
Ryerson University
Digital Commons @ Ryerson

Theses and dissertations

1-1-2013

Application Of Residue Codes For Error Detection
In Mixed Signal Devices
Leila Feyzmohammadi
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations
Part of the Electrical and Computer Engineering Commons

This Thesis Project is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and
dissertations by an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

Recommended Citation
Feyzmohammadi, Leila, "Application Of Residue Codes For Error Detection In Mixed Signal Devices" (2013). Theses and dissertations.
Paper 1350.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1350&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1350&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1350&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1350&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/1350?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1350&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

APPLICATION OF RESIDUE CODES FOR ERROR DETECTION IN MIXED

SIGNAL DEVICES

by

Leila Feyzmohammadi

MEng., Ryerson University, Toronto, Canada, 2012

A project report

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Engineering

in the Program of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2013

© Leila Feyzmohammadi, 2013

ii

Author’s Declaration

I hereby declare that I am the sole author of this project report.

I authorize Ryerson University to lend this project report to other institutions or individuals for

the purpose of scholarly research.

I further authorize Ryerson University to reproduce this project report by photocopying or by

other means, in total or in part, at the request of other institutions or individuals for the purpose of

scholarly research.

iii

Application of Residue Codes for Error Detection in

Mixed Signal Devices

Leila Feyzmohammadi

Master of Engineering

Electrical and Computer Engineering

Ryerson University, Toronto, 2013

Abstract

Testing methods based on residue codes are considered as simple, with high probability of

detecting errors. Most of the literatures on arithmetic error control codes are mainly focused on

applications of secure data transmission and testing digital circuits rather than testing mixed-

signal systems. In both cases implementation of residue computing circuit (RCC), also known as

the residue generator is an integral part of the hardware design. In this work a low-cost

compactor circuit to calculate the residue for on-line testing of analog-to-digital converter has

been presented. Aliasing rate and its relationship with the resolution of the ADC have been

analyzed. Theory and operation of Linear Feedback Shift Registers have been applied for the

implementation of the modulo adder circuit. The compaction circuits were simulated, and the

result confirmed the theoretical analysis.

iv

TABLE OF CONTENTS

1. Chapter 1 Introduction ... 1

1.1 Motivation ... 1

1.2 Scope of this Project ... 2

1.3 Report Outline... 2

1.4 Project Contribution ... 3

2. Chapter 2 Background .. 4

2.1 Introduction .. 4

2.2 Finite fields .. 4

2.2.1 Basic Definitions and Properties ... 4

2.2.2 Polynomials ... 5

2.2.3 Construction and Representation of .. 6

2.2.4 Addition over .. 7

2.2.5 Multiplication over - General Bit-level Multiplications .. 7

2.3 Theory and Operation of Linear Feedback Shift Registers ... 9

2.4 Fault Modeling .. 12

2.5 Detecting errors in finite field operations .. 12

2.6 Residue Codes for Checking Arithmetic Operations ... 13

2.7 Residue Generator .. 21

3. Chapter 3 Application of Residue Codes for Error Detection in Mixed-Signal Systems 24

3.1 Introduction .. 24

3.2 General Aspects of Compression Techniques ... 24

3.3 Ones-Count Compression ... 26

3.4 Transition-Count Compression ... 26

3.5 Parity-Check Compression .. 27

3.6 Syndrome Testing ... 28

3.7 LFSRs Used as Signature Analyzers ... 29

v

3.8 Multiple-Input Signature Registers ... 30

3.9 Arithmetic Compaction Circuits for Testing Mixed-Signal Systems .. 31

3.10 Testing Mixed Signal Device .. 32

4. Chapter 4 Residue Calculator Circuit Architecture for Mixed-Signal Systems 36

4.1 Operation of Arithmetic and Algebraic Compactor .. 36

4.2 Operation of Arithmetic and Algebraic Compactor .. 36

4.3 Low-Cost Compactor schemes .. 40

4.4 Compaction Process .. 41

5. Chapter 5 Simulation and analysis of the results ... 45

5.1 Simulation ... 45

6. Chapter 6 Future Work and Conclusion ... 51

7. Appendix ... 53

8. References .. 55

vi

TABLE OF FIGURES

Figure ‎2-1 Feedback shift register... 9

Figure ‎2-2 Type 1 LFSR .. 10

Figure ‎2-3 Type2 LFSR ... 10

Figure ‎2-4 Open Fault Model and Truth Table .. 12

Figure ‎2-5 Error detection scheme ... 15

Figure ‎2-6 Adder cell with no logic shared ... 18

Figure ‎2-7 Adder cell with some logic shared ... 19

Figure ‎2-8 8-bit number modulo 7 .. 22

Figure ‎2-9 8-bit number modulo 9 .. 22

Figure ‎2-10 Self-checking Multiplier ... 23

Figure ‎3-1 Test Data Analyzer ... 25

Figure ‎3-2 One-Count Compression .. 26

Figure ‎3-3 Transition Detector .. 27

Figure ‎3-4 Parity Check Compression ... 28

Figure ‎3-5 Example of single-input signature analyzer ... 30

Figure ‎3-6 Multiple input register (MISR) ... 31

Figure ‎3-7 On-line Testing of ADC Device ... 33

Figure ‎3-8 Transfer function of a 3-bit MSS .. 34

Figure ‎4-1 Operation of the 3-input signature register .. 37

Figure ‎4-2 3-Input Residue Calculator in RTL Form .. 38

Figure ‎4-3 3-Input Arithmetic Compactor... 39

Figure ‎4-4 3-Input Ternary Arithmetic Compactor ... 39

Figure ‎4-5 An Alternative 3-Input Arithmetic Compactor .. 41

Figure ‎5-1 RCC with Modulo 5 Adder ... 46

Figure ‎5-2 Arithmetic Compaction Circuit modulo 5 .. 46

Figure ‎5-3 Arithmetic Compaction Modulo 9 ... 47

Figure ‎5-4 Testing an ADC with Offset .. 48

Figure ‎5-5 RTL form of modulo adder with Combinational Unit .. 48

vii

Figure ‎5-6 Compaction Circuit calculating modulo adder of a ternary number ... 49

Figure ‎5-7 An alternative modulo adder ... 49

Figure ‎5-8 Implementation of the Modulo adder ... 49

1

1. CHAPTER 1

INTRODUCTION

1.1 Motivation

As the size of electronic devices decrease the probability occurrence of errors increases. At

the same time testing of the circuit becomes more difficult as the number of gates increases. To

ensure the reliability of the circuits, it is important to detect errors as soon as they happen,

identify the faulty circuit and ensure the correct functionality of the circuit in the presence of

fault. Error detecting codes, more specifically residue codes has been applied to provide

testability in a wide range of very large integrated circuit (VLSI) circuits [1]. Also the

effectiveness of residue code checking for on-line error detection in multipliers with different

architectures has been evaluated experimentally [2].

