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Abstract 

 

Testing methods based on residue codes are considered as simple, with high probability of 

detecting errors. Most of the literatures on arithmetic error control codes are mainly focused on 

applications of secure data transmission and testing digital circuits rather than testing mixed-

signal systems. In both cases implementation of residue computing circuit (RCC), also known as 

the residue generator is an integral part of the hardware design. In this work a low-cost 

compactor circuit to calculate the residue for on-line testing of analog-to-digital converter has 

been presented. Aliasing rate and its relationship with the resolution of the ADC have been 

analyzed. Theory and operation of Linear Feedback Shift Registers have been applied for the 

implementation of the modulo adder circuit. The compaction circuits were simulated, and the 

result confirmed the theoretical analysis. 
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1. CHAPTER 1          

INTRODUCTION 

1.1 Motivation 

As the size of electronic devices decrease the probability occurrence of errors increases. At 

the same time testing of the circuit becomes more difficult as the number of gates increases. To 

ensure the reliability of the circuits, it is important to detect errors as soon as they happen, 

identify the faulty circuit and ensure the correct functionality of the circuit in the presence of 

fault. Error detecting codes, more specifically residue codes has been applied to provide 

testability in a wide range of very large integrated circuit (VLSI) circuits [1]. Also the 

effectiveness of residue code checking for on-line error detection in multipliers with different 

architectures has been evaluated experimentally [2]. 

Many electronic systems, such as those for signal processing, video compression and 

biometrics are essentially of a mixed-signal type. A mixed-signal system (MSS) incorporates 

both analog and digital circuits. It is highly desirable to assure the reliability of these systems. 

Many methods developed for testing analog-to-digital converters (ADC) are based on the 

estimation of their static and dynamic metrics such as, gain, offset, SNR etc. [3]. Although these 

metrics carry important information about the functionality of an ADC and its subunits, but their 

calculation needs complex equipment for digital processing of test responses. This work 

develops a test scheme based on residue calculation to test the functionality of ADCs. 
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1.2 Scope of this Project 

This work extends the application of residue codes for on-line testing of ADCs. In order to 

detect all possible faults in an ADC, an exhaustive set of test patterns is applied as an input to the 

device under test (DUT).  Such a test set consists of analog input stimuli covering the full scale 

(FSR) of an ADC. The output responses which are also referred to as output codes should be 

digitally compared with the expected values. If the comparison is done after each conversion 

more memory, proportional to the number of input stimuli, is needed. Off-line compaction 

schemes can be designed based on the estimation of the arithmetic sum (signature) of the output 

responses of the (DUT) [4]. The actual signature is then compared against the fault-free circuit’s 

signature. 

 In this work, compaction schemes based on residue codes for different modulo are analyzed, 

simulated, and implemented on Altera FPGA board. The aliasing rate is estimated based on 

theoretically achievable testing accuracy for the tolerance bounds. The limitation of the method 

according to [5], is that the tolerance bounds are obtained from empirical data, which requires 

the availability of a reference device and does not guarantee the highest accuracy for the bounds. 

1.3 Report Outline 

The organization of the remainder of the report is as follows. A brief overview of required 

background of residue codes and a number of schemes for testing arithmetic circuits, and self-

checking multipliers based on residue codes is presented in Chapter 2.  

In Chapter 3 data compression technique for testing is explained, and testing ADCs based on 

analyzing the residue is presented. Several residue calculation schemes are presented. Aliasing 

rate is estimated and ways to improve the rate is discussed.  
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In Chapter 4 the result of the simulation of the residue calculation circuit (RCC) is presented. 

Finally, some conclusions are summarized in Chapter 5.  

1.4 Project Contribution 

Finding the best compaction scheme for testing ADC without the need for complex equipment 

is the major concern of this project. The contribution of this project to achieve this goal is 

simulation, and implementation of residue calculation circuit for testing ADC. Also an 

estimation of aliasing for the schemes was accomplished. 

  



4 
 

2. CHAPTER 2             

BACKGROUND 

2.1 Introduction 

In this Chapter, basic definitions of finite fields, polynomials and arithmetic operations are 

provided. Basics of fault modeling are introduced. Residue codes and their application in testing 

arithmetic circuits are discussed in details in this chapter. Schemes of cost effective residue 

testing circuits that has been previously developed for testing arithmetic circuits are analyzed. 

Proofs of the theories are omitted for briefness.  

2.2 Finite fields 

In this section important definitions and theories of finite fields are summarized from [6]. 

Proofs are omitted. All of these definitions and theories can be seen in most of algebra texts.  

2.2.1 Basic Definitions and Properties 

Definition 2.1 A group is a set G with a binary operation ‘*’ on G if it satisfies these 

conditions: 

The binary operation ‘*’ is associative: 

                                                                                                              

There exists an identity element e in G: 

                                                                                                                         

There exists an inverse element for each element: 
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A group is an Abelian or communicative if: 

                 

Definition 2.2 A set F with two operations denoted by ‘+’ and ‘.’ is a field if these conditions 

are met: 

 (F,+) is an Abelian group and 0 is its identity element 

 (F*, .) is an Abelian group and 1 is its identity element 

          then                 

                   

Definition 2.3 A field that contains a finite number of elements is called a finite field known 

as Galois field. 

Definition 2.4 The number of elements in a Galois field is called the order of the field and a 

Galois field with the order of q is denoted by GF(q). 

Definition 2.5 Let a be an element of GF(q). The smallest positive integer m, such that 

    , is called the characteristic of the field.  

Theorem 2.1 The characteristic of any finite field is prime. 

Theorem 2.2 In a Galois field, the order of the field is a prime or a power of a prime. 

