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Abstract

This thesis presents a new dynamic finite element (DFE) formulation for the free
vibration of composite wings modeled as beam assemblies. Implementing Euler-
Bernoulli beam theory, the initially assumed uniform beam is modeled in a progressive
manner to produce a complex tapered composite thin-walled wing. The DFE employs
dynamic trigonometric shape functions (DTSF’s) to produce a single dynamic stiffness
matrix containing both mass and stiffness properties. Then, the Wittrick-William root
counting algorithxp is used to sglve the resulting non-linear eigenvalue problem. The
effective stiffness of a flat fiberous composite beam is modeled using classical laminate
theory. The effective stiffness of a thin-walled wing-box is achieved by employing a
circumferentially asymmetric stiffness (CAS) configuration. The convergence of the DFE
is significantly better as compared to other existing methods, the Finite Element Method
(FEM) and the Dynamic Stiffness Maﬁix (DSM), particularly for complex elements and

higher modes of free coupled vibration.
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D, Bending stiffness matrix

(4 ~ Bending slope
v Angle of twist
El or H, Bending stiffness
GJor H, Torsion stiffness
K Coupled bending-torsion stiffness
b Base
h Wall thickness
d Depth of a box-beam section
L Length of the beam (wing)
R Radius of curvature
A(s) Reduced axial stiffness
B, Reduced coupling stiffness on the top skin of a box-section
A Enclosed area of the box-section '
a Width of a box-section
C, Reduced shear stiffness on the top skin of a box-section
C, Reduced shear stiffness on the side panels of a box-section
s Circumference of the cross-section
w Bending displacement
I, Mass moment of Inertia per unit length
m Mass per unit length
Wir Internal Work
Wer External Work
L Element Length
Wf" Elementary work corresponding to bending
wk Elementary work corresponding to bending
N;orN Flexural shape functions
N, Twist shape functions
T, Reference variable
DEV Deviator terms
T,. Average variable
X, Distance between mass axis and geometric elastic axis
c Chord length
M, Mass of wing box
G, Geometric elastic axis
E, Mass axis
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Chapter 1 Introduction

1.7 General Introduction

Mechanical vibrations are exhibited by all structures, the study of these vibrations is
important because they can be destructive in a design. A bridge is a good example of a
static structure that can undergo mechanical vibrations. If the bridge is forced to vibrate
at one of its resonance (i.e. natural) frequencies by an externally applied load, the modes
of deformation associated with this resonance can lead to catastrophic failure. For
example, the Takoma bridge as seen in the illustration below is undergoing twisting
motion caused by vibrating at a particular natural ©= frequency (see
http://www ketchum.org). The vibration analysis of structures is an essential part of the

design phase, as unwanted resonance behaviour can | A

result ultimately in failure of the structure. Not only
can the modes of deformation cause irreversible
plastic deformation, but also fatigue damage caused
by oscillating motion can lead to crack propagation »
and finally failure in design. . ‘- oL A .

It is the vibration response of a system which must b studied to prevet such failures
in design. The first step for any vibration analysis is determining the free vibration
response (i.e., natural frequencies and modes) of the structure. Once a methed is adopted
for determining the resonant frequencies and modes of free vibration the design can
potentially be optimized for any desired vibration response.

Aircraft control surfaces and wing flutter can lead to detrimental fatigue damage and
possible failure. The knowledge of the natural frequencies and modes of free vibration for
these systems are essential to their flutter analysis and aero elastic tailoring (Lilico and
Butler, 1998; Lilico et al, 1997). The free vibration analysis of composite aircraft wings
is the main focus of this research. In most optimization processes the reduction in mass
for a design means lower costs. The search for lighter materials which satisfy the

requirements of aircraft structures is a continuing effort. The requirements on materials
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have become greater than ever before, to the extent that homogeneous material cannot
achieve the multitude of performance needs. Composite materials possessing
unidirecticnal fibres can satisfy most if not all the requirements, for example lighter
weight, higher strength, designable stiffness, longer fatigue life and corrosion resistance
(see, for example publications by Jones (1998) and Berthelot (1999), etc.).

| The stiffness properties of composites, is of particular interest as it leads to possible
optimization of composite aircraft wings. By changing the ply orientation and stacking
sequence, one can alter the stiffness characteristics of the composite material. The free
vibration of aircraft wings is then extended to fibrous composites in which couplings
arise from an unbalanced lay-up. For symmetric lay-ups, where stacking sequence and
thickness is symmetric with reference to the mid-plane 6f the laminate, couplings occur
between bending and torsion modes of deformation and are observed to be the most
predominant factor influencing the natural frequencies and modes of free vibration
(Banerjee, 1998; Borneman and Hashemi, 2003; Hashemi and Borneman, 2003; Hashemi
and Borneman, 2004).

The coupled free vibration of a laminated composite wing, idealized as beam
assemblies have been investigated by Abramovich and Livshits (1994), Teoh and Huang
(1997), Teh and Huang, (1980) using different analytical approaches and Chandra,
Stemple and Chopra (1990), Wu and Sun (1991), Jaechong and Kim (2002), Teh and
Huang (1979), Suresh and Venkatesan (1990), Chen, Liu and Lim (2003), Jung, Nagaraj
and Chopra (2001), Volovoi and Hodges (2002) using various numerical models.
Numerical models based on Rayleigh-Ritz, Galerkin and Finite Element Method (FEM)
use element matrices evaluated from assumed fixed interpolation functions (Cook ef al,
2001). The Finite Element Method is commonly used as it provides a general systematic
approach to formulate the element mass and stiffness matrices for a given structure.
Considering the fixed nature of the shape functions, the natural frequencies can be found
by solving the resulting linear eigenvalue problem. This approximate method is widely
accepted, see for example Chandra et al (1990), Wu and Sun (1991), Jachong and Kim
(2002), Teh and Huang (1979), for its monotonic convergence to the exact values, with
the appropriate type and number of elements. Commercial software packages such as

ANSYS® are used to construct the FEM model of complex structures and to carry
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various analyses. Although a wing modeled as an assembly of uniform beam elements is
not highly complex, difficulty arises from modeling the composite nature of the beam.
Taylor and Butler (1997), Lillico and Butler (1998) have used ANSYS@ with shell
(SHELL91) elements to construct cbmposite type elements. In this research due to the
unavailability of a composite module in the Educational version of ANSYS®, the FEM
was programmed using MATLAB®.

An elaborated FEM model iakes a very long time to create. For the preliminary design
process, one needs a simple and accurate model to calculate the natural frequencies of a
system and further detailed design and optimization would be possible using FEM. This
has led to the analytical and semi anal};tical approaches. In addition to the FEM and other
weighted residual methods, the Dynamic Stiffness Matrix (DSM) method can
alternatively be employed to determine the free vibration response of a structure. The
DSM was developed by Kolousek in 1940 for homogeneous (metallic) Euler-Bernoulli
beams (Barerjee and Williams, 1985). The DSM has since been refined continuously. In
the last decade, Banerjee and his collegues extended the DSM method to the vibration
analysis of many different homogeneous and composite beam models. Banerjee and
Williams (1995) developed the DSM for a uniform Euler-Bernoulli beam, Banerjee and
Williams (1996) extended that to the Timoshenko beam theory and then later this model
was further extended to include an axial force (Banerjee, 1998). The DSM models for
composite beams are developed based on the exact member theory (Banerjee and
Williams, 1995). Furthermore, the elements of the frequency dependent stiffness matrix
are derived in closed form. Were each element of the DSM matrix is evaluated based on
algebraic expressions, resulting in faster execution compared to the numerical alternative
matrix inversion method.

Using Reduce® software extensive manipulation was undertaken in the search for a
symbolically inverted element DSM matrix (Banerjee and Williams, 1995). The
computational time has been compared between the closed form solution and the

" numerical solution presented by Banerjee and Williams (1995). Their results revealed
significant time reduction using the closed form solution. Given that the general DSM
‘matrix is frequency dependent, a non-linear eigenvalue problem results. The natural

frequencies are solved by application of the Wittrick-Williams root counting algorithm
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(Wittrick and Williams, 1971; Wittrick and Williams, 1952) in conjunction with a
numerical bisection method. For simple uniform beam configurations the DSM method
requires only one element to produce the exact soluticn. For some cases involving more
complex geometries the DSM has slower convergence than the FEM (Hashemi, 1998;
Hashemi and Borneman, 2003). It is for this reason that a new more flexible method was
devised to include the advantages of both the FEM and DSM.

The Dynamic Finite Element (DFE) exploits the advantages of the FEM and DSM. It
provides a general sysiematic procedure (i.e., Integral Formulation based on the
Weighted Residual Method (WRM)), which it shares with the FEM formulation and the
accuracy and ability to converge.on any particular natural frequency adopted from the
DSM method. The proposed technique follows the same procedure as the FEM by
formulating the element equations discretized to a local domain, then, element stiffness
matrices are constructed and assembled into a single global matrix. The generality
adopted from the FEM provides easy implementation to elements with higher
complexity.

The Dynamic Finite Element (DFE) method was first proposed by Hashemi (1998)
and has since been will established fdr the free vibration analysis of homogeneous beams,
blades and beam-like structures ( Hashemi , Richard and Dhatt, 1999; Hashemi and
Richard, 1999; Hashemi and Richard, 2000(A); Hashemi and Richard, 2000 (B),
Hashemi and Richard, 2001; Hashemi, 2002). It has been shown that the DFE method has
higher convergence to the exact values than both the FEM and DSM for complex
geometries (i.e. tapered beams). The Dynamic Trigonometric Shape Functions (DTSF’s)
produce a frequency dependent stiffness matrix similar to the DSM. In fact, the DFE
reduces to the DSM matrix for simple cases such as Euler-Bernoulli homogeneous
uniform beams (Hashemi, 1998). |

The goal of this research is to investigate laminated composite wings and to develop a
DFE formulation for the free vibration analysis of such structures. Due to coupling terms
found in the governing equations of motion arising from the composite nature of the
material, the DSM will not reduce to the same matrix as the DFE as previously described

for Euler-Bernoulli beams.
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As it will be discussed later in this thesis, when coefficients of the governing
differential equation of motion are variable (e.g., a tapered configuration) the DFE can
incorporate additional terms to increase the convergence rate of the solution. These
additional terms known as deviator terms were first used by Hashemi (1998). Deviator
terms are simply refining terms used to replace the initial averaged distribution of
variables with the exact distribution. The addition of these deviator terms is the most
important factor that differentiates the DFE from the DSM. The DFE, with its frequency
dependent stiffness matrix, leads to a non-linear eigenvalue problem similar to the DSM
where a dedicated Wittrick-William algorithm is then used to solve the system. It will be
shown that the combined advantage:s of the FEM, DSM and refining deviator terms
makes the DFE an accurate, flexible, and systematic method capable to advantageously
determine the natural frequencies of free vibration of a beam or wing configuration. The
DFE is validated by its higher convergence rate to the natural frequencies compared to
other existing methods (Borneman and Hashemi, 2003; Hashemi and Borneman, 2003;

Hashemi and Borneman, 2004).

1.2 Pre-processing

Considerable analysis into the composite lay-up and stacking sequence must be
accomplished before studying the free vibration of a materially coupled system. Since the
rigidities will change with fibre angle, pre-processing must be carried out to determine
the effective rigidities of the system for a particular fibre orientation. Solid rectangular
cross-sections are among the simplest to analyse. Through a detailed literature survey it
was difficult to find the values for effective bending, FEI, torsion, GJ, and coupled
bending-torsion, K, rigidities of a composite beam. A number of references (Jones, 1998;
Berthelot, 1999; Banerjee, 1998) clearly outline a general procedure in c.lculating the
stiffness properties of an assumed solid rectangular beam cross-section. Most authors
displayed the principal, transverse and longitudinal elastic modulus, Poison’s ratio and
principal shear modulus, but did not show the numerical values for the effective
rigidities. It is for this reason that additional efforts was required to develop a pre-

processor type program in MATLAB® to evaluate the effective rigidities of a composite
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beam. This program was later altered to calculate the effective rigidities for any fibre
angle and stacking sequence.

The calculation of rigidities for a composite box beam is more complex than for the
assumed solid cross-section. Reserchers such as Armanios and Badir (1995),
Berdichevsky, Armanios and Badir (1992) produced a general formulation to evaluate
the rigidities of a composite box-beam section. The box-beam rigidity calculation was
essential to accurately describe a composite wing-box geometry. In these references, two
types of box-beam configurations are considered, Circumferentially Asymmetric Stiffness
(CAS) and Circumferentially Uniform Stiffness (CUS). The CAS configuration is the only
configuration considered in this. thesis as it exhibits the bending-torsion coupling
behaviour. The CUS configuration results in extension-twist coupling. Smith and Chopra
(1990) described a similar model of a box-beam, where rigidity calculations are based on
either a symmetric or anti-symmetric configuration. Similar to the CAS, the symmetric

configuration produces a bending-torsion coupling.

1.3 Thesis Organization and Modeling Considerations

In the attempt to construct an accurate and complete wing model a progressive
technique is implemented. In, brief, this thesis starts the wing idealization with a very
simple uniform solid rectangular cross-section laminated composite beam model. Then,
more geometric and material complexities are gradually incorporated in the model
leading to stepped, tapered, and dually coupled configuration and finally, ending with a

geometric- materially coupled tapered laminated composite wing box model.

The opening Chapter 1 gives a general introduction to the importance of mechanical
vibrations and applicability of composite materials. Three of the most attractive vibration
analysis techniques, FEM, DSM, and DFE, are outlined and briefly differentiated. The
coupled bending-torsion coupling produced by an unbalanced lay-up of comporite plies
is also described. The purpose of this research is stated and the overall outline of the

thesis is presented.
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In Chapter 2, a short introduction to mechanical vibrations is first presented. Different
categories of structural free vibrations, the associated discrete and continudus models,
various types of resulting eigenvalue problems are also investigated. Then the dedicated
solution methods to both the linear and non-linear eigenproblems are briefly introduced.
The linear eigenvalue problem results from the assumed fixed polynomial shape
functions. The is obtained when frequency dependent assumed shape functions are used
to express the field variables of the problem. More emphasis is placed on the non-linear
frequency dependent eigenvalue problem where implementation of the Wittrick-William
root counting algorithm (Wittrick 'and Williams, 1971) to solve for the natural
frequencies is presented. As it is then briefly discussed , the corresponding modes of

coupled vibration can be exiracted using a simple perturbation technique (Hashemi,
1998).

In Chapter 3, the calculation of effective rigidities for both solid rectangular and thin-
walled box beam cross-sections is presented. The calculation of effective rigidities is
limited to symmetric or Circumferentially Asymmetric Stiffness (CAS) cross sections as
these configurations produce coupled bending-torsion behaviour inherent to the design.
The influence of fibre angle and stacking sequence for an unbalanced unidirectional
composite will change the effective stiffness the beam or wing model, resulting in

significantly different vibration response.

In Chapter 4, the Dynamic Finite Element (DFE) formulation for an Euler-Bernoulli
uniform composite beam with a solid rectangular cross section is presented. The bending
and torsion Dynamic Trigonometric Shape Functions (DTSF) are developed and used to
form the frequency dependent stiffness matrix. The formulation is then applied to

uniform and piecewise uniform stepped beams.