Many electronic systems, such as those for signal processing, video compression and

biometrics are essentially of a mixed-signal type. A mixed-signal system (MSS) incorporates

both analog and digital circuits. It is highly desirable to assure the reliability of these systems.

Many methods developed for testing analog-to-digital converters (ADC) are based on the

estimation of their static and dynamic metrics such as, gain, offset, SNR etc. [3]. Although these

metrics carry important information about the functionality of an ADC and its subunits, but their

calculation needs complex equipment for digital processing of test responses. This work

develops a test scheme based on residue calculation to test the functionality of ADCs.

2

1.2 Scope of this Project

This work extends the application of residue codes for on-line testing of ADCs. In order to

detect all possible faults in an ADC, an exhaustive set of test patterns is applied as an input to the

device under test (DUT). Such a test set consists of analog input stimuli covering the full scale

(FSR) of an ADC. The output responses which are also referred to as output codes should be

digitally compared with the expected values. If the comparison is done after each conversion

more memory, proportional to the number of input stimuli, is needed. Off-line compaction

schemes can be designed based on the estimation of the arithmetic sum (signature) of the output

responses of the (DUT) [4]. The actual signature is then compared against the fault-free circuit’s

signature.

 In this work, compaction schemes based on residue codes for different modulo are analyzed,

simulated, and implemented on Altera FPGA board. The aliasing rate is estimated based on

theoretically achievable testing accuracy for the tolerance bounds. The limitation of the method

according to [5], is that the tolerance bounds are obtained from empirical data, which requires

the availability of a reference device and does not guarantee the highest accuracy for the bounds.

1.3 Report Outline

The organization of the remainder of the report is as follows. A brief overview of required

background of residue codes and a number of schemes for testing arithmetic circuits, and self-

checking multipliers based on residue codes is presented in Chapter 2.

In Chapter 3 data compression technique for testing is explained, and testing ADCs based on

analyzing the residue is presented. Several residue calculation schemes are presented. Aliasing

rate is estimated and ways to improve the rate is discussed.

3

In Chapter 4 the result of the simulation of the residue calculation circuit (RCC) is presented.

Finally, some conclusions are summarized in Chapter 5.

1.4 Project Contribution

Finding the best compaction scheme for testing ADC without the need for complex equipment

is the major concern of this project. The contribution of this project to achieve this goal is

simulation, and implementation of residue calculation circuit for testing ADC. Also an

estimation of aliasing for the schemes was accomplished.

4

2. CHAPTER 2

BACKGROUND

2.1 Introduction

In this Chapter, basic definitions of finite fields, polynomials and arithmetic operations are

provided. Basics of fault modeling are introduced. Residue codes and their application in testing

arithmetic circuits are discussed in details in this chapter. Schemes of cost effective residue

testing circuits that has been previously developed for testing arithmetic circuits are analyzed.

Proofs of the theories are omitted for briefness.

2.2 Finite fields

In this section important definitions and theories of finite fields are summarized from [6].

Proofs are omitted. All of these definitions and theories can be seen in most of algebra texts.

2.2.1 Basic Definitions and Properties

Definition 2.1 A group is a set G with a binary operation ‘*’ on G if it satisfies these

conditions:

The binary operation ‘*’ is associative:

There exists an identity element e in G:

There exists an inverse element for each element:

5

A group is an Abelian or communicative if:

Definition 2.2 A set F with two operations denoted by ‘+’ and ‘.’ is a field if these conditions

are met:

 (F,+) is an Abelian group and 0 is its identity element

 (F*, .) is an Abelian group and 1 is its identity element

 then



Definition 2.3 A field that contains a finite number of elements is called a finite field known

as Galois field.

Definition 2.4 The number of elements in a Galois field is called the order of the field and a

Galois field with the order of q is denoted by GF(q).

Definition 2.5 Let a be an element of GF(q). The smallest positive integer m, such that

 , is called the characteristic of the field.

Theorem 2.1 The characteristic of any finite field is prime.

Theorem 2.2 In a Galois field, the order of the field is a prime or a power of a prime.

2.2.2 Polynomials

A polynomial over GF(p) is an expression of the following form:

6

Definition 2.6 A polynomial F(x) over GF(p) is called irreducible if it cannot be written as the

product of some lower degree polynomials over GF(p).

Definition 2.7 F(x) is a polynomial over GF(p), F(0) 0. The order of F(x) is the least positive

integer t, such that F(x)| -1

Definition 2.8 Let F(x) be a polynomial of degree m over GF(p). Polynomial F(x) is said to be

a primitive polynomial if its order is .

Definition 2.9 A sequence of numbers can be associated with a polynomial,

called a generation function [7].

2.2.3 Construction and Representation of

Theorem 2.3 Let be an irreducible polynomial of degree over . Then all

polynomials over of degree less than form a finite field of order , if

addition and multiplication are performed modulo .

Definition 2.10 If and are two fields such that , then is called a subfield of and

is called an extension field of . For example,) is an extension field of .

Definition 2.11 The binary extension field is constructed using an irreducible

polynomial of degree m:

7

Here for . The constructed field is an extension of the basic field

 and contains elements. Assuming that x is a root of , any field element of

 can be represented as a polynomial of degree m-1:

2.2.4 Addition over

The addition of the two field elements is carried out by pair-wise XOR operation [8]:

2.2.5 Multiplication over - General Bit-level Multiplications

Suppose is the modulus that defines the polynomial of the field.

 are the bits.

8

Algorithm 2.1, and 2.2 show the bit-level multiplication from low bit to high bit and from

high bit to low bit which are obtained according to equations (2.1), and (2.2) [9].

Algorithm 2.1: Bit-level algorithm of multiplication from low bit to high bit in

}

Bit-level multiplication can be done from high to low bit-level in according to

equation (2.2):

Algorithm 2.2: Bit-level algorithm of multiplication from high-to-low bit in

}

9

2.3 Theory and Operation of Linear Feedback Shift

Registers

Linear feedback shift register [LFSR] devices are used in built-in self test (BIST) designs.

