hpulse(t).

(1.5)

Velocity potential The quantity Ψ(x, t) is known as the velocity potential. It is

related to the pressure by
∂

∂t
Ψ(x, t) =

1

ρ(x)
p(x, t). (1.6)

The longitudinal velocity of a particle in the medium is given by v(x) = −∇Ψ(x).

Spatial Frequency Domain (k-space) It is also relevant to discuss photoacoustic

wave propagation in the spatial-frequency domain which is known as k-space [30–32]. By

taking the 3D spatial Fourier transform of (1.3) it becomes(
∂2

∂t2
+ c2‖k‖2

)
p̂(k, t) = p̂0(k)

∂

∂t
δ(t). (1.7)

Solving (1.7) the k-space formulation of (1.4) is [31]

p(x, t) = F−1
k→x

{p̂0(k) cos(ct‖k‖)} , (1.8)

where p̂0(k) = F
x→k
{p0(x)}.
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1.1.2.2 Heterogeneous Media

The photoacoustic wave equation for heterogenous media is given by

∂2

∂t2
p(x, t)− ρ(x) c2(x)∇·

(
1

ρ(x)
∇p(x, t)

)
= Γ(x)

∂

∂t
H(x, t), (1.9)

where H(x, t) is the time varying absorbed energy density and ρ(x) is the density of

the medium. Bojarski [30] and Cox et al. [32] use a discretized pseudospectral model for

simulating wave propagation in heterogeneous media is developed where at each time

step the solution is obtained by switching between spatial and k-space domain solutions.

The method has advantages over other finite difference based approaches, in terms of

computation requirements.

1.1.2.3 Dispersive Media

In tissue, the speed of sound and the attenuation are dependent on the frequency of the

propagating wave. It is common for tissue to be modeled as power law media where

the frequency dependent acoustic attenuation is given by α(ω) = α0|ω|y, where y is the

power-law exponent and α0 is a constant of attenuation [33–35].

Exact power-law media photoacoustic wave equation The wave equation for

exact power-law dispersive media has recently been solved with Green’s function solutions

by Kelly et al. [35]. It will reduce to the Szabo wave equation [36] under appropriate

assumptions. The exact power-law wave equation of Kelly et al. [35] with an added

photoacoustic source term on the right hand side is(
∇2 − 1

c2

∂2

∂t2
− 2α0

c cos(πy/2)

∂y+1

∂ty+1
− α2

0

c cos2(πy/2)

∂2y

∂t2y

)
p(x, t) = Γ(x)

∂

∂t
H(x, t).

(1.10)

Dispersive k-space propagator Treeby et al. [34] uses a wave equation much simpler

than (1.10) suitable for modeling acoustic wave propagation in tissue. A relatively simple

k-space propagator similar to (1.8) is developed as

p(x, t) =
1

2
F−1

k→x

p0(k)

 e
−jct‖k‖√
1+2jα0c

1 + 2jα0c
+
e
−jct‖k‖√
1−2jα0c

1− 2jα0c

 . (1.11)

13



CHAPTER 1. BACKGROUND AND THEORY

1.1.3 Ultrasonic Transducers

Ultrasonic transducers produce electrical signals from detected acoustic waves. The

electrical signal from a single transducer is known as a radio-frequency line or RF-

line. Ultrasound transducer arrays are available in many configurations. A linear array

consists of many directional transducers arranged in a line so that scanning can be done

electronically rather than mechanically. A phased array is an array of omni-directional

transducers that are capable of electronically steering, focusing and beamforming. An

image produced by the (log-compressed) brightness of beamformed RF lines is called a

B-mode image. When a single transducer is mechanically scanned in the xy plane, it is

called a cross-sectional scan or C-scan.

Transducers have been traditionally piezoelectric. Fabry-Perot transducers, are now

being used for photoacoustic microscopy [5]. CMUT transducers are micro-machined and

can be fabricated with many closely spaced elements [26]. High frequency transducers

are arrays for micro-ultrasound imaging have also been recently developed [37]. Another

type of transducer is the Fabry-Perot interferometer, which consists of a thin polymer

film that can be optically scanned to measure pressure. It generally has a much better

frequency response than other types of transducers [5].

1.1.3.1 Frequency Response

Assuming that each point on the surface of the transducer acts similarly, the voltage

output from a transducer (i.e. the detected pressure) can be modeled as [38]

vout(t) = em(t) ∗ fs(t), (1.12a)

fs(t) =

∫
S
p(x, t) dS, (1.12b)

where em(t) is the electro-mechanical impulse response of the transducer, fs(t) is the

force acting on the transducer surface, and p(x, t) is the pressure at the transducer

surface1.

1.1.3.2 Transducer Models

The two transducers modeled in this thesis are the ideal point detector and the large area

integrating planar detector. They are described below.

1The equation fs(t) =
∫
S
w(x)p(x, t) dS is also commonly used where w(x) is a weighting function

[39].
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Ideal Point Detector If a transducer is modeled as point detector located at xi with

frequency response em(t), the detected pressure is found from (1.4) and (1.12) as

pi(t) = vout(t) = em(t) ∗
∫
S
p(x, t) dS

= em(t) ∗ p(xi, t)
(1.13)

For an ideal transducer, em(t) = δ(t).

Large Area Integrating Plane Detector If a planar transducer is large enough to

be considered an infinite plane then (1.4) and (1.12) yield a simplified solution [40, 41]

of

parea(t) = vout(t) = em(t) ∗
∫
S
p(x, t) dS

= em(t) ∗
[∫

R2

p0(x) dx1dx2

]
x3=ct

(1.14)

Conceptually, this is the integral of p0(x) over a cross-sectional plane parallel to the

transducer at depth ct (see Figure 2.4). The simplicity of this model can be useful for

certain simulations and in extracting specific parameters for tissue classification.

By taking measurements from many angles (or mathematically rotating the coordi-

nate system), it is possible to reconstruct images using a Radon transform based method

similar to CT reconstruction [41].
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1.1.4 Image Reconstruction

Image reconstruction is the process of forming a spatial map of a sample or subject

using data obtained from sensor measurements. When the raw data is acquired from

measuring instruments the reconstructed image matrix must be calculated using a re-

construction algorithm. In photoacoustic imaging there are several possible algorithms

for reconstructing images. These include several variants of backprojection [40, 42–44],

time-reversal reconstruction [45–47], iterative approaches [48], frequency domain tech-

niques [40, 49], limited view backprojection [50], techniques involving compressive sensing

[10, 51], and several others. Various coding schemes can also be used to improve perfor-

mance such as the work of Mienkina et al. [52]. Each algorithm has different performance,

signal-to-noise ratio characteristics and computational resource requirements.

1.1.4.1 Universal Backprojection

The universal backprojection algorithm [42] allows reconstruction from arbitrarily posi-

tioned transducer measurement locations. The reconstructed initial pressure p̃0(x) can

be found in discretized form [42] by

p̃0(x) :=
1

Ω(x)

∑
i

bi

(
‖x− xi‖

c

)
Ωi(x), (1.15a)

with

bi(t) = pi(t)− ct
∂

∂t
pi(t), (1.15b)

Ωi(x) = nsi ·
(x− xi)

|x− xi|3
, (1.15c)

Ω(x) =

N∑
i=1

Ωi(x), (1.15d)

where pi(t) is the measured transducer pressure signal from location xi and nsi is the

normal of transducer i. If the transducer is non-directional then nsi = x−xi
‖x−xi‖ and Ωi(x)

will reduce to 1
‖x−xi‖2 . To better illustrate this process, the normalization terms Ω(x)

and Ωi(x) for some common geometries are shown in Figure A.1.

Xu and Wang [42] shows that the continuous form of (1.15) reduces to the specific

reconstruction equations for cylindrical [53], spherical [44] and planar [42] geometries.
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1.1.4.2 Resolution and Bandwidth

Axial and Lateral Resolution The resolution of an imaging system is the minimum

distance that two objects must be spaced apart to be detected as separate objects. The

axial resolution for photoacoustic imaging is given by [54]

%axial = 2amin ≈ 3
c

fmax
, (1.16a)

where fmax is the maximum cutoff frequency of the ultrasound transducer and amin is

radius of the smallest spherical absorber that can be resolved. The lateral resolution for

a curved transducer array is given by [54]

%lateral ≈ 1.22
λac

arcsin(D/z)
≈ amin

z

D
, (1.16b)

where λac is the smallest detectable acoustic wavelength, z is the radius of curvature of

the transducer and D is the aperture radius.

Point Spread Function Xu and Wang [55] and Anastasio et al. [56, see eq. 30] show a

spatial point spread function is related to the frequency response Êm(ω) = Ft→ω{em(t)}
of the transducer by PSF(‖x‖) = 1

‖x‖
∫∞

0 ωÊm(ω) sin(ω‖x‖) dω. This is a result that

follows from using (1.4) to obtain PSF (‖x‖) ∗ p(x, t) = ∂
∂t

( em(t)
‖x‖ ∗ p0(x)

)
. When a

transducer with a lowpass frequency response is used, this can be used to derive (1.16).

When a bandpass transducer is used, the PSF will be modulated and spatial domain

side lobes will result. Xu and Wang [55] and Anastasio et al. [56] also demonstrate the

effect of the aperture size on the image resolution and show that a larger sized transducer

reduces the image resolution.

Effect of Number of Transducers on Resolution In general, as the number of

sampled transducer locations becomes increasingly sparse, it becomes more difficult to

maintain the same resolution. This is seen in Figure 3.7.

It is generally recommend for ultrasound that transducer elements must be spaced

apart no further than λmin/2 where λmin is the minimum wavelength to be detected,

otherwise sidelobe distortions will form when the image is reconstructed through back-

projection [33].

Furthermore, in a sparse array, the ratio of the side lobe power to the main lobe power

is proportional to 1/N , where N is the number of transducers [33]. The ratio needs to

be as small as possible to accurately reconstruct images without side lobe artifacts.
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Sub-resolution Imaging and Compressive Sensing To reconstruct images at very

high-resolution, signals must be collected from a large number of transducer locations,

which can be time consuming due to limitations in transducer array technology.

However, most of the information contained in transducer measurements is redun-

dant. Compressive sensing is an approach that allows accurate reconstruction to be

performed at the expense of computational resources [9]. In compressive sensing, a

best-fit optimization problem is solved to match the measured data to the closest rep-

resentation on a set of orthonormal basis functions. Because an optimization problem

is solved, rather than the evaluation of a mathematical equation through superposition,

only the minimum amount of data required for its unique solution is need to reconstruct

an image. Compressive sensing has shown promising results in photoacoustic imaging

[10, 57].

In sub-resolution imaging, it is possible to reconstruct an image at a limit beyond

the maximum system resolution when proper assumptions are made about what states

are possible for sub-voxel structures [58]. Quantitative pieces of information may allow

inferences to be made about sub-voxel structures and where sub-voxel objects are located.

Aguet et al. [59] use a sub-resolution approach involving steerable wavelets to localize

molecular dipoles that may only exist in a few possible states.
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1.2 The Morphology of Vascular Tissue

In this section, the morphological characteristics of vascular tissue and the differences

between normal and abnormal tissue are described. These morphological characteristics

can be prominent indicators of cancer and other vascular diseases.

Section 1.2.1 provides a brief overview of angiography, the circulatory system and

methods for vascular imaging. In section 1.2.2, the morphological differences between

normal tissue and abnormal tissue are described. Section 1.2.3 discusses several methods

for creating simulated models of vascular tissue.

1.2.1 Angiography and Vascular Imaging

The Circulatory System The circulatory system consists of a network of vessels that

pump blood throughout the body. It is broken down into the pulmonary system and the

systemic system. In the pulmonary system, blood travels from the right side of heart

to the lungs and back to the left side of the heart [60]. In the systemic system, blood

travels from the left side of the heart through the body and back to the right side of the

heart. In both systems blood travels through vessels categorized into arteries, arterioles,

capillaries, venules and veins. Arteries carry blood away from the heard and veins carry

blood toward the heart. Capillaries connect the arterial network to the venous network

and are where the oxygen is released in the tissue. The typical sizes of these vessels are

shown in Table 1.2. Vessels generally smaller than 50 µm are known as micro-vasculature.

Vessels Typical Diameter

Aorta 4 - 20 mm

Arteries 50 µm - 4 mm

Arterioles 10-50 µm

Capillaries 7-9 µm

Venules 10-50 µm

Veins 50 µm - 4.5 mm

Venae cavae 5 - 15 mm

Table 1.2: Vessels and their typical sizes. The aorta and venae cavae are the largest artery
and vein in the body. Adapted from [60].

Methods for Vascular Imaging Angiography is the viewing and analysis of blood

vessels and vascular structures. The term was originally intended for use with x-ray

scans after injection of contrast agents. More recently, the term has been applied for
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other imaging methods used to view vasculature as well. The term micro-angiography is

used for imaging small vessels and capillaries.

There are several methods for imaging vascular structures in tissue such as mag-

netic resonance angiography (MRA) [61], computed tomography angiography (CTA)

and micro-computed tomography (µCT) [61], power Doppler and contrast enhanced ul-

trasound methods [62], positron emission tomography (PET) [61], fluorescent imaging,

confocal microscopy [63], and photoacoustic tomography [4, 7]. Some ex-vivo methods

for study and analysis include histological slides [14, 64, 65], and vascular casting [66].

For diagnosing cancer by analyzing vascular structure, most research has been focused

on the micro-vasculature [61]. Traditionally, it has been very difficult to acquire in-vivo

images of these capillary structures. Somewhat larger vessels can be detected using

MRA and µCT [67]. Although it is not possible to visualize the capillaries using µCT

and MRA, cancer can still be detected for large tumors using vessel tortuosity metrics

(Section 1.3.1.3) [67]. Recent technologies, such as frequency domain optical coherence

tomography [68, 69] produce very high resolution images of vascular structrues (see

Figure 1.3). Accordingly, vessel tortuosity metrics are now being applied to investigate

vasculature at the capillary levels from in-vivo scans.

1.2.2 Characteristics of Normal and Abnormal Vasculature

Angiogenesis and cancer Angiogenesis is the process of new blood vessel formation.

The process is most active during fetal development and in the placenta during pregnancy

[70]. After birth, the process of angiogenesis contributes mildly to organ growth, however

most organ growth does not consist of generating new vessels [70]. In adults angiogenesis

mainly occurs in wound repair and in the female cycling ovary [70].

The formation of new vessels requires a finely tuned balance between numerous stim-

ulatory and inhibitory signals [70]. There have been over 70 different disorders found that

are related to an impairment in this balance [70]. Tumors are populations of cells that

have lost the ability to regulate growth and therefore grow uncontrollably in response

to stimulatory signals [71]. Angiogenesis is a natural process and does not directly ini-

tiate cancer malignancy. However, when the process is impaired, it can promote tumor

progression and metastasis [70].

Structure of tumor tissue As with normal tissue, tumors require oxygen, nutrients,

and must remove their wastes. However, tumors are structurally abnormal at the cellular

and tissue levels [71]. They contain abnormal and disfunctioning blood vessels and have

little resemblance to normal vessels [1].
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Often regions inside of the tumor may be hypoxic having reduced oxygen levels [72].

To gain oxygen and nutrients, a tumor cell may begin to induce its own blood supply. The

tumor may form blood vessels from existing capillaries or may grow around other blood

vessels [71]. These changes are due to the release of growth factors such as VEGF, FGF

and IL-8 that affect the vasculature physiologically and morphologically [1, 67, 70–73].

Tumor vessels tend to tangle and connect randomly [1]. These cancer vessels have

a high tortuosity, which is a measure of the curvyness of the vessels [1, 67]. Figure

1.3 shows in-vivo micro-vascular images of healthy tissue and abnormal tissue structure.

The region of tissue shown in Figure 1.3b is clearly different from Figure 1.3a. After

successfully treatment, it is possible for the vessels to revert back to functioning and

more normal blood vessel structure [73].