2.2.2 Polynomials 

A polynomial over GF(p) is an expression of the following form: 
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Definition 2.6 A polynomial F(x) over GF(p) is called irreducible if it cannot be written as the 

product of some lower degree polynomials over GF(p). 

Definition 2.7 F(x) is a polynomial over GF(p), F(0) 0. The order of F(x) is the least positive 

integer t, such that F(x)|  -1  

Definition 2.8 Let F(x) be a polynomial of degree m over GF(p). Polynomial F(x) is said to be 

a primitive polynomial if its order is     . 

Definition 2.9 A sequence of numbers            can be associated with a polynomial, 

called a generation function      [7].  

               
         

2.2.3 Construction and Representation of        

Theorem 2.3 Let      be an irreducible polynomial of degree   over      . Then all 

polynomials over       of degree less than   form a finite field        of order   , if 

addition and multiplication are performed modulo     . 

Definition 2.10 If   and   are two fields such that     , then   is called a subfield of   and   

is called an extension field of  . For example,      ) is an extension field of      . 

Definition 2.11 The binary extension field        is constructed using an irreducible 

polynomial      of degree m: 
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Here          for           . The constructed field is an extension of the basic field 

      and contains    elements. Assuming that x is a root of     , any field element of  

       can be represented as a polynomial of degree m-1: 

       
                                                                       

2.2.4 Addition over        

The addition of the two field elements is carried out by pair-wise XOR operation [8]: 

2.2.5 Multiplication over        - General Bit-level Multiplications 

Suppose                    is the modulus that defines the polynomial of the field. 

            are the bits. 
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Algorithm 2.1, and 2.2 show the bit-level multiplication from low bit to high bit and from 

high bit to low bit which are obtained according to equations (2.1), and (2.2) [9].  

Algorithm 2.1: Bit-level algorithm of multiplication from low bit to high bit in        

               
                     

     
     
                     

         
                

} 
 

Bit-level multiplication can be done from high to low bit-level in        according to 

equation (2.2): 

                                                                                                                                          

        
         

                                                                                   

                                                                                                    

                                                                                       

Algorithm 2.2: Bit-level algorithm of multiplication from high-to-low bit in        

               
                     

          
                     

                
           

} 
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2.3 Theory and Operation of Linear Feedback Shift 

Registers 

Linear feedback shift register [LFSR] devices are used in built-in self test (BIST) designs. 

They can be used to carry out the response of the compression which will be explained in more 

details in chapter3.In this section some of the properties associated linear feedback shift registers 

are presented from [7].These circuits are based on cyclic redundancy checking (CRC) and have 

only clocks as their input. Symbolic form of a feedback shift register is shown in figure 2.1. Each 

cell is assumed to be a clocked D flip-flop. When these circuits are clocked repeatedly, they go 

through a fixed sequence of states. For example           is the sequence for a binary counter 

consisting of n flip-flops. 

 

Figure ‎2-1 Feedback shift register 

 

The maximum number of states for each device is   . A linear circuit is a logic network of 

basic components: Flip-flops, modulo-2 adders, modulo-2 multipliers. All operations of such 

circuits are done modulo 2. The response to a linear combination of stimuli is the linear 

combination of the responses of the circuit to the individual stimuli [7]. Type 1 (external-XOR) 

and type 2 (internal-XOR) LFSR are shown in figure 2.2 and 2.3 respectively. 
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Figure ‎2-2 Type 1 LFSR 

 

Figure ‎2-3 Type2 LFSR 

 

Definition 2.9 Let {             where         , represent the output sequence that is 

generated by an LFSR. Then the sequence can be expressed as: 

        

 

   

                                                                                                                                       

 Multiplication and division of the polynomials are done modulo 2 [7]. 
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Structure of type 1 LFSR is such that if the current state (CS) of   is     , then    

     
 
   . This means that the operation of the circuit is a recursive function.    is the feedback 

coefficient, and          are initial state (IS) of the device. 

It can be proved that      is a function of initial states of the LFSR and the feedback 

coefficients [7]. Equation (2.3) shows this property of function     . 

     
    

      
        

    
   

        
 

                                                                                              

Definition 2.12 The denominator of equation (2.3) is known as the characteristic polynomial 

of the sequence {    as is denoted as [7]: 

              
       . 

If                , and      , then G(x) will be reduced to 1/    . Assuming that 

sequence {    is cyclic with period p as shown in equation (2.4): 

   
 

    
        

              
   

    
                                                                                                

Definition 2.13 If the initial state of an LFSR is                 ,     , then 

the LFSR sequence      is periodic; the period is the smallest integer k for which      divides 

       

Definition 2.14 If the period of the sequence generated by an n-stage LFSR is     , then it 

is called a maximum length sequence. 

Definition 2.15 The characteristic polynomial associated with a maximum-length sequence is 

called a primitive polynomial. 
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2.4 Fault Modeling  

Faults can be investigated at different levels of abstraction of circuits, such as gate level or 

architectural level. Gate level faults are open faults, short faults, and stuck-at faults. Figure 2.4 

shows an open fault circuit with its corresponding truth table. C is the correct output and C’ is 

the faulty one. In higher architectural-level, the error can be modeled as equation 2.5 [9]: 

                                                                                                                                            (2.5) 

 

 

Figure ‎2-4 Open Fault Model and Truth Table 

2.5 Detecting errors in finite field operations 

In past, circuits capable of concurrent error detection were only dedicated to critical 

applications such as, railway control. But today with shrinking size of electronic devices and the 

fact that circuits are more susceptible to internal and external noises, self-checking circuits are 

more desirable. In order to detect errors occurred in any finite field operations, different 

approaches, such as, parity bits, scaling techniques has been proposed in literatures [7, 9]. 
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 Parity Prediction: Works based on predicting the parity of the output from the parity of 

the input. This method can only find odd number of erroneous bits. 