They can be used to carry out the response of the compression which will be explained in more

details in chapter3.In this section some of the properties associated linear feedback shift registers

are presented from [7].These circuits are based on cyclic redundancy checking (CRC) and have

only clocks as their input. Symbolic form of a feedback shift register is shown in figure 2.1. Each

cell is assumed to be a clocked D flip-flop. When these circuits are clocked repeatedly, they go

through a fixed sequence of states. For example is the sequence for a binary counter

consisting of n flip-flops.

Figure ‎2-1 Feedback shift register

The maximum number of states for each device is . A linear circuit is a logic network of

basic components: Flip-flops, modulo-2 adders, modulo-2 multipliers. All operations of such

circuits are done modulo 2. The response to a linear combination of stimuli is the linear

combination of the responses of the circuit to the individual stimuli [7]. Type 1 (external-XOR)

and type 2 (internal-XOR) LFSR are shown in figure 2.2 and 2.3 respectively.

10

Figure ‎2-2 Type 1 LFSR

Figure ‎2-3 Type2 LFSR

Definition 2.9 Let { where , represent the output sequence that is

generated by an LFSR. Then the sequence can be expressed as:

 Multiplication and division of the polynomials are done modulo 2 [7].

11

Structure of type 1 LFSR is such that if the current state (CS) of is , then

 . This means that the operation of the circuit is a recursive function. is the feedback

coefficient, and are initial state (IS) of the device.

It can be proved that is a function of initial states of the LFSR and the feedback

coefficients [7]. Equation (2.3) shows this property of function .

Definition 2.12 The denominator of equation (2.3) is known as the characteristic polynomial

of the sequence { as is denoted as [7]:

 .

If , and , then G(x) will be reduced to 1/ . Assuming that

sequence { is cyclic with period p as shown in equation (2.4):

Definition 2.13 If the initial state of an LFSR is , , then

the LFSR sequence is periodic; the period is the smallest integer k for which divides

Definition 2.14 If the period of the sequence generated by an n-stage LFSR is , then it

is called a maximum length sequence.

Definition 2.15 The characteristic polynomial associated with a maximum-length sequence is

called a primitive polynomial.

12

2.4 Fault Modeling

Faults can be investigated at different levels of abstraction of circuits, such as gate level or

architectural level. Gate level faults are open faults, short faults, and stuck-at faults. Figure 2.4

shows an open fault circuit with its corresponding truth table. C is the correct output and C’ is

the faulty one. In higher architectural-level, the error can be modeled as equation 2.5 [9]:

 (2.5)

Figure ‎2-4 Open Fault Model and Truth Table

2.5 Detecting errors in finite field operations

In past, circuits capable of concurrent error detection were only dedicated to critical

applications such as, railway control. But today with shrinking size of electronic devices and the

fact that circuits are more susceptible to internal and external noises, self-checking circuits are

more desirable. In order to detect errors occurred in any finite field operations, different

approaches, such as, parity bits, scaling techniques has been proposed in literatures [7, 9].

13

 Parity Prediction: Works based on predicting the parity of the output from the parity of

the input. This method can only find odd number of erroneous bits.

 Scaling technique: Representing the value N by the number AN, known as AN codes.

 Residue codes (or inverse residue codes): Computing a residue for each input and,

then predicting the residue of the output based on them. It essentially means

representing the value N by the pair (N,C) where C is N mod A or (N-N mod A) and is

called the check part.

 Time redundancy based techniques: Re-computing the result with shifted operands.

 The main problems associated with the design of self-checking circuits are hardware cost and

time consumption of the design. Developed Parity prediction designs allow high fault coverage

with low hardware cost in self-checking data paths for blocks such as, adders, Shifters, register

files, etc. However, parity prediction self-checking multipliers has much higher overhead.

Using parity codes for checking memory systems and register files provides fault secure property

with low overhead, however, arithmetic operators produce output errors that are not detectable

by parity code; in multipliers, fault secure design based on parity prediction requires hardware

overhead in the range of 40% to 50% [10]. Therefore, in the case of multipliers, residue codes

can be a good alternative to achieve fault secure property.

2.6 Residue Codes for Checking Arithmetic

Operations

Modulo A (A is a positive integer) arithmetic circuits have found many applications in digital

signal processing, computing convolution, elliptic encryption systems and fault tolerant digital

systems [11].

14

Arithmetic codes in general, add some bits as an information part to the input before the

operation, to be checked after the operation. The information part can be the original number

multiplied by a constant number or, it can be a check part representing the modulo m of the

information part. One of the most important classes of modulus M are Mersenne numbers that

are in the form of . These circuits are known to have simple hardware implementation as

there is no need for division to calculate the residue. Residue checking circuit requires compact

hardware [10]. It needs a small arithmetic operator (adder, multiplier) which can add or multiply

operands of the size of the check parts of the operands, A modulo generator which can compute

the residue which is independent of the size of the operator. It also requires an arithmetic code

checker and a code translator with the size proportional to the size of the operands.

Residue checking has been studied for error detection in arithmetic processors. Many papers

have been published to evaluate residue checking in terms of delay, fault coverage and hardware

overhead. So far the results show that it may not be the most efficient method for checking

addition and subtraction circuits, however, it is shown that the method has a very good

performance for checking multiplier circuits especially large multipliers [10].

Residue checking is a method to check the accuracy of an operation which can be done in

parallel with the actual operation. This means that it can provide concurrent error detection. For

example for checking an addition operation, the adder and the residue checker are implemented

as an independent logic functions. Then an easy to implement modulus should be selected to

check the residue of the operands and the result to see if they match. Figure 2.5 from [12]

illustrates the idea of error detection using residue checking.

15

Figure ‎2-5 Error detection scheme

Another method to detect errors in an arithmetic operation is parity prediction and because of

its low hardware implementation, it is sometime considered as more efficient than residue

checking. The most important problem with this method is that it can only find odd number of

errors and because of the occurrence of errors with random nature in arithmetic operations, there

might be some errors that cannot be detected by parity prediction method.

In a number system two numbers A and B are shown as the following [14]:

The congruence relationship of the two numbers modulus m is produced by equation (2.6):

The benefit of the residue checking is that numbers that are congruent to the same modulus

can be added, subtracted and multiplied, and the result is still a valid congruence [13]. This

means that the residue of the sum is equal to the sum of the residues. For example, modulo 3

residues can detect single-bit errors using only two check bits in the radix 2 number system. The

16

structure is that, in parallel with the addition operation, separate residues for A and B will be

obtained in two residue generator blocks. These residues are then added in an adder unit and the

resulting sum is applied to another residue calculator. Final step is to compare the residue of the

sum against the residue of the sum of the residues to indicate an effort if they do not match [14].

This structure can be illustrated in the mathematical equation of (2.7) as the following form:

Table (2.1) shows the result of 4-bit binary number modulo 3. Note that the residue

representation needs only 2 bits. The division operation to find the residue was implemented by a

sequence of shifts and addition or subtraction depending on the previous state of the previous

high order carry-out [14]. The carry out determined the quotient bit at any level and also the next

operation.

17

Table ‎2-1 4-Bit Binary Numbers and Their Residue Modulo-3

Binary

Data

Modulo-3

Residue

0000 00

0001 01

0010 10

0011 00

0100 01

0101 10

0110 00

0111 01

1000 10

1001 00

1010 01

1011 10

1100 00

1101 01

1110 10

1111 00

18

The use of arithmetic codes for adders/ALUs has reduced interest because of the complexity

and the large overhead of the circuit. The size of the multiplier however, is proportional to the

square of the size of the operands, meaning that for large multipliers residue codes is a good

solution [10].

 A CAD system has been developed in [10] allows automatic generation of different schemes

of self-checking multipliers based on residue codes. The experimental result of this paper

confirmed that residue checking for multipliers bigger than reduces the area overhead

significantly, even down to 5% or 6% for multipliers.

For simplicity it is assumed that faults affect a single gate at a time. Two different schemes for

an adder cell can be defined to model fault which are shown in figures 2.6, and 2.7 from [10]. In

the model shown in figure 2.6 sum and carry-out are independently computed as the result of

XORing. In figure 2.7 however, A B result which is shown as P, is to calculate carry-out.

Clearly the latter model results in propagating error of P to C.

Figure ‎2-6 Adder cell with no logic shared

19

Figure ‎2-7 Adder cell with some logic shared

The result of applying residue codes for different schemes of multipliers are summarized here

[10].

Array Multipliers

Array multipliers are implemented by network of full and half adders to calculate the partial

products. To detect errors using residue codes in Array Multipliers or any other type of

multiplier, it should be considered that if the arithmetic value of the error produced by multiplier

is multiple of the base of the residue codes, then, the error would go undetected. Since we are

working with binary system, any error at bit of the output bits has the arithmetic value of

 . So, for the scheme of figure 2.7 can be selected as the check base because is

never a multiple of 3; it is known as the cheapest check base because it only needs 2 bits to

register the residue.

Check-base 3 however, cannot detect some of the faults in the scheme of 2.7. In this case,

arithmetic value of the error will be the form of which is multiple of 3. In this case base

7 can be used so that the base does not divide the error.

20

Multipliers with Wallace Trees

Accumulating partial products using Wallace trees improves the delay known for Array

multipliers [14]. Same as the Array Multipliers, the network of ripple-carry adders that add the

partial products will add the arithmetic value of the error to the final result. So here also base 3

achieves fault secure property. However, because of the delay known for the ripple-carry adder,

the carry propagate adder must be implemented in a carry look-ahead manner [10]. Now the

check base in this case would be different. Important fact need to be considered is that carries

here are generated by a carry look-ahead function which has a structure different than the adder

cell network. This leads to propagation of an error in a more complex way.

Table (2.2) summarizes the check bases that can be used for fast adders obtained by the

software developed in [10].

Table ‎2-2 Check Bases

Check Base

16

bits

32

bits

64

bits

Kogge & Stone

Han & Carlson

Brent & Kung 7 7 7

Sklansky 3 3 3

Carry Lookahead

Unit 3 3 3

21

Booth Multipliers

Booth multipliers are also considered as fast multipliers because it reduces the number of

partial products by one half by encoding the biggest input operand. For this type of multiplier,

the lowest check base for fault secureness is 7 [10].

2.7 Residue Generator

The residue of a binary number modulo can be implemented by splitting the bits into

bytes of k bits and performing modulo m addition of these bits. This means that residue

generators of the form can be implemented with less cost as there is no need for

performing division. Modulo m addition of two k-bit is performed using a k-bit adder in which

the carry output is used as a carry input for the next adder. This is basically what Carry End-

Around adders do. So a residue generator block can simply be implemented by a tree of k-bit

Carry End-Around adders without need to do any division [15]. For instance consider

 , then applying congruence theory the residue will be calculated as shown in equation

(2.8)

Thus, the residue of powers of modulo 7 is 1. and so

on. So a full adder can be used to add , and so on. Another full adder then must be used to

add , and so on. In other word, the period of the bits is 3.

Modulo 9 also worth noting as the residue of 1, 8, 64, ... modulo 9 is +1, -1, +1, …

22

Therefore, has to be added. This operation can be done using a full adder

and inverting the bit that has to be subtracted. Figure 2.8 and 2.9, show residue generators for a

8-bit number modulo 7 and 9 respectively [10].

Figure ‎2-8 8-bit number modulo 7

Figure ‎2-9 8-bit number modulo 9

The overall block diagram of the self-checking multiplier using residue codes is shown in

figure (2.10).

23

Figure ‎2-10 Self-checking Multiplier

24

3. CHAPTER 3

APPLICATION OF RESIDUE CODES FOR

ERROR DETECTION IN MIXED-SIGNAL

SYSTEMS

3.1 Introduction

This chapter focuses on application of residue calculation for arithmetic and algebraic

compaction, to test mixed-signal systems. General aspects of compression techniques are also

discussed here. Several low-cost arithmetic and algebraic compactor schemes are introduced.

The tolerance bounds for the result of compaction are estimated and the aliasing rate is

evaluated.

3.2 General Aspects of Compression Techniques

Conventional testing methods involved bit-by-bit compression of the output with the correct

values that has been previously computed. Clearly, this approach requires a significant amount of

memory. An alternative approach is to save the information in a compressed format known as a

signature [16]. This concept is illustrated in figure 3.1 [17]. If the signature obtained from the

device under test does not match the pre-calculated signature of a fault-free circuit, then a fault is

detected. A practical compression technique should be easily implemented and should not

introduce signal delays.

25

Figure ‎3-1 Test Data Analyzer

The challenge facing this method is insuring that the faulty and fault-free signatures are

different because, a fault may produce offsetting errors. The erroneous output response is said to

be an alias of the correct output response.