(a) typical region of tissue (b) region containing tumor

Figure 1.3: Normal and abnormal micro-vessels in mouse skin acquired with optical coher-
ence tomography (OCT). 3D datasets courtesy of A. Mariampillai and A. Vitkin, Princess
Margaret Hospital, Toronto, ON

1.2.3 Vascular Modeling

There are numerous methods for generating and representing models of vascular struc-

tures in tissue. The goal of these approaches is to emulate the tissue with parameters

based on actual physical manifestations of vascular tissue. Some methods attempt to

simulate vascular geometry by simulating the process of angiogenesis and vessel forma-
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tion [74, 75]. The growth of the vascular network of a 3D whole organ with blood flow

and hemodynamic considerations is modeled by Kretowski et al. [75]. Kurz and Godde

[76] and [77] simulate angiogenisis and vascular remodelling using a cellular automa-

ton approach. Turing [78] used activator inhibitor models keep track of the exchange

of chemical signals. Differential equation methods are studied by Meinhardt [79]. The

method of Wang et al. [80] generates a realistic looking vascular branching pattern by

using Markov probability models based on actual vasculature. Several authors including

Zamir [3] and Karshafian [2] have used fractals to model renal vascular tissue.

An attempt to accurately represent the shapes of traced out vascular networks was

proposed by Tyrrell et al. [81]. Real-time vascular illustration methods involving visual

enhancements such as hatching and shadow like depth indicators which may be useful

to clinicians and researchers are studied by Ritter et al. [82].

1.2.3.1 Fractal Trees

Zamir [3] modeled vascular tissue as a fractal tree consisting of many branching vessel

segments. A fractal tree is a mathematical structure that is formed by iteratively ap-

plying a branching pattern to the result from the previous iteration. For each iteration,

the pattern is specified as a relationship between the parent segment, the left child seg-

ment and the right child segment. Here, the terms “left” and “right” are mathematical

conventions and do not necessarily correspond to the physical directions for which they

are named.

A single iteration of the fractal tree pattern is shown in Figure 1.4. Three segments

are connected in a Y-shaped configuration. Each segment is a finite-length right circular

cylinder with length L and diameter D. The child segments meet the parent segment

at a junction located at the posterior end of the parent segment. The angle at which a

child branch diverges from the parent segment is called θ. The rotation of a child branch

with respect to a reference plane through the parent is given by the angle φ.

Table 1.3 describes the parameters relating the left and right child segments to the

parent segment. The subscripts P , L and R denote when the parameter belongs to the

parent, the left child or the right child. For example, DP refers to the diameter of the

parent segment.

Zamir [3] used morphological parameters based on physical manifestations of tissue

to describe vasculature.

The diameter asymmetry (also called the bifurcation index) is defined as

β :=
DR

DL
, 0 ≤ β ≤ 1. (1.17)
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Figure 1.4: Iteration of fractal tree pattern to model vascular morphology. The posterior
end of the parent segment splits into the left and right child segments. Each child segment
becomes a parent segment in the succeeding iteration. The parameters are described in
Table 1.3.

It is the ratio of the diameters of the two child branches.

Using the hemodynamic energy minimizing constraints, DL and DR can be found

from DP by [3, 83]

DL =
DP

(1 + β3)1/3
, (1.18a)

and

DR =
DPβ

(1 + β3)1/3
. (1.18b)

The ratios of the child segment lengths to the parent segment length are known as

the distance factors γL and γR which are defined [2, 3] by

γL :=
LL
LP

(1.19a)

γR :=
LR
LP

(1.19b)

23



CHAPTER 1. BACKGROUND AND THEORY

Description Parameter

Parent Branch Diameter DP

Left Child Branch Diameter DL

Right Child Branch Diameter DR

Parent Branch Length LP

Left Child Branch Length LL

Right Child Branch Length LR

Left Child Branch Angle θL

Right Child Branch Angle θR

Left Child Orientation φL

Right Child Orientation φR

Table 1.3: Parameters describing the fractal pattern of a vascular tree

Karshafian [2] sets the distance factor of the left and right branches equal to each other

so that γL = γR = γ. However, Zamir [3], used distance factors that were set equal to

the child-parent diameter ratios as γL = DL/DP and γ2 = DL/DP as a consequence of

hemodynamic constraints. If the branching is almost symmetric (β ≈ 1), both methods

are approximately the same.

Hemodynamic energy minimizing constraints will be satisfied when the branching

angles obey [3, 83]

cos θL =
(1 + β3)4/3 + 1− β4

2(1 + β3)2/3
(1.20a)

cos θR =
(1 + β3)4/3 + β4 − 1

2(1 + β3)2/3
. (1.20b)

However, Karshafian [2] used probability distributions based on tissue measurements to

define θL and θR because cancerous tissue does not readily obey equation (1.20). The

parameters used by Karshafian [2] are summarized in 1.4.

The fractal pattern is repeated upon multiple iterations. To indicate the iteration

number for each parameter, the superscript [n] is used. In this notation, D
[1]
P , L

[1]
P , θ

[1]
P

and φ
[1]
P are the parameters for the root iteration of the fractal tree. The child of a given

iteration becomes the parent in the succeeding iteration level. This leads to the recursive
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Description Parameter Normal Tissue Abnormal Tissue

Bifurcation Index β 0.95 0.95

Distance Factor γ 0.9 0.9

Branching Angle θ 25°- 27° 25°- 140°

Branch Orientation φ 0°- 360° 0°- 360°

Table 1.4: Parameters for structural morphology used for generation of fractal trees in
[2]. A uniform probability distribution is used to induce randomness into the branching
structure.

binary-tree relationships defined between the parent and child segments by

D
[2n]
P ≡ D[n]

L , L
[2n]
P ≡ L[n]

L , θ
[2n]
P ≡ θ[n]

L , φ
[2n]
P ≡ φ[n]

L , (1.21a)

D
[2n+1]
P ≡ D[n]

R , L
[2n+1]
P ≡ L[n]

R , θ
[2n+1]
P ≡ θ[n]

R , φ
[2n+1]
P ≡ φ[n]

R . (1.21b)

Figure 1.5 shows 2D fractal trees for several values of β.
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(a) β = 0.4 (b) β = 0.7

(c) β = 0.9 (d) β = 1

Figure 1.5: 2D Fractal trees generated using equations (1.18), (1.19) and (1.20) for several
values of diameter asymmetry parameter β.
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1.3 Automated Tissue Segmentation and Classification

Tissue characterization is the process of determining which of several classes of tissue

a particular sample belongs to. For example, tissue characterization could involve de-

termining if a sample of tissue is healthy or diseased or if it is muscle tissue or adipose

tissue [11]. Image segmentation is the process of outlining the boundaries and measuring

sizes of tissue regions and structures [11].

Tissue characterization is related to tissue segmentation; however, in tissue charac-

terization, boundaries do not need to be detected. In tissue segmentation, the tissue does

not need to be identified or diagnosed [11]. Most ultrasound image segmentation meth-

ods are developed from B-mode (log-compressed) images and not unprocessed RF-signals

[11, 84]. Tissue characterization is most often done on the RF signal or envelope-detected

RF signal [11].

It is not possible to define “healthy” across all types of tissue because different healthy

regions and types of tissue will have different statistical parameters; however, it is possible

to find a statistical disparity to use for segmentation of different regions [61].

1.3.1 Feature Extraction Methods

1.3.1.1 Frequency Domain Classification

Ultrasound tissue characterization is most commonly performed in the frequency domain.

Common tissue characterization parameters such as the integrated backscatter (IBS)

coefficient and the mean central frequency (MCF) can be measured from the power

spectrum of a signal [15, 85, 86].

Power Spectrum The power spectrum of a signal f(t) is defined as

P{f(t)}(ω) := |Ft→ω{f(t)}(ω)|2. (1.22)

Short-Time Fourier Transform (STFT) The short-time Fourier transform (STFT)

of a signal f(t) is defined as

FSTFTg{f(t)}(ω, τ) := Ft→ω{g(t− τ)f(t)}(ω), (1.23)

where g(t) is a window function, and τ is the shift. The window function is used to

localize the region of interest where the analysis is performed.
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Spectrogram The spectrogram of a signal f(t) is defined as

Sg{f(t)}(ω, τ) := |FSTFTg{f(t)}(ω, τ)|2. (1.24)

Hilbert Envelope The hilbert transform of a function is defined as

H{f(t)} =
1

πt
∗ f(t)

= F−1
ω→t

{
j sgn(ω)Ft→ω{f(t)}

} (1.25)

The hilbert envelope and hilbert phase are

Henv{f(t)} = |f(t) + jH{f(t)}| (1.26a)

HΦ{f(t)} = tan-1 (H{f(t)} , f(t)) (1.26b)

1.3.1.2 Fractal and Statistical Methods

Fractal parameters have been used as a means to classify textures in medical images [13].

In [14, 64, 87] 2D fractal dimension is used to characterize histological slides prepared

from slices of vascular tissue.

Fractal Dimension The fractal box counting dimension of a multidimensional func-

tion f(x) is related to Nε(f), the number of boxes that are required to cover it at a given

scale.

D = lim
ε→0

lnNε(f)

ln(1/ε)
(1.27)

Fractional Brownian Motion (fBm) Commonly, an N-dimensional image (or 1-

dimensional signal) will be modeled to fit a fractional Brownian motion (fBm) [12, 88, 89].

A N-dimensional fBm field BH(x) is characterized by having variogram γBH that obeys

the relation [88, 89]

γBH (‖x− x′‖) = 2‖x− x′‖2H (1.28)

where H is a fixed constant known as the Hurst parameter. The Hurst parameter is

related to the fractal dimension by D = N + 1−H. The variogram γf (h) is a a measure

of spatial correlation of an N-dimensional function f(x). It is defined as

γf (h) =
1

2|Nh|
∑

(x,x′)∈Nh

|f(x)− f(x′)|2 (1.29)
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where where |Nh| is the number of spatial coordinates from the domain of function f

that are separated by a Euclidean distance h, with Nh = {(x,x′) ∈ Dom(f)×Dom(f) :

‖x− x′‖ = h} .

1.3.1.3 Vessel Tortuosity Metrics

The vasculature can also be characterized by analyzing the properties of vessels from

a structural point of view. In vessel segmentation and centerline extraction, the paths

of vessels are extracted from a reconstructed image of vascular tissue. Several methods

for extracting and analyzing vascular structures are discussed in the literature [90–93].

Metrics can be created to characterize or discriminate between normal and abnormal

vasculature. Some of the parameters studied are the vessel count, which is the number

of individual vessels contained within a region of interest; the average radius of vessels

within a region of interest; the sum-of-angles, where the change in angle between succes-

sive vessel tangents are added together at regular intervals along a vessel path; and the

inflection count measure which is related to the number of maxima on the vessel path

[93].
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1.3.1.4 Wavelet Based Classification Methods

Wavelet methods are used for tissue classification in this thesis. A brief description of

some of the basic theoretical concepts is provided to explain how wavelet packets relate

to pattern classification.

Wavelet Filters In discrete wavelet methods, a low-pass filter h[n] is selected so that

its z-transform H(z) satisfies the quadrature mirror condition

H(z)H(z−1) +H(−z)H(−z−1) = 1. (1.30)

A corresponding high-pass filter g[n] is then defined by its z-transform [94]

G(z) := zH(−z−1). (1.31)

The condition (1.30) assures that the signal is decomposed into a set of orthogonal

basis functions that are useful for signal processing.

Discrete Wavelet Transform (DWT) The DWT of a signal si is given by

si+1[n] :=
√

2(h ∗ (si)↓2)[k] =
√

2
∑
k

h[k]si[2n− k] , (1.32a)

di+1[n] :=
√

2(g ∗ (si)↓2)[k] =
√

2
∑
k

g[k]si[2n− k] . (1.32b)

The DWT filter stucture is shown in Figure 1.6.

Wavelet Packet Transform (WPT) The wavelet packet transform (WPT) is com-

monly used in classification algorithms. The WPT can be thought of as an extension of

the DWT. In the WPT the outputs of the DWT highpass filters are further processed

through a filter tree as in Figure 1.7. Wavelet packet decomposition filters wp,q[n] are

recursively defined as [18]

wp+1,2q[n] :=
√

2(h ∗ (wp,q)↓2)[k] =
√

2
∑
k

h[k]wp,q[2n− k] , (1.33a)

wp+1,2q+1[n] :=
√

2(g ∗ (wp,q)↓2)[k] =
√

2
∑
k

g[k]wp,q[2n− k] . (1.33b)
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with w0,0[n] := δ[n] for p ∈ Z+ and q = 0..2p−1. The output signals after each block are

then defined by

sp,q[n] := (wp,q ∗ s)[n] (1.34)

as shown in Figure 1.7. The original signal input to the WPT is s0,0[n] := s[n].

Figure 1.6: The Discrete Wavelet Transform (DWT) decomposition filter tree. The h[n]
and g[n] blocks are the low-pass and high-pass filters. dp[n] are called the detail coefficients
and sp[n] called the approximation coefficients.

Figure 1.7: The Wavelet Packet Transform (WPT) decomposition filters. The h[n] blocks
are the low-pass filters and g[n] blocks are the high-pass filters. The signal sp,q[n] = (wp,q ∗
s)[n] is shown as output from each stage of the WPT for p = 0..3, q = 0..2p−1 . The dotted
line indicates the boundaries of the DWT from Figure 1.6 where sp = sp,0 and dp = sp,1.

For classification algorithms, usually only wavelet decomposition blocks are used.

However, the WPT and DWT decomposition are fully reversible. Recomposition blocks

similar to Figure 1.7 and Figure 1.6 may be used to produce the original signal from

the decomposed signal. Often, processing is performed during wavelet decomposition for

purposes of noise-reduction and compression.
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Dual-Tree Complex Wavelet Transforms The DWT and WPT are not shift-

invariant2. This means that a single sample delay could significantly alter the output of

these transforms. By making use of separate real and complex filter banks, it is possi-

ble to gain nearly ideal shift-invariance. The the Complex Dual-Tree approach [95] can

be applied to the DWT [95] or the WPT [17, 18]. One approach that guarantees fil-

ters with analytic properties is called the Dual-Tree Complex Wavelet Packet Transform

(DTCWPT) [17]. Analytic signal filters are necessary to effectively extract the envelope

of a signal or wavelet packet.

In the complex dual-tree approach, an additional imaginary filter tree duplicates real

filter tree of Figure 1.7. In the imaginary tree, the real high- and low-pass filters h[n] and

g[n] from the DWT block (inside the dotted line in Figure 1.7) are replaced with their

hilbert transforms h′[n] := H{h[n]} and g′[n] := H{g[n]}. The extension filters (outside

of the dotted line in Figure 1.7) must be equal for the real and imaginary trees, but may

be different from the filters in the DWT section. The input to the imaginary filter tree

is given an additional one sample delay as a pre-filter to meet the requirements giving

analytic signal properties.

The outputs after each block in the real and imaginary filter trees are denoted by

s<p,q[n] and s=p,q[n]. Due to the analytic properties of the transform, an envelope and

phase analogous with (1.26) can be defined as

senv
p,q [n] = |s<p,q[n] + js=p,q[n]|, (1.35a)

sΦ
p,q[n] = tan-1(s=p,q[n], s<p,q[n]). (1.35b)

2The continuous wavelet transform (CWT) is shift-invariant, but requires more computational re-
sources for pattern classification
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1.3.2 Feature Vector Construction

Feature vectors have been extracted using wavelet packet methods in many applications

[18, 94, 96, 97]. A feature vector zi of length 2p is created by applying an information

cost function (see Table 1.5) to each of the 2p wavelet packets. The specific feature

vectors formulation used in this thesis is described in more detail in Section 2.3.2.1.

Information Cost Functions

energy CE(u) =
N∑
i

u2
i (1.36a)

log energy Ce(u) =

ui 6=0∑
i

lnu2
i (1.36b)

Shannon entropy CH(u) =

ui 6=0∑
i

u2
i lnu2

i (1.36c)

`p-norm C`p(u) =

(
N∑
i

|ui|p
)(1/p)

(1.36d)

variance CV (u) =
N∑
i

(
ui −

1

N

∑
n

un

)2

(1.36e)

Table 1.5: Information cost functions.
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1.3.3 Training of the Classifier

1.3.3.1 The Support Vector Machine

A common method used for pattern classification is the support vector machine (SVM)3.

The support vector machine (SVM) is a method used to produce a classifier from

a set of initial measurements that either belong or do not belong to a specific category

defined for the problem at hand. The classifier can then be used to test if any future

measurement belongs to the specific category.

