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ABSTRACT 

A technique is proposed that can be used to predict the cup-to-disc ratio from a single optic 

fundus image and determine which image features have the highest contribution to a specific 

ophthalmologist’s measured cup-to-disc ratio. The procedure starts with image pre-processing. 

The main step of the procedure is feature extraction where image features related to pixel 

intensities are found. These features are used to train three different classifiers: neural networks, 

support vector machines, and sparse representation classifiers. The classifiers are tested and 

evaluated to see how accurately they can predict the cup-to-disc ratio. The best obtained results 

are in the 70-75% success range. Finally, feature ranking is performed using the methods of chi 

square and information gain on a combined feature vector using measured cup-to-disc ratios 

from each ophthalmologist to determine the importance and contribution of each feature to that 

ophthalmologist.  
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CHAPTER 1 – INTRODUCTION 

1.1 Background 
 

 The cup-to-disc ratio (CDR) found from optic fundus images is a popular and simple 

measure of determining whether a patient may have the degenerative optic nerve condition 

known as glaucoma. Glaucoma, if left untreated, can lead to partial or complete vision loss and, 

as it has few noticeable symptoms at an early stage, can be difficult to detect. This makes quick, 

affordable screening methods such as fundus image CDR measurements very important. There 

are two regions located around the optic nerve that are used in measuring the CDR. The first is 

the disc region which is where the optic nerve and blood vessels enter the retina. The second is 

the cup region which is the center region of the disc. Fig 1 below shows the entire fundus image 

with the cup and disc regions labelled as marked by an ophthalmologist. The outer circle region 

is the disc and the inner circle is the cup. The cup region grows if there is an increased 

intraocular pressure and this leads to a higher CDR, a good indicator that a patient has glaucoma. 

However, it does not guarantee the presence of glaucoma and other factors such as the 

intraocular pressure and condition of the optic nerve need to be considered for a full diagnosis. 
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Fig. 1. Cup and Disc Regions 

 

1.2 Motivation 
 

 A lot of research has already been done in accurately segmenting the cup and disc regions 

from fundus images in order to calculate the CDR. This paper attempts something different. In 

the examined data set there are 100 images, each of which have been marked by six different 
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ophthalmologists showing an outline around both the cup and disc regions. Also included is the 

unmarked version of each image. It has been noticed that the six CDRs for each image can 

sometimes vary by up to 50% between the six ophthalmologists which is a significant difference. 

Fig 2 shows one such example where each ophthalmologist assigned a different CDR value for 

the same fundus image. In this example, the CDRs vary by up to 35%. Looking closely at this 

comparison, it seems that the disc region is roughly similar across each manual marking. 

Therefore, the variance might mostly be attributed to the different cup markings.  

Fig. 2. Comparison of cup and disc regions by different ophthalmologists 

 
 

 The purpose of this project is two-fold. First, classification is performed based on fundus 

image features in order to accurately and consistently predict what CDR value a given 

ophthalmologist will measure. The goal is to be able to predict the CDR value any given 

ophthalmologist will measure for a fundus image based on all the information about that 

ophthalmologist from fundus images they have already marked. The second purpose of this 

project is to try and determine why there is such a large variation between some of the CDR 

measurements between different ophthalmologists. This is done by examining which features are 

more correlated to each CDR measurement through the use of feature ranking, thus determining 

which features a given ophthalmologist prefers when deciding a CDR value. 
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1.3 Challenges and Assumptions 
 

 There are a few challenges associated with this project, mainly in terms of the machine 

learning aspect of it. The first challenge is the size of the sample space. There are only 100 

images for each ophthalmologist. This is a relatively small amount of data for training an 

accurate and general classifier. This is made even more challenging due to the higher number of 

classes when performing multi-class classification. Multi-class classification is highly dependent 

on each class having a good amount of representation in the data set. In Fig 3, a histogram of the 

CDR values for one ophthalmologist is shown. This describes how many images of the 100 

image data set fall into each class. As can be seen, four classes have eight or fewer images to 

represent them. Therefore, training a classifier that can accurately predict these underrepresented 

classes is much more difficult than predicting the better represented classes. An explanation on 

how these challenges are mitigated will be made throughout the procedure. 

Fig. 3. Histogram of CDR Values 
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 For the purpose of this project, a few assumptions are made in order to approach the 

problem in a preferred way. The first assumption made is that the method should avoid using 

segmentation. Even though segmentation can result in accurate CDR values, the aim in this 

project is to use the entire fundus image itself in order to predict the CDR. Taking too many 

steps that lead to segmenting the cup and disc regions is also avoided as there is less value in 

predicting the CDR when only a step or two away from having a completely segmented image 

which can be used to directly measure the CDR. Furthermore, while lengths, widths, and areas of 

cup or disc regions would result in accurate CDR predictions, it is assumed that the value of each 

of these features are dependent on the ophthalmologist and are not prior knowledge or 

information that can be obtained directly from an image without segmentation.  

1.4 Chapter Overview 
 

 The remainder of this paper is organized into the following chapters:  

 In Chapter 2, a brief overview of various research papers that have been examined in this 

research domain is given.  

 In Chapter 3, the basic theory on some of the methods used throughout the procedure is 

explained.  

 Chapter 4 presents the step-by-step procedure used to reach the goals that have been 

outlined for this project.  

 Chapter 5 presents the results along with a discussion on them.  

 Finally, in Chapter 6, overall conclusions and ideas for future work are given.  
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CHAPTER 2 – RELATED WORKS 

 After performing a literature review of papers in this research area, only two have been 

found that have previously done something similar to what is proposed here. In [1], 2-class 

classification (presence of glaucoma or not) is performed purely with the image data. Image 

features of pixel intensities, textures, fast Fourier transform (FFT) coefficients, and histograms 

are used to test naive Bayes, K-nearest neighbours (KNN), and support vector machine (SVM) 

classifiers. Success rates ranging from 73-83% are achieved. In [2], image texture and higher 

order spectra features are used to perform 2-class classification to detect the presence of 

glaucoma. Success rates ranging from 85-91.7% are achieved. A very similar paper, [3], 

performs 2-class and 3-class classification to determine the presence of diabetic macular edema 

(DME) which is also an abnormal eye condition. Global fundus image features obtained from a 

motion pattern method are used.  

 Most papers calculate the CDR after performing segmentation. There has been extensive 

research done in segmenting the cup and disc regions and the methods have become more 

advanced and accurate over the years. An extensive list of glaucoma detection techniques is 

given in [4]. A very recent method which has become popular is an approach using polar maps 

[5]. In this method, both supervised and unsupervised segmentation is performed to extract the 

cup from the disc region. The cup is then represented as a sector based polar map and features 

are taken from each of these sectors, resulting in 192 features. Histogram features are also added 

to this. A random forest classifier is then trained and tested using these features. An area under 

the curve (AUC) of 0.8964 is achieved. As stated in the assumptions in Chapter 1.3, 

segmentation methods are not used in this paper. The focus in this paper is predicting CDR 

values based on the ophthalmologist and also to compare the importance of features between 
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them. Therefore, even though segmentation methods are highly accurate in finding the cup and 

disc region, as well as directly measuring the CDR, the purposes of this paper require a different 

approach.    

 Although the aim is to determine what features might have more contribution to a given 

ophthalmologist’s measurement, papers that give methods for segmentation have also been 

examined to see what kind of pre-processing they perform on fundus images. They also help in 

gaining some prior knowledge about fundus images and CDRs in general. For example, in [6], 

[7], and [8] it is stated that the red colour channel is better for segmenting the disc region while 

the green colour channel is better for segmenting the cup region. Therefore, not only are RGB or 

grayscale images used for feature extraction but the individual colour channels as well. Different 

feature ranking methods that are used in machine learning problems were also found. In [9], 

feature ranking was performed using linear SVM and in [10] it was performed using AdaBoost. 

However, the methods from [2] which include chi square and information gain are used in this 

proposed technique mainly due to their simplicity and how commonly they are used. 
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CHAPTER 3 – THEORY 

 In this chapter, the basic theory for some of the methods used is given so that a reader can 

understand how they work and why they are used in this proposed technique. 