Three methods have been suggested in [7] to measure the aliasing associated with a

compression technique:

1. Simulation of the circuit and the compaction technique which requires fault

simulation. If the test sequence is long this method is expensive.

2. In this method, output responses are classified into categories, such as single-bit

error or burst errors, which are errors that lie within a fixed number of patterns of one

another.

26

3. The fraction of all possible erroneous response sequences that cause aliasing are

computed. In this method it is assumed that all possible output sequences are equally

likely.

3.3 Ones-Count Compression

If the output signature of a circuit is shown as , then in ones counting, the

signature of the response, is the number of 1s appearing in . The compressor is a counter

[7] and the degree of compression is . Figure 3.2 describes testing with one-

counting compression technique.

Figure ‎3-2 One-Count Compression

3.4 Transition-Count Compression

In this method of testing, is the number of transitions in the output data stream. This means

that for a sequence of , the transition count will be obtained from equation (3.1)

[7]:

27

This implies that the response-compression circuit needs a transition detector, and a counter

with stages. Transition detector consists of a flip-flop and a XOR gate that is

shown in figure 3.3.

Figure ‎3-3 Transition Detector

3.5 Parity-Check Compression

Parity-check compression circuit is also explained in [7]; it consists of D-flip-flop and XOR

gate. Its implementation is a linear feedback shift register whose primitive polynomial is

 . If the initial state of the flip-flop is 0, the signature S is the parity of the circuit

response. Same as it was said in the previous chapter, faults that create an even number of errors

are not detected with this method. As the number of input streams increases, the probability of

aliasing approaches to the value of 0.5. Figure 3.4 illustrates the parity-check compression

scheme.

28

Figure ‎3-4 Parity Check Compression

Using parity-check compression for multiple-output circuits has two disadvantages. If it is

implemented by replacing the input XOR gates by a multiple-input gate or a network of XORs,

an error internal to a circuit may affect more than one output line and the error gets propagated to

an even number of output lines. Also, if a separate parity-check compressor is used in each

output, the hardware cost will be high. This means that this technique is not very efficient for

testing multiple-output circuits.

3.6 Syndrome Testing

Applying all test vectors to an n-input combinational circuit is called syndrome testing [7],

syndrome S (or signature) is the normalized number of 1s in the resulting bit stream. It means

that if K is the number of minterms in the function f, then . The syndrome of a 3-input

AND gate is 1/8 and for a 3-input OR gate is 7/8. Any function can be realized in such a way that

all single stuck-at faults is syndrome detectable.

29

If two circuits and have no shared input, and and , then the input-

output syndrome relation of the circuit as a function of the type of gates is listed in Table (3.1)

[7].

Table ‎3-1 Syndrome for circuit having non-reconvergent fanout

Gate Type

for C

Syndrome S3

OR

AND

NAND

NOR

XOR

3.7 LFSRs Used as Signature Analyzers

Signature analysis is a compression technique based on the concept of cyclic redundancy

checking (CRC) [18]. Signature generator with a single-input LFSR is the simplest scheme of

this technique. The contents of this register are the signature after the last input bit has been

sampled. Response sequence which is fed to the signature analyzer is denoted by . This

sequence then will be divided by the characteristic polynomial denoted by . This implies

that signature analysis is based on polynomial division; the “remainder” left in the register after

completion of the test process is the final signature. This can be represented in the equation form

of (3.2).

 (3.2)

30

Figure (3.5) from [7] explains how a single-input signature analyzer works. , as was

defined previously, is the reciprocal characteristic polynomial of the LFSR; it is given in the

example as:

The input is the 8 bit test sequence 11110101 which is equivalent to

 . As it is shown in figure 3.5, the result of division will be, and

 .

Figure ‎3-5 Example of single-input signature analyzer

3.8 Multiple-Input Signature Registers

It is possible to test circuits that have multiple outputs using signature analysis technique. The

most common way to do that is using a multiple-input (MISR) register which is shown in figure

3.6 [19]. The circuit is assumed to have n inputs; it operates similar to n-input signature analyzer.

31

Figure ‎3-6 Multiple input register (MISR)

3.9 Arithmetic Compaction Circuits for Testing

Mixed-Signal Systems

Many electronic systems, such as those for audio and image processing, video compression,

speech recognition, digital communication etc., deal with signals that are mix of analog and

digital nature. It is highly desirable to insure the reliability of these devices by detecting any

faults as soon as they occur in the system and make sure that the system is immune to sudden or

gradual failure. Gradual failures may remain unnoticed and become a greater threat in the future.

To test this type of devices signature analysis method can be applied; analog stimuli can be used

to cover nearly the full-scale range (FSR) of the device. Then the output responses in the digital

form should be compared with the expected values. The comparison can be done after each test

stimuli has been applied or after the complete test set has been run. If comparison is done after

each test set is applied, the availability of memory will be an issue. Although performing the

comparison after the full set of test stimuli has been applied might lead to undetected errors,

since the error escape rate and the test hardware overhead are small, this method is considered

more practical for built-in self-test [7].

Compaction methods are based on the estimation of the residue of an arithmetic sum which is

referred to as the signature of output when the input is fed by test stimuli. The output signature

32

should be compared with the fault free circuit’s signature and the fault signal should be

generated if the error is out of the predefined tolerance bound. Erroneous patterns caused by

modular operation which is called aliasing may go undetected. In the presence of analog circuits

and an analog - to- digital converter aliasing phenomenon provokes, and produces errors which

would distort the output codes and the compaction result. Therefore, compaction testing for

mixed-signals deals with a set of permissible signatures, and not a single “reference” for digital

systems. The cardinality of this set should be kept at a minimum in order to achieve a low

aliasing rate [7].

Compaction circuits with an arbitrary modulus have been developed in this study. The set of

permissible signatures that are within the tolerance bound from empirical data requires the

availability of the reference system. So, the tolerance bound is computed analytically in this

work to avoid the complexity.

3.10 Testing Mixed Signal Device

One approach to test mixed-signal system is based on the estimation of metrics such as gain,

offset, INL, DNL, SNR, ENOB etc [20]. Although these static and dynamic metrics carry

important information about the functionality of the system, however, their calculation involves

extensive digital processing which would impose large overhead on the system and is not

acceptable for built-in implementation.