 Scaling technique: Representing the value N by the number AN, known as AN codes. 

 Residue codes (or inverse residue codes): Computing a residue for each input and, 

then predicting the residue of the output based on them. It essentially means 

representing the value N by the pair (N,C) where C is N mod A or (N-N mod A) and is 

called the check part. 

 Time redundancy based techniques: Re-computing the result with shifted operands.  

 The main problems associated with the design of self-checking circuits are hardware cost and 

time consumption of the design. Developed Parity prediction designs allow high fault coverage 

with low hardware cost in self-checking data paths for blocks such as, adders, Shifters, register 

files, etc.  However, parity prediction self-checking multipliers has much higher overhead.  

Using parity codes for checking memory systems and register files provides fault secure property 

with low overhead, however, arithmetic operators produce output errors that are not detectable 

by parity code; in multipliers, fault secure design based on parity prediction requires hardware 

overhead in the range of 40% to 50% [10]. Therefore, in the case of multipliers, residue codes 

can be a good alternative to achieve fault secure property.  

2.6 Residue Codes for Checking Arithmetic 

Operations 

Modulo A (A is a positive integer) arithmetic circuits have found many applications in digital 

signal processing, computing convolution, elliptic encryption systems and fault tolerant digital 

systems [11].  
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Arithmetic codes in general, add some bits as an information part to the input before the 

operation, to be checked after the operation. The information part can be the original number 

multiplied by a constant number or, it can be a check part representing the modulo m of the 

information part. One of the most important classes of modulus M are Mersenne numbers that 

are in the form of     . These circuits are known to have simple hardware implementation as 

there is no need for division to calculate the residue. Residue checking circuit requires compact 

hardware [10]. It needs a small arithmetic operator (adder, multiplier) which can add or multiply 

operands of the size of the check parts of the operands, A modulo generator which can compute 

the residue which is independent of the size of the operator. It also requires an arithmetic code 

checker and a code translator with the size proportional to the size of the operands.  

Residue checking has been studied for error detection in arithmetic processors. Many papers 

have been published to evaluate residue checking in terms of delay, fault coverage and hardware 

overhead. So far the results show that it may not be the most efficient method for checking 

addition and subtraction circuits, however, it is shown that the method has a very good 

performance for checking multiplier circuits especially large multipliers [10]. 

Residue checking is a method to check the accuracy of an operation which can be done in 

parallel with the actual operation. This means that it can provide concurrent error detection. For 

example for checking an addition operation, the adder and the residue checker are implemented 

as an independent logic functions. Then an easy to implement modulus should be selected to 

check the residue of the operands and the result to see if they match. Figure 2.5 from [12] 

illustrates the idea of error detection using residue checking. 
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Figure ‎2-5 Error detection scheme 

Another method to detect errors in an arithmetic operation is parity prediction and because of 

its low hardware implementation, it is sometime considered as more efficient than residue 

checking. The most important problem with this method is that it can only find odd number of 

errors and because of the occurrence of errors with random nature in arithmetic operations, there 

might be some errors that cannot be detected by parity prediction method.  

In a number system two numbers A and B are shown as the following [14]: 

       
         

                                                                                                                

       
         

                                                                                                                 

The congruence relationship of the two numbers modulus m is produced by equation (2.6): 

                                                                                                                                         

The benefit of the residue checking is that numbers that are congruent to the same modulus 

can be added, subtracted and multiplied, and the result is still a valid congruence [13]. This 

means that the residue of the sum is equal to the sum of the residues.  For example, modulo 3 

residues can detect single-bit errors using only two check bits in the radix 2 number system. The 
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structure is that, in parallel with the addition operation, separate residues for A and B will be 

obtained in two residue generator blocks. These residues are then added in an adder unit and the 

resulting sum is applied to another residue calculator. Final step is to compare the residue of the 

sum against the residue of the sum of the residues to indicate an effort if they do not match [14]. 

This structure can be illustrated in the mathematical equation of (2.7) as the following form: 

                                                                                                                                                 

                                                                                                                                                 

                                                                                                              

                                                                                                                                             

                                                                                                                                                    

Table (2.1) shows the result of 4-bit binary number modulo 3. Note that the residue 

representation needs only 2 bits. The division operation to find the residue was implemented by a 

sequence of shifts and addition or subtraction depending on the previous state of the previous 

high order carry-out [14]. The carry out determined the quotient bit at any level and also the next 

operation. 
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Table ‎2-1 4-Bit Binary Numbers and Their Residue Modulo-3 

Binary 

Data 

Modulo-3 

Residue 

0000 00 

0001 01 

0010 10 

0011 00 

0100 01 

0101 10 

0110 00 

0111 01 

1000 10 

1001 00 

1010 01 

1011 10 

1100 00 

1101 01 

1110 10 

1111 00 
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The use of arithmetic codes for adders/ALUs has reduced interest because of the complexity 

and the large overhead of the circuit. The size of the multiplier however, is proportional to the 

square of the size of the operands, meaning that for large multipliers residue codes is a good 

solution [10].  

 A CAD system has been developed in [10] allows automatic generation of different schemes 

of self-checking multipliers based on residue codes. The experimental result of this paper 

confirmed that residue checking for multipliers bigger than     reduces the area overhead 

significantly, even down to 5% or 6% for       multipliers. 

For simplicity it is assumed that faults affect a single gate at a time. Two different schemes for 

an adder cell can be defined to model fault which are shown in figures 2.6, and 2.7 from [10]. In 

the model shown in figure 2.6 sum and carry-out are independently computed as the result of 

XORing. In figure 2.7 however, A B result which is shown as P, is to calculate carry-out. 