3.1  Sparse Representation Classifier 
 

 While the other classifiers used are very common, a Sparse Representation Classifier 

(SRC) which is less common is also used. A colleague suggested using this classifier since it is 

good at using the entire sample space. This would help with the challenge mentioned about 

having underrepresented classes. Some background information about SRC is given here as it 

might not be as well known. Fig 4 shows the algorithm for SRC. As shown, it is a four step 

process. In step 1, the columns of the data set, X, which correspond to samples of each class are 

l2 normalized. In step 2, the test image, y, is coded as y ≈ Xα where α is known as the coding 

vector. In step 3, the residuals of y are calculated using (2). In step 4, the coding vector, αi, with 

the most significant values for y is found as the one resulting in the minimum residual. This 

means that y most likely belongs to class i.  

Fig. 4. The SRC Algorithm [11] 
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 For a more detailed description of SRC, please see [11]. For this project, a MATLAB 

implementation of SRC was used which can be found at [12]. In order to use this 

implementation, a MATLAB-based software for convex programming known as CVX is also 

needed and it can be found at [13]. 

3.2  Chi Square Feature Ranking 
 

 The first feature ranking method used is Chi Square which is basically a statistical 

method for determining if there is a relationship between different categories. It is a popular 

method for performing feature ranking or selection. This is done by seeing how significant the 

relationship is between each feature in a feature vector and the target class. The results are then 

sorted to form a ranking based on significance. In order to calculate chi square, (4) is used where 

χ is the chi square value, n is to total number of samples, O is the observed value, and E is the 

expected value. The value, χ, is higher if there is more correlation between the two values and 

therefore, features with high chi square values will be ranked higher. For more information on 

how to calculate chi square, please see [14].    

χ =  
(𝑂𝑖− 𝐸𝑖)

2

𝐸𝑖

𝑛
𝑖=1     (4) 

 

3.3  Information Gain Feature Ranking 
 
 The second feature ranking method used is called information gain, also known as mutual 

information, which uses entropy information. To calculate information gain, (5) is used where 

IG(Y|X) is the information gain, H(Y) is the total entropy of the class Y, and H(Y|X) is the 

conditional entropy of Y given the feature X. This basically means that each feature is checked to 
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see how often it results in a specific classification. The more times a feature results in a specific 

classification, the lower the expected entropy will be, thus resulting in a higher information gain. 

Features that have higher information gain values are ranked higher. For more information on 

how to calculate information gain, please see [15]. 

IG(Y, X) = H(Y) – H(Y | X) (5) 
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CHAPTER 4 – PROPOSED TECHNIQUE 

 The overall flow of the project can be split into several main steps. Fig 5 shows the high-

level flow of the entire project. The remainder of this chapter will examine each of these steps in 

greater detail. Once feature extraction is performed, CDR prediction can take place by 

proceeding to the classifier training and testing steps. However, feature ranking can also be 

performed directly after the feature extraction step as the classifier training and testing results are 

unnecessary for it.  

Fig. 5. High-level Flowchart for Proposed Technique 
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4.1 Pre-processing 

 A flowchart of the pre-processing step can be seen in Fig 6. 

Fig. 6. Pre-processing Stage of Proposed Technique 

 

 Pre-processing begins with image localization. Each fundus image in the data set is in TIF 

format and has a resolution of 2240 x 1488. This equals to over three hundred thousand pixels in 

each image. However, only a small fraction of about 3% of the total pixels contains the disc and 

cup region. An example of one of these data images can be seen in Fig 7. 
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Fig. 7. Full-size fundus image 

 

 Since only a small portion of the image is actually needed, pre-processing is carried out in 

order to create a localized image containing only the region of interest: the cup and disc region. 

This is done by finding high intensity regions in the image from the image histograms. A 

population of high intensity regions is found through a genetic algorithm and then the largest of 

these regions is cropped from the image as the region of interest. This resulting region is 

significantly smaller than the original image having a resolution of only 351x351. The cup and 

disc region is accurately found in 95/100 of the test images. A sample of a localized image is 

shown in Fig 8. The code for this was provided by a colleague. 
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Fig. 8. Localized image with cup and disc region 

 

 During pre-processing, histogram equalization of each image is also performed and the red, 

green, and blue channels of each image are taken separately. Different combinations of these steps 

lead to different results in later stages. For example, extracting certain features from the blue 

colour channel leads to better classification results than performing that same feature extraction 

on the green colour channel. However, for a different feature, the green colour channel might give 

better results than the blue channel. In Fig 9, a side-by-side comparison of each RGB channel is 

shown so that a reader can get a better idea of what each looks like and how different information 

might be better obtained in different colour channels. 

 



15 
 

Fig. 9. Individual RGB Channels 

 

 The HSV (Hue, Saturation, Value) colour model of each image is also found as it contains 

additional information that can help with the image classification. The HSV version of Fig 8 can 

be seen in Fig 10 below. Similar to the RGB image, each channel of the HSV image is also used 

separately. In Fig 11, a side-by-side comparison of each individual HSV channel is shown. 

Fig. 10. HSV Model of Localized Image 
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Fig. 11. Individual HSV Channels 

 

 After the image region of interest is localized, the various colour channels are obtained and 

histogram equalization is performed if necessary, the images are ready to have the desired features 

extracted from them. 
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4.2 Feature Extraction 

 A flowchart of the feature extraction stage is shown in Fig 12. 

 

Fig. 12. Feature Extraction Stage of Proposed Technique 

 

 The most important step of the procedure is feature extraction. With images there is a wide 

variety of features that can be extracted. In order to determine which features have a higher 

contribution towards predicting the CDR, several need to be tried. The main goals of this project 



18 
 

are to find features that can be used to accurately predict the CDR and also to determine how the 

importance of each feature varies between different ophthalmologists to explain how they can 

assign highly varied CDRs to the same fundus image. These goals are mainly reflected in this 

stage of feature extraction.    

 The simpler features that are used include all of the pixel intensities in an image and the 

average pixel intensity of an image. As stated before, this can be done on each of the colour 

channels or a histogram equalized image to lead to different results. These are common features 

used for training classifiers related to images, but there might be some correlation between pixel 

intensities and the CDR. This is because the disc region has a higher intensity than the remainder 

of the image while the cup region has an even higher intensity than the disc region. This can be 

seen in Fig 8 by observing how the pixel intensities change throughout the image. It is one of the 

main features used when being manually marked by an ophthalmologist. In Table I below the 

average pixel intensities between low CDR and high CDR images as marked by a single 

ophthalmologist are compared. As can be seen from the table, there is no clear distinction between 

the average pixel intensities whether the CDR is low or high so it may not be a useful feature for 

classification based just on this comparison.  
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TABLE I.  COMPARISON OF LOW AND HIGH CDR IMAGES BY AVERAGE PIXEL INTENSITY 

CDR (Low Values) Average Pixel 

Intensity 

CDR (High Values) Average Pixel 

Intensity 

0.1 95.1657 0.6 93.8719 

0.1 111.8675 0.6 119.6729 

0.1 131.1622 0.65 117.3108 

0.1 141.4763 0.6 108.1754 

0.1 133.9871 0.65 109.9459 

 The next simple feature used is image energy which is just the sum of all pixels in an image. In 

Table II below a similar comparison is performed as before with energy instead of average pixel 

intensity. Similar to average pixel intensities, there is no clear distinction between the energy of 

low CDR images and high CDR images.  

TABLE II.  COMPARISON OF LOW AND HIGH CDR IMAGES BY ENERGY 

CDR (Low Values) Image Energy CDR (High Values) Image Energy 

0.1 11724506 0.6 11565106 

0.1 13782184 0.6 14743826 

0.1 16159315 0.65 14452810 

0.1 11181550 0.6 13327316 

0.1 17430016 0.65 13545450 

 Next, the entropy of each image is compared in Table III below. Here it can be seen that 

entropy is slightly higher in high CDR images, which means that it might be a decent feature for 

classification.  
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TABLE III.  COMPARISON OF LOW AND HIGH CDR IMAGES BY ENTROPY 

CDR (Low Values) Image Entropy CDR (High Values) Image Entropy 

0.1 6.0185 0.6 6.3487 

0.1 6.1895 0.6 6.4614 

0.1 6.2683 0.65 6.5784 

0.1 6.0693 0.6 6.5844 

0.1 6.2765 0.65 6.2290 

 The next simple feature examined is standard deviation and the comparison is shown in Table 

IV. For this set of images, it can be seen that the standard deviation is usually around twice as 

large in the high CDR images compared to the low CDR images. This might be an indication that 

standard deviation is a good feature for classifying between low and high CDR images. 