Training Set The set of N examples

Vtraining := {(z1, y1), . . . , (zN , yN )} (1.37)

is known as the training set. It describes the initial measurements that are used for

training the SVM classifier. Each example (zi, yi) contains a feature vector zi ∈ Rn con-

sisting of n values that describe a single measurement. The binary value yi ∈ {−1,+1}
is called a class label. It is assigned to each example and signifies if zi is a member of

the specific category defined for the problem. It is assigned values by the rule

yi =

+1 if zi belongs to the category

−1 if zi does not belong to the category
(1.38)

The method used for generating feature vectors is given in Section 2.3.2.1.

Decision Function The SVM attempts to construct a classifier based on the decision

function

fα(z) := sgn

(
N∑
i=1

yiαiK(z, zi) + b

)
, fα : Rn → {−1, 1} (1.39)

where α = (α1, ..., αl) is a weight vector, b is a bias constant, N is the number of

examples, sgn(x) is the signum4 function, yi is the class label and K(z, zi) is a chosen

kernel function. The term

σα(z) :=
N∑
i=1

yiαiK(z, zi) + b (1.40)

3For this section, mathematical notation similar to Scholkopf et al. [19] is used.

4The signum function is defined by sgn(x) =

{
+1, x ≥ 0,

−1, otherwise.
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inside the brackets of (1.39) is called the classification strength. It represents the strength

of the classifier for any particular feature vector z being tested. The vector α in (1.39)

can be manipulated allowing fα to constitute a wide range of possible functions. This

is the mechanism for tuning the classifier. The range of decision functions fα that are

possible depends the kernel function K that is selected.

Maximization The goal of the SVM is to find the best possible values of α to use in

equation (1.39). This occurs by finding values for α that maximize

W (α) =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjK(zi, zj) (1.41)

subject to 0 ≤ αi ≤ γ, i = 1, . . . , N and
N∑
i=1

αiyi = 0, with γ a constant [19]. Any value

of zi where αi 6= 0 is called a support vector.

Solvers An optimization problem must be solved to generate a best-fit classifier for

the training examples given. Many possible solvers are available to optimize minimize

(1.41). SVMPerf [98] and NSVM [99] are two solvers with implementations in Matlab.

The details of the optimization and maximization are beyond the scope of this work.

Linear Kernel The linear kernel is given by

Klinear(z, zi) := z · zi. (1.42)

In this case (1.39) will reduce to

fα(z) = sgn

(
N∑
i=1

yiαi(z· zi) + b

)
. (1.43)

By assigning

w :=

N∑
i=1

yiαizi,

equation (1.43) can be rewritten as

fw,b(z) := sgn(w · z + b), (1.44)

35



CHAPTER 1. BACKGROUND AND THEORY

where w is the normal of a hyperplane that separates the two classes and b is the bias

offset of the hyperplane [19]. Equation (1.44) is a simple method for classifying a dataset

from a given feature vector z.

Non-linear Kernel It is not always possible to separate the two classes using effec-

tively a single hyperplane as in (1.44). Instead, a non-linear kernel can be used. There

are several common choices for non-linear kernel functions (see [19]). The classifier is

called a Gaussian radial basis function (GRBF) when

KGRBF(z, zi) := e−|z−zi|
2/κ, (1.45)

with κ a chosen constant. This kernel may be used when feature vectors exist in clusters

that are not partitionable by (1.44).

Classification and the Test Set After the minimization of (1.41), the decision func-

tion of (1.39) may be used to classify a feature vector z. The classification strength

σα(z) (1.40) may be related to how strongly the feature vector belongs to a category. A

set of measured feature vectors that are different from the original training set which are

used to test the performance of the classifier is called the test set. Section 2.3.2 describes

how the support vector machine is used to classify photoacoustic signals.
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Chapter 2

Methods

2.1 Model of Vascular Tissue

In this work vascular tissue is studied using two models. The first model involves simu-

lating blood vessel networks with fractal trees as described in Section 1.2.3.1. For this

model, the tissue is generated using published parameters and is able to represent spe-

cific types of tissue to a considerable degree of realism. Vasculature generated by the

fractal tree model is shown in Figure 2.1.

The second model for studying the morphology of vascular tissue uses 3D datasets of

micro-vasculature acquired in-vivo with optical coherence tomography. These datasets

represent the arrangement of blood vessels from normal and cancerous tissue. The

classification algorithm will be tested on these realistic datasets to demonstrate its ap-

plicability for actual tissue morphology.

In addition to these two tissue models, simple spherical and cylindrical source ge-

ometry are also used to model photoacoustic sources for the purposes of validation and

testing. The models and datasets that are used in this work are summarized in Table

2.1.

2.1.1 Fractal Tree Model

Simulation of vascular networks using fractal trees is a convenient method for gener-

ating datasets of tissue. The mathematical structure of the fractal tree model allows

specific morphological parameters to be varied in a deliberate way which is beneficial for

performing controlled testing.
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Dataset Description Quantity

Simulated Tissue

DS-SIM1 Branching angles 25°-27°(normal) 20

DS-SIM2 Branching angles 25°-30° 20

DS-SIM3 Branching angles 25°-35° 20

DS-SIM4 Branching angles 25°-45° 20

DS-SIM5 Branching angles 25°-60° 20

DS-SIM6 Branching angles 25°-80° 20

DS-SIM7 Branching angles 25°-100° 20

DS-SIM8 Branching angles 25°-140°(abnormal) 20

DS-SIM9 Branching angles 25°-160° 20

Acquired Real-Tissue Datasets

DS-OCT1 Normal 1

DS-OCT2 Abnormal 1

Source Distributions

SPH-R Sphere (radius R) N/A

CYL-R-L Finite Cylinder (length L, radius R) N/A

TREE-N Arbitrary Fractal Tree (depth N) N/A

Table 2.1: Model Tissue Datasets. There are two models of vascular tissue: simulated and
acquired.

Normal or Abnormal Tissue

The criteria for normal and abnormal tissue are based on Table 1.4. Normal tissue

has branching angles ranging from 25-27°. Abnormal tissue has branching angles rang-

ing from 25-140°. The most significant difference between the tissues is related to the

branching angle distribution. To test the variation in the branch angle distribution,

the range of branching angles is varied between normal and abnormal tissue, as shown

in Figure 2.2. The parameters β = 0.95 and γ = 0.9 (Section 1.2.3.1) are held fixed.

Twenty fractal tree datasets of each variation listed in Table 2.1 are generated, labeled

as DS-SIM1 to DS-SIM9. Each tree in each dataset is unique because a random number

generator is involved in creating the geometry. Normal tissue is represented by DS-SIM1

and abnormal tissue is represented by DS-SIM8.
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(a) Normal Tissue (b) Abnormal Tissue

Figure 2.1: Simulated vascular tissue geometry. For normal tissue, the branch angle range
varies from 25◦to 27◦. For abnormal tissue, it varies from 25◦to 140◦.

Assumptions for Fractal Tree Tissue Model

The assumptions listed below are used when simulating tissue with the fractal tree model

and are further discussed in Chapter 4. The assumptions related to the photoacoustic

wave propagation model are provided in Section 2.2.

i. The parameters used represent real tissue. A fractal tree, at best, is only an approx-

imation for real tissue. It is assumed that the parameters used for generating the

fractal tree (Section 2.1.1) will be sufficient to accurately model vascular tissue.

ii. Non-specific tissue type. The parameters for generating tissue are based on a specific

type of tissue (kidney). It is assumed that the ability to discriminate abnormal from

normal will translate to other types of tissue that can be generated from different

morphological parameters.

iii. Cylindrical vessel shape. It is assumed that vessels consist of perfect cylindrical

segments. Actual vessels do not conform to such an ideal shape, have a varying

radius and follow a curved trajectory.

iv. Scale independence. It is assumed that the morphological fractal parameters are

scale independent. Thus each iteration of the fractal tree obeys the same statistical

rules and can be modeled by the same morphological parameters.
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v. Bifurcating junctions. It is assumed that at each branching junction, a parent seg-

ment bifurcates into two child segments. Hence, there are no trifurcations and no

“dead-end” junctions where only one child segment is formed.

vi. Branching angle most significant geometric discriminator. It is assumed that the

most significant parameter that changes between healthy and abnormal tissue is the

branching angle distribution [3, 100].

vii. Branching angles are uniformly distributed. It is assumed that the tissue will have

uniformly distributed branching angles.

viii. One sided vascular network. It is assumed that the fractal tree produced represents

an arterial network. The venous network is not modeled as a separate interconnected

fractal geometry.

ix. Constant blood oxygenation. The oxygenation of blood is assumed to be constant.

x. Ideal optical properties. It is assumed that the optical properties of the tissue follow

the wide-field photoacoustic assumption (Section 1.1.2.1) where the entire tissue is

illuminated everywhere uniformly from a single laser pulse. It is assumed that blood

is the only absorber in tissue so that µa,blood � µa,tissue ≈ 0. The optical absorption

profile is given by

µa(x) =

µa,blood x is in a vessel,

0 otherwise.

The laser energy fluence can be set to the constant Φ(x) = Cp/βc2µa,blood so that the

initial excess pressure p0(x) ∈ {0, 1}.

xi. Ideal mechanical properties. It is assumed that the tissue is acoustically homoge-

neous. The effects of dispersion are not modeled.

Implementation

The mathematical representation of the fractal tree consists of an array of starting-

points [P ], an array of end-points [Q], and an array of diameters [DP ]. Together, the

geometry and positioning of all the cylindrical segments is fully defined. The procedure

for generating the fractal tree is described in Algorithm 2.1.

The input parameters L
[1]
p , (γmin, γmax), (Dmin, Dmax), and (αmin, αmax) and define

the initial segment length, the distance factor distribution, the diamater distribution,
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Figure 2.2: Simulated tissue varying branching angle range. Top left moving to bottom
right. Normal tissue appears progressively more abnormal as the maximum branching angle
chagnes from 27◦to 160◦. The surrounding sphere indicates the region of interest of the
simulation.

and the branching distribution. The input parameter N defines the number of iterations

in the fractal tree.

First, the root cylinder is defined. The starting point P [1] of the root vessel is

initialized to the origin (0, 0, 0) (line 1). The root vessel’s end point Q[1] is initialized to

a z-axis coordinate given by (0, 0, L
[1]
P ) (line 2). u

[1]
p is a reference vector that is used to

track the vessel orientation (line 3).

Each segment i is now processed in a loop (line 4). There are 2N−1 segments to

process. An inner loop (line 5) is used to process the left branch (j = 0) and the

right branch (j = 1). Equation (1.21) is used for the numbering of each segment. The

diameter of each child segment D
[2i+j]
P is calculated by equation (1.18) (line 6). The

branch angle θ
[2i+j]
P is assigned a uniformly distributed random branch angle from the

range (αmin, αmax) based on Table 1.4 (line 8). The orientation angle φ
[2i+j]
P is assigned
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Algorithm 2.1 GenerateFractalTree

Input: L
[1]
P , D

[1]
P , N, (αmin, αmax), (γmin, γmax), (Dmin, Dmax)

Output: [P ], [Q], [LP ], [DP ], [θP ], [φP ]

1: P [1] ← (0, 0, 0)

2: Q[1] ← (0, 0, L
[1]
P )

3: u
[1]
p ← (1, 0, 0)

4: for i = 1 to 2N−1 − 1 do

5: for j = 0 to 1 do

6: D
[2i+j]
P ← D

[i]
P

βj

(1+β3)1/3
rand(Dmin, Dmax)

7: φ
[2i+j]
P ← rand(0, 2π)

8: θ
[2i+j]
P ← rand(αmin, αmax)

9: P [2i+j] ← Q[i]

10: ut ← Q[i]−P [i]

L
[i]
P

11: un ← u
[i]
p × ut

12: (wx, wy, wz)←
(

cos(φ
[2i+j]
P ) sin(θ

[2i+j]
P ), sin(φ

[2i+j]
P ) sin(θ

[2i+j]
P ), cos(θ

[2i+j]
P )

)
13: Q[2i+j] ← P [2i+j] +

([[
Q[i] − P [i]

]
	un∠ cos-1(wz)

]
	ut∠ tan-1(wy ,wx)

)
rand(γmin, γmax)

14: u
[2i+j]
p ←

([
u

[i]
p 	

un
∠ cos-1(wz)

]
	ut∠ tan-1(wy ,wx)

)
15: L

[2i+j]
P ← ‖Q[2i+j] − P [2i+j]‖

16: end for

17: end for

by (1.20) (line 9). The start point of the child segment is positioned at end point of the

parent segment.

The unit vector ut represents the direction of the parent segment (line 10). The

unit vector un is the normal of the reference plane incident with ut and u
[i]
p (line 11).

The vector w = (wx, wy, wz) is defined (line 12) as the orientation of the child segment

in spherical coordinates in a world reference frame with respect to the reference vector

(0, 0, 1). w must be rotated to correspond the local reference frame of the parent segment

and scaled by the distance factor γ (line 13). In this notation, the operator
(

[w] 	x
∠χ

)
stands for the right-handed rotation of vector w about vector x by angle χ. The vector

u
[i]
p is simply the vector (1, 0, 0) in the local reference frame and must continuously be

tracked (line 14). The parent length L2i+j
P is calculated (line 15).

The mathematics can be worked out using standard algebra and geometry. In Matlab

the operator
(

[w] 	x
∠χ

)
is implemented using a quaternion rotation algorithm. Quater-
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nion rotations allow many point to be rotated simultaneously at low computational cost.

This was useful for the actual drawing the 3D vascular trees because each cylindrical

segment is rendered as many Matlab patches consisting of numerous points.

2.1.2 Acquired 3D Data Tissue Model

In the second tissue model, tissue is modeled using 3D datasets of micro-vasculature ob-

tained in-vivo from mouse skin using optical coherence tomography1 [69]. These datasets

represent the geometry of the micro-vessels with very high contrast. Figure 1.3 shows

these datasets for normal tissue and abnormal tissue with a cancerous tumor.

Each dataset is 800× 800× 128 voxels encoded as 256 shades of grey. The imaging

method can examine the tissue up to a depth of 2 mm.

The dataset is preprocessed with sigmoid thresholding procedure to make vessel

structures have a more uniform heat absorption profile for photoacoustic simulation.

The thresholding function f(x) = 1 + arctan(ax + b)/π was used where a and b are

constants chosen to maximize the vessel contrast. In Figure 3.18a-b, 2D cross-sectional

slices are shown after thresholding.

Assumptions for the Acquired 3D Data Tissue Model The following assump-

tions are used with the acquired 3D data tissue model.

i. Exact optical absorption geometry. It is assumed that the post-processed data rep-

resents the exact optical absorption profile of the vascular geometry and that no

artifacts have been introduced by reconstruction and post-processing.

ii. Constant blood oxygenation. It is assumed that the blood oxygen saturation of

arteries and veins is the same and constant within the vessel region of the tissue.

iii. Representative datasets. It is assumed that the data is representative of all normal

and abnormal tissue even though only two datasets are used.

1Datasets reconstructed from photoacoustic microscopy could have also been suitable; however OCT
datasets were chosen due to their availability.

43



CHAPTER 2. METHODS

2.2 Photoacoustic Wave Simulation

This section discusses the design, implementation and testing of photoacoustic simulators

that are used in this thesis. Section 2.2.1 focuses on the implementation of the simulators

that were developed to model the photoacoustic wave propagation from vasculature. Sec-

tion 2.2.2 describes the methods that were used for validating these simulators, including

finite-element modeling and closed form solutions for simple geometries.

2.2.1 Simulation

Three simulations using two separate transducer models are used to implement the simu-

lators used to study photoacoustic wave propagation in tissue and vasculature. Table 2.2

lists the simulators that were developed. The point detector transducer mathematical

model is described in Section 2.2.1.1. The large area integrating transducer model is

described in Section 2.2.1.2.

Method Purpose Section

Point Detector (Tree Mode) Photoacoustic simulations from large

vascular trees

2.2.1.1.1

Point Detector (Matrix Mode) Photoacoustic simulations from 3D

matrix of initial pressure

2.2.1.1.2

Area Detector Simplified mathematical model for

signal characterization

2.2.1.2

Table 2.2: Simulators developed for photoacoustic wave propagation. Tree mode is used
for simulating large vascular tree models, while matrix mode is used for simulations of dense
3D datasets.

2.2.1.1 Point Detector

A point detector is an ideal omni-directional transducer that measures a pressure signal

at a given position with respect to time according to equation (1.13). A 3rd-order But-

terworth filter with a 3dB cutoff frequency of 250MHz is applied to each point-detector

signal to approximate the frequency response of an actual system.

For this implementation, the point detector simulator operates in two modes: tree

mode and matrix mode.

The tree mode simulation (Section 2.2.1.1.1) is used to simulate the pressure signal

at x0 resulting from the laser illumination of a fractal tree produced as output from
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Algorithm 2.1 (page 42). By simulating the signal directly from this geometry, the

entire matrix of points for the region-of-interest does not need to be stored in computer

memory for the simulation. This allows a more efficient simulation with higher resolution

than would otherwise be possible.

In matrix mode (Section 2.2.1.1.2), the entire region-of-interest for the simulation is

stored in memory as a 3D matrix array. This makes it possible to simulate geometries

that are not limited to cylindrical segments as in the tree mode simulator.

2.2.1.1.1 Point Detector - Tree Mode In tree mode, the simulator operates on

a fractal tree with cylindrical-segment geometry that can be created by Algorithm 2.1.

The tree geometry is completely defined by

T :=
{

(P [i], Q[i], D
[i]
P ) : i ∈ Z, 2lmin−1 ≤ i ≤ 2lmax − 1

}
, (2.1)

where P [i], Q[i] and D
[i]
P are the start point, end point and diameter of each cylinder.

The notation Ti := (P [i], Q[i], D
[i]
P ) represents the ith cylindrical segment in tree T .

The binary-tree numbering scheme of (1.21) provides an explicit relation between

the parent of a segment Ti and whether Ti is a left or right child of its parent.

To avoid the dominant effect from the largest root branches, the simulation is limited

to the range of branching level iterations lmin to lmax. In effect, this causes each segment

from level lmin to appear as the root of a separate tree. Using this convention, multiple

separately rooted trees can be placed into a single simulation, and a forest of trees rather

than a single tree can be simulated to provide a more homogeneous vascular network.

Algorithm 2.2 describes the photoacoustic simulator for large vascular trees. Each

cylinder is broken down into many individual photoacoustic point sources (lines 1-2). The

distance of each point source to the transducer is calculated (line 3). Using equation

(1.4b) the contribution from each photoacoustic point source is added to the photoa-

coustic signal (line 4). Filtering is then performed to take the partial derivative and

perform smoothing (line 8). The filter h1[t] = [1,−1] is used to take the derivative. A

smoothing function h2[t] is used to give each point source with an approximate local-

ized spatial distribution. To cause the point sources to approximate a solid object, a

raised cosine function is used so that h2[t] = (cos(2πt/nh − π) + 1)/2 for t = 0 .. nh − 1

with nh = 2b3∆l/(c∆t)c and where ∆l is the expected value of the distance between

point sources. Figure 2.3 shows the two configurations that are used for generating

photoacoustic signals.
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Algorithm 2.2 SimulateTree(T,x0)

Input: {P} , {Q} , {DP } ,x0

Output: s0[t]

For each cylindrical segment:

1: for i = 2lmin−1 to 2lmax − 1 do

Generate list M of individual photoacoustic point sources:

2: M← GetCylinderPointSources(Ti)

Calculate the distance of x0 to each photoacoustic source in M:

3: X← {‖m− x0‖ : m ∈M}

Add the contribution from each photoacoustic source:

4: for t = tmin to tmax by ∆t do

5: s[t]←
t≤x≤ t+∆t∑

x∈X

(
1

4πc2t

)
6: end for

7: end for

Take the derivative and perform smoothing using convolution filters:

8: return s[t] ∗ h1[t] ∗ h2[t]

Algorithm 2.3 SimulateMatrix(p0(x),x0)

Input: p0(x), x0

Output: s0[t]

For each spatial location in the tissue:

1: for x ∈M do

Calculate the sample number based on the source location:

2: n← b(‖x− x0‖/c− tmin)/∆tc+ 1

Add the contribution from the point source by superposition:

3: s[n]← s[n] + 1
4πc2

p0(x)
‖x−x0‖

4: end for

Take the derivative and perform smoothing using convolution filters:

5: return s[t] ∗ h1[t] ∗ h2[t]

46



2.2. PHOTOACOUSTIC WAVE SIMULATION

2.2.1.1.2 Point Detector - Matrix Mode In matrix mode, the point detector

uses a 3D matrix array that describes the initial pressure profile immediately after the

laser has fired for each point in the simulated medium. In this mode, it is possible to use

the actual geometry from datasets of 3D reconstructed medical images as input to the

simulator. Each point in the matrix is treated as a separate photoacoustic source. The

resulting pressure at position x0 can be computed from (1.13) as described in Algorithm

2.3.

2.2.1.2 Area Detector

The area detector operates by using planar transducer assumed to be large enough

that it can be considered an infinite plane. In this case, the photoacoustic signal can be

computed according to (1.14). This is simply the integral of the p0(x) over a slicing plane

parallel to the transducer at depth ct, as shown in Figure 2.4. The electromechanical

response of the transducer is assumed to be ideal with em(t) = δ(t).

The simulator operates on the fractal tree geometry produced by Algorithm 2.1.

At each sampling time, the contribution from each cylindrical segment intersecting the

slicing plane is added to the signal. Algorithm 2.5 is used to determine if a cylinder

intersects a given position on the plane [101].

Algorithm 2.4 SimulateAreaDetectorTree(Ti, n̂, x0)

For each sampling time:

1: for t = tmin to tmax do

For each point in the parallel plane at distance ct from the transducer:

2: for x ∈ {z : (z− x0) · n̂ = ct} do

Add the contribution from each intersecting cylindrical segment:

3: s0[t] = P0
∑
i
CylinderHitTest(Ti, n̂, x)

4: end for

5: end for

6: return s0[t]

Algorithm 2.5 CylinderHitTest(Ti, n̂, x)

1: k1 ← Q[i] − P [i]

2: k2 ← x− P [i]

3: return
(

0 ≤ k2·n̂
k1·n̂ ≤ 1

)
and

(
‖k2‖2−k1·k2

‖k1‖2 ≤ (D[i])2

4

)
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(a) Linear array n = 16

(b) Planar array nx = 8, ny = 8

Figure 2.3: Configuration used in the point detector simulation.
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(a) A cross sectional slicing plane (b) Slicing plane showing the region of interest

(c) A cross sectional slice of the region of interest

Figure 2.4: Configuration used in area detector simulation. A slicing plane at depth ct
consists of point sources that contribute to the transducer signal at time t. The transducer
(not shown) is parallel to the slicing plane. The intersections of the cylindrical segments
with the region of interest are shown in (c)
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2.2.2 Validation

The photoacoustic simulators of Section 2.2.1 are validated using two methods. In the

first method, a software package is used to perform a reference simulation via the finite

element method. This is described in Section 2.2.2.1. In the second method, the sim-

ulator output is compared against a derived closed form solution for the photoacoustic

signal or a finite-length cylindrical source as described in Section 2.2.2.2.

Table 2.3 lists the tests that are performed for validation of the simulators.

Test Datasets Method Section

Validation Methods, Results

TST-V-T1 CYL-2-100 Point Detector (Tree Mode) 2.2.1.1.1, 3.1.3.1.1

TST-V-T2 TREE Point Detector (Tree Mode) 2.2.1.1.1, 3.1.3.1.2

TST-V-M1 SPH-10 Point Detector (Matrix Mode) 2.2.1.1.2, 3.1.3.2

TST-V-F1 SPH-10 FEM-3D, Sphere 2.2.2.1.1, 3.1.1.1.1

TST-V-F2 SPH-1 FEM-2D+AS, Sphere 2.2.2.1.1, 3.1.1.1.2

TST-V-F3 CYL-2-100 FEM-2D+AS, Cylinder 2.2.2.1.2, 3.1.1.2.1

TST-V-E1 CYL-2-100 Exact Equation Cylinder 2.2.2.2, 3.1.2.1

Table 2.3: Test configurations used in simulation. Each test makes use of a dataset listed
in Table 2.1.

2.2.2.1 Finite Element Simulations

To validate the functionality of the simulator, the finite element method (FEM) is used

to solve the equation (1.3) for simple geometries. It is necessary to validate the simu-

lator against a known solution to ensure that it is producing proper output to within a

reasonable degree of certainty. Comparing the functionality of the simulator against a

FEM model for the same geometry should demonstrate that the simulator is behaving

as expected.

The simulations are performed using the COMSOL2 software package. COMSOL

has a built in module for simulating acoustic wave propagation. Subdomains, which

are regions with specified boundaries, can be defined and assigned initial and boundary

conditions.

Due to the nature of the transient acoustic wave simulation, it is difficult to simulate

an entire vascular tree using FEM methods. For 3D simulation, the FEM method requires

large computational resources in terms of both memory and processing power. If this

2COMSOL Multiphysics v3.5a, COMSOL Inc., Burlington, MA
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were not the case, a custom simulator would not be required, and a FEM simulator could

simulate the entire vascular geometry. Hence, only small geometries are simulated using

the FEM simulator.

3D FEM simulation can be made much more efficient in certain situations. If a 3D

model consists of an axis of symmetry, then it is possible to reduce the computation by

one effective spatial dimension. This is done by running the simulator under a special

mode for systems with axial symmetry.

The methods for generating simulation results to be used in validation with spher-

ical and cylindrical geometries are discussed in this section. The results from these

simulations will be provided in Section 3.1.1.

2.2.2.1.1 Spherical Geometry The absorbing sphere is given an initial pressure

to represent the effect of heating immediately following homogeneous optical absorption

from the instantaneous firing of the laser pulse. The initial spherical pressure profile is

p0,sphere(x) =

P0 ‖x‖ ≤ R,

0 otherwise.
(2.2)

To describe the spherical profile in software for TST-V-F1, the FEM model, is split into

two subdomains bounded by SPH1 and SPH2 as shown in Figure 2.5. For the inner

subdomain, the initial pressure is P0 kPa. For the outer subdomain, the initial pressure is

0 kPa. The medium is water with speed of sound 1500 m/s and density 1000 kg/m3. The

outer boundary has spherical wave absorbing boundary conditions. Sampling transducer

locations are defined to measure the time domain photoacoustic signal.

The 3D ideal spherical absorber has a known exact solution of [102]

psphere(x, t) =


(
‖x‖−ct
2‖x‖

)
|(‖x‖ − ct)|, −R ≤ ‖x‖ − ct ≤ R,

0, otherwise.
(2.3)

Since the 3D sphere has radial symmetry, it is possible to reduce it to a 2D (or a 1D)

FEM model.

For TST-V-F2, the same simulation is set up for 2D axial symmetry as shown in

Figure 2.6. The absorbing sphere is given an initial pressure according to (2.2). The

FEM model is again split into two subdomains. For the inner subdomain, the initial

pressure is P0 kPa. For the outer subdomain of the initial pressure is 0 kPa.
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(a) (b)

Figure 2.5: FEM Simulation of 3D spherical optical absorber. R = 1mm. (a) The simula-
tion geometry is shown. The inner subdomain bounded by SPH1 represents the spherical
source with initial pressure P0 kPa. The outer boundary SPH2 encloses the subdomain of
the medium which has initial pressure 0 kPa. The medium is water with speed of sound 1500
m/s and density 1000 kg/m

3
. The outer boundary has spherical wave absorbing boundary

conditions. (b) The geometry is meshed into 82356 tetrahedral finite elements with 115536
degrees-of-freedom.

2.2.2.1.2 Cylindrical Geometry The geometry for the cylindrical source is shown

in Figure 2.7. It is simulated with 2D axial symmetry. The initial pressure immediately

after the laser pulse is fired is given by

p0,cylinder(x) =

P0 ‖x ·
−−−−→
(1, 1, 0)‖ ≤ R and ‖x ·

−−−−→
(0, 0, 1)‖ ≤ L

2 ,

0 otherwise.
(2.4)

The FEM model, is split into two subdomains. For the inner subdomain, the initial

pressure is P0 kPa. For the outer subdomain of the initial pressure is 0 kPa. The medium

is water with speed of sound 1500 m/s and density 1000 kg/m3. The outer boundary has

spherical wave absorbing boundary conditions. Sampling transducer locations are used

to meausure the time domain photoacoustic signal. The results are plotted in Figure 3.3

and Figure 3.4.
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(a) (b)

Figure 2.6: FEM Simulation of sphere with 2D axial symmetry. R = 1mm. (a) The
simulation geometry is shown. The axis-of-symmetry passes through x = 0. The small inner
semi-circle encloses a subdomain with initial pressure P0 kPa. The outer semi-circle bounds
the subdomain of the medium and has initial pressure 0 kPa. The medium is water with
speed of sound 1500 m/s and density 1000 kg/m

3
. The outer boundary has spherical wave

absorbing boundary conditions. (b) The geometry is meshed into 51163 triangular finite
elements with 102792 degrees-of-freedom.

(a) (b)

Figure 2.7: FEM Simulation of finite-length cylinder under 2D axial symmetry. L = 2mm,
R = 0.1mm. a) The simulation geometry is shown. The axis-of-symmetry passes through
x = 0. The shaded rectanglar subdomain represents a cylinder with initial pressure P0

kPa. The outer sphere is the subdomain of the medium and has initial pressure 0 kPa.
The medium is water with speed of sound 1500 m/s and density 1000 kg/m

3
. The outer

boundary has spherical wave absorbing boundary conditions. b) The geometry is meshed
into 69572 triangular finite elements with 139727 degrees-of-freedom.
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2.2.2.2 Exact Solution for Finite-Length Cylindrical Source

Derivation of solution for finite-length cylindrical photoacoustic source An

exact solution for the finite-length photoacoustic cylindrical source problem is derived in

terms of elliptic integrals in Appendix B. The symbolic mathematics software package

Maple3 is used to assist with the derivation. The finite-length photoacoustic source

problem can also be solved by numerical methods which may be time consuming to

evaluate. It is known that there is no closed form solution for this problem in terms of

basic mathematical functions4. In Appendix B, the exact solution is reduced to terms of

elliptic integrals which can be computed efficiently. The pressure p(x, t) waveform from

a finite-length cylindrical photoacousic source is given by equation (B.5).

In TST-V-E1, equation (B.5) is tested against the output from FEM and tree-mode

simulators as shown in Figure 3.4.

3Maple v13.2, MapleSoft Inc., Waterloo, Ontario
4This means an expression consisting of a finite number of exponential, polynomial, addition, and

multiplication terms.
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2.3 Classification and Reconstruction

2.3.1 Image Reconstruction

Reconstructed images are produced using the output of the photoacoustic simulators

developed in Section 2.2. Image reconstructing is performed using an implementation of

the universal backprojection algorithm described in Section 1.1.4.1. A list of the image

reconstructions that are performed are given in Table 2.4.

In test TST-R-M1, the 3D matrix-mode simulator is used to study the effect that

the number of transducers has on the reconstructed image resolution. The transducers

are located in a circular ring arrangement around a thin layer of tissue. The image is

reconstructed with 12, 20, 30, 40, 60, 90, 120 and 360 transducers. Results are shown in

Figure 3.7.

For test TST-R-T1 and test TST-R-T2, reconstructions from the tree-mode simu-

lator are performed to study photoacoustic image formation from the simulated vascu-

lature. Test TST-R-T1 examines the reconstruction of a three-dimensional tree in the

two-dimensional plane of a linear array transducer. The results are plotted in Figure 3.8.

Test TST-R-T2 examines the reconstruction of a three-dimensional vascular tree from a

sparse 2D-array transducer. The results are plotted in Figure 3.9.

Test Datasets Method Section

Reconstruction

TST-R-M1 DS-OCTx Point Detector (Matrix Mode) 2.3.1, 3.2.1

TST-R-T1 DS-SIMx Point Detector (Tree Mode) 2.3.1, 3.2.2

TST-R-T2 DS-SIMx Point Detector (Tree Mode) 2.3.1, 3.2.2

Table 2.4: Test configurations used in reconstruction.
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2.3.2 The Classification Algorithm

The classification algorithm is broken down into two phases that are shown in Figure 2.8.