Clearly the latter model results in propagating error of P to C. 

 

Figure ‎2-6 Adder cell with no logic shared 
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Figure ‎2-7 Adder cell with some logic shared 

The result of applying residue codes for different schemes of multipliers are summarized here 

[10]. 

Array Multipliers 

Array multipliers are implemented by network of full and half adders to calculate the partial 

products. To detect errors using residue codes in Array Multipliers or any other type of 

multiplier, it should be considered that if the arithmetic value of the error produced by multiplier 

is multiple of the base of the residue codes, then, the error would go undetected. Since we are 

working with binary system, any error at     bit of the output bits has the arithmetic value of 

   . So,     for the scheme of figure 2.7 can be selected as the check base because    is 

never a multiple of 3; it is known as the cheapest check base because it only needs 2 bits to 

register the residue.   

Check-base 3 however, cannot detect some of the faults in the scheme of 2.7. In this case, 

arithmetic value of the error will be the form of       which is multiple of 3. In this case base 

7 can be used so that the base does not divide the error. 
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Multipliers with Wallace Trees 

Accumulating partial products using Wallace trees improves the delay known for Array 

multipliers [14]. Same as the Array Multipliers, the network of ripple-carry adders that add the 

partial products will add the arithmetic value of the error to the final result. So here also base 3 

achieves fault secure property. However, because of the delay known for the ripple-carry adder, 

the carry propagate adder must be implemented in a carry look-ahead manner [10]. Now the 

check base in this case would be different. Important fact need to be considered is that carries 

here are generated by a carry look-ahead function which has a structure different than the adder 

cell network. This leads to propagation of an error in a more complex way. 

Table (2.2) summarizes the check bases that can be used for fast adders obtained by the 

software developed in [10]. 

Table ‎2-2 Check Bases 

Check Base 

16 

bits 

32 

bits 

64 

bits 

Kogge & Stone                  

Han & Carlson                

Brent & Kung 7 7 7 

Sklansky 3 3 3 

Carry Lookahead 

Unit 3 3 3 

 

 



21 
 

 

Booth Multipliers 

Booth multipliers are also considered as fast multipliers because it reduces the number of 

partial products by one half by encoding the biggest input operand. For this type of multiplier, 

the lowest check base for fault secureness is 7 [10].  

2.7 Residue Generator 

The residue of a binary number modulo      can be implemented by splitting the bits into 

bytes of k bits and performing modulo m addition of these bits. This means that residue 

generators of the form        can be implemented with less cost as there is no need for 

performing division. Modulo m addition of two k-bit is performed using a k-bit adder in which 

the carry output is used as a carry input for the next adder. This is basically what Carry End-

Around adders do. So a residue generator block can simply be implemented by a tree of k-bit 

Carry End-Around adders without need to do any division [15]. For instance consider     

    , then applying congruence theory the residue will be calculated as shown in equation 

(2.8) 

                                                                                                                                                   

Thus, the residue of powers of                modulo 7 is 1.                    and so 

on. So a full adder can be used to add        , and so on. Another full adder then must be used to 

add       , and so on. In other word, the period of the bits is 3. 

Modulo 9 also worth noting as the residue of 1, 8, 64, ... modulo 9 is +1, -1, +1, … 
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Therefore,                  has to be added. This operation can be done using a full adder 

and inverting the bit that has to be subtracted. Figure 2.8 and 2.9, show residue generators for a 

8-bit number modulo 7 and 9 respectively [10]. 

 

Figure ‎2-8 8-bit number modulo 7 

 

Figure ‎2-9 8-bit number modulo 9 

The overall block diagram of the self-checking multiplier using residue codes is shown in 

figure (2.10). 
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Figure ‎2-10 Self-checking Multiplier 
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3.  CHAPTER 3                                          

APPLICATION OF RESIDUE CODES FOR 

ERROR DETECTION IN MIXED-SIGNAL 

SYSTEMS 

3.1 Introduction 

This chapter focuses on application of residue calculation for arithmetic and algebraic 

compaction, to test mixed-signal systems. General aspects of compression techniques are also 

discussed here. Several low-cost arithmetic and algebraic compactor schemes are introduced. 

The tolerance bounds for the result of compaction are estimated and the aliasing rate is 

evaluated.  

3.2 General Aspects of Compression Techniques 

Conventional testing methods involved bit-by-bit compression of the output with the correct 

values that has been previously computed. Clearly, this approach requires a significant amount of 

memory. An alternative approach is to save the information in a compressed format known as a 

signature [16]. This concept is illustrated in figure 3.1 [17]. If the signature obtained from the 

device under test does not match the pre-calculated signature of a fault-free circuit, then a fault is 

detected. A practical compression technique should be easily implemented and should not 

introduce signal delays. 
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Figure ‎3-1 Test Data Analyzer 

The challenge facing this method is insuring that the faulty and fault-free signatures are 

different because, a fault may produce offsetting errors. The erroneous output response is said to 

be an alias of the correct output response.  

Three methods have been suggested in [7] to measure the aliasing associated with a 

compression technique: 

1. Simulation of the circuit and the compaction technique which requires fault 

simulation. If the test sequence is long this method is expensive. 

2. In this method, output responses are classified into categories, such as single-bit 

error or burst errors, which are errors that lie within a fixed number of patterns of one 

another. 



26 
 

3. The fraction of all possible erroneous response sequences that cause aliasing are 

computed. In this method it is assumed that all possible output sequences are equally 

likely. 

3.3 Ones-Count Compression 

If the output signature of a circuit is shown as          , then in ones counting, the 

signature of the response,       is the number of 1s appearing in  . The compressor is a counter 

[7] and the degree of compression is            . Figure 3.2 describes testing with one-

counting compression technique. 

 

Figure ‎3-2 One-Count Compression 

3.4 Transition-Count Compression 

In this method of testing, is the number of transitions in the output data stream. This means 

that for a sequence of          , the transition count will be obtained from equation (3.1) 

[7]: 
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This implies that the response-compression circuit needs a transition detector, and a counter 

with             stages. Transition detector consists of a flip-flop and a XOR gate that is 

shown in figure 3.3. 

 

Figure ‎3-3 Transition Detector 

3.5 Parity-Check Compression 

Parity-check compression circuit is also explained in [7]; it consists of D-flip-flop and XOR 

gate. Its implementation is a linear feedback shift register whose primitive polynomial is 

        . If the initial state of the flip-flop is 0, the signature S is the parity of the circuit 

response. Same as it was said in the previous chapter, faults that create an even number of errors 

are not detected with this method. As the number of input streams increases, the probability of 

aliasing approaches to the value of 0.5. Figure 3.4 illustrates the parity-check compression 

scheme. 
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Figure ‎3-4 Parity Check Compression 

Using parity-check compression for multiple-output circuits has two disadvantages. If it is 

implemented by replacing the input XOR gates by a multiple-input gate or a network of XORs, 

an error internal to a circuit may affect more than one output line and the error gets propagated to 

an even number of output lines. Also, if a separate parity-check compressor is used in each 

output, the hardware cost will be high. This means that this technique is not very efficient for 

testing multiple-output circuits. 

3.6 Syndrome Testing 

Applying all    test vectors to an n-input combinational circuit is called syndrome testing [7], 

syndrome S (or signature) is the normalized number of 1s in the resulting bit stream. It means 

that if K is the number of minterms in the function f, then       . The syndrome of a 3-input 

AND gate is 1/8 and for a 3-input OR gate is 7/8. Any function can be realized in such a way that 

all single stuck-at faults is syndrome detectable. 
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If two circuits    and    have no shared input, and         and        , then the input-

output syndrome relation of the circuit as a function of the type of gates is listed in Table (3.1) 

[7]. 

Table ‎3-1 Syndrome for circuit having non-reconvergent fanout 

Gate Type 

for C 

Syndrome S3 

OR            

AND      

NAND        

NOR                

XOR             

  

3.7 LFSRs Used as Signature Analyzers 

Signature analysis is a compression technique based on the concept of cyclic redundancy 

checking (CRC) [18]. Signature generator with a single-input LFSR is the simplest scheme of 

this technique. The contents of this register are the signature after the last input bit has been 

sampled. Response sequence which is fed to the signature analyzer is denoted by     . This 

sequence then will be divided by the characteristic polynomial denoted by     . This implies 

that signature analysis is based on polynomial division; the “remainder” left in the register after 

completion of the test process is the final signature. This can be represented in the equation form 

of (3.2). 

                                                                     (3.2) 
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Figure (3.5) from [7] explains how a single-input signature analyzer works.       , as was 

defined previously, is the reciprocal characteristic polynomial of the LFSR; it is given in the 

example as: 

                 

The input is the 8 bit test sequence 11110101 which is equivalent to              

        . As it is shown in figure 3.5, the result of division will be,            and 

         .   

 

Figure ‎3-5 Example of single-input signature analyzer 

3.8 Multiple-Input Signature Registers 

It is possible to test circuits that have multiple outputs using signature analysis technique. The 

most common way to do that is using a multiple-input (MISR) register which is shown in figure 

3.6 [19]. The circuit is assumed to have n inputs; it operates similar to n-input signature analyzer.  
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Figure ‎3-6 Multiple input register (MISR) 

3.9 Arithmetic Compaction Circuits for Testing 

Mixed-Signal Systems 

Many electronic systems, such as those for audio and image processing, video compression, 

speech recognition, digital communication etc., deal with signals that are mix of analog and 

digital nature. It is highly desirable to insure the reliability of these devices by detecting any 

faults as soon as they occur in the system and make sure that the system is immune to sudden or 

gradual failure. Gradual failures may remain unnoticed and become a greater threat in the future. 

To test this type of devices signature analysis method can be applied; analog stimuli can be used 

to cover nearly the full-scale range (FSR) of the device. Then the output responses in the digital 

form should be compared with the expected values. The comparison can be done after each test 

stimuli has been applied or after the complete test set has been run. If comparison is done after 

each test set is applied, the availability of memory will be an issue.  Although performing the 

comparison after the full set of test stimuli has been applied might lead to undetected errors, 

since the error escape rate and the test hardware overhead are small, this method is considered 

more practical for built-in self-test [7].  

Compaction methods are based on the estimation of the residue of an arithmetic sum which is 

referred to as the signature of output when the input is fed by test stimuli. The output signature 
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should be compared with the fault free circuit’s signature and the fault signal should be 

generated if the error is out of the predefined tolerance bound. Erroneous patterns caused by 

modular operation which is called aliasing may go undetected. In the presence of analog circuits 

and an analog - to- digital converter aliasing phenomenon provokes, and produces errors which 

would distort the output codes and the compaction result. Therefore, compaction testing for 

mixed-signals deals with a set of permissible signatures, and not a single “reference” for digital 

systems. The cardinality of this set should be kept at a minimum in order to achieve a low 

aliasing rate [7]. 

Compaction circuits with an arbitrary modulus have been developed in this study. The set of 

permissible signatures that are within the tolerance bound from empirical data requires the 

availability of the reference system. So, the tolerance bound is computed analytically in this 

work to avoid the complexity. 

3.10 Testing Mixed Signal Device 

One approach to test mixed-signal system is based on the estimation of metrics such as gain, 

offset, INL, DNL, SNR, ENOB etc [20]. Although these static and dynamic metrics carry 

important information about the functionality of the system, however, their calculation involves 

extensive digital processing which would impose large overhead on the system and is not 

acceptable for built-in implementation.  

