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Abstract

This thesis presents a new dynamic finite element (DFE) formulation for the free 

vibration of composite wings modeled as beam assemblies. Implementing Euler- 

Bemoulli beam theory, the initially assumed uniform beam is modeled in a progressive 

manner to produce a complex tapered composite thin-walled wing. The DFE employs 

dynamic trigonometric shape functions (DTSF’s) to produce a single dynamic stiffness 

matrix containing both mass and stiffness properties. Then, the Wittrick-William root 

counting algorithm is used to solve the resulting non-linear eigenvalue problem. The 

effective stiffness of a flat fiberous composite beam is modeled using classical laminate 

theory. The effective stiffness of a thin-walled wing-box is achieved by employing a 

circumferentially asymmetric stiffness (CAS) configuration. The convergence of the DFE 

is significantly better as compared to other existing methods, the Finite Element Method 

(FEM) and the Dynamic Stiffness Matrix (DSM), particularly for complex elements and 

higher modes of free coupled vibration.
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Nomenclature

U Eigenvector
[üT] Stiffness Matrix

[M ] Mass Matrix
À Eigenvalue
œ  Frequency [rads/s]
J  Number of total frequencies exceeded by the trial frequency
Jg Total number of clamped-clamped frequencies exceeded by the trial

frequency
sgn{ } Sign count of negatives along the leading diagonal of the dynamic 

stiffness matrix 
[J5] Stiffness matrix for a simply-supported beam

Number of clamped-clamped frequencies exceeded for each element 
Jj, Number of clamped-clamped frequencies exceeded for the bending

portion
sgn{S] Sign count of negatives along the leading diagonal of the simply supported

dynamic stiffness matrix 
7, Number of clamped-clamped frequencies exceeded for the twisting

portion
Dy Denominator of to the flexural shape functions
D, Denominator of to the torsion shape functions
a  Coefficient to the governing differenti al equation of motion for bending
/  Coefficient to the governing differential equation of motion for torsion
{F] Applied Force Vector

0)„ Perturbation of the natural frequency
P  Perturbation of the force vector
Q;j Reduced stiffness constants
Ej. Transverse elastic modulus

Longitudinal elastic modulus 
Principle shear modulus 

V Poisons ratio
Qy Transformed reduced stiffness constants
N{x, y) Resultant force
M  (jc, y) Resultant Moment
Ay Extensional stiffness matrix
By Coupling stiffness matrix

xm
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Dij Bending stiffness matrix
6  Bending slope

y/ Angle of twist
El or H j  Bending stiffness
GJ or H, Torsion stiffness
K  Coupled bending-torsion stiffness
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h Wall thickness
d Depth of a box-beam section
L Length of the beam (wing)
R Radius of curvature
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B, Reduced coupling stiffness on the top skin of a box-section

Enclosed area of the box-section
a Width of a box-section
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s Circumference of the cross-section
w Bending displacement

Mass moment of Inertia per unit length 
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W ,^ Internal Work
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Element Length 
Wy Elementary work corresponding to bending
W/ Elementary work corresponding to bending
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Nj Twist shape functions

Reference variable 
DEV Deviator terms

Average variable
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c Chord length
Mass of wing box 

Gj Geometric elastic axis
Ej Mass axis
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Chapter 1 Introduction 

1a 1 General Introduction

Mechanical vibrations are exhibited by all structures, the study of these vibrations is 

important because they can be destructive in a design. A bridge is a good example of a 

static structure that can undergo mechanical vibrations. If the bridge is forced to vibrate 

at one of its resonance (i.e. natural) frequencies by an externally applied load, the modes 

of deformation associated with this ’ resonance can lead to catastrophic failure. For 

example, the Takoma bridge as seen in the illustration below is undergoing twisting 

motion caused by vibrating at a particular natural frequency (see 

http://www.ketchum.org). The vibration analysis of structures is an essential part of the 

design phase, as unwanted resonance behaviour can 

result ultimately in failure of the structure. Not only 

can the modes of deformation cause irreversible 

plastic deformation, but also fatigue damage caused 

by oscillating motion can lead to crack propagation 

and finally failure in design.