General tapered wing geometry is considered in Chapter 5. The DFE formulation is
prepared with refining terms known as ‘deviator terms’ (Hashemi and Richard, 1999;
Hashemi, 1998; Hashemi and Borneman, 2003; Borneman and Hashemi, 2003; Hashemi

and Bormmeman 2004; Bomeman and Hashemi, 2004) to enhance the tapered model. This
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formulation is applied to two different wing configurations: a linearly tapered by chord
only (constant wing thickness), and a second wing model linearly tapered by chord and
stepped by thickness wing. At the end of Chapter 5, a comparative study is also presented
to illustrate the limitations associated with the application of the deviator terms. The

importance of these limitations for consideration in further developments is then

acknowledged.

Prior to Chapter 6, only material coupling resulting from an unbalanced lay-up in the
_composite wing is considered. In Chapter 6, not only material coupling terms but also
geometric coupling effects are tak.en into account. The geometrical coupling arises from
non-coincident mass and elastic axes in a wing box cross-section. Several dually coupled
wing configurations are considered with applications of higher order tapers such as a 2™
and 3™ degrees. The CAS configuration is used to model the composite stiffness of the
assumed thin-walled box-beam cross-section to ensure a bending-torsion coupled

response.

Finally, the general conclusions are presented in Chapter 7 where the direction and

future of the research are also stated.
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- Chapter 2 Solution Methodolcgy

2.1 Introduction

In general, the vibration analysis of an engineering system requires: the idealization of
the system into a form that can be analyzed, the formulation of the governing equilibrium
equations of this idealized system, the solutions of the governing equations, and finally
the interpretation of the results. Physical systems may be broadly classified into two
categories: discrete systems or continuous systems. Based on laws of physics, an
engineering problem is thus represented either by a discrete system, which is
characterized by a set of algebraic equations involving a finite number of unknowns or
degrees of freedom; or by a continuous system which is very often characterized by a set
of partial differential equations with corresponding boundary conditions (Bathe, 1982;
Hashemi, 2002).

The exact solution of the differential equations and which satisfies all boundary
conditions is only possible for relatively simple systems, and numerical procedures must
in general be employed to predict the system response. These procedures, in essence,
reduce the continuous system to a discrete idealization that can be analyzed in the same
manner as a discrete physical system. The free vibration analysis of ‘a discrete or

continuous system leads to a so called Eigenvalue problem.

2.2 Free Vibration Analysis Based on Discrete Models: Linear
Eigenproblems

Critical buckling and undamped free vibration problems are often solved using finite
elements to obtain a discrete model with a finite number of degrees of freedom. In
vibration problems, an alternative discrete model is often obtained by “lumping”
distributed masses at convenient points. Further, these models usually yield linear

eigenvalue problems Hashemi (2002) as:
[K{u}=A[M][U]=0; [K(o){U}=[K-w’M]{U}=0 (0.1)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



which can be solved by many proven and secure mathematical methods. Here, X and M
represent stiffness and mass matrices of the system, respectively, and K(@) is the so-

called Dynamic Stiffness Matrix (DSM) of the system. For a continuous system, the

formulation generally leads to (Bathe (1982)):
L(u) = AL,(u) onadomainV, and ¢,(u) = A,(u) onboundaryS of V  (0.2)

where L, Ly, 1;, and I; are linear differential operators. In the free vibration analysis of
structures, the basic idea is to solve the relevant eigenproblem leading to the eigenvalues,
A, and eigenvectors, {U}, which represent the natural frequencies, @ and the modes of
structures, respectively. The characteristics of this model depend on the analysis to be
carried out, in essence, the actual continuous system is reduced to an appropriate
discrete system where the element equilibrium, constitutive relations and element

interconnectivity requirements are satisfied (this will be discussed in more details farther

in this thesis).

2.3 Analytical Formulation Based on Continuous Models: Non-
Linear Eigenproblems

A practical structure, assembled from elements possessing distributed mass, will have an
infinite number of degrees of freedom and an infinite number of natural frequencies. The
“Exact” member, or element, equations exist for structures including plane frames, space
frames, grids, and many plate and shell problems. For plane frames, the member
equations often incorporate the stability functions for buckling problems, and their
dynamic equivalents for vibration problems (Wittrick and Williams (1983)). In this
thesis, the focus is on the free undamped vibration problems. The exact member

equations are then used to assemble the overall dynamic stiffness matrix, K(@), of the

10
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structure. The natural frequencies, in this case, will be obtainable from a non-linear
eigensystem as in equation 2.1.

The elements 6f the displacement vector U, to which K(@) corresponds, is the finite
set of amplitudes of nodal point displacements, varying sinusoidally with time. The
frequency dependent matrices [K(@)] resulting from the Dynamic Stiffness Matrix
(DSM) method and Dynamic Finite Element (DFE) approach both lead to non-linear
eigenvalue problems. The Finite Element Method (FEM) based on fixed interpolation
functions leads to a linear eigenvalue problem. In the following sections, the solution

methods for both linear and non-linear eigenproblems are briefly addressed.

2.4 Fixed shape functions and Linear Eigenproblem solution

In the conventional FEM formulation, the basis functions of the approximation space are
generally polynomial expressions. The basis functions are then used to construct the
‘Fixed’ interpolation functions (i.e. they only vary with element span-wise position x).
The polynomial shape functions satisfy both completeness and inter-element continuity
conditions. The solution of the natural frequencies pertaining to this technique is simple
considering this is a linear eigenvalue problem (0.1). For simple systems, setting the
determinant to zero leads to a linear algebraic equation from which the natural
frequencies can be easily extracted. For more complex systems, with large number of
Degrees-Of-Freedom (DOF), one could solve the resulting classical linear eigenproblem
using an inverse iteration, subspace or Lanczos method (Bathe ,1982). It is important to
notice that due to the approximate nature of the conventional FEM, one could only solve

for as many natural frequencies as the total DOF of the system.

2.5 Dynamic trigonometric shape functions and Non-Linear
Eigenprcblem soiution

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



As it was stated in previous sections, the DSM and DFE formulations obtained from
continuous models are different compared to the FEM considering the stiffness matrix is
usually frequency dependent. One of the advantages of using a dynamic stiffness matrix
is that natural frequencies are not missed. They lead to a non-linear eigenvalue problem

as:

[K psas (@) w,}=0 0.3)
There are two possible sets of solutions pertaining to the above equation.

{w,}20 —» |Kpg (@)|=0 0.4)

{w,}=0 —> |K g (@)= (0.5)

Then, the method frequently used for determining the natural frequencies of the
system is the Wittrick-Williams algorithm presented in different occasions by Wittrick
and Williams (1971), Wittrick and Williams (1982), Wittrick and Williams (1983). The
method is based on the sturm sequence properties of the frequency dependent stiffness
matrix of the system and involves the input of a trial frequency. The number of natural

frequencies exceeded by this trial frequency is then calculated as follows:
J=J,+sgn{K,} (0.6)

where J represents the total number of natural frequencies of the system exceeded by the

trial frequency, J, represents the total number of clamped-clamped (C-C) natural

frequencies of all elements exceeded by the trial frequency (i.e, lK Dsa (a))l =o0) and is

calculated as

NE
5=, ©7)
k=1

12
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The term sgn{K,,} is the sign . ‘- . of Kpgy, and is determined by counting the
number of negative elements along the leading diagonal of the upper triangularized
matrix. This is accomplished after the K, is fully assembled. The upper triangular
matrix is sensitive to pivotal operations, such that, during the gauss elimination
procedure, the rows can be pivoted but not the columns. Theﬁ, from equation (0.6) the
final number of natural frequencies exceeded by the trial frequency for the entire beam is
calculated. Using a numerical method any natural frequency can be converged upon.
This research uses the bisection technique as the convergence method. The bisection
method is a no fault method in determining the solution.

There also exist combined methods to speed up the convergence of the solution. When
the bisection method brings the upper and lower limits on the eigenvalues sufficiently
close, a quicker numerical procedure can be implemented such as linear interpolation
presented by Hoorpah, Henchi and Dhatt (1994), Newton’s method discussed by Hopper
and Williams (1977), parabolic interpolation discussed by Simpson (1984), or inverse
iteration method (refer to Williams and Kennedy, 1988; Hashemi, 1998).

2.6 Extracting the modes

By implementing the Wittrick-William algorithm the resonant frequencies are
established for the free vibration of a system. Difficulty arises from solving the equation

for the modes of deformation due to the zero force vector residing on the right hand side:

[K(@,)]{w,}={0} 0.8)

where, F is the zero force vector corresponding to the free vibration of the structure.

At the resonant frequency, the dynamic stiffness matrix cannot be inverted due to the
zero determinant. To obtain a non-trivial solution the frequency variable is manipulated
so that the frequency dependent stiffness matrix is altered slightly. This perturbation must

be small as to not deviate from the solution significantly.

13
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@, = w,(1+1.0x10™) (0.9)

where @, is the altered frequency and i is any real number sufficiently large enough such

that a small perturbation is created. This new frequency is then substituted into equation
(0.8) leading to:

K(&,)H{w,}={F} (0.10)
The force vector on the right side of equation (0.10) is also altered slightly.
F=F+10x10™" (0.11)

where F is the altered force vector.Then the modes can be evaluated by manipulating

equation (0.10) to:

{w.}=[k@)]" {F} (0.12)
The order of perturbation of the frequency variable @, and the force vector F

depends on the numerical precision. Using double precision the 10™ order perturbation is

acceptable to accurately describe the modes of deformation (Hashemi, 1998).

2.7 Conclusion

The Wittrick-William technique plays an important part in determining the natural
frequencies and modes of free vibration. This method is used for both, but not limited to
the Dynamic Finite Element method and Dynamic Stiffness Matrix method where the use
of a frequency dependent stiffness matrix leads to a non-linear eigenvalue problem. The

technique can equally be used as a solver for the FEM (Roach and Hashemi, 2003). This
14
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method is particularly advantageous with the capability of solving any range of

frequencies.

15
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Chapter 3 Composite Rigidities

3.7 Introduction

The application of fibre-reinforced composite materials in the aerospace industry extends
from commercial to military aircraft, such as the Boeing F18, B2 Stealth Bomber, AV-8B
Harrier (Jones, 1998). The attractiveness of composites lies in their mechanical
properties; such as weight, strength, stiffness, corrosion resistance, fatigue life.
Composites are widely used for control surfaces such as ailerons, flaps, stabilizers,
rudders, as well as rotary and fixed wings. That is why the analysis of composite
structures is imperative for aerospace industry. The main advantage of composites is their
flexibility in design. Mechanical properties of the laminate can be altered simply by
changing the stacking sequence, fibre lay-up and thickness of each ply which leads to

optimization in a design process.

3.2 Assumptions

The composite beam is modeled based on the chord-wise bending moment (about the z-
axis) small compared to the span-wise moment (about the y axis, see Figure 3-2). The
chord-wise moment is then neglected. The composite material pertaining to this research
is a unidirectional fibre reinforced composite material. The given information of any
unidirectional composite material is the elastic modulus in both the longitudinal and
transverse axis (see Figures 3-1 and 3-2), Poison’s ratio and the shear modulus in the

principle directions.
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Figure 3-1: Unidirectional fibres surrounded by a matrix

Figure 3-2: Coordinate transformation from principal directions to global (x,y,z) direction. Where E;,

and Ey and the longitudinal and transverse elastic modulae.

3.3 Effective rigidities for a solid cross-section

The reduced stiffness constants in the material principle directions are:

- U Er — 0.13
Q= oo =0Qn (0.13)
E E E.
Q = T - T :...lQ (0.14)
* 1-U 0 I_E_T_uzT E, )
L
Qe =67 (0.15)

where, E, , is the elastic modulus is the longitudinal direction. E;, is the elastic modulus

in the transverse direction. Poisson’s ratio is denoted by v,,. and the principal shear
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modulus is denoted by G, . For a plane stress state these reduced stiffness constants are

sufficient to describe the stress-strain relationship as follows:

g, Qn Qu Q| &
0, |=|1Qu Qn Qx| & (0.16)
712 Qs Qx Qell&2

In order to find the stresses and strains in the (x, y, z) coordinate system a simple

rotational transformation is needed as:

[Q]=[rT'[Q,]Ir] 0.17)

where T is the transformation matrix which is used to transform the reduced stiffness
constants from the principal material fibre directions to a global (x, y, z) beam
coordinates.
Then, the resulting transformed reduced stiffness constants for a unidirectional or
- orthotropic composite from its principal directions is (Berthelot, 1999):

Q,, = Q,,cos*¢ +Q,,sin*p+2(Q,, +2Q, )sin’p cos? ¢

Q,; =(Q, +Q,, —4Qy )sin® pcos® g +Q,, (cos* ¢ +sin’ @)

Qi =(Q) ~ Qi —2Qqs)sin P08’ +(Qp; ~Qup +2Qg)sin’ pos ¢

—_ ) 0.18)
Q,, =(Q,, sin* ¢+2(Q,, + Q) sin” gcos® ¢ +Q,, cos* ¢
Qa6 =(Qy; — Q) —2Q4) sin® gcos g+ (Q2 — Qg +2Qg)sin ¢cos’ ¢
Qes =(Qy +Qp —2(Q,, + Qgg) ) sin® Pcos® ¢+ Qg (sin® @+ cos* @)
From Berthelot (1999) and Banerjee (1998), the in-plane resultant matrix N(x, y) is:
N, o,
12
N, t=[ l0,tdz (0.19)
18
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and the resultant moment is:

M, (o

/2
M, t=[ zi0,tdz (0.20)
M, Tyo

Both equations (above) can be merged into a single equation commonly known as the
“Constitutive Equation”. The constitutive equation describes the stiffness matrix of a
laminate plate. The resultant forces and moments are functions of the in-plane strains and

curvatures (Berthelot, 1999).

'N.| [A A, Ag|By B, Bg| &
Ny An A22 A26 B12 B22 B26 eyy
N 20 Am A25 A66 Bxa st B66 Sxy (0'21)
Mx Bll B12 Blﬁ Dl] D12 D16 Kx
My Bl2 B22 B26 DIZ D22 D26 Ky
_Mx.v A _Bne By, By st Dzs D66 R _ny |

The sub-matrix A is called the extensional stiffness matrix, sub-matrix B is called the
coupling stiffness matrix and sub-matrix D is called the bending stiffness matrix
(Berthelot, 1999). When the laminate is symmetric, by ply orientation and thickness, with

respect to the mid-plane layer, the coupling matrix B is eliminated (B,.j =0). The
coefficients corresponding to a bending-twist coupling are D,, and D,.

The stiffoess coefficients are defined by the following expressions from Berthelot (1999).

NL
Ay=2(Qp) (I =hyy)
k=1 k
1 NL ) ) ,
Bij = z (Qij) (hk - hk_] ) (0.22)
2 k=1 k

18 = 3 3
D;j =§;(Qij) (hk "hk_l)

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where h, is the distance from the mid-plane of the laminate (Figure 3-3).

M, | |Dy,Dy_ Dyl
M, |=|D, D, Dy | x, (0.23)
M, | |De 1Dy Dg] Ky, '

1) N

~
h!o-l

Figure 3-3: Composite Laminate beam consisting of multiple plies, where A, is the distance
from the mid-plane of the composite.

For a bending-torsion coupling behaviour the chord wise moment M _ is assumed to be

zero so that the x, curvature can be eliminated from (above) and then the matrix (0.23)

reguces to the following form:

e e e 2] e

The resulting matrix is then:

D. — Dlzz D.. — D12D.16
= 0.25)
M 2 K (
xy D. — Dy, Dy - Dj Xy
26 66
Dll Dll
20
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The bending and torque intensities are related to the resultant moment and torque by
(Banerjee, 1998):
M =-bM

0.26
T=2bM, ©26)

where b is the base (chord) of the laminate. For small deflections, the curvatures can be

related to the bending slope @ and torsion twist i as follows:

(0.27)

so that the general form of the moment and torque is:

7 sl 029

where,

2
El = b[D22 —%}

11

11

K= 2;{1)26 ————DEDw)

n

2
GJ = 4b( » —%—6—) (0.29)

The EI, GJ and K represent the effective rigidities of the beam in the global (x, y, 2)
coordinate system. EI, GJ, and K represent, respectively, the bending rigidity, torsion
rigidity and bending-torsion coupled rigidity. The effeciive rigidities are functions of ply

angle, thickness, and stacking sequence.
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3.4 Effective rigidities for a thin-walled box-beam section

The calculation of composite rigidities for a box-beam is presented by Armanios and
Badir (1995) and Berdichevsky et al (1992). The Circumferentially Asymmetric Stiffness
(CAS) configuration would produce a bend-twist coupling. The reduced axial stiffness
A(s), coupling stiffness B(s) and shear stiffness C(s) can then be developed from the

constitutive equation (0.21) as:

NI ")
A(s) = 4, |
‘x12‘126
B(s)=2| A, ——= 0.30
6)) ( ) ] (0.30)
(‘326)2
Cis)=4 AR
(s) [Af,(, : J

The current rigidities are based on the following thin-walled assumptions:

d<<L, h<<d, h<<R

where d is the depth, A is the height, L is the length of the beam and R is the radius of

curvature (refer to

Figure 3-4 ) (Berdichevsky et al , 1992)..

Figure 3-4: General cartesian coordinate system
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The resulting effective rigidities are then obtained as:

EI = Af{z*ds~ 2% P I (0.31)
t [d +a—’—]
Gle-C g (0.32)

K= __,_] A? (0.33)

¢§
T 1

i —_— ¥

Figure 3-5: Box beam with rectangular cross-

section (Box-section)

To differentiate the top and bottom panels from the side wall panels the subscripts ¢
and v are used to represent top and sides, respectively. The inner area is denoted
by A, ,variables d and a are, respectively, the depth and width of the box-section. These
-effective rigidities can then be used as the coefficients to the differential equations of
motion governing the materially coupled bending-torsion vibration of composite wings
analyzed in Chapters 4 and 5. The same equations will also be then extended to

asymmetric airfoil cross-sections. A pre-processing program was developed in Matlab®
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to calculate rigidity terms for various ply angles, laminates and cross-sectional

configurations.

24
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Chapter 4 Uniform Laminated Composite Wing
Modeli

4.1 Introduction

In this chapter, the materially coupled bending-torsion vibration of laminated composite
beam, based on an assembly of uniform beam elements, and using the Finite Element
Method (FEM), Dynamic Stiffness Matrix (DSM) and Dynamic Finite Element (DFE) is
presented. The DSM method is based on the exact so]ution to the governing differential
equations of motion, as presented by Banerjee and Williams (1995). Therefore, for a
uniform beam, the DSM needs only one element to achieve the exact natural frequencies.
The DSM formulations can also be easily extended to approximate tapered geometry by
using a piece-wise uniform stepped model. The FEM model is obtained using a Galerkin
weighted residual method to formulate the element mass and stiffness matrices of the
current uniform beam. In what follows, a Dynamic Finite Element method for the
coupled vibration analysis of uniform and stepped composite beams is developed. The
comparison is then made between the DFE results and those obtained from the FEM and

DSM formulations in order to validate the proposed methodology.

4.2 Wing Model

A cantilever composite beam with length L and a solid cross-section is the basis of the
model (see Figure 4-1). All rigidities are assumed constant along y axis. The rigidities
are: bending, EI, torsion, GJ, and coupled bending-torsion, K. The rigidities can be
determined either experimentally or based on the theory presented in Chapter 3. The solid
cross section is assumed to be symmetric with different fibre layer orientations (see
Figure 4-1), where w is the translational displacement associated with bending and ¥ is

the rotational twist associated with torsion.
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Figure 4-1: Composite Beam on a Right Handed Coordinate System.

4.3 Assumptions

The simplest model of a composite wing is represented by a uniform Euler-Bernoulli
beam, where the bending slope is the derivative of the bending displacement with respect
to the span-wise direction (Lilico et al, 1997). Shear deformation and rotary inertia are
neglected by assuming a long slender beam. Further simplifications have been made by
applying the St. Venant assumptions, which is a pure torsion state, and neglecting all
warping effects. The beam is assumed to be composed of composite material with
unidirectional fibre lay-up. With any composite, material couplings between extensional-
twist and bending-twist arise from ply orientation and stacking sequence. This research
will focus on the bending-twist couplings as the other coupling behaviours are being

investigated by other researchers (see, for example, Roach and Hashemi, 2003).

4.4 DFE Formulation

The governing differential equations of motion for the materially coupled vibration of a

uniform composite beam are (Banerjee, 1998):
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o*w

Elw™+ Ky ™+ m - =0 (0.34)
2
Gly"+ Kw"— 1, %;'éi =0 (0.35)

where w(y,t) denote the beam flexural displacement and y(y,t) is the torsion angle. EI
and GJ denote flexural and torsion rigidities respectively, m is the mass per unit length
and [, represents the polar mass moment of inertia per unit length of the wing. The

material bend-twist coupling rigidity is represented by K and primes denote
differentiation with respect to span wise pcsition y. Based on the simple harmonic motion
assumption, the following separation of variables is applied on the flexural and torsional

displacements (sinusoidal variation with frequency @).

w(y,t) = w(y)sin ot

v(y,t) =¥ (y)sinwt (0.36)

Then with substitutions of (0.36) into (0.34) and (0.35), the differential equations can

be re-written in the following form:

Ebo™+ K " may*w =0 0.37)
GI'¥ "+ Kw"+ [, @™¥ =0 ~(038)

By implementing the Galerkin weighted residual method and integration by parts, the
continuity requirements on the field variable are relaxed so that the integral weak form

associated with equations (0.37) and {0.38) can then be obtained as:

W, = f[EI5w"w"+ Kow"¥'- mw25ww]dy
+EI[Sww"= Sw'w"], (0.39)
+K [w¥ "~ SwP].
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W, = [[Gro¥" W'+ k3% w'+ 1,0 6% ] dy
+GJ [o¥¥) (0.40)
+K[8¥w"],

The above boundary terms can be associated with the Shear S(y), Moment M(y), and
torque T(y) as:

w o*Y
S = EI{: K
) () o +K(y) 5 0.41)
M) =—BI() Y k(Y 0.42)
£ y - y ay2 y ay2 ‘
2
T3 =6I ()L + k(5 Y (0.43)
oy dy

Boundary conditions associated with clamped-free (cantilever) beam are
w=w'="¥ =0, and all force boundary terms are zero at the tip (y=L). The system is then

discretized by 2-node 6-DOF beam elements (Figure 4-2).

W,
" w;
¥, ¥,
D R
J S s J
Node j Node j+1

Figure 4-2: A 2-node 6-DOF beam element

Principle of Virtual Work (PVW) is also satisfied such that:

NE
Wy =W, + W, =Wy ~Weee = 0 W =W = (0.44)

k=1
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where, W* represents element internal virtual work and W, =0 for free vibrations.

After two integrations by parts on the differential equation governing the flexural motion,

the element internal virtual work can be written in the following form:

WE=W; (&) +WH (& (0.45)

where,

W)= E w[% ow'""'— l,‘ma)zé'w} d&

k

™

+-I—;:§{[5w" w'—ow" w]:) (0.46)

k

K 1 L
+E£T Sw"dé

and,

W) = £T[—gli&P "~ lkIaaf&P}dcf
k

<

10)

+f_f{_a‘y'w]; C(047)

k

~ [orwrag
k

The two above equations simply represent the bending and torsion contributions to the
discretized internal virtual work for each element of length I, .

The basis functions are then chosen based on the solutions to the differential equations
of (*) and (**). For the first differential equation (0.46) pertaining to bending, the

following process is applied to formulate the trigonometric shape functions according to

Hashemi and Richard (1999). The torsion interpolation functions are also evaluated in a

similar way.
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4.4.1 Frequency dependent trigonometric shape functions.

T2 non-nodal approximation for the flexural weighting function, éw(£), and the field

variable, w(£), can be written as:

w&) ={P,®) {a} (0.48)

Similarly for torsion:

2(&) ={R&Y {b} (0.49)

where dw, w, ¥, ¥ are discretized over a single element (0 < & < 1). The basis

functions of the approximation space are chosen as:

T sinad cosha —cosa  sinha —sin aé]
[P} = [cos o = - - (0.50)
and, for torsion aé:
{rOY ={cos7§ Si“y’ﬂ (0.51)
where,
o= m‘};’;ﬁ (0.52)
y= Iag; Ly (0.53)

The basis functions are chosen as trigonometric terms based on the solution to the

differential equations and were manipulated to reduce to Hermitian basis functions as
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a — 0 and ¥ -» 0. It is important to note that Hermitian basis functions have been used
in beam finite elements for many years, since they satisfy the “Completeness” and
“Compatibility” requirements. “Completeness” is satisfied by including the lowest order
admissible term. The compatibility condition is also satisfied. With these conditions
satisfied, the DFE with its Hermitian based Dynamic Trigonometric Shape Functions
(DTSF’s) is guaranteed to converge to the exact solution. Classical basis functions of the
standard “Hermite” beam element are [1, & &2, E%. The bending and torsion
trigonometric basis functions lead to standard cubic and linear ones by taking the limit as
& — 0 and y — 0, respectively. These variables are frequency dependent as seen above
in equations (0.52) and (0.53). When the frequency approaches zero the DTSF’s reduce
to polynomial basis functions which lead to satisfying the required conditioﬂs of

compatibility and completeness.

For the first bending basis function:

}zlglo cosat =1 (0.54)
The second basis function leads to:

lim S _ g

0 (0.55)

The third basis function leads to:

lim cosh o —2- cosa _ g

(0.56)
a—0 a
The fourth basis function leads to:
. _sinha&—sina& &
I == 0.57
ain() a3 3 ( )
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The coefficients(da), (a),( 8bY, and (b) have no physical meaning and can be
replaced by nodal variables for bending <6w,, Sw, 5w2,5w;> and (w,, W, Wy, w2> and

for torsion (31?' 1, OF 2)and (‘P,, ‘Pz) . The derivation of bending shape functions are only

considered in the following procedure, since, the torsion shape functions will follow the

same development. Following the same systematic method as in FEM, one can write:

{ow,}=[P,1{da} (0.58)
{w,} =[P, {a} (0.59)
Then,
[ 1 0 0 0 ]

0 1 0 0
[ P, ] =| cos(a) sin(f@)  cosh(a@) :cos(o:) sinh(ar) — sin(&) (0.60)

o o o’

_asin(a@) cos(a) asinh(ai:z- asin{@) (Jtcosh(czi1 —cos()

The nodal approximations for element variables w(&) and ¥(£) can then be rewritten

as.
sw(&) ={P, &Y [Pn, ]_’ {6w,} ={N(& )} {ow,} (0.61)
w&)={P (&} [P,,, ]'l [w,}={NE& o)} {w,} (0.62)
Then,
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w&={P,®) BT W1={N&),} {w) 063
¥ ={R@Y [R]'{¥.}={NOY (¥}

‘E)]'Lpressions (0.63) can then be rearranged as: [w(&) ¥(&)] =[N){u,}, where

{u,}=<w, w' ¥, w, w',¥,>" is the element displacements (i.c., degrees of freedom)

and [N] represents the dynamic shape functions in matrix form

(Nl= {N(ém),HM(éa», N¢éd; 0 NEo, Néo, O } ©.64)
N&.a, 0 0 N¢Eo, O 0 NE&a | o
The four trigonometric shape functions pertaining to bending are (Hashemi and
Richard 1999; Hashemi, 1998):
N, ={cosh(&)cos(aé -a)-cos( @& )+cos(a)cosh(aé-a)-cosh( a&)-sin(@)sinh(aé - &) (0.65)
+sinh(@)sin(af-a) }/DEN ]
N2=-é—{cosh(a)sin( ob-a)-sin( a&)+sin(a)cosh(aé-a)+cos( a@)sinh{ @& - &)
+sinh(@)cos(aé-a)-sinh(af) }/DEN
(0.66)
N, ={-cosh(a{-a)+cosh(a&)cos(a)+cos(aé)cosh(a)-cos(aé-a)+sinh(af)sin( ) ©0.67)
-sin(a&)sinh(ax)) }/DEN '
N4=—;{—sinh(a’f—a)—cosh(adf)sin(a)—cos(af)sinh(a)—sin(af-a)+sinh(a§)cos(a) 0.68)
+sin(a&)cosh(z) }/DEN
DEN=(2cosh(a)cos(x)-2) (0.69)
Eor torsion:
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w, =Sn7d=¢) (0.70) N, =S0% 0.71)
siny " siny

The six shape functions are plotted individually for first four natural frequencies of free
coupled vibration of a uniform composite wing (see Figures 4-3 through 4-8). These
shape functions are the approximations to the solution of the governing differential

equations of motion.
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Figure 4-3: First flexural shape function plotted Figure 4-4: Second flexural shape function plotted
for the first 4 natural frequencies of a uniform for the first 4 natural frequencies of a uniform

beam beam.
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Figure 4-5: Third flexural shape function plotted Figure 4-6: Fourth flexural shape function plotted
for the first 4 natural frequencies of a uniform for the first 4 natural frequencies of a uniform
beam. beam
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Figure 4-7: First torsional shape function plotted Figure 4-8: Second torsional shape function

for the first 4 natural frequencies of a'uniform plottd for the first 4 natural frequencies of a
beam. uniform beam.

The above shape function plots display the inter-element continuity required-to satisfy
the compatibility condition. With the frequency dependent trigonometric shape functions-
determined, the dynamic finite element matrix can be constructed from equations (0.46)

and (0.47). The DFE matrix can be expressed in two matrices as:

Kpre = Kyncovrreo + Kcourren 0.72)

The uncoupled matrix is obtained from the boundary term expressions extracted from
the integration by parts. The coupled matrix is formulated from the integral expressions
representing the coupling terms in both equations (0.46) and (0.47). The symmetry of

coupled matrix can be seen in the equivalence in both integral expressions.

EI " EI " EI 1 E’ "
"T{Nl }0 7 "Nl }o 0 T{”Nl }1 T{Nx }1 0
i L I A
EI EI EI El
——— N "t —_ _N " 0 — _N " — N ” 0
lk3 ( 2 ]0 1: { 2 }o l: { 2 }1 IE ( 1 }l ‘ (0'73)
GJ , GJ .,
0 0 —l—{—N" Yo 0 0 —I—{N,, h
Kincoveiep = * *
El "y EI 1] EI " EI "
_3{N3 }o "T["Ns }o 0 T{_Ns }1 'T{Nl ]1 0
Ik lk lk Ik
El \r El " EI El wy
_3‘{N4 )o "'T("‘NA }u 0 ‘T{—N4 }l T{Nx ]x 0
I Ik I IR
GJ . GJ .
0 0 T—{-—le Yo 0 0 ——!—{N,2 h
L k (3 .
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0 0 {N,"N,} 0 0 {N,"N,)
0 0  {N,N,} 0 0 {N,"N,)
Keorn = | K|INNY NN 0 NN NN 0, (0.74)
o 0  {N,"N,} 0 0 {N,"N,)
0 0 (NN} 0O 0 (N,"N,)
LN"NG) IN'NG) 0 (N'Ng) (NN, 0

K, represents the dynamic finite element matrix which is now ready for assembly

in the usual finite element way. The coupled matrix is integrated symbolically to ensure
the final dynamic finite element matrix is purely algebraic. With all expressions in the
DFE matrix symbolically computéd, there is no need for a numerical integration which
decreases the required computational time. The symbolic integrations for the coupled

matrix in equation (0.74) are carried using MAPLE®.

4.5 Numerical Resulis

Here the coupled vibrations of the composite wing configurations are considered. First, a
uniform glass/epoxy wing beam model is analyzed. The second’ example represents a
stepped piece-wise uniform cantilever composite beam. The natural frequencies and
modes of vibration are studied. The DFE results are compared with those obtained from
DSM and FEM approaches.

4.5.1 Free vibration of a uniform beam

The beam is composed of glass/epoxy composite material and made up of unidirectional
plies with fibre angles in each ply set to +15° . The beam can be considered equivalent to
a single thick ply (Banerjee and Williams, 1995) with a thickness of 3.18 mm and width
of 12.7 mm. The material and geometric properties determined by Banerjee (1998),
Banerjee and Williams (1996) and Banerjee and Williams (1995). The principle rigidities
are experimentally found by Teh and Huang (1980) displayed in Table 4-1 and the

effective rigidities are:
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Effective bending rigidity, EI = 0.2865 Nm’;

Torsion rigidity, GJ = 0.1891 Nm?;

Bending-torsion coupling rigidity, K= 0.1143 Nm?

Mass per unit length, m = 0.0544 kg/m;

Mass moment of inertia per unit length, I, = 7.77 x 107 kg.m

Length of the beam, L = 0.1905 m.

Table 4-1: Material Properties of a glass/epoxy

Laminate
Ev: 9.71 GPa
Er 3.25 GPa
Grr 0.9025 GPa
VLT 0.29
Thickness 3.18 mm

The variations of bending rigidity, EI, torsion rigidity, GJ, and bending-torsion
coupled stiffness, K, as functions of different ply angles displayed in Figure 4-9. This plot
is particularly important for optimization since a wing composed of fibre-reinforced
composite material can be designed for any desired stiffness and corresponding
frequency response. A greater flexibility is available with composites which is not
necessarily restricted to the plot shown in Figure 4-9: Plot of Rigidities vs Ply angle for a
glass/epoxy composite.Different stacking sequences and ply thickness lead to a much

greater domain of possible stiffness properties. Different stacking configurations will be

considered in Chapter 5.

Ply Angle (Dagrees)

Figure 4-9: Plot of Rigidities vs Ply angle for a glass/epoxy composite.
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The convergence results for the 1% four natural frequencies of a uniform glass/epoxy
composite beam are presented in Figure 4-10 and the corresponding modes are found in
the following Figure 4-10. It is observed that the DFE and the FEM converge nearly at
the same rate for the first three natural frequencies. The DFE converges faster than the
FEM for the fourth natural frequency (refer to Figure 4-10). This higher convergence rate
can be attributed to the mode behaviour at this natural frequency. The fourth natural
frequency is predominately torsion (refer to Figure 4-11 (d)). It has been observed that
torsion plays a more important role at higher frequencies and the DFE converges

significantly faster than the FEM as the frequency number is increased (Borneman and

Hashemi, 2003).
1 11 LY AL
09 4 —a—FEM Firsd Noturel Frequency
06 - —#—DFE First Natural Frequency
—e—FEM Second Nalurni Frequency
07 —+—DFE Second Naturo! Frequency
E 0s —o—FEM Thwd Nalurol Frecrency
w —w——DFE Third Natural Freguency
- ~tr— FEM Fourth Nelural Frequency
i 04 - -~ DFE Fourth Natir sl Frecquency

] s 10 15 20 25 30 35 L 1) 45

Figure 4-16: Convergence of DFE and FEM for the first four natural frequencies of a uniform
composite wing. Percent Error is relative fo the exact values obtained from the DSM
(Banerjee and Williams, 1995).

The two and three dimensional modes of deformation are also plotted in 4-11 (a)-(d)
to give a visual representation of the behaviour of the wing when vibrating at the first
four natural frequencies. All modes both 2D and 3-D have been normalized to properly
distinguish the modes as bending, torsion or bending-torsion. Numerical values of the

first five natural frequencies using various methods are presented in Table 4-2.
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Figure 4-11: Natural modes of free vibration for a coupled bending-torsion uniform composite beam.
(a) First Natural mode; (b) 2* Natural mode; (¢) 3™ Natural mode;. Each 2D mode displacement due
to torsion is represented by a dashed (--) line and bending is represented by a solid (-) line.
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Figure 4-12: Natural modes of free vibration for a coupled bending-torsion uniform composite beam.
(d) 4™ Natural mode. Each 2D mode displacement due to torsion is represented by a dashed (--) line
and bending is represented by a solid (-) line.

Table 4-2: Numerical values of the first five natural frequencies (Hz) using various methods are
presented. ‘B’ denotes a predominant bending mode and ‘T’ denotes a predominant torsion mode.

Natural Frequencies of a Uniform Composite Beam 15° lay-up (Hz)

Natural Frequency FE:f_z_(_) Using D'E_Efing 20 DSM 1 Element
1 30.82 30.82 B 30.82
oM 192.87 192.87 B 192.72
3" 538.47 538.42 B 537.38
4" 648.87 648.74 T 648.73
s 1053.87 1053.46 B 1049.73

The exact results for the DSM are confirmed by the earlier works published by
Banerjee (1998), Banerjee and Williams (1996), Banerjee and Williams (1995) for the

first four natural frequencies.

Figures 4-12 to 4-16 display the variations of natural frequencies for a uniform beam
over a range of ply angles. These figures are particularily useful for a quick reference of
the ply angle for a desired frequency response. The uniform beam is composed of

glass/epoxy composite material with the same dimensions as the first uniform model

described in section 4.5.
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Figure 4-13: Variations in the'first natural frequency for different ply orientations

From Figure 4-13 it is observed that the first natural frequency starts at its highest
point at zero degrees. The natural frequency then decreases and levels out to a constant
value at approximately 50 degrees. Similar trends in the second natural frequency are
observed where the natural frequency levels at approximately 45 degrees ply orientation

in Figure 4-14.
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Figare 4-14: Variations in the second natural frequency for different ply orientations

The third natural frequency (Figure 4-15) again levels at nearly 50 degrees much like
the first mode but an additional increase exists at the initial range from 0-12 degrees. The
differences associated with variations in frequency can be attributed to the stronger
influence of torsion on the higher modes of materially coupled vibration. This is observed

especially in the fourth mode of vibration (Figure 4-16). The fourth mode displays
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predominance in torsion (refer to the mode shape from Figure 4-11 (d)). Figure 4-16

deviates from the original trends found in the first two modes with greater fluctuations in

frequency with different ply lay-ups
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Figure 4-15: Variations in the third natural frequency for different ply orientations
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Figure 4-16: Variations in the fourth natural frequency for different ply orientations
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Figure 4-17: Variations in the fifth natural frequency for different ply orientations
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The fifth natural frequency in Figure 4-17 returns to the original trend found in the
first two predominantly bending modes of vibration (refer to Table 4-2). By extending the
results to the fifth mode a correlation is observed between the influence of torsion and the

fluctuations in frequency with ply orientation.

4.5.2 Numerical example for a step beam

More complex geometries such as tapered wings are usually constructed using piecewise
uniform steps. The convergence rc;sults for a step beam constructed with three steps can
be found in Figure 4-17 and Figure 4-18. The beam rigidities at its root ( EI,GJ,K ) are
identical to those of the previous uniform composite beam example and each step has the

length of L/3. The second and third steps have the rigidity parameters equal to two-thirds

and one-third of those for the root, respectively.

0.9 | 4th NF DFE
08 e 4th NF FEM
—3¢— 3rd NF DFE
. 0.71 —a— 3rd NF FBM
aé 0.6 - --~&- -+ 2nd NF FEM
u% 05 | ——+— 2nd NF DFE
fg ——%— 1t NF DFE
B 044 —o— 15t NF FEM
Q.
03 -
0.2
0.1 -
0 -
0 5 0 h 53 20 25 a0 35 40 45 50

Number of Total Bements

Figure 4-18: Convergence for a step beam formed from three steps using the FEM and DFE for the
first 4 natural frequencies. ‘NF’ represents Natural Frequency.
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" Figure 4-19: Convergence fer a step beam formed from three steps using the FEM and
DFE for the 5%, 6", 7" natural frequencies.

The percent error in Figures 4-17 and 4-18 is calculated based on the exact values
obtained using the DSM method. The first three natural frequencies converged at nearly
the same rate as the FEM (see also Borneman and Hashemi, 2003). It is observed from
Figures 4-17 and 4-18 that the DFE converges quicker than the FEM for higher
frequencies. If a tapered formulation was used it would include the addition of deviator
terms to compensate for the constant parameters assumed over each element. That would

increase the convergence rates, and is the factor which distinguishes DFE from DSM
method.

4.6 Conclusions
The DFE displays significantly better convergence than the FEM for higher modes in the
cases of the uniform and stepped composite beam. The modes of materially coupled

vibration have been classified based on predominance of either bending or torsion and

correlations have been drawn based on the higher influence of twist on particular
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frequencies. Given the fact that the DFE approach is based on a general FEM type
formulation the method can be easily extended to more complex element geometries such

as tapered elements which will be covered in Chapter 5.
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Chapter 5 Tapered Wing Model

5.1 Introduction

A Dynamic Finite Element (DFE) formulation for the free-vibration analysis of materially
coupled uniform composite beam elements was developed in the previous chapter. In the
present chapter, the DFE matrix for a generally tapered beam element is presented using
frequency dependent trigonometn'c'shape functions found in chapter 4. A homogeneous
analysis of aircraft wings, rudders, helicopter blades, rotors, has been prepared using
tapered beam elements for an accurate formulation of the frequency response. Tapered
beams have been studied by various authors using the DSM (Banerjee and Williams,
1985) and the DFE (Hashemi and Richard, 1999 and Hashemi, 1998). The DSM and
FEM approximate a taper using uniform steps as seen in the section 4.5.2. The proposed
DFE uses steps also; however, the addition of refining terms known as deviator terms
alters the formulation to better represent a taper geometry. The deviators will be
discussed in more depth in the DFE formulation (see also Borneman and Hashemi (2003)

and Hashemi and Borneman (2004)).

5.2 Wing Modeli

A simplified beam representation for a tapered composite wing of length L and solid
rectangular cross section is illustrated in Figure 5-1. Bending-torsion material coupling
behaviour usually present in composite material is dué to the unbalanced lay up. The
beam model is characterized by bending rigidity EI, torsion rigidity GJ, and coupled
bending-torsion rigidity, K. Here, a symmetric laminate configuration is considered that
consists of fibre orientations and thickness which are symmetric across the mid-plane of
the laminate. Symmetric laminates result in bending-torsion couplings. The rigidities can

be determined using classical laminate theory presented by Jones (1998), Berthelot

46

Reproduced with permission of the copyright owner. Further reproduction prohibited withqut permission.



(1999) and Banerjee (1998). The beam element considered consists of 3 DOF per node;
bending displacement, bending slope and torsion angle, which results in a final 6 x 6
element/matrix (refer to Figure 4-2). The bending displacement is denoted by w(x,) and

torsion twist denoted by y(x,t), where x is the distance spanning the beam and I is the

element length.

(a)
4
A
Z
7 «— [ —> 4
/——> x K" element t}
/—_—‘—> Xk ﬂ_ b(x) —»
e I >
(c)
(b)

Figure 5-1: (a) Tapered beam in Global (x, y, z) coordinate system. (b) Side view in (x, z) plane. (c)
Beam cross-sectien. '

5.3 Assumpiions

A constant thickness general taper is first considered (i.e., the beam does not taper by
thickness of the multilayer composite). The mechanical and geometric properties can

change with a contracting base. Next, the thickness will be changed along the span-wise
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direction by stepping the thickness. Due to feasibility reasons in design, the thickness
must be stepped by multiples of layer reduction. The constitutive relationship between
stresses and strains is applied using classical laminate theory presented in Chapter 2. The
Euler-Bernoulli bending and St. Venant torsion beam theories are employed. Shear
deformation, rotary inertia and warping effects are neglected.

The variations in beam’s mechanical and geometric properties can be considered as
(Banerjee and Williams, 1985): 4

n n+2
X X
b(x)=bh, (1+c—£) 1)’ GJ(x)=GlJ, (1+c-£] (5.1c)
AX)=A (1 + C%) (5.1b) EI(x)=EI, (1 +c%) (5.1d)
l ) ) x n+2
1,() = pAGER (K +6(x)?) (5.1¢) K(x):K,(1+c—£) (.19

where b,,A, ,1,,GJ,,EI_and K are, respectively, reference beam model’s width, cross-
sectional area, mass moment of inertia, torsion rigidity, bending rigidity and coupled
bending torsion rigidity and are usually taken at the wing root. The constant ‘c’ must be

greater -1 to ensure the beam does not taper to zero before the end of the beam. n is

usually 1 or 2 depending on the degree of taper.

5.4 DFE Formulation

The differential equations governing the free vibrations of a materially coupled laminated

composite beam, incorporating variable properties are (Weisshaar, 1980):

L ?w) 9 v Pw
= huiiAd P — —_— 5.2
= (El(x) = J+‘ = (K(x) = )+m(x) =5 =0 (5.2)
) oy) o 9*w oy
—_— ol S —_— —_— -] — =0 5.3
o (GJ e )+ o (K 5 J “ 58 -3
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The displacements can be assumed to have a sinusoidal variation with frequency @ as:

w(x,t) = w(x)sin ax

v(x,t)=¥(x)sinax (5.4)

The sinusoidal variations from (5.4) can be substituted into equation (5.2) and (5.3) so

that the governing equations of motion can be re-written as solely x dependent
2
9 El(x ) a (K( )—-) —m(x)ww* =0 (5.5)
e a :
d d
GJ —
ax( W), (

The weighted residual method is employed and the integral form is altered to the weak

d*w
ox?

)+I X)¥w’ =0 (5.6)

form after two integrations by parts for the flexural portion and one integration by parts
for the twisting portion. By re-writing the virtual work expression the inter-element

continuity requirements are relaxed so that the approximation space for w is C'.

W, = f (EI (XOow"w"+ K(x)ow"¥ '~ m(x)wzé’ww) dx .
+[(EIw"+ K(x)")' Sw . ~[(EI()w"+ (0¥ ) Sw']; .

W, = [[~GI(x)8¥ ¥~ K(x)O¥ 'w"+ L (x)a? S¥'F ] dx

(5.8)
+GI(x)[ 3PP, + K(x)[oPw"];

The resultant shear force, S(x), bending moment, M(x), and torsional moment, 7(x),

are based on the sign convention in Figure 5-2:
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*w

: 0 o¥
S(x) =5;(E1(x)-é;§—.+ K(x)—é;-) (5.9a)

9’ 0¥
M (x)=—EI(x) ax:} ~K(x)%5 (5.9b)
2
T(x)= GJ(x)%\—Px—-% K(x) %x‘;’ (5.9¢)
S
e | e 19 «+T & I
T T
S M M

Figure 5-2 Sign Convention, where S denotes the transverse force, M denotes the bending moment
and T denotes the torque

Boundary conditions associated to clamped-free (cantilever) structure are such that all
virtual displacements are zero at the wing root (i.e., Fixed end, x=0) and all boundary

force terms are equal to zero at the wing tip (x=L):

ow=08=F=0 arx=0 (5.10)
S=M=T=0 atx=L (5.11)

The system is now discretized over the length of the beam where the principle of virtual

work is satisfied:

NE
Wo =W, +W, =W, — Wy =D W —W,, =0 (5.12)
k=1

where &=x/l;, The bending and torsion contributions to the elemental virtual work,

Wf" , and W,k , respectively, are:
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Wlk &= _(:[-;;(EI({)EW") " m(é‘)lka)zc‘)'w] wd{

—— -

™ ‘ (5.13)

+[——E’l ©) é'w"w':L —[%(El(f)é'w")' w:\ +——Kl(25) [wrowas

[

WH(E) = E[—-}—(GJ@)&P') = 1a<f)lkafé‘f’] wd¢

) (5.14)
k . &

The coupling terms in (5.13) and (5.14) are equivalent and when written in matrix
form they are only different by their dimensions. The coupling terms in the weak form
ensure symmetry of the final element DFE matrix. Similar to the DSM the average

parameters over each element for EI( &), m(&), GI(E), I,(£), K(&), are used in the

DFE such that the two expressions for flexural and twist are written as follows:

1
Wlk (5) = .E [F EIGVeJW e mavelkajzsw} Wdf

S ' (5.15)
1 1
PR TP
i 1} k 0 t

a,ave

W) = _[:[—-ILGJM&P o | lkafé‘{’:l‘{‘df
k

** . (5.16)
+G‘l,ave[an\P];+_Ki;_W_Ewn&P|d§
k

k

PROPIRTY OF
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The Dynamic Trigonometric Shape Functions (DTSF’s) are chosen such that the integral
expressions (*) and (**) are zero. The DFE element matrix is constructed by the addition

of the uncoupled matrix and the coupled matrix as:

K pre = Kyncovrren + Kcouvrren (5.17)
where,
i EI "r EI " EI "t EI ”
F{Nx }o 7’;:;" ”'Nl }o 0 l_:'{_Nl }1 ?{Nl }l 0
EI "t E] " EI " EI ”
l_g{Nz }o ’;5" _Nz }q 0 F’ "‘Nz }l l_B{NI }1 0
k k X k
0 o Zeny, o o =,
Kuncouprep = ¢ ¢
E] m EI " EI " EI ”
';"S'{Ns }o ‘?{"'N:; }o 0 '7:" “Ng }1 "l";‘;"{Nl }1 0
El 0w El " El EI ..
’E'{NA 0 f{_’NA }o 0 Ts'{“N4 }1 T:'{Nl }1 0
0 0 gj’{_Nxz '}o 0 0 ﬂ{Nxz '}1
L lk ’ Ik A
[0 0 N,"N,' 0 0 N,"N,"]
0 0 N,°N, 0 0 N,"N,’
X =££ N,"N,' N,"N,’ 0 N,"N, N,"N,’ 0 &
COUPLED l: 0 0 N3 nNn [} O 0 N3 ner ]
0 0 N,"N,' 0 0 N,"N,'
th llNl2 1 N2 "le 1 O N3 "Ntz 1 N4 llN"2 L] O ]

The uncoupled matrix is formulated from the boundary terms extracted from the
integration by parts. The coupled matrix is formulated from the integral expressions in
both equations (5.15) and (5.16).

5.4.1 Application of deviators.

As it was mentioned earlier, the DFE takes the average over each element much like the

DSM for EI(£), m(£), GI(E), 1,(£) and K(&). These average parameters can then be
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adjusted to an exact representation of the element by including deviator terms. Deviator
terms subtract the average parameters and add the exact variation parameters. The two

expressions for flexural and twist from equations (5.7 and 5.8) can therefore be re-written

as:

ave

W, = E”[Elm(gc)é'w"w"—m (D)@’ Sww+ K, (x)6w" ¥ '] dx

+ [ ~(EL,, - EIG) 6w" w'~ (K, ~ K () W" ¥ "+ (m,,, —m(x)) @*Sww |dx
s ey e

Elpey K3, pev Mpgy

(5.18)

W,= ["[G),. 0 W'+ K, 0% w-1,,,0"0%¥ |dx

+ [ = (Gl e = GI () ¥ ¥~ (K,,,, ~ K (1) OF 'W"+ (I, — [, (x) 0* 3 |dx
h; N ’ M !

-~
Gy K, pev {apev

ave

(5.19)

The element integral expressions in equations (5.18, 5.19) can then be simplified

similar to equations (5.13, 5.14) to yield the element equations for a tapered beam as:

WK — EII;W: {awnwv__ JWIIIW]:) + G‘llave [a{ﬂ\lj]:)
\, k k J

Uncouplzd Terms (5 . 20)
+% [ owag +%“L [wro%ag+DEV
k k

where,

DEV =li3 _[:(_EIM +EI(§)) <N"> {N*’}dé‘-{-—ll— .[;(GJ“V‘ _Gj(é» < Nx 'S {N, '}df
k k
+, & _[:(mm -m(&)) <N >{N}d¢é +1,0° .C(I"”"”‘ I (£) <N, >{N)d& (5.21)
+712“ [ Ko +K @) < N> N, ¢ +712“ (K. tE@)<N,"> (N ")dE
, k
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The integral DEV expressions (5.21) were to be originally evaluated numerically for
each trial frequency, @ .The closed form analytical solution to the above deviator terms
was later evaluated using MAPLE® symbolic math, and has increased computational
‘efficiency greatly. The result, in this case, is a frequency dependent DFE stiffness matrix
expressed in purely algebraic form. Element matrices are then assembled in the usual
FEM way and the boundary conditions are introduced as a clamped-free cantilevered
beam (e.g., using the penalty method (Cook, 2001 and Bathe, 1982)). Finally natural
frequencies are found using a dedicated numerical bisection method in conjunction with
the Wittrick-Williams root counting algorithm presented as by Wittrick and Williams
(1971), Wittrick and Williams (1982) and Wittrick and Williams (1983) (see Chapter 2

for more details).

5.5 Application of the Theory and Examples of Linearly
Tapered Wings

To validate the DFE method a linearly tapered wing is first studied. The wing is modeled
with beam elements for various taper ratios and the resulting natural frequencies are
compared to other existing methods. For this example the wing only tapers by a
contracting chord in the span-wise direction. The next example represents a dual tapered
wing by chord and thickness, with different ply orientations and stacking sequences. It is
important to note that the tapered thickness is created by changing the ply numbers along

_ the wing length, similar to the stepped case. Consequently, there would be no need to

apply deviators for the thickness variations.

5.5.1 Numerical tests for a linearly tapered beam.

The wing model is composed of glass/epoxy composite material with 15 degree fibre lay-
up. All mechanical and geometric properties at the wing root are the same as the uniform
beam case studied earlier in Chapter 4. The coefficient ¢ from equation (5.1(a-f)) is set at

its minimum -1 for the maximum possibic taper. The reasoning for such a large taper is to
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show how faster the DFE will converge to the exact natural frequencies compared to the
FEM and DSM. To approximate a tapered configuration, all three methods DFE, DSM,
and FEM originally use piecewise uniform steps. The DFE then has the advantage of
applying this refining technique by including deviator tciins.

The 15 degree lay-up was initially used in order to reproduce and to confirm the
calculations of effective rigidities with Banerjee (1998), Banerjee and Williams (1996),
and Banerjee and Williams (1995). As a result, the same natural frequencies of a uniform
beam presented in Chapter 4, were again obtained from the present DFE. The principal
rigidities and Poison’s ratio are experimentally obtained (Teoh and Huang, 1976) (refer
to Table 5-1). .

Table 5-1 Material Properties of a glass/ epoxy

composite Laminate.
Er 9.71 GPa
Er 3.25 GPa
Gir 0.9025 GPa
VLT .29
Thickness 3.18 mm

Referring to Figure 4-9 in Chapter 4, shows the variations of the effective rigidities vs ply
angle for a glass/epoxy composite laminate. The 15 degree fibre angle falls into the range
of maximum bending-torsion coupled rigidity. The natural modes of free vibration as
result display this coupled vibration behaviour in the following section. The values of the
natural frequencies for the linearly tapered composite wing, using the same root
properties as used in the chapter 4 for a uniform beam, are presented in Table 5-2. The

wir:g studied in this example is assumed to have a taper coefficient c=-1.

Table 5-2: The first five natural frequeiizies (Hz) of a linearly tapered wing composed of
glass/epoxy composite material, with a taper coefficient of c=-1

Mode no. FEM 200 DSM 20 ’ DFE 20 Percent
— Elements Elements Percent Error Elements Error
1 62.73 62 .55 0.0028 62.74 0.0001
2™ 271.96 270.39 0.0058 272.19 0.0008
4
3 .660.68 654.78 0.0089 662.01 0.0020
h
4" 1219.89 1205.21 0.0120 1224.40 0.0037
th
5 1845.77 1837.64 0.0044 1843.57 0.0012
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Then, the resulting convergence results for various deviator terms are displayed in
Figures 5-3 (a), (b), (c), (d), (). The maximum taper ratio was used since it reflects the
effectiveness of varicus deviator terms in the DFE versus the other methods. Since there
are no published results for this tapered composite configuration the reference values

have been determined using 200 finite elements.
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Figure 5-3: Comparative study between DFE convergence rates for the first five natural frequencies
of a linearly tapered composite wing (c=-I) incorperating different deviatory terms: (a) The first; ()
The second; {¢) The thrid; (d) The fourth. ‘EIDEV’;, represents the bending rigidity deviator;
‘GIJDEV?, represents the torsion rigidity deviator; ‘KDEV’ represents the coupled bending-torsion

rigidity deviator, ‘MDEV’ represents the mass deviator; ‘IalfDEV’, represents the mass moment of
inertia deviator.
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Figure 5-4: Compai ative study between DFE convergence rates for the first five natural frequencies
of a linearly tapered composite wing (c=-I) incorperating different deviatory terms: (e} The fifth
natural frequencies. ‘EIDEV’;, represents the bending rigidity deviator; ‘GJDEYV’, represents the
torsion rigidity deviator; ‘KDEV’ represents the coupled bending-torsior rigidity deviator, ‘MDEV’
represents the mass deviator; ‘IalfDEV?, represents the mass moment of inertia deviator.

The effect of deviator terms were compared individually based on convergence for
various natural frequencies (Figures 5-3 (a), (b), (¢), (d) and (e)). The mass deviator is the
most significant term with the highest convergence rate for the first four natural
frequencies. The fifth natural frequency showed the fastest convergence with the mass
moment of inertia deviator (see Figure 5-3 (e)). The importance of the mass deviator
matrix is consistent with mass matrix used in the FEM. That means, if a lumped mass
matrix was used in the FEM the quality of the results would have been less desired
compared to the consistent mass matrix. From the modes in Figures 5-5 to 5-9 the 5t
natural frequency is a predominantly torsion mode which explains why the mass moment
of inertia deviator shows greater significance. Further, the normalized modes presented in
Figures 5-5 to 5.9, show the increased influence of torsion on the higher modes of free
vibration. The first mode is predominantly bending with little torsion displacement
whereas the fifth mode is predominantly torsion displacement. These modes characterize
the coupled bending torsion behaviour accurately with 30 elements used for each mode.

Using 30 elements for each mode was sufficient to obtain a smooth curve for the modal

" displacements.
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Figure 5-5: 1" normalized natural mode of a Figure 5-6: 2™ normalized natural mode of a
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Fewer DFE elements are often required to converge accurately to the natural
frequencies. Figure 5-10 shows that the principal natural frequency converges
approximately to its exact value with only 20 elements. Convergence tests were carried
out and revealed that the Refined Dynamic Finite Element (RDFE) including deviator

terms has the fastest convergence (see Figures 5-10 to 5-12).
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Figure 5-10: Convergence of DFE, FEM, DSM and DFE +DEVs for the first natural
frequency.
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Figure 5-11: Convergence of DFE, FEM, DSM and DFE +DEVs for the second
natural frequency
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Figure 5-12: Convergence of DFE, FEM, DSM and DFE +DEVs for the third
natural frequency
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It has been observed that the DFE without its deviator matri—~ vields results alrnost
identical to the FEM. The FEM is based on fixed polynomi

consistent mass matrix is used. The DFE, DSM and FEM use : ¢ sa ‘¢ centre element

hasse functions and a
averaging for a tapered beam element parameters. For the linear); : - _ red wing the nodal
values for rigidities, mass and cross-sectional area have been defined in equation (5.1).
The DSM has the slowest convergence for the first three natural frequencies (Figures 5-
10 to 5-12). The convergence for the DFE increased considerably when the deviator
matrix was included. The RDFE with deviators converged to the exact solution for the
first natural frequency with only 20 elements (see Figure 5-10). The reference values are
based on a mesh of 200 classical ﬁr;ite elements, where the cubic “Hermite” and linear
interpolation functions are used to approximate the bending and torsion displacements,
respectively. |

The DFE was then tested on beams with lower taper angles. The current glass/epoxy
tapered beam configuration was then tapered with a less excessive taper coefficient of -
0.5 yielding a taper angle of approximately 1 degree from the horizontal. The
convergence tests revealed that in this case the DFE did not consistently converge faster
than the other methods to the exact solution for all frequencies. In fact, according to
Figures 5-13 to 5-15, the DFE only converged faster for the 1 fundamental natural
frequency. The FEM resulted in the highest convergence rate for the second natural
frequency (Figure 5-14), whereas, for the 3™ natural frequency (Figure 5-15), the best
convergence was obtained from the DSM. In Table 5-3, presented is the first three natural

frequencies for a 1 degree tapered wing and the corresponding percent error relative to

150 classical finite elements

Table 5-3; Comparison study based on small taper angles. The natural frequencies are
for a 1 degree tapered composite glass/epoxy wing.

Mode no. DFE 20 Percent DSM 20 Percent FEM 20 Percent
elements error elements error elements error
1= 37.83 0.0001 37.80 0.0006 37.81 0.0004
2™ 206.13 0.0008 205.84 0.0006 206.01 0.0002
3™ 553.56 | 0.0019 | 552.16 | 0.0007 553,27 0.0013
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Figure 5-13: Convergence for the first natural frequency for a glass/epoxy 1 degree
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Figure 5-14: Convergence for the second natural frequency for a glass/epoxy 1 degree

tapered beam.
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Figure 5-15: Convergence for the third natural frequency for a glass/epoxy 1 degree
tapered beam., :

in order to determine the reason why the DFE does not consistently yield good
convergence for all frequencies, the convergence results were plotted for RDFE with and
without its deviator matrices in Figure 5-16. As it can be observed from Figures 5-14 and
5-15 the DFE has slower convergence for the second and third natural frequencies when

deviators are used.
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Figure 5-16: Convergence of the DFE with and without deviators for the first three
natural frequencies
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This behaviour can be attributed to the fact that for very small taper angles the
effectivencss of the DFE refining terms known as deviators terms are less pronounced.

This is due to the numerical errors and it is expanded in the following section.