Figure 3.7 shows the scheme of on-line testing for an analog-to-digital converter device

(ADC), using compression technique. As it is shown in the figure, the Test Pattern Generator

(TPG) generates digital pattern that is send to the digital-to-analog converter (DAC) which is

then feed to the Analog Comparator (AC). When the operational signal that is been fed to the

33

device under test matches the output of the DAC, then a passing signal is generated by the AC

unit. This HIT signal activates the Modulo Adder block which is responsible for calculation of

the residue which is also referred as a compactor or signature analyzer [7].

Figure ‎3-7 On-line Testing of ADC Device

Finding a real fault-free ADC device is a main challenge. Characteristic function of an ideal

ADC is shown in figure 3.8. Another challenge which complicates the use of algebraic

compaction for the scheme is caused by the uncertainty of the output coded voltage when an

input voltage is in the interval that contains the middle point of the quantization bin; an interval

code will be produced at the output, even though there is no fault.

Testing of a 3-bit fault-free MSS with FSR of 8 volt, with a transfer characteristic shown in

figure (3.8), using compression technique is analyzed here. Several compaction circuits for

testing this ADC device will be presented in the next chapter.

34

Figure ‎3-8 Transfer function of a 3-bit MSS

The transfer function of the system is such that the transition voltages between the steps, T

(k), k= 1,…, 2n-1 (n is the resolution of the MSS) may fluctuate within the specific tolerance

bounds. Inequality (3.3) shows this bound.

If n= 3 bits then (3.3) will be simplified to (3.4):

The shaded boxes surrounding the ideal transitions show the bounds. Worst case happens

when a and b coincide. If the input signal matches the middle points of the quantization bin, the

output can take three values. For example if the stimuli match the middle point of 4 volt, the

output will take three possible values 011, 100, 101. Excluding these points it can be assumed

that test stimuli are in the neighborhoods of the corresponding transition voltages T (k) of the

transfer function. With this assumption the number of acceptable output codes reduces to two per

35

input stimulus which leads to reducing the distortion of the final signature. For instance, if the

input is set to be T (4) = 3.5 V, the output code will be 011 or 100.

To develop a valid fault model it can be assumed that faults in a MSS would change the

transfer function such that the transition points, T (k), move beyond the permissible bound, i.e.

(k) < k-1, or T (k)>k. Also we assume that it can only be a single transition within each of the

intervals of [k-1, k],

Now with the fault model described above, all the faults will be detected by the input stimuli

set, which only includes single points from each of the intervals.

36

4. CHAPTER 4

RESIDUE CALCULATOR CIRCUIT

ARCHITECTURE FOR MIXED-SIGNAL

SYSTEMS

4.1 Operation of Arithmetic and Algebraic

Compactor

Algebraic and arithmetic compactors are the two types of compactors that can be applied for

testing circuits. Both methods utilize the same theory of computing the residue. The arithmetic

compactor is referred to as the modulo sum circuit. Modulo sum is just a special case of a residue

code.

4.2 Operation of Arithmetic and Algebraic

Compactor

The operation of the algebraic compactor can be explained by a n-input analyzer. Assuming

that the MSS produces all n bits simultaneously, a multiple input signature register (MISR) can

be considered. In this study a 3-input signature register is examined which receives for example

the following sequence of 3-bit data, α4, α2, α1, α0. This sequence of data can be described by

expression (4.1) [7]:

(

 is equal to y+α, where α is the primitive element of the field . In this

example α is considered as the root of the primitive polynomial . Expression

(4.1) can be implemented using an iterative addition and shift operation by factorizing it:

37

In general form expression (4.2) can be considered as a set of repetitive operation of the form

of expression (4.3):

Figure ‎4-1 Operation of the 3-input signature register

Figure (4.1) shows the operation of MISR for implementing expression (4.3). The operation

can be performed using theories of polynomial division in that was introduced before as

expression (4.4):

+

 = +

Figure 4.2 shows the register transfer level (RTL) scheme of 4.1. This circuit will produce

as its signature which is equivalent to 010 in vector form.

38

Figure ‎4-2 3-Input Residue Calculator in RTL Form

Another form of compactor circuit is called an arithmetic compactor which works similarly to

the algebraic one. The difference is that here the circuit divides the input sequence by the number

 where 3 is the primitive element of the arithmetic finite field GF(5) .This is similar

to the algebraic circuit that divides the input sequence by the polynomial of G(y) = y-α .

Considering the same example if the sequence of and is matched with numbers

6, 4, 2, and 1 which are fed to the compactor circuit, performing division of the octal number

6421 with respect to modulo 5.

Expression (4.5) illustrates the same compression procedure in an arithmetic circuit. Figure

(4.3) shows a symbolic form of this operation.

(8(8(8(8.0+6)+4)+2)+1)mod5 (4.5)

39

Figure ‎4-3 3-Input Arithmetic Compactor

Considering the special case of algebraic and arithmetic compactors when α and 3 are

replaced by 0; then for both compactors the same circuits will be obtained which does not have

feedbacks. The probability of the undetected error for this circuit is same as the one with

feedback. Also a case can be considered where α and 3 are both replaced with 1. To implement

the residue calculation circuit (RCC) in a general form, equation (4.6) should be considered.

 (4.6)

Taking to account expression (4.6), RCC can be implemented as it is shown in figure 4.4.

Figure ‎4-4 3-Input Ternary Arithmetic Compactor

40

 C is a combinational circuit unit which provides feedback signals based on the

input and the present state signals t and r respectively. Red arrows show the carry propagation.

 can be obtained from equation (4.7), (4.8), and (4.9).

If this circuit is fed by sequence of 3-bit octonary numbers 6, 4, 2, 1, applying equation (4.6),

it can be said that the circuit is computing the residue of the ternary number 6421 .

4.3 Low-Cost Compactor schemes

Now, if the RCC scheme shown in figure (4.4) is used as a compactor for a MSS, any

distorted response will be fed back to the compactor, and then the distortion of each response

will grow as it is multiplied by rising power of 8 or 3. Equation (4.10) explains this fact. This

implies that the distortion of the final signature and consequently the aliasing rate will increase.

However, in algebraic compactor, as shift is equivalent to multiplication by , n being the size

of the analyzer, the distortion of the feedback is not a significant problem. This problem with

arithmetic compactor can be alleviated by adjusting the modulus such that the error will increase

by power of 1 only as it is shown in equation (4.11).

41

So a compactor scheme that multiplies data by raising power of 1 or -1 will reduce the error.

When 3 is replaced with -1, the resultant circuit is safe from any offset existing in the

incoming data or to unidirectional noise that might exist in the testing medium.