It is the vibration response of a system which must be studied to prevent such failures 

in design. The first step for any vibration analysis is determining the free vibration 

response (i.e., natural frequencies and modes) of the structure. Once a method is adopted 

for determining the resonant frequencies and modes of free vibration the design can 

potentially be optimized for any desired vibration response.

Aircraft control surfaces and wing flutter can lead to detrimental fatigue damage and 

possible failure. The knowledge of the natural frequencies and modes of free vibration for 

these systems are essential to their flutter analysis and aero elastic tailoring (Lilico and 

Butler, 1998; Lilico et al, 1997). The free vibration analysis of composite aircraft wings 

is the main focus of this research. In most optimization processes the reduction in mass 

for a design means lower costs. The search for lighter materials which satisfy the 

requirements of aircraft structures is a continuing effort. The requirements on materials
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have become greater than ever before, to the extent that homogeneous material cannot 
achieve the multitude of performance needs. Composite materials possessing 

unidirectional fibres can satisfy most if not all the requirements, for example lighter 

weight, higher strength, designable stiffness, longer fatigue life and corrosion resistance 

(see, for example publications by Jones (1998) and Berthelot (1999), etc.).

The stiffness properties of composites, is of particular interest as it leads to possible 

optimization of composite aircraft wings, By changing the ply orientation and stacking 

sequence, one can alter the stiffness characteristics of the composite material. The free 

vibration of aircraft wings is then extended to fibrous composites in which couplings 

arise from an unbalanced lay-up. For symmetric lay-ups, where stacking sequence and 

thickness is symmetric with reference to the mid-plane of the laminate, couplings occur 

between bending and torsion modes of deformation and are observed to be the most 

predominant factor influencing the natural frequencies and modes of free vibration 

(Baneijee, 1998; Bomeman and Hashemi, 2003; Hashemi and Bomeman, 2003; Hashemi 

and Bomeman, 2004).

The coupled free vibration of a laminated composite wing, idealized as beam 

assemblies have been investigated by Abramovich and Livshits (1994), Teoh and Huang 

(1997), Teh and Huang, (1980) using different analytical approaches and Chandra, 

Stemple and Chopra (1990), Wu and Sun (1991), Jaehong and Kim (2002), Teh and 

Huang (1979), Suresh and Venkatesan (1990), Chen, Liu and Lim (2003), Jung, Nagaraj 

and Chopra (2001), Volovoi and Hodges (2002) using various numerical models. 

Numerical models based on Rayleigh-Ritz, Galerkin and Finite Element Method (FEM) 

use element matrices evaluated from assumed fixed interpolation functions (Cook et al, 

2001). The Finite Element Method is commonly used as it provides a general systematic 

approach to formulate the element mass and stiffness matrices for a given structure. 

Considering the fixed nature of the shape functions, the natural frequencies can be found 

by solving the resulting linear eigenvalue problem. This approximate method is widely 

accepted, see for example Chandra et al (1990), Wu and Sun (1991), Jaehong and Kim 

(2002), Teh and Huang (1979), for its monotonie convergence to the exact values, with 

the appropriate type and number of elements. Commercial software packages such as 

ANSYS® are used to construct the FEM model of complex structures and to carry
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various analyses. Although a wing modeled as an assembly of uniform beam elements is 

not highly complex, difficulty arises from modeling the composite nature of the beam. 

Taylor and Butler (1997), Lillico and Butler (1998) have used ANSYS® with shell 

(SHELL91) elements to construct composite type elements. In this research due to the 

unavailability of a composite module in the Educational version of ANSYS®, the FEM 

was programmed using MATLAB®.

An elaborated FEM model takes a very long time to create. For the preliminary design 

process, one needs a simple and accurate model to calculate the natural frequencies of a 

system and further detailed design and optimization would be possible using FEM. This 

has led to the analytical and semi analytical approaches. In addition to the FEM and other 

weighted residual methods, the Dynamic Stiffness Matrix (DSM) method can 

alternatively be employed to determine the free vibration response of a structure. The 

DSM was developed by Kolousek in 1940 for homogeneous (metallic) Euler-BemouUi 

beams (Baneijee and Williams, 1985). The DSM has since been refined continuously. In 

the last decade, Baneijee and his collègