
Modeling Multi-site Computation Offloading in Unreliable
Cloud Environments

by

Marzieh Ranjbar Pirbasti
BSc, Iran University of Science and Technology, 2012

A thesis presented to Ryerson University in partial fulfillment of the
requirements for the degree of Master of Applied Science
in the program of Electrical and Computer Engineering

Toronto, Ontario, Canada, 2019

© Copyright 2019 by Marzieh Ranjbar Pirbasti

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true

copy of the Thesis, including any required final revisions.

I authorize Ryerson University to lend this thesis to other institutions

or individuals for the purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by pho-

tocopying or by other means, in total or in part, at the request of other

institutions or individuals for the purpose of scholarly research.

I understand that my thesis may be made electronically available to

the public.

ii

Modeling Multi-site Computation Offloading in Unreliable

Cloud Environments

Marzieh Ranjbar Pirbasti

Master of Applied Science

Department of Electrical and Computer Engineering

Ryerson University, 2019

Abstract

Offloading heavy computations from a mobile device to cloud servers can reduce

the power consumption of the mobile device and improve the response time of mobile

applications. However, the gains of offloading can be significantly affected by failures

of cloud servers and network links. In this thesis, we propose a fault-aware, multi-site

computation offloading model capable of finding efficient allocations of tasks to resources.

Our model reduces both response time and energy consumption by incorporating the

effect of failures and recovery mechanisms for various offloading allocations. In addition,

we create a fault-injection framework to evaluate an allocation under various failure

rates and recovery mechanisms. The experiments carried out with our fault-injection

framework demonstrate that our fault-aware model can determine an allocation—based

on the type of failures, failure rates, and the employed recovery mechanisms—that

improves both response time and lower energy consumption compared to model without

failures.

iii

Acknowledgements

I would like to thank my supervisor, Dr. Olivia Das and to express my

special appreciation for her patient guidance, encouragement, and support

throughout my time as her student. She has been an incredible mentor

during my journey of being a master’s student at Ryerson University.

Indeed, I consider myself extremely lucky to have studied under her su-

pervision not only because of her technical excellence but also because of

her incredible personality.

I also want to thank my husband and son for their love and support

during my master’s studies.

iv

Contents

Abstract iii

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 3

1.3 Thesis Outline . 3

2 Background and Related Work 5

2.1 Background . 5

2.1.1 Cloud Computing . 5

2.1.2 Mobile Computing . 6

2.1.3 Mobile Cloud Computing . 6

2.1.4 Genetic Algorithm . 8

2.2 Related Work . 9

2.2.1 Offloading Approaches Oblivious to Faults 9

2.2.2 Fault-aware Offloading Approaches 14

3 Proposed Model 16

v

3.1 Definitions and Assumptions . 16

3.2 Modeling the Effect of Failures on Job Durations 18

3.2.1 Restart Fault-handling Mechanism 18

3.2.2 Checkpointing Fault-handling Mechanism 21

3.3 Evaluating a Given Allocation . 24

3.4 Finding an efficient Allocation . 25

4 Evaluation Methodology 28

4.1 Fault-injection Framework . 28

4.2 Workflow Generation . 30

5 Case Studies 34

5.1 Constant Non-zero Failure Rate for Every Component 35

5.2 Sudden Increase in the Failure Rate . 37

5.3 Investigating the Fidelity of Comparing Fault-tolerance Mechanisms Using

Our Model . 39

5.4 Unconventional Workloads . 40

5.4.1 Serial Computation-dominated Workflow Graph 41

5.4.2 Communication-heavy Workflow Graph 42

5.5 Energy-response time Trade-off in Task Allocation 42

6 Conclusion 45

6.1 Summary . 45

6.2 Future Work . 46

References 48

vi

List of Tables

5.1 Experimental setup for case studies . 35

5.2 Fidelity of comparing fault-tolerance schemes using our models against

fault-injection simulations. 40

5.3 Energy consumption and response time for a serial computation-dominated

workflow graph. 42

vii

List of Figures

3.1 Various scenarios with the restart fault-tolerance mechanism. 20

3.2 Different checkpointing scenarios with one checkpoint and up to one failure. 23

4.1 High-level overview of our evaluation methodology. 29

4.2 Workflow graphs generated for 10 nodes with various probabilities of de-

pendence. 32

4.3 Face recognition application workflow graph generated from the call graph

presented in [1]. 33

5.1 Response time of 1000 simulation runs (sorted from lowest to highest) for

restart mechanism. 36

5.2 Energy and response time after spike in failure rate (face recognition

workflow graph). 37

5.3 Energy and response time after spike in failure rate (synthetic workflow

graph #1). 38

5.4 Energy and response time after spike in failure rate (synthetic workflow

graph #2). 39

5.5 Response time and energy ratios of synthetic work flow graph #2 when

optimized for response time against itself when optimized for energy-

efficiency. 43

viii

Chapter 1

Introduction

1.1 Motivation

In the past, mobile devices were primarily used for voice communication and short

message services. However, these days mobile devices are also used for a wide variety of

other activities such as watching videos, gaming, recording, social media and recording

health data [2] many of which are computationally intensive and energy-hungry. However,

mobile devices have tightly constrained storage capacity, energy source, and processing

capabilities compared with traditional compute resources. These limitations are not

due to shortcoming in hardware technology but instead due to the size and portability

constraints of these devices [3].

From a user’s perspective, battery life and response time are two major quality

of experience metrics when running computationally intensive application. As mobile

devices become more feature-rich and offer higher processing capabilities, they also

become more energy-hungry. Although battery technology is also getting more advanced,

it is growing at a slower rate, creating a gap between the energy requirements of mobile

devices and the energy storage capacity of battery technologies [4]. In addition to a long

battery life, user experience also depends on response time. Many mobile applications

1

such as object and speech recognition, interactive games, and mobile augmented reality

have tight response time constraints; the users of such applications are reluctant to wait

for an extended period of time in their interactions with the mobile device.

The aforementioned limitations of mobile devices can be addressed by using the

virtually unlimited compute resources in the cloud. Cloud computing facilitates the use

of different hardware and software resources through the internet. It also abstracts away

the resource management and other underlying complexities of using a pool of compute

resources in a datacenter. Amazon EC2, AppleiCloud, Microsoft Windows Azure, and

Google App Engine are some of the most widely recognized clouds that are providing

data storage and processing services for users.

Using mobile devices along with cloud introduces a new paradigm called Mobile

Cloud Computing [5]. In this paradigm, computationally intensive parts of mobile

workloads could be sent to the cloud server(s) for processing, and the results would

be transmitted back to the mobile device. This approach is known as computation

offloading [6, 7]. Real-time multi-media applications [8, 9], virus scanning [10] and image

processing [11] are some examples of applications that can benefit from computations

offloading. Computation offloading is most useful when the mobile application needs

heavy computations but only has a small amount of data on which the computations are

to be carried out [12].

In an ideal situation, when tasks are being offloaded to remote servers, network

connections and servers are assumed to be reliable (failure-free). However, failures are

an inevitable part of compute systems and must be considered as they affect the total

response time and energy consumption of the mobile device.

2

1.2 Contributions

The contribution of this thesis in computation offloading in mobile cloud computing in

unreliable cloud environments are as follows:

• we propose a multi-site, fault-aware and, mobility-aware computation offloading

model. Our model considers the impact of failures on task durations and can

represent two different recovery mechanisms which are restart and checkpointing.

It uses genetic algorithm to find efficient allocations that can improve the energy

and response time of the mobile applications.

• we create a fault-injection framework which can simulate the occurrence of faults.

We use this framework to compare the allocation given by our fault-aware model

against the allocation given by a model that ignores failures

• we investigate three case studies to show the efficiency of our model in finding

allocations for fixed-rate component failure rates, mitigating the effect of sudden

increases in failure rate of a cloud components, and fidelity of our model when

comparing different fault-tolerance mechanisms.

1.3 Thesis Outline

The rest of this thesis is organized as follows:

• Chapter 2:

This chapter defines cloud computing and mobile cloud computing concepts and

reviews previous studies on computation offloading and reliable computation of-

floading.

• Chapter 3:

This chapter details our proposed model for finding efficient allocation...

3

• Chapter 4:

This chapter presents our evaluation methodology and details our fault-injection

framework.

• Chapter 5:

This chapter discusses three case studies that quantify the efficiency of our model

in various aspects.

• Chapter 6:

This chapter includes the future work and concludes this thesis.

4

Chapter 2

Background and Related Work

2.1 Background

In this section, we introduce fundamental concepts and definitions used throughout this

thesis.

2.1.1 Cloud Computing

Cloud computing [13] is providing access to hardware and software compute resources

over the Internet. Cloud computing has have had a great impact on information tech-

nology by providing elasticity, scalability and lower cost of compute services [7]. With

cloud computing, users have the flexibility to utilize resources according to their own

personalized requirements. Hence, they don’t need to be worried about resource man-

agement, resource availability, and other underlying issues. There are different models to

pay for the cost of using cloud computing systems such as the pay-as-you-go model[14]

where users are charged based on their utilization of resources or they can have long-

term lease contracts. There are also three different service models that users can benefit

from. These models are Software as a Service , Platform as a Service , and Infrastructure

as a Service [15]. Amazon EC2, AppleiCloud, Microsoft Windows Azure, and Google

5

App Engine are just some examples of the clouds that are providing data storage and

processing services for users.

2.1.2 Mobile Computing

Mobile computation is the concept of using non-stationary compute devices. It introduces

additional constraints on the compute resources. For example, portability is one of the

most important constraints of such devices that does not exist in stationary compute

resources. Such devices also typically rely on batteries, making them an undesirable

platform for energy-hungry applications. Despite these constraints, mobile devices have

become part of people’s lives. Nowadays mobile devices are one of the most available

tools for convenient communications. personal digital assistants, smartphones, tablets

and wearable computers are some examples of mobile devices. According to [16], the

applications of mobile devices expands from the range of educational purposes to military

applications. Due to interesting applications of mobile devices threre is an increasing

growth in the number of users using them. The numbers of mobile devices being used

by people is around three or four billions and is projected to be in the order of trillions

[17]. In the past, mobile devices were mainly used for voice communications and short

message services. However, these days mobiles are mainly used for watching videos,

gaming, recording, social media and recording health data [2].

2.1.3 Mobile Cloud Computing

Besides light-weight Internet applications, there have been an increasing demand for

running energy-hungry and computational intensive applications on mobile devices. How-

ever, mobile devices face some challenges including limited battery life, storage and

processing capabilities. According to [3] these limitations are not because of the current

hardware technology that has been used in mobile devices, they are due to the mobility

aspect of these devices which force them for being small and portable. Battery life is

6

the primary concern of mobile devices. Every year mobile devices are becoming more

advanced and having a higher processing speed and lots of other added features which

results in an increased rate of battery consumption. Although battery technology is

improving each year, still there is a gap between the rapid increase of energy consumption

of mobile devices and battery technology to keep up with this ever increasing consumption

rate [4]. Response time is the other important concern for mobile devices. It is important

because most of the application run on mobile devices are interactive and real time, so

users are not willing to wait for a long time to have their results ready [18]. Object

and speech recognition, interactive games and mobile augmented reality are just some

example of mobile application that need intensive computation capabilities.

The aformentioned limitations of mobile devices can be addressed by complementing

their capabilities by using unlimited resources that are available in th cloud. Using

mobile devices along with cloud introduces a new paradigm which is called Mobile Cloud

Computing [5]. Computationally intensive parts of mobile workloads can be send to the

cloud server(s), be processed there and then the results will be transmited back to the

mobile device. This approach is call computation offloading in mobile cloud computing[6].

Computation Offloading is a powerful technique in Mobile Cloud Computing. Real-time

multi-media applications, fitness applications are just some examples of applications

that can benefit from offloading. Many researchers have worked on offloading mobile

computation to the cloud. Computation offloading will be most useful, when the mobile

application has a small amount of data that heavy computations must be done on

it. In other words, application that that do not upload a huge amount of data are

more favourable for computation offloading. Optical text recognition (image processing

application) is just an example of candidate applications for offloading [11]. Researchers

in [19, 20, 21, 22] have worked on extending the battery life of the mobile device. In

works done in [23, 24, 25, 6] their main goal was reducing the execution time.

7

2.1.4 Genetic Algorithm

Genetic algorithm is a nature-inspired heuristic for searching a large solution space of a

problem that can be evaluated by a fitness function. A genetic algorithm typically consist

of five phases: initial population, fitness function, selection, crossover and mutation. In

the context of multi-site computation offloading, genetic algorithms are used to help

with determining efficient allocations of tasks to remote servers [26, 27, 28, 22]. In the

following we detail each of the five phases of genetic algorithms.

Initial Population

Genetic algorithms start by creating a set of solutions, also known as initial population.

Each individual member of this initial population is a solution to the problem, albeit

with different qualities. In the context of computation offloading, each individual is

represented as an array. The size of the array is equal to number of the tasks that are

to be allocated to different resources. The values of the array cells indicate the compute

resource that the task is allocated to.

Fitness Function

The fitness function evaluates the quality of an individual against others. Most of the

effort of the users of genetic algorithms is spent on developing a suitable fitness function

for their problem. In fact, the effort that designing a fitness function requires is the

primary reason why genetic algorithms are not considered a “lazy” approach to solving

problems [29].

Selection

In the selection phase, high quality individuals, as determined by the fitness function,

are selected to pass their attributes to the next generation of individuals. The process of

8

selecting individuals is usually probabilistic: individuals with high fitness have a higher

chance to be selected.

Crossover

Crossover is the process of using a pair of selected individuals to create new individuals

with combined characteristics from the pair. In the context of computation offloading,

the values of the array cells are randomly chosen from the selected pair.

Mutation

To further perturb the existing solutions and better explore the solution space, sometimes

the solutions created from the crossover phase are randomly mutated. In the context of

computation offloading, this would be equal to randomly changing the value of an array

cell to point to another compute resource.

2.2 Related Work

We have divided the related work into two different categories: offloading approaches

that are oblivious to faults and fault-aware offloading approaches. In the following some

of the work that have been done in each of these categories will be reviewed.

2.2.1 Offloading Approaches Oblivious to Faults

Among the work do not consider the effect of faults in their computation offloading

frameworks, some of them are single-site, i.e., they only use one remote server to process

offloaded tasks. Many researchers have worked on single-site computation offloading

[22, 1, 30, 31, 32, 33, 34, 35]. In the following we will briefly look at some of these

single-site computation offloading approaches.

9

Wu and Wolter [11] have categorized applications as either delay-tolerant or delay-

sensitive. Then they have state that a delay-tolerant job can tolerate network delay until

the time that a fast network will become available. Based on this, they have reduced

energy consumption of the mobile device by differing a delay-tolerant job up to a given

deadline or until the availability of a fast network such as a wireless network. They

have also introduced partial offloading and full offloading models. In partial offloading,

job have the option of leaving a slow phase of offloading and being executed locally. In

full offloading model when a fast network becomes unavailable jobs can leave it and be

offloaded via the cellular network. They claim that they have been able to reduce the

Energy-response time weighted product.

Meng et al. [2] have looked into the security of computation offloading and have

proposed a secure and cost-efficient scheme for computation offloading. They have

formulated equations for security and performance attributes and have optimized the

trade-off between them. They rely on hybrid continuous time Markov chains and queuing

models to model the mobile-cloud computing system.

Wu et al. [36] have proposed an energy-efficient decision algorithm based on Lyapunov

optimization. Their algorithm determines when the application should be run locally,

when on the on the cloudlet and when directly executed on the cloud to minimize the

average energy consumption of the mobile device under a given response time constraint.

They claim that their method has less computational complexity compared to Lagrange

Relaxation based algorithms.

Cuervo et al. [32] have proposed MAUI single-site computation offloading framework.

MAUI provides method level code offloading which is based on a .NET framework. MAUI

is capable of energy-aware dynamic offloading and at runtime decides which methods

should be executed remotely which ones locally.

Chun et al. [33] have proposed the CloneCloud framework. They have used static in-

formation along with dynamic profiling in order to partition the application automatically

10

for offloading. Their partitioning scheme partitions the application at a fine-grained level

and is capable of optimizing the energy saving and reducing the execution time according

to a limited set of environment parameters.

Kosta et al. [37] have propose the ThinkAir framework. They have stated that

their framework takes the best features of MAUI frameworks. also they have claimed

that ThinkAir is capable of addressing the scalability issue of MAUI framework by on

demand allocation of the resources on the cloud.

Qian et. al have proposed Jade framework in [21, 38]. Jade is capable of adding

energy-aware computation offloading capabilities to mobile applications on Android-

based devices. Jade monitors the device and the status of the application and according

to energy status, communication cost and the workload decides that where the code

should be run. Jade consists of a profiler, an optimizer and a communication handler.

The profiler is responsible for keeping track of network availability, throughput and is also

in charge of estimating the energy cost of offloading an object. Using the profiler’s data,

the optimizer decides whether an object should be offloaded or not. The communication

handler performs the actual offloading. Authors claim that Jade is capable of reducing

power consumption up to 39% and also improving the application performance metrics.

Flores et al. [39] have proposed the EMCO framework. They use crowd-sourcing

and evidence-based learning approaches for making offloading decisions. In their work

a neural network algorithm analyzes the outcome of previous offloading decisions and

makes rules for future offloading decisions. The problem with learning based approaches

is that the accuracy of offloading decisions depends on the amount of available input

data.

Benedetto et al. have proposed the MobiCOP framework [40]. MobiCOP addresses

scalability, reliability and applicability issues which are the main limitations often found

in other frameworks. MobiCOP framework is compatible with most of android devices

and public infrastructure as a service providers. In MobiCOP their decision making

11

module engine consists of two main components which are Quality of Service quality of

service monitor and the a code profiler. The quality of service module profiles the network

and keeps track of its latency, availability and speed. The code profiler keeps track of

previous task executions and estimates the running time of future tasks. They have

claimed that for heavy tasks MobiCOP has been able to show 17× better performance

and 25× less energy consumption compared to local execution.

Kristensen et al. have proposed Scavenger [41]. Scavenger has two main components:

the software running on surrogates enabling them to receive and perform tasks, and

the library used by client applications. The scheduler takes the relative speed and

current utilisation of the surrogates, network bandwidth and latency to the surrogates,

task complexity, and input and output size and according to these information makes

offloading decision. The problem with Scavenger framework is that functions which are

offloadable must be self-contained, i.e., they are not allowed to call other functions or

methods which are defined elsewhere. Consequently, the complexity of application that

can be run with their model is limited.

Unlike single-site computation off-loading, more than one remote server is available

for processing offloaded tasks in multi-site computation offloading. Works done in [26,

42, 43, 44, 45, 46, 47] are examples of multi-site computation offloading approaches that

are oblivious to occurrence of faults. In the following we will briefly review some of these

works.

Goudarzi et al. [44] have aimed at reducing both the energy consumption of the

mobile device and the execution time of the mobile application. They have proposed a

special framework which is called Fast Hybrid Multi-site Computation Offloading and

has two different algorithms for optimal and efficient offloading based on the size of the

application.

kumari et al. in [48] have proposed three different algorithms for multi-site computa-

tion offloading. Their first algorithm is Cost and Time constraint Task partitioning and

12

Offloading (CTTPO). In fact, CTTPO deals with finding a trade-off between time and

cost for partitioning the task and offloading it. Their second algorithm is a Multi-site

Task Scheduling algorithm (MTS) which does the offloading decisions based on teaching

and learning. MTS algorithm works on timely-efficient scheduling. lastly, they propose

an Energy Saving Multi-site (ESM) offloading which uses dynamic voltage scaling for

reducing energy consumption. ESM algorithm, does the energy saving by switching the

sites from high voltage to low voltage.

Terefe et al. [47] have proposed a multi-site offloading algorithm and show that

their energy-efficient multi-site offloading policy algorithm is capable of reducing energy

consumption compared to its single-site computation offloading counterpart.

Abe et al. [43] have proposed the idea of reducing energy consumption for offloading

tasks to the cloud by dividing a task to subtasks and using a genetic algorithm to schedule

these subtasks more efficiently to further reduce total energy consumption and runtime.

Chen et al. [42] have proposed a framework that is capable of selecting a proper

server for offloading according to the different demands of the mobile applications.

They provide an estimation model, consisting of an information model and a selection

algorithm: The information model calculates the execution time and the network delay

and the selection algorithm is responsible for selecting the appropriate cloud severs with

information received from information model.

Sheikh et al. [26] have considered mobile device and remote cloud servers as multi-

server queueing stations. Then they define internal parallelism as the parallel execution

of task on different cores of mobile device/cloud server. In addition, they have defined

external parallelism as the ability of concurrent execution of task on different devices

Then they have modeled the effect of internal and external parallelism on execution of a

mobile application and making offloading decisions to find efficient offloading allocation.

13

2.2.2 Fault-aware Offloading Approaches

In a real world situation failure are inevitable, so they should be considered in modeling

computation offloading. Here we will briefly look at some of the approaches that have

considered failures and have provided mechanisms for handling them.

Abd et al. [43] have proposed an approach for addressing failures and having a fault-

tolerant mobile computation offloading. In their work when a failure occurs, they suggest

re-executing only the affected subtasks and not the entire task.

Deng et al. [22] have proposed a model which considers possibility of failures for

offloading a task. In their work they also consider the mobility of users. For adding

mobility to their model they use Random Waypoint model. However, in their proposed

model they do not consider different types of failures. For example, they do not distin-

guish between the case of a network failure and a cloud server failure.

Wang et al. [49] have proposed offloading from mobile to cloud in a situation that

network failure is probable. They consider that in case of network failure the task will

be restarted. If the number of times that the task has been restarted exceeds a fixed

threshold, then the job must be completed locally. Consequently, they find the number

of times that the task can be restarted before the final local execution to optimize job

completion time.

Gordon et al. have introduced the Code Offload by Migrating Execution Trans-

parently (COMET) framework [50]. COMET is a distributed runtime environment for

offloading workloads from mobile devices. They claim that COMET has the following

features:

• Requiring only program binary (no manual effort).

• Executing multi-threaded programs correctly.

• Improving the speed of computation.

• Resisting network and server failures.

14

• resuming computation on the client if connect to server is lost.

Ni et al. [51] have proposed Automatic Checkpoint Restart (ACR) in the area of high

performance computing for increasing the reliability and reducing the vulnerability of

the system. ACR obtains checkpoints adaptively according to failure history. If failures

occur, ACR restarts/roll-backs to the last successful checkpoint.

Ou et al. [52] have proposed an analytical model for performance modeling of

offloading systems in mobile wireless environments. They work on computation offloading

when mobile user is moving with a Random Waypoint (RWP) mobility model and with

considering the possibility of unreachability of the surrogate cloud. In their work, the

failure recovery time, the application execution time and the the execution efficiency are

modeled and evaluated. They use the same compute server failure rate and network

failure rate and repair times while in reality these values could significantly differ.

Our work is motivated by the aforementioned works to investigate the computation

offloading decision-making in unreliable cloud environment. We distinguish between a

cloud server failure, link disconnection due to mobility of user, and a link failure. We treat

them in different ways while making offloading decision. Our model also incorporates

different fault-handling mechanisms such as restart and checkpointing.

15

Chapter 3

Proposed Model

3.1 Definitions and Assumptions

A mobile application typically consists of several tasks with possible dependencies. The

workflow of the application defines the execution sequence of these tasks. The workflow

can be represented by a graph—workflow graph—G where the set of vertices V =

v1, v2, . . . , vN represents the tasks of the mobile application, and the set of edges E defines

the dependencies between the tasks. For example, e(vi, vj) ∈ E, is an edge between tasks

vi and vj and indicates that task vj depends on task vi. This means that task vj cannot

be started before task vi is finished.

We distinguish two kinds of jobs: execute-jobs (corresponding to vertices) and transmit-

jobs (corresponding to edges). An execute-job exei refers to the execution of task vi on

a computing resource (either a cloud server or the mobile device). A transmit-job tranij

refers to the transmission of Dij amount of data from the computing resource of task vi

to the computing resource of task vj. If the two tasks vi and vj are allocated on the same

computing resource, then Dij = 0.

In the context of computation offloading, there are two common fault-handling mech-

anisms that do not require additional compute resources:

16

• Restart: A failed job (either an execute-job or a transmit-job) can simply be

restarted (i.e. either re-executed or re-transmitted from the beginning). Restarting

a job results in a higher response time for the mobile application and also a higher

energy overhead for the mobile device.

• Checkpointing: During the processing of a execute-job, the compute resource can

save the job’s state at various intervals so that upon failure, the job can be re-

executed from the last successful checkpoint.

For formulating our multi-site computation offloading model in presence of failures,

we need to define several parameters which we will use to calculate the response time

and energy consumption of a given allocation for the two aforementioned fault handling

mechanisms:

• Cr is the processing speed in million instructions per second (MIPS) of a computing

resource r(r = 0 for mobile device)

• WLi is the workload in million instructions (MI) of execute-job exei

• Texei,r is the time to finish the execute-job exei on computing resource r in absence

of failures of r. Therefore, Texei,r = WLi
Cr

.

• BW is the bandwidth of a network link between any two compute resources (e.g.

from the mobile device to a particular cloud server or from cloud server to another

cloud server).

• Ttranij is the time to finish the transmit-job tranij(i.e. the transmission time) in

absence of failures of the relevant link. Therefore, Ttranij =
Dij
BW

.

• λr is the failure rate of the compute resource r. The time to failure of a computing

resource is assumed to be exponentially distributed.

• Rr is the time to repair or restart the compute resource r.

17

• OV is the checkpointing overhead. It is the time needed to accomplish part of

checkpointing that can not be done in parallel with program execution.

• λlr1,r2 is the failure rate of a network link between compute resources r1 and r2.

The time to failure of a network link is assumed to be exponentially distributed.

• Rlr1,r2 is the repair time of the link between r1 and r2.

• λm is the mobility rate of the user that causes failures of the links between the

mobile device and the cloud servers due to user’s movement.

• DC is the overhead of disconnection due to user’s movement.

• T restartexei,r
is the time to finish the execute-job exei on computing resource r in presence

of failures of r for the restart fault-handling mechanism.

• T checkNexei,r
is the time to finish the execute-job exei on computing resource r in presence

of failures of r for the checkpointing fault-handling mechanism using N checkpoints.

• T restarttranij
is the time to finish the transmit-job tranij in presence of failures of the

relevant link for the restart fault-handling mechanism.

3.2 Modeling the Effect of Failures on Job Durations

In this section, we model the effect of failures of cloud servers and network links on the

durations of jobs under various fault-handling mechanisms. We do so to determine the

job durations T restartexei,r
, T restarttranij

and T checkNexei,r
.

3.2.1 Restart Fault-handling Mechanism

In case of the restart fault-handling mechanism, two different situation might arise

depending on when the failure of a computing resource or a network link occurs:

18

• Failure might happen after a job (execute-job or transmit-job) is complete. In this

situation, the failure has no effect on the duration of the job.

• A failure might occur while an execute-job or a transmit-job is being processed.

In this case, the job needs to be restarted (for execute-job) or retransmitted (for

transmit-job) after the repair time of the computing resource or the disconnection

time of the network link.

Henceforth, we will use the notation λ, T and R for representing the failure rate, job

duration in absence of failures, and repair time.

When a job starts processing, it will succeed with probability of e−λ×T without being

affected by failures. Fig. 3.1a depicts this failure-free case. Fig. 3.1b, on the other hand,

demonstrates the case where one failure has occurred before the job finishes. In this case,

the total processing time of the job is equal to T1 + R + T . Here, T1 is the time the job

was processed until the failure happened.

Since failure can occur anywhere during the processing of the job, the average of T1

is T
2
, meaning on average, in case of one failure, half of the job has been completed until

the failure occurred. This leads us to Equation 3.1 for the average job duration T restart

assuming no more than one failure would occur:

T restart = (1− e−λ×T)× (
T

2
+R) + T (3.1)

There are three components in this equation:

• (1 − e−λ×T) is the probability that a failure occurs during the processing of a job

that lasts T seconds.

• T
2

+R is the average time-cost of a failure.

19

T T<T R

T<T R <T R

A) Fault-free execution B) Execution with one fault

C) The general case: Execution with many potential faults

Figure 3.1: Various scenarios with the restart fault-tolerance mechanism.

• T is the job duration without failures. Note that this component does not depend on

the probability of failure. Regardless of λ, the job should be executed successfully,

once.

Equation (3.1) can be applied to both execution and transmission jobs. For an

execute-job exei executing on the resource r, the notations λ, T and R should be

replaced by λr, T
r
exei

and Rr respectively. For a transmit-job tranij, where exei is

allocated on resource r1 and exej is allocated on resource r2, the notations λ, T and

R should be replaced by λlr1r2 , Ttranij and Rlr1r2
respectively. If one of the resources r1

or r2 is the mobile device, then the term (1 − e−λ×T) × (T
2

+ R) should be replaced by

(1− e−λlr1r2×Ttranij)× (
Ttranij

2
+Rlr1r2

) + (1− e−λm×Ttranij)× (
Ttranij

2
+DC)

Equation 3.1 is limited to the case where only one failure could occur. However, it fails

to consider that in reality once a job has been restarted, it can fail again, necessitating

yet another restart operation. Fig. 3.1c demonstrates the general scenario of the restart

scheme. The computation of average job duration for the general case, where more than

one failure might occur during the processing of a job, is shown in Equation 3.2. The

20

T restart = (1− e−λ×T)× (R +
T

2
+ (1− e−λ×T)× (R +

T

2
+ (1− e−λ×T)× ...)) + T

= (R +
T

2
)︸ ︷︷ ︸

Average Cost of each failure

×

Expected failures︷ ︸︸ ︷
∞∑
i=1

(1− e−λ×T)i + T︸︷︷︸
Successful run

(3.2)

various parts of this equation are labelled: T is the job duration without failures (labelled

as Successful run), the average time-cost due to a failure (labelled as Average Cost of

each failure) and, expected total number of failures (labelled as Expected failures).

3.2.2 Checkpointing Fault-handling Mechanism

This fault handling mechanism is applicable for only execute-jobs. To avoid restart of

an execute-job from the very beginning, its compute resource can save snapshots of the

job’s state at predefined intervals and resume execution from the last saved state upon

failure. Let’s consider the scenario where we only have one checkpoint and the checkpoint

is obtained midway through the execution of the job. As shown in Fig. 3.2a, there is

an overhead to accomplish checkpointing of the job and we show the duration of this

overhead as OV . In the event of a failure, there are three possible scenarios depending

on the point of the failure:

• Failure might happen after the processing of the execute-job is finished. In this

situation, the failure has no effect on the job.

• Failure could occur before the checkpointing is complete. As a result (shown in

Fig. 3.2), the processing of the execute-job and the checkpointing operation need

to be carried out again once the resource has been repaired.

21

• Failure might occur after checkpoint has been obtained but before the job is finished.

As shown in Fig. 3.2, in this case only the second half of the job needs to be re-

executed once the resource has been repaired (since the first half is already saved

through checkpointing).

Henceforth, we will use the notation λ, T and R for representing the failure rate of

the resource, job duration in absence of failures, and repair time of the resource. For

an execute-job exei executing on the resource r, the notations λ, T and R should be

replaced by λr, Texei,r and Rr respectively.

When an execute-job starts, (1 − e−λ×(
T
2
+OV)) is the probability that its compute

resource fails before the time that the checkpointing is complete. Here T
2

+ OV is the

duration of the time that is needed to successfully obtain the checkpoint. In this situation

the average time-cost due to failure will be (R + T
4

+ OV
2

). Fig 3.2b shows this case.

Also with probability of (1− e−λ×(T2)), the failure might happen after the time that the

checkpoint is obtained. In this case average time-cost due to failure will be (R+ T
4
). Fig

3.2c shows the case of having one failure after the checkpoint.

The average job duration of an execute-job that uses one checkpoint is given by

Equation 3.3. The various parts of this equation are labelled. There are three components

in this equation:

• T + OV is the job duration in absence of failures. This is labelled as Successful

execution.

• the average time-cost (labelled as Average cost1) due to a failure that occurs during

the period which includes the first half of the job and the checkpointing operation

(i.e. during T
2

+ OV) multiplied by its expected total number of failures (labelled

as expected failures1).

• the average time-cost (labelled as Average cost2) due to a failure that occurs during

the the last half of the job (i.e. during T
2
) multiplied by its expected total number

22

T/2 T/2OV

< T/2 + ov R T/2 T/2OV

T/2 OV <T/2 R T/2

A) Fault-free execution

B) Execution with one fault before the checkpoint

C) Execution with one fault after the checkpoint

Figure 3.2: Different checkpointing scenarios with one checkpoint and up to one failure.

T check1e = T + ov︸ ︷︷ ︸
Successful execution

+

Average cost1︷ ︸︸ ︷
(R +

T

4
+
ov

2
)×

∞∑
i=1

(1− e−λ×(
T
2
+ov))i︸ ︷︷ ︸

exepcted failures1

+

Average cost2︷ ︸︸ ︷
(R +

T

4
) ×

∞∑
i=1

(1− e−λ×
T
2)i︸ ︷︷ ︸

exepcted failures2

(3.3)

of failures (labelled as expected failures2).

This equation can be generalized for arbitrary number of checkpoints. Equation 3.4

23

T checkNe = (T +N × ov)︸ ︷︷ ︸
Successful execution

+

Average cost1 to N︷ ︸︸ ︷
(R +

T

2×N
+
ov

2
)×

∞∑
i=1

(1− e−λ×(
T

2×N+ov))i︸ ︷︷ ︸
exepcted failures1 to N

+

exepcted failuresN+1︷ ︸︸ ︷
(R +

T

2×N
) ×

∞∑
i=1

(1− e
−λ×T
2×N)i︸ ︷︷ ︸

exepcted failuresN+1

(3.4)

is for N checkpoints.

3.3 Evaluating a Given Allocation

We model a computing resource as a queueing station. We define an execute-job’s

arrival time, start time, and finish time as follows. The arrival time is the time

instant when the processing of the job can start on the scheduled compute resource and

it can be determined from the finish time of its dependencies. If the resource is idle,

the processing can start right away and the start time will be same as the arrival time.

If the resource is busy, then the job has to wait in the queue of the scheduled resource

and the start time will be the sum of the arrival time and the queueing delay. The

finish time will be equal to the start time plus the job duration. This also hold for the

transmit-jobs except that for such jobs the arrival time is always same as the start time

since links here are not considered to have queues.

Given an allocation of tasks (of a workflow graph) to different compute resources,

we follow several steps shown in Algorithm 1 to evaluate its response time and energy

consumption on mobile device.

The details of the algorithm is as follows:

In Step I, we determine various jobs and the dependencies between them. This step

24

involves assigning a level to each job. A job without any dependencies is put in level 0

and a job with dependencies on jobs in level 0 is put in level 1, and so on. Next, the

duration of each job in presence of failures is calculated using the equations we previously

detailed in Section 3.2.

In Step II, we walk through the workflow graph level by level and compute the

arrival time, start time, and finish time of each job.

In Step III, we compute the response time and energy consumption of the allocation

as follows. The response time will be the maximum of the finish times of the jobs

which are at the highest level. The energy consumption is equal to the sum of three

factors:

• The first factor is the total time spent in processing the execute-jobs (allocated on

the mobile device) multiplied by pexe where pexe is the power consumption rate for

computation on the mobile device.

• The second factor is the total transmission time of transmit-jobs (involving the mo-

bile device and any cloud server) multiplied by pt where pt is the power consumption

rate for transmission on the mobile device.

• The third factor is the total idle time of the mobile device multiplied by pidle where

pidle is the power consumption rate when the mobile device is idle.

Finally, in Step IV, we output the response time and energy consumption results.

Note that the same algorithm can be used to evaluate an allocation that do not

consider the effect of failures. This can be done by replacing the job durations in presence

of failures (Step I) by the job durations in absence of failures.

3.4 Finding an efficient Allocation

We minimize an objective cost function shown below:

25

Algorithm 1: Evaluating a given allocation of a workflow graph

Input : Workflow graph, an allocation, characteristics of the compute resources,
failure and recovery related parameters

Output: Response time and Energy of the allocation
// Step I: Determine the various jobs and the dependency between them

1 Find the level of each job in the workflow graph
2 Compute the duration of each job using equations in Section 3.2

// Step II: Walk through the workflow graph and compute the finish time of all

the jobs

3 for each level in the graph do
4 Assign jobs to the designated resources based on their availability
5 Compute the finish time of the jobs and use this as arrival time of the

subsequent jobs in the next level

// Step III: Compute Response time and Energy consumption of the allocation

// Step IV: Output the results

6 Output the response time and energy

Algorithm 2: Finding An Efficient Allocation

Input : Workflow graph, An allocation, Characteristics of the compute
resources, Failure and recovery related parameters, number of iterations

Output: An efficient allocation together with its response time and energy
1 Create an initial population of random allocations
2 Evaluate the fitness of each allocation using Equation 3.5 and Algorithm 1
3 for i← 1 to number of iterations do
4 Perturb the allocation candidates
5 Evaluate the fitness of the new allocations using Equation 3.5 and Algorithm 1
6 Select potentially better allocation candidates for the next iteration

7 Output the best allocation and its response time and energy

0.5× Ra

Rlocal

+ 0.5× Ea
Elocal

(3.5)

In this equation, Ra and Ea are the response time and the energy consumption of an

allocation a. On the other hand, Rlocal and Elocal are the response time and the energy

consumption of an allocation where all the tasks are allocated to the mobile device.

To find an efficient allocation, we use a genetic algorithm framework, MOEA Framework[53,

54], in conjunction with our evaluation methodology described in the previous Section.

Algorithm 2 shows the different steps in this process. First, we create an initial

26

population of random allocations. Then, we evaluate the fitness of each allocation using

Equation 3.5 and Algorithm 1. Next, we iteratively perturb these allocations through

genetic mutation and crossover operators to generate new allocations. Afterwards, we

evaluate those new allocations to select the candidates for the next iteration. This results

in gradual improvement in the quality of the allocations. Finally, we pick the best

candidate from the last iteration and output it together with its response time and

energy.

27

Chapter 4

Evaluation Methodology

In this Chapter, we evaluate the efficiency of our fault-aware multi-site computation

offloading model in finding an efficient allocation for different fault-handling mechanisms.

First, we introduce our methodology for injecting faults in an application’s workflow. We

also explain how we generate different workflow graphs that we use in our experiments.

Fig. 4.1 shows the high-level overview of our evaluation methodology. Given a

workflow graph, we first explore the solution space for possible allocations and find an

efficient allocation using Algorithm 2.

Once an efficient allocation is obtained, we inject faults and run the application with

that allocation many times in a simulated environment with randomly generated faults.

This fault-injection framework is described next.

4.1 Fault-injection Framework

Our fault-injection framework is described in Algorithm 3. First, various simulation

objects representing the components (compute resources and network links) are instan-

tiated. Next, we generate a fault vector for each component based on its failure rate.

To generate the fault vectors we need to produce random numbers from exponential

distribution. We use an equation from [55] in this regard as shown in equation 4.1. In

28

Find Near-optimal Allocation

Set of Allocations

 Weighted Cost Function

Energy

Response Time

Termination

Condition

Reached?

Yes

No

Perturb Allocations

 Workflow

Graph

Evaluate The Effect of

Failure and Recovery

Mechanism

Near-optimal

Allocat ion

Inject Fault In

Workflow Graph

Energy

Response Time

Output

Failure and

Recovery Equations

Effect on Response

Time

Effect on Energy

Adjustable Parameters

Network

Characteristics

Link(s) Speed

 Link(s) λ

 Link(s) Repair

Time

Mobile Device

Processing Speed

 Mobility Rate

Cloud Charectristics

 VM(s)

Processing Speed

 VM(s) λ

 VM(s) Repair Time Power Consumption

Figure 4.1: High-level overview of our evaluation methodology.

equation 4.1 u is a random variable with uniform distribution between 0 and 1, x is a

random variable with exponential distribution.

Given u ∈ U(0, 1), x = −1

λ
ln(1− u) (4.1)

Next, we execute a desired number of simulation runs of the application for the given

allocation. For each run, first we assign levels to each job of the workflow graph. Second,

we compute the duration of each job without failures. Third, we process the graph

level by level (from lower to higher). Corresponding to each level, we assign jobs to the

relevant simulated objects. For each job in that level, we check for potential failures (of

the relevant component) occurring in the midst of job duration. In case of a failure, the

duration of the job is adjusted by adding the appropriate recovery times of the fault-

handling mechanism (for example, time to restart the job from beginning for restart

29

Algorithm 3: Simulating the Effect of Failures on the Application for a given
Allocation

Input : Workflow graph, Characteristics of components (compute resources and
links), An Allocation, and λ and R for different components, DC, OV,
Number of simulation runs

Output: Average Response time and Energy from the simulation runs
// Step I: Set up simulation objects

1 Create simulation objects for compute resources and network links
2 Randomly generate fault vectors for various components based on their λ

// Step II: Run the application

3 for i← 1 to Number of simulation runs do
// Run a new instance of the application for the given allocation

4 Find the level of all the jobs in the workflow graph
5 Compute the duration of each job without failures
6 for each level in the graph do
7 Assign jobs in that level to the designated computing resources upon their

availability
8 if duration of a job overlaps with the fault of a relevant component then
9 Compute new job duration based on the fault-handling mechanism by

adding the relevant recovery times
10 else
11 Use the fault-free duration

12 Use the finish time of the jobs as arrival time of the subsequent jobs in the
next level

// Step III: Compute Response time and Energy for the allocation

// Step IV: Output the Mean Response time and Energy averaged over all the

simulation runs

mechanism, or from the last successful snapshot for checkpointing). When there is no

failure, the initially computed failure-free duration of the job is used. The finish times

of the jobs are used to compute the arrival times of the jobs in the next level. Next,

determine the response time and the energy of the allocation. Finally output the mean

response time and energy averaged over all simulation runs.

4.2 Workflow Generation

In our study, we use a real face recognition workflow graph which is generated from the

call graph presented in [1]. This workflow graph can be seen in Fig. 4.3. This workflow

30

Algorithm 4: Generating Random Workloads

Input : numberOfNodes, probabilityOfDependence
Output: Workflow Graph
// Step I: Randomly create edges between nodes

1 for i← 1 to numberofNodes− 1 do
2 for j ← i+ 1 to numberofNodes− 1 do

// create an edge with probability of dependence

3 if rand ≤ probabilityOfDependence then
4 create an edge from i to j

// Step II: Remove redundant edges

5 for i← 1 to numberofNodes− 1 do
6 for j ← i+ 1 to numberofNodes− 1 do
7 for k ← j + 1 to numberofNodes− 1 do
8 if there exists an edge from j to k then
9 if there exists an edge from i to k then

10 if j depends on i then
11 remove the edge from i to k;

// Step III: Connect to the final node

12 for i← 1 to numberofNodes− 1 do
13 if if no other node depends on completion of i then
14 create an edge from i to the final node

graph has fifteen tasks (t1 t2 . . . t14). In Fig. 4.3 the number above of each of the tasks is

the amount of CPU cycles MI (in million instructions) that is required for execution of

that task. The number written above each edge e(ti, tj) is the amount of data (in MB)

that needs to be transferred between the tasks ti and tj. In addition to this real face

recognition workflow graph, we generate synthetic workflow graphs to show the generality

of our approach. To this end, we use the algorithm shown in Algorithm 4. The algorithm

starts by randomly creating edges between nodes of the graph. Every node could be

required by a subsequent node with a “probability of dependence”. Next, we remove

redundant edges in the graph. For example, if node b depends on node a and node c

depends on both node a and node b, we remove the edge between c and a. Finally, we

create an edge between those nodes on which no other node depends on, to the final

31

P = 1

1 2 3 4 5 6 7 8 9 10

P = 0.2

10

6

8

9

3

4

7

5

21

P = 0.4

1 2 3

4

5

6

7

8 9 10

P = 0

1

2

3

4

5

6

7

8

9

10

P = 0.8

1 2 3 4 5
7

6
8 9 10

P = 0.6

1 2 3 4

5

7

6

8 9 10

Figure 4.2: Workflow graphs generated for 10 nodes with various probabilities of
dependence.

node.

Fig 4.2 shows several workflow graphs generated with 10 nodes and various probabil-

ities of dependence. When probability of dependence is 1, we obtain a linear workflow

graph with no parallelism. On the other hand, when the probability is 0, all the nodes are

independent and only the last node depends on the other nodes. The cases in between

are more representative of realistic scenarios where there is some degree of parallelism

and some degree of dependence. For our experiments, in addition to the workflow graph

of [1], we also use two randomly generated graphs with 15 nodes with probabilities of

dependence of 0.2 and 0.4. In both workloads our execution jobs are randomly generated

between 1 to 10 seconds. Also duration of transmit jobs is defined a random number

between 1 and 5 seconds. seconds. In the rest of this thesis, we refer to these workflow

32

Figure 4.3: Face recognition application workflow graph generated from the call graph
presented in [1].

graphs as synthetic workflow graph # 1 (probability of dependence 0.2) and synthetic

workflow graph # 2 (probability of dependence 0.4).

33

Chapter 5

Case Studies

In this Chapter, we demonstrate the efficiency of our model in finding an efficient

allocation that result in lower response time and energy consumption in comparison

to using a model that does not consider the effect of failures and the underlying fault-

handling mechanisms. We carry out five separate experiments to 1) demonstrate the

efficiency of our model in case of a sudden increase in the failure rate of VM1 versus failure

rate of VM2 versus failure rates of all links versus user’s mobility rate, 2) evaluate the

efficiency of our fault-aware efficient allocation for a given constant failure rate of every

component, 3) investigate the fidelity of comparing different fault-tolerant mechanisms

using our proposed model, 4) show the behavior of our model for unconventional work

flow graphs, and 5) demonstrate the capability of our model in finding allocations tuned

for better response time or energy consumption. The parameters used in this Chapter

are shown in Table 5.1.

34

Table 5.1: Experimental setup for case studies

Parameter Value Description

CVM1 2000 MIPS Processing power of VM1

CVM2 4000 MIPS Processing power of VM2

CM 1000 MIPS Processing power of mobile device

RVM1 120 s The repair time of VM1

RVM2 120 s The repair time of VM2

Rlinks 10 s The repair time of links

OV 50 ms Overhead of each checkpoint

DC 10 s Overhead of disconnection due to mobility

pexe 0.9 W Power consumption rate of mobile device

pt 1.3 W Power consumption rate for transmit job

pidle 0.3 W Power consumption rate when the mobile
device is idle

BW 1 MB/s Between any two devices

5.1 Constant Non-zero Failure Rate for Every Com-

ponent

In our first case study, we investigate the scenario where every component in the cloud

has a constant failure rate of 10−3. We evaluate the allocation given by our model against

the one given by the baseline model (the model that does not consider failures) using our

fault-injection framework for restart mechanism. We accomplish the comparison in terms

of response time of the two allocations. To evaluate each allocation, we carry out 1000

simulation runs. Fig. 5.1a and Fig. 5.1b depict the response time for each of the 1000

runs of synthetic workflow graph #1 and synthetic workflow graph #2, the response

times is sorted from lowest to highest. We are only depicting the synthetic workflow

graphs in this case as our model found the same allocation as the baseline model for the

face recognition application. This is due to the fact that jobs in this workload are very

small and their durations is very short so a low failure rate of .001 will not affect them.

35

 0

 100

 200

 300

 400

 0 250 500 750 1000

R
es

p
on

se
 t

im
e

(s
)

Sorted simulation instance

Proposed model
Baseline

(a) Synthetic workflow graph # 1

 0

 100

 200

 300

 400

 0 250 500 750 1000

R
es

p
on

se
 t

im
e

(s
)

Sorted simulation instance

Proposed model
Baseline

(b) Synthetic workflow graph # 2

Figure 5.1: Response time of 1000 simulation runs (sorted from lowest to highest) for
restart mechanism.

36

Figure 5.2: Energy and response time after spike in failure rate (face recognition workflow
graph).

For the first synthetic workflow graph, the response time is improved by 2% on average

and for the second synthetic workflow graph, the response time is improved by 6%, on

average.

5.2 Sudden Increase in the Failure Rate

Since our approach allows using different values of failure rate for various components,

we perform another case study to answer the following question. When the failure rate of

a component increases, does our fault-aware model allocate the tasks to resources more

efficiently in comparison to a model that does not account for failures? Please note that

we refer to the model that does not consider failures as the baseline model.

To this end we compare the two allocations—one given by our fault-aware model

and the other given by the baseline model—using our fault-injection framework. Fig.

5.2, Fig. 5.3 and Fig. 5.4 show our experimental results for the three workflow graphs.

37

Figure 5.3: Energy and response time after spike in failure rate (synthetic workflow graph
#1).

Each of the figures depicts the response time and energy for the three different fault-

handling mechanisms—restart, checkpointing with 1 checkpoint (1 CP), checkpointing

with 3 checkpoints (3 CP). For each mechanism we show the results obtained by increasing

the value of one of the following rates from 0 to 0.1 while keeping the values of others at

0: failure rate of VM1, failure rate of VM2, failure rates of all links, user’s mobility rate.

We can see that in all cases, the allocation given by our proposed fault-aware model

results in both lower response time and lower energy consumption in comparison to the

allocation given by the baseline model. This reduction, however, depends on the affected

component and the recovery mechanism. In this case study, on average, our model

reduces response time by 32% and reduces energy by 25%. These savings, however, vary

greatly depending on the affected component. The most significant part of these savings

comes from the cases where the VMs are affected. Among the VMs themselves, these

savings also vary. It can be seen in Fig. 5.2, Fig. 5.3 and Fig. 5.4 that VM # 2

contributes more to these savings. This is due to the fact that this VM has a higher

38

Figure 5.4: Energy and response time after spike in failure rate (synthetic workflow graph
#2).

processing capability and hence lengthy tasks with more dependents are more likely to

be assigned to this VM by GA. Link failures and failures due to mobility contribute less

to these savings for two reasons. First, applications that are suitable for computation

off-loading usually include more computation than communication, hence less time is

spent in transmitting data than computation. Second, the genetic algorithm used for

finding the allocation intelligently eliminates time-consuming transmit jobs by assigning

the dependent job and its prerequisite job to the same VM.

5.3 Investigating the Fidelity of Comparing Fault-

tolerance Mechanisms Using Our Model

In this case study we show that our model can be used to compare different fault-

handling mechanisms without the need to perform lengthy simulations. To this end, we

39

Table 5.2: Fidelity of comparing fault-tolerance schemes using our models against fault-
injection simulations.

λVM1 λVM2 Best mechanism using models Best mechanism using fault-injection

Application Synthetic
1

Synthetic
2

Face
recognition

Synthetic
1

Synthetic
2

Face
recognition

0 0 Restart Restart Restart Restart Restart Restart

10−3 10−3 Restart Restart Restart Restart Restart Restart

10−2 10−2 CP 1 Restart Restart CP 1 Restart Restart

10−1 10−1 Restart Restart CP 1 Restart Restart CP 1

0 10−1 CP 1 Restart Restart CP 1 Restart Restart

10−1 0 Restart Restart Restart Restart Restart Restart

rank different fault-handling mechanisms under different failure rate assumptions using

our model. We also rank those mechanisms using fault-injection. We then compare the

best mechanism given by our model versus fault-injection in Table 5.2. In this table

Checkpointing-1 is when we only have one checkpoint (1 CP). In most of the cases

restart mechanisms is working better than Checkpointing-1, this is due to the facts that

our tasks are small. Checkpointing can be beneficial when task are big and overhead of

checkpointing is negligible in compared to the task size. We can see that in all cases, our

model accurately predicts the fault-tolerance mechanism that works the best. In addition

to giving us confidence in our model, this analysis also shows that our model can be used

to determine the best fault-handling mechanism for a given application operating in an

unreliable environment.

5.4 Unconventional Workloads

In this case study, we investigate the behavior of two workflow graphs, which the first

workflow graph contains of large serial computation-dominated tasks and the second

workflow graph contains of large communication tasks. With first workflow graph we want

to show that when tasks are very large checkpointing fault-handling mechanism works

40

better compared to restart fault-handling mechanism. In the second workflow graph,

the application is communication-dominated; data transmission largely outweighs data

computation. With this second workflow graph we perform a study to demonstrate that

when an application is communication dominated, it is not well-suited for computation

offloading. We will see that computation offloading is more beneficial when we have large

computation tasks and small communication tasks. So the experiment done with these

two workflow graphs further show that our model works well even in such corner cases.

5.4.1 Serial Computation-dominated Workflow Graph

For this study, we generated a workflow graph with 5 nodes and a probability of depen-

dence of 1.0. Transmission tasks take are between 10 to 50 seconds to execute on the

mobile device and computation tasks take 200 seconds. After finding efficient allocations

for this workflow graph using the methodology detailed in Chapter 3, we noted the

following differences compared to the previously discussed conventional workflow graphs:

• When the failure rate of all compute resources is less than 0.1, all tasks are offloaded

to VM #2. This is due to the fact that this VM has the highest compute capability

and the serial nature of the task makes it impossible to run the job in parallel across

different compute resources.

• When the failure rate of compute resources is higher than 0.1, the efficient allocation

determined by our model is local execution.

• Higher number of checkpoints yield a lower response time for this application. For

example, with a failure rate of 10−2 with 3 checkpoints, the expected response

time is 710.05 seconds while with only one checkpoint the response time is 741.08

and with restart mechanism expected response time is 812.31. Table 5.3 shows

the energy consumption and response time of this application for different fault-

tolerance mechanisms and various failure rates.

41

Table 5.3: Energy consumption and response time for a serial computation-dominated
workflow graph.