TABLE IV.  COMPARISON OF LOW AND HIGH CDR IMAGES BY STANDARD DEVIATION 

CDR (Low Values) Image Standard 

Deviation 

CDR (High Values) Image Standard 

Deviation 

0.1 0.0355 0.6 0.0484 

0.1 0.0346 0.6 0.0600 

0.1 0.0204 0.65 0.0596 

0.1 0.0310 0.6 0.0643 

0.1 0.0367 0.65 0.0611 

 The final simple feature used is image variance and the comparison is shown in Table V 

below. The values here show that variance is about an order of magnitude larger in high CDR 
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images compared to low CDR images. This is also a good indication that variance might be a 

strong feature for classification. 

TABLE V.  COMPARISON OF LOW AND HIGH CDR IMAGES BY VARIANCE 

CDR (Low Values) Image Variance CDR (High Values) Image Variance 

0.1 2.4621e-05 0.6 6.4474e-05 

0.1 2.1445e-05 0.6 1.5620e-04 

0.1 6.4762e-06 0.65 1.5294e-04 

0.1 1.6085e-05 0.6 2.0927e-04 

0.1 2.2883e-05 0.65 1.3919e-04 

 For more advanced features, image histograms are used. A histogram shows the distribution of 

pixel values in bins ranging from low intensity to high intensity. This also follows the idea that 

higher intensities are attributed to cup and disc regions. Fig 13 below shows the histogram plots of 

the same images used in the tables above. The left side of the figure shows the histograms for the 

low CDR images and the right side shows the histograms for the high CDR images. It was 

expected that high CDR images would have more pixels grouped on the right side of the 

histogram because of the higher quantity of high intensity pixels due to the larger cup and disc 

regions. Based on Fig 13, there does appear to be a spike at the highest intensity bin of the 

histogram for most of the high CDR images. However, some of the low CDR images also have 

this spike.  
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Fig. 13. Comparison of Histograms Between Low (Left) and High (Right) CDR Fundus Images 

 

 Principal component analysis (PCA) was also used. PCA finds the component images of a set 

of images along with weights/coefficients that can be used to linearly add these component 

images in order to reproduce the original image. PCA is primarily used to reduce the 

dimensionality of a data set. Although built in MATLAB functions were used to calculate the 

eigenvectors for PCA, a tutorial, [16], was helpful in understanding how PCA works and to 

calculate the PCA coefficients. In Fig 14 below, the top 10 eigenvectors that result from using 

PCA on the data set of 100 images are shown. When using the PCA function in MATLAB, the 

eigenvectors are automatically sorted to have the highest variance eigenvectors listed first. Since 

there are 100 images in the data set, 99 eigenvectors are generated. Also included in Fig 14 are the 

last two eigenvectors to show what the low variance eigenvectors look like. The majority of the 

99 eigenvectors are visually similar to eigenvectors 98 and 99 shown below. The high variance 

eigenvectors contribute the most to the overall image. 
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Fig. 14. Eigenvectors Found Using PCA for 100 Image Data Set 

 

 Although each feature is tested separately, a combined feature vector which is composed of 

several of the features mentioned above is also created. The exact features are described in the 

next paragraph. This procedure was used so that it could be immediately seen if any single feature 

was a strong decider in the final CDR value. The combined feature vector is important since it is 

used later for feature ranking. Therefore, more testing was done with this feature vector than with 

the individual features, with the exception of features that performed well. By looking at the rank 

assigned to each feature in the vector, it would be possible to see which features contributed more 

to predicting the output CDR. These ranks could also be compared between different 

ophthalmologists to see how the importance of each feature varies between them.  
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 The feature vector was assembled using the simple image features of average pixel intensity, 

energy (which is simply a sum of all pixel intensities in the image), entropy, standard deviation 

and variance. For each image, these values were found for the three colour channels separately 

and also for the RGB grayscale image which resulted in a feature vector with a length of 20. 

Furthermore, the top 10 PCA coefficients and a 10 bin histogram for each of the three colour 

channels and the RGB grayscale image were also taken. This results in another 40 PCA features 

and 40 histogram features, for a total of 100 features. Finally, these same measurements were 

taken for the HSV version of the image, resulting in an overall feature vector of 200 features. 

More PCA coefficients and larger histograms would have been taken but classifier training 

becomes much slower around 200 features so the feature vector was kept at this size. A diagram 

of the feature vector components can be seen in Fig 15. Each colour channel has this same set of 

features with a length of 25 and there are eight in total (red, green, blue, RGB grayscale, hue, 

saturation, value, HSV grayscale) resulting in a total length of 200. The histogram bins are 

arranged from low intensity to high intensity going from left to right in the feature vector. The 

PCA coefficients are arranged from high variance to low variance from left to right.   

Fig. 15. Structure of Combined Feature Vector 
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4.3 Classifier Training 

 A flowchart of the classifier training stage is shown in Fig 16. 

 

Fig. 16. Classifier Training Stage of Proposed Technique 
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 Each feature mentioned in Chapter 4.2 was then used as the training input to a classifier. The 

100 images in the overall data set were divided between a training set and test set. A size of 70 

images for the training set and 30 for the test set was often used. However, different train/test data 

splits were also tested to see if they would give better results. This means that each classifier was 

trained with a number of inputs equal to the size of the training set in the form of vectors with 

varying lengths depending on the feature. For example, with pixel intensities the length of the 

feature vector was 123 201 pixel intensities (351x351), for PCA the length was one less than the 

training set size of coefficients, and for average pixel intensity the length was 1 pixel intensity.    

  The main classifier type used was neural networks (NN). This is because MATLAB allowed 

NNs to be easily created and highly customized. Several parameters could be varied including the 

number of hidden nodes, training algorithm, number of epochs, target performance, and minimum 

gradient. The main training algorithms provided by MATLAB were Scaled Conjugate Gradient 

(SCG), Gradient Descent (GD), Levenberg-Marquardt (LM), and Bayesian regularization (BR). 

These parameters also added variations to the results and so they were all tested for each NN in 

order to obtain the best performance. While different parameters were tested, generally 10 hidden 

nodes and the BR training algorithm were used which seemed to give the best results most often. 

SVMs were used as an alternative classifier and they were trained with the same training data as 

the NNs to see if they would give better results. Finally, upon recommendation from a colleague, 

SRC was used as it is a good classifier for making use of training samples from each class.  

 Furthermore, different quantities of classes were used including: full (which was between 12-

14 classes, depending on the ophthalmologist, and resulted from taking the CDRs at 0.05 

intervals), half (which was 6-7 classes and resulted from taking the CDRs at 0.10 intervals), 3 

(classification ranges of 0.0 – 0.24, 0.25 – 0.49, 0.50+), and 2 classes (0.0 – 0.49, 0.50+). The 
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reduced numbers of classes were used to see if the results would be significantly improved. Also, 

2 classes is the most common number of classes when classifying CDR images as shown in 

papers [1] and [2]. This is because the main goal is to diagnose glaucoma and thus the most 

important factor is whether the CDR is above or below a certain threshold, usually 0.50. By 

testing with different numbers of classes, the challenge of having a fairly low amount of samples 

was partially mitigated. Testing with reduced numbers of classes also helped give better class 

representation. 
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4.4 Classifier Testing 

 A flowchart of the classifier testing stage is shown in Fig 17. 

 

Fig. 17. Classifier Testing Stage of Proposed Technique 

 

 As with training, each of the three classifier types needed to be tested. Furthermore, each 

multi-class amount also needed to be tested resulting in 12 tests for each feature. The process 

shown in Fig 17 was followed to help keep the large amount of testing and resulting data 
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organized. To test a classifier, the test set is inputted into the classifier. The NN and SVM 

classifiers used output a set of probabilities equal in size to the number of classes. The highest 

probability was then taken as the class that the input sample most likely belonged to. The SRC 

classifier output a single class label value directly. Each class label corresponded directly to a 

distinct CDR value. 

 In order to evaluate a classifier, a binary 1 or 0 corresponding to a successful prediction or a 

failure was used.  This was calculated by (6) where y is the predicted CDR and T is the target 

CDR. A value of 0.10 was chosen so that a predicted CDR needed to be within  10% of the 

target CDR to be considered successfully predicted. Originally, a success criterion of within  5% 

was used but due to poor results, it had to be raised. Note that for the 3-class and 2-class 

classification cases, this criterion does not apply and the success of a prediction is measured based 

on whether or not the predicted CDR matches the target CDR exactly. By having the full and half-

class cases use a less strict success criterion, the challenge of doing multi-class classification with 

some underrepresented classes was partially mitigated. 

