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Abstract

Device-to-device (D2D) communication is developed as a new paradigm to enhance net-

work performance according to LTE and WiMAX advanced standards. On the other hand,

cognitive radio (CR) approach provides efficient spectral usage using intelligent wireless

nodes. In this thesis, a number of optimal resource allocation strategies for D2D communi-

cation networks are investigated using the CR approach.

As a first step, the CR approach in radio access networks is introduced. In the second

step, the taxonomy of the RA process in CRNs is provided. For radio resource allocation

(RRA), the most crucial task is to associate a user with a particular serving base station, to

assign the channel and to allocate the power efficiently. In this thesis, a subcarrier assignment

scheme and a power allocation algorithm using geometric water-filling (GWF) is presented

for orthogonal frequency division multiplexing (OFDM) based CRNs. This algorithm is

proved to maximize the sum rate of secondary users by allocating power more efficiently.

Then, the RA problem is studied to jointly employ CR technology and D2D communication
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in cellular networks in terms of spectral efficiency (SE) and energy efficiency (EE). In the

first case, in terms of SE, a two-stage approach is considered to allocate the radio resource

efficiently where a new adaptive subcarrier allocation (ASA) scheme is designed first and

then a novel power allocation (PA) scheme is developed utilizing proven GWF approach

that can compute exact solution with less computation. In the second case, in terms of EE,

the power allocation problem of cellular networks that co-exist with D2D communication

considering both underlay and overlay CR approaches are investigated. A proven power

allocation algorithm based on GWF approach is utilized to solve the EE maximization

problem which results in an “exact”and “low complexity”solution.
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CHAPTER 1. INTRODUCTION

The use of cognition in radio access and networking is expected to enable number of signif-

icant enhancements in wireless communications. In addition to better spectrum utilization,

other areas such as autonomous network configuration, interference reduction, energy ef-

ficiency, interoperability and coexistence among different wireless communications systems

and devices can also benefit from a cognitive approach. The cognitive and adaptive capabil-

ities of radio access will be of fundamental importance in fifth generation (5G) and beyond

networking contexts especially with heterogeneous networking and massive multiple input,

multiple output (MIMO) scenarios. Cognitive networking will enable future networks to

become more adaptive, self- configuring, self-organizing, self-healing, and self recovering. It

will enable networks to cope with environmental changes, network dynamics, and malicious

attacks, etc [1].

1.1 Cognitive Radio System

Ever increasing demand for myriad of wireless services poses two major challenges in the

wireless network paradigm. One is the spectrum scarcity and the other is the demand of

high data rates, up to tens of Gbps. While there is continuous effort to allocate more

spectrum for wireless usage, it is observed that currently licensed spectrum is significantly

underutilized [2, 3] due to sporadic transmission nature of most communication devices.

Cognitive radio (CR) concept was first coined by Joseph Mitola [4], who proposed it

as a solution for efficiently utilizing the radio resources. Since a CR transceiver shall have

the ability to tune to different frequency bands, the CR is typically built using software-

defined radio technology. Therefore, the transmitter operating parameters, such as the

carrier frequency, modulation type and transmission power can be dynamically adjusted by

software [1, 5]. CRs, with its ability to smartly interact with the surrounding environment,

are amenable to allow the coexistence licensed users or primary users (PUs) and unlicensed

users or secondary users (SUs) sharing the same bandwidth opportunistically without causing
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CHAPTER 1. INTRODUCTION

harmful interference to each other.

In fact, the coexistence of PUs and SUs in a CR environment are generally categorized

into three paradigms:

Underlay: The SU determines the interference caused by their transmission to the PU

and transmits only if interference below (under) a given threshold. The interference

constraint may be met by using wideband techniques such as spread spectrum or ultra

wide band (UWB) or by directional radiation.

Interweave: Interweave systems completely avoid interference by not transmitting in a

band that is occupied by the PU.

Overlay: In overlay systems, simultaneous transmission is allowed. Here, the cognitive user

has the knowledge of PUs message and/or encoding strategy. Simultaneous communi-

cation is achieved via various encoding and interference mitigation schemes.

CRNs have distinctive characteristics from a traditional wireless network where it intel-

ligently recognizes the status of the radio environment and adjusts its functional parameters

accordingly [5,6]. Most critical part of CRN is allowing CR users to share the licensed spec-

trum with PUs without degrading their performance [7]. This imposes new challenges and

open research issues.

The basic elements for the operation of CR systems are depicted in Fig. 1.1 and the

main functions of those elements to support intelligent and efficient utilization of frequency

spectrum are envisioned in Fig. 1.2.

From Figures. 1.1 and 1.2, it can be seen that the proper functionality of a CRN depends

on optimally sensing, accessing and sharing operations of the spectrum. Capacity of CR de-

pends on what white spaces are available and how accurately they are detected. In addition

to fading and shadowing, random interference can also cause false detection. Furthermore,

SU transmitter and receiver must coordinate to find common holes for successful transmis-

sion. Therefore, the cognitive network throughput is usually difficult to guarantee. Ergodic

3
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Figure 1.1: Basic elements of cognitive radio operation.
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Figure 1.2: Cognitive radio functionalities.

and outage capacity of a CR system depends on the percentage of successfully detected white

space which depends on the PU traffic characteristics.

Usually, the SU shall keep sensing the spectrum even when they transmit. However,

implementation of this in a satisfactory manner is not easy as most transceivers are not

full duplex. This can cause unintended interference to PU. Hence, licensed users don’t like

interweave SUs even more than underlay SUs.
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Due to the multi-channel nature of CRN, the multi-dimensional nature of the resource

allocation (RA) optimization problems become very difficult to solve. In addition to finding

the optimal subcarrier set and power allocation for each SU, another challenge would be

to avoid the co-channel interference when multiple SUs decide to use the same frequency

band. Hence, a better medium access control (MAC) layer shall also cater the co-channel

interference among the SUs.

Regulation and standardization efforts have already been carried out to envision some

of the applications of CRN. A very important example is IEEE 802.22 Wireless Regional

Area Network (WRAN) standard [8]. It provides specifications for broadband wireless ac-

cess using CR technology and spectrum sharing policies and procedures for operation in the

white space TV bands. IEEE 802.11af standard and its amendments [9] enable geo-location

database access in the white space radio frequency (RF) spectrum. IEEE 1900.x series of

standards [10] provide next generation radio and advanced spectrum management. IEEE

802.19 standard [11] enables the family of IEEE 802 wireless standards to most effectively

use TV white space by providing standard coexistence methods among dissimilar or indepen-

dently operated IEEE 802 networks and devices. It is also useful for non IEEE 802 networks

and TV band devises. The first set of standardization study towards licensed shared access

for long term evaluation (LTE) is reported in [12] that were successfully tested in a live LTE

network in the 2.4-2.5 MHz frequency band [13]. In most recent times, IEEE has engaged

the 802.15.4m task group [14] to characterize cognitive radio-aware PHY and MAC layers

for cognitive machine-to-machine networks. These examples show standardization process

for CR is well underway.

Latest developments in spectrum allocation policy and regulatory domains, including the

release of the National Broadband plan, the publication of final rules for TV-white spaces,

and the ongoing proceeding for secondary use of the 2,3602,400 MHz band for medical body

area networks, have opened up various opportunities for the secondary use of spectrum. CR

is therefore addressed to enable and support a variety of emerging applications, ranging from

5
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smart grid, public safety and broadband cellular, medical applications to WSNs. The wide

range of CR applications have various design requirements. For instance, from the data rate

point of view, a temperature sensor may have a very low data rate whereas cellular handset

may have a very high data rate. The IEEE 802.15.4 standard supports different data rates

varying from 20 Kbps (868MHz band) to 250Kbps (2.4 GHz band).

1.2 Device-to-device (D2D) Communication

D2D communication is one of such paradigms that appears to be a promising component

in next generation cellular technologies. D2D communication in cellular networks is defined

as direct communication between two mobile users without traversing the base station (BS)

or core network. In a traditional cellular network, all communications must go through

the BS even if both communicating parties are in range for D2D communication. This

architecture suits the conventional low data rate mobile services such as voice call and

text message in which users are not usually close enough to have direct communication.

However, mobile users in todays cellular networks use high data rate services (e.g., video

sharing, gaming, proximity aware social networking) in which they could potentially be in

range for direct communications (i.e., D2D). Hence, D2D communications in such scenarios

can highly increase the spectral efficiency of the network. Nevertheless, the advantages

of D2D communications are not only limited to enhanced spectral efficiency. In addition

to improving spectral efficiency, D2D communications can potentially improve throughput,

energy efficiency, delay, and fairness [15].

D2D communication is generally non-transparent to the cellular network and it can occur

on the cellular spectrum (i.e., inband) or unlicensed spectrum (i.e., outband). In inband D2D

communication, D2D users can setup communication through underlay or overlay spectrum

sharing method. In underlay D2D communication, D2D users use the same spectrum of

cellular users whereas in overlay, D2D users use a dedicated portion of cellular spectrum

6
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[15]. The most crucial part of underlay inband method is to reduce the interference be-

tween cellular and D2D users as they share the same radio resources [16]. In the overlay

inband method, D2D users occupy the dedicated portion of spectrum of cellular users, which

is not an efficient approach in terms of spectrum efficiency. Other researchers propose to

adopt outband rather than inband D2D communications in cellular networks so that the

precious cellular spectrum be not affected by D2D communications [15]. In outband com-

munications, the coordination between radio interfaces is either controlled by the BS (i.e,

controlled) or the users themselves (i.e., autonomous). Outband D2D communication faces

a few challenges in coordinating the communication over two different bands because usu-

ally D2D communication happens on a second radio interface (e.g., WiFi Direct [17] and

Bluetooth [18]).

1.3 Motivations

Enhancing spectrum efficiency and energy efficiency are the most significant tasks for the

regulatory authorities worldwide. Different measurement studies of spectrum utilization

from the literature have indicated that spectrum is sporadically used in many geographical

areas and times [2]. Low utilization and increased demand for the radio resources suggest

the notion of the second time utilization of the spectrum, which allows unused parts of the

spectrum to become temporarily available for the commercial purposes. This promising idea

can mitigate unsatisfied spectrum demand, potentially without major changes to incumbents.

It also provides us the ability to consider basic obstacles to the SUs, including why PUs would

allow SUs and, equally important, under what circumstances SUs might emerge. The reality

of identifying the pre-conditions for the SUs is a crucial step towards higher level of efficient

spectrum utilization.

CR approach is well known to solve the under-utilization issue of the radio spectrum.

However, CR technology only improves spectrum efficiency from the perspective of time

7
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and channel, neglecting the potential optimization from the space perspective [19]. On the

other hand, D2D technology [20,21] has been proposed as an effective solution for efficiently

utilizing the scarce radio resources from the space perspective. Both CR technology, and

D2D communication must not cause harmful interference to cellular networks.

Now, the question arises, can D2D communication be better optimized using the cognitive

radio approach? Can D2D users be modeled as secondary cognitive users and opportunisti-

cally access the under-utilized radio spectrum to increase the spectral efficiency? Can D2D

systems be modeled considering both underlay and overly CR approaches to maximize the

energy efficiency? These are the focus of this thesis. Note that, there are key differences

between CR and original D2D systems. Mainly, the D2D communication is mostly managed

by the network (that provides the spectrum) while a CR system is managed by the CR

terminals distributively by spectrum sensing and interference-aware decisions [22], [23].

Driven by the aforementioned motivations, the major objective of this research is to inves-

tigate RA schemes for CRNs and how D2D communication can coexist with CR technology

in order to optimize both the spectral efficiency and the energy efficiency (EE) with a more

practical insight.

1.4 Contributions

# Taxonomy for the Resource Allocation in CRNs:

• The RA problems are categorized and discussed according to the adopted approaches

and network architecture.

• Basic elements or objectives of the RA problem are well studied to provide the RA

design structure.

• The optimization strategies for the RA are explored and reviewed in the context of

CRNs. Then, a comprehensive overview of these categories and optimization strategies

8
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is provided, and also highlighted the advantages, disadvantages, and the application

areas associated with each optimization strategy.

# Resource Allocation in OFDM-based Cognitive Radio Systems:

• Power allocation problem in OFDM-based CRNs is modeled considering both indi-

vidual subcarrier peak power constraints and subchannel (group of subcarriers) power

constraints with total power constraint.

• A more efficient algorithm, named as iterative partitioned weighted geometric water-

filling with individual peak power constraints (IGPP) is proposed along with subcarrier

assignment.

• The proposed algorithm is shown to maximize the sum rate by providing better utiliza-

tion of power resources than the existing algorithms. Power allocation is also performed

considering the weight factor of each channel.

# Resource Allocation for Cognitive Radio Systems with D2D Communica-

tion:

• An OFDM based cognitive cellular network with D2D communication has been mod-

eled and analyzed using Lagrange formulation, and then solved using geometric water-

filling (GWF) method. In order to maximize the transmission rate of the D2D users,

the optimization task is characterized by the following five features: a) total power con-

straint, b) peak power constraint on each subcarrier, c) maximum power constraint of

each D2D user, d) interference constraint to the PU band and e) minimum transmission

rate requirements for the D2D users.

• A two-stage approach is considered to allocate the radio resource efficiently. In the

first stage, a new adaptive subcarrier allocation (ASA) scheme is designed based on

three parameters that form a well-designed metric. These parameters are exploited as

9
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the weighting factors to make trade-off among the amount of power, interference and

transmission rate. Then, a novel power allocation scheme is developed utilizing proven

GWF approach that outperforms other existing algorithms in the literature.

# Energy Efficient Power Allocation in Underlay and Overlay Cognitive

Device-to-Device Communications:

• For a cognitive D2D system, two approaches (underlay and overlay) are considered to

manage the spectrum sharing among the PUs and SUs in complementary scenarios.

• The power allocation problem for such a scenario is formulated as the maximization of

the D2D users EE subject to the minimum rate requirement for both the D2D users

and the cellular users (PUs).

• A proven power allocation algorithm based on GWF approach has been utilized to

solve the EE optimization problem that outperforms the other existing algorithms.

1.5 Thesis Organization

The remainder of the thesis is organized as follows:

Chapter 2: Taxonomy for the Resource Allocation in CRNs. Presents the RA

problems those are categorized first according to the adopted approaches and network ar-

chitecture. Then, the optimization strategies for the RA are explored and reviewed in the

context of CRNs. Finally, a comprehensive overview of these categories and optimization

strategies is provided, and also highlighted the advantages, disadvantages, and the applica-

tion areas associated with each optimization strategy.

Chapter 3: Resource Allocation in OFDM-based Cognitive Radio Systems. Pro-

vides the system model for OFDM-based CRNs and construct the power allocation problem

considering three constraints. Describes the methods for the solution of power allocation

10
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problem utilizing the GWF scheme along with the subcarrier allocation. Also provides com-

parison of the proposed algorithm results with the related works.

Chapter 4: Resource Allocation for Cognitive Radio Systems with D2D Com-

munication. Provides the system model to jointly employ CR technology and D2D com-

munication in cellular networks and construct the RA problem considering five constraints.

Describes a two-stage approach where a new ASA scheme is designed first and then, a novel

PA scheme is developed utilizing GWF approach. Present simulation results that validate

the proposed solutions than the existing schemes.

Chapter 5: Energy Efficient Power Allocation in Underlay and Overlay Cog-

nitive Device-to-Device Communications. Investigates the energy-efficient power allo-

cation problem of co-existing D2D and cellular users considering both underlay and overlay

CR approaches. In both the (underlay and overlay) spectrum sharing schemes, the opti-

mization problem is formulated as the EE maximization of the D2D users subject to the

minimum rate requirement for both the D2D users and the cellular users. A proven power

allocation algorithm based on the GWF approach is utilized to solve this EE optimization

problem. Contrast to the widely used Dinkelbach method for EE maximization, this algo-

rithm can directly compute the optimal solution by applying the geometry-based approach,

with exactness and low-degree polynomial complexity. Simulation results reveal the benefits

of the proposed algorithm.

Chapter 6: Conclusion and FutureWork. Includes a summary of the research work,

its outcomes, possible directions and timeplan for future research work.
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CHAPTER 2. RESOURCE ALLOCATION PROBLEMS AND MATHEMATICAL
PRELIMINARIES

In this chapter, a taxonomy for the resource allocation (RA) process in CRNs is provided.

In particular, the RA problem is categorized first according to the adopted approach which

could be centralized, or distributed. Second, based on the network architecture, the RA

problem is also classified as infrastructure based or ad-hoc. Third, according to the problem

objective, the basic elements of RA in CRNs may include: throughput (sum-rate), power,

delay, QoS, fairness etc. Finally, the algorithms are also classified according to the strategy

used for solving the problem which can be an optimization technique, heuristic, game theory,

graph theory etc. Fig. 2.1 provides the adopted taxonomy in detail.

Resource Allocation Texonomy

Approaches Architectures Elements Strategies

Centralized

Distributed

Infra-structure Based

Ad-hoc

Power

Relay Selection

User Scheduling

Routing 

Delay

QoS

Fairness

Subcarrier Allocation

Heuristic

Optimization

Graph Theory

Game Theory

Genetic Algorithm

PSI Algorithm

GWF Method

Throughput

Figure 2.1: Taxonomy for the resource allocation in CRNs

2.1 Resource Allocation Approaches

In the literature, two key approaches are utilized to solve the RA problem: centralized and

distributed. Each of these approaches has its merits and demerits. So that, depending on

the problem requirement and priorities one of them could be adopted.

1) Centralized : The centralized approach mainly based on the existence of a central
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entity that handles the RA process. This entity could be a base station (BS), eNodeB, or

separate node for control purposes (server). In the centralized RA or scheduling algorithms,

the central node gathers the measurements and information from the whole network, trans-

mits control information to different users and nodes to coordinate their access, and takes

the final decision. This approach has been widely investigated in literature (e.g., [24–30]).