Figure 3.7 shows the scheme of on-line testing for an analog-to-digital converter device 

(ADC), using compression technique. As it is shown in the figure, the Test Pattern Generator 

(TPG) generates digital pattern that is send to the digital-to-analog converter (DAC) which is 

then feed to the Analog Comparator (AC). When the operational signal that is been fed to the 
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device under test matches the output of the DAC, then a passing signal is generated by the AC 

unit. This HIT signal activates the Modulo Adder block which is responsible for calculation of 

the residue which is also referred as a compactor or signature analyzer [7].  

 

Figure ‎3-7 On-line Testing of ADC Device 

Finding a real fault-free ADC device is a main challenge. Characteristic function of an ideal 

ADC is shown in figure 3.8. Another challenge which complicates the use of algebraic 

compaction for the scheme is caused by the uncertainty of the output coded voltage when an 

input voltage is in the interval that contains the middle point of the quantization bin; an interval 

code will be produced at the output, even though there is no fault. 

Testing of a 3-bit fault-free MSS with FSR of 8 volt, with a transfer characteristic shown in 

figure (3.8), using compression technique is analyzed here. Several compaction circuits for 

testing this ADC device will be presented in the next chapter. 
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Figure ‎3-8 Transfer function of a 3-bit MSS 

The transfer function of the system is such that the transition voltages between the steps, T 

(k), k= 1,…, 2n-1 (n is the resolution of the MSS) may fluctuate within the specific tolerance 

bounds. Inequality (3.3) shows this bound. 

   

  
         

 

  
                                                                                                                      

If n= 3 bits then (3.3) will be simplified to (3.4): 

                                                                                                                                                

The shaded boxes surrounding the ideal transitions show the bounds. Worst case happens 

when a and b coincide. If the input signal matches the middle points of the quantization bin, the 

output can take three values.  For example if the stimuli match the middle point of 4 volt, the 

output will take three possible values 011, 100, 101. Excluding these points it can be assumed 

that test stimuli are in the neighborhoods of the corresponding transition voltages T (k) of the 

transfer function. With this assumption the number of acceptable output codes reduces to two per 



35 
 

input stimulus which leads to reducing the distortion of the final signature. For instance, if the 

input is set to be T (4) = 3.5 V, the output code will be 011 or 100.  

To develop a valid fault model it can be assumed that faults in a MSS would change the 

transfer function such that the transition points, T (k), move beyond the permissible bound, i.e. 

(k) < k-1, or T (k)>k. Also we assume that it can only be a single transition within each of the 

intervals of [k-1, k],             

Now with the fault model described above, all the faults will be detected by the input stimuli 

set, which only includes single points from each of the intervals. 
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4. CHAPTER 4                                                     

RESIDUE CALCULATOR CIRCUIT 

ARCHITECTURE FOR MIXED-SIGNAL 

SYSTEMS 

4.1 Operation of Arithmetic and Algebraic 

Compactor 

Algebraic and arithmetic compactors are the two types of compactors that can be applied for 

testing circuits. Both methods utilize the same theory of computing the residue. The arithmetic 

compactor is referred to as the modulo sum circuit. Modulo sum is just a special case of a residue 

code.   

4.2 Operation of Arithmetic and Algebraic 

Compactor 

The operation of the algebraic compactor can be explained by a n-input analyzer. Assuming 

that the MSS produces all n bits simultaneously, a multiple input signature register (MISR) can 

be considered. In this study a 3-input signature register is examined which receives for example 

the following sequence of 3-bit data, α4, α2, α1, α0. This sequence of data can be described by 

expression (4.1) [7]: 

(                                                                                                                                

       is equal to y+α, where α is the primitive element of the field        . In this 

example α is considered as the root of the primitive polynomial            . Expression 

(4.1) can be implemented using an iterative addition and shift operation by factorizing it: 
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In general form expression (4.2) can be considered as a set of repetitive operation of the form 

of expression (4.3): 

                                                                                                                                                

 

Figure ‎4-1 Operation of the 3-input signature register 

 

Figure (4.1) shows the operation of MISR for implementing expression (4.3). The operation 

can be performed using theories of polynomial division in        that was introduced before as 

expression (4.4): 

            
   

  
 

+           

   =    +                                                                                                                                                   

Figure 4.2 shows the register transfer level (RTL) scheme of 4.1. This circuit will produce    

as its signature which is equivalent to 010 in vector form. 
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Figure ‎4-2 3-Input Residue Calculator in RTL Form 

Another form of compactor circuit is called an arithmetic compactor which works similarly to 

the algebraic one. The difference is that here the circuit divides the input sequence by the number 

       where 3 is the primitive element of the arithmetic finite field GF(5) .This is similar 

to the algebraic circuit that divides the input sequence by the polynomial of G(y) = y-α . 

Considering the same example if the sequence of          and    is matched with numbers 

6, 4, 2, and 1 which are fed to the compactor circuit, performing division of the octal number 

6421 with respect to modulo 5.  

Expression (4.5) illustrates the same compression procedure in an arithmetic circuit. Figure 

(4.3) shows a symbolic form of this operation. 

(8(8(8(8.0+6)+4)+2)+1)mod5                                                                                                (4.5)
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Figure ‎4-3 3-Input Arithmetic Compactor 

Considering the special case of algebraic and arithmetic compactors when α and 3 are 

replaced by 0; then for both compactors the same circuits will be obtained which does not have 

feedbacks. The probability of the undetected error for this circuit is same as the one with 

feedback. Also a case can be considered where α and 3 are both replaced with 1. To implement 

the residue calculation circuit (RCC) in a general form, equation (4.6) should be considered. 