1, 0.10

0, 0.10

y T

y T

  


 

  (6) 
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4.5 Feature Ranking 

 A flowchart of the feature ranking stage is shown in Fig 18. 

 

Fig. 18. Feature Ranking Stage of Proposed Technique 

 
  

 The final step of the proposed technique was to perform feature ranking. The goal of this step 

was to determine the contribution of each feature in the combined feature vector towards 

successfully predicting the CDR. However, the main use of feature ranking was to compare the 
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feature contributions between each ophthalmologist. This was done to gain an idea of why for 

some fundus images each ophthalmologist assigned a different CDR value even though it was the 

exact same image. By seeing how the feature ranks change for each ophthalmologist, it can be 

determined if different features are more important for different ophthalmologists.  

 Two different feature ranking methods were used: Chi Square and Information Gain. These are 

commonly used methods for feature ranking and their basic theory can be found in Chapter 3. The 

program, Weka, which is data mining software, was used and it has both of these feature ranking 

algorithms built in. The process started with choosing an ophthalmologist to rank the features on. 

The features are run with the specific ophthalmologists given CDR values. Since they each 

assigned different CDR values to the dataset of images, the feature ranking would be performed 

using different targets for each ophthalmologist. The result was a sorted list of features by rank 

which could then be examined to see feature contributions for the ophthalmologist. Furthermore, 

each list of ranked features could then be compared to the resulting lists of every other 

ophthalmologist to see how they differ.  
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CHAPTER 5 – RESULTS AND DISCUSSION 

 The results presented here are split into two sections corresponding to the two main goals of 

this project which are CDR prediction and examining why different ophthalmologists assign 

different CDR values to the same fundus image. A comparison of these results with other similar 

papers in the literature is also performed. Every step of the process was performed using 

MATLAB R2015a, except for feature ranking which used Weka 3.6.13 [17], on a laptop with an 

Intel Core i3 Processor at 2.13 GHz and 4.0 Gb of RAM.  

 

5.1 CDR Prediction 
 

 The results for CDR prediction are obtained at the proposed technique stage described in 

Chapter 4.4, feature testing. The results for some of the features mentioned in the feature 

extraction stage can be seen in the tables below. This is only a subset of the more successful 

features and configurations that were tried. Most of the results are based on target CDRs from a 

single ophthalmologist. A few of the highest achieving classifiers are tested with targets from 

each ophthalmologist and the results are also included below. Most of the NNs are using the BR 

algorithm and have 10 hidden nodes unless otherwise stated. The aim is to have a high success 

rate, particularly for the test set as this shows whether the classifier will be good for unseen data.   

 Note that the overall average is not obtained by directly taking the average of the training set 

and test set. The overall average is a weighted average that depends on the size of the training set 

and test set. This is why equivalent results for the training and testing set can have different 

overall averages. Also note that, while four different amounts of classes were tested for each 

classification, the focus is on the full-class and 2-class classification cases. The half-class and 3-
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class cases usually do not perform as well as the others and would not be used as commonly 

either. As stated at the end of chapter 4.4, the success rates obtained for the 3-class and 2-class 

cases are based on the predicted CDR exactly matching the target CDR, while the success rates 

for the full and half-class cases are based on the predicted CDR being within 10% of the target 

CDR as in (6). All success rates are rounded to two decimal places. Finally, when training NNs in 

MATLAB, there is an element of randomness with the initial values. Therefore, multiple runs of 

training the same NN can give varying results. The results presented here are the best results that 

were obtained after three runs. This does not occur with the SVM or SRC algorithms used which 

give the same results every run. The most significant results are bolded. 

TABLE VI.  CLASSIFIER SUCCESS RATES FOR FEATURE: ALL PIXELS 

 NN – GD Algorithm – 10 

hidden nodes 

SVM SRC 

Number of 

Classes 

12 6 3 2 12 6 3 2 12 6 3 2 

Average Success 

Rate (Training 

Set) 

0.77 0.52 

 

0.70 

 

0.82 

 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Average Success 

Rate (Test Set) 

0.47 

 

0.58 

 

0.56 

 

0.86 0.62 0.66 0.60 0.90 0.53 0.62 0.62 0.88 

Overall Average 

Success Rate 

0.68 0.55 0.63 0.84 0.81 0.83 0.80 0.95 0.72 0.77 0.77 0.93 
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 Table VI shows the results when using all the pixel intensities in an image as the feature to 

train and test with. This results in a feature vector with a length of 123 201 (351x351). As can be 

seen from the table, a very simple feature vector of all pixel intensities actually gives decent 

results, particularly for the SVM and SRC classifications. The best test set success rate obtained 

was 62% for the full amount of classes and 90% for the 2-class case. SRC classification 

performed slightly worse than SVM classification. NN classification was not effective for this 

feature, even for the training set. NN also took significantly longer to train, approximately 8 

minutes, due to the high length of the feature vector. The memory requirements were over the 

maximum limit required by the BR and LM training algorithms.   

TABLE VII.  CLASSIFIER SUCCESS RATES FOR FEATURE: PCA COEFFICIENTS 

 NN – BR Algorithm – 7 hidden 

nodes 

SVM SRC 

Number of 

Classes 

12 6 3 2 12 6 3 2 12 6 3 2 

Average 

Success Rate 

(Training Set) 

0.88 0.85 0.93 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Average 

Success Rate 

(Test Set) 

0.60 0.70 0.65 0.92 0.62 0.66 0.60 0.90 0.67 0.68 0.63 0.90 

Overall 

Average 

Success Rate 

0.71 0.76 0.76 0.94 0.81 0.83 0.80 0.95 0.80 0.81 0.78 0.94 
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 Table VII shows the results when using the PCA coefficients of an image as the feature to train 

and test with.  This results in a feature vector with a length of one less than the number of images 

in the training set. This is a feature that was expected to obtain the highest success rates. 

However, it gave only slightly better results compared to simply using all of the pixel intensities 

as shown above. The best test set success rate was obtained using SRC and was 67% for the full 

amount of classes. Using NN, 92% was obtained for the 2-class case. NN performed better with 

this feature, but that is most likely because the BR training algorithm was used instead of the 

previously used GD algorithm.  

TABLE VIII.  CLASSIFIER SUCCESS RATES FOR FEATURE: IMAGE HISTOGRAM 

 NN – BR Algorithm – 10 

hidden nodes – 10 bins 

SVM – 200 bins SRC – 100 bins 

Number of 

Classes 

12 6 3 2 12 6 3 2 12 6 3 2 

Average 

Success Rate 

(Training Set) 

0.93 0.97 0.95 0.97 0.88 0.96 0.92 1.00 1.00 1.00 1.00 1.00 

Average 

Success Rate 

(Test Set) 

0.73 0.65 0.65 0.85 0.52 0.42 0.50 0.64 0.56 0.50 0.58 0.92 

Overall 

Average 

Success Rate 

0.85 0.84 0.83 0.92 0.70 0.69 0.71 0.82 0.78 0.75 0.79 0.96 

 Table VIII shows the results when using the image histogram of an image as the feature to 

train and test with.  The length of this feature vector depends on how many bins the histogram is 
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divided into. Each classifier was tested with several different quantities of bins (10, 20, 50, 100, 

200, and 500) and the best results were recorded. As shown in the table, NN worked best with 10 

bins, SVM with 200 bins, and SRC with 100 bins. The best test set success rate that was obtained 

was 73% from NN classification. This is actually the overall highest test set success rate for the 

full-class case that is achieved across all the features that were tested. Also, with SRC a success 

rate of 92% was achieved for the 2-class classification. For this feature, SVM classification had 

the worst performance. 

TABLE IX.  CLASSIFIER SUCCESS RATES FOR FEATURE: PCA COEFFICIENTS USING HSV IMAGES 

 NN – BR Algorithm – 10 

hidden nodes 

SVM SRC 

Number of 

Classes 

12 6 3 2 12 6 3 2 12 6 3 2 

Average 

Success Rate 

(Training Set) 

0.90 0.90 0.98 0.93 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Average 

Success Rate 

(Test Set) 

0.50 0.32 0.62 0.92 0.58 0.54 0.66 0.84 0.50 0.45 0.60 0.90 

Overall 

Average 

Success Rate 

0.66 0.55 0.76 0.92 0.79 0.77 0.83 0.92 0.80 0.78 0.84 0.96 

 Table IX shows the results when using the PCA coefficients of the HSV colour model image 

as the feature to train and test with. The length of this feature vector is equal to one less than the 

number of training images. This test was done to see how well PCA coefficients for the HSV 
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version of the image would perform compared to PCA coefficients of the normal RGB image. As 

shown in the table, it performed worse with success rates around 10% lower for the full-class 

cases. The best test set success rate that was obtained was 58% from SVM classification for the 

full-class case and 92% from NN classification in the 2-class case.  