The feedback signal is generated based on equation (4.12) in the combinational unit shown by

C:

Figure 4.5 shows the alternative compactor which was proved to have the minimum

uncertainty.

Figure ‎4-5 An Alternative 3-Input Arithmetic Compactor

4.4 Compaction Process

The process of arithmetic compaction modulo , where n is the resolution of the MSS, is

analyzed here. Let be the number of distinct values the input signal can have which is

sufficient to detect all faults of MSS. Assume
 is the value of at time . The actual output

code corresponding to the input value
 will be shown as expression (4.13):

42

 is equal to 1, …, m, and is the width of the quantization bin. [x] represents the largest

integer number less than x.
 is the ideal output code and is the static error.

Let the lower and upper tolerance bounds be

 respectively. So for the fault-free MSS:

 or,

Where

 and

Now the result of adding all the output codes will be expression (4.14):

Let

 ,

 , and

Using the notations introduced above, it can be obtained that .

 is calculated using the transfer function the ideal MSS. Assuming symmetrical MSS, i.e.

 ,

 for every i = 1, …, m.

Now performing the modulo addition operation and introducing new notations shown as

equation (4.15), and (4.16):

It can be shown that the MSS will be faulty if inequality (4.17) is hold [7]:

43

Otherwise it can be assumed that the MSS is fault-free and is the correct

signature. Assuming that the actual signature is mod L, and then the signature of

the fault-free circuit belongs to one of the intervals of , or [.

The residue R is computed in the adder that is previously loaded with the two’s complement

value of . The two’s complement .

So equation (4.17) can be written in the following form:

The ratio of the number of all undetectable errors in the output response, to the number of all

possible errors of that response is defined as the estimated aliasing rate for an ADC. For an ideal

ADC, the output response contains bits which will be compacted into n bits.

Consequently, the number of faulty bit streams that will go undetected by producing the correct

signature is

 . Considering that there are erroneous streams, according to the

definition of the aliasing rate that was said before, the aliasing rate for the system tested by the

modulo adder method will be approximated by expression (4.19).

 (4.19)

For a non-ideal ADC the number of faulty streams going undetected because of producing the

correct signature would be expressed as the form (4.20).

44

Total number of erroneous streams will be obtained as (4.21):

The aliasing rate will be obtained from (4.22):

When the nominal value of the test signal lies at the middle point of the quantization bins,

equation (4.19) and (4.22) becomes expression (4.23) and (4.24):

When the stimuli that matches the ideal transitions of the transfer characteristic is fed to the

ADC expression (4.23) and (4.24) will be simplified to the form of (4.25) and (4.26):

If is much larger than the value of (m+n), then can be estimated as . It is easy to

see that the aliasing rate decreases when the resolution of the device increases or, when the size

of the modulo adder increases. It should be noted that if the errors at the output of the ADC are

equally likely, changing the value of m does not have much effect on the aliasing rate.

45

5. CHAPTER 5

SIMULATION AND ANALYSIS OF THE

RESULTS

5.1 Simulation

As it was discussed in the previous chapter, the only modulus that can be used for testing

ADC using compaction method are the ones in the form of . These are the only modulus

that will prevent the growth of error caused by noise in the circuit. Simulation was planned based

on the analysis that was done for 3-input arithmetic compactor. Although other modulus can be

used for checking arithmetic circuits, for testing ADC modulo 7 and 9 were considered for

simulation.

 Simulation results were generated using ModelSim-Altera and implemented on an FPGA

board from Altera. Figure 5.1 shows the result for a random 3-bit input signal B. The content of

the signature register is a 3-bit signal Z. The carry-out signal is registered and ‘000’ pattern is

applied at the end. The input sequence are, (101), (110), (011), (101) equivalent to 5635 in

decimal. Now using arithmetic compaction circuit introduced before, the residue of this number

in base 8 modulo 7 would be (5+6+3+5) modulo 7 which is equal to the sequence (101) equal to

5 in decimal.

46

Figure ‎5-1 RCC with Modulo 5 Adder

Figure 5.2 shows the result of calculating the residue of number modulo 5. The result

of this operation is 0. The VHDL code that generated the combinational unit for this circuit

based on the input and present state signal (t and r) can be seen in the appendix section of the

report.

Figure ‎5-2 Arithmetic Compaction Circuit modulo 5

47

Figure 5.3 shows the low distortion modulo adder which is when modulus is number 9. In this

simulation number modulo 9 was tested. The final value of the register is 8 (or -1). This

circuit is the alternative compaction circuit that was introduced in the previous chapter. This

scheme is immune to offset of the incoming data as well as noise of the testing environment. The

VHDL code that generated the combination unit for this scheme is also provided in the appendix.

Figure ‎5-3 Arithmetic Compaction Modulo 9

Now consider a 3-bit ADC under test. It is known that two analog stimuli are enough to detect

any fault in the ADC [16]. If these input signals cause the ideal ADC to produce 101 and 110 at

the output, then a real non-faulty ADC with permissible error will produce codes from the

intervals of [100,110] and [101,111].

It is assumed in the simulation that a fault introduces an offset of -001 to the output codes of

the ADC. Also, these codes are affected by noise which is uniformly distributed such that the

first code is increased by 010 and the second code is decreased by 010. The resultant output code

will be 101-001+010=110, and 101-001-010=010. In this case the seed value loaded to the

signature register would be: =011. Consequently the actual

signature will be: and

 As it can be seen, the actual signature does not drop into these intervals which means that

the ADC is faulty. The simulation result can be seen in figure 5.4

48

Figure ‎5-4 Testing an ADC with Offset

Figure 5.5, 5.6, and 5.7 show the RTL form of the simulated circuit of 5.1, 5.2 and 5.3

respectively. As it is clearer in the RTL form of the circuits, the input signal goes into the

combinational unit which feeds into the adder. In each clock cycle the register gets updated and

the final residue will be saved as the signature of the circuit.

Figure ‎5-5 RTL form of modulo adder with Combinational Unit

49

Figure ‎5-6 Compaction Circuit calculating modulo adder of a ternary number

Figure ‎5-7 An alternative modulo adder

Figure ‎5-8 Implementation of the Modulo adder

50

A compaction process was examined for an ADC which is a mixed-signal system. Several

compaction schemes were verified with simulation which proved the validity of the theoretical

results. Tolerance bounds for a fault-free ADC signature were analytically evaluated in the

previous chapter. Modulo 9 and 7 which are in the form of for a 3-bit resolution ADC

would detect all single errors [16] with a low aliasing rate.