It was shown that the centralized schemes have several advantages. Due to the global view

of the whole network, this approach is able to obtain the optimal solution of a desired per-

formance metric (e.g., maximize the network sum rate, spectrum efficiency, etc.). Also, it

can optimally minimize the network interference and attain an overall better network per-

formance. Moreover, it can easily achieve optimal fairness since all the network information

is available at one node. This can be done by regulating greedy nodes that devour large

portion of the resources on the cost of other weak nodes. Moreover, centralized controllers

can control priorities more efficiently. In contrast, there are some disadvantages that limit

the practicality of the centralized approach. In particular, centralized schemes create large

signaling overhead which results in a wasteful utilization of the resources (e.g., bandwidth,

power, etc.). Also, due to the adopted nature which directs to make the RA process of the

whole network based strongly on a single entity (central node), the failure of this central

node can cause severe effects on the network performance. In a failure case, which may

arise from power failure or crashes, each node in the network will independently make the

RA decision. Consequently, the network performance could be significantly deteriorated.

Furthermore, contention and unfairness situation could be attained.

2) Distributed : In the distributed approach, there is no central entity that manages

the scheduling process. Instead, each node (or user) takes its decision autonomously or via a

limited cooperation by exchanging neighboring information. In particular, each node carries

out some measurements and calculations that are enough to reach the decision or should

be shared among its neighbors to take the decision. Several distributed approaches have

been taken into account in many researches (e.g., [31–34]). Flexibility is a major advantage
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of this approach over the centralized one. Distributed schemes quickly adapt to wireless

environment variations. This is due to the fact that only the nodes in the area of the

variation are affected and require to amend their calculations. Therefore, there is no need to

replicate the overall RA process, but only the affected part. This definitely involves the fast

recovery feature which is crucial, for example, in emergency situations. This contradicts the

centralized case, where any change affects the whole process and delays the decisions. Thus,

distributed approaches present more robust communications. Another advantage is that

distributed approaches decrease the amount of overhead and delay of switching information

as a result of being only limited to a small neighboring area. In comparison, distributed

approaches cannot acquire the optimal solution for the desired performance metric due to

the lack of information at each node. Moreover, only local fairness between neighboring

nodes can be attained. Finally, distributed approaches are more appropriate for light load

networks but for high load networks a centralized approach can achieve better performance.

2.2 Architecture

1) Infrastructure Based : This model incorporates the existence of a base station and

multiple users connected to it. The network can be driven either in downlink or uplink

modes, and offers one-hop communications. Generally, centralized techniques are utilized

for this model to employ the central entity. The users observations and measurements are fed

back to the central point to take the decisions. Then, the users configure their parameters

according to the central decision. This model is useful in case of setting up a permanent

network. In CRNs, using proper RA strategies the base station can significantly help in

protecting the primary network from secondary transmissions. Cognitive radio cellular net-

works (CRCN) [35,36], and IEEE 802.22 wireless regional area network (WRAN) [37,38] are

examples of such networks. Although most of the strategies in literature for this model are

centralized, distributed schemes can also be supported [39].
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2) Ad-Hoc: In the ad-hoc model, also called infrastructureless model, the communica-

tion is performed directly between the CR nodes without the support of a central controller

or a base station. Unlike infrastructure based model where the nodes communicate with

the base station via single hop, the communication between the nodes of an ad-hoc network

could be single-hop or multi-hop communications. In a multi-hop network, routing is an

essential function to find the best route for data transmission. Indeed, the use of distributed

techniques is more appropriate for this network model as the ad-hoc networks are distributed

by nature [40, 41]. This includes extra challenges on the communicating nodes of the ad-

hoc networks compared to those of infrastructure based since the nodes have to coordinate

their access themselves. As a result, the operational load increases on the CR nodes whose

resources, such as power, are limited which enforces a critical demand for computationally

efficient methods.

Ad-hoc networks have several advantages. For instance, ad-hoc networks are easier to

set up because the nodes are connected directly without an access point. Besides the ease

of deployment, ad-hoc networks decreased dependence on infrastructure allows for fast inte-

gration with already existing infrastructure networks. This makes wireless ad-hoc networks

applicable and useful in many situations such as crisis response, military environments and

sensor networks [40]. In CRNs, ad-hoc networks were broadly adopted (e.g., [41, 42]). Dy-

namic network topology, distributed multi-hop architecture, and time and location varying

spectrum availability are some prime factors of CR ad-hoc networks (CRAHNs) [41]. The

specific functions associated with CRAHNs were discussed in [43]. The authors described

that these functions are highly dependent on cooperation among the users due to the lack

of a central coordinator. Therefore, RA is done based on local observations of each user and

by exchanging information with the neighboring nodes.
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2.3 Resource Allocation and Design Objectives

Fig. 2.2 shows the generic RA problem in CRNs. A generic RA design structure consists of

four portions: (1) inputs; (2) outputs; (3) objectives; and (4) constraints. Different input

parameters are provided by network administrator or regulatory authorities. In CRNs,

central controller generally knows about the SUs and relays in the network. In case of

primary and secondary network cooperation, it is possible that CRNs central controller

has the information about the number of PUs and their respective geographical locations.

Interference threshold is set by the regulatory authorities. Value of interference threshold

depends on the spectrum sharing regime. Knowledge of channel state information (CSI) is a

significant input parameter. Most of the RA algorithms assume that CSI is known at both

transmitter and receiver. Under different constraints, the RA schemes are analyzed and

evaluated where performance is measured in different metrics in order to produce desired

outputs.

There are several elements or objectives that could be targeted by the RA problem. These

elements may be incorporated as the optimization principle objective or as a constraint that

should hold.

1) Throughput : Maximizing the network throughput is a very familiar criterion that

is generally targeted in the RA problem. The problem could consider the individual user

throughput maximization or the sum-rate of the aggregate network. Also, some efforts

consider maximizing the sum-rate of both primary and secondary networks as a whole.

2) Power allocation : Power allocation for CRNs is a crucial task for better interference

management. In case of CRNs, the efficient power allocation is more challenging than non-

cognitive wireless network. Traditional power allocation schemes for non-cognitive networks

are not applicable to CRNs as these schemes may cause unacceptable interference to the

primary network. In CRNs, power allocation is performed under the constraint of acceptable

interference to the PUs.

3) Relay assignment/selection : The use of relays in a CRN can benefit in two ways.
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Input Metrics

(any combination)

Number of SUs, 

Number of PUs, 

Number of transceivers, 

Channel sensing procedure,

Protocol type,  

CC mechanism, 

Queueing model, 

Channel access technique, 

Channel state information, 

Channel allocation scheme, 

Network environment, 

Customized network related 

parameters.

Output Metrics

(any combination) 

Aggregate throughput,

Optimal number 

of sensed channels,

Channel access delay, 

Packet transmission delay, 

Blocking probability, 

Continuty probability,

Interference time, 

Number of interfered 

incumbent systems,

Successful packet

transmission ratio,

Collisions per slot, 

Collision probability with 

PUs, Forced termination

Probability.

Constraint (any combination)

Interference with PUs, 

Adjacent channel interference const, 

Channel selection/assignment,

Sensing errors, QoS, Delay, 

Bandwidth, Fairness, Topology, 

Traffic characteristic, Security.

Objective (any combination)

Maximize

Spectrum utilization, 

Channel grabbing, 

Bandwidth utilization,

Link maintenance,

Incumbent protection, 

Traffic admission 

probability, 

Acceptable sensing

error probability

Packet delivery ratio, 

Energy efficiency, 

Network connectivity.

Minimize

Queueing delay, Packet 

transmission delay, 

Access delay, System 

time for buffering, 

Join time of SUs, 

Collision rate,  

Sensing overheads, 

Communication 

overheads, Blocking 

probability, False 

alarm and miss 

detection probability, 

Probability of collision 

with PUs.

Figure 2.2: Generic resource allocation problem
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First it can increase the transmission rate and, secondly the use of relays can reduce the

overall transmission power of the systems. The use of multiple relays simultaneously can

further increase the performance of a cognitive radio network. A well designed multiple

relay assignment and power allocation scheme can be helpful in two ways. It reduces the

interference induced to the primary users in multiuser CRNs and increases the connectivity

of the wireless network. In a multiple relay system, if any relay is dead or in deep fade the

receiver can still get data from other relays.

4) User scheduling : In multiuser CRNs, due to resource limitations and interference

constraints, user scheduling in intelligent way can achieve high throughput. User scheduling

schemes select the best group of users at each time slot to maximize the total throughput.

The complexity of an exhaustive search for user scheduling increases exponentially with

the number of users. For example, if u is the total number of users, then the number of

possible ways of scheduling/selecting u users is
(
u
u

)
. Enumerating all possible combinations

to find the one that gives the best performance is computationally inefficient. Due to the

high computational complexity of the optimal selection (e.g., exhaustive search algorithm),

efficient user scheduling in CRNs is an active area research.

5) Routing : Most of the research on CRNs to date has focused on one or two-hop

scenarios. With the advancement on ad hoc networks, recently, researchers have started to

realize the importance and potential of multi-hop CRNs. To get the benefits of multi-hop

transmission, new challenges must be addressed and solved. In particular, efficient routing

techniques and solutions must be integrated into the ad hoc CRNs.

6) QoS : QoS is a general term used for many user satisfaction related requirements. It

comprises response time, throughput loss, rate requirements, outage and blocking probabil-

ities. The main aim of QoS in CRNs is to guarantee a minimum rate, reduction in latency

jitter and packet errors.

7) Delay : Delay is an important metric in any wireless network especially for real-

time applications such as voice and multimedia. Delay performance in CRNs has important
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engineering implications, e.g., it can be used to characterize the number of SUs that can be

supported under a given delay constraint. Queuing delay and transmission delay need to be

analyzed in order to characterize the delay performance, which is still an unexplored area of

research.

8) Subcarrier allocation : Subcarrier allocation and pairing play a significant role in

future CRNs that employs orthogonal frequency division multiplexing (OFDM) in physical

layer. One can increase the throughput of CRNs with the intelligent utilization of subcarriers.

2.4 Solution Approaches and Techniques

In this section, we explore and review the optimization strategies for RA in the context of

CRNs. Depending upon the objectives, these strategies can be categorised under several

performance optimization criteria. In the following, we provide a comprehensive overview

of these categories and optimization strategies, and highlight the advantages, disadvantages,

and the application areas associated to each of them.

2.4.1 Heuristic

In some cases it is tremendously tough, or even not possible, to get the optimal solution of

certain problems. Hence, one may impose non-realistic assumptions to simplify the prob-

lem structure, and then find the optimal solution for the simplified structure. However, it

is rather better to look for a reasonable (non-optimal) solution for the real problem struc-

ture than searching the optimal solution for inaccurate oversimplified structure. Heuristic

strategies give logical solutions, that are not guaranteed to be the optimal, with acceptable

time and space complexity [44]. Additionally, heuristic strategies are less restrictive than

optimization methods, and thus they allow the usage of structures that are more presentable

to the real world problems [45]. For CRNs, optimal solutions for RA problems are typi-

cally of high complexity. Hence, heuristic strategies are appropriate to find a fine solution
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quickly. Usually, there is no methodical structure for developing heuristic strategies. Thus,

researchers build up their own methods according to the problems found in the literature [44].

Several efforts (e.g. [46–49]) proposed heuristic strategies for the RA problem in CRNs.

The authors in [46] proposed two heuristic distributed RA algorithms based on opportunistic

splitting. A heuristic packet transmission scheduling technique was developed in [47] that

depends on measured link and interference conditions at CR nodes. In [48], a low complexity

huristic algorithm is proposed that efficiently solves the problem of spectrum sharing and

downlink user scheduling. A two-step heuristic algorithm for sub-channel allocation and

power distribution was developed in [49]. This algorithm extensively decreases the problem

complexity while presenting an excellent approximate solution near optimal.

It is meaningful to mention that one disadvantage of heuristic strategies is that they are

problem-specific and could not be universal. Also, there is no guarantee for convergence,

especially for iterative strategies that may trapped into local optimal points far from the

global optimal solution [18]. However, they stay on an essential substitution that can offer

reasonable, fast, and yet easy solutions to be employed in many conditions. Additionally,

heuristic solutions are more robust to problem variations than optimal solutions [57].

2.4.2 Optimization

Optimization problems intend to search the optimal of all possible solutions, which is the

one that minimizes or maximizes a certain objective function. This objective function is

a function used to assess a quality of the generated solution. The general mathematical

structure of an optimization problem can be written as [50]:

minimize f0(x) (2.1)

subject to: fi(x) ≤ bi, i = 1, ...,m

21



CHAPTER 2. RESOURCE ALLOCATION PROBLEMS AND MATHEMATICAL
PRELIMINARIES

where the problem components are as follows:

• x = (x1, ..., xn): optimization variables

• f0 : Rn → R: objective function

• fi : Rn → R, i = 1, ...,m: constraint functions

• and the optimal solution x∗ has the smallest value of f0 among all vectors that satisfy the

constraints

There are numerous types of objective functions occurring in RA for CRN of which three

emerge to be very famous. Most of the other types are related to those three. The three are:

• Maximization of network sum throughput,

• Maximization of overall user data rate,

• Maximization of user capacity.

The other types of objective functions that have been studied in the literature include;

maximization of spectrum utilizations, maximization of total channel utility, maximization

of fairness scaling factor, maximization of downlink channel capacity, minimization of total

transmission power, and minimization of total power consumption. Even the three stated

earlier appear to have been utilized interchangeably by authors. Thus, all those three objec-

tive functions are combined together into a class of “capacity”measure. As for constraints,

there are three that are usually occurring and they are:

• Power constraint,

• Constraint on interference,

• Minimum data rate for users.

The most commonly occurring decision variables are:
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• Transmission power,

• Sub-channel allocation, which results in a zero-one decision variable.

In CRNs, optimization problems are generally used to formulate the RA problem for

efficient utilization of the available resources. The formulated problems could be convex,

non-convex, linear, or non-linear with different objectives such as sum-rate maximization,

power minimization, fairness, etc. Certainly, complexity depends on the optimization prob-

lem model. For instance, convex optimization problems can be solved using standard opti-

mization methods. Furthermore, a linear program (LP), wherein the objective function and

constraints are all linear, is generally solved through iterative optimization problem solvers

with less complexity and higher speed as compared to non-linear convex optimization prob-

lems with similar dimensions [50]. In non-linear programming (NLP), the objective function

or some of the constraints are non-linear. For computationally intensive problems, greedy,

heuristic algorithms appear as essential alternatives to accelerate the process of obtaining an

acceptable approximate solution. For example, incorporating integer constraints in the prob-

lem such as the number of allocated time slots, makes it very complicated [51]. Generally,

integer and mixed integer non-linear programming (MINLP) are computationally extensive

(NP-hard) [52]. Hence, heuristic alternatives are usually utilized.

2.4.3 Graph Theory

Graph theory is one of the most extensively used tools for modeling and analyzing the

interaction (or contention) in networks. A graph G consists of a set of vertices V and edges

E, and is denoted by G = (V,E). These components are mapped to the network elements

according to the studied problem. Usually, vertices correspond to entities and edges represent

the interaction between these entities. The graph theory could be employed to vast range of

networks such as mechanical, transportation, and communication networks, among others.

It can offer appropriate tools for solving network-related problems. Generally, graph theory
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is utilized when the network structure is known a priori [53]

In wireless communications, graph theory is largely used to solve the scheduling and RA

problems, especially for problems of high computational effort [54]. In literature, the RA

problem was solved using different types of graphs such as vertex-coloring graph, conflict

graph, and bipartite graph [55,56]. For CRNs, the SUs are generally mapped to the vertices

and the edges mapping varies according the model definition to characterize certain relation

between two vertices. For example, in a conflict or vertex-coloring graph model, an edge

between two vertices (SUs links) shows that the SUs are in the interference range of each

other [48, 54]. Also, the RA for coloring graph problem is comparable to assigning each

vertex a color (i.e., assign each link or SU).

If the vertex set V of a graph G can be split into two disjoint subsets V 1, V 2 such that

each edge connects two vertices in different subsets, then G is a bipartite graph [57]. A

bipartite matching problem is largely used for spectrum assignment and RA in CRNs [58–

61]. Generally the two partitions of the bipartite graph are mapped to the SUs and the

frequency bands available for assignment. The edges connecting two vertices (SU link and

frequency band) for such a problem means that the SU requests (or accepts to be assigned)

the corresponding frequency band.

In order to be application specific, coloring and conflict graphs are more appropriate for

interference-limited environment. This is similar to the cases of having multiple SUs transmit

simultaneously, and thus they can generate high interference to each other. Therefore, using

the prescribed conflict or coloring graphs, also called node contention graphs (NCG), assists

in modeling this interference in a way that makes simpler the development of a proper

RA [54,62]. On the other hand, the works adopted bipartite graphs usually allowed one SU

per band with the owner PU to limit the interference in the system [58,59]. However, adding

preferences to the SUs and PUs guarantees better protection for the primary network as well

as improved secondary performance. This is because the PUs preferences are typically set

according to their tolerated interference. Certainly, graph-based algorithms cannot integrate
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multiple performance metrics and so, normally, QoS is not guaranteed.

2.4.4 Game Theory

Game theory is a mathematical framework utilized to model and analyze the interaction

among multiple individuals whose actions affect each other, or possibly who have conflict

of interest [63, 64]. Usually, the game is modeled by considering a set of players (decision

makers) who obtain the decisions (or actions) to maximize their payoff (utility). Although

it is originally developed for economics, game theory found success in multiple fields such

as engineering, biology, political science, physiology, etc [65]. This is due to its advanced

theoretical foundations which make it a powerful tool in decision making. Mathematically,

the game is denoted as G(N ,A, {ui}), and the three game components are [65,66]:

• N = {1, 2, ..., N} represents the finite set of players,

• A = A1 × A2 × ...AN represents the sets of actions such that Ai is the set of actions

available for player i,

• ui : A→ R represents payoff/utility function of player i, which is a function of actions of

all players.

Generally, game theory can be classified into two broad schemes: non-cooperative and

cooperative schemes. These schemes have been broadly studied in literature (e.g. [86], [87],

[97]). In a non-cooperative scheme, the players act in a selfish manner to maximize their

own utility regardless of the impact of this on others. Nash Equilibrium (NE) is commonly

known to be the solution point of non-cooperative game [89]. In a cooperative game model,

collaboration among the players and information exchanging are the ways to enhance the

overall utility of the network and maximize their mutual benefits. Nash Bargaining (NB) is

the common solution point for this game model. Also, other game categories exist such as

static/dynamic, and complete/incomplete information [86].
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In wireless communications, game theory is utilized to model and analyze several func-

tions related to different layers (physical, data link, network, etc.) [90]. Usually, game

theoretic approaches are used for power control [91], interference management [92], resource

allocation [93], network selection in an environment of multiple deployed technologies [94],

hand-off management [95], among others. These functions can be employed in the context

of wireless sensor networks, CRNs, ad-hoc networks, etc. One major advantage of using

non-cooperative game theory in wireless communication is its ability to offer robust and

efficient distributed algorithms that rely only on local information and reduce the signaling

overhead and computation complexity of the centralized approaches [93], [96]. However, the

game model should be formulated carefully to be able to search a stable solution.

Unlike users of conventional wireless networks, CR users are intelligent and have the

ability to observe, learn, interact with the surrounding environment, and adjust their pa-

rameters accordingly for an optimized performance. However, these users can be belonging

to different authorities or have different goals. Thus, cooperation between them cannot be

taken for granted. Instead, these users may act selfishly for each one to maximize its own

payoff. Generally, an underlay CR spectrum sharing game model includes the following:

• Players: represented by the set of SUs or both SUs and PUs,

• Actions or strategies: depend on the player whether it is an SU or a PU,

• Utilities: an objective function to be maximized such as throughput, SINR, QoS, fairness,

revenue, etc.

Thus, game theory occurs as a very important tool that can efficiently model and analyze

the spectrum sharing process among the users that have conflict of interests in CRNs. Fur-

thermore, game theory helps to design self-organized algorithms that are more appropriate

to the dynamic wireless nature.
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2.4.5 Genetic Algorithms

Genetic Algorithm is adaptive search algorithm based on the evolutionary ideas of natural

selection [67]. An iterative process starts with a randomly generated set of solutions called

population. Best individuals are selected through the utility function (called here fitness

function). Then, starting from this subset, a second population is produced through genetic

operators: crossover and/or mutation. The new population shares many of the character-

istics of its parents, and it hopefully represents a better solution. The algorithm typically

terminates when it converges to the optimal solution or after a fixed number of iterations.

Genetic algorithms are chosen to solve RA problems due to their fast convergence and the

possibility of obtaining multiple solutions. There are quite a few efforts [68–70] are found in

the literature that utilizes genetic algorithms to solve RA problems.

2.4.6 Particle Swarm Intelligence Algorithms

Particle swarm intelligence (PSI) algorithms are population based stochastic optimization

technique inspired by the collective behaviour of social biological individuals (e. g. bird

flocking or fish schooling). PSI algorithms model network users as a population of simple

agents interacting with the surrounding environment. Each individual has relatively little

intelligence, however, the collaborative behaviour of the population directs to a global intel-

ligence, which allows to solve complex tasks. For example, in social insect colonies, different

activities are often executed by those individuals that are better equipped for the task. This

phenomenon is named division of labour [71]. PSI algorithms are scalable, fault tolerant and

moreover, they adapt to changes in real time. There are quite a few efforts [72–75] are found

in the literature that utilizes PSI algorithms to solve RA problems.
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2.4.7 Geometric Water-Filling Method

The conventional water-filling (CWF) [76, 77] problem can be described as follows. Given

PT > 0, as the total signal power (or volume of the water); the allocated power and the

propagation path gain for the ith channel are given as Pi and hi respectively where, i = 1...N ;

and N is the total number of subcarriers. Now without loss of generality, if {hi}Ni=1 be positive

and monotonically decreasing, then the optimization problem can be written as:

max
{Pi}

N∑
i=1

log(1 + hiPi) (2.2)

subject to: C1 : 0 ≤ Pi,∀i;

C2 :
N∑
i=1

Pi = PT

where, constraint C1 is the allocated power to be nonnegative and constraint C2 is the total

power constraint. To find the solution to problem (2.2), we usually start from the Karush-

Kuhn-Tucker (KKT) conditions of the problem, as a group of the optimality conditions.

The water level (µ) needs to be chosen to satisfy the power sum constraints with equality

(
∑N

i=1 Pi = PT ) to find the optimal solution.

In [78], GWF approach is proposed to solve the CWF problem and its weighted form. It

has two advantages, they are: 1) the geometric approach can compute the exact solution to

the CWF, including the weighted case, with less computation and easier analysis without

determining the water level through solving the non-linear system, 2) machinery of the

proposed geometric approach can overcome the limitations of the CWF algorithm to include

more stringent constraints.

Fig. 2.3 gives an illustration of the GWF algorithm proposed in [78]. Suppose there are

4 steps/stairs (N = 4) with unit width inside a water tank. For the conventional approach,

the dashed horizontal line, which is the water level µ, needs to be determined first and then
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Figure 2.3: Illustration for the proposed GWF algorithm (a) Illustration of Pt(n) (shadowed
area, representing the total water/power above step n) when n = 2, (b) Illustration of water
level step n∗ = 3, allocated power for the third step P ∗3 , and step/stair depth Λi = 1

hi
and

(c) Illustration of the weighted case.

the power allocated (water volume) above is solved. Let λi denotes the “step depth”of the

ith stair which is the height of the ith step to the bottom of the tank, and is given as

λi =
1

hi
for i = 1, 2, ..., N. (2.3)

Since the sequence hi is sorted as monotonically decreasing, the step depth of the stairs

indexed as [1, ..., N ] is monotonically increasing. Now δi,j be the “step depth difference”of

the ith and the jth stairs, can be expressed as,

δi,j = λi − λj =
1

hi
− 1

hj
as i ≥ j and 1 ≤ i, j ≤ N. (2.4)

Instead of trying to determine the water level µ, which is a real nonnegative number, the

water level step, denoted by n∗, is the target to solve, that is the highest step under water.

Based on the result of n∗, the solutions for power allocation, can be written instantly. Let

Pt(n) denote the water volume above step n or zero, whichever is greater. The value of Pt(n)

can be solved by subtracting the volume of the water under step n from the total power PT ,
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as,

Pt(n) =

{
PT −

[
n−1∑
i=1

(
1

hn
− 1

hi

)]}+

=

{
PT −

[
n−1∑
i=1

δn,i

]}+

, for n = 1, ..., N

(2.5)

Due to the definition of Pt(n) being the power (water volume) above step n, it cannot be

a negative number. Therefore we use {.}+ in 4.16 to assign 0 to Pt(n) if the result inside

the bracket is negative. The corresponding geometric meaning is that the nth level is above

water.

According to [78], the explicit solution to (2.2) is:

Pi =

Pn
∗ + (λn∗ − λi) 1 ≤ i ≤ n∗

0, n∗ < i ≤ N,

(2.6)

where the water level step n∗is given as

n∗ = max

{
n|Pt(n) > 0, 1 ≤ n ≤ N

}
(2.7)

and the power level for this step is

Pn∗ =
1

n∗
Pt(n

∗) (2.8)

GWF method for the weighted case called weighted geometric water-filling method (WGWF)

and weighted geometric water-filling with individual peak power constraints (GWFPP), is

also proposed in [78].
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2.5 Chapter Summary

This chapter presents the RA problems those are categorized first according to the adopted

approaches and network architecture. Then, the optimization strategies for the RA are ex-

plored and reviewed in the context of CRNs. Finally, a comprehensive overview of these

categories and optimization strategies is provided, and also highlighted the advantages, dis-

advantages, and the application areas associated with each optimization strategy.
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3.1 Introduction

RA problem in OFDM based CRNs has been widely studied under different settings in the

open literature. A power allocation grouping scheme based on the interference channel gain,

pulse shape and frequency distance is presented in [79] in order to improve capacity while

the interference power for PUs stays at constant level. At the first stage, power is assigned

to some groups based on the grouping scheme and at the second stage, the remaining power

is allocated to others with water-filling algorithm.

In order to maximize the SUs’ transmission capacity by adjusting the power allocation

across the subcarriers, two suboptimal schemes for subcarrier allocation with associated

triangular and Gaussian power loading mechanism are studied in [80]. Here, these schemes

maintain the total power used within the power budget and also the interference at the PUs

within a permissible threshold limit.

A low-complexity algorithm using power-increment or power-decrement WF processes is

proposed in [81]. This algorithm is based on constraining the total and transmit powers of

each subchannel.

In order to maximize the download capacity of CRNs, a subcarrier and power allo-

cation algorithm based on the linear water-filling(LWF) scheme is proposed in [82] while

keeping both the total transmit power and interference introduced to the PU below the

pre-constraints.

A suboptimal power allocation algorithm for multiuser OFDM-based CRNs is presented

in [83] that simplifies the procedure of determining the water level to allocate the power for

each subcarrier under a peak power constraint. This method not only reduces the compu-

tational complexity but also can easily be combined with a subcarrier allocation algorithm

for joint subcarrier and power allocation.

Another suboptimal power allocation algorithm for multiuser OFDM-based CRNs is pre-

sented in [84] that simplifies the procedure of determining the water level to allocate the

power for each subcarrier under a peak power constraint. This method not only reduces
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the computational complexity but also can easily be combined with a subcarrier allocation

algorithm for joint subcarrier and power allocation.

A low-complexity suboptimal power allocation algorithm is proposed in [85] where CR

pairs (CRPs) may use both nonactive and active PU pair (PUP) bands as long as the total

co-channel interference (CCI) and cross-channel interference (XCI) do not exceed prescribed

limits. The complexity reduction is done by making a validated approximation based on the

following: 1) the fact that XCI from CRUs to PUPs is mainly limited to a few subchannels

adjacent to the PUP bands and 2) the assumption that the bandwidth for a PUP is typically

much larger than that of an OFDM subchannel and that there is usually a guard band

between two adjacent PUP bands.

An optimal scheme employing joint power allocation in overlay and underlay fashion has

been proposed in [86]. The optimal scheme based on the Lagrange formulation maximizes

the downlink capacity of CR users while maintaining a total power budget and keeping the

interference introduced to the PU band below a threshold. A low complexity suboptimal

scheme is also presented where equal low power is allocated to all the underlay subcarriers

and a ladder profile is used to load power in the overlay subcarriers.

For weighted sum rate maximization in CRNs, a power limited multilevel WF iterative

algorithm has been proposed in [87] where subcarrier power constraints were added to the

traditional problem.

With the total power constraint and the power constraint on each subchannel, an iterative

partitioned water-filling (IPWF) algorithm was proposed in [88] to realize optimal power

allocation in OFDM based CRNs.

Table 3.1 provides different approaches for power allocation in OFDM-based CRNs.
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Table 3.1: Different approaches for power allocation in OFDM-based CRNs

Ref. Objective Constraints Solution approach
[79],
2014

Improve capacity while
the interference power
for PUs stays at con-
stant level

Total transmit power
and interference con-
straints

A grouping scheme based on the inter-
ference channel gain, pulse shape and
frequency distance is considered

[80],
2013

Maximize transmission
capacity

Total transmit power
and interference con-
straints

Two suboptimal schemes for subcar-
rier allocation with associated triangu-
lar and Gaussian power loading mech-
anism are studied.

[81],
2012

Maximize capacity Total transmit power
and individual sub-
channels’ power
constraints

A low-complexity algorithm using
power-increment or power-decrement
water-filling processes is considered.

[82],
2011

Maximize downlink ca-
pacity

Total transmit power
and interference con-
straints

An iterative suboptimal power alloca-
tion algorithm based on LWF is pro-
posed along with subcarrier allocation.

[83],
2011

Maximize overall
throughput while keep
the average inter-
ference to the PU
within a target outage
probability level.

Total transmit power
and interference con-
straints

WF process runs only once, and then
directly calculates the final result with-
out the need for searching the La-
grange multiplier.

[84],
2010

Maximize uplink ca-
pacity

Total transmit power
and peak power con-
straints

A simple and low complexity subop-
timal scheme is considered for deter-
mining the water level to allocate the
power for each subcarrier.

[85],
2010

Maximize the overall
rate while keeping
the interference ex-
perienced by the PU
pairs below certain
thresholds

Total transmit power
and interference con-
straints

A low-complexity suboptimal power
allocation algorithm is proposed where
CR pairs may use both nonactive and
active PU pair bands as long as the
total cochannel interference and cross-
channel interference do not exceed pre-
scribed limits.

[86],
2010

Maximize downlink ca-
pacity while keeping
the interference intro-
duced to the PU band
below a threshold

Total transmit power
and interference con-
straints

A low complexity suboptimal scheme
for joint overlay and underlay power
allocation is presented where equal low
power is allocated to the underlay sub-
carriers and a ladder profile is used to
load power in the overlay subcarriers.

[87],
2009

Maximize the weighted
sum rate of SUs in
the downlink, without
causing interferences to
PUs

Total transmit power
and interference con-
straints

A power limited multilevel WF itera-
tive algorithm is considered.

[88],
2007

Maximize the capacity
maintaining the PU’s
interference limits.

Total transmit power
and per subchannel
power constraints

An iterative partitioned water-filling
algorithm is proposed.
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3.2 Cognitive Radio System Model and Transmission

Power Constraint

A typical cognitive radio systems is shown in Fig. 3.1 where PUs and SUs share the same

bandwidth. In order to avoid harmful interference to each other, the SU needs to detect the

opportunities when PUs are not utilizing the spectrum. Higher detection probability without

errors provide successful exploitation of opportunities for transmission. In Fig. 3.1, a disk

propagation model is considered to illustrate SU transmission. SU can detect any PU’s

activity within the detection region. However, those PUs that fall outside the detection

region (like PU2 in Fig. 3.1), are undetectable by the SU. To deal with this situation, as

in [89], PU2 defines a protection region with radius P and needs to maintain a certain

interference level η within this area. In this scenario, SU’s transmission power Ptx, subjected

to interference constraint, can be written as:

Ptx ≤ η(D − P )β (3.1)

where D is the distance between the SU transmitter and the nearest undetectable PU trans-

mitter, β is the path attenuation factor and η is the maximum allowable interference level.

OFDM is a potential technology in terms of modulation and power control. It is also highly

flexible due to reconfigurable subcarrier structure to fit in CRNs for efficient utilization

of spectrum opportunities. Fig. 3.2 depicts a typical spectrum structure in OFDM-based

CRNs. There are M subchannels licensed to M PU systems that can be potentially used by

the SU based on opportunity detection. There are N subcarriers that are distributed among

the M subchannels. For example, let the jth subchannel has total Lj subcarriers that can

be utilized by the SU when PU is absent. For successful transmission, the SU first needs

to test any PU transmitter in the desired subchannel. If found, the sum power of all the

subcarriers in that subchannel will be set to zero until the PU transmission ends. If not, the

SU can utilize this subchannel with the interference constraint described in (3.1). Let Gj is
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Figure 3.1: Cognitive radio system model.
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Figure 3.2: Spectrum of SU in OFDM-based CRNs
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the interference constraint on the jth subchannel after spectrum detection, then,

Gj ,

0 PUj is detected

ηj(Dj − Pj)βj PUj is not detected

(3.2)

where ηj is the maximum allowable interference level for PUj within the protection region

whose radius is Pj, Dj is the distance between the SUs transmitter and the nearest unde-

tectable PUj’s transmitter and βj is the corresponding path attenuation factor.

3.3 Problem Formulation

Consider an OFDM communication system similar to [90]:

yn[m] = hnxn[m] + wn[m], where n = 1, ..., N (3.3)

where xn[m], yn[m], wn[m] and hn are the input, output, noise signal and channel gain,

respectively. Assume PT > 0, as the total power constraint and Pi is the transmit power of

an OFDM block, then the achievable data rate of reliable communication using the OFDM

channel is,

R(Pi) =
N∑
i=1

∆B log(1 +
Pi|hi|2
N0

) (3.4)

where N0 is the noise power spectral density and ∆B is the subcarrier spacing (bandwidth).

Thus the power allocation has to be done to maximize the sum rate in (3.4). In OFDM

based CRNs, the subchannel transmit power constraints impose further restrictions on the

power allocation in addition to the total transmit power constraint. Assuming the allocated

signal power and the propagation path gain for the ith subcarrier are given as Pi and hi

(where |hi|
2

N0
= hi) respectively, i = 1, ..., N and, the weights wi > 0,∀i then the optimal
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power allocation problem can be expressed as:

max
{Pi}

N∑
i=1

wi log(1 + hiPi) (3.5)

subject to: C1: 0 ≤ Pi ≤ Si,∀i;

C2:
N∑
i=1

Pi = PT

C3: Fj ≤ Gj,∀j;

where, N is the total number of subcarriers and j = 1, ...,M ; and M is the total number of

subchannels, Fj =
∑mj+1−1

i=mj
Pi, jεA is the power allocated to the jth subchannel and mj is

the index of the first subcarrier and mj+1 − 1 is the index of the last subcarrier in the jth

subchannel.

The power allocation problem in (3.5) is constructed considering three constraints. Con-

straint C1 consider individual peak power constraints, constraint C2 includes total power

constraint and constraint C3 incorporates individual subchannel power constraints caused

by the PUs’s interference limits. Considering constraints C2 and C3, in [88] the authors

proposed IPWF algorithm to obtain the optimal power allocation vector. Constraint C1 was

introduced in [78] where the authors proposed GWFPP approach to solve the weighted RRA

problems, that also provide optimal result. In this paper, we combined all those constraints

to construct an optimal power allocation scheme.

In OFDM based CRNs, the subchannel transmit power constraints impose restrictions on

the power allocation in addition to the total transmit power constraint. On the other hand,

peak power constraint impose further restriction on the power allocation problem. Thus, a

transmission rate constraint associated with the maximum modulation order limitation on

each subcarrier is considered. It leads to a peak power constraint on each subcarrier. Since

the combining of all three constraints made the power allocation problem more complicated,

therefore previous approach cannot be easily utilized to solve the problem, and hence we
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need to develop new approach.

3.4 Subcarrier Allocation

Assume Im be the number of subcarriers allocated for one subchannel, is a variable. Since

the utilization of any subchannel by the SU, is bounded by the power constraint on the jth

subchannel (Gj), the transmit power for one subchannel on each subcarrier is given by

Pm,im =
Gj

Im
, im ∈ Îm (3.6)

where Îm represents the set of subcarriers allocated to one subchannel and Im is the number

of subcarriers allocated to one subchannel. The achieveable data rate (using (3.4)) can be

shown as

D =
M∑
m=1

∑
imεIm

Rm,im(Pm,im), im ∈ Îm (3.7)

For a given set Îm for a subchannel, if one more subcarrier im
∗ is allocated to that subchannel,

i. e. Îm is replaced by Îm ∪ {im∗}, the change of achievable rate for that subchannel,

∆dm,im∗(Îm), can be given by

∆dm,im∗(Îm) = Dm(
Gj

Im + 1
)−Dm(

Gj

Im
)

=
∑

im∈ ˆIm∪{im∗}

dm,im(
Gj

Im + 1
)−

∑
im∈ ˆIm

dm,im(
Gj

Im
)

(3.8)

where dm,im is the instantaneous achievable rate on the subcarrier i, im ∈ Îm.

In our proposed algorithm, assuming Îm has been allocated to one subchannel, whether an

unallocated subcarrier i can be allocated to one subchannel, depends on whether its data rate

increase ∆dm,im(Îm) is the maximum among all the subchannels. That is, subcarrier i will

be allocated to k∗ = maxm,im∆dm,im(Îm). The basics idea behind the subcarrier allocation

is well depicted in 3.3 and the algorithm is described in Algorithm 1 description.
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subcarrier for one subchannel

Find the achieveable data rate for 
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Figure 3.3: Flow chart for subcarrier aliocation.

Algorithm 1 Subcarrier Allocation

initialization Îm = φ, Im = 0,∆dm,im(Im) = Dm(Gj)
for i ∈ N do

for m ∈ M do

compute ∆dm,im(Îm) using (3.8)

k∗ = maxm,im∆dm,im(Îm);

Î∗m = Îm ∪ {i};
I∗m = I∗m + 1;

end

end
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After subcarrier allocation, in the second step, power allocation is carried out on its

allocated subcarrier Âm.

3.5 Power Allocation using GWFPP

3.5.1 Iterative Partitioned Weighted Geometric Water-Filling with

Individual Peak Power (IGPP)

In this work, utilizing IPWF [88] and GWFPP [78] approach, we proposed Iterative Par-

titioned Weighted Geometric Water-Filling with Individual Peak Power (IGPP) algorithm,

that also provides optimal result. For IGPP the first step is to divide all the subchannels

into two sets, say A and B, and there are 2M partitions in total. E set is a subsequence of

the sequence 1, 2, ..., N and N is the total number of subcarriers. The next step would be

to perform GWFPP for every jth subchannel and calculate Pi using (??), (4.18) and (4.19).

Let the set Λ is defined by the set {i|Pi > Si, i ∈ E}. If Λ is an empty set, then Pi will be

the output, otherwise, Pi will be set by the individual peak power Si. Everytime we need to

update the set E and the total power PT . Since the finite set E is getting smaller and smaller

until the set Λ is empty, algorithm GWFPP carries out at most, N loops to compute the

optimal solution [78]. The next steps are to remove partitions that are represented by set D

which is a set of subchannels that satisfies Fj < Gj where j ∈ A. For each of the remaining

partitions in the remainder set A, the geometric water-filling is performed on the subcarriers

that belong to the jth subchannel. Algorithm IGPP carries out the loops to compute the

optimal solution until the set A is empty. The last step would be to verify each partition

whether they satisfy Fj < Gj where j ∈ B. According to the paper [88], there is only one

available partition and the corresponding power allocation vector is the solution. Based on

the property of IGPP and the strict constraints on the objective function, there can be only

one power allocation vector which satisfies all the conditions. In CWF problem, it is dificult

to obtain the explicit expression of the optimal power allocation vector. A derived algorithm
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obtained from [88] and [78] forming IGPP, is described in Algorithm 2 description.

Algorithm 2 Iterative Partitioned Weighted Geometric Water-filling with Individual Peak Power
Constraints (IGPP)

Input: vector { 1
hi
}, {wi}, {Si} for i = 1, 2, ..., N ,

the set E = 1, 2, ..., N and PT
initialization A = {j|j = 1, 2, ...,M}
B = φ, F = φ,Λ = φ, P ∗ = PT ;
C = {i|the ith subcarrier belongs to the jth subchannel, j ∈ A};
for j ∈ A do

for i ∈ C do
compute {Pi} using GWF
Λ = {i|Pi > Si, i ∈ E}
if Λ = φ then

output: {Pi}
else

Pi = Si, i ∈ A
end
E = E \ Λ

end

Fj =
∑mj+1−1

i=mj
Pi, j ∈ A

D = {j|Fj ≤ Gj, j ∈ A};
L = {i|the ith subcarrier belongs to the jth subchannel, j ∈ D}
A = A \D,B = B ∪D
C = C \ L, F = F ∪ L
if A = φ then

output: {Pi}
else

P ∗ = P ∗ −∑i∈L Pi
end

end

3.6 Performance Evaluation

The proposed algorithm IGPP along with the existing methods (IPWF, GWFPP), have been

implemented using MATLAB. Randomized fading have been used to generate the outcomes

of each algorithms. Here, we assumed that the distance between the SU and the PU is
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known, thus equation (3.2) has been used to calculate the subchannel power constraints

(Gj). According to the subcarrier assignment strategy, described in previous section, we

got subcarriers 1, 2, 3, 4 to be in subchannel 1, subcarriers 5, 6, 7 to be in subchannel 2,

subcarriers 8, 9, 10, 11 to be in subchannel 3 and the last set of subcarriers 12, 13, 14, 15 to

be in subchannel 4. The simulation parameters are summarized in Table 3.2.

Table 3.2: Simulation Parameters

Parameters Values

No. of SU and PU 1, 4

Number of subchannels 4

Number of subcarriers 15

Protection region (Pj) 1m

Path attenuation factor (β) 2

Total power (PT ) 159

Subcarrier Bandwidth (∆B) 15KHz

Subchannel power constraints (Gj) {72, 44, 29, 17}
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Figure 3.4: Power allocation using Iterative Partitioned Water-Filling Method

Fig. 3.4 shows power allocation when IPWF method has been applied. Since IPWF

mainly works based on partitionof sunchannels, the water levels are different for each sub-

channel due to the total subchannel power constraint for the partitions.
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Figure 3.5: Power allocation using Geometric Water-Filling Method with Peak Power Con-
straints

Fig. 3.5 shows power allocation when GWFPP algorithm has been applied. This algo-

rithm mainly consider individual peak power constraints. As a result, for each channel we

get a different set of water level which follows the individual peak power constraints.
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Figure 3.6: Power allocation using Iterative Partitioned Weighted Geometric Water-Filling
with Individual Peak Power Constraints Algorithm
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Fig. 3.6 shows power allocation when IGPP algorithm has been applied. Due to the

total subchannel power constraint and individual peak power constraints the simulation

result varies from the results of IPWF and GWFPP. For each subcarrier we get a different

set of water level which follows the individual peak power constraints but they are different

from the GWFPP algorithm due to the total subchannel power constraints. Fig. 3.7 shows

power allocation by IGPP when considering different weight factors of subcarriers.

Figure 3.7: Power allocation by IGPP considering weight factors

Fig. 3.7 shows allocated power with corresponding noise power by IGPP when consid-

ering different weight factors for subcarriers. In X axis, cumulative summation of weighted

coefficients are presented, as we moved towards right. In Fig. 3.7, the width of each bar
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varies due to the different weight factors of the subcarriers.
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Figure 3.8: Comparison of the sum rates for IPWF, GWFPP and IGPP

Fig. 3.8 compares the allocated power for the IPWF, GWFPP and IGPP algorithms.

For each subchannel, we sorted the subcarriers according to their noise power. Thus, the

subcarrier that has highest noise power, comes first and the subcarrier that has lowest noise

power, comes last for each subchannel. From Fig. 3.8, we found that, for each subchannel,

the algorithm IGPP allocated less power in the subcarrier that has highest noise power

and allocated more power in the subcarrier that has lowest noise power than the other two

algorithms. Thus, the IGPP allows better utilization of the available power resources than

IPW and GWFPP.

Fig. 3.9 compares the sum rates for the IPWF, GWFPP and IGPP algorithms. IGPP

algorithm allows the sum rate to be better than IPW and GWFPP, due to the better

utilisation of the power resources.
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Figure 3.9: Optimal power allocation vs subcarriers for each subchannel using IPWF,
GWFPP and IGPP

3.7 Chapter Summary

This Chapter provides the system model for OFDM-based CRNs and construct the power

allocation problem considering three constraints. Describes the methods for the solution of

power allocation problem and presents the proposed algorithms for power allocation along

with subcarrier allocation. Also provides comparison of the proposed algorithm results with

the related works.
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4.1 Introduction

There have been several burgeoning research efforts found in the literature [91–99] on the RA

schemes for CRNs. On the other hand, due to the benefit of D2D communication, Interna-

tional Mobile Telecommunications (IMT)- Advanced Standard systems, such as Long Term

Evolution (LTE) and WiMax, allow D2D communication sharing the same radio resources

with the cellular network to increase the spectral efficiency [19]. D2D communication is,

in fact integrated into LTE-Advanced networks in [100,101]. RRA for D2D communication

underlaying cellular networks are currently being extensively investigated by researchers in

terms of spectral efficiency [16,102–107] and in terms of energy efficiency [108,109].

From the literature survey, it is found that, most of the recent works focus on how to

exploit D2D communication in cellular networks under different constraints. However, only

a few efforts [19, 110–114] have been made to incorporate D2D communication with CR

technology to jointly maximize the spectrum efficiency. In [19], the SUs mode selection

strategies are optimized in a cognitive cellular network with D2D communication. A mixed

overlay-underlay spectrum sharing method is proposed in [110] for CR-assisted D2D com-

munications in a cellular network. Two spectrum access policies (random and prioritized)

are investigated in [111] for cognitive and energy harvesting-based D2D communication in

cellular networks. A RA scheme based on CR approach for D2D underlay multicast com-

munication is proposed in [112] to improve system performance. The joint use of full-duplex

relay and D2D communication are investigated in [113] for CRNs. An optimal power allo-

cation algorithm is presented in [114] for cognitive D2D communication assisted by two-way

relaying.

Table 4.1 provides different approaches to incorporate D2D communication with CR

technology.

In this section, the resource allocation problem is studied by jointly employing CR tech-

nology and D2D communication in cellular networks. D2D users are modeled as cognitive

secondary users where they can opportunistically access the spectrum. An OFDM based
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Table 4.1: Comparative analysis of resource allocation optimization problem in cognitive
D2D communication

Ref. Objective Constraint Solution approach Performance metric
[19],
2012

Maximize the total
data rates of the
CUs and D2D users

Transmission power bud-
gets and interference con-
straints for the CUs and
D2D users

D2D users optimal power is analyzed
and transmission mode is selected us-
ing the mixed strategy which is up-
dated by replicator dynamics within
the framework of evolutionary game
theory

Replicator dynamics,
population share,
average utilities,
system converge

[110],
2015

Maximize the al-
lowable density of
D2D devices

Interference threshold con-
straint, collision probability
constraint

A mixed overlay-underlay spectrum
sharing system is analyzed and a so-
lution is derived to accurately capture
the interactions between devices and
cellular infrastructures using stochas-
tic geometry

Coverage probability,
isolation probability,
interference probabil-
ity

[111],
2015

Calculate the over-
all outage probabil-
ity for D2D users

Signal-to-interference-plus-
noise ratio threshold

A complete framework based on
stochastic geometry has been devel-
oped for statistical analysis of cogni-
tive D2D communication using energy
harvested from the ambient interfer-
ence

Transmission
probability,
outage probability

[112],
2014

Maximize the to-
tal system capacity
of the PU and SU
multicast group

Transmission power bud-
gets and interference con-
straints for the PUs and
SUs

An optimal channel allocation method
that reduces the interference from cel-
lular to multicast D2D group is pro-
posed

Total capacity of the
system

[113],
2016

Maximize the
achievable rate of
D2D links

Signal-to-interference-plus-
noise ratio threshold

D2D communication and full-duplex
relay are utilized in CRN to optimized
the rates of the D2D link

Achievable rate gain

[114],
2013

Minimize the SUs
outage probability

Peak transmit power con-
straints, interference power
constraints

An optimal power allocation algorithm
is proposed for a CR network where a
D2D pair as two SUs exchange their
information through a relay node using
network coding

Outage probability
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cognitive cellular network with D2D communication has been designed and analyzed using

Lagrange formulation and then solved using geometric water-filling (GWF) method [78]. The

optimization problem is characterized by the following five features in order to maximize the

transmission rate of the D2D users: a) total power constraint, b) peak power constraint on

each subcarrier, c) maximum power constraint of each D2D user, d) interference constraint

to the PU band and e) minimum transmission rate requirements for the D2D users. The

senario that we considered to jointly employ CR technology and D2D communication in

cellular networks is more practical and yet didn’t study by the researchers. For such a cog-

nitive D2D system model, the five sets of constraints are necessary and sufficient in order to

maximize the transmission rate of the D2D users. To the best of the authors knowledge, the

prior resource allocation researches did not consider the above five features simultaneously

for such a cognitive D2D system.

4.2 System Model

A single cell downlink OFDM based cognitive cellular system with multiple cellular users as

PUs and multiple D2D users as SUs is considered as shown in Fig. 4.1.

In spectral domain, we consider the side-by-side CR access model as shown in Fig. 4.2. It

is assumed that the frequency bands with bandwidth B (B1, B2, ..., BK in Hz), are occupied

by K PUs (1, 2, ..., K). The unoccupied band that can be sensed by the M D2D users (1,

2, ..., M) for possible transmission, is located on both sides of PU bands. It is possible for

the D2D users to opportunistically utilize those unused spectrum by the of knowledge of the

environment and cognition capability, to adapt to their radio parameters accordingly [23].

Let, K be the set for PUs where K = {1, 2, ..., K} and M be the set for D2D users where

M = {1, 2, ...,M}. The frequency band which is available for CR transmission, is divided

into N subcarriers and each subcarrier occupies a bandwidth of ∆B Hz.

Each subcarrier transmits in the fading channel where channel gain is integrated by the

52



CHAPTER 4. RESOURCE ALLOCATION FOR COGNITIVE RADIO SYSTEMS
WITH D2D COMMUNICATION

BS

D2D user (SU)

Cellular user (PU) Cellular Link

D2D Link

Figure 4.1: A D2D enabled cognitive radio system.
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Figure 4.2: Spectrum distribution of PUs and D2D users in OFDM based cognitive D2D
system.
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effects of propagation path loss and shadowing. Thus, the D2D users need to detect the

channel gain hddm,n, hdpm,k and hpdk,m, by the channel estimation mechanism before transmission.

In practice, CSI on the D2D users own channel can be obtained via the classical channel

training and feedback techniques. However, the CSI from the D2D user to the PU is not

directly available. This can be obtained by the D2D-Tx from the PU-Rx by estimating

the reversed channel under the assumption of channel reciprocity. Since our focus is on

the resource allocation, we assumed that all the channel estimations are performed using

advanced methods, otherwise it will effect the resource allocation scheme. Here, hddm,n de-

notes the channel gain between the mth D2D user’s transmitter and receiver; hdpm,k, is the

channel gain between the mth D2D user’s transmitter and the kth PU’s receiver; and hpdk,m,

is the channel gain between the kth PU’s transmitter and the mth D2D user’s receiver. The

subscript of index n denotes the nth subcarrier. Table 4.2 provides a list of frequently used

variables and abbreviations.

Due to the coexistence of PU and D2D users in the side-by-side bands, the mutual

interference is introduced. Now, the mutual interference introduced by the nth subcarrier of

the mth D2D user to the kth PU band can be written as [115]

Υ(k)
m,n = |hdpm,k|2Pm,nTs

∫ d
(k)
m,n+Bk/2

d
(k)
m,n−Bk/2

(
sinπfTs
πfTs

)2

df (4.1)

where, Pm,n is the transmit power for the mth D2D user allocated to the nth subcarrier, Ts

is the symbol duration, d
(k)
m,n represents the spectrum distance between the nth subcarrier of

the mth D2D user and the kth PU band and Bk represents occupied bandwidth by the kth

PU.

Let I
(k)
m,n = |hdpm,k|2Ts

∫ d(k)m,n+Bk/2

d
(k)
m,n−Bk/2

(
sinπfTs
πfTs

)2

df , be the interference factor for the mth D2D

user between the nth subcarrier and the kth PU band. Then equation (4.1) can be rewritten

as

Υ(k)
m,n = Pm,n · I(k)

m,n. (4.2)
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Table 4.2: List of frequently used variables and abbreviations

Group Variable Meaning
Index k index of PUs, for k = 1, 2, · · · ,K

m index of D2D users, for m = 1, 2, · · · ,M
l index of other active D2D users, for l = 1, 2, · · · ,M
n index of subcarriers, for n = 1, 2, · · · , N
B index of PUs bandwidth B1, B2, ..., BK in Hz

Set K set of PUs {1, 2, · · · ,K}
M set of D2D users {1, 2, · · · ,M}
N set of subcarriers {1, 2, · · · , N}
Nm set of subcarriers allocated to the mth D2D user {1, 2, · · · , Nm}
N̄m number of subcarriers allocated to the mth D2D user
λ set of subcarriers that exceeds the peak power constraint
Ω set of subcarriers that need to be reallocated

Channel related term hddm,n channel gain between the mth D2D user’s transmitter and receiver

hdpm,k channel gain between the mth D2D user’s transmitter and the kth

PU’s receiver

hpdk,m channel gain between the kth PU’s transmitter and the mth D2D
user receiver

Γm,n channel gain-to-noise ratio
dm link distance between the devices of D2D user
η path attenuation factor
σ2
AWGN additive white Gaussian noise variance

Bandwidth related
term

d
(k)
m,n spectrum distance between the nth subcarrier of the mth D2D

user and the kth PU band
∆B bandwidth of each subcarrier in Hz

Power related term Pm,n transmit power for the mth D2D user allocated to the nth sub-
carrier

Sm total allocated power for the mth D2D user

Em extra power for the mth D2D user

Rm remaining power for themth D2D user that needs to be reallocated
in the next round

Interference related
term

Υkm,n interference introduced by the nth subcarrier of the mth D2D user
to the kth PU band

Ikm,n interference factor for the mth D2D user between the nth subcar-
rier and the kth PU band

ρkm,n interference introduced by the kth PU signal to the mth D2D user
on the nth subcarrier

Ll,n interference signal comes from other active D2D users.
Iagg aggregated interference

Transmission rate re-
lated term

<m,n transmission rate for the mth D2D user on the nth subcarrier

<̄m,n transmission rate when peak power constraint is considered
Constraint Group PT total power constraint

Pm,max maximum power constraint of the mth D2D user

P̄m,n peak power constraint for the mth D2D user at the nth subcarrier

Ikth interference threshold of the kth PU band
<m,min minimum transmission rate requirements for the D2D users
xm,n binary decision variable of subcarrier allocation

Others α, β, γ, δ, ψ Lagrange multipliers
Πm,n proposed metric for subcarrier allocation
w1, w2, w3 weighting factors for subcarrier allocation

Reference Level µ water level
j∗ water level step (highest step under the water)

Matrix X M ×N matrix of subcarrier allocation
P M ×N matrix of allocated power
T M × N matrix of allocated power when binary decision variable

is considered
Abbreviations PSD power spectrum density

ASA Adaptive subcarrier allocation
PA Power allocation
GWF Geometric water-filling
GWFPP Geometric water-filling with peak power constraint
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Now, with an ideal coding scheme, the transmission rate for the mth D2D user on the

nth subcarrier, is given by the following formula

<m,n(Pm,n, dm) = ∆B log

(
1 +

Pm,n |hddm,n|2 d−ηm
Iagg

)
(4.3)

where, dm represents the link distance between the devices of D2D user and η is the path

attenuation factor. In (4.3), Iagg = σ2
AWGN +

∑K
k=1 ρ

k
m,n +

∑M
l=1,l 6=m Ll,n denotes the ag-

gregated interference, where σ2
AWGN denotes the additive white Gaussian noise (AWGN)

variance, the second term be the interference introduced by the kth PU signal to the mth

D2D user on the nth subcarrier and the third term represents the interference signal comes

from other active D2D users.

Let Γm,n =
|hddm,n|2 d−ηm
Iagg represents the channel gain-to-noise ratio, then (4.3) can be rewrit-

ten as

<m,n(Pm,n, dm) = ∆B log (1 + Pm,nΓm,n) . (4.4)

In this paper, a transmission rate constraint associated with the maximum modulation

order limitation on each subcarrier is considered. It leads to a peak power constraint (P̄m,n)

for the mth D2D user on the nth subcarrier which can be written from (4.4) as

P̄m,n =
2<̄m,n − 1

Γm,n
(4.5)

where <̄m,n is the corresponding transmission rate when P̄m,n is considered.

Let xm,n be a binary decision variable of channel (subcarrier) allocation. If subcarrier n

is allocated to D2D user m, then xm,n is equal to 1; otherwise it is equal to zero. Since each

subcarrier is exclusively allocated to one D2D user, then

M∑
m=1

xm,n = 1, n = 1, 2, ..., N. (4.6)
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Now, the total system transmission rate is given by

<(X, P) = ∆B
M∑
m=1

N∑
n=1

xm,n log (1 + Pm,nΓm,n) (4.7)

where, X is a M ×N matrix of subcarrier allocation indices xm,n, and P is a M ×N matrix

of allocated power Pm,n.

4.3 Problem Formulation

Our objective of RA (subcarrier and power allocation) is to maximize the total downlink

transmission rate of the D2D system under both power and interference constraints along

with the minimum rate requirements. Therefore, the optimization problem can be formulated

as follows

max
X, P

∆B
M∑
m=1

N∑
n=1

xm,n log (1 + Pm,nΓm,n) (4.8)

subject to:

C1 :
M∑
m=1

xm,n = 1, xm,n ∈ {0, 1}; ∀n ∈ N

C2 :
M∑
m=1

N∑
n=1

xm,nPm,n ≤ PT , Pm,n ≥ 0;

C3 :
N∑
n=1

xm,nPm,n ≤ Pm,max; ∀m ∈ M

C4 : xm,nPm,n ≤ P̄m,n; ∀m ∈ M, ∀n ∈ N

C5 :
K∑
k=1

N∑
n=1

xm,nΥ(k)
m,n ≤ Ith; ∀m ∈ M

C6 :
N∑
n=1

xm,n<m,n ≥ <m,min; ∀m ∈ M
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where, constraint C1 depicts that each subcarrier can not be reused by more than one D2D

user. Constraint C2, C3 and C4 denote total power constraint (e. g. PT ), maximum power

constraint of each D2D user (e. g. Pm,max), and peak power constraint on each subcarrier (e.

g. P̄m,n) respectively. Constraint C5 describes interference constraint where Ith denotes the

total interference threshold by the K PU bands. Lastly, constraint C6 provides minimum

transmission rate requirements for the D2D users.

The optimization problem in (4.8) is nonconvex due to binary decision variable xm,n.

This variable can be relaxed by applying a time sharing approach [116] to allow any value

in the interval (0, 1] instead of {0, 1} set, which is equivalent to allowing time-sharing of a

single subcarrier between different users. By time-sharing we mean that several users can

transmit on a given subcarrier during a given scheduling interval, with each user transmitting

alone for a fraction of the interval. This corresponds to a sort of time division multiple

access subdivision of the scheduling time unit and is not to be confused with overlapping

transmission. Let tm,n = xm,nPm,n, then the optimization problem in (4.8) can be rewritten
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as follows:

max
X, T

<(X, T) = ∆B
M∑
m=1

N∑
n=1

xm,n log

(
1 +

tm,n
xm,n

Γm,n

)
(4.9)

subject to:

C1 :
M∑
m=1

xm,n = 1, xm,n ∈ (0, 1]; ∀n ∈ N

C2 :
M∑
m=1

N∑
n=1

tm,n ≤ PT , tm,n ≥ 0;

C3 :
N∑
n=1

tm,n ≤ Pm,max, ∀m ∈ M

C4 : tm,n ≤ P̄m,n; ∀m ∈ M, ∀n ∈ N

C5 :
K∑
k=1

N∑
n=1

tm,nI
(k)
m,n ≤ Ith; ∀m ∈ M

C6 :
N∑
n=1

xm,n<m,n ≥ <m,min; ∀m ∈ M

The problem in (4.9) is convex with a concave objective function which is equivalent to

the original problem in (4.8) when the condition on xm,n is relaxed for each D2D user m

and subcarrier n. Finding the optimal pair (x∗m,n, t
∗
m,n) = (x∗m,n, x

∗
m,nP

∗
m,n) leads to the same

solution as finding (x∗m,n, P
∗
m,n).

The analytical solution of the problem in (4.9) is

P ∗m,n =

 1 + ψm

ln
(
αn + βm + γn +

∑K
k=1 δkI

(k)
m,n

) − 1

Γm,n

+

. (4.10)

Proof: See Appendix

The P ∗m,n denotes the optimal power allocation for the mth D2D user on the nth subcarrier
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when m = m∗. Thus, the indices of the subcarrier allocation matrix X will be

xm,n =

1 m = m∗ for n = 1, 2, ..., N

0, otherwise.

(4.11)

The power allocation strategy in (4.10) is indeed corresponding to the CWF strategy [76]

and depends on the Lagrange multipliers (α, β, γ, δ, ψ) associated with the per user power

and interference constraints. By using the CWF, the optimal power allocation strategy can

be calculated which is practically intractable. Thus, in this paper, GWF approach [78] is

utilized to solve the CWF problem which is described in the following section. It has two

advantages:

1. The geometric approach can compute the exact solution to the CWF, including the

weighted case, with less computation without determining the water level through

solving the non-linear system,

2. Machinery of the proposed geometric approach can overcome the limitations of the

CWF algorithm to include more stringent constraints.

In terms of complexity, the CWF approach has a worst-case complexity of N iterations,

i.e., total O(N2) fundamental arithmetic and logical operations under the 2(N + 1) memory

requirement. On the other hand, GWF algorithm occupies less computational resource.

The worst-case computational complexity of the GWF algorithm is 8N + 3 fundamental

arithmetic and logical operations under the 2(N + 1) memory requirement and for GWFPP,

the worst-case complexity is 4N2 + 7N fundamental arithmetic and logical operations.

4.4 Proposed Resource Allocation Scheme

Based on the analysis in the previous section, an efficient RA scheme is proposed in this

section to address the problem defined in (4.8). A two-stage approach is considered to
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solve (4.8) efficiently. Specifically, the resource allocation scheme is divided into two individ-

ual procedures: adaptive subcarrier allocation (ASA) and power allocation (PA). In the first

stage, each subcarrier is assigned to one D2D user with the minimum value of the proposed

metric that is adaptive in nature. In the second stage, power is allocated among all the D2D

users to maximize the transmission rate. The procedure for the RA scheme is illustrated in

Fig. 4.3.

Two-Stage Resource Allocation Scheme

Adaptive Subcarrier 

Allocation (ASA)
Power Allocation (PA)

Figure 4.3: The procedure for resource allocation scheme.

4.4.1 Adaptive Subcarrier Allocation (ASA)

Most of the recent works regarding subcarrier allocation strategy to the D2D users is based

on greedy approach [104, 105]. In order to assign subcarriers to the D2D users, a proposed

metric is utilized that is adaptive in nature. The proposed metric is related to the amount

of power, interference and transmission rate.

Let N be the set of subcarriers where N = {1, 2, ..., N}, Nm be the set of subcarriers

allocated to the mth D2D user and N̄m denotes the number of subcarriers allocated to the

mth D2D user. Now, the transmission rate increment for one more subcarrier allocation to

the mth D2D user can be written as

∆<m,n = <m,n
(

Pm,n
N̄m + 1

, dm

)
−<m,n

(
Pm,n
N̄m

, dm

)
, n ∈ Nm. (4.12)

The power increment for transmitting one more increment in transmission rate ∆< on
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subcarrier n of the mth D2D user can be written as

∆Pm,n =
(2<m,n+∆<m,n − 2<m,n)

Γm,n
. (4.13)

The interference increment caused by subcarrier n of the mth D2D user for the kth PU

can be written as

∆Υ(k)
m,n = ∆Pm,n · I(k)

m,n. (4.14)

A metric composed of three parts for the nth subcarrier of the mth D2D user is described

as

Πm,n = w1

(
∆Pm,n

Pm,max − Pm,used

)
+ w2

(
K∑
k=1

∆Υk
m,n

Ith −Υk
m,used

)
+ w3

(
∆<m,n

<m,used −<m,min

)
(4.15)

where, Pm,used is the amount of power that has been utilized for the mth D2D user, Υk
m,used

is the interference that has been initiated to the kth PU, and <m,used is the correspond-

ing transmission rate of the mth D2D user. The first part consists of the amount of the

power increment for transmitting one more increment in transmission rate and the amount

of the unused power. The second part includes the amount of interference that is used for

considering the interference constraints. Finally, the third part is associated with the mini-

mum transmission rate requirements among the D2D users. Three non-negative parameters

(w1, w2, w3) are exploited as the weighting factors to make a trade-off between the power and

the interference constraints together with the minimum rate requirements in the subcarrier

allocation process. This is the reason why this subcarrier assignment strategy is named as

adaptive subcarrier allocation (ASA).

For a specific D2D user, a subcarrier n∗ with the minimum value of the metric (4.15),

is assigned to that selected D2D user m∗. A subcarrier with a lower value depicts that the

power and interference increments for providing one more increment in transmission rate

are relatively small compared to other subcarriers. The ASA strategy is well described in
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Algorithm 1.

Algorithm 3 Adaptive Subcarrier Allocation (ASA)

Input: The set N = {1, 2, ..., N}
initialization: Nm = φ, N̄m = 0,<m,used = 0,
Pm,used = 0,Υk

m,used = 0; ∀m ∈M, ∀n ∈ N , ∀k ∈ K
for n ∈ N do

compute ∆Pm,n using (4.13),

∆Υ
(k)
m,n using (4.14)

and ∆<m,n using (4.12);
calculate Πm,n using (4.15);
(m∗, n∗) = arg min Πm,n;
N = N − {n∗},Nm∗ = Nm ∪ {n∗}, N̄m = N̄m + 1;
update Pm,used,Υ

k
m,used,<m,used

end

4.4.2 Power Allocation (PA)

After subcarrier assignment described in the previous section, power allocation is performed

for the selected subcarrier n∗ of the D2D user m∗. For the selected subcarrier n∗ of the D2D

user m∗, the value of xm∗,n∗ becomes 1 and then the power allocation problem in (4.8) can

be solved using GWF approach. Fig. 4 gives an illustration of the GWF approach.

Instead of trying to determine the common water level µ (real nonnegative number) in

CWF, the highest water level step, denoted by j∗, which is an integer number, is introduced

to find the solutions for power allocation. Let P (j) denotes the water volume above step j

or zero, whichever is greater and the value of P (j) can be found as:

P (j) =

[
PT −

{
j−1∑
n=1

(
1

Γm,j
− 1

Γm,n

)}]+

;∀j ∈ Nm (4.16)

where 1
Γm,n

is the “step depth” of the nth stair. Due to the definition of P (j) being the

power (water volume) above step j, it cannot be a negative number. Therefore we use {.}+

in (4.16) to assign 0 to P (j) if the result inside the bracket is negative. The corresponding
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Figure 4.4: Illustration for the GWF algorithm (a) Illustration of water level step j∗ = 3,
allocated power for the third step P ∗m,n(3), and step depth is 1

Γm,n
and (b) Illustration of P (j)

(shadowed area, representing the total power above step j) when j = 2.

geometric meaning is that the j∗
th

level is above water.

According to [78], the explicit solution for power allocation is:

Pm,n =

Pm,j
∗ +

(
1

Γm,j∗
− 1

Γm,n

)
1 ≤ n ≤ j∗

0, j∗ < n ≤ Nm,

(4.17)

where the water level step j∗ is given as

j∗ = max {j|P (j) > 0, 1 ≤ j ≤ Nm} (4.18)

and the power level for this step is

Pm,j∗ =
1

j∗
P (j∗). (4.19)

In order to allocate power to the selected subcarriers for each D2D user, first we perform

geometric water-filling with peak power constraint (GWFPP) [78] for all the subcarriers and
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calculate {Pm,n} using (4.17), (4.18) and (4.19). Now, let λ is defined by the set {n|Pm,n >
P̄m,n, n ∈ Nm}. If λ is an empty set, then Pm,n will be the output, otherwise, Pm,n will be set

by the individual peak power P̄m,n. Everytime we need to update the set Nm and the total

power PT at the end of each iteration. Since the finite set Nm is getting smaller and smaller

until the set λ is empty. The required steps to apply the algorithm GWFPP is summarized

below:

Algorithm GWFPP

Input: vector { 1
Γm,n
}, {P̄m,n} ∀n ∈ Nm and PT .

1) Compute {Pm,n} using (4.17), (4.18) and (4.19).

2) The set λ is defined by the set {n|Pm,n > P̄m,n, n ∈ Nm}. If λ is the empty set, output

{Pm,n}Nmn=1; else, Pm,n = P̄m,n, as n ∈ λ.

3) Update Nm and PT . Then return to 1) of the GWFPP.

The next step is to compute the summation of allocated power for all D2D users. Let

Sm be the total allocated power for the mth D2D user, Em be the extra power for the mth

D2D user when Sm exceeds the device’s maximum power (Pm,max) and Rm be the remaining

power for the mth D2D user that needs to be reallocated in the next round. In order to

satisfy device’s maximum power constraint, three cases are considered: 1) Sm = Pm,max, 2)

Sm > Pm,max and 3) Sm < Pm,max. For the first case, after checking the interference and

minimum rate requirement constraints, we can have the allocated power vector for those

D2D users directly. For the second case, we first perform GWFPP with the corresponding

Pm,max and then, check the interference and minimum rate requirement constraints to get

their power allocation vectors. In this case, we also calculate all the Em that needs to be

reallocated in the next round. Finally, for the third case, in order to perform GWFPP less

number of times, we start with those D2D users where we can allocate the remaining power

most while satisfying the required constraints. In each case, if any violation of the interference

or minimum rate constraint happens, this algorithm creates a set of Ω for those subcarriers

and the amount of the Rm that needs to be reallocated in the next round. The process
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continues until all the reallocation being completed while satisfying all the constraints. The

required steps for performing the power allocation are described in Fig. 4.5 and the detailed

algorithm is well depicted in the Algorithm 2 description.

Start

Perform GWFPP for 

all subcarriers

Calculate sum of all 

allocated power (Sm) for all 

D2D users 

Sm = Pm,max
Sm > Pm,max

End

Sm < Pm,max

Check the interference and 

transmission rate constraints

Perform GWFPP 

with Pm,max

Find the D2D user where 

the remaining power can 

be allocated most

For any violation of the constraints generate the set for subcarriers and power 

need to be reallocated

Perform GWFPP 

with Rm

Perform GWFPP 

with Pm,max

Check the interference and 

transmission rate constraints

The process continues until all the reallocation complete.

Pm,max ←Maximum power of D2D user

Sm ← Total allocated power

Rm ← Remaining power

Rm ≤ Pm,max Rm >Pm,max

Figure 4.5: Flow chart of power allocation algorithm.
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Algorithm 4 Power Allocation (PA)
Input: vector {Pm,max}∀m ∈M, PT ;
initialization A = {m|m ∈M}, B = {n|n ∈ Nm}, C = {m|sorted D2D user},Ω = φ;
for n ∈ B do

compute {Pm,n} using GWFPP with PT

end
for m ∈ A do

calculate total allocated power, Sm =
∑Nm

n=1 Pm,n
if Sm = Pm,max then

Interference-Rate Check(Υm,<m);

end
if Sm > Pm,max then

Extra power, Em = Sm − Pm,max;
compute {Pm,n} using GWFPP with Pm,max;
Interference-Rate Check(Υm,<m);

end
if Sm < Pm,max then

calculate {Pm,max − Sm};

end
end
sort ↓ {Pm,max − Sm};
for m ∈ C do

total power need to be reallocated, Rm = Sm + Em;
Nm = Nm ∪ {n}, n ∈ Ω;
if Rm ≤ Pm,max then

compute {Pm,n} using GWFPP with Rm;
Interference-Rate Check(Υm,<m);

else
Extra power, Em = Sm − Pm,max;
compute {Pm,n} using GWFPP with Pm,max;
Interference-Rate Check(Υm,<m);

end

end
return {Pm,n}
Function Interference-Rate Check(Υm,<m):

calculate total interference,Υm =
∑Nm

n=1 Pm,nI
(k)
m,n

calculate total transmission rate,<m =
∑Nm

n=1<m,n

if (Υm ≤ Ith) && (<m ≥ <min) then
output: {Pm,n};
Em = 0;

end
If(!Nm)

Ω←− Nm \ n,Em =
∑Nm

n=1 Pm,n

return {Pm,n}, Em,Ω
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4.5 Performance Evaluation

In order to evaluate the performance of the subcarrier assignment and power allocation

algorithm for D2D communications, we simulate a multiuser single cell system with radius

100m where BS is located in the center of the cell using MATLAB. All cellular users (perform

as PUs) and D2D users (perform as SUs) are uniformly distributed randomly within the

cell. The distance between D2D pairs varies depending on their relative position in the

cell. All other simulation parameters are considered according to Table 4.3. The simulation

results are evaluated over different realization of PUs and D2D users locations, interference

conditions and channel gains. Average transmitted data rates for different algorithms under

consideration are obtained from several independent simulation runs.

Table 4.3: Simulation Parameters

Parameters Values

Total no. of D2D users 5-35

Total no. of PUs 12-24

Total no. of subcarriers 5-50

Subcarrier bandwidth (∆B) 1.5 KHz

The value of Ts 1µs

Path loss factor 4

The value of δ2
d 10−12

Max D2D Tx power 0.1W

Max PU Tx power 0.25W

In order to evaluate the performance of the proposed algorithm, we compared our algo-

rithm with the most popular schemes : uniform power loading, water-filling schemes [76], and

ladder/triangular profile power allocation [117, 118]. In the uniform power loading scheme,

uniform power is loaded into each subcarrier and it only consider total power constraint C2.

With the total power as the power constraint (C2), the power profile follows the water-filling

scheme as in [76]. In ladder profile scheme [117], power is distributed in such a fashion

so that the subcarriers that are adjacent to the PU bands, are given less power where as

the subcarriers that are far away to the PU bands, are given more power. According to
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the triangular power allocation scheme in [118], power allocated to the subcarriers near the

PUs is small and gradually increase as move towards the middle. Thus maximum power is

allocated to the middle most subcarrier. Since the idea behind the schemes (ladder profile

and triangular power allocation) is the same, thus we name these schemes as ladder/triangle

scheme and they only considered the interference constraint C5.
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Figure 4.6: Illustration of the behavior for the proposed subcarrier assignment with different
values of the weighting factors (w1, w2, w3)

The behavior of the proposed subcarrier assignment strategy with different values of the

weighting factors in (4.15) is illustrated in Fig. 4.6. The effect of the different weighting

factors (w1, w2, w3) is revealed in the performance curves. The simulation results show that

an appropriate value of the weighting factors for the threer parts in the proposed indicator

can achieve superior performance. We select the values of the weighting factors (w1, w2, w3)

to be (0.4, 0.4, 0.2) in the following simulation, since this combination returns the highest

sum rate of the D2D uses in the simulation range.

Fig. 4.7 shows the effect of the distance between the D2D users on subcarrier allocation

where the minimum rate requirement is 50 kbps. Here, the first row represents the number

of allocated subcarriers, the second row denotes the distance between the D2D users and the

third row shows the transmission rate. It can be observed from Fig. 4.7 that the distance
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Figure 4.7: Effect of the distance between the D2D users on subcarrier allocation

between the D2D user plays an important role on the total number of subcarriers allocated

to one D2D user. To satisfy the minimum rate requirements of the D2D users, closely located

D2D users require less number of subcarriers compared to the distantly located D2D users.

Fig. 4.7 depicts the scenario where D2D users located within 20 meters need three subcarriers

to satisfy the minimum rate requirement whereas D2D users located within 70 to 80 meters

range need five subcarriers to satisfy the minimum rate requirement.

In Fig. 4.8, we plotted the transmission rate of D2D users versus the interference threshold

introduced to the PUs band for different schemes. As we see, the transmission rate for all

the schemes increases as the interference threshold increases. Also the transmission rate

achieved by the proposed scheme outperforms other three existing schemes. The reason is

that the proposed scheme maintains both the power and interference constraints at all stages

of the operation. The transmission rate of the uniform power loading scheme is significantly

lower than the other schemes due to the violation of both of these constraints.

Fig. 4.9 shows the transmission rate achieved by the D2D users versus the number of

subcarriers for the different schemes. It is obvious that as the number of subcarriers increases,

the proposed scheme provides better transmission rate for D2D users than the other existing
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Figure 4.8: Transmission rate of D2D users versus interference threshold to the PUs for
different schemes
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methods. The reason is that our proposed ASA scheme is adaptive in nature due to the

three different parts in the used metric.
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Figure 4.10: Total power budget versus interference introduced to the PU band for different
schemes.

Fig. 4.10 presents the interference introduced to the PU band versus total power budget

for different schemes. As the total power budget increases, the interference generated to

the PU band by the uniform power loading and water-filling schemes are severe due to not

taking the interference constraints into account. On the other hand, our proposed scheme is

able to load power into multi-D2D users providing increased transmission rate while always

keeping the interference introduced to the PU band below a specified threshold.

Fig. 4.11 illustrates the scenario of the total transmission rate versus the number of D2D

users for the different schemes. It can be observed that as we increase the number of D2D

users, the total transmission rate of our proposed scheme outperforms the other existing

schemes while maintaining different constraints. When the number of D2D users remain

small, the total transmission rate graph for all the schemes follow the linear pattern with a

larger slope. However, for large number of D2D users, the total transmission rate graph for

all the schemes become little flat with a smaller slope. This is obvious that as we increase

the number of D2D users, the interference constraint become dominant in this region and
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Figure 4.11: Total transmission rate versus number of D2D users for the different schemes

the total transmission rate does not increase as the number of D2D users increase. However,

in both region (linear or little flat), our proposed scheme provides superior performance than

the other schemes.
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Figure 4.12: Performance of different schemes for different minimum rate requirements

Fig. 4.12 investigates the performance of different algorithms for different minimum rate

requirements. Here, three different groups (e. g. G1, G2 and G3) are categorized for three

different minimum rate requirement values (e. g. 10 kbps, 50 kbps and 100 kbps) to evaluate

the algorithms performance in terms of spectral efficiency. Spectral efficiency is defined as the
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total transmission rate divided by the bandwidth of the spectrum dedicated to the D2D user

with unit bits/s/Hz. The comparison result presents that due to an increase in the minimum

rate requirement, for the same constraints, the spectral efficiency decreases. This is because

less number of D2D users are admitted due to high rate requirement threshold and stringent

power and interference constraints. However, still the proposed scheme outperforms the

other schemes. From Fig. 4.12, the improvement (in %) of the proposed scheme on spectral

efficiency compared to the other schemes for different minimum rate requirements has been

calculated which is well depicted in Table 4.4.

Table 4.4: Improvement (in %) of the proposed scheme on spectral efficiency compared to
other schemes.

Groups Other schemes Improvement

G1 (Min. rate req. 10kbps)
Uniform power loading 43%

Water-filling 29%
Ladder/Triangle 22%

G2 (Min. rate req. 50kbps)
Uniform power loading 48%

Water-filling 33%
Ladder/Triangle 26%

G3 (Min. rate req. 100kbps)
Uniform power loading 52%

Water-filling 36%
Ladder/Triangle 28%

4.6 Chapter Summary

This Chapter provides the system model to jointly employ CR technology and D2D com-

munication in cellular networks and construct the RA problem considering five constraints.

Describes a two-stage approach where a new ASA scheme is designed first and then, a novel

PA scheme is developed utilizing geometric water-filling (GWF) approach. Present simula-

tion results that validate the proposed solutions than the existing schemes.
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5.1 Introduction

There have been several research efforts found in the literature [119–121] on the energy ef-

ficient RA schemes for CRNs. The paper [119] presents a subchannel and power allocation

protocol that maximizes the energy efficiency (EE) of transmissions from a cognitive base

station operating in the TV white spaces. The proposed two-step solution to the EE max-

imization problem satisfies users minimum rate requirements and keeps the interference to

the PUs in the neighboring areas below a specified threshold. The energy-efficient RA is

studied in [120] in the orthogonal frequency division multiplexing (OFDM)-based CR net-

works under channel uncertainty including fairness issue. In [121], the authors proposed two

energy efficient RA schemes that utilize the sensing information.

On the other hand, due to the benefit of D2D communication, International Mobile

Telecommunications (IMT)- advanced standard systems, such as long term evolution (LTE)

and WiMax, allow D2D communication sharing the same radio resources with the cellular

network to increase the spectral efficiency [19]. D2D communication is, in fact integrated

into LTE-Advanced networks in [100].

RRA for D2D communication underlaying cellular networks are currently extensively

investigated by researchers in terms of energy efficiency [122–127]. The paper [122] demon-

strates how the integration of D2D communication in cellular systems operating under dy-

namic time division duplex (TDD) can improve energy efficiency. In this paper, the authors

perform joint optimization of mode selection, uplink/downlink transmission period, and

power allocation to minimize the transmission energy consumption while satisfying the traf-

fic requirement. In [123], the authors have investigated the energy-efficient power control

for D2D communications with underlaying cellular networks, where both the total EE and

individual EE have been considered. Another energy-efficient RA problem is studied in [124]

for D2D communication with underlaying cellular networks, which aims to maximize the

minimum weighted energy efficiency of D2D links while guaranteeing minimum data rates

for cellular links. On the other hand, joint RA and power control scheme has been derived
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in [125] to maximize the EE of D2D communications. In [126], the average EE and spectral

efficiency of multihop D2D communications have been analyzed under orthogonal sharing

mode. Joint channel and power allocation scheme for D2D communication has been studied

in [127] in order to optimize the expected data during battery lifetime of user equipments

(UEs), instead of the traditional EE.

From the literature survey, it is found that, most recent works focus on exploiting D2D

communication in cellular networks under different constraints. Only a few efforts [19, 110–

113] have been incorporated D2D communication with CR technology to jointly maximize

the spectrum efficiency, not to mention the EE. Very few efforts [128, 129] have been ob-

served in the literature addressing the EE. The paper [128] has developed energy-efficien

RA algorithms for both underlay and overlay communications, in the presence of co-existing

multiple-input single-output (MISO) primary link with a multiple-input multiple-output

(MIMO) secondary link. Authors of this paper have solved the RA problem by maximizing

the SUs EE subject to a minimum rate requirement of the PU and tackled it by fractional

programming. In [129], the energy optimization problem for cognitive D2D communications

has been investigated considering mutual preferences and satisfactions of users and proposed

an EE stable matching algorithm based on game and matching theories.

5.2 System Model

Let us consider the downlink of a single cell cognitive D2D system where K cellular users

(PUs) coexists with M D2D users (SUs) as shown in Fig. 5.1. It is assumed that K active

PUs occupy a total of N orthogonal channels and there is no co-channel interference among

the PUs. Usually, the number of PUs is much higher than the number of D2D users. Hence

we assume K >> M and a PU can share an orthogonal channel with only one D2D user. In

the following, the index sets of active PUs, D2D users and orthogonal channels are denoted

as K = {1, ..., k, ..., K}, M = {1, ...,m, ...,M} and N = {1, ..., n, ..., N} respectively. In
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BS

D2D user (SU)

Cellular user (PU) Cellular Link

D2D Link

Figure 5.1: A D2D enabled cognitive radio system.

addition, it is assumed that both PUs and D2D pairs meet their minimum QoS requirements

in terms of SINR, and the base station (BS) has the perfect CSI information of all the links.

Besides the distance based pathloss model, both the fast fading due to multi-path prop-

agation and slow fading due to shadowing are also considered in this channel model. Thus,

the channel gain between the kth PU transmitter and the mth D2D user receiver on the nth

channel can be expressed as [129]

gnk,m = ηβnk,mζ
n
k,mD−αk,m, (5.1)

where, η is the pathloss constant determined by system parameters, βnk,m is fast fading gain

with an exponential distribution, ζnk,m is the slow fading gain with a log-normal distribution,

α is the pathloss exponent, and Dk,m is the transmission distance between the kth PU and

the mth D2D user receiver. Similarly, we can denote the channel gain between the mth D2D

user transmitter and the kth PU receiver on the nth channel as gnm,k. Also, the channel gain

of the kth PU transmitter and receiver on the nth channel as gnkk and the mth D2D user

transmitter and receiver on the nth channel as gnmm.
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In this work, two approaches are considered to manage the coexistence among the primary

and secondary system: the underlay and the overlay approach. In the underlay approach, a

secondary system may reuse the primary resource as long as the primary rate remains above

the threshold T1 set by the primary system. The underlay protocol popular in cognitive radio

systems [130–132], has observed application in D2D systems that operate in the reuse mode

recently [133]. In this underlay D2D mode, a pair of neighbouring devices can autonomously

set up a D2D connection reusing resource presently used by a cellular user (PU), granted

that the cellular link is still able to preserve its required communication rate.

On the other hand, the overlay approach regards a different situation. An underlying

assumption in the underlay approach is that the transmission rate of the primary link (with-

out the presence of the secondary link) is larger than the required communication rate T1.

Therefore, the secondary system may reuse the primary system resources as long as its

interference does not affect the primary transmission rate to drop below T1. However, if

the primary system faces poor propagation conditions, or if it wanted to preserve energy

transmitting at a lower power, it might occur that even without any interference from the

secondary system, the transmission rate of the primary link might be already below T1. A

solution for this problem is that the primary system may get the assistance of a secondary

(D2D) transmitter, that is probably located in a more suitable position with better channel

condition. In these situations, the secondary (D2D) system becomes a relay for the primary

message, and in exchange can reuse the primary resource to transmit its own message [46].

Therefore, the underlay and overlay approaches can be exploited in complementary fash-

ion. If the primary system enjoys good condition and able to have much higher than the

required communication rate, then the underlay approach should be utilized, because it is

simpler, need no coordination between the primary and D2D systems. If instead, the trans-

mission rate of the primary link is below the required communication rate, then the overlay

approach can be applied to raise the primary system transmission rate. In many practical

scenarios, the resulting rate increase is large enough to allow the primary system to guarantee
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the required communication rate [128,134–136].

In this paper, we consider the following power consumption model. It captures not only

the transmission power of the D2D users but also the power consumption along the en-

tire circuitry including mixer, analog-to-digital converter (ADC), digital-to-analog converter

(DAC), filters, and digital signal processing (DSP) blocks. The circuit power consumption

can be divided into the static background power consumption Pback and the dynamic power

consumption εR that is dependent on the communication transmission rate R and the power

consumption per unit rate ε. Therefore, the circuit power consumption can be expressed as,

pcir = εR + Pback. (5.2)

Now, the total power consumption by the D2D users can be written as,

pt =
∑

m∈M,n∈N

1

θ
Pm,n + 2pcir (5.3)

where pt is composed of the transmission power over all of the channels, and the circuit power

of both the D2D transmitter and receiver, i.e., 2pcir. θ is the power amplifier efficiency, i.e.,

0 < θ < 1.

5.2.1 Underlay Approach

In the underlay mode D2D users share the resources with the PUs. This is possible since

D2D communication links are usually short-range so that interference to PUs is rather low.

In addition, extensive researches [137] have shown that the inter-cell interference can be kept

very low by power control and proper radio resource management. Thus in this work, we

confine our focus to the intra-cell interference between the PU and the D2D users only. By

fully utilizing the knowledge of the CSI, power allocation can be executed to attain efficient

spectral usage and power saving in cellular networks.

We suppose that x1 and x2 be the transmitted signal from the PU and the D2D users
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respectively. Then the received signals at the PU and D2D user receivers at a given time

instant can be written as,

y1 =
√
Pk,ng

n
kkx1 +

√
Pm,ng

n
m,kx2 + σ1 (5.4)

y2 =
√
Pm,ng

n
mmx2 +

√
Pk,ng

n
k,mx1 + σ2 (5.5)

respectively. Here, Pk,n and Pm,n indicate the transmission power of the kth PU and the mth

D2D user on the nth channel respectively. Furthermore, σ1 ∼ CN (0, σ2
p) and σ2 ∼ CN (0, σ2

d)

model the additive white Gaussian noise (AWGN) for the PU and the D2D user receiver,

respectively.

The channel gain to noise ratio of the kth PU and the mth D2D user on the nth channel

can be expressed as,

Γk,n =
|gnkk|2

Pm,n|gnm,k|2 + σ1

(5.6)

Γm,n =
|gnmm|2

Pk,n|gnk,m|2 + σ2

(5.7)

respectively.

Now, the achievable rate in b/s/Hz (i.e., normalized with respect to the channel band-

width) of the kth PU and the mth D2D user on the nth channel can be written as

Rk,n = log2(1 + Γk,nPk,n) (5.8)

Rm,n = log2(1 + Γm,nPm,n) (5.9)

respectively.

81



CHAPTER 5. ENERGY EFFICIENT POWER ALLOCATION IN UNDERLAY AND
OVERLAY COGNITIVE DEVICE-TO-DEVICE COMMUNICATIONS

5.2.2 Overlay Approach

In the overlay approach, the D2D transmitter assists the PU by relaying the primary mes-

sage and, in exchange enjoys the privilege to use the primary spectrum. Any of the relaying

techniques can be employed in the D2D system. Here, half-duplex amplify-and-forward (AF)

relaying technique is considered. Unlike decode-and-forward (DF), the use of AF does not

require any decoding operation at the D2D transmitter, which results in a lower complexity,

lower-delay, and lower-feedback requirement, and a simpler design [138]. The considered

digital implementation of AF has been explicitly proposed for the LTE-A standard [139].

Moreover, time division duplex mode is utilized to split the incoming signal from the for-

warded signal. In the first phase, the PU employs maximum ratio transmission to transmit

its signal x1 , as in the underlay approach. During this phase, the signal x1 is also received by

the D2D transmitter, which, in the second phase precodes and then transmits this amplified

signal together with its own message. The superposition of these two signals is labeled z2 .

Now, the received signals at the PU receiver and at the D2D user transmitter in the first

phase are expressed as,

y
(1)
1 =

√
Pk,ng

n
kkx1 + σ

(1)
1 (5.10)

ydt =
√
Pm,ng

n
k,mtx1 + σdt (5.11)

where, gnk,mt is the channel gain the PU and the D2D user transmitter on the nth channels,

σ
(1)
1 ∼ CN (0, σ2

p) and σdt ∼ CN (0, σ2
dt

) model the AWGN at the PU receiver and D2D user

transmitter, respectively.

Similarly, the received signals at the PU and the D2D receivers in the second phase are

expressed as,

y
(2)
1 =

√
Pm,ng

n
m,kz2 + σ

(2)
1 (5.12)

y
(2)
2 =

√
Pm,ng

n
mmz2 + σ

(2)
2 (5.13)
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where, σ
(2)
1 ∼ CN (0, σ2

p) and σ
(2)
2 ∼ CN (0, σ2

d) model the AWGN at the PU and the D2D

user receiver, respectively, and z2 is given by z2 = γydt + x2, where γ =
√

Pm,n
gnk,mt

Pk,n+σdt
is the

amplifying factor at the AF relaying system.

Now, the signal received at the PU receiver in the two phases can be written as

y1 =
√
Pk,n

{
gnkk +

√
Pm,ng

n
m,kγg

n
k,mdt

}
x1 +

√
Pm,ng

n
m,kx2+√

Pm,ngm,kγσdt + σ
(1)
1 + σ

(2)
1

(5.14)

and the signal received at the D2D receiver can be written as,

y2 =
√
Pm,ngmm

√
Pk,nγg

n
k,mtx1 +

√
Pm,ng

n
mmx2+√

Pm,ngmmγσdt + σ
(2)
2 .

(5.15)

The channel gain to noise ratio of the kth PU and the mth D2D user on the nth channel

can be expressed as

Γk,n =
|gnkk|2 + Pm,n|gnm,k|2γ|gnk,mdt |

2

Pm,n|gnm,k|2 + Pm,n|gnm,k|2γσdt + σ
(1)
1 + σ

(2)
1

(5.16)

Γm,n =
|gnmm|2

|gnmm|2Pk,nγ|gnk,mt|2 + |gnmm|2γσdt + σ
(2)
2

(5.17)

respectively.

Now, the achievable rate in b/s/Hz (i.e., normalized with respect to the channel band-

width) of the kth PU and the mth D2D user on the nth channel can be written as

Rk,n =
1

2
log2(1 + Γk,nPk,n) (5.18)

Rm,n =
1

2
log2(1 + Γm,nPm,n) (5.19)

respectively, where the factor “1
2
” indicates that the transmission takes only half of the

protocol time.
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5.3 Power Allocation problem and solution

In this section, we will first formulate the power allocation problem, and then describe the

corresponding power allocation algorithms.

5.3.1 Problem Formulation

For both the underlay and overlay approaches, the EE of the D2D users can be defined as

follows:

EEd =

∑
m∈M,n∈N

Rm,n

pt

(5.20)

Then, the EE optimization problem can be formulated as follows:

max
Pm,n≥0

EEd(Pm,n) (5.21)

subject to:

C1 :
∑

k∈K,n∈N

Rk,n ≥ T1

C2 :
∑

m∈M,n∈N

Rm,n ≥ T2

C3 : Pm,n ≤ P d
max ∀m ∈M, ∀n ∈ N

where, constraint C1 and C2 ensure that the PU and D2D users’ rates remain above the

thresholds T1 and T2, and constraint C3 is the D2D users’ power constraint, with P d
max the

D2D user’s maximum feasible power.

5.3.2 Solution Approaches

The EE optimization problem in (5.21) is a non-linear fractional optimization problem where,

the objective functions have the numerators as non-linear functions and the denominators in

a sum power form. Therefore, the fractional objective function in (5.21), which is a nonconvex
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function, turns the problem even more complicated and computationally intractable. Due to

the fractional form of the EE optimization problem, the Karush-Kuhn-Tucker (KKT) condi-

tions can not directly be utilized to solve it. Hence, existing algorithms seldom directly solve

the EE maximization problem, including the widely-utilized Dinkelbach algorithm [140].

1

Γm,n

P ∗
m,n(3)

1

2

3

4

5

µ

(a)

1

2

4

5

µ

3

(b)

Figure 5.2: Illustration for the GWF algorithm (a) Illustration of water level step j∗ = 3,
allocated power for the third step P ∗m,n(3), and step depth is 1

Γm,n
and (b) Illustration of P (j)

(shadowed area, representing the total power above step j) when j = 2.

In this section, a proven power allocation algorithm based on GWF approach [141] has

been utilized to solve the EE optimization problem. In order to illustrate GWF technique, a

water tank with equal width and monotonically increasing N steps/stairs is considered that

correspond to the N channels. Fig. 2 gives an illustration of the GWF approach. Let λm,n

denotes the “step depth”of the mth D2D user of the nth stair/channel which is the height of

the nth step to the bottom of the tank, and is given as:

λm,n =
1

Γm,n
, ∀m ∈M, ∀n ∈ N. (5.22)

Since the sequence Γm,n is sorted as monotonically decreasing, the step depth of the stairs
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indexed as {1, ..., N} is monotonically increasing. When water (power) PT is poured into the

tank, a water level µ is obtained. The optimal power allocation to each channel corresponds

to the area above the stair up to the water level.

The main idea of the GWF algorithm [78] is summarized as follows. Let j∗ denote the

index of the highest (in terms of shadow) step under water, then it can be written as:

j∗ = max

{
j|P (j) > 0, 1 ≤ j ≤ N

}
(5.23)

where, P (j) is the whole water volume above the jth step. Considering the geometrical

relationship, P (j) can be written as,

P (j) =

{
PT −

j−1∑
n=1

(
1

Γm,j
− 1

Γm,n

)}+

,∀m ∈M,∀j ∈ N . (5.24)

Then, the allocated power for the mth D2D user to the j∗ step is

Pm,j∗ =
1

j∗
P (j∗), (5.25)

and the complete solution is given by

Pm,n =

Pm,j
∗ + ( 1

Γm,j∗
− 1

Γm,n
) 1 ≤ n ≤ j∗

0, j∗ < n ≤ N.

(5.26)

The GWF algorithm is denoted by GWF({Γm,n}, PT ), i.e., the mapping from {{Γm,n}, PT}
to {j∗, P (j∗)}.

On the other hand, the P-GWF algorithm [142] has been proposed to compute the sum

power minimization problem with the transmission rate requirement constraint. The basic

sum power problem can be stated as: given the target transmission rate T > 0, a group of
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powers {Pm,n} need to be found to satisfy,

min
∑

m∈M,n∈N

Pm,n (5.27)

subject to: C1 : 0 ≤ Pm,n,∀m,∀n;

C2 :
∑

m∈M,n∈N

Rm,n ≥ T.

In [142], algorithm P-GWF has been proven to provide the optimal solution to the prob-

lem (5.27). Algorithm P-GWF provides the mapping of ({Γm,n, T}) to the exact solution

{Pm,n} and j∗.

Here, we develop an algorithm denoted by EE-GWF to solve the optimization prob-

lem (4.8), based on the GWF approach and P-GWF method. In the first step, GWF algo-

rithm has been used to find the highest water (power) level index that denotes the maximum

number of the channels for power allocation. In the second step, P-GWF algorithm has been

utilized in two rounds in order to find a group of power levels that has been satisfied by both

the minimum rate requirement for the PU and D2D users i. e., T1 and T2.

Now, the final step is to find the EE-optimal power allocation for the target problem

in (4.8) that satisfies the water-filling like architecture with the water tank model. Thus, a

water tank with unit width and monotonically increasing steps is utilized to illustrate the

geometric relationship of the variables as in Fig. 5.3. Let, again N denote the total number

of the steps that correspond to the N channels in the tank. Assume a certain amount of

water is poured into the tank, making water level µ between the Lth and the (L+ 1)th step.

For the nth step (n ≤ L), the power allocated is Pm,n = µ − λm,n. An auxiliary variable

∆P , shown as the shadowed area in Fig. 5.3, denotes the entire volume of the water (power)

above the Lth step. Since each step is assumed to have a unit width, the allocated power for

the Lth step is,

PL =
∆P

L
. (5.28)
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µ

µ = λm,L +
△P

L

PL =
△P

L

λm,L

△P : shadowed area

λm,n

Pm,n

L Nn

Figure 5.3: Illustration of geometric relation and auxiliary variable ∆P .

From the geometric relationship, ∆P lies between [∆Pmin,∆Pmax], where ∆Pmin = 0, ∆Pmax =

L(λm,L+1−λm,L). ∆Pmin occurs when the water level µ is at the Lth step, and ∆Pmax happens

when the water level µ reaches the (L+ 1)th step.

Then, for a given L, let us introduce a function F (∆P ), where ∆P is the variable with

the geometric meaning shown as in Fig. 5.3,

F (∆P ) = (∆P + λm,L.L) log

(
λm,L +

∆P

L

)
−
(
λm,L +

∆P

L

)
L∑
j=1

log(λm,j)− PT , ∀m ∈M
(5.29)

where Pm,n is the allocated power for the mth D2D user on the nth channel,

Pm,n = (λm,L − λm,n) +
∆P

L
, ∀1 ≤ n ≤ L,∀m ∈M. (5.30)

In [141], it is proven that F (∆P ) exhibits the desired monotonically increasing property
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in the range of (∆Pmin,∆Pmax). Hence, the EE-optimal power allocation is equivalent to,

min |F (∆P )| (5.31)

subject to: 0 ≤ ∆P ≤ L(λm,L+1 − λm,L).

The optimal solution to (5.31) is classified into three cases which are illustrated in Fig. 5.4.

∆P

F (∆P )

∆Pmax

(1) : F (0) > 0

∆P

F (∆P )
∆Pmax

(2) : F (∆Pmax) < 0

0

0

∆P

F (∆P )

∆Pmax0

(3) : F (0) · F (∆Pmax) < 0

Figure 5.4: Illustration for solving conditions (5.31).

When the optimal solution to (5.31) is not at the boundaries i. e., F (0) < 0 and

F (∆Pmax) > 0, then ∆P can be calculated through the following iteration,

∆Pi+1 = ∆Pi −
F (∆Pi)

F ′(∆Pi)
, ∀i ∈ I+, (5.32)

where, I+ is the set of non-negative integers. The subscript of ∆Pi is the iteration index.

Details of the iteration steps can be found in [141].

Next, the required steps for performing the power allocation in EE-GWF algorithm are

described in Fig. 5.5 and the detailed algorithm is well depicted in the Algorithm description.

Algorithm EE-GWF:
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Start

Apply GWF algorithm to find the maximum no. 

of channels (highest level) for power allocation

Apply P-GWF algorithm in two rounds.

1st round: satisfy the minimum rate requirement 

for the D2D users.

2nd round: satisfy the minimum rate requirement 

for the PUs.

Find the EE optimal power allocation by 

executing the following three branches

Minimum power 

on highest level?

Not in two 

boundaries on 

highest level

Maximum power 

on highest level?

Compute the target equation 

for EE optimization.

End

No

No

Yes

Yes

Figure 5.5: Flow chart of EE-GWF algorithm.
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1) Pre-processing:

{j∗, P (j∗)} = GWF({Γm,n}, PT ),

j∗ → W and P (W )
W

+ 1
ΓW
→ 1

ΓW+1
,

1st round : {j∗, {Pm,n}} = P-GWF({Γm,n}, T2),

2nd round : {j∗, {Pk,n}} = P-GWF({Γk,n}, T1),

min{j|Pm,j∗ + 1
Γm,j∗

< 1
Γm,j

, 1 ≤ j ≤ N} − 1→ j.

Pm,j∗ + 1
Γm,j∗

→ λm,j, for 1 ≤ j ≤ j;

while 1
Γm,j
→ λm,j, for j < j ≤ N.

(5.33)

where the symbol “→” denotes the assignment operation and a new index j is utilized

after applying P-GWF to guarantee both the minimum rate requirements constraints.

1) Input: Let i = j and assigning a

N + 1− j ×N matrix P a null matrix.

2) Loop for i from 1 to W : for each loop, one of the following three branches being exe-

cuted to update the ith row of the matrix P:

From now on we are omiting m in the subscript of P in order to reduce notation com-

plexity.

2.1) If F (4Pmin) = F (0) > 0,

Pi,x =
1

Γi
− 1

Γx
, x = 1, · · · , i, (5.34)

and then go to Step 3); else

2.2) if F (4Pmax) = F
(
i
(

1
Γi+1
− 1

Γi

))
< 0,

Pi,x =
1

Γi+1

− 1

Γx
, x = 1, · · · , i, (5.35)
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and then go to item 3); else

2.3) if

F (0) · F
(
i

(
1

Γi+1

− 1

Γi

))
< 0, (5.36)

then solving 4P by using equation (5.32) and

Pi,x =
4P
i

+

(
1

Γi
− 1

Γx

)
, j = 1, · · · , i. (5.37)

3) If i = W , compute

i∗ = arg max
{i|1≤i≤W}

{
1
2

∑N
n=1 log2(1 + ΓnPi,n)

2pcir +
∑N

n=1
1
θ
Pi,n

}
, (5.38)

and then output P j = Pi∗,j, ∀j; else let i+ 1→ i and go to Step 2).

5.4 Performance Evaluation

5.4.1 Simulation Setup

In order to evaluate the performance of the developed power allocation algorithm, a multiuser

single cell system is simulated with radius 500 m. The BS is located in the center of the

cell. All cellular users (PUs) and D2D users (SUs) are randomly distributed with uniform

distribution within the cell. The distances between D2D pairs vary depending on their

relative position in the cell. The cellular link transmits with power at 20 dBm, and requires

a minimum rate T1 set as a percentage T of the PU transmission rate without the presence

of the D2D system. All other simulation parameters are considered according to Table

I. The simulation results are evaluated over different realization of the PUs and D2D user

locations, rate constraints and channel gains. Average EE optimization for both the underlay

and overlay approaches are obtained from several independent simulation runs.

Let us first analyze the performance of the developed algorithm for the underlay approach.
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Table 5.1: Simulation Parameters

Parameters Values

Total no. of D2D users 5-35

Total no. of PUs 10-50

Max D2D Tx power 20dBm

Max PU Tx power 10dBm,20dBm

Max D2D transmission distance 10-90 m

Power consumption per unit rate ε 1mW/kbps

Static background power consumption Pback 5dBm

Power amplifier efficiency θ 30%

Pathloss exponent α 4

Pathloss constant η 10−2

Shadowing ζnk,m (standard deviation 8dB

of a log-normal distribution)

Multi-path fading βnk,m (the mean of 1

an exponential distribution)

Noise power σ -144dBm

Transmission power of the D2D users (dBm)
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Figure 5.6: Energy Efficiency versus transmission power of the D2D users with underlay
approach

In Fig. 5.6, the EE of the developed scheme versus the transmission power of the D2D users

is illustrated under different minimum rate requirements (e. g. T = 50%, 75% and 100%).

As the transmission power of the D2D users increases the EE of the developed scheme also

increases almost linearly first and then it becomes saturated. Saturation happens because
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it exceeds the maximum transmission power limit of the D2D users. Also, as the minimum

rate requirement increases, the EE performance decreases. The reason behind that is less

number of D2D users are admitted due to high minimum rate requirement.
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Figure 5.7: Energy Efficiency versus transmission power of the D2D users under overlay
approach

Next, let us focus on the overlay approach where the PUs need the help of the D2D

transmitter to meet its own minimum rate requirement. Similar simulation parameters have

been considered for analysing the overlay performance as in the underlay approach. All the

users’ positions are randomly generated as earlier. However, the D2D transmitter has been

placed closer to the PU receiver than the PU transmitter. Thus, the distance between the

D2D transmitter and the PU receiver is kept between 15% and 75% of the distance between

the PU transmitter and the PU receiver. All other parameters remain the same except that

the PU transmission power is kept at 10 dBm. In Fig. 5.7, the EE of the developed scheme

versus the transmission power of the D2D users is illustrated under different minimum rate

requirements (e. g. T = 120%, 150% and 200%). Similar behaviour holds for the Fig. 5.7 as

in underlay case.

Fig. 5.8 depicts the affects of the distance between the D2D pairs on the EE performance

of the developed solution. It can be observed that the EE performance decreases in both
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Figure 5.8: Energy Efficiency versus the distance between the D2D pair

the underlay and overlay schemes with the increase of the distance between the D2D pairs.

This is because the total fading (path-loss, shadowing and small-scale fading) increases with

the distance between the D2D pairs. The effect of the distance on the energy efficiency in

overlay case is more than in the underlay case due to the requirement regarding the distance

between the D2D transmitter and the PU receiver.
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Figure 5.9: EE performance versus the transmission power of the D2D users

Next, in order to evaluate the performance of the developed solution, the EE-GWF

algorithm is compared with the widely-adopted Dinkelbach method [125] and the dual-
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based method [124] from the existing literature. For EE-GWF algorithm, only the underlay

approach is considered since it is well utilized in the literature. Fig. 5.9 presents the EE

performance versus the transmission power of the D2D users under different algorithms.

It is observed from Fig. 5.9 that as the transmission power of the D2D users increases

the EE performance increases for all three algorithms. However, the EE-GWF algorithms

outperforms the other two algorithms.

Number of the D2D users
5 10 15 20 25 30 35

EE
 o

f D
2D

 u
se

rs
 (b

/J
/H

z)

80

82

84

86

88

90

92

94

96

98

EE-GWF
Dinkelbach method
Dual-based algorithm

Figure 5.10: EE performance versus the number of the D2D users

Number of channels
30 40 50 60 70 80 90

EE
 o

f D
2D

 u
se

rs
 (b

/J
/H

z)

80

82

84

86

88

90

92

94

96

98

100

102

EE-GWF
Dinkelbach method
Dual-based algorithm

Figure 5.11: EE performance of the D2D users versus the number of the channels

Fig. 5.10 and Fig. 5.11 describe the two scenarios of the EE performance of the D2D users
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versus the number of the D2D users and the number of the channels for different algorithms,

respectively. In both figures, it is observed that as the number of D2D users or the number of

channels increases, the EE performance of the D2D users increases. In Fig. 5.10, the increase

in the EE performance of the D2D users is very little as compared to the EE performance

in Fig. 5.11. This is because as the number of D2D users increases in Fig. 5.10, they are all

utilizing the same fixed channels. On the other hand, in Fig. 5.11, the increase in the EE

performance is more because more resources (channels) are available for the fixed number of

the D2D users. In Fig. 5.10 and Fig. 5.11, it is also observed that the developed algorithm

EE-GWF outperforms the other two schemes. The reason is that in the EE-GWF algorithm

only the channels with high channel gains are considered for the power allocation.
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Figure 5.12: Total power consumption versus the number of the D2D users

Fig. 5.12 shows the total power comsumption by differents algorithms versus the number

of D2D users for certain EE target. It is observed from Fig. 5.12 that the total power

comsumption increases with the increase of the number of the D2D users and the EE-GWF

algorithm consumes least amount of power than the other two algorithms. This is because

the algorithm EE-GWF allocate more power to the wireless channels that have less fading.

Thus, the EE-GWF allows better utilization of the available resources and saves power.
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5.5 Chapter Summary

This chapter investigates the energy-efficient power allocation problem of co-existing D2D

and cellular users considering both underlay and overlay CR approaches. In both the (un-

derlay and overlay) spectrum sharing schemes, the optimization problem is formulated as

the EE maximization of the D2D users subject to the minimum rate requirement for both

the D2D users and the cellular users. A proven power allocation algorithm based on the

GWF approach is utilized to solve this EE optimization problem. Contrast to the widely

used Dinkelbach method for EE maximization, this algorithm can directly compute the op-

timal solution by applying the geometry-based approach, with exactness and low-degree

polynomial complexity. Simulation results reveal the benefits of the proposed algorithm.
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6.1 Conclusion

Spectrum crunch escalates as wireless communication solutions, both human and machine

centric, being deployed overwhelmingly and require more and more bandwidth. In the realm

of such severe spectrum scarcity a sustainable solution for the spectrum crunch is essential.

The CRN solution, that enables intelligent spectrum sharing and dynamic spectrum access

could provide a serious long term solution. This is further facilitated by the dominance of

software control in wireless systems, both at the transceiver level and the network level.

This thesis discusses certain key issues upon which a practical CRN may be built. The

texonomy for the RA in CRNs is well researched in this thesis. Finally, the co-existance of

the D2D communication in CRNs is investigated in terms of spectral efficiency and energy

efficiency.

In detail, Chapter 1 presents an overview of cognitive radio networks and defines overlay,

underlay and interweave type CRNs. The basic elements for the operation of CR systems

and the main functions of those elements to support intelligent and efficient utilization of

frequency spectrum are also envisioned here. This chapter also discusses about the D2D

communication as a promising paradigm for the next generarion wireless networks.

Chapter 2 provides a taxonomy for the centralized and distributed RA process in CRNs

for both infrastructure based or ad-hoc type CRNs. The resource allocation is a multivari-

ate optimization problem that is often solved considering the throughput as the objective

function and factors like transmission power, maximum transmission delay, allowable inter-

ference, QoS and fairness as the constrains. This optimization problem can be solved using

classical optimization algorithms or using heuristic approaches.

In chapter 3, more OFDM, that has been widely accepted as the de-facto standard for 5G

networks is used as the foundation1. Although different optimization strategies are possible,

we focus on a modified GWF algorithm applied in general OFDM based cognitive radio

1Although Non Orthogonal Medium Access (NOMA) type algorithms are discussed for 5G networks,
their performances are not yet proven and they require a significantly differential power transmission which
may not be practical.
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systems considering per subchannel power constraint and individual peak power constraint

aiming to maximize the throughput.

For this purpose, an efficient power and subcarrier allocation algorithm, named as IGPP

is discussed. This algorithm is optimized in such a way to consider both individual sub-

carrier peak power constraint and per subchannel (group of subcarriers) power constraint.

Simulation results are provided to illustrate the effectiveness of the algorithm. The pro-

posed algorithm allows better utilization of the available power resources, thus maximizes

the throughput than some other existing algorithms. The algorithm allocates more power to

wireless channels that have less fading, hence saving power resources. Also a weight factor

is considered for each channel to further fine tune the optimization.

Then in chapter 4, it is studied how efficiently D2D communications can be employed

with a CR approach. Here, again an OFDM based cognitive cellular network with D2D

communication has been modeled and analyzed using Lagrange formulation. The adaptive

subcarrier allocation is optimized in terms of power, interference and transmission rate. The

proposed algorithm based on GWF is tested to maximize the total downlink transmission

rate of the D2D system under both power and interference constraints along with minimum

rate requirements. Our developed scheme outperforms the existing schemes as revealed in

the simulation results.

Chapter 5 investigates the EE power allocation problem of co-existing D2D and cellular

users considering both underlay and overlay CR approaches. The underlay and overlay ap-

proaches are utilized in complementary fashion to support more practical scenarios. In both

the (underlay and overlay) spectrum sharing schemes, the optimization problem is formu-

lated as the maximization of the D2D users EE subject to the minimum rate requirement for

both the D2D users and the cellular users. This leads to a nonconvex fractional optimiza-

tion problem which is more complicated and computationally intractable. Alternatively, we

utilize the proven GWF power allocation algorithm to solve this optimization problem. Con-

trast to the widely used Dinkelbach method for EE maximization, this algorithm can directly
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compute the optimal solution by applying the geometry-based approach, with exactness and

low-degree polynomial complexity.

In a nutshell, we brought the awareness on the key issues in designing a reliable high

performance cognitive D2D communication networks. The need for optimal RA is discussed

and few algorithms proposed by the authors are used to perform an optimal RA for CRNs

that co-exist with D2D communication.

6.2 Future Research Directions

In this section, the challenges in RA methods are discussed and the future research directions

and opportunities are outlined.

6.2.1 Spectrum Sensing Issues

The existing RA schemes are developed under the assumption of having perfect spectrum

sensing. However, this assumption may not be true and there may be errors in spectrum

sensing which may direct to inefficient RA and interference with PUs. Therefore, discovery

process of spectrum need to be carried out more carefully because it is influenced by three

main issues:

• The hidden transmitter

• The exposed transmitter and

• The hidden receiver.

The hidden transmitter issue has been resolved by carrying out sensing operation at both

transmitter and receiver ends, but there are still no satisfactory solutions for the latter issues.

A CR user should be capable of discovering the existence of a neighboring primary receiver

to resolve these issues. Hence, feasible solutions for this purpose are yet to be investigated.
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Furthermore, spectrum sensing performance is limited by hardware and physical constraints.

For instance, SUs with a single transceiver cannot transmit and sense simultaneously. More-

over, users usually only observe a partial state of the network to limit sensing overhead.

There is a fundamental trade-off between the undesired overhead and spectrum holes de-

tection effectiveness: the more bands are sensed, the higher the number and quality of the

available resource. Thus this problem needs to be further investigated to improve spectrum

sensing effectiveness. Lastly, sensing errors due to false detection and miss detection in PU

signal sensing are ignored in many cases in the literature. Accurate models that take both

false alarm and mis-detection probabilities into account, need to be devised. Therefore, the

simplified ON/OFF model for PU traffic may not be a proper choice for practical environ-

ment where PUs may be cellular or wireless sensors. To improve the probability of detection

with less sensing errors, cooperative techniques have been proposed [143]. However, many

aspects of cooperative sensing need to be still investigated for better solutions [144]. Future

RA schemes have to incorporate more complex considerations such as the impact of cor-

relation among sensing channels, imperfectness of reporting channels etc. to develop more

efficient cooperative sensing schemes [145]. Furthermore, trade-off between sensing action

and throughput as well as other applications such as multimedia application over CRNs

needs to be further investigated.

6.2.2 Channel Models

The majority of the proposed RA algorithms have adopted a Rayleigh fading channel model.

Few works considered Nakagami-m channel model [146]. However, it is suggested to test

the existing algorithms and propose new algorithms for different channel models. Particu-

larly, the environment where the CR entities communicate whether urban, sub-urban, rural,

indoor, or outdoor will affect the wireless channel characteristics. For example, the de-

ployment of a secondary network in a rural area with low building density increases the

line-of-sight probability, and thus Rician fading channels would be more appropriate. Alter-
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ing the adopted channel model will definitely affect the analytical performance results and

also could have an effect on the algorithms optimality. Furthermore, more efforts considering

non-i.i.d channels is encouraged [147].

6.2.3 Cross-layer Design Approaches and Security Issues

In CRNs, superior interaction is needed between different layers of protocol stacks in order

to attain desired goals and performance in terms of radio resource management, QoS provi-

sioning, security and other network objectives. The idea behind the Cross-layer design [148]

approach refers to devise the protocol stack by exploiting the information exchange and re-

liance between different protocol layers to acquire superior performance. But at the same

time, it will also be susceptible to cross-layer attacks which may happen due to malevolent

operations executed at one layer that could cause security violations at another layer [88].

CRNs inherently require greater interaction between different layers of the protocol stack.

Therefore, cross-layer attacks and security related issues [149] including jamming attack and

mitigation, selfish behavior in collaborative sensing and misbehavior in detection, physical

layer and MAC layer in security, and the modeling and detection of insider attacks should be

given special attention. A cross-layer security mechanism that incorporates recent advances

on security threats/attacks and countermeasures, need to be investigated in RA design in

order to permit a reliable and secure environment for CRNs [150]. Finally, the application

of artificial intelligence (AI) techniques can be included to tackle security challenges for

dynamic spectrum access [151].

6.2.4 Spectrum Mobility Issues

Spectrum mobility is also an essential issue in RA design aspect. Studies in the literature

incorporate several design issues such as PU detection, handoff decision, target channel selec-

tion and spectrum handoff strategy [152]. Spectrum sensing speed and precision that greatly

influence PU detection event, can be increased by cooperative sensing [153]. Handoff decision

104



CHAPTER 6. CONCLUSION AND FUTURE WORK

is another important issue which can cause harmful interference to PU. This can be greatly

improved by using proper handoff algorithm e. g. fuzzy logic based algorithm [154]. Appro-

priate target channel selection approaches in the literature include having a backup channel,

target channel availability prediction under partial sensing scheme and selection utilizing

historical data. PU traffic modeling taking PU mobility [155] into account needs careful

attention in order to intelligently select the target channel by SUs. Several prediction and

estimation schemes [156], like hidden Markov models [157], neural networks [158], Bayesian

inference [159] and, autoregressive model [160] can be adopted for better realization of PU

activity. Proper spectrum handoff strategies need to be chosen that are adaptive in nature

according to PU traffic. In order to minimize delay in handoff event, simultaneous data

transmission in multi-channel CRNs need to be performed. Effective contention resolution

for multiple SUs during handoff need to be carried out for successful handoff. Cross-layer

approach for link maintenance is necessary to effectively address mobility issues in physi-

cal, MAC and network layers. Finally an integrated handoff management process [161] is

necessary to improve network performance.

6.2.5 Multi-hop Scenario

Dynamic spectrum access in multi-hop domain incorporates several challenges in RA schemes.

Several studies [162], [163] in the literature tried to bring up research issues regarding RA

design for multi-hop CRNs which can be summarized as:

1. Control channel establishment and management scheme without a predefined dedicated

control channel,

2. Transceiver synchronization,

3. CTS timeout and problems in decoding CTS,

4. Multi-channel hidden terminal problem,
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5. Hidden incumbent node problem,

6. Number of transceivers,

7. Coordination of spectrum sensing and accessing decision making,

8. Radio frequency heterogeneity,

9. Group communication, and

10. MAC layer authentication.

Some other attributes like the effect of channel state information in spectrum access, QoS

guarantee, concern in fairness aspect, PU protection also need careful attention and further

investigation in multi-hop environment.

6.2.6 QoS Management in CR Environment

Spectrum utilization and network capacity of CRNs can be increased by dynamic spectrum

supervision. However, this imposes several challenges in QoS management [164]. Users can

exploit available spectrum successfully captured by a CR but accurate information needs

to be forwarded to the application to amend traffic features and user requirements. Once

the available frequency bands are characterized, the most suitable spectrum bands can be

selected by taking into account the spectrum characteristics and QoS criteria. However,

spectrum characteristics can alter due to the dynamic nature of PU traffic and network

parameters. Thus, appropriate spectrum decisions and necessary interactions among appli-

cation streams, need to be performed to meet the QoS provisioning. Several QoS supportive

RA schemes are reported in the literature. Most of the approaches assumed that PU traffic

characteristics are known by SUs. However, this may not be true in general. Hence, PU

traffic parameter estimation needs to be done often [165]. Such accurate estimation is nec-

essary to guarantee QoS criteria in terms of disruption caused to the PUs. Overall, further
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investigations are needed to design QoS supportive RA schemes for CRN based on different

criteria.

6.2.7 Cognitive Heterogeneous Networks (HetNets)

Cognitive heterogeneous networks (HetNets) are an attractive solutions for expanding net-

work capacity to multiple spectrum access technologies, network structures and communi-

cation protocols. Some applications such as tactical applications in military communica-

tions [166], medical applications in CR-based wireless body area networks [167], are few

interesting recent applications of cognitive HetNets. A thorough study of RA schemes with

the capability of cognitive HetNets is still an open area of research. However, only a few

works address the issues in a coexistent heterogeneous CRNs scenario [168]. Since the system

characteristics of these cognitive HetNets, are different in several categories such as spectrum

sensing aspects, PU detection ability, hardware capacity, fairness issue, all these categories

need to be explored while designing MAC structure. A scenario of coexistent heterogeneous

CRNs with collision-based PUs and fairness issue are discussed in [169]. Further research

towards opportunistic 3G/4G/5G spectrum sharing involve precise evaluation of the sce-

nario conditions, in terms of terminal confinement, link maintenance, and user preferences,

and will also need to consider face side aspects such as security supervision and privacy

preservation. The rising requirement of wireless data traffic and the scarceness of accessible

radio spectrum, will extend 3GPP’s LTE (Release 8) and LTE-Advanced (Release 10) to

unlicensed bands (5 GHz). Thus dynamic spectrum management for LTE [170] and LTE-

Advanced [171], [172] mobile communication network as a CR-ready technology, become

challenging and provide an active area for research.

107



Appendix 1

Acronyms

108



APPENDIX 1. ACRONYMS

AF Amplify-and-Forward
AWGN Additive White Gaussian Noise
CSI Channel State Information
CCI Co-Channel Interference (CCI)
CXI Cross-Channel Interference (XCI)
CR Cognitive Radio
CRN Cognitive Radio Network
CRP CR Pair
CWF Conventional Water-Filling
DFT Discrete Fourier Transform
DSL Digital Subscriber Lines
DVB Digital Video Broadcasting
D2D Device-to-Device
FFT Fast Fourier Transform
GWF Geometric Water-Filling
GWFPP Geometric Water-Filling with Individual Peak Power Constraints
ISI Inter-Symbol Interference
IPWF Iterative Partitioned Water-Filling
IGPP Iterative Partitioned Weighted Geometric Water-Filling with Individual Peak Power Constraints
LTE Long Term Evaluation
LWF Linear Water-Filling
MAC Medium Access Control
MIMO Multiple Input, Multiple Outout
OFDM Orthogonal Frequency Division Multiplexing
PDF Probability Density Function
PHY Physical Layer
PU Primary User
PUP PU Pair
QoS Quality of Service
RF Radio Frequency
RRA Radio Resource Allocation
SDR Software-Defined Radio
SU Secondary User
SNR Signal-to-Noise Ratio
WRAN Wireless Regional Area Network
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Derivation of P ∗m,n

In order to find the solution of the optimization problem depicted in (4.9), Lagrange mul-

tipliers (α, β, γ, δ, ψ) are used corresponding to the five constraints. The Lagrange can be

formed as

L(X,T, α, β, γ, δ, ψ) = ∆B
M∑
m=1

N∑
n=1

xm,n log

(
1 +

tm,n
xm,n

Γm,n

)
−

M∑
m=1

∑
nεNm

αn

( M∑
m=1

N∑
n=1

tm,n − PT
)

−
M∑
m=1

βm

( N∑
n=1

tm,n − Pm,max
)
−

M∑
m=1

∑
nεNm

γn

(
tm,n − P̄m,n

)
−

K∑
k=1

δk

( M∑
m=1

N∑
n=1

tm,nI
(k)
m,n − Ith

)

−
M∑
m=1

ψm

(
<m,min −

N∑
n=1

xm,n<m,n
)

(2.1)
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The Lagrangian dual problem can be rewritten as follows:

D(α, β, γ, δ, ψ) = max
X, T

M∑
m=1

N∑
n=1

{
(1 + ψm)xm,n log

(
1 +

tm,n
xm,n

Γm,n

)
−
(
αn + βm + γn +

K∑
k=1

δk

I(k)
m,n

)
tm,n

}
+

M∑
m=1

∑
nεNm

αnPT +
M∑
m=1

βmPm,max +
M∑
m=1

∑
nεNm

γnP̄m,n +
K∑
k=1

δkIth −
M∑
m=1

ψm<m,min

= max
X

M∑
m=1

N∑
n=1

max
P

[
xm,n

{
(1 + ψm) log (1 + Pm,nΓm,n)−

(
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k=1

δmI
(k)
m,n

)
Pm,n

}]

+
M∑
m=1

∑
nεNm

αnPT +
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∑
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X

M∑
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P
{xm,nΨ(Pm,n)}+

M∑
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αnPT +
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(2.2)

with Ψ(Pm,n) being defined as follows:

Ψ(Pm,n) = (1 + ψm) log (1 + Pm,nΓm,n)−
(
αn + βm + γn +

K∑
k=1

δkI
(k)
m,n

)
Pm,n (2.3)

To maximize (2.2) for any given xm,n, (2.3) is differentiated with respect to Pm,n and set

the result to 0. This yields

P ∗m,n =

 1 + ψm

ln
(
αn + βm + γn +

∑K
k=1 δkI

(k)
m,n

) − 1

Γm,n

+

(2.4)
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