TABLE X.  CLASSIFIER SUCCESS RATES FOR FEATURE: COMBINED FEATURE VECTOR 

 NN – BR Algorithm – 10 

hidden nodes 

SVM SRC 

Number of 

Classes 

12 6 3 2 12 6 3 2 12 6 3 2 

Average 

Success Rate 

(Training 

Set) 

0.97 0.90 0.90 0.97 0.65 0.62 0.68 0.85 1.00 1.00 1.00 1.00 

Average 

Success Rate 

(Test Set) 

0.60 0.63 0.57 0.83 0.50 0.53 0.60 0.85 0.50 0.43 0.40 0.63 

Overall 

Average 

Success Rate 

0.86 0.82 0.80 0.93 0.59 0.58 0.65 0.85 0.85 0.83 0.82 0.89 

 The results for the final feature tested, the combined feature vector, are shown in Table X. As 

stated before, the length of this feature vector is 200. The hope was to obtain the best results by 

using this feature vector, since this would be used later for feature ranking. Better results would 

show that these features were strongly correlated to the predicted CDR. Unfortunately, the results 

were around the same as the other features, and slightly worse in some cases. As shown in the 
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table, the best test set success rate that was obtained was 60% from NN classification for the full-

class case. This was actually the highest overall success rate for the full-class case with a 

performance of 86%, but the test set success rate is more important. It did not perform as well 

with the 2-class case however, achieving a maximum of only 85% using SVM classification. To 

obtain the results in Table X, histogram equalization was used on the 100 HSV features, which 

slightly improved the success rates over using no histogram equalization. 

 Another observation that is general to all of the above results is the high success of the training 

set classification compared to the test set. As shown in Tables VI to X, it is often in the 90+% 

range and even 100% in several cases. This could mean that the classifiers are being overfit and 

not generalized enough. Early stopping was tried when training the NNs but it did not help to 

improve the results significantly.  

 Only two of the best or more significant classifiers above were tested with target CDRs from 

all six ophthalmologists as testing every feature with every ophthalmologist would have taken a 

very long time. The first was the histogram feature vector shown in Table VIII. The results are 

shown in Table XI. This is for 10-bin histograms and using a BR NN classifier with 10 hidden 

nodes. 

 As can be seen, the results are fairly consistent between all of the ophthalmologists. An even 

higher success rate of 75% was obtained with ophthalmologist 4 for the full-class case. The 

highest success rate for the 2-class case remained at 85%. However, ophthalmologist 5 and 6 

seemed to be more difficult to predict based on these results for both the full-class and 2-class 

classifications.  
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TABLE XI.  CLASSIFIER SUCCESS RATES ACROSS ALL OPHTHALMOLOGISTS: HISTOGRAM 

Number of Classes Full Classes 2 Classes 

Ophthalmologist 1 2 3 4 5 6 1 2 3 4 5 6 

Average Success 

Rate (Training Set) 
0.93 0.93 0.90 0.95 0.98 0.97 0.97 0.98 0.95 0.95 0.97 0.93 

Average Success 

Rate (Test Set) 
0.73 0.65 0.65 0.75 0.50 0.65 0.85 0.80 0.83 0.75 0.70 0.55 

Overall Average 

Success Rate 
0.85 0.82 0.80 0.87 0.79 0.84 0.92 0.91 0.90 0.87 0.86 0.78 

 The second was with the combined feature vector. The results are shown in Table XII. This is 

also using a BR NN classifier with 10 hidden nodes. 

TABLE XII.  CLASSIFIER SUCCESS RATES ACROSS ALL OPHTHALMOLOGISTS: COMBINED FEATURE VECTOR 

Number of Classes Full Classes 2 Classes 

Ophthalmologist 1 2 3 4 5 6 1 2 3 4 5 6 

Average Success 

Rate (Training Set) 
0.97 0.93 0.94 0.99 0.96 0.90 0.97 0.96 0.96 0.99 0.97 0.97 

Average Success 

Rate (Test Set) 
0.60 0.50 0.50 0.57 0.43 0.60 0.83 0.83 0.73 0.77 0.60 0.73 

Overall Average 

Success Rate 
0.86 0.80 0.81 0.86 0.80 0.81 0.93 0.92 0.89 0.92 0.86 0.90 

 Again, with the combined feature vector, the results were generally consistent between all of 

the ophthalmologists which was expected since there were many more features. Therefore, even if 

some features that were good for one ophthalmologist were bad for another, there were more 
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options available. The best full-class success rate remained at 60% and the best 2-class success 

rate was 83%. Ophthalmologist 5 was once again the most difficult to predict. 

 The final method employed to evaluate these classifiers further was 10-fold cross-validation. 

Cross-validation is basically carried out by dividing the entire data set into 10 equal folds (or 

whatever amount of folds is desired). For this data set, each fold was comprised of 10 images. 

Then the classifier was trained with 9 of the 10 folds and tested with the remaining fold. This is 

then repeated so that each fold would be used as the test set exactly once. The purpose of using 

cross-validation is to see how well the classifier responds to unseen data. The results for the 

histogram feature and BR NN classifier with 10 hidden nodes are shown in Table XIII. 

 While some folds achieved high test set success rates of up to 80%, the overall average across 

all the folds was 68%. This is slightly lower than the best success rate achieved of 73% shown in 

Table VIII meaning that with unseen data the results might be slightly lower.   
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TABLE XIII.  10-FOLD CROSS-VALIDATION: HISTOGRAM 

Fold Average Success Rate 

(Training Set) 

Average Success Rate (Test 

Set) 

Overall Average Success Rate 

1 0.96 0.70 0.93 

2 0.90 0.70 0.88 

3 0.97 0.60 0.93 

4 0.88 0.80 0.87 

5 0.91 0.60 0.88 

6 0.93 0.80 0.92 

7 0.97 0.80 0.95 

8 0.92 0.60 0.89 

9 0.93 0.60 0.90 

10 0.94 0.60 0.91 

Overall 

Average 

0.93 0.68 0.91 

 The 10-fold cross-validation for the combined feature vector and a BR NN classifier with 10 

hidden nodes is shown in Table XIV. 
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TABLE XIV.  10-FOLD CROSS-VALIDATION: COMBINED FEATURE VECTOR 

Fold Average Success Rate 

(Training Set) 

Average Success Rate (Test 

Set) 

Overall Average Success Rate 

1 0.93 0.60 0.90 

2 0.93 0.80 0.92 

3 0.90 0.40 0.85 

4 0.93 0.70 0.91 

5 0.93 0.60 0.90 

6 0.96 0.70 0.93 

7 0.90 0.60 0.87 

8 0.93 0.40 0.88 

9 0.91 0.30 0.85 

10 0.91 0.50 0.87 

Overall 

Average 

0.92 0.56 0.89 

 As with cross-validation on the histogram feature, the overall average across all folds for the 

combined feature vector is slightly lower than the maximum success rate achieved of 60% shown 

in Table X. This is mainly due to about four of the folds performing badly with rates of 30-40%. 

As stated earlier, multiple runs of training the same NN can give varying results. If the process 

was repeated several times and the best classifier results taken, the overall success may have been 

improved. 
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5.2 Comparison of Ophthalmologists Using Feature Ranking 
  

 The next set of results are concerned with the feature ranking stage described in detail in 

Chapter 4.5. Once the combined feature vector is created during the feature extraction stage, it is 

ready to be ranked. In order to perform the chi square and information gain methods, Weka 3.6.13 

was used. This machine learning software has functions built in for a variety of feature ranking 

algorithms including chi square and information gain. The feature vector is loaded and the target 

is set as the CDR values for a specific ophthalmologist. Weka allows the feature ranking to be 

performed with the normal training set or to be cross-validated over the entire data set with a 

desired number of folds. For these results, the option for 10-fold cross-validation was used as this 

helps generalize the results better. 