51

6. CHAPTER 6

FUTURE WORK AND CONCLUSION

Residue codes which are a class of separable arithmetic codes, are finding more application in

digital testing specially self-checking designs. Other types of codes including, parity codes, and

Berger codes have been also utilized in previous literature for testing arithmetic operations. High

implementation cost related to residue codes has been always a concern. However, because of

the simplicity and separability of this type of codes, and the fact that they are closed under

operations such as addition and multiplication they are still popular. In particular it has been

shown that in case of multipliers it is better to use residue codes for error protection. This project

has developed the theoretical knowledge needed to achieve cost efficient, reliable and fault

secure circuits based on residue codes. More importantly this work intends to be the platform for

studying the effectiveness of arithmetic and algebraic compaction method for testing mixed

signal devices such as analog-to-digital converters.

Application of residue testing method, for on-line error detecting in an ADC was introduced

in this project. Different compaction schemes that can be used for testing digital as well as

mixed-signal system were presented. According to this testing method, a faulty circuit can be

identified if the result of the output signature does not exist in the predefined permissible

interval. Compactor schemes with different modulo adders where analyzed and simulated to find

an arithmetic compacting circuit with the minimal uncertainty. The circuits were simulated for a

3 bit data in ModelSIM and the scheme of the RTL form of the circuits were presented in the

report. The tolerance bounds for the signature and the aliasing rate of the circuit were obtained. It

was shown that the aliasing rate decreases if the resolution of the ADC increases. If the ADC can

52

perform a direct-conversion, the binary counter of this ADC can be used as a signature

compactor. Such an ADC in the testing mode is going to reset after a series of conversions is

performed for the entire sequence of test stimuli.

Modulo of the form are the most important ones for they are considered cheap and

easy to implement. Similarly compaction modulo of the form will detect all the single

errors that would affect all bits except the least significant bits of the word [16].

Future work to complement this work would be to implement the compaction circuits to

verify a more accurate evaluation of time delay, overhead, and fault secure property of the

circuit. Ultimate goal would be to optimize RCC design so that it can be used for efficient

modulo 1 multiplier and testing arithmetic operations.

53

7. APPENDIX

Part of the VHDL code that generated the combinational unit of figure 5.2, and 5.3 in chapter

5 are shown here. Code of the modulo adder circuit is also shown here.

54

55

8. REFERENCES

[1] I.L Sayers, D.J Kinniment, E.G Chester, “Design of a reliable and self-testing VLSI

datapath using residue coding technique ,” IEE proceedings I Solid-State and Electron

Devices,Vol. 133, pp.129-140, 1986.

[2] U. Sparmann, S.M. Reddy, “On the effectiveness of residue code checking for parallel

two’s complement multipliers,” IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, Vol. 4, pp.227-239, June 1996.

[3] M. Mahoney, DSP-Based Testing of Analog and Mixed-Signal Circuits. Los Alamitos:

IEEE Computer Society Press, 1987.

[4] C. Stroud, J. Morton, T. Islam, H. Assaly, “A mixed-signal built-in self-test approch for

analog circuits,” Soutwest Symposium on Mixed-Signal Design, pp.196-201,2003.

[5] V. Geurkov, L. Kirischian, “A Concurrent Testing Technique for Analog-to-Digital

Converter ,” IEEE Mixed-Signals, Sensors and Systems Test Workshop,pp.133-136,2011.

[6] B. Schneier. Applied Cryptography. John Wiley & Sons, Inc., second edition, 1996.

[7] M. Abramovici, M. Breuer, A. Friedman. Digital Systems Tesing and Testable Design .

Wiley-IEEE Press, NewYork, 1994.

[8] W. Hong, R. Modugu, M. Choi, "Efficient Online Self-Checking Modulo 2
n
-1 Multiplier

Design," IEEE Transactions on Computer, vol. 60, pp.1354-1365,2011

[9] S. Bayat-Sarmadi, “Concurrent Error Detection in Finitr Field Arithmetic Operations,”

University of Waterloo, 2007

56

[10] A. I. Noufal and M. Nicolaidis, "A CAD framework for generating self-checking

multipliers based on residue codes," IEEE Conference on Design, Automation and Test, pp. 122-

129, 1999

[11] P.E. Beckmann and B.R. Musicus, “Fast Fault-Tolerant Digital Convolution Using a

Polynomial Residue Number Systems,” IEEE Transaction on Signal Processing, vol. 41, no. 7,

pp. 2300-2313,1993

[12] M.B. Sullivan, “Aplication of Residue Codes for Error Detection in Modern Computers,”

Texas, 2010

[13] T.R.N. Rao and E. Fujiwara. Error-Control Coding for Computer Systems. Prentice-Hall,

1989

[14] J. Cavanagh, Computer Arithmetic and Verilog HDL Fundamental, CRC Press, Taylor &

Francis Group, 2010

[15] U. Sparmann, S.M. Reddy, “On the effectiveness of residue code checking for parallel

two’s complement multipliers,” IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, Vol. 4, pp.227-239, June 1996

[16] V. Geurkov, L. Kirischian, “A Concurrent Testing Technique for Analog-to-Digital

Converter ,” IEEE Mixed-Signals, Sensors and Systems Test Workshop, 2011

[17] S. Das, M. Sudarma, M. Assaf, W. Jone, K. Chakrabarty, and M. Sahinoglu, “Parity Bit

Signature in Response Data compaction and Built-In Self-Testing of VLSI Circuits With

Nonexhaustive Test Sets,”IEEE Transaction on Instrumentation and Measurment, Vol.

52,pp.1363-1380, October 2003

[18] W. Peterson and E.Weldon, Error Correcting Codes, Cambridge, MA: The MIT Press,

1972

57

[19] S. Z. Hassan, D.J. Lu, and E.J. McCluskey, “Parallel Signature Analyzers,” 26
th

 IEEE

Computer Society Intn’l. Conf., COMPCON, Spring 1983, pp.440-445, 1983

[20] M.Mahony, DSB-Based Testing of Analog and Mixed-Signal Circuits. Los Alamitos:

IEEE Computer Society Press, 1987

	Ryerson University
	Digital Commons @ Ryerson
	1-1-2013

	Application Of Residue Codes For Error Detection In Mixed Signal Devices
	Leila Feyzmohammadi
	Recommended Citation