                                           (4.6) 

Taking to account expression (4.6), RCC can be implemented as it is shown in figure 4.4. 

 

Figure ‎4-4 3-Input Ternary Arithmetic Compactor 
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 C is a combinational circuit unit which provides feedback signals              based on the 

input and the present state signals t and r respectively. Red arrows show the carry propagation. 

             can be obtained from equation (4.7), (4.8), and (4.9). 

                                                                                                                     

                                                                                                         

                                                                                                                                  

If this circuit is fed by sequence of 3-bit octonary numbers 6, 4, 2, 1, applying equation (4.6), 

it can be said that the circuit is computing the residue of the ternary number 6421     . 

4.3 Low-Cost Compactor schemes 

Now, if the RCC scheme shown in figure (4.4) is used as a compactor for a MSS, any 

distorted response will be fed back to the compactor, and then the distortion of each response 

will grow as it is multiplied by rising power of 8 or 3. Equation (4.10) explains this fact. This 

implies that the distortion of the final signature and consequently the aliasing rate will increase. 

However, in algebraic compactor, as shift is equivalent to multiplication by   , n being the size 

of the analyzer, the distortion of the feedback is not a significant problem. This problem with 

arithmetic compactor can be alleviated by adjusting the modulus such that the error will increase 

by power of 1 only as it is shown in equation (4.11). 
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So a compactor scheme that multiplies data by raising power of 1 or -1 will reduce the error.  

When 3 is replaced with -1, the resultant circuit is safe from any offset existing in the 

incoming data or to unidirectional noise that might exist in the testing medium.   

The feedback signal is generated based on equation (4.12) in the combinational unit shown by 

C: 

                                                                                                                            

Figure 4.5 shows the alternative compactor which was proved to have the minimum 

uncertainty. 

 

Figure ‎4-5 An Alternative 3-Input Arithmetic Compactor 

4.4 Compaction Process 

The process of arithmetic compaction modulo     , where n is the resolution of the MSS, is 

analyzed here. Let   be the number of distinct values the input signal    can have which is 

sufficient to detect all faults of MSS. Assume   
  is the value of    at time    . The actual output 

code corresponding to the input value   
  will be shown as expression (4.13): 
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  is equal to 1, …, m, and   is the width of the quantization bin. [x] represents the largest 

integer number less than x.   
 is the ideal output code and    is the static error. 

Let the lower and upper tolerance bounds be   
       

  respectively. So for the fault-free MSS: 

   
       

  or,                                                                                                                      

Where       
    

  and       
    

  

Now the result of adding all the output codes will be expression (4.14): 

   

 

   
    

 
 

 
    

 

 
                                                                                                                

Let       
 
    ,       

  
 , and      

 
  

Using the notations introduced above, it can be obtained that        . 

   is calculated using the transfer function the ideal MSS. Assuming symmetrical MSS, i.e. 

  
    ,   

     for every i = 1, …, m.  

Now performing the modulo addition operation and introducing new notations shown as 

equation (4.15), and (4.16): 

       
                                                                                                                                          

 

   
 

       
                                                                                                                                         

 

   
 

It can be shown that the MSS will be faulty if inequality (4.17) is hold [7]: 
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Otherwise it can be assumed that the MSS is fault-free and              is the correct 

signature. Assuming that the actual signature is         mod L, and then the signature of 

the fault-free circuit belongs to one of the intervals of        , or [       .  

The residue R is computed in the adder that is previously loaded with the two’s complement 

value of   . The two’s complement               . 

So equation (4.17) can be written in the following form: 

                                                                                                                                 

The ratio of the number of all undetectable errors in the output response, to the number of all 

possible errors of that response is defined as the estimated aliasing rate for an ADC. For an ideal 

ADC, the output response contains     bits which will be compacted into n bits. 

Consequently, the number of faulty bit streams that will go undetected by producing the correct 

signature is 
   

    . Considering that there are       erroneous streams, according to the 

definition of the aliasing rate that was said before, the aliasing rate for the system tested by the 

modulo adder method will be approximated by expression (4.19). 

 
       

      
                                                                                                                        (4.19) 

For a non-ideal ADC the number of faulty streams going undetected because of producing the 

correct signature would be expressed as the form (4.20). 
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Total number of erroneous streams will be obtained as (4.21): 

               
 
                                                                                                                            

The aliasing rate     will be obtained from (4.22): 

     
                  

                
                                                                                                              

When the nominal value of the test signal lies at the middle point of the quantization bins, 

equation (4.19) and (4.22) becomes expression (4.23) and (4.24): 

                                                                                                                                                                                   

     
          

        
                                                                                                                               

When the stimuli that matches the ideal transitions of the transfer characteristic is fed to the 

ADC expression (4.23) and (4.24) will be simplified to the form of (4.25) and (4.26): 

                                                                                                                                  

      
           

       
                                                                                                                                

If     is much larger than the value of (m+n), then      can be estimated as    . It is easy to 

see that the aliasing rate decreases when the resolution of the device increases or, when the size 

of the modulo adder increases. It should be noted that if the errors at the output of the ADC are 

equally likely, changing the value of m does not have much effect on the aliasing rate. 
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5. CHAPTER 5         

SIMULATION AND ANALYSIS OF THE 

RESULTS 

5.1 Simulation 

As it was discussed in the previous chapter, the only modulus that can be used for testing 

ADC using compaction method are the ones in the form of     . These are the only modulus 

that will prevent the growth of error caused by noise in the circuit. Simulation was planned based 

on the analysis that was done for 3-input arithmetic compactor. Although other modulus can be 

used for checking arithmetic circuits, for testing ADC modulo 7 and 9 were considered for 

simulation.  