 In Table XV below, the top 100 features by rank for each ophthalmologist obtained through 

the use of the chi square algorithm are listed. Only the top 100 features are listed as they are the 

most significant. Only the results for chi square are shown as information gain gave the exact 

same feature ranking. The name of each feature is broken into four parts: location in feature 

vector, feature, colour model, and number for multipart features.  For example, “200 histHSV10” 

means that it was the 200
th

 feature in the 200 length feature vector as shown in Fig 15 above, it 

was the histogram feature for the HSV image, and it was the 10
th

 bin of the histogram. 
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TABLE XV.  TOP 100 FEATURES USING CHI SQUARE FEATURE RANKING 

Rank Ophth1 Ophth2 Ophth3 Ophth4 Ophth5 Ophth6 

1 200 histHSV10 200 histHSV10 200 histHSV10 33 pcaG3 68 histR8 

18 

entropyRGB 

2 63 histR3 63 histR3 66 histR6 9 stdG 67 histR7 8 entropyG 

3 67 histR7 67 histR7 67 histR7 68 histR8 69 histR9 66 histR6 

4 66 histR6 66 histR6 63 histR3 67 histR7 65 histR5 67 histR7 

5 65 histR5 65 histR5 65 histR5 69 histR9 66 histR6 68 histR8 

6 68 histR8 68 histR8 68 histR8 66 histR6 70 histR10 65 histR5 

7 69 histR9 69 histR9 69 histR9 70 histR10 72 histG2 69 histR9 

8 70 histR10 70 histR10 70 histR10 73 histG3 71 histG1 70 histR10 

9 72 histG2 72 histG2 72 histG2 64 histR4 63 histR3 73 histG3 

10 73 histG3 73 histG3 64 histR4 72 histG2 73 histG3 71 histG1 

11 71 histG1 71 histG1 71 histG1 65 histR5 64 histR4 

200 

histHSV10 

12 64 histR4 64 histR4 62 histR2 71 histG1 54 pcaRGB4 72 histG2 

13 62 histR2 62 histR2 73 histG3 

200 

histHSV10 56 pcaRGB6 64 histR4 

14 54 pcaRGB4 61 histR1 61 histR1 63 histR3 62 histR2 90 histB10 

15 61 histR1 199 histHSV9 54 pcaRGB4 55 pcaRGB5 74 histG4 63 histR3 

16 53 pcaRGB3 54 pcaRGB4 53 pcaRGB3 75 histG5 57 pcaRGB7 75 histG5 

17 55 pcaRGB5 53 pcaRGB3 199 histHSV9 56 pcaRGB6 61 histR1 55 pcaRGB5 

18 56 pcaRGB6 52 pcaRGB2 52 pcaRGB2 57 pcaRGB7 55 pcaRGB5 56 pcaRGB6 

19 57 pcaRGB7 55 pcaRGB5 55 pcaRGB5 62 histR2 75 histG5 54 pcaRGB4 

20 60 pcaRGB10 56 pcaRGB6 56 pcaRGB6 58 pcaRGB8 58 pcaRGB8 14 stdB 

21 199 histHSV9 57 pcaRGB7 57 pcaRGB7 10 varG 59 pcaRGB9 57 pcaRGB7 

22 59 pcaRGB9 60 pcaRGB10 74 histG4 61 histR1 

200 

histHSV10 58 pcaRGB8 

23 75 histG5 59 pcaRGB9 60 pcaRGB10 59 pcaRGB9 60 pcaRGB10 62 histR2 

24 74 histG4 74 histG4 59 pcaRGB9 60 pcaRGB10 76 histG6 59 pcaRGB9 

25 58 pcaRGB8 58 pcaRGB8 58 pcaRGB8 54 pcaRGB4 80 histG10 74 histG4 

26 52 pcaRGB2 75 histG5 75 histG5 74 histG4 10 varG 61 histR1 

27 76 histG6 76 histG6 76 histG6 76 histG6 92 histRGB2 60 pcaRGB10 

28 92 histRGB2 92 histRGB2 92 histRGB2 77 histG7 91 histRGB1 76 histG6 

29 77 histG7 77 histG7 91 histRGB1 92 histRGB2 77 histG7 92 histRGB2 

30 91 histRGB1 91 histRGB1 90 histB10 91 histRGB1 94 histRGB4 78 histG8 

31 90 histB10 90 histB10 93 histRGB3 90 histB10 93 histRGB3 91 histRGB1 

32 93 histRGB3 93 histRGB3 77 histG7 93 histRGB3 95 histRGB5 15 varB 

33 94 histRGB4 94 histRGB4 87 histB7 52 pcaRGB2 79 histG9 94 histRGB4 

34 95 histRGB5 95 histRGB5 94 histRGB4 43 pcaB3 53 pcaRGB3 93 histRGB3 

35 98 histRGB8 98 histRGB8 78 histG8 94 histRGB4 78 histG8 95 histRGB5 

36 97 histRGB7 97 histRGB7 95 histRGB5 95 histRGB5 98 histRGB8 77 histG7 

37 96 histRGB6 96 histRGB6 98 histRGB8 98 histRGB8 90 histB10 98 histRGB8 

38 78 histG8 89 histB9 97 histRGB7 97 histRGB7 9 stdG 97 histRGB7 
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39 89 histB9 88 histB8 96 histRGB6 96 histRGB6 97 histRGB7 88 histB8 

40 88 histB8 87 histB7 89 histB9 89 histB9 89 histB9 96 histRGB6 

41 87 histB7 79 histG9 88 histB8 88 histB8 20 varRGB 89 histB9 

42 79 histG9 86 histB6 79 histG9 19 stdRGB 96 histRGB6 80 histG10 

43 81 histB1 78 histG8 81 histB1 87 histB7 52 pcaRGB2 87 histB7 

44 80 histG10 81 histB1 80 histG10 78 histG8 88 histB8 79 histG9 

45 82 histB2 80 histG10 86 histB6 79 histG9 81 histB1 52 pcaRGB2 

46 51 pcaRGB1 82 histB2 82 histB2 81 histB1 87 histB7 81 histB1 

47 86 histB6 85 histB5 85 histB5 80 histG10 82 histB2 53 pcaRGB3 

48 85 histB5 84 histB4 84 histB4 82 histB2 

18 

entropyRGB 82 histB2 

49 84 histB4 83 histB3 83 histB3 86 histB6 199 histHSV9 86 histB6 

50 83 histB3 51 pcaRGB1 51 pcaRGB1 53 pcaRGB3 83 histB3 85 histB5 

51 50 pcaB10 50 pcaB10 50 pcaB10 85 histB5 86 histB6 83 histB3 

52 16 meanRGB 49 pcaB9 49 pcaB9 84 histB4 85 histB5 84 histB4 

53 15 varB 24 pcaR4 24 pcaR4 83 histB3 84 histB4 51 pcaRGB1 

54 17 energyRGB 16 meanRGB 16 meanRGB 50 pcaB10 51 pcaRGB1 50 pcaB10 

55 49 pcaB9 15 varB 15 varB 20 varRGB 16 meanRGB 19 stdRGB 

56 14 stdB 14 stdB 14 stdB 

17 

energyRGB 17 energyRGB 17 energyRGB 

57 24 pcaR4 17 energyRGB 17 energyRGB 23 pcaR3 19 stdRGB 21 pcaR1 

58 

18 

entropyRGB 

18 

entropyRGB 

18 

entropyRGB 16 meanRGB 2 energyR 20 varRGB 

59 9 stdG 19 stdRGB 19 stdRGB 51 pcaRGB1 21 pcaR1 10 varG 

60 19 stdRGB 22 pcaR2 22 pcaR2 

18 

entropyRGB 22 pcaR2 22 pcaR2 

61 22 pcaR2 21 pcaR1 21 pcaR1 21 pcaR1 24 pcaR4 16 meanRGB 

62 21 pcaR1 20 varRGB 20 varRGB 15 varB 3 entropyR 24 pcaR4 

63 20 varRGB 13 entropyB 13 entropyB 22 pcaR2 50 pcaB10 13 entropyB 

64 13 entropyB 12 energyB 12 energyB 14 stdB 15 varB 23 pcaR3 

65 12 energyB 11 meanB 11 meanB 13 entropyB 14 stdB 25 pcaR5 

66 3 entropyR 3 entropyR 3 entropyR 3 entropyR 13 entropyB 12 energyB 

67 11 meanB 2 energyR 2 energyR 24 pcaR4 23 pcaR3 3 entropyR 

68 2 energyR 5 varR 5 varR 199 histHSV9 25 pcaR5 2 energyR 

69 5 varR 4 stdR 4 stdR 2 energyR 7 energyG 199 histHSV9 

70 4 stdR 6 meanG 6 meanG 5 varR 5 varR 5 varR 

71 6 meanG 10 varG 10 varG 4 stdR 12 energyB 4 stdR 

72 10 varG 9 stdG 9 stdG 12 energyB 4 stdR 27 pcaR7 

73 25 pcaR5 8 entropyG 8 entropyG 6 meanG 11 meanB 6 meanG 

74 23 pcaR3 7 energyG 7 energyG 25 pcaR5 6 meanG 11 meanB 

75 8 entropyG 23 pcaR3 23 pcaR3 11 meanB 8 entropyG 9 stdG 

76 7 energyG 25 pcaR5 25 pcaR5 8 entropyG 49 pcaB9 7 energyG 

77 26 pcaR6 48 pcaB8 48 pcaB8 7 energyG 26 pcaR6 26 pcaR6 
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78 48 pcaB8 26 pcaR6 26 pcaR6 26 pcaR6 27 pcaR7 49 pcaB9 