Phase I, is the training phase, where a classifier is learned from a set of representative

measurements of the data. In Phase II, the learned classifier is used to discriminate

between measurements in a test set that were not part of the original training set.

Figure 2.8: Phases of classification algorithm

2.3.2.1 Feature Vector Creation

In both phases, feature vectors must be constructed from the sampled transducer RF

signals. The feature vector, designated zs(t), must be created on a sliding window in the

transducer signal centered at time t. A window sampling duration Tw is defined. The

number of samples in the window is Nw = Tw/∆t, where ∆t is the period of each sample.

The entire transducer signal s(t) undergoes dual-tree wavelet packet decomposition as

outlined in Section 1.3.1.4. Prior to windowing, the q = 2p − 1 packet envelopes senv
p,q [n]

are then extracted for a specified filter level p using (1.35a). The feature vector for level

p, noted zps(t), is creating by applying an information cost function C(u) from (1.36) to

each packet envelope according to

zps(t) = {C(uq) : q = 1 . . . 2p − 1} ,

uq =

{
senv
p,q [n] : n ∈

[
d t/∆t

2p
e, d t/∆t+Nw

2p
e
]}

.
(2.5)

The feature vector is then taken as zs(t) := zps(t) = (zp,0s(t), z
p,1
s(t), . . . , z

p,2q−1
s(t) ). Hence, a

feature vector zs(t) is the ordered set consisting of the information cost function applied
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to a window centered at t on each packet envelope. A feature vector thereby can be

constructed at any value of t.

Noise Reduction An approach similar to Learned and Willsky [96] is used for noise

reduction. Several feature vectors znoise,i are generated from pure white-noise. An av-

erage noise vector z̄noise = 1
N

∑
i znoise,i is then calculated. Each feature in z is then

normalized by the corresponding feature in z̄noise.

Packet Normalization To ensure that all packets have the same energy, packets are

normalized by z′ = z/‖z‖.

2.3.2.2 Training of the Classifier

The support vector machine of Section 1.3.3.1 is used to create a decision function.

To train the classifier, M transducer signals are obtained from a set of measurements

representative of signals that would be encountered during regular use. These signals

are used to construct the training set.

For each transducer signal sm(t) there are Nm window positions centered at τmn that

are spaced apart by Tstep, where τmn = τm0+(n−1)Tstep. The class labels ym from (1.38)

are assigned the value +1 for normal tissue, and -1 for abnormal tissue. The training set

(1.37) is then written

Vtraining = {(zsm(τmn), ym) : m = 1 . . .M, n = 1 . . . Nm}. (2.6)

The training set is fed to the SVM5 to obtain an optimal classifier σα(z) of (1.40).

2.3.2.3 Testing of the Classifier

Table 2.5 lists the classification tests that are performed.

Classification of simulated tissue For TST-C-T1, datasets are generated for the

fractal tree data. Each fractal tree is simulated with 64 transducers as shown in Figure

2.3b.

The training set uses 16 simulated trees for each of the 9 branching angle configu-

rations DS-SIM1 to DS-SIM9 as listed in Table 2.1. The remaining simulated trees are

used to construct the test set. From each tree, 10% ≈ 7 of the transducer signals are

5The Matlab implementation NSVM by G. Fung and O. L. Mangasarian is used for the linear kernel.
SVMPerf 3.0 by T. Joachims is used for the GRBF kernel.
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selected at random. This gives a total number of RF-line measurements in the test set

of M = 4× 9× 7 = 252.

A window size corresponding to a distance of 256µm is selected, with a step size

corresponding to 128µm. This results in 64 sampling windows per transducer signal.

Windows where the simulated data is all zero are dropped. Hence, the training set

consists of over 10000 feature vectors. The filter level p = 6 is chosen. Each feature

vector will thus have 26 = 64 features. Feature vectors corresponding to measurements

from DS-SIM1 through DS-SIM3 are assigned ym = +1. Measurements from DS-SIM4

through DS-SIM9 are assigned ym = −1.

The classifier is then created using the GRBF kernel (1.45) with the SVMPerf solver.

The quality of the solution is related to the run-time duration of the solver. The maxi-

mum solver run-time is set to 15 minutes.

To measure the output of the solver, 4 trees from the normal tissue dataset DS-SIM1

and the abnormal dataset DS-SIM8 are generated. 7 transducer signals from each tree

are selected at random. Feature vectors are created according to the same process as the

training set. The classifier strength (1.40) for each transducer is averaged and plotted.

Results are shown in Figure 3.11. Sensitivity and Selectivity are calculated as

Sensitivity =
True Positives

True Positives + False Negatives
(2.7a)

Sensitivity =
True Negatives

True Negatives + False Positives
(2.7b)

To test if the two classes are distinguishable using (1.40), the Welsh test [103] is used

to calculate Hotelling’s T 2 statistic for two independent samples with unequal variances.

The p-value corresponding to the T 2 statistic is also calculated. The p-value indicates

the probability that the null hypothesis is true, which is that the mean classifier strength

for each is class is not significantly different. If the p-value is less than 5% then it will be

concluded that the null hypothesis is false and therefore the classes are distinguishable.

Classification in the presence of noise For TST-C-T2 white noise is added to each

transducer signal in the test set of TST-C-T1 to examine the algorithm in the presence

of noise. Signal to noise ratios +30dB, +10dB, +3dB and -3dB are used. Figure 2.9

shows a transducer signal with different signal to noise ratios. Results are plotted shown

in Figures 3.12 to 3.15

Classification of Acquired 3D Data The acquired 3D data (Section 2.1.2) is tested

in a C-scan configuration, to simulate an actual tissue microscopy scan. The tissue
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Figure 2.9: Noise added to a transducer signal

datasets are 5mm×5mm× 0.2mm in size. A laser pulse illuminates a 1.2mm× 1.2mm×
0.2mm subregion of the tissue with a gaussian fluence profile as shown in Figure 3.17a and

3.17c. 4 transducers located 0.56mm from the center of the laser detect the photoacoustic

signal.

To observe the ability of the 4 transducers to reconstruct the geometry, a reconstruc-

tion of an image slice is performed (Figure 3.17d). A similar reconstruction using 256

transducers is also performed (Figure 3.17e).

The tissue is scanned in the x and y directions at 17 × 17 = 289 positions. Data is

acquired from all 4 transducers in each scan. The matrix mode point detector is used to

simulate the photoacoustic signals. The classifier is trained using 10% of the transducer

signals from a 2mm× 2mm region of normal tissue and abnormal tissue. Normal tissue

is assigned ym = +1, abnormal tissue is assigned ym = −1.

The average classifier strength from each transducer is plotted (Figure 3.16). This

is mapped into the 2D C-scan locations where the signals were obtained and plotted
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Test Datasets Description Section

Classification

TST-C-T1 DS-SIMx Classification of simulated tissue 3.3.2.1

TST-C-T2 DS-SIMx Classification in the presence of noise 3.3.2.2

TST-C-M2 DS-OCTx Classification using Acquired 3D Data 3.3.2.3

TST-C-A1 DS-SIMx Classification using Area Detector 3.3.2.4

Table 2.5: Classification tests performed.

(Figure 3.18).

Classification using the Area Detector For TST-C-A1, the area detector is used

to test the classification algorithm. The linear SVM kernel (1.42) is used. 15 datasets

for each branch angle configuration are used to train the classifier. Feature vectors

corresponding to measurements from DS-SIM1 through DS-SIM3 are assigned ym = +1.

Measurements from DS-SIM4 through DS-SIM9 are assigned ym = −1. The results are

plotted in Figure 3.19.
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Results

This chapter provides results and output produced by the methods of Chapter 2. The

results of this chapter will be analyzed and discussed in Chapter 4.

3.1 Validation of Photoacoustic Simulator

3.1.1 Finite Element Simulations

3.1.1.1 Spherical Geometry

3.1.1.1.1 TST-V-F1 The purpose of TST-V-F1 is to examine the output of 3D FEM

wave simulation from a known source geometry. A 3D FEM simulation for a spherical

photoacoustic source is performed according to Section 2.2.2.1.1. Figure 3.1a shows the

pressure from transducer location x0 = (0, 0, 2) mm . Table 3.1 lists the computational

resource usage of the simulation. An n-shape profile is observed; however, it is seen that

the signal contains a high amount of noise compared to the exact solution of 3.1d.

3.1.1.1.2 TST-V-F2 The purpose of TST-V-F2 is to examine the output of 2D+AS

wave simulation from a known source geometry. The 2D+AS FEM simulation is per-

formed according to Section 2.2.2.1.1. Figure 3.1b shows the pressure from transducer

location x0 = (0, 0, 2) mm, and Figure 3.2 shows the wave propagating at several sig-

nificant time instants. Table 3.1 lists the simulation computational resource usage. It

is seen that the signal contains a small amount of noise and is very close to the exact

solution of 3.1d. From Figure 3.2, the wave is seen to propagate radially outward at the

speed of sound.
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Figure 3.1: Simulated pressure waveforms from a spherical photoacoustic source. An
“N-shape” profile is observed. R = 1 mm. The transducer is located at x0 = (0, 0, 2) mm.
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(a) t = 0µs (b) t = 0.5µs

(c) t = 0.8µs (d) t = 1.0µs

(e) t = 2.0µs (f) t = 4.0µs

Figure 3.2: FEM pressure wave simulation from spherical photoacoustic source. R = 1mm.
If a transducer detects the pressure wave at a given spatial location, an “N-shape” waveform
will be observed as in Figure 3.1b.
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3.1.1.2 Cylindrical Geometry

3.1.1.2.1 TST-V-F3 TST-V-F3 is performed to generate the photoacoustic signal

for a finite-length cylindrical geometry as a reference to validate the simulator and the

derived analytical solution. The 2D+AS FEM simulation is performed according to

Section 2.2.2.1.2. Figure 3.4a and 3.4c show the pressure from sampled transducer lo-

cations. Figure 3.3 shows the wave propagating at several time instants, and Table 3.1

lists the simulation computational resource usage. There are perturbances at the tail

end of the pressure signal resulting from the finite ends of the cylinder. The radiating

wave propagating from the cylinder ends is seen in Figure 3.3. When z = 0.0mm the

perturbances combine into a single bump, because the wave from both cylinder ends

reach the transducer at the same time.

Description TST-V-F1 TST-V-F2 TST-V-F3

Number of elements 82356 51163 69572

Degrees-of-freedom 115536 102792 139727

Amount of memory used 1131 MB 396 MB 489 MB

Simulation time 1726 min 108 min 87 min

Table 3.1: FEM Performance. CPU: Dual Core 2.00GHz Intel Pentium, 2GB RAM. OS:
Windows XP 32-bit.

3.1.2 Exact Solution Validation

3.1.2.1 Exact Finite-Length Cylinder Equation

TST-V-E1 The purpose of this test TST-V-E1 is to compare the derived exact solution

to the 2D FEM output and the simulator output. The analytic solution of Section

2.2.2.2 derived in Appendix B is computed and compared against output from the tree

mode simulator and FEM output. Figures 3.4a and 3.4c show the pressure from sampled

transducer locations. It is seen that the shape of the waveform matches the FEM solution.

3.1.3 Point Detector Simulator Validation

3.1.3.1 Tree Mode

3.1.3.1.1 TST-V-T1 TST-V-T1 is performed to validate the tree-mode photoacous-

tic simulator. The output for an individual cylindrical segment is simulated using tree-

mode simulator (Section 2.2.1.1.1) and compare result against other reference outputs.
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(a) t = 0µs (b) t = 0.1µs

(c) t = 0.2µs (d) t = 0.3µs

(e) t = 0.4µs (f) t = 1.1µs

Figure 3.3: FEM pressure wave simulation from cylindrical photoacoustic source. L =
2mm, R = 0.1mm.
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(a) FEM and Exact Solutions. x = 0.3mm, y = 0.0mm, z = 0.1mm
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(b) Tree Mode Simulator. x = 0.3mm, y = 0.0mm, z = 0.1mm
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(c) FEM and Exact Solutions. x = 1.0mm, y = 0.0mm, z = 0.0mm
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(d) Tree Mode Simulator. x = 1.0mm, y = 0.0mm, z = 0.0mm

Figure 3.4: Pressure waveforms from cylindrical source. The output from the FEM solu-
tion, the exact solution, and the tree mode simulation are compared.
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The output is shown in Figure 3.4b and Figure 3.4d. The expected waveform is seen to

match the reference outputs.

3.1.3.1.2 TST-V-T2 The purpose of TST-V-T2 is to examine the output from a

simple tree geometry. The output from the tree-mode simulator is produced in a linear

array configuration, for a small fractal tree according to Section 2.2.1.1.1. The output

is shown in Figure 3.5 and Figure 3.6. In Figure 3.5, it is seen that the orientation of

a single cylinder plays a critical role in the shape of the detected waveform. To match

the known equation of the infinite cylinder, the transducer must be located between the

planes defining the cylinder ends. Figure 3.6 shows RF-lines produced from a single

Y-shaped bifurcation and a small fractal tree.

3.1.3.2 Matrix Mode

TST-V-M1 TST-V-M1 is performed to validate the matrix mode simulator. Sim-

ulation is performed according to Section 2.2.1.1.2 with a spherical source geometry.

The output is compared against other reference outputs as shown in Figure 3.1c. The

shape of the waveform matches the exact solution; however the n-shape profile is slightly

smoother (i.e. high frequencies are filtered).

3.2 Reconstruction

3.2.1 Resolution

TST-R-M1 The purpose of TST-R-M1 is to examine the effect of the number of

transducers on resolution from backprojection. The matrix mode simulator is used on

the normal OCT dataset DS-OCT1. Transducers are placed in a circular arrangement

around the data. The image is reconstructed for 12, 20, 30, 40, 60, 90, 120 and 360

transducers. Output is shown in Figure 3.7. It is seen that the reconstructed image

quality is reduced when fewer transducers are used. When very few transducers are

used, artifacts are introduced into the reconstructed image.

3.2.2 B-mode reconstruction

TST-R-T1 The purpose of TST-R-T1 is to visualize reconstructed images from the

tree-mode simulator using a linear phased array. In this test, normal and abnormal tree

datasets are simulated using the tree simulator. The simulated fractal branch iteration

level range is from lmin = 8 to lmax = 12. The linear array configuration of Figure
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(a) in linear array axis

(b) upright

Figure 3.5: Photoacoustic simulation of a single cylinder. The RF-lines from each trans-
ducer in the linear array are shown.
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(a) depth = 2

(b) depth = 4

Figure 3.6: Photoacoustic simulation of a small fractal trees. The RF-lines from each
transducer in the linear array are shown.
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Figure 3.7: The quality of image reconstruction as number of transducers is varied. When
fewer transducers are used, the ability to resolve small structures is reduced. n indicates the
number of transducers.
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(a) normal tissue configuration (b) abnormal tissue configuration
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(c) normal tissue cross-section
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(d) abnormal tissue cross-section
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(e) normal tissue reconstruction
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(f) abnormal tissue reconstruction

Figure 3.8: Reconstructed images using phased array. (a) and (b) transducer loca-
tions showing imaging plane. (c) and (d) cross sections of imaging plane. (e) and
(f) reconstructed images using universal backprojection algorithm. n = 64 transducers.
lmin = 8,lmax = 12.
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(a) normal tissue configuration (b) abnormal tissue configuration
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(e) normal tissue reconstruction
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(f) abnormal tissue reconstruction

Figure 3.9: Reconstructed tissue from a sparse array. (a) and (b) transducer loca-
tions showing imaging plane. (c) and (d) cross sections of imaging plane. (e) and
(f) reconstructed images using universal backprojection algorithm. n = 64 transducers.
lmin = 10,lmax = 14 depth.
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2.3a is used with n = 64 transducers. Images are reconstructed using the universal

backprojection algorithm (Section 1.1.4.1). A cross-section of the 3D image, showing

what a perfect reconstruction would look like is shown in Figure 3.8c-d Output is shown

in Figure 3.8e-f. It can be observed that artifacts from out of plane vessels enter the image

plane. It appears that vessels oriented in particular directions do not get reconstructed

as well as other vessels.

TST-R-T2 The purpose of this test is to visualize reconstructed images from tree-

mode simulator using a sparse 2D planar array configuration. Normal and abnormal

tree datasets are simulated using the tree simulator. The simulated fractal branch it-

eration level range is from lmin = 10 to lmax = 14. The 2D planar array configuration

of Figure 2.3b is used with n = 64 transducers. Images are reconstructed using univer-

sal backprojection (Section 1.1.4.1). A cross-section of the 3D image, showing what a

perfect reconstruction would look like is shown in Figure 3.9c-d. Figure 3.9 show the

reconstructed images. It appears that vessels are not properly reconstructed due to the

sparseness of the array.
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(d) abnormal tissue spectrogram

Figure 3.10: Spectrogram of an RF signal from tissue simulated with a fractal tree. (a) and
(b) show the RF signal of normal and abnormal tissue. (c) and (d) show their spectrograms.
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3.3 Classification

3.3.1 Frequency Domain Methods

3.3.1.1 Simulated Data

TST-C-S1 The purpose of TST-C-S1 is to examine the spectral properties of vascular

tissue. The spectrogram and frequency response (Section 2.3.2) are computed for sim-

ulated data. Figure 3.10 shows the spectrogram of photoacoustic RF signal generated

from normal and abnormal vascular tissue. From Figure 3.10, it is not apparent whether

there are clear differences in the spectral signals for the simulated tissue.

3.3.2 WPD Feature Vector

3.3.2.1 Performance of the Classification Algoirthm

TST-C-T1 In TST-C-T1, the performance of the classification algorithm is tested.

Tissue is simulated and classified according to the procedure outlined in Section 2.3.2.3.

Sensitivity and selectivity metrics are calculated according to (2.7) and provided in

Table 3.2. To test if the classifier is able to detect a significant difference between

each cases, the T 2 test for two independent samples with unequal variances and the

corresponding p-value are calculated. Figure 3.11 shows the performance of the classifier

for four separately generated trees of healthy and abnormal tissue. The average classifier

strength for the transducer signals is indicated by the height of the bar graph. For the

tested datasets, the classifier is able to distinguish between normal and abnormal tissue

well. Some abnormal tissue is weakly characterized as normal tissue. The p-value shows

that there is a low probability that resulting difference is not significant.

SNR TN FP FN TP Sensitivity Selectivity T2 p-value

Original 22 6 1 27 96.4% 78.6% 16.88 0.0039%

+30 dB 24 4 1 27 96.4% 85.7% 104.77 0.0000%

+10 dB 25 3 11 17 60.7% 89.2% 20.16 0.0007%

+3 dB 0 28 0 28 100% 0% 2.64 10.4134%

-3 dB 0 28 0 28 100% 0% 0.00 100.0000%

Table 3.2: Sensitivity and selectivity of the classifier. The T 2 test for two independent
samples with unequal variances and the corresponding p-value are calculated. The p-value
indicates the probability that the two classes have no classifiable difference. A p-value less
than 5% will indicate a statistical significance.
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3.3.2.2 Performance in the Presence of Noise

TST-C-T2 In TST-C-T2, it is examined how the classifier performs when noise is

introduced into the signal. The signals in the test set from TST-C-T1 are have white

noise added to give SNR ratios of +30dB, +10dB, +3dB and -3dB as described in Section

2.3.2.3. Sensitivity and selectivity metrics are calculated and shown in Table 3.2. Figure

3.12, Figure 3.13, Figure 3.14 and Figure 3.15 plot bar graphs of the classifier strengths

for the noisy signals from TST-C-T1. To test if the classifier is able to detect a significant

difference between each cases, the T 2 test for two independent samples with unequal

variances is calculated. It can be seen the classifier performs well in small amounts of

noise (Figure 3.12 and Figure 3.13). As the noise increases, the performance is reduced.

At +10dB SNR, some normal tissue is weakly classified as abnormal. At +3dB SNR,

the classifier cannot detect any abnormal tissue. The p-value shows that the resulting

difference has a high probability of being not significant for +3dB and -3dB. The result

is significant for +30dB and +10dB.
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Figure 3.11: Classification of photoacoustic signal in test set for TST-C-T1. Four fractal
trees of each tissue type were generated. Seven transducer classification are shown for each
tree. A positive test result (classification strength less than zero) indicates that the test
detects abnormal tissue, and a negative test result (classification strength greater than zero)
indicates that abnormal tissue was not detected. Branch angle distribution for (a) normal
tissue (b) abnormal tissue.

3.3.2.3 Classification of Acquired 3D Datasets

TST-C-M1 Classification of Acquired 3D Datasets

The purpose of this test is to simulate the classifier on photoacoustic signals obtained

in a C-scan mode. The transducer is scanned across many positions in the xy plane and

at each position, a subregion of the tissue is illuminated using the profile of Figure 3.17a.
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Figure 3.12: Classification of simulated tissue with 30dB SNR on data from Figure 3.11.
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Figure 3.13: Classification of simulated tissue with SNR=10dB on data from Figure 3.11.

Signals are recored from 4 transducers at each position. The classifier is trained and

tested as described in Section 2.3.2.3. The average classifier strength from each spatial

position in the C-scan is plotted to form a parametric images as shown in Figure 3.16.

The test setup is described in Figure 3.17. Figure 3.18 shows a 2D C-scan style plot of

the classifier strength. This shows that the abnormal tissue is discriminated from the

normal tissue. Figure 3.17d and Figure 3.17e show that when only 4 transducers are

used, the ability to reconstruct a 2D slice of tissue is not possible, although when 256

transducers are used the vasculature can be reconstructed. To test if the classifier is able

to detect a significant pattern between the two cases, the T 2 test for two independent

samples with unequal variance is calculated to be T 2 = 1259.9. This corresponds to a

p-value of 0.00% which shows that the datasets of Figure 3.16 are significantly different.
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Figure 3.14: Classification of simulated tissue with SNR=3dB on data from Figure 3.11.
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Figure 3.15: Classification of simulated tissue with -3dB SNR on data from Figure 3.11.
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Figure 3.16: Classification Strength Acquired 3D data. Data is plotted in the order
obtained from C-scan in the xy plane. This data is used to create the parametric images in
Figure 3.18.
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(a) Gaussian pulse profile (side view)
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(b) 1.5 × 1.5mm2 tissue region. depth = 0.1mm.
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(d) reconstruction. n = 4 transducers.
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(e) reconstruction. n = 256 transducers.

Figure 3.17: Reconstruction and setup of OCT data test. Figure (a) shows the Gaussian
optical illumination profile used to illuminate a 3D tissue subregion. Figure (b) shows a
2D cross-sectional slice of the 3D region. Figure (c) shows the initial pressure at t = 0
generated by the Gaussian shaped optical heating profile. Figure (d) shows the attempted
reconstruction of the 2D slice when 4 transducers (directly above the circular artifacts)
record the data from the region. Figure (e) shows the reconstruction when 256 transducers
record the data.
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(b) Abnormal Tissue Slice. depth = 0.875mm.
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x[mm]

y[
m

m
]

 

 

−2 −1 0 1 2

−2

−1

0

1

2

−3 −2 −1 0 1 2 3

(d) Classifier Strength on Abnormal Tissue

Figure 3.18: Classification of acquired 3D data. Figures (a) and (b) show 2D cross-
sectional slices of the of the dataset projections of Figure 1.3 (post-thresholding). (c) and
(d) parametric images of classifier strength (Figure 3.16) applied to photoacoustic signals
from C-scan of the 3D tissue as described in Figure 3.17. There were 289 C-scan regions
simulated, each recorded data with 4 transducers. The classifier was trained on a subset of
the recorded data from each tissue type.
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3.3.2.4 Area Detector

TST-C-A1 Area detector

In TST-C-A1, the classifier strength using the linear kernel is examined. Simula-

tions using the area detector are performed according to Section 2.3.2.3. Simulated test

sets DS-SIM1 to DS-SIM9 are used. The results are shown in Figure 3.19. It appears

that there is a trend for the classifier strength to be lower as the tissue becomes more

abnormal.
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Figure 3.19: Classifier strength using the area detector. Five trees from each tree configu-
ration (DS-SIM1 to DS-SIM9) were tested. The x-axis shows the classifier strength for each
sliding window position. Vertical lines separate each tree in each configuration.

80



Chapter 4

Discussion and Analysis

This chapter discusses and analyzes the results of Chapter 3.

4.1 Classification

Performance of classification algorithm

The classification algorithm is tested on the simulated tissue model, and on the acquired

3D data model which is based data acquired from real tissue.

From Figure 3.11 it can be seen that a classifier can be constructed that will discrim-

inate between photoacoustic signals of the normal and abnormal tissue models. Figures

3.12-3.15 examine the effects of white noise on the signals. It can be seen from Table

3.2 that noise reduces the performance of the algorithm. With no noise the classifier

performs with a sensitivity of 96.4%, a selectivity of 78.6% and a p-value of 0.0039%.

With a SNR of +30dB the classifier performs with a sensitivity of 96.4%, a selectivity

of 85.7% and a p-value of 0.0000%. With a SNR of +10dB the classifier performs with

a sensitivity of 60.7%, a selectivity of 89.2% and a p-value of 0.0007%. However, when

the SNR is only +3dB the classifier performance is greatly reduced with a sensitivity of

100%, a selectivity of 0% and a p-value of 10.4%. At -3dB the classifier performs with a

sensitivity of 100%, a selectivity of 0% and a p-value of 100%.

The classifier is designed to give a positive test result if abnormal tissue is detected.

If abnormal or unknown tissue is detected, the result from the classifier is positive. This

was achieved because the bias of the classifier (b in equation (1.40)) has a value skewed

towards abnormal tissue. This can be seen from Figure 3.15, where there is so much noise

in the signal that unbiased classifier does not detect if the tissue is normal or abnormal.

If the bias term was equal to zero in this case, then σα would be close to zero. However,
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CHAPTER 4. DISCUSSION AND ANALYSIS

due to the bias σα approaches -0.55 as shown in Figure 3.15. When the noise is added

to the signal, the classifier is able to perform properly, making more false positives and

false negatives.

There is room improvement in the classifier. The SVM was allowed to search for a

decision function for only a short time, so the classification strength is not as good as it

could be. Also, the chosen wavelets, the window size, the step size, chosen wavelet packet

filter basis, and the training set could be improved upon to generate a more accurate

classifier by further fine-tuning.

The simulated tissue may also be less discriminatable in some ways than for an actual

in-vivo case. In real tissue, there may be large differences in geometry (see Figure 3.18a-

b) and blood oxygenation (see Figure 1.2c) which would likely help the performance of

the classifier.

To test the simulations on a more realistic tissue geometry, 3D OCT datasets were

used. Figures 3.18 and 3.16 show that the a classier can be constructed able to detect

abnormal tissue. As seen in Figure 3.18, a 2D parametric image can be created that

used the classifier. Although only two datasets for 3D geometry were available, the

classifier performs well to discriminate between them as seen from Figure 3.18. It should

be noted that even though the tissue can be discriminated using there RF data, there is

insufficient information to resolve the vascular structures as shown in Figure 3.17ad.

The classification method outlined in Section 2.3.2 is able to adapt to many different

types of input signals. It simply requires a training set to learn from, and detectable

differences in the signal. Furthermore, although the basic SVM mechanism is used to

discriminate only between two categories, multiple classifiers can be combined and used

to discriminate between multiple categories.

From equation (2.5), it is seen that the windowing does not need to be done until

after the WPD is performed. This is computationally advantageous because it allows

the filter tree structure of Figure 1.7 to be used once per RF-line and not once per

feature vector. In addition, the approach uses a sliding window on the envelope of the

DTCWPD [17] signals, which may be a new approach to feature vector generation.

The large area integrating transducer model was also used to classify photoacoustic

signals from vasculature. The model was tested as the branching angle was varied from

healthy tissue to abnormal tissue for 9 different classes. Figure 3.19 shows that as the

tissue becomes more abnormal, the classifier strength also follows this trend. The large

area transducer model will be discussed further in Section 4.3 and Section 4.6.
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4.2. VASCULAR TISSUE MODEL

Spectral Methods

Frequency domain methods are common for ultrasound tissue classification [11, 15, 84].

The performance of spectral methods were not formally tested in this thesis. Initial

attempts to use spectral methods indicated that the frequency domain power spectra of

the of the simulated normal and abnormal tissue models were similar. Figure 3.10 shows

the spectrogram of a normal and abnormal simulated tissue signal.

Although a frequency domain approach may have been able to detect differences

in the fractal tissue model, the applicability the method would need to reevaluated for

each type of tissue that was classified. It was not expected that the method would be

applicable to any tissue besides kidney, since the fractal parameters were based on kidney

tissue. The approach of Section 2.3.2 is flexible enough to detect many sorts of differences

when they exist. Nonetheless, wavelet packets can be expressed in the frequency domain,

although the method is very different from common frequency domain methods.

4.2 Vascular Tissue Model

The vascular tissue models are now discussed. Fractal trees are able to approximate

specific tissue types to a considerable degree of realism. However, this is only an approx-

imation of actual vascular geometry.

Healthy kidney tissue, in particular, obeys a highly regular fractal pattern that can

be modeled closely [3]. It may be an oversimplification, however, to assume that the

fractal pattern holds across all scales. Further simulation could be done where the tissue

model incorporates changing morphological parameters at each scale. Pulmonary tissue,

which also has a highly fractal structure, is much less suitable for photoacoustic study

because acoustic waves can not propagate freely into the air that flows through this

type of tissue. Vessels in other tissue types also obey fractal laws, but may have a

higher degree of randomness and less regular branching intervals; however, the space

filling properties are fractal [13, 14]. Other types of tissue have branching patterns

that have been characterized and may be simulated by the methods presented in this

thesis. For example, the morphological branching parameters of colon endothelial tissue,

is characterized by Konerding et al. [66]. This type of tissue could be suitable for clinical

photoacoustic probing as it is more accessible than kidney tissue. Since the penetration

depth of photoacoustic imaging is limited, to access kidney tissue in-vivo may require

an intra-venous photoacoustic probe [27], although there still may be some difficulty

imaging an entire kidney away from large vessels.

Ideally, the methods used in this thesis would be applicable to detecting cancers
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via micro-vascular structures in skin or endothelial tissue which are accessible; or for

analyzing signals of larger vessels and larger tumors deep within tissue that cannot be

fully resolved using a linear array.

Histological slides are also used to characterize tissue based on fractal patterns [13,

14, 64, 87]. As will be discussed in Section 4.6, the fractal dimension of the 3D tissue

should relate to the fractal dimension of a 1D photoacoustic signal.

In real tissue the spatial positioning of the vessels follow a probability distribution.

If the simulated tissue closely approximates this distribution, the model could be con-

sidered statistically accurate for photoacoustic purposes. Since it is difficult to duplicate

this statistical distribution using mathematical models, an acquired 3D dataset was used

to provide more realistic geometry as input to the classification algorithm. As an alter-

native, the method of Wolbarst and Hendee [21] could be used to generate more accurate

vascular models, however it is more convenient to use the acquired 3D datasets. Instead

of using models of OCT data, acquired data from photoacousitc microscopy could have

been used. In this case, the dataset would have not been called a model, but rather,

experimentally obtained in-vivo measurements. The OCT datasets were chosen due to

their availability and because of their high image contrast and resolution. By using sim-

ulated signals, the effects related to vessel geometry are isolated from other tissue effects;

hence, the analysis is on the structural morphology of the issue, and not on functional

parameters such as blood volume and oxygen saturation.

Although photoacoustic signals generated from real tissue in-vivo are expected to

be significantly different from tissue models, the classification methods of Section 2.3.2

can still be applied to in-vivo photoacoustic signals. In fact, other parameters that vary

in the normal and abnormal classes of real tissue such as blood oxygenation, vascular

density, etc. (see Figure 1.2c) should actually help the classifier algorithm’s performance,

by imposing further differences in the signals. This may enhance existing photoacoustic

systems, especially multi-wavelength systems, which are already able to detect regions

of suspicious tissue to a limited degree.

4.3 Wave Propagation

The wave propagation from the simple geometries and from the vascular trees are now

discussed.
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2D Acoustic wave profiles

Figure 3.2 shows propagating acoustic waves at several time instants for the spherical

source geometry. It is instructive to observe how the n-shaped profile of Figure 3.1 results

when a point detector is located at a fixed position outside of the absorbing sphere.

Figure 3.3 illustrates the wave propagation from a finite-cylinder. This figure shows

why there is a perturbance at the tail end of the plot in Figure 3.4. It can also be seen that

that when the point detector is located between the planes capping the cylinder ends,

the wave propagates according to the infinite-cylinder equation; the finite-cylinder ends,

however, radiate outward and interfere with the pressure wave which is the detectable

perturbance at the tail end of the signal.

RF-lines

The RF-lines from a linear phased array transducer are simulated in Figure 3.8 and

Figure 3.9. In comparing Figure 3.8c and Figure 3.8d, it can be seen that the orientation

of a finite cylinder plays a critical role on the recieved photoacoustic signal. This can

also be concluded from Figure 3.3. Only when the cylinder is oriented in a particular

way does the waveform resemble the infinite-cylinder case. This may also be related to

an effect seen in Figure 3.8 where cylindrical segments of particular orientations do not

get reconstructed well.

Figure 3.6 shows the RF-lines produced by small fractal trees. These also show that

the photoacoustic signals are dependent on the orientation of the fractal trees.

Forward Solution Simulations

The simplified photoacoustic model of equation (1.3) is now analyzed. Here, the laser

pulse is modeled an instantaneous impulse. This is not true for any laser; however,

high powered lasers with shorter pulse-widths and high repetition rates suitable for pho-

toacoustic imaging are continually improving, becoming less costly and more available.

Hence, this approximation continues to better represent actual imaging devices.

To model a non-instantaneous laser pulse, the time-domain photoacoustic signal must

be convolved with the temporal laser pulse profile as in (1.5). Hence, if the laser pulse

profile is known, it is not difficult to deal with non-ideal laser pulse profiles in simulation.

Thermoelastic confinement is also dependent on the pulse duration of the laser. This

changes with the resolution requirements of the geometry being imaged; however, it is

not difficult in practice to choose a laser with short enough pulse duration that thermal

confinement will be obeyed for the necessary scale and frequency range being imaged.
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The acoustic parameters are assumed to be homogeneous in the simulation. This

assumption is reasonable because there is much less acoustic impedance between blood

vessels and other tissue compared to the optical contrast. In pulse-echo ultrasound

imaging, there is little contrast from blood except when imaging flow using Doppler or

when ultrasound contrast agents are used. Minor acoustic inhomogeneities would cause

minor perturbations in the pressure wave, however the main incident wave is expected

to change only slightly. It is expected that the SVM training mechanism will be able to

account for any such changes if necessary.

It would be possible to using the heterogeneous wave equation (1.9) for simulating

tissue, however the size of the simulation for 3D models, and the solution speed was

not practical for this analysis. The K-Wave Toolbox1 [104] was examined as a method

to simulate dispersion and heterogeneity; however, it was found that these simulations

would be computationally intensive compared to the simpler methods of this study. The

effect of dispersive and frequency dependent attenuation in tissue was not modeled in this

thesis. The dispersive k-space models of Treeby and Cox [34] from equation (1.11) would

allow the simulation of 3D tissue for approximately modeling tissue-realstic dispersion.

4.4 Validation of Photoacoustic Simulations

To validate the photoacoustic simulations, the simulator output is compared against

other references. These references include the exact-solutions and also FEM simulations

for simple spherical and cylindrical source geometries.

FEM Simulations

The FEM model is implemented as a transient simulation of an acoustic pressure wave

propagating from an initial source distribution. This is different from FEM (or FDM)

simulations that are implemented using phasors in a time-harmonic analysis to model

the steady-state behaviour of an acoustic system.

Time-harmonic analysis is useful for simulating transducer field profiles or the fre-

quency responses of ultrasound contrast agents, for example. In general, time-harmonic

analysis involves a steady-state sinusoidal frequency domain input. The amplitude and

phase at each spatial position for the resulting steady-state sinusoidal output is what

is calculated. By performing the time-harmonic analysis over many frequencies, the

frequency response of a system can be found.

1K-Wave Toolbox, B. E. Treeby and B. T. Cox, 2009
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For the transient FEM simulations performed in this thesis, the time-domain pressure

solution at each FEM node is computed in successive time-steps. The accuracy of the

solution is reduced with time as errors accumulate2 at every time step. By reducing

the duration of each time-step, the solution accuracy will increase, but the simulation

run-time will also increase. Using a higher number of elements (i.e. a finer mesh) in

the simulation increases the accuracy of the solution; however, adding more elements

will also increase the simulation run-time, and the amount of memory required for the

simulation.

To ensure that the FEM simulator is itself generating accurate output, the spherical

source geometry is used. The photoacoustic signal produced from a spherical absorber

has a well known exact solution (see 2.3). Figure 3.1 compares the output for several

simulations of spherical absorbers. It is apparent in Figure 3.1a that the output of the

3D FEM simulation TST-V-F1 had a poor signal-to-noise ratio (i.e. the output was

corrupted with errors). This is not a limitation of the method itself, but a limitation

of the computational resources that were available to run the simulation (see Table

3.1). With the computational resources at hand, it would be a challenge to improve the

accuracy from the 3D simulator to a level that would be sufficient for further validation

of the photoacoustic simulators.

FEM simulation using 2D+AS for models with axial symmetry in TST-V-F2 and

TST-VF3 produces much more accurate results (see Figure 3.1b). For this reason 2D+AS

FEM model was used to validate the wave propagation from the finite-length cylindrical

source. The major limitation of the 2D+AS simulations is that models must have axial

symmetry. This prevents simulation of bifurcating (Y-shaped) vessels, or larger trees

which do not have axial symmetry. However, the Green’s function solution to the pho-

toacoustic wave equation (1.4b), obeys the principles of linear superposition. This means

that the photoacoustic wave produced by a system with many separate absorbers is the

sum of the contributions from each absorber treated separately. Thus, (assuming regions

of overlap are not counted more than once) the photoacoustic signal for the complete

fractal tree can be calculated by adding together the contribution of each cylindrical

segment. Hence, validation of the large fractal tree simulator follows from the validation

of individual finite-length photoacoustic segments.

The effect of overlap between segments in the fractal tree simulator could be handled

by further expanding on the simulation algorithm; however, these effects are assumed to

be much less prominent than using a fractal tree as an approximation for real tissue in

2FEM Solvers usually ensure that the accumulated error is bounded and can produce estimates on
the maximum overall error. They may also automatically choose the optimal time stepping interval.
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the first place.

In comparing the 2D+AS model (Figure 3.1b), the matrix mode point detector (Fig-

ure 3.1c), and the exact solution (Figure 3.1d) the output indicates that these models

are behaving as expected, and successfully pass validation testing. The tree-mode point

detector simulation is compared against the exact solution for the finite cylinder and the

2D+AS FEM solution in Figure 3.4. These plots also demonstrate matching output and

therefore also successfully pass validation testing.

Exact Solutions

The N-shape profile produced by the exact solution for the photoacoustic pressure signal

from a spherical optical absorber (Figure 3.1d) is well known [102, 105].

The exact solution for a finite-length solid cylindrical photoacoustic source is less

well understood. It is known that this problem has no closed form solution in terms of

basic mathematical functions.

Photoacoustic wave propagation from infinite cylinders has been well studied [53,

102, 105]. Hoelen and Mul [102] used approximations for signals from non-solid infinite

cylinders with axially symmetric absorption profiles to model blood vessels.

The finite-length photoacoustic cylinder problem was studied by Remillard [106]

where the sound propagation from a bolt of lightening was modeled as a cylindrical

source. It was noted that the solution was elliptical, and could be calculated by numer-

ical methods capable of solving elliptic equations. A far-field approximation was also

provided in [106] to account for the effects from the cylinder ends. Plots resembling

Figure 3.4 were produced.

Accordingly, it was not a necessity to reduce the photoacoustic finite-cylinder in terms

of elliptic integrals to generate output for this thesis; however it may be of significant

interest, in particular for finding better approximations to the finite-length cylindrical

source problem, for improving their speed of calculation, analyzing asymptotic cases, or

in cases where reduced form exact solutions are needed.

In terms of other related problems, ultrasound scattering from a finite-length cylinder

has been studied by Ye [107], Williams et al. [108], Stanton [109], South [110] and

several others. Many of these problems investigate other processes such as the vibration

modes of the cylinder and the effects pertaining to the incident ultrasonic waves; It is

possible that in one of these studies, the mathematics for solving the exact finite-length

phototoacoustic cylindrical source problem were encountered as a sub-problem; however,

the direct solution of the photoacoustic source problem does not appear to be explicitly

isolated or mentioned.
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The finite-length cylindrical antenna (the exact wire-kernel problem) is a well studied

problem in electromagnetics. It is related to the solid finite-length photoacoustic cylinder

problem; however, in a electrical conductor the current travels at the surface of the

cylinder, and the problem involves the potential and not its derivative. Hence, the

electromagnetic problem is akin to finding the photoacoustic velocity potential of a finite-

length cylindrical shell and not a solid cylinder. The exact solution for this problem was

first found by Wang [111] in the frequency-domain. Further methods for evaluating it

have been explored by Werner [112]. Davies and Duncan [113] analyzed the stability of

the time domain solution and it was shown to be stable; however, there still remain open

questions involving stability requirements on the continuity of the inputs for generating

well-posed solutions.

Stability and numerical analysis for the photoacoustic problem is also not performed

in this thesis. Further reduction of the formulation in Appendix B will have to be done

for asymptotic cases where number get very large or small.

It is difficult to judge the significance of reducing the finite-cylinder problem to terms

of elliptic integrals. Nevertheless, the method used does appear to be a new approach

and may lead to further insight on the problem. As a second result, the solution of the

infinite cylinder problem is put in terms of complete elliptic integrals which appears to

be a new presentation.

4.5 Reconstruction

Number of Transducers

In general, as the number of sampled transducer locations becomes increasingly sparse,

it becomes more difficult to maintain high image resolution. This is apparent from

Figure 3.7, where transducers are located in a circular arrangement around a thin three-

dimensional photoacousitc source. As the number of transducers is reduced, the resolu-

tion is greatly decreased. The effect is also seen in Figure 3.17 where 4 transducers are

not enough to reconstruct a slice of tissue, however 256 transducers will reconstruct it.

The relationship relating the number of transducers to the maximum image quality

apparently still has many questions in photoacoustic imaging [40]. There is however

known relationships relating the transducer bandwitdh, and the aperature size (and

even the uniqueness of reconstruction based on transducer positionings) to the maximum

achievable resolution [40, 55, 56]. As mentioned in Section 1.1.4.2, the power of the side

lobes is inversely proportional to the number of transducers [33]. Studies have also

been performed on limited view photoacoustic tomography where the transducer do not
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encircle the entire object [50].

The relationship between the number of transducers and the image resolution is

important for this thesis because the performance of the classifier is being evaluated

on sub-resolution image structures. When too few transducers are used, low image

resolution will result, however that the classifier may still differentiate between tissue,

even when the images formed have too low of a resolution to be distinguishable.

Tissue Reconstruction

Figure 3.9 shows reconstruction for a sparse array of transducer points. In Figure 3.9e-

f, the vessels are not resolvable because the transducers are too sparse. However, the

classification algorithm is still able to classify the tissue for the configuration shown (see

Figure 3.11). Figure 3.8 shows a reconstruced image 2D slice where the transducers are

packed more densely. It is possible to make out the structures in this case (note: for

this simulation the vascular structures are larger because lmin and lmax simulate different

vessel iteration levels).

Figure 3.8 examines the effects of reconstructing 2D image plane from 3D tissue

using linear array. Artifacts related to the out-of-plane 3D geometry are introduced

into the reconstructed image. Out-of-plane cylindrical segments are seen to enter into

the reconstructed plane. The orientation of the cylindrical segments also affects how

well they are reconstructed. Segments lying perpendicular to the linear array do not

appear well reconstructed compared to the other segments. This may be related to the

orientation dependent phenomenon noted in Figure 3.5.

In Figure 3.9 the effect of a sparse planar 2D transducer array is examined. This

configuration was used for the classifications performed in Section 2.3.2. In the re-

constructions, there is no visual indicator to distinguish normal and abnormal tissues.

However the classifier is able to distinguish the tissues in these sets. The streaks in the

image are artifacts related to the sparse transducers arrangement.

Reconstruction as an Optimization Problem

It is possible that other reconstruction methods [10, 29] may perform better reconstruc-

tion than backprojection, although it is likely that the simulated details are too small

even for these methods. High-frequency attenuation in tissue also will prevent small

details from being imaged at depth (this attenuation was not modeled in this thesis).

The compressive sensing approach of Provost and Lesage [10] involves large compu-

tational resources to maximize an optimization problem to find the best fit image for the
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observed data. This can result in a higher resolution than backprojection [9]. The limits

to this are not endless, however. For example if only one transducer was used, the image

could not be reconstructed; however, using a single transducer the algorithm may be

able to find the position and orientation of a known object following certain constraints.

Frequency-response and field-profile

Photoacoustic signals can contain information with high frequency content resulting from

the laser impulse. This is not generally true in standard ultrasound because the pulse-

echo response of tissue is nearly linear, so the frequency spectrum of the back-scattered

signal is proportional to the frequency spectrum of the band-pass transmit pulse.

Transducer frequency-response and field-profile are the main constraints on the small-

est observable feature for a particular transducer as determined by equation (1.16). Since

transducer sparsity does not effect the frequency content of an individual transducer sig-

nal, the same small spatial details may be captured, although not necessarily localized.

However, the SNR would also be further reduced in this case, but this could be partly

remedied by averaging signals from multiple laser firings.

4.6 Fractal Considerations

In frequency domain analysis using Fourier methods, periodic signals have distinct prop-

erties. An expectation of this study was that the highly regular fractal pattern in the

structural morphology of blood vessels would lead to photoacoustic signals with distinct

frequency domain characteristics. Additionally, wavelet multi-resolution analysis ana-

lyzes signals at different scales; so a spatial distribution with fractal properties would

be expected to produce photoacoustic signals that can be readily analyzed by wavelet

methods.

One interesting observation in the mathematics for the area detector model (equation

1.14) is that it may be possible to relate the 3D fractal dimension directly to the 1D

photoacoustic signal. Fractal dimensions, which are commonly used for the character-

ization of tissues in 2D histological slides [14, 64, 87, 114], can thus relate directly to

photoacoustic signals. It is common to model tissue as fractional Brownian motion or a

fractional Brownian sheet [12]. If it is assumed that the 2D slides can be modeled this

way then 1.14 can be used with stochastic calculus [115] to integrate over a 2D plane at

a depth of ct to calculate the 1D photoacoustic fBm signal. Alternately, the stochastic

wave equation [116, 117] could be used to find the expected 1D photoacoustic signal from

tissue modeled as a 3D fBm.
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4.7 Wavelets in Photoacoustic Imaging

Wavelets are a common method for tissue classification; however they are starting to

be used more in image reconstruction. [10] use the compressive sensing approach which

makes use of wavelet representations of the reconstructed image. The approach described

by Vonesch and Unser [118] will likely speed up this process significantly.

Radial wavelets may find use in photoacoustic imaging for reconstruction and clas-

sification. The work of Rauhut and Rosler [119] and Cui and Peng [120] develop radial

wavelets and discusses their relationship with the spherical-mean transform. Since the

spherical-mean transform is related to the photoacoustic pressure, the mathematics de-

scribed are relevant toward photoacoustic (and ultrasound) imaging. The relationship

between wavelets operating on photoacoustic RF-lines and their corresponding represen-

tation as 3D spatial radial wavelets can be deduced from these techniques. The spatial

profile of each wavelet packet from equation (1.33) could thus be calculated.

The radial wavelets of Cui and Peng [120] and Rauhut and Rosler [119] only span

the space of 3D radial functions, and not the entire space of integrable 3D functions.

Romero et al. [121] discusses conditions for radial wavelet bases that span the entire

set of integrable 3D functions. The mathematics of Rauhut and Rosler [119] may yield

useful relationships in photoacoustics for the wavelets of Romero et al. [121].