Failure rate (all
components)

Mechanism Response
time (s)

Energy
consump-

tion
(J)

10−3 Restart 461.09 299.09

10−3 Checkpointing-1 458.42 298.29

10−3 Checkpointing-3 457.44 298

10−2 Restart 812.31 415.18

10−2 Checkpointing-1 741.08 393.81

10−2 Checkpointing-3 710.05 384.5

5.4.2 Communication-heavy Workflow Graph

To perform this study, we generated a workflow graph with 10 nodes and probability

of dependence of 0.4. In this workflow graph transmission tasks take 200 seconds as

opposed to the conventional workflow graphs where transmission tasks take between 1

to 5 seconds. Also computation tasks have been set between 10-50 seconds. Our models

determined that regardless of failure rate, the efficient allocation for this workflow graph

is local execution of all tasks. This finding aligns well with the fact that applications

suitable for computation offloading should not have heavy communication between tasks.

5.5 Energy-response time Trade-off in Task Alloca-

tion

Lastly, we perform a case study on the trade-off between energy consumption of the

mobile device and the response time of the application. Our goal is to investigate the

capability of our automatic task allocation in terms of finding allocations that are more

energy-efficient or allocations that yield a faster response time for the application. To this

end, we vary the weights of the cost function used in our genetic algorithm to 1) favour

42

0

0.001

0.01

0.1

0 0.001 0.01 0.1

Fa
ilu

re
 r

at
e

of
 V

M
2

Failure rate of VM1

Response time ratio

 0.75

 0.8

 0.85

 0.9

 0.95

 1

(a) Response time ratio.

0

0.001

0.01

0.1

0 0.001 0.01 0.1

Fa
ilu

re
 r

at
e

of
 V

M
2

Failure rate of VM1

Energy ratio

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

(b) Energy ratio.

Figure 5.5: Response time and energy ratios of synthetic work flow graph #2 when
optimized for response time against itself when optimized for energy-efficiency.

43

lower response time at the expense of having higher energy consumption and 2) optimize

energy consumption at the cost of having higher response time. In each case, the weight

of the parameter being optimized is set to 0.9 and the weight of the other parameter

is set to 0.1. Figure 5.5 shows the response time and energy ratios for synthetic work

flow graph #2 optimized for response time normalized against when the same work flow

graph is optimized for energy. Figure 5.5a shows that response time ratio is always less

than or equal to 1 but varies depending on the failure rates of the compute resources.

This matches our expectation that a response time-optimized allocation should result

in better response time. However, as shown in 5.5b, this improvement in response time

comes at the expense of energy. The results are shown for the restart mechanism in

synthetic work flow graph #2 but the other two mechanisms and work flow graphs also

exhibit a similar trend.

44

Chapter 6

Conclusion

6.1 Summary

In this thesis, we proposed a multi-site computation offloading model that considers

failure and recovery behaviour of cloud servers and network links and mobility of user

in finding an efficient allocation of tasks to resources. We created a fault-injection

framework to simulate the occurrence of failures with different failure rates and recovery

mechanisms. Our fault-injection framework can be used to evaluate an allocation under

unreliable environment. The fault-injection experiments reveal that our model can find a

better allocation compared to a model that ignores failures. We analyzed three different

workflow graphs by increasing the failure rate of one of the components from 0 to 0.1;

on average, our model reduced the response time by 32% and energy consumption by

25% in contrast to the failure-free model. We also showed that even if we increase the

failure rate of every component from 0 to 0.001, still our model provided an allocation

that yields 6% less response time for one of the workflow graphs in comparison to the

allocation provided by model that ignores failures in making offloading decisions and

allocation of tasks. Furthermore, we demonstrated that our model can not only be used

for determining a better allocation, but it can also be used to compare and select the best

45

fault-handling mechanism, given the failure rates. We validated this by comparing the

selections provided by our model with those provided by our fault-injection framework

for various failure rates and workflow graphs. We found that the mechanism determined

as the best by our model was also found to be the best by fault-injection experiments in

all cases.

6.2 Future Work

We believe that the research presented in this thesis can be extended in several directions

listed below.

• Multiple-application scheduling: While in this work we process one mobile

application at any given time, many compute servers process multiple applications

from different users simultaneously. Processing multiple applications creates inter-

esting opportunities for more efficient allocation of the tasks due to higher variation

of jobs. It also creates new challenges such as respecting the differences in priorities

of jobs from different tasks.

• Characterization of applications for offloading: The model presented in this

work can be used to analyse a wide variety of mobile applications in terms of

suitability for offloading under different fault-tolerance mechanisms and failure

rates. The outcome of that study can subsequently fed into a machine-learning

algorithm to identify common characteristics of applications with similar suitability

for offloading. Such a study could simplify the process of deciding whether to offload

a given application or not.

• Dynamic fault-tolerance mechanisms: Since the efficiency of different fault-

tolerance mechanisms depend on not only the failure rate of components but also

on the nature of the application, the model presented in this work can be used

46

to label different jobs with their most efficient fault-tolerance mechanism. Such

meta data would be valuable in a system that supports multiple fault-tolerance

mechanism, leading to an even more efficient offloading mechanism.

47

References

[1] H. Wu, W. Knottenbelt, K. Wolter, and Y. Sun, “An optimal offloading partitioning

algorithm in mobile cloud computing,” in International Conference on Quantitative

Evaluation of Systems. Springer, 2016, pp. 311–328.

[2] T. Meng, K. Wolter, H. Wu, and Q. Wang, “A secure and cost-efficient offloading

policy for mobile cloud computing against timing attacks,” Pervasive and Mobile

Computing, vol. 45, pp. 4–18, 2018.

[3] M. Satyanarayanan, V. Bahl, R. Caceres, and N. Davies, “The case for vm-based

cloudlets in mobile computing,” IEEE pervasive Computing, 2009.

[4] T. Shi, “An energy-efficient, time-constrained scheduling scheme in local mobile

cloud,” 2014.

[5] B. Zhou, A. V. Dastjerdi, R. N. Calheiros, S. N. Srirama, and R. Buyya, “A context

sensitive offloading scheme for mobile cloud computing service,” in Cloud Computing

(CLOUD), 2015 IEEE 8th International Conference on. IEEE, 2015, pp. 869–876.

[6] X. Chen, “Decentralized computation offloading game for mobile cloud computing,”

IEEE Transactions on Parallel and Distributed Systems, vol. 26, no. 4, pp. 974–983,

48

2015.

[7] A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson,

A. Rabkin, and I. Stoica, “Above the clouds: A berkeley view of cloud computing,”

Dept. Electrical Eng. and Comput. Sciences, University of California, Berkeley, Rep.

UCB/EECS, vol. 28, no. 13, p. 2009, 2009.

[8] D. Meilander, F. Glinka, S. Gorlatch, L. Lin, W. Zhang, and X. Liao, “Using mobile

cloud computing for real-time online applications,” in Mobile Cloud Computing,

Services, and Engineering (MobileCloud), 2014 2nd IEEE International Conference

on. IEEE, 2014, pp. 48–56.

[9] A. Toma and J.-J. Chen, “Computation offloading for real-time systems,” in

Proceedings of the 28th Annual ACM Symposium on Applied Computing. ACM,

2013, pp. 1650–1651.

[10] B.-G. Chun and P. Maniatis, “Augmented smartphone applications through clone

cloud execution.” in HotOS, vol. 9, 2009, pp. 8–11.

[11] H. Wu and K. Wolter, “Stochastic analysis of delayed mobile offloading in

heterogeneous networks,” IEEE Transactions on Mobile Computing, vol. 17, no. 2,

pp. 461–474, 2018.

[12] Y. Liu, M. J. Lee, and Y. Zheng, “Adaptive multi-resource allocation for cloudlet-

based mobile cloud computing system,” IEEE Transactions on Mobile Computing,

vol. 15, no. 10, pp. 2398–2410, 2016.

49

[13] M. Armbrust et al., “A view of cloud computing,” Communications of the ACM,

vol. 53, no. 4, pp. 50–58, 2010.

[14] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile cloud computing:

architecture, applications, and approaches,” Wireless communications and mobile

computing, vol. 13, no. 18, pp. 1587–1611, 2013.

[15] P. Mell, T. Grance et al., “The nist definition of cloud computing,” 2011.

[16] B. Li, Z. Liu, Y. Pei, and H. Wu, “Mobility prediction based opportunistic

computational offloading for mobile device cloud,” in Computational Science and

Engineering (CSE), 2014 IEEE 17th International Conference on. IEEE, 2014, pp.

786–792.

[17] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, “Fog computing: A platform for

internet of things and analytics,” in Big data and internet of things: A roadmap for

smart environments. Springer, 2014, pp. 169–186.

[18] Y.-D. Lin, E. T.-H. Chu, Y.-C. Lai, and T.-J. Huang, “Time-and-energy-aware

computation offloading in handheld devices to coprocessors and clouds,” IEEE

Systems Journal, vol. 9, no. 2, pp. 393–405, 2015.

[19] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can offloading

computation save energy?” Computer, vol. 43, no. 4, pp. 51–56, 2010.

[20] H. Wu, Q. Wang, and K. Wolter, “Tradeoff between performance improvement and

energy saving in mobile cloud offloading systems,” in Communications Workshops

50

(ICC), 2013 IEEE International Conference on. IEEE, 2013, pp. 728–732.

[21] H. Qian and D. Andresen, “Reducing mobile device energy consumption with

computation offloading,” in Software Engineering, Artificial Intelligence, Networking

and Parallel/Distributed Computing (SNPD), 2015 16th IEEE/ACIS International

Conference on. IEEE, 2015, pp. 1–8.

[22] S. Deng, L. Huang, J. Taheri, and A. Y. Zomaya, “Computation offloading for

service workflow in mobile cloud computing,” IEEE Transactions on Parallel and

Distributed Systems, vol. 26, no. 12, pp. 3317–3329, 2015.

[23] Q. Wang and K. Wolter, “Automated adaptive restart for accelerating task

completion in cloud offloading systems,” in Autonomic Computing (ICAC), 2015

IEEE International Conference on. IEEE, 2015, pp. 157–158.

[24] H. Qian and D. Andresen, “Automate scientific workflow execution between

local cluster and cloud,” the International Journal of Networked and Distributed

Computing (IJNDC), vol. 4, no. 1, pp. 45–54, 2016.

[25] Q. Wang and K. Wolter, “Reducing task completion time in mobile offloading

systems through online adaptive local restart,” in Proceedings of the 6th ACM/SPEC

International Conference on Performance Engineering. ACM, 2015, pp. 3–13.

[26] I. Sheikh and O. Das, “Modeling the effect of parallel execution on multi-site

computation offloading in mobile cloud computing,” in European Workshop on

Performance Engineering. Springer, 2018, pp. 219–234.

51

[27] L. Yang, J. Cao, Y. Yuan, T. Li, A. Han, and A. Chan, “A framework for

partitioning and execution of data stream applications in mobile cloud computing,”

ACM SIGMETRICS Performance Evaluation Review, vol. 40, no. 4, pp. 23–32, 2013.

[28] Z. Cheng, P. Li, J. Wang, and S. Guo, “Just-in-time code offloading for wearable

computing,” IEEE Transactions on Emerging Topics in Computing, vol. 3, no. 1,

pp. 74–83, 2015.

[29] L. Jacobson and B. Kanber, Genetic algorithms in Java basics. Springer, 2015,

vol. 41.

[30] K. Yang, S. Ou, and H.-H. Chen, “On effective offloading services for resource-

constrained mobile devices running heavier mobile internet applications,” IEEE

communications magazine, vol. 46, no. 1, 2008.

[31] X. Gu, K. Nahrstedt, A. Messer, I. Greenberg, and D. Milojicic, “Adaptive offloading

for pervasive computing,” IEEE Pervasive Computing, vol. 3, no. 3, pp. 66–73, 2004.

[32] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chandra, and

P. Bahl, “Maui: making smartphones last longer with code offload,” in Proceedings

of the 8th international conference on Mobile systems, applications, and services.

ACM, 2010, pp. 49–62.

[33] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud: elastic

execution between mobile device and cloud,” in Proceedings of the sixth conference

on Computer systems. ACM, 2011, pp. 301–314.

52

[34] H. Wu and K. Wolter, “Tradeoff analysis for mobile cloud offloading based on

an additive energy-performance metric,” in Proceedings of the 8th International

Conference on Performance Evaluation Methodologies and Tools. ICST (Institute

for Computer Sciences, Social-Informatics and Telecommunications Engineering),

2014, pp. 90–97.

[35] Z. Li, C. Wang, and R. Xu, “Computation offloading to save energy on handheld

devices: a partition scheme,” in Proceedings of the 2001 international conference

on Compilers, architecture, and synthesis for embedded systems. ACM, 2001, pp.

238–246.

[36] H. Wu, Y. Sun, and K. Wolter, “Energy-efficient decision making for mobile cloud

offloading,” IEEE Transactions on Cloud Computing, 2018.

[37] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair: Dynamic

resource allocation and parallel execution in the cloud for mobile code offloading,”

in Infocom, 2012 Proceedings IEEE. IEEE, 2012, pp. 945–953.

[38] H. Qian and D. Andresen, “Jade: Reducing energy consumption of android app,”

International Journal of Networked and Distributed Computing, vol. 3, no. 3, pp.

150–158, 2015.

[39] H. Flores, P. Hui, S. Tarkoma, Y. Li, S. Srirama, and R. Buyya, “Mobile code

offloading: from concept to practice and beyond,” IEEE Communications Magazine,

vol. 53, no. 3, pp. 80–88, 2015.

[40] J. I. Benedetto, G. Valenzuela, P. Sanabria, A. Neyem, J. Navón, and C. Poellabauer,

53

“Mobicop: A scalable and reliable mobile code offloading solution,” Wireless

Communications and Mobile Computing, vol. 2018, 2018.

[41] M. D. Kristensen, “Scavenger: Transparent development of efficient cyber foraging

applications,” in Pervasive Computing and Communications (PerCom), 2010 IEEE

International Conference on. IEEE, 2010, pp. 217–226.

[42] X. Chen, S. Chen, X. Zeng, X. Zheng, Y. Zhang, and C. Rong, “Framework for

context-aware computation offloading in mobile cloud computing,” Journal of Cloud

Computing, vol. 6, no. 1, p. 1, 2017.

[43] S. K. Abd, S. Al-Haddad, F. Hashim, A. B. Abdullah, and S. Yussof, “Energy-

aware fault tolerant task offloading of mobile cloud computing,” in Mobile Cloud

Computing, Services, and Engineering (MobileCloud), 2017 5th IEEE International

Conference on. IEEE, 2017, pp. 161–164.

[44] M. Goudarzi, M. Zamani, and A. T. Haghighat, “A fast hybrid multi-site

computation offloading for mobile cloud computing,” Journal of Network and

Computer Applications, vol. 80, pp. 219–231, 2017.

[45] R. Niu, W. Song, and Y. Liu, “An energy-efficient multisite offloading algorithm for

mobile devices,” International Journal of Distributed Sensor Networks, vol. 9, no. 3,

p. 518518, 2013.

[46] S. Ou, K. Yang, and A. Liotta, “An adaptive multi-constraint partitioning algorithm

for offloading in pervasive systems,” in Pervasive Computing and Communications,

2006. PerCom 2006. Fourth Annual IEEE International Conference on. IEEE,

54

2006, pp. 10–pp.

[47] M. B. Terefe, H. Lee, N. Heo, G. C. Fox, and S. Oh, “Energy-efficient multisite

offloading policy using markov decision process for mobile cloud computing,”

Pervasive and Mobile Computing, vol. 27, pp. 75–89, 2016.

[48] R. Kumari, S. Kaushal, and N. Chilamkurti, “Energy conscious multi-site

computation offloading for mobile cloud computing,” Soft Computing, pp. 1–14,

2018.

[49] Q. Wang and K. Wolter, “Accelerating task completion in mobile offloading systems

through adaptive restart,” Software & Systems Modeling, vol. 17, no. 2, pp. 397–413,

2018.

[50] M. S. Gordon, D. A. Jamshidi, S. A. Mahlke, Z. M. Mao, and X. Chen, “Comet:

Code offload by migrating execution transparently.” in OSDI, vol. 12, 2012, pp.

93–106.

[51] X. Ni, E. Meneses, N. Jain, and L. V. Kalé, “Acr: Automatic checkpoint/restart

for soft and hard error protection,” in Proceedings of the International Conference

on High Performance Computing, Networking, Storage and Analysis. ACM, 2013,

p. 7.

[52] S. Ou, K. Yang, A. Liotta, and L. Hu, “Performance analysis of offloading

systems in mobile wireless environments,” in Communications, 2007. ICC’07. IEEE

International Conference on. IEEE, 2007, pp. 1821–1826.

55

[53] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective

genetic algorithm: Nsga-ii,” IEEE transactions on evolutionary computation, vol. 6,

no. 2, pp. 182–197, 2002.

[54] D. Hadka, “Moea framework-a free and open source java framework for

multiobjective optimization. version 2.11,” URL http://www. moeaframework. org

[Links], 2015.

[55] M. Harchol-Balter, Performance modeling and design of computer systems: queueing

theory in action. Cambridge University Press, 2013.

56

	Author's Declaration
	Abstract
	Introduction
	Motivation
	Contributions
	Thesis Outline

	Background and Related Work
	Background
	Cloud Computing
	Mobile Computing
	Mobile Cloud Computing
	Genetic Algorithm

	Related Work
	Offloading Approaches Oblivious to Faults
	Fault-aware Offloading Approaches

	Proposed Model
	Definitions and Assumptions
	Modeling the Effect of Failures on Job Durations
	Restart Fault-handling Mechanism
	Checkpointing Fault-handling Mechanism

	Evaluating a Given Allocation
	Finding an efficient Allocation

	Evaluation Methodology
	Fault-injection Framework
	Workflow Generation

	Case Studies
	Constant Non-zero Failure Rate for Every Component
	Sudden Increase in the Failure Rate
	Investigating the Fidelity of Comparing Fault-tolerance Mechanisms Using Our Model
	Unconventional Workloads
	Serial Computation-dominated Workflow Graph
	Communication-heavy Workflow Graph

	Energy-response time Trade-off in Task Allocation

	Conclusion
	Summary
	Future Work