79 41 pcaB1 41 pcaB1 41 pcaB1 42 pcaB2 99 histRGB9 43 pcaB3 

80 40 pcaG10 40 pcaG10 40 pcaG10 45 pcaB5 

100 

histRGB10 42 pcaB2 

81 42 pcaB2 39 pcaG9 39 pcaG9 44 pcaB4 42 pcaB2 28 pcaR8 

82 39 pcaG9 42 pcaB2 42 pcaB2 27 pcaR7 43 pcaB3 45 pcaB5 

83 43 pcaB3 43 pcaB3 43 pcaB3 46 pcaB6 44 pcaB4 44 pcaB4 

84 44 pcaB4 44 pcaB4 44 pcaB4 41 pcaB1 28 pcaR8 46 pcaB6 

85 47 pcaB7 47 pcaB7 47 pcaB7 49 pcaB9 48 pcaB8 40 pcaG10 

86 46 pcaB6 46 pcaB6 46 pcaB6 40 pcaG10 45 pcaB5 48 pcaB8 

87 45 pcaB5 45 pcaB5 45 pcaB5 47 pcaB7 40 pcaG10 41 pcaB1 

88 38 pcaG8 38 pcaG8 38 pcaG8 48 pcaB8 41 pcaB1 47 pcaB7 

89 27 pcaR7 37 pcaG7 37 pcaG7 39 pcaG9 46 pcaB6 39 pcaG9 

90 37 pcaG7 36 pcaG6 36 pcaG6 28 pcaR8 47 pcaB7 29 pcaR9 

91 28 pcaR8 28 pcaR8 28 pcaR8 29 pcaR9 39 pcaG9 31 pcaG1 

92 36 pcaG6 27 pcaR7 27 pcaR7 

100 

histRGB10 29 pcaR9 30 pcaR10 

93 30 pcaR10 30 pcaR10 30 pcaR10 30 pcaR10 30 pcaR10 33 pcaG3 

94 29 pcaR9 29 pcaR9 29 pcaR9 38 pcaG8 31 pcaG1 32 pcaG2 

95 31 pcaG1 31 pcaG1 31 pcaG1 31 pcaG1 38 pcaG8 38 pcaG8 

96 35 pcaG5 35 pcaG5 35 pcaG5 32 pcaG2 37 pcaG7 34 pcaG4 

97 34 pcaG4 34 pcaG4 34 pcaG4 34 pcaG4 32 pcaG2 37 pcaG7 

98 32 pcaG2 33 pcaG3 33 pcaG3 37 pcaG7 36 pcaG6 36 pcaG6 

99 33 pcaG3 32 pcaG2 32 pcaG2 36 pcaG6 33 pcaG3 35 pcaG5 

100 99 histRGB9 99 histRGB9 99 histRGB9 35 pcaG5 34 pcaG4 99 histRGB9 

 Based on the results from the above table, it can be seen that the feature ranking is similar 

between the ophthalmologists. Ophthalmologists 4, 5, and 6 have the most variance in feature 

ranks, followed by ophthalmologist 3, and then by Ophthalmologists 1 and 2 which are the most 

similar. This may be why ophthalmologist 5 and sometimes ophthalmologist 6 had lower success 

rates than the others in Tables XI and XII above. Overall the structure is similar between all of the 

ophthalmologists. In order to make it easier to see ranks, a simplified version of the results is 

presented in Table XVI. The main difference is that multi-part features are grouped as one. 

Therefore, if 5 out of 10 red PCA features are close together, all 10 of the red PCA features are 

grouped as one around the rank that the group appears in. Some of the multipart HSV features 

appear alone so they are mentioned specifically. 
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TABLE XVI.  REDUCED FEATURE RANK LIST 

Rank Ophth1 Ophth2 Ophth3 Ophth4 Ophth5 Ophth6 

1 histHSV10 histHSV10 histHSV10 stdG histR entropyRGB 

2 histR histR histR histR histG entropyG 

3 histG pcaRGB pcaRGB histHSV10 pcaRGB histR 

4 pcaRGB histG histHSV9 histG histHSV10 histHSV10 

5 histHSV9 histHSV9 histG pcaRGB varG histG 

6 histRGB histRGB histRGB varG histRGB stdB 

7 histB histB histB histRGB stdG pcaRGB 

8 meanRGB meanRGB meanRGB histB varRGB varB 

9 varB varB varB stdRGB histB histRGB 

10 energyRGB stdB stdB varRGB entropyRGB histB 

11 stdB energyRGB energyRGB energyRGB histHSV9 stdRGB 

12 entropyRGB entropyRGB entropyRGB meanRGB meanRGB energyRGB 

13 stdG stdRGB stdRGB entropyRGB energyRGB varRGB 

14 stdRGB varRGB varRGB varB stdRGB varG 

15 pcaR entropyB entropyB stdB energyR meanRGB 

16 varRGB energyB energy entropyB entropyR entropyB 

17 entropyB meanB meanB entropyR varB pcaR 

18 energyB entropyR entropyR pcaR stdB energyB 

19 entropyR energyR energy histHSV9 entropyB entropyR 

20 meanB varR varR energyR pcaR energyR 

21 energyR stdR stdR varR energyG histHSV9 

22 varR meanG meanG stdR varR varR 

23 stdR varG varG energyB energyB stdR 

24 meanG stdG stdG meanG stdR meanG 

25 varG entropyG entropyG meanB meanB meanB 

26 entropyG energyG energy entropyG meanG stdG 

27 energyG pcaR pcaR energyG entropyG energyG 

28 pcaB pcaB pcaB pcaB pcaB pcaB 

29 pcaG pcaG pcaG pcaG pcaG pcaG 

 Table XVI shows that the red channel histogram is commonly the most important feature as it 

is always ranked in one of the top 3 spots for every ophthalmologist. The 10
th

 bin of the HSV 

histogram is also always in one of the top 4 spots, and in the top spot for three of the 

ophthalmologists. Some other consistently important features are the green channel histogram and 

the RGB PCA coefficients. Some of the lowest ranked features include the green and blue channel 

PCA coefficients, and the green channel energy, entropy, mean and variance, except with 

ophthalmologist 6 where the green channel entropy is one of the top ranked features. Based on the 
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table, ophthalmologist 4, 5, and 6 have the most differences compared to the others. Some 

examples are the standard deviation and variance of the green channel being ranked high for 

ophthalmologist 4 and the RGB and green channel entropy features ranked high for 

ophthalmologist 6. These same features are ranked low for all of the others. Note that most of the 

HSV features were not ranked in the top 100, but this is because the feature vector was already 

ordered with the 100 RGB features first and then the 100 HSV features. Upon ranking the feature 

vector when the RGB and HSV features were switched, the opposite was true and most of the 

RGB features were not ranked in the top 100. This is probably because the RGB and HSV 

features carry a lot of redundant and similar information.  

 Overall, the feature ranking across the ophthalmologists was similar with only a few clear 

differences throughout. As mentioned, the top 2 or 3 features are very different for some of the 

ophthalmologists. This list of features does not seem to be enough to truly distinguish between 

each of the ophthalmologists and determine why they sometimes assign very different CDR 

values to the same fundus image. Most of these features are not entirely visible. It is possible to 

say that some ophthalmologists might be able to see the overall entropy or intensity changes in an 

image clearer than others, but it would be helpful to test with more physically apparent features in 

the future such as lengths and areas of the cup and disc regions. As stated earlier, it was assumed 

that these were highly dependent on an ophthalmologist’s manual marking of the cup and disc 

regions. However, the physical features from an automatically segmented image could be used as 

absolute standard values and the ophthalmologist dependent values could be compared to them 

for the sake of feature ranking. 