Steerable wavelets are also an emerging trend in signal processing. Unser and Ville

[122] develops a methodology for creating a steerable wavelet basis from any single ra-

dial wavelet. It may be possible to combine these steerable wavelets with the methods of

Donoho [123] to produce highly effective algorithms for photoacoustic (and ultrasound)

image reconstruction. Similar techniques have been already been used in CT reconstruc-

tion algorithms. Steerable wavelets in CT reconstruction make use of the relationship

between the Radon transform and the Riesz transform, which is described by De Knock

[124]. De Knock [124] also discusses further mathematics regarding the spherical-mean

transform useful to steerable wavelets.
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Conclusion

5.1 Conclusions

In this work, a method was put forward for the classification of photoacoustic signals. It

has been shown that the method has the potential to distinguish between different classes

of detectable signals. Based on simulations, the method is able to detect the differences

between normal and abnormal vasculature based on structural morphology. Simulations

have shown that as the tissue becomes more abnormal, the classifier discriminates tissue

more strongly. In addition, the classifier performs well even when the individual vessels

of the tissue cannot be resolved.

The performance of the classifier has been characterized in the presence of noise using

RF data from seven transducers. With a SNR of +30dB the classifier performs with a

sensitivity of 96.4%, a selectivity of 78.6% and a p-value of 0.0000%. With a SNR of

+10dB the classifier performs with a sensitivity of 60.7%, a selectivity of 89.2% and a

p-value of 0.0007%. However, when the SNR is only +3dB the classifier performance is

greatly reduced with a sensitivity of 100%, a selectivity of 0% and a p-value of 10.4%.

A p-value of less than 5% indicates that there is a statistical significance whereby the

null-hypothesis can be rejected.

The classifier is able to learn from a set of example signals what the difference between

classes are. It is thereby able to adapt to different situations for other tissue classification

problems. It is likely that photoacoustic signals from in-vivo tissue will have features

that allow them to be even more distinguishable than the current classifier, by combining

the approach with functional imaging where blood oxygenation is measured.

From the analysis performed in this thesis, it does appear that the structural mor-

phology plays a role in the detectable features of the photoacoustic signal. It is hopeful
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the signal differences related to structural morphology can be combined with existing

methods for functional classification (such as blood oxygenation and blood volume) to

produce even stronger methods for detection of vascular abnormality.

A method for simulating photoacoustic signals from large scale vascular tissue models

has been put forward in this thesis. Vascular geometry was modeled as a fractal with

cylindrical vessel segments. In addition, the exact solution for a photoacoustic wave from

a finite-length cylindrical source was reduced to terms of elliptic integrals.

Finite element models are used to validate the simulators used in this thesis. The

FEM models were not suitable for large scale tissue simulation due to high computational

requirements.

5.2 Summary of Contributions

Significant contributions in this research include

� studying the effect of the structural morphology of vasculature on photoacoustic

RF signals;

� developing a method for photoacoustic simulation and modeling of large scale vas-

cular structures in tissue;

� developing a classification algorithm based on the wavelet packet transform and

support vector machines for classifying photoacoustic RF signals;

� showing that it is possible to classify vascular tissue based on structural morphology

using photoacoustic methods without resolving vascular structures; and

� deriving the exact solution for the finite-length cylindrical source problem in terms

of elliptic integrals.

5.3 Future Research

Future research includes

� testing the classifier on clinically acquired photoacoustic data;

� further optimizing the SVM classifier with a larger training set;

� creating parametric images of a tissue based on the classifier strength; and

� incorporating inhomogeneous tissue models into the simulation.
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APPENDIX A. SPATIAL WEIGHTING FUNCTIONS FOR UNIVERSAL BACK
PROJECTION ALGORITHM

(a) circular, omni-directional, n = 1 (b) circular, directional, n = 1

(c) linear, omni-directional, n = 1 (d) linear, directional, n = 1

(e) linear, omni-directional, n = 5 (f) linear, directional, n = 5

Figure A.1: Normalized spatial weighting functions. Each plot shows Ωn(x)/Ω(x) (in dB)

for tranducer n, where Ω(x) =
∑

i Ωi(x) and Ωi(x) = ns
i ·

(x−xi)
|x−xi|3 . For a non-directional

transducer, ns
i = x−x′

‖x−x′‖ .

106



Appendix B

Derivation for the Exact Solution

of a Finite-Length Cylindrical

Photoacoustic Source

The photoacoustic pressure p(x, t) can be obtained from a source distribution’s spherical-

mean, which is related to its integration over a spherical surface of radius ct centered at x.

It is known that no closed form solution exists in terms of basic mathematical functions

for the photoacoustic wave from a finite-length cylindrical source. This derivation is

inspired by [125] where the exact solution for the volume of intersection between a solid

sphere and a solid infinite-length cylinder were reduced into terms of elliptic integrals.

Instead of finding the volume of intersection as in [125], this approach uses the surface

area of intersection between a solid finite-length cylinder and a spherical shell.

The surface area of a function f(x, y) above a region S is

∫
S

√
1 +

(
∂f

∂x

)2

+

(
∂f

∂y

)2

dx dy.

First, the area of intersection between a spherical wavefront and an infinite-length

cylinder will be derived as shown in Figure B.1. Let r = ct be the radius of the wavefront

centered at the origin. Let R be the radius of the infinite cylinder. The minimum distance

from the origin to the cylindrical axis is called b.

The sphere x2 + y2 + z2 = r2 can be written as

f(x, y) = ±
√
r2 − x2 − y2.
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accordingly,

∂f(x, y)

∂x
= ∓ x√

r2 − x2 − y2
,

∂f(x, y)

∂y
= ∓ y√

r2 − x2 − y2
.

Hence the total area A = A(r,R, b) above and below region S is

A = 2

∫
S

√
1 +

(
∂f

∂x

)2

+

(
∂f

∂y

)2

dx dy

= 2

∫
S

r√
r2 − x2 − y2

dx dy.

Switching to polar coordinates, with ρ = x2 + y2, this becomes

A = 2

∫
S

r√
r2 − ρ2

ρ dρ dθ.

The region S must now be described. If b = 0 then S is a circular region centered at

the origin and A can be directly solved as

A(r,R, 0) = 2

∫ 2π

0

∫ a

0

r√
r2 − ρ2

ρ dρ dθ = 4π arcsin
(a
r

)
,

where a is min(r,R).

Figure B.1: Intersection of a spherical wavefront (left) and a cylinder (right)

When b 6= 0, the problem is less simple. Performing integration in polar coordinates

yields the region shown in Figure B.2. When b−R < 0, a circular section of area A0 is

missing from S. However, this missing section has the same form as the area that was

just calculated for b = 0. Hence,

A0 =


0, R ≤ b,

4 rπ arcsin
(
R−b
r

)
, 0 < R− b < r,

2π2r, otherwise.
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The remainder of the region is bounded from ρ = |b − R| to r and by θ = −β to β.

The angle β can be found from the cosine law as β = arccos
(
ρ2+b2−R2

2bρ

)
. By symmetry,

the area is double that of the region bounded from θ = 0 to β. Hence, the surface area

for region S is

2

∫ r

|b−R|

∫ β

0

rρ√
r2 − ρ2

dθ dρ

=

∫ r

|b−R|

rρ√
r2 − ρ2

arccos

(
ρ2 + b2 −R2

2bρ

)
dρ,

(B.1)

which can be rewritten using integration by parts as

− 2

[
arccos

(
ρ2 + b2 −R2

2bρ

)
r
√
r2 − ρ2

]min(r, b+R)

ρ=|b−R|

. . . − 2

∫ min(r, b+R)

|b−R|

r
√
r2 − ρ2

(
ρ2 − b2 +R2

)
ρ
√

(ρ2 −R2 − 2bR− b2)(R2 − 2bR+ b2 − ρ2)
dρ

= A1 +A2,

so that the total area of intersection is A = A0 +A1 +A2.

The term A1 reduces to

A1 =

−2πr
√
r2 − (R− b)2, 0 < R− b < r,

0, otherwise.

To solve the term A2 we substitute µ := ρ2 so that dµ = 2ρ dρ. Thus,

A2 = −
∫ min(r2, (b+R)2)

(b−R)2

r
√
r2 − µ(µ− b2 +R2)

µ
√

(µ−R2 − 2bR− b2)(R2 − 2bR+ b2 − µ)
dµ

Defining k1 := b2 −R2, k2 := (b−R)2 and k3 := (b+R)2 this becomes

A2 = 2

∫ min(r2, k3)

k2

(µ− k1)
√
r2 (r2 − µ)

µ
√

(µ− k2) (k3 − µ)
dµ (B.2)
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A2 can be solved by using the tabulated formulas for elliptic integrals in [126], or

with the help of Maple as

A2 =



0, r ≤ |b−R|,

2 r(k1+r2−k3)√
k3−k2

K
(√

k2−r2
k2−k3

)
− 2 r(k2−k3)√

k3−k2
E
(√

r2−k2
k3−k2

)
. . . − 2 k1 r3

k2
√
k3−k2

Π
(
k2−r2
k2

,
√

r2−k2
k3−k2

)
, |b−R| < r ≤ R+ b,

+2 rk1√
r2−k2

K
(√

k3−k2
r2−k2

)
− 2 r(k2−r2)√

r2−k2
E
(√

k3−k2
r2−k2

)
. . . − 2 r3k1

k2
√
r2−k2

Π
(
k2−k3
k2

,
√

k3−k2
r2−k2

)
, otherwise,

where K(κ), E(κ), and Π(ν, κ) are the complete elliptic integrals of the first, second and

third kinds defined from their incomplete versions by

K(κ) = F(1, κ), F(z, κ) =

∫ z

0

1√
1− τ2

√
1− κ2τ2

dτ,

E(κ) = E(1, κ), E(z, κ) =

∫ z

0

√
1− κ2τ2

√
1− τ2

dτ,

Π(ν, κ) = Π(1, ν, κ), Π(z, ν, κ) =

∫ z

0

1

(1− ν τ2)
√

1− τ2
√

1− κ2τ2
dτ.

Figure B.2: Intersections of sphere and cylinder. There are four ways that a sphere of radius
r can intersect an infinite cylinder of radius R. The sphere of radius is shown centered at
the origin. The distance from the center of the sphere to the axis of the cylinder is called b.
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The photoacoustic pressure for the infinite cylinder is given by

P =
1

4πc2

∂

∂t

[
A

r

]
r=ct

=
1

4πc2

∂

∂t

[
A0 +A1 +A2

r

]
r=ct

= P0 + P1 + P2

which results in

P0 =


√
k2

c2t
√
c2t2−k2

, 0 < R− b < ct,

0, otherwise,

P1 =

−
t

2
√
c2t2−k2

, 0 < R− b < ct,

0, otherwise,

P2 =



0, ct ≤ |R− b|,

t

2π
√
c2t2−k2

(
K
(√

c2t2−k2
k3−k2

)
− k1

k2
Π
(
k2−k3
k2

,
√

c2t2−k2
k3−k2

))
, |b−R| ≤ ct ≤ R+ b,

t
2π
√
k2−k3

(
K
(√

c2t2−k2
k3−k2

)
− k1

k2
Π
(
k2−c2t2
k2

,
√

c2t2−k2
k3−k2

))
, otherwise.

Figure B.3: Surface area of sphere-cylinder intersection. h1 and h2 define the start and
end of the cylinder at a position on its axis. d1 and d2 are the positions on the cylinder axis
that the sphere intersects.

This is an alternate derivation for the known exact solution of an infinite-cylindrical
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Figure B.4: The shaded surface area must be subtracted from the calculation. It must be
done separately for each cylinder end.

photoacoustic source (see [53, 102, 105]). However when the cylinder is finite-length,

then region S is no longer the same as in (B.1). To find the exact area (or pressure), an

excess amount ∆A (or ∆P ) must be subtracted from the infinite-length case to account

for the ends. The geometry is shown in Figure B.3 and Figure B.4 where h1 and h2

indicate the start and end positions of the cylinder on its coordinate axis. The exact

area Aexact(r,R, b, h1, h2) and pressure Pexact(t, R, b, h1, h2) are

Aexact = A−∆A(h1)−∆A(−h2), (B.3a)

Pexact = P −∆P (h1)−∆P (−h2), (B.3b)

where

∆A(h) =



0, d2 ≤ h,

A∗, d1 < h < d2,

A
2 , −d1 ≤ h ≤ d1,

A
2 −A

∗, −d2 ≤ h ≤ −d1,

A, h ≤ −d2,

∆P (h) =



0, d2 ≤ h,

P ∗, d1 < h < d2,

P
2 , −d1 ≤ h ≤ d1,

P
2 − P

∗, −d2 ≤ h ≤ −d1,

P, h ≤ −d2,

and

A∗ = A∗0 +A∗1 +A∗2, P ∗ = P ∗0 + P ∗1 + P ∗2 ,
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with d1 = max(<
{√

r2 − (b+R)2
}
, 0) and d2 = min(<

{√
r2 − (b−R)2

}
, r), as shown

in Figure B.3. To calculate A∗ and P ∗, the integration in (B.1) is performed from

ρ = |b−R| to
√
r2 − h2 as shown in Figure B.4.

The terms A∗0, A∗1 and A∗2 are given by

A∗0 =

4πr arcsin
(√

r2−h2
r

)
, 0 < R− b <

√
r2 − h2,

A0, otherwise.

A∗1 = A1 +

−2hr arccos
(
r2−h2+k1

2b
√
−h2+r2

)
, |b−R| <

√
r2 − h2,

0, otherwise.

A∗2 = 2

∫ r2−h2

k2

(µ− k1)
√
r2 (r2 − µ)

µ
√

(µ− k2) (k3 − µ)
dµ

=
2k1r√
r2 − k2

F

√r2 − h2 − k2

k3 − k2
,

√
k3 − k2

r2 − k2


. . . +

2r(r2 − k2)√
r2 − k2

E

√r2 − h2 − k2

k3 − k2
,

√
k3 − k2

r2 − k2


. . . − 2 r3k1

k2

√
r2 − k2

Π

√−h2 − r2 + k2

k3 − k2
,
k2 − k3

k2
,

√
k3 − k2

r2 − k2

 .

The terms P ∗0 , P ∗1 and P ∗2 are given by

P ∗0 =

 h
t
√
c2t2−h2c2 , 0 < R− b <

√
c2t2 − h2,

P0, otherwise.

P ∗1 = P1 +


ht(h2−c2t2+k1)

2π(h2−c2t2)
√

(c2t2−h2−k3)(h2−c2t2+k2)
, |b−R| <

√
c2t2 − h2,

0, otherwise.

P ∗2 =
t√

c2t2 − k2

F

√h2 − c2t2 + k2

k2 − k3
,

√
k3 − k2

c2t2 − k2


. . . − k1t

k2

√
c2t2 − k2

Π

√h2 − c2t2 + k2

k2 − k3
,
k2 − k3

k2
,

√
k3 − k2

c2t2 − k2


. . . +

ht
(
h2 − c2t2 + k1

)
2π(h2 − c2t2)

√
(c2t2 − h2 − k3) (h2 − c2t2 + k2)

.
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The pressure p(x, t) can be found for an arbitrarily positioned cylinder. If the ends

of the cylinder is located at positions q2 and q1, with length L = ‖q2 − q1‖, the start

and end heights of the cylinder are (see [101])

h1 =


|(q2−q1) · (q1−x)|

L , (q2 − q1) · (q1 − x) > L2,

|(q2−q1) · (q2−x)|
L , (q2 − q1) · (q1 − x) < 0,

− |(q2−q1) · (q1−x)|
L , otherwise,

and

h2 =


|(q2−q1) · (q2−x)|

L , (q2 − q1) · (q1 − x) > L2,

|(q2−q1) · (q1−x)|
L , (q2 − q1) · (q1 − x) < 0,

|(q2−q1) · (q2−x)|
L , otherwise.

The distance from x to the cylinder axis is

b =
√
‖q1 − x‖2 − ((q2 − q1) · (q1 − x))2/L2.

Hence, from (B.3a) the spherical-mean M is calculated by

M(x, r) =
1

4πr2
Aexact(r,R, b, h1, h2), (B.4)

and from (B.3b), the photoacoustic pressure is

p(x, t) = Pexact(t, R, b, h1, h2). (B.5)
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