 Simulation results were generated using ModelSim-Altera and implemented on an FPGA 

board from Altera. Figure 5.1 shows the result for a random 3-bit input signal B. The content of 

the signature register is a 3-bit signal Z.  The carry-out signal is registered and ‘000’ pattern is 

applied at the end. The input sequence are, (101), (110), (011), (101) equivalent to 5635 in 

decimal. Now using arithmetic compaction circuit introduced before, the residue of this number 

in base 8 modulo 7 would be (5+6+3+5) modulo 7 which is equal to the sequence (101) equal to 

5 in decimal. 
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Figure ‎5-1 RCC with Modulo 5 Adder 

Figure 5.2 shows the result of calculating the residue of number       modulo 5. The result 

of this operation is 0. The VHDL code that generated the combinational unit for this circuit 

based on the input and present state signal (t and r) can be seen in the appendix section of the 

report. 

 

 

Figure ‎5-2 Arithmetic Compaction Circuit modulo 5 
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Figure 5.3 shows the low distortion modulo adder which is when modulus is number 9. In this 

simulation number       modulo 9 was tested. The final value of the register is 8 (or -1). This 

circuit is the alternative compaction circuit that was introduced in the previous chapter. This 

scheme is immune to offset of the incoming data as well as noise of the testing environment. The 

VHDL code that generated the combination unit for this scheme is also provided in the appendix. 

 

Figure ‎5-3 Arithmetic Compaction Modulo 9 

Now consider a 3-bit ADC under test. It is known that two analog stimuli are enough to detect 

any fault in the ADC [16]. If these input signals cause the ideal ADC to produce 101 and 110 at 

the output, then a real non-faulty ADC with    permissible error will produce codes from the 

intervals of [100,110] and [101,111].  

It is assumed in the simulation that a fault introduces an offset of -001 to the output codes of 

the ADC. Also, these codes are affected by noise which is uniformly distributed such that the 

first code is increased by 010 and the second code is decreased by 010. The resultant output code 

will be 101-001+010=110, and 101-001-010=010. In this case the seed value loaded to the 

signature register would be:                     =011. Consequently the actual 

signature will be:                          and                      

      As it can be seen, the actual signature does not drop into these intervals which means that 

the ADC is faulty. The simulation result can be seen in figure 5.4 
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Figure ‎5-4 Testing an ADC with Offset 

Figure 5.5, 5.6, and 5.7 show the RTL form of the simulated circuit of 5.1, 5.2 and 5.3 

respectively. As it is clearer in the RTL form of the circuits, the input signal goes into the 

combinational unit which feeds into the adder. In each clock cycle the register gets updated and 

the final residue will be saved as the signature of the circuit. 

 

Figure ‎5-5 RTL form of modulo adder with Combinational Unit 
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Figure ‎5-6 Compaction Circuit calculating modulo adder of a ternary number 

 

Figure ‎5-7 An alternative modulo adder 

 

Figure ‎5-8 Implementation of the Modulo adder 
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A compaction process was examined for an ADC which is a mixed-signal system. Several 

compaction schemes were verified with simulation which proved the validity of the theoretical 

results. Tolerance bounds for a fault-free ADC signature were analytically evaluated in the 

previous chapter. Modulo 9 and 7 which are in the form of      for a 3-bit resolution ADC 

would detect all single errors [16] with a low aliasing rate.  
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6. CHAPTER 6            

FUTURE WORK AND CONCLUSION 

Residue codes which are a class of separable arithmetic codes, are finding more application in 

digital testing specially self-checking designs. Other types of codes including, parity codes, and 

Berger codes have been also utilized in previous literature for testing arithmetic operations. High 

implementation cost related to residue codes has been always a concern. However, because of 

the simplicity and separability of this type of codes, and the fact that they are closed under 

operations such as addition and multiplication they are still popular. In particular it has been 

shown that in case of multipliers it is better to use residue codes for error protection. This project 

has developed the theoretical knowledge needed to achieve cost efficient, reliable and fault 

secure circuits based on residue codes. More importantly this work intends to be the platform for 

studying the effectiveness of arithmetic and algebraic compaction method for testing mixed 

signal devices such as analog-to-digital converters.  

Application of residue testing method, for on-line error detecting in an ADC was introduced 

in this project. Different compaction schemes that can be used for testing digital as well as 

mixed-signal system were presented. According to this testing method, a faulty circuit can be 

identified if the result of the output signature does not exist in the predefined permissible 

interval. Compactor schemes with different modulo adders where analyzed and simulated to find 

an arithmetic compacting circuit with the minimal uncertainty. The circuits were simulated for a 

3 bit data in ModelSIM and the scheme of the RTL form of the circuits were presented in the 

report. The tolerance bounds for the signature and the aliasing rate of the circuit were obtained. It 

was shown that the aliasing rate decreases if the resolution of the ADC increases. If the ADC can 
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perform a direct-conversion, the binary counter of this ADC can be used as a signature 

compactor. Such an ADC in the testing mode is going to reset after a series of conversions is 

performed for the entire sequence of test stimuli. 

Modulo of the form      are the most important ones for they are considered cheap and 

easy to implement. Similarly compaction modulo of the form      will detect all the single 

errors that would affect all bits except the least significant bits of the word [16].  

Future work to complement this work would be to implement the compaction circuits to 

verify a more accurate evaluation of time delay, overhead, and fault secure property of the 

circuit. Ultimate goal would be to optimize RCC design so that it can be used for efficient 

modulo     1 multiplier and testing arithmetic operations. 
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7. APPENDIX 

Part of the VHDL code that generated the combinational unit of figure 5.2, and 5.3 in chapter 

5 are shown here. Code of the modulo adder circuit is also shown here.  
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