 The feature ranking did show that different ophthalmologists had different overall rankings. It 

also showed that a mix of different features is useful since, as shown in Table XVI, they are 
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ranked in a mixed order. For example, the top features are not all from one colour channel or they 

are not all histogram features. To see if the feature ranking was effective, a BR NN classifier with 

10 hidden nodes was tested to see how the results would change. The results are shown in Table 

XVII. For the full-class and 2-class cases, testing was done with reduced versions of the combined 

feature vector which were rearranged according to the feature ranks shown in Table XV. For 

example, when testing with 100 features, the feature vector would be the top 100 features as 

shown in Table XV. For a number of features equal to 50, the feature vector is the top 50 features 

as shown and so on.  

TABLE XVII.  CLASSIFICATION USING REDUCED SETS OF FEATURES 

Number of 

Classes 

Full Classes 2 Classes 

Number of 

Features 

200 100 50 25 200 100 50 25 10 5 

Average 

Success Rate 

(Training 

Set) 

0.97 0.90 0.93 0.96 0.97 1.00 0.99 0.97 0.99 0.99 

Average 

Success Rate 

(Test Set) 

0.60 0.63 0.67 0.50 0.83 0.80 0.80 0.80 0.73 0.63 

Overall 

Average 

Success Rate 

0.86 0.82 0.85 0.82 0.93 0.94 0.93 0.92 0.91 0.88 
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 As can be seen, having a reduced set of ranked features in the full-class case, even up to 25% 

of the total amount of features, gives similar results. The test set success rate is actually higher for 

100 and 50 features. This could probably be attributed to noise that the extra features create and 

also an increased focus on the most important features. Around 25 features, or 12.5% of the total, 

the success rates start to decrease showing that too few features does not have enough 

information. In the 2-class case, the results are also similar. However, none of the reduced feature 

amounts manage to increase the test set classification success rate. Since 2-class classification is 

simpler and depends on fewer features, the success rate actually does not start to decrease until 

around 10 features, or 5% of the total number of features, remain. This shows that a fairly 

accurate decision can still be made with just a few features.     

 
 

5.3 Comparison With Similar Papers in the Literature 
 

 As mentioned in Chapter 2, only two papers were found that did something similar to what is 

presented here and they were written 4-8 years ago. Table XVIII below shows a comparison of 

some the 2-class classification results from this proposed technique with those papers. Note that 

the results obtained in this paper are based on predicting whether or not a fundus image contains a 

CDR above or below 0.50 while their results are based on classifying whether or not a fundus 

image is glaucomatous or not. As stated earlier, a CDR above 0.50, while having an increased 

chance of being glaucomatous, is not entirely indicative of the presence of glaucoma. Other 

factors such as intraocular pressure and optic nerve condition must also be considered.  Therefore, 

the results cannot be directly compared but they are presented since similar methodologies are 

followed and since the CDR is still a major factor in determining the presence of glaucoma from 

fundus images. Unfortunately, the data set used in this paper did not come with the images 
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labelled as glaucomatous or not. Otherwise, classification could have been performed based on 

that and a more direct comparison could be provided. Note that histograms are compared side by 

side between [1] and the proposed technique given here. However, in [1] PCA is used on the 

image histograms while in this paper, histogram bin values are used directly. Also, the combined 

feature vector is different between each paper and the proposed technique. In [1], the feature 

vector is comprised of pixel intensities, texture features, FFT coefficients, and histograms and in 

[2] it is comprised of texture and higher order spectra features. The combined feature vector for 

the proposed technique is described as in Fig 15 above. 

TABLE XVIII.  COMPARISON WITH SIMILAR PAPERS 

 Success Rate (%) 

Method Paper [1] Paper [2] Proposed 

Technique 

PCA on Intensities 81.0 - 92.0 

Histogram 61.0 - 92.0 

Combined Feature 

Vector 

80.0 91.7 85.0 

  As shown, the proposed technique performs better in most cases where the same or similar 

features were used between papers, except for the combined feature vector comparison. Although 

higher success rates were achieved with 2-class classification for some of the individual features 

tested, the combined feature vector did not perform as well. While the 2-class classification 

results are similar, the main advantage of this research over [1] and [2] was to attempt multi-class 
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classification with more than two classes. In future work, it would be useful to try some texture 

and higher order spectra features, mainly for the CDR prediction part of the project. 
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CHAPTER 6 – CONCLUSION 

6.1 Accomplishments 
 

   There were two main goals to accomplish during this project. The first was to see how 

accurately predictions could be made for a given ophthalmologist’s assigned CDR value to a 

fundus image. The second was to determine the contributions of different features to a given 

ophthalmologist and how these features contributed differently between ophthalmologists. This 

was to get an idea about why different ophthalmologists sometimes assigned very different CDR 

values to the exact same fundus image. Overall, the results were satisfactory. Prediction success 

rates in the 70-75% range were achieved for a full number of CDR classes and the 85-92% range 

for 2-class classification. While better results were expected for the full amount of classes, the 

methodology laid out here is a good start and there are many more ideas to try in the future. The 

method used to compare the feature ranking between different ophthalmologists also worked as 

intended. However, more apparent features need to be tested. Finally, this project has opened the 

way to interesting biological and psychological understanding of the ophthalmologists and CDRs 

on top of the normal machine learning and image processing perspective as will be discussed in 

the next section. 

 

6.2 Future Work 
 

 For future work on this project, there are many ideas to try. The first is simply to try more 

image features. In this project, most of the common and simple pixel intensity features were 

tested. However, as shown earlier, there are many advanced feature extraction methods, both 
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related to optic fundus images and to images in general. Some that might be useful to try are the 

motion patterns from [3], superpixels which is shown to be a very popular approach for 

segmentation in [4] and used in several research papers, and quaternion features described in [18]. 

There is a large amount of image features that can be tested. The challenge would be determining 

which would be most relevant to this problem. 

 As stated as a project challenge in Chapter 1, only a fairly small data set of 100 images for 

each ophthalmologist was used. In the future, it would be great to test with a much larger data set. 

This would help train a much more general classifier and gain more feature information for each 

class. Some classes during this project had only one or two images to represent them so a larger 

data set would result in better representation for each class. There would also be more image 

variation in a larger data set so any image anomalies and quality variation would be better 

addressed and result in classifiers that are better for a wide variety of real world data. Recent 

research papers also need to be examined to see methods of improving multi-class classification 

where the number of classes is fairly high. 

 The next idea is to do more pre-processing on the fundus images. As stated in the assumptions 

shown in Chapter 1, the aim was to not perform too many steps that would lead into segmentation 

or to perform segmentation itself. However, it would be interesting to see how more physical 

features such as disc/cup length, width, area and distance would be ranked by each 

ophthalmologist. These features could only be obtained through segmentation or object 

recognition of the cup and disc regions. Another pre-processing step that might improve the 

results is artery removal. As shown in [1] and [19], there are various methods for removing the 

blood vessels from the fundus image and doing this helps to improve the segmentation results. It 
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would also help in this project since the vessels often cause too much variance in the image pixel 

intensities.  

 The final idea for future testing is to have actual features related to both the patient and 

ophthalmologist in question. For example, the patient’s age, gender, country of residence, and 

ethnicity might have an effect on their CDR. Furthermore, when the ophthalmologist has this 

information, the CDR value they assign to the patient’s fundus image may be affected. A recent 

study has done something similar to this. In [20], a study is done to see how various features such 

as age, gender, and even physiological features such as blood pressure, smoking status, alcohol 

intake, height, and weight affect the CDRs of a population of people. They found that higher age, 

males, and high blood pressure are more correlated to higher CDRs. Therefore, features such as 

these would be helpful to take into account. Finally, some personal features about the 

ophthalmologist such as their age, gender, years of work experience, ethnicity, country of 

residence, and even personality type might also have an effect on how they determine the CDR 

they assign to a particular fundus image. It would be very interesting to test and rank these 

features to see what effect, if any, they have on the assigned CDR. Currently, this project has only 

taken into account the fundus images, which approaches the problem from a machine learning, 

image processing, and possibly biological perspective. Using these additional features would give 

a valuable psychological and social perspective on the determination of CDRs, which should be 

helpful since the variance in CDRs is due to the ophthalmologists themselves.  
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