5.5.2 Limitations on dynamic finite element deviators.

Deviator expressions stem from the weak form of the differential equations of motion.
These deviators are generally the difference between the average and exact representation
of the element. Considering the example of a tapered wing, the DFE originally uses
uniform beam elements to approximate ihe geometry. Then the application of deviators,
essentially adjust the uniform (i.e., constant parameters) elements to better represent a
tapered geometry (i.e., variable coefficients) leading to a more accurate wing-beam
RDFE model. The power of these terms has been confirmed by and Hashemi (1998) and
Hashemi and Richard (1999) for the analysis of homogenous metallic beams and blades,
and discussed by Hashemi and Borneman (2003) and Hashemi and Borneman (2004) for
composite beams. Deviators do in fact increase the convergence of the DFE which is seen
through out this research (see Figures 5-5 to 5-8).

The deviator matrix is constructed from multiple sub deviator matrices depending on
the formulation and the model adopted for the structure. For the example of a tapered
wing with variable coefficients in the governing differential equation such as mass, m(x),
mass moment of inertia, I,(x), bending, El(x), torsion, GJ(x), and bending-torsion
coupling, K{(x), which are each used to derive the deviator matrix (refer to equation 5.21).
For a linearly tapered wing and using the properties in Table 5.1 the individual
convergences for each deviator are observed in Figures 5-4 (a) through 5-4(e).

As discussed in section 5.5, these compensating matrices, particularly the mass and mass
moment of inertia deviators generally increase the convergence rates of the natural
frequencies (refer to Figs 5-4 (a)-(e)).

Although deviators generally increase the DFE convergence, there are instances where
the application of these matrices produced undesirable results. With the introduction of
numerical error, the addition of deviators can result in a decrease in convergence,

particularly for very low taper ratio models that can be sufficiently approximated using
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uniform beam elements. “An acceptable FE formulation converges to the exact solution
of the mathematical model as the mesh is indefinitely refined (neglecting errors due to
finite precision computer arithmetic)” (see Cook, Malkus, Plesha and Witt (2001) pp.
161). It is important to distinguish when deviators will increase or decrease convergence.
Unfortunately the numerical error differs from one model to another based on the
complexity of the formulation. This issue will also be discussed in chapter 6 for the
geometrical and material bending-torsion coupled model.

A parameter study revealed that for the present model consisting of a solid rectangular
cross-section the numerical error associated with the deviator terms is most pronounced

for tapers less than 10 degrees (refer to Figure 5-17).

20

E——

Figure 5-17: Hlustration of composite wing taper angle

The deviators used for taper angles greater than 10 degrees result in more consistent
convergence. This consistency in results suffers for taper angles between 5-10 degrees.
The consistency is based on the convergence of each deviator matrix. It is observed that
for 5°< 8 <10° some deviators increase the convergence rate while some decrease the
convergence. Due to this inconsistency it is not recommended to use deviators for this
range. For very small taper angles 0°< @ <5° adding the deviators only decreased the
DFE convergence (see Figures 5-14 and 5-15).

If the DFE can approximate a tapered geometry using uniform elements to a
reasonable accuracy then there is no need to include the numerical error by implementing
a deviator matrix. If the taper angle is large enough, in this example greater than 10
degrees, the deviator terms will positively affect the DFE convergence rate. The deviator

matrices are a distinct advantage that the DFE has over the other methods (FEM, DSM)
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although one has to be aware of the limitation on these deviators particularly for highly
complex models.

5.5.3 A dually tapered wing model.

Here, a dually tapered wing model is considered. The wing geometry is presented in
Figure 5-18. The composite material used for this examplé is Cytek 5245-T800 carbon
fibre/epoxy. The mechanical properties of this laminate are displayed in Table 5-4 (see
Taylor and Butler, 1997) and the wing dimensions are given in Table 5-5. The free
vibration of wings with different lay-ups is presented for a dual varying geometry (i.e.,

linearly tapered by chord and stepped in thickness).

Figure 5-18: Dually tapered Cytek 5245-T800 carbon fibre/epoxy wing geometry

Table 5-4 Material Table 5-5 Wing Dimensions and

Properties of Cytek 5445- configuration.

T800 Carbon fibre/epoxy
= e Lay-up #1 [(30), /(-30),],
Er 8.8 GPa Taper Coefficient -0.5
Ghir | 3.0GPa Lay-up #2 [(45), 1(-45),],
L 030 Taper Coefficient -0.75
p 1550 K§/ m Laver Thickness 0.125 mm

Length 0.1905 m

Root Chord | 50.8 mm
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The composite wing considered for lay-up #1 consisted of 16 uniform layers at the root
and reduced along the span-wise direction by four layers per step. Four steps are used
with thicknesses of 2 mm and 0.5 mm at the root and tip, respectively. The convergence
test results for the first natural frequency are shown in Figure 5-19. It is observed that for
this frequency the convergence reaches 100 % accuracy with only 16 elements and then
fluctnates with greater than 24 elements. These fluctuations are not uncommon as the
FEM exhibits the same behzaviour with a greater number of elements. The fluctuations are

a result of numerical error associated with large global assemblies.

2 —e— DFE noDEV
1.8 —8— DFE
— 1.6 - -~ DSM
2ia.
e —3— FEM
S 121
§ 0.8 -
E 0.6 -
0.4
0.2 4
0 -
0 10 20 30 40 50 60 70

Number of Elements

Figure 5-19: First natural frequency for Lay-up #1 with a ¢=-0.5.

The convergence results for the second natural frequency are displayed in Figure 5-20.
For this mode the convergence of the DFE without deviators results in better convergence
due to the limitations of the deviators discussed in section 5.5.1. Data trends in the
Figures 5-19 to 5-21 for the first, second and third natural frequencies show similar
convergence for the FEM and DFE (omitting the deviators expressions) with the DSM

resulting in the slowest convergence. Similarities between the DFE and FEM are

expected since both are Galerkin based formulations.
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Figure 5-20: Second Natural Frequency for Lay-up #1 with a ¢=-0.5
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Figure 5-21: Third Natural Frequency for Lay-up #1 with a c=-0.5.

The main difference is in the shape functions. The DFE uses Dynamic Trigonometric
Shape Functions (DTSF’s), whereas FEM uses fixed polynomial shape functions. In
previous applications of the DFE (see Hashemi and Richard (1999), Hashemi (1998)) the
trigonometric shape functions have always satisfied the natural (free) boundary
conditions. For composites beams where the addition of an extra coupling term is used,
the present trigonometric shape functions become less effective since the natural
boundary conditions are not satisfied, thus resulting in similar convergence between DFE

and FEM. It is with the deviator terms that the DFE is distinguished from the FEM and
DSM.
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In contrast to the [(30)4/(-30)s]s symmetric stacking sequence, a [(45)4/(-45)4]s
stacking sequence was also tested. The increased taper resulted in much more consistent
convergences for the RDFE. For the first natural frequency (Figure 5-22) the DFE
converges to the exact solution with only 8 elements and intermittently converges more
rapidly than the other methods for the 2™, 3™ and 4™ frequencies (see Figures 5-23 to
5.25).

Percent Error (%)

Mumber Hements

Figure 5-22: First natural frequency for Lay-up #2 where ¢=-0.75
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—¢— FEM

Percent Error (%)
- N
= ;N U W

Number of Hements

Figuare 5-23: Second natural frequency for Lay-up #2 where ¢=-0.75

For the 3™ natural frequency, the RDFE behaviour is slightly different for small number
of elements, however, the DFE does still have the fastest convergence. To verify whether
the RDFE would converge faster at higher modes, a convergence test for the fourth
natural frequency was also carried. According to Figure 5-25 the fourth natural frequency

still favours the RDFE. It is observed that by using a higher taper coefficient, the
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effectiveness of the deviators is more pronounced resuiting in consistently faster
convergence. The more complex the system, the better the RDFE converges compared to

the other existing methods.
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Figure 5-24: Third natural frequency for Lay-up #2 where ¢=-0.75
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Figure 5-25: Fourth natural frequency for Lay-up #2 where ¢=-0.75

Table 5-6: The fundamental natural frequencies (Hz) of a carbon fibre/epoxy wing with a -0.75 taper
coefficient

Natural FEM Using DFE Using DSM Using FEM
Frequency 300 Elements 20 Elements 20 Elements 20 Eiements
{Benchmark)
1® 42.65 42.65 42.60 42.60
2nd 208.15 208.20 207.84 207.90
3rd 538.76 539.08 537.87 538.23
4th 957.52 956.83 955.01 955.53
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5.6 Conclusion

The DFE {::mulation for the free vibration analysis of a uniform and tapered composite
Euler-Bernoulli beam is presented. Natural frequencies and modes of free vibration have
been determined and classified for two types of materials and multiple stacking
sequences. The classification of these modes falls into bending, torsion, or bending-
torsion modes which are characteristics of composite material. The DFE matrix is
completely closed form based on trigonometric shape functions. Preliminary work
entailed extensive symbolic integrations that were undertaken using MAPLE® software
version 8. Based on the results obtained, the DFE shows faster convergence than the
FEM and DSM. This is particularly true in the case of highly tapered beams where
deviator terms are used to adjust the DFE matrix to generate a more accurate
representation of the element (i.e., RDFE). It is important to acknowledge the limitations
on these deviators as for some cases they adversely affect the convergence rates, by
adding numerical errors. The numerical error associated with more complex elements is
less pronounced as the deviators increase the convergence significantly. From the
observed results, the DSM accurately converges quickly to the soiution for simple
uniform elements. The FEM is fast and is best suited for multiple frequency outputs. The
RDFE with its refining terms is validated in contrast to the other existing methods for its
fast convergence to the solution particularly for higher modes of free vibration and for
more complex elements. With the RDFE validated for tapered beam configurations, the
formulation can then be advantageously extended to more realistic wing cross-sections

such as box-beam section discussed in Chapter 6.
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Chapter 6 Geometric and Material Coupled Wing
Model

6.1 Introduction

The materially coupled composite, uniform and piece-wise uniform stepped wing beams
were analysed in Chapter 4. The tapered wing configurations were then presented and
discussed in Chapter 5. In this chapter, the wing model is extended to more complex
configurations exhibiting not only the material but also geometrical couplings. Using a
wing-box model for the wing cross-section and a circumferentially asymmetric stiffness
(CAS) configuration for the composite ply lay-up, a more realistic composite wing model
is generated. In the previous chapters, only material coupling was considered which
arises from an unbalanced ply lay-up or symmetric stacking sequence. An additional
geometric coupling arises from the cross-sectional geometry of the wing.

The present wing model, (Figure 6-2(a)) is modeled as a symmetric configuration
where the materially coupled behaviour is characterized by bending-torsion coupled
stiffness K. The added geometric coupling is a consequence of an offset of the mass
centre axis;, Gs, from the geometrical elastic axis, Es, denoted by x,. Any structural
component located in front of the leading spar or behind the rear spar is considered not to
contribute to the rigidity of the wing (Lillico, Butler, Guo and Banerjee, 1997). The
omitted components do however contribute to the mass and inertia of the wing such that
the mass centre, initially located at the geometric centre of the box, shifts slightly towards

the rear of the wing-box (refer to Figure 6-2(b)).

6.2 Model, Hypotheses and Simplifying Assumptions

The proposed wing model is constructed as a wing-box, where L is the span-wise length

and c is the wing chord. The lateral bending and twist displacements are governed by
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Euler-Bernoulli and St. Venant beam theories, respectively. Shear deformation, rotary
inertia, commonly associated with Timoshenko beam theory, as well as warping effects
are neglected.

Different stacking sequence and/or thickness of the thin-walled box-beam result in
different coupling behaviours. For a circumferentially asymmetric stiffness (CAS)
configuration the axial stiffness, A, must remain constant in é]l walls of the cross-section.
The coupling stiffness, B, in opposite members is of the opposite sign as stated by
Armanios and Badir (1995) and Berdichevsky et al (1992). As a result of axial stiffness,
A, remaining constant, the corresponding thickness must also remain constant. Chandra et
al. (1990) consider a symmetric co;xﬁguration for a box-beam which consists of opposite
walls having the same stacking sequence, although the stécking sequences between the
horizontal and vertical members need not be the same. The CAS and symmetric
configurations both lead to a bending-torsion coupled response for thin-walled beams.

The second configuration considered by Armmanios and Badir (1993) and
Berdichevsky et al (1992) was a circumferentially uniform stiffness configuration (CUS)
where A, B, C, axial, coupling and shear stiffness, respectively, are constant throughout
the circumference of the cross-section. Chandra et al. (1990) built-up similar
configurations where the stacking sequence of opposite walls is of oppositely stacked,
what they call anti-symmetric configuration. Anti-symmetric or CUS configurations are
beyond the scope of this research and will not be discussed further. The CAS or

symmetric configuration leads a bending-torsion coupled wing which will be used to

model the wing-box composite plies.

Leading spar

@

Figure 6-1: (a) 3-D drawing of a composite wing cross-section airfoil, with length = L.
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Figure 6-2: (b) Cross-section of & wing-box, where ¢ is the choxd length, M,,, is the wing-box mass,
E; and G, are, respectively, the geometric elastic centre and rnass cenire axis.

6.3 Theory

The differential equations governing the motion for the free vibratior of laminated

composite wings (presented in Figures 6-1(a, b)) with geometric coupliny;s are given by

Lillico et al (1997) as:
a? ’w) o? oy 9*w oy
< —- —= 0.75
= (EI (x) )+8x2 (Ix(x) axj+m(x) 37 m(x)x, W (0.75)
0 d 0w *w
— (GJ( B== } = (K( )3 )M(x) a3z lalx ) (0.76)

The displacements can be assumed to have a sinusoidal variation with frequency @ as:

w(x,t) = w(x)sin ax .
v(x,t) =¥ (x)sinax 0.77)
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The Weighted Residual Method (WRM) is employed and the integral form is re-written

in the following weak form

W, = f [EI(x)6w"w"+ K(x)6w" ¥ = m(x)@*Sww+ m(x)@’ x, Sw¥ | dx (0.78)
+[(EIw™+ K()¥ ) 6w ], ~[(EI(w"+ K ()P ") Sw']] o

W, = f[—GJ ()0 "¥ '~ K(x)F'w"+ I (x)ar I — m(x)a’x, a}yw] dx

(0.79)
+GI(x)[PY ']; + K (x0){¥w "]3

where two integrations by parts for the flexural portion and one integration by parts for
the twisting portion have been applied. Similar to Chapter 5, by re-writing the integral
equation the inter-element continuity requirements are relaxed so that unce again the
approximation spaces for w and ¢ satisfy the ¢! and C° continnity requirements,

respectively. Then, the resulting shear force, S(x), bending moment, M(x), and torsional

‘moment, T(x), are:

2 *w L ARE
S(x)= -a;(EI (x) Ewa K(x) ™ ) , (0.80)
o*w ¥
M(x)=— - or
(x) =—EI(x) e K(x) ™ (0.81)

o’w
ox?

T(x)=GJ (x)%‘ii+ K(x) (0.82)

The sign conventions are similar to those already used in Chapters 4 and 5. Boundary
conditions associated to clamped-free (cantilever) structure are such that all virtual and

real displacements are zero at wing root (x=0) and all resulting forces are equal to zero at

wing tip (x=L). Hence,
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ow=00=8=0 atx=0 (0.83)

Consequently,

S=M=T=0 atx=L (0.84)

Expressions (0.78) and (0.79) also satisfy the Principle of Virtnal Work (PVW) similar to
formulation in Chapter 5. The system is then discretized by 2-node 6-DOF uniform beam
elements over the length of the beam. The wing can be discretized to a local domain

£=[0,1] (i.e., reference element) where, £=x/L. The uniform element virtual work

expressions for bending and torsion contributions can then be written as:

l

k
lw

WHE) = E[’%(EI@:M‘W") "— m(é’)lka)25w] wd&

e ' (0.85)

k

+%[5w"w'—5w"‘ w]:) +-g _C‘I’ 'Ow'dé +mx I, @’ £5w‘l’d§

and

AGE ﬁ[—li(GJ(cf)&P')'— Ia@)lszé‘i']‘l’df

\ )

&5 (0.86)
(91’"1’]:, +l§- ﬂw"&P‘d§+malsz f)wt?l’df
k

+.G_J[

k

The coupling terms in equations (0.85) and (0.86) are equivalent and when written in
matrix form they are only different by their dimensions. The coupling terms in the weak

form retain symmetry of the final element DFE matrix. The DFE takes the average over
each element (similar to the DSM) for EI( &), m( &), GI(&), 1,(£) and K(&). Therefore,

after a certain number of additional integration by parts, the expressions for flexural and

twist are found as:
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bw

*

+——EI;” [6w"w'—Sw"w], + Kl;w £\P 'Sw'dé (0.87)

+(mx,),, Lo [ owvde
and,

W& = [ [-li GI, O "~ I, ., a,w] wd¢
k
) ’
+—G%[8{"T]:, +-I-<l-;-& [wrowas (0.88)
k k

+(mx,),, Lo? [ wovds

such that,
W5 =W (O +W* (&) (0.89)

The Dynamic Trigonometric Shape Functions (DTSF’s) are then defined such that the
integral expressions (¥*)and(**) are zero. The variable mechanical properties are
averaged differently compared to the previous models developed. The following integral

averaging technique is employed to allow for flexibility in the model,

r,, =—
b—a

[T(xdx (090

so that the dually coupled wing-beam, exhibiting material and geometric couplings, can
be easily extended to higher order taper configurations. I can be any mechanical property

varying along the wing span (refer to Figure 6-2).
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T'(x) canbe any

, order of taper

Figure 6-3: : Dually tapered composite wing-box

Finally, the approximations to the field and test variable w, ¥, Jdw and J¥ are

substituted into the above equations and the corresponding DFE matrices are obtained as:
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[0 0 N,"N,' 0 0 N,"N,,"]
0 0 N,"N," 0 0 N,"N,'

’ ¢,=£f, N,"N,' N,"N,’ 0 N,"N, N,"N,’ 0 aE (0.93)
arerial 2 0 0 N,"N,’ 0 0 N,"N,'
0 0 N,"N," ¢ 0 N,"N,,'
| N,"N,," N,"N,,’ 0 N,"N,,' N,"N,' 0 |

Similar to equation (5.18) and (5.19) deviator expressions can also be added to refine the
dynamic stiffness matrix RDFE to incorporate variable mechanical and/or geometric

parameters:

29

W, = L}m [EIaveé‘w"w"—*- K, ow'¥'-m, o' Sww+(mx,) a)zé’w‘P]dx

+ j’ | (=EL,, + EI(x)) w"w"+ (=K, +K(x))6w"¥" |dx
L Elpgy Kp.ogv

+ r’*' - (—mm + m(x)) (02 Sww+ (— (m'-[a )ave + m(x)x“ (X)) Yow
J — - ™ ‘
L Mpey "%, DEV

"

(6.94)

w=[" [GJmé‘P "Y'+ K, 0¥ w'—1,, 0" 0¥ +(mx,)_ wzé‘yw]dx
xj

+ [ (=GJ .. +GI () O ¥+ (=K, +K(x)) ¥ 'w" | dx
X ~ ——= o —_— ———
L GJpgv K,.pev

-

[T (e + L, () P OXE +(—(mx, ), +m()x, () SFw |dx

1 N o

La,pev My pEV

.

(0.95)
The only major difference between equations (0.94) and (0.95) and equations (5.18) and

(5.19) is an added bending-torsion coupling associated with x, term. The deviator

matrices are then constructed in the same way leading to:
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where,
DEV =;13- [ EL, +EIE)<N"> (N "}d§+71— [(G1,.—GIE) <N, >{N,d¢
k k
07 [y ~m(E) < N > (NVE+L,0P [ g ~1,(END <N, >N, }dE (0.97)

+or [ +KE)<N">(N, g+ (Kot K@) <N,'> (N"1dE
k k

Due to the unavailability a closed form symbolic integration for the deviator terms. The

deviator terms rely on a numerical 16 point gauss quadrature integration.

6.4 Numerical Tests

6.4.1 Example of a quadratic tapered wing.

For the composite wing-box (Figure 6-1(b)) with tabulated properties displayed in Table
6.1 the natural frequencies were determined for a quadratic tapered wing. Mechanical
Properties are also displayed in the paper published by Eslimy-Isfahany and Banerjee
(1997). For a CAS configuration the fibre orientation on, the top is [+15], degrees,
bottom [-15], degrees and the sides [15/-15] degrees.

Using a pre-processor developed specifically for thin-walled Composite box-beams based
on the formulation presented by Armanios and Badir (1995) and Berdichevsky et al
(1992) the effective rigidities for graphite/epoxy are obtained to be EI = 4.43 MPa for
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bending, GJ= 1.19 MPa for torsion and K=1.75 MPa for coupled bending-torsion
rigidities at the wing root. The effective rigidities of graphite/epoxy are plotted for
multiple ply angles (Figure 6-3). From this figure the maximum value for the bending-
torsion coupling rigidity is observed to occur at 15 degrees. Along the wing length, the

stiffness properties will vary according to the order of taper.

Pty Angle (Degroos)

Figure 6-4: Plot of Rigidities vs Ply angle for a graphite/epoxy
composite.

Table 6-1: Material Properties of a graphite/epoxy composite Laminate

EL 206.92 GPa Width 50.8 cm
Er ' 5.17 GPa Taper Coefficient -0.5
Gyy 3.10 GPa Depth 10.16 cm
Vi 0.25 Taper Coefficient -0.5
Thickness of Layer 1.016 mm Length 2.03 m
Mass centre offset -11.9cm

The convergence test results for the first three natural frequencies of the quadratic
tapered wing are presented in Figures 6-4 to 6-6. The comparison is made between
the numerical results obtained from the ‘DFE with no deviators’, ‘RDFE
incorporating the deviator terms’ and the reference natural frequencies were obtained
from 120 conventional beam Finite Elements. The FEM model is based on cubic
Hermite and linear approximation for bending and torsion displacements,

respectively, and a constant mass matrix.
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Figure 6-5: Convergence of dually quadratic tapered wing-box for the first natural frequency.
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Figure 6-6: Convergence of dually quadratic tapered wing-box for the second natural
frequency
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Figure 6-7: Convergence of dually quadratic tapered wing-box for the third natural frequency.

As it can be seen, in this case, the FEM converges faster than the DFE when
deviators are not used. By including the deviator terms the convergence rates for all
three frequencies increases significantly. This consistent convergence using the
deviators shows that there are no apparent limitations on these terms. Referring to
chapter 5, the deviators became more effective for higher taper angles. The quadratic
tapered wing is now more complex such that the degrading effects resulting from
numerical error is so small that they do not affect the positive refining results of the
deviators.

A comparison is made between the fundamental natural frequencies of the
graphite/epoxy composite wing obtained from FEM and DFE methods using different
meshes. It is observed that the FEM errors for the first, second, and third natural
frequencies, respectively, are approximately 20, 50 and 50 times higher than the

corresponding DFE errors (see Table 6-2).
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Table 6-2: Fundamental frequencies in Hz for a graphite/epoxy quadratic tapered composite

wing

120 elements

10 elements

10 Elements

Mode number FEM DFE ERROR FEM ERROR
1 31.74 31.73 0.025 % 31.57 0.53 %
2™ 74.36 74 .40 0.050 % 74.19 0.24 %
3™ 110.44 110.50 0.056 % 110.09 0.31 %

6.4.2

Cubic tapered wing.

Let us consider a dually cubic tapered wing-box with the same mechanical properties

as in the previous example. The FEM and DFE convergence results for the wing’s

first 5 natural frequencies are presented in Figures 6-7 through 6-11. By

implementing a cubic variation the deviators associated with the DFE method amplify

the convergence in contrast ‘o a linearly varying cross-section of low taper ratio seen
previously in Chapter 5.

3.5 -

m
.

Percent Error (%)
o

1.5

Number of Hements

Figure 6-8: Convergence of dually cubic tapered wing-box for the first natural frequency.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84




Percent Error (%,
N
2]

Number of HBements

Figure 6-9: Convergence of dually cubic tapered wing-box for the second natural frequency.
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Figure 6-10: Convergence of dually cubic tapered wing-box for the third natural frequency.
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Figure 6-11: Convergence of dually cubic tapered wing-box for the fourth natural frequency.

Only for the fourth natural frequency (Figure 6-11) greater convergence rates are
obtained from the FEM, which is irregular since all other convergence tests favoured

the DFE. In order to further investigate these results, the numerical values for

frequencies are presented in Table 6-3.
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Figure 6-12: Convergence of dually cubic tapered wing-box for the fifth natural frequency.
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Table 6-3: Natural frequencies for a dually cubic tapered graphite/epoxy composite wing.

Mode el fnoonts 10 elements Percent 10 Elements Percent
number FEM ?Hz) DFE (Hz) error FEM (Hz) error
i 13.50 13.52(B) 0.09 13.33 1.27
2™ 40.58 40.72(B) 0.35 40.07 1.26
3™ 78.29 78,37 (T) - 0.10 77.28 1.29
4‘: 85.93 86.67 (BT) 0.86 B85.65 0.32
5° 131.36 131.46 (BT) 0.07 129.80 1.19

It is observed from the tabulated results that the DFE is significantly more accurate
than the FEM by a factor of greater. than 10. These results are expected as the DFE
formulation is designed to be more accurate for complex elements such as the present
dual cubic tapered model. The natural modes for the cubic tapered graphite/epoxy
wing are displayed in Figure 6-13 to Figure 6-17. The modes of deformation have
been plotted in both 2-D and 3-D spaces and have been normalized to better

distinguish the modes as bending, torsion or coupled bending-torsion.

Displacomant

" L < : 2 " : 1 : s
D 02 D& D& OB 1 12 14 15 1B 2

Distence from wing root (m)

Figure 6-13: First predominantiy bending mode of vibration for a composite graphite/epoxy
cubic tapered wing in both 2-D and 3-D plots. For the 2-D plot the bending displacenment is
represented by a solid line (-) and torsion is represented by a dashed line (-},
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Figure 6-14: Second predominantly bendipg mode of vibration for a compesite graphite/epoxy
cubic tapered wing in both 2D and 3-D plots. For the 2-D plot the bending displacenment is
represented by a solid line (-) and torsion is represented by a dashed line (--).

From the first two plots in Figure 6-13 and Figure 6-14 it can be seen that the modes
are predominantly bending with slight influence of twist. For the higher modes a

stronger influence of torsion is observed particularly for the third mode in Figure 6-15

T

"
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" . s " L s
o4 06 O3 t 12 14 18

Distence from witg root {(m

1.3

where the mode is primarily torsion.

Displacexsnt
(- T~ T - - |
-3 » - N -]
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Figure 6-15: Third predominantly torsion mode of vibration for a composite graphite/epoxy
cubic tapered wing in both 2D and 3-D piots. For the 2-D plot the bending displacenment is
represented by a solid line (-) and torsion is represented by a dashed line (--).
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Figure 6-16: Fourth bending-torsion mode of vibration for a composite graphite/epoxy cubic
tapered wing in both 2D and 3-D plets. For the 2-D plot the bending displacenment is
represented by a soligl line (-) and torsion is represented by a dashed line (--).

- The bending-torsion coupling is apparent in the last two modes extracted, in Figure
6-16 and Figure 6-17 for the fourth and fifth free vibration modes. Although the
interpolated surface plot used in MATLAB® is exceptionally useful in visualizing
these modes the cubic taper has been stretched into a rectangular surface such that the
3-D surface plots are not necessarily to scale, but can still be useful differentiating the

modes as bending or torsion.
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Figure 6-17: Fifth bending-torsion mode of vibration for a composite graphite/epoxy cubic
tapered wing in beth 2D and 3-D plets. For the 2-D plot the bending displacenment is
represented by a solid line (-) and torsion is represented by a dashed line (--).
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6.6 Conclusion

The free vibration analysis of thin-walled composite wing-boxes with quadratic and
cubic tapers is presented. By implementing the CAS configuration and non-
coincident mass and shear axes, the wing exhibits dually coupled vibration. The
natural frequencies and moedes of deformation have been extracted using the three
methods, conventional FEM, DFE, and the refined DFE (DFE with deviators). These
deviators take into account the variable geometric and/or material parameters of the
wing model over each DFE. The coﬁvergence of the refined DFE (RDFE) is validated
in comparison with the FEM method for multiple tapered geometries and ply
orientations. The RDFE method provides a much higher convergence rate than
classical finite elements. The corresponding natural modes of vibration were also
evaluated and plotted using the advanced plotting features in MATLAB®. The
programs coded in MATLAB® are discussed in the Appendix.
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Chapter 7 Conclusion

7.1 Concluding Remarks

The free vibration analysis of structures is a crucial part in the design of mechanical and
aerospace structures. If the vibration of structures is neglected, this could lead to
catastrophic failure of both static and dynamic systems. To prevent such failures an
accurate investigation into the vibration response of a system must be carried out. Three
of the most appealing techniques now available are the finite element method (FEM),
dynamic stiffness matrix (DSM) method and the dynamic finite elemeni (DFE) method.
The methods each provide different advantages and disadvantages depending on the
model considered and the output desired.

For the free vibration of wings, the FEM provides a quick solution for the natural
frequencies and corresponding modes of deformation. The systematic procedure used to
formulate the element mass and stiffness matrices, with a Galerkin weighted residual
method, shows a clear advantage over other weighted residual and variational methods.
Also, the generality of the FEM step-by-step procedure allows for easy implementation to
more complex elements.

The application of the DSM for the free vibration analysis of metallic and composite
beam structures is well established. The formulation is based on a single frequency
dependent stiffness matrix possessing both mass and stiffness properties. The
implementation of the exact member theory, for uniform beams, gives this method the
capability to converge on any fundamental frequency using only one element. The
accuracy and CPU time associated with the post-processing of the DSM is a particularly
attractive for the analysis of uniform beams. Although from the observed results in
Chapter 5, the accuracy of the technique is less efficient for complex non-uniform
elements.

The DFE has also been established for homogenous metallic beams. The goal of the
present research was to apply the DFE formulation to the free vibrations of laminated

composite wing-beams. The technique combines the advantages of both the DSM and
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FEM by providing a viable method for determining the natural frequencies of a structure.
Based on the finite element method the DFE provides the same systematic step by step
procedure to formulate the element stiffness matrix. The frequency dependent stiffness
matrix adopted from the dynamic stiffness matrix method is produced by implementing
dynamic trigonometric shape functions (DTFS). These DTFS’s are based on the solution
to the governing uncoupled differential equations and also differentiate the DFE from the
FEM. |
From the observed results the DFE provides the fastest convergence to the exact
solution for complex elements. The method provides such accurate results for non-
uniform beams by implementing a deviator matrix, which differentiates the DFE from the
DSM and FEM. From the results pertaining to taper configurations for both the solid
rectangular cross-section in Chapter 5 and the thin-walled wing box-section in Chapter 6
the deviators provide a much more accurate solution to the resonant frequencies based on
the coarsest mesh. Although the deviators are designed to increase convergence, certain
limitations do exist and must be acknowledged (outlined in section 5.5.2). These
limitations only exist for small taper ratios where uniform elements are sufficient to
achieve an accurate solution to the structure. For highly complex tapers, such as quadratic
or cubic, the DFE’s observed results present a clear advantage over the other methods
considered. Therefore the DFE is valid for elements which exhibit high complexity.
Generally, a finite element based model incorporates numerical integrations to
integrate the integrand in the weak form of the governing differential equations of
motion. Numerical (e.g., Gauss quadrature) integration could be avoided if a closed form
solution to these integrals can be reached. The incentive of producing element matrices
based purely on algebraic equations is in the reduced CPU time required to execute a
finite element based program. In the conventional FEM this is easily achieved using
polynomial shape functions. In the present DFE formulation, due to the frequency
dependent shape functions, extensive symbolic integrations have been undertaken using
'MAPLE® to produce an element dynamic stiffness matrix based completely on algebraic
expressions. Symbolic expressions have been achieved for both uniform and tapered
formulations in Chapter 4 and Chapter 5, respectively. Unfortunately a symbolic element

matrix for the composite wing-box configuration prepared in Chapter 6 could not be

.92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



achieved due to the complexity of the formulation. A Gauss quadrature technique, using
16 integration points was then used to evalvated the integral expressions numerically.

The graphical user interface (GUIL) prepared in the Appendix was coded in
MATLAB®. Although a more efficient code execution could have been achieved using a
programming language such as FORTRAN, MATLAB® was chosen since it provides an
advanced graphical user interface. The extensive plotting features in MATLAB® giv: the
user the capability to visualize the modes of deformation in two and three dimensions.
The 3-D modes display a more visual representation of the bending and torsion
deformations over the 2D plots.

It is an advantage to incorporate é-D plots as it is easier to distinguish the natural
modes of vibration as bending, torsion or bending-torsion. In addition, MATLAB® has
the capability to convert an m-file function into a stand-alone program based on C++
code generation. Although the stand-alone feature in MATLAB® has not been utilized to
its fullest extent, however, it presents an attractive factor in the decision of which
program to use.

In a glance, by implementing a progressive technique in the development of a
complete composite wing model, errors in the formulation and results are prevented. The
DFE is formulated for composite aircraft wings and is validated in comparison with other
attractive methods such as the DSM and FEM. Advantages and disadvantages are
discussed for wings of various geometries and stacking sequences. It is also demonstrated
that the DFE can be more advantageously applied to vibrating beam-like periodic
structures constructed from complex elements and where higher modes of vibration are
desired. '

In summary, the proposed DFE provides design engineers with a powerful tool for the
preliminary design stage where a huge FEM mesh is not preferred. Once the preliminary

design is formalized, an elaborated refined FEM model can then be created for detailed

analysis and fine tuning of the model.
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7.2 Future Work

The Dynamic finite element method will be extended to Timoshenko beam theory where
the inclusion of shear deformation and rotary inertia are considered. The current
formulation presented in Chapter 6 for a composite wing-box can also be extended to
rotor blade design By addition of an axial force in the governing differential equations of
motion. A composite rotor blade design would lead to analysis of aircraft propellers,
helicopter blades and rotor and wind turbine stators in new generation of jet engines
equipped with axial compressors. From the observed results for «omplex geometries
published by Hashemi and Richafd (1999), Hashemi (1998), Hashemi and Borneman
(2003), and Hashemi and Borneman (2004), the DFE produces the highest convergence
rates compared with conventional FEM and DSM methods. With the added complexity
of the axial force produced by blade rotation, the deviators associated with the DFE

formulation would result in even higher convergence rates compared to other existing

methods.
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Appendix A: MATLAB® Dynamic Finite Element Wing
Analysis.

A.1 Introduction

A MATLAB® based program was developed to calculate the natural frequencies of the
free vibration of a laminated composite wing. The graphical user interface (GUI) has
been exploited to give the user a simple method for displaying the natural frequencies and
modes of coupled free vibration. Two programs are explained in detail in this chapter so
that any user can use these programs proficiently. The first program is the flat composite
cantilevered beam program which is designed to find the natural frequencies and
corresponding modes for any solid rectangular cross-section composite. This beam
program is extended to models that are tapered by chord if desired. The second program
is designed for complex geometric cross-sections, specifically closed section wing-box
configurations.

The wing-box configuration has the capability to account for mass distributions in the
wing structure (e.g., engine) leading to an offset of the mass axis from the elastic axis.
This offset produces a second coupling due to the mass distribution and geometry of the
wing. Both programs incorporate a pre-processor to evaluate the effective stiffness of the
composite lay-up. The first program utilizes the classical laminate theory to calculate the
effective rigidities of the system. The second program incorporates the circumferentially
asymmetric stiffness (CAS) configuration to evaluate the effective stiffness for a

composite closed section wing-box design.
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A.2 DFE Uniform/1apered Composite Beam Program

The first step for the aralysis of a
composite uniform or tapered wing is to
select the desired method. Select the
method that best fits the desired solution.
For example, if multiple frequencies and
modes are required, one would choose the
finite element method (FEM). For a quick
accurate value for a particular frequency of
a uniform beam the dynamic stiffness
method would be of interest. For more
complex geometries such as high tapers
angles the dynamic finite element method
may be used to achieve an accurate result.

To select a method either double click one
of the listed methods or highlight the

selection and then click ‘Ok’

Next, the mechanical propertieé of the
composite must be known. The principal

values for longitudinal elastic modulus E,,

transverse elastic modulusE,, shear

modulus

G,,, Poisons ratio v, are

required so that the pre-processor can
evaluate the effective rigidities of the
beam. The program is not limited to only
one layer. Multiple Jayers can be input at

different fibre angles.
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The fibre angles are measured form the RERIEILEI Tt ..

Dafino Pty Angte (Degress)

fibre direction to the span wise direction of

the model. The fibre angles are input one at
a time from top of laminate to bottom. The
stacking sequence is at the user’s
discretion, but user should be aware that
the program is designed for symmetric
stacking only. This type of stackjng.will
produce the coupled bending-torsion

composite behaviour.

The geometry of the solid rectangular

3 Define Solution’ l.'?vi;op'er“ti'es'
cross-section beam must be defined. The Lﬁ%m&m

corresponding boxes for beam length, root

chord, and taper coefficient are required. If

Iz_macwwm
a uniform beam is desired than the user -7

ok | Concel

may set the taper coefficient to zero. The
taper is limited to span-wise reducing

chord only.

A simple and convenient wait bar has been

implemented to give the user a sense of

when the program will terminate.
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The solution properties are needed to [N g R B

define what type of solution output is

required. The range of elements is needed

and range of natural frequencies is input to

3.0nktial R of Frequancies
11
define mesh refinement and number of

4 FilR of Frequencies
modes desired. The upper and lower bound |[5

frequencies are input for the initial 5["11m mentl

frequency. The accuracy of the natural T——————M Bound Fr

frequencies can be set to any desired wﬂn,mm
5 . .

decimal greater than double precision. The |, .. voces teyes ond oo
jo

accuracy is based on the bisection method

ok | conce |

in conjunction with the Wittrick-Williams
algorithm.

Natusal frequencies
The solution is output in a list box. The ,

T
output natural frequencies are based on the 1192.864

largest number of elements selected in the gig?gg

solution properties, to ensure the results , 105342 e

are based o2 the most refined mesh. setect &l |

Ok - l Cancel ]
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To display the modes the user can double JEITILITREKIEN
Fitp -Bdin Ve inset Teols | Windoee

click on the values in the list box, then the XAZ/|BPO.

A

N N T 2 e

corresponding mode will pop-up. The
modes are displayed in both 2D and 3-D.

The 3-D mode was added to give a visual

representation of the actual deformation
shape of the beam. For tapered beam
configurations the 3-D modes will still be

displayed in a rectangular plane.

An extra output is performed wl;ich
corresponds to the frequency data for each
element in the element range. This data is
output in a 2D array of natural frequencies,
columns being the frequency number and
rows being the number of elements. A lotus
123 file is written which can be opened by
any database. This feature is particularly of

interest for convergence analysis.

A.3 DFE Wing Analysis for Composite Wing-Box Sections

DFE Wing Analysis is designed for determining the free vibration response of composite
thin-walled wing-box. The response of the wing can be solved using either the finite
element method (FEM) or the dynamic finite element (DFE) method. The wing is
modeled as beam assemblies with 3 degrees of freedom per node. The circumferentially
asymmetric stiffness (CAS) configuration is employed to ensure the response is only

coupled between bending and torsion.
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The initial pop-up menu is ‘Select a
Method’ list box. This is where the user
decides which method to use for the free
dually coupled vibration of a composite
wing. The finite element should be selected

if the user desires a quick calculation of

multiple frequencies. For more complex

geometries such as tapers (e.g., Linear, Finiter Element Methad™ (FEM1 .

quadratic, cubic) then the DFE should be

selected.

Unfortunately the DFE will run slower

for tapered wings compared to the previous

program for solid rectangular cross-

sections. This runtime is slower due to the
unavailability a closed form symbolic
integration for the deviator terms. The
deviator terms rely on a numerical 16 point

gauss quadrature integration,

The mechanical properties of the composite

“ » Defitie-Composité . - = -

are input in the corresponding boxes to the

right similar to the previous described

program. The difference in this program is

that the layers are limited to multiples of 2

since they must correspond to the b nsn

circumferentially asymmetric.  stiffness e

(CAS) configuration used in the pre- s

processor to evaluate the effective rigidities Lo

of a composite box type section. ] o]
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The composite fibre angle is measured
from span wise direction of the wing. The
angle is only needed to be entered once,

since the pre-processor automatically sets

up the CAS configuration of [6],
[-6],.for the top and bottom skins

respectively and [8/- 8] for the sides.

Then, the composite wing geometry must
be entered. The root width and depth I.IIUSt
be input and the corresponding taper
coefficients as well. The centre offset is
defined based on the mass distribution of
the wing and must be pre-calculated prior
to program execution. This mass axis offset
from the elastic axis produces a second

bend-twist coupling.

. Similar to the previously described solution
properties, they are needed to define what
type of solution output is required. The
range of elements is needed and range of
natural frequencies is input to define mesh
refinement and number of modes desired.
The upper and lower - ound frequencies are
input for the initial frequency. The

accuracy of the natural frequencies can be

set to any desired decimal greater than
double precision. The accuracy is based on
the bisection method in conjunction with

the Wittrick-Williams algorithm.
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The solution is output in a list box. The [N R
P -.'._DFE*SOl-utIm‘_I S
output natural frequencies are based on the L S S

largest number of elements selected in the | | Netuellequencies ©.:
solution properties, to ensure the results are

based on the most refined mesh.

5 elect all ]

ok | Cancel |

To display the modes the user can double

click on the values in the list box, then the
corresponding mode will pop-up. The
modes are displayed in both 2D and 3-D.

The 3-D mode was added to give a visual

representation of the actual deformation
shape of the beam. For tapered beam

configurations the 3-D modes will still be

displayed in a rectangular plane.

An extra output is performed which
corresponds to the frequency data for each
element in the element range. This data is
output in a 2D array of natural frequencies,
columns being the frequency number and
rows being the number of elements. A lotus
123 file is written which can be opened by
any database. This feature is particularly of

interest for convergence analysis.
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Appendix B: Flow Charts

Uniform/Tapered Beam & Dually Coupled Wing Analysis Program
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Uniform/Tapered Beam Program

|

Start

1

Get
Properties
of wing

v

Input Box

,,_,L——-—- Omitted from the

Manual Input wing analysis - -
Program

Case for FEM Display
FEM function [—— Natural
Frequencies

Case for DSM Display
DSM function W Natural
Frequencies

DFE Display
function |[—— Natural
Frequencies
Output Natural
Frequencies
and Modes
End l
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Start of

This function is replaced with a new function for the

wing analysis program. This allows the program to
‘—T-J evaluate the stiffness of a CAS configuration

Solution
Function

v

Thickness
function

RighascGEO2

Construct Assembly

_.J Element |y function
Matrices

Boundary

function

\ 2
Calculate
Natural
Frequencies

v

Store
Frequencies
in Array

Export
Frequency data
to database

v

Export
Frequency data
to database

Qutput to
Tapered
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Cone e )
Start of
DSM
Solution
Function
Thickness
function
T
Y
RigbaseDFE
| .
While
Error>desire
d
DSM sub-flow 1
Boundary
function
Splu function
SigaDFE
A 4
Store Frequency in
Array _6
Bisection
L

Export Frequency
data to database

[ Output latest Frequency
array to function

\
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ls)mF;; of This function is replaced with a new function for the

wing analysis program. This allows the program to
evaluate the stiffness of a CAS configuration

Solution
Function

Thickness
function

—3 DFE sub-flow 1

count<Ne

Boundary
function

v

Splu function

2

SigaDFE

\ 4

Store Frequency in
Armay i

Bisection

Export Frequency
data to database

v

—
Output latest Frequency J

anray to function

\

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



( )
Start of solution
function
L//L/J
Manual Input of

Solution
Properties

I

- N
Output data to *
function
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Do While Input dialog: Input
ok=1 thickness of
selected step.

if ok =0, then .if ok=1, continve
Break

If node=1

Translate thickness for Set thickness for initial
element to nodal node as root thickness
thicknesses

For number
of El
Groups

Output data to
function
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Start of
RigbaseGEO2

Calculate nodal
values for
varying
parameters

Output Averaged
Parameters to function

Start of
RigbaseDFE

Use of integral
Averaging useful for
higher order tapers

Calculate nodal
values for
varying
parameters

OQutput Averaged
Parameters to function
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Start of

Assembly

For ii=ND*(n-1)+1
to ND*(n+1)

A 4

Shift rows by ii and
columns by jj

) 4

N
Output Shifted
Matrix for
summation

For {i=ND*(n-1)+1
to ND*(n+1)

**ND is the Number
of Degrees of
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Start of
boundary

For ii=1:Nt-3

A 4
Shift rows by ii
and columns by
i}

\ 4

Output Shifted
Matrix
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~
(- DSM
Sub-flow 1

v

Equation
Reference 1

+ .
Equation
Reference 2

Equation
Reference 3

v

Assembly of
element
matrices

v

Clamped-
clamped
frequencies

v

Back to
DSMtapered

.
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( DFE ] F : -
ot s 1 or the wing anaiysis
DUUTHIUW 1 J program the deviators

\_ are evaluated using

+ Gauss-quadrature
Create
element

matrix Numerically
R *-_------_-: evaluate Deviator
i | Create element E ma}nx
i symbolic r-- - '
¢ | deviator matrix | i
¥ 1

Sum element
matrices to form
final element matrix

v

Assembly of
element
matrices

v

Clamped-
clamped
frequencies

R’

f Back to
DFEtapered

_
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SignKDFE

If diagonal
clement is
<0

Signcouni(i)=0 Signcount(i)=1

Fori=1 to
Nt-ND

Summation
of
Signcount

:

Return number of
frequencies
exceeded
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Bisection
| Function

Lower bound
Equals NF
if
JT>=nat
Upper bound
Equals NF
A 4
Set NF=
Average of
UB and LB
Output to
Function
-
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SClamped3

If Sc<0

!

sgnSC=1 sgnSC=-1

A

signs=1 sgnS=-1

\ 4

Compute the number of
frequencies exceeded as a function

l

Output to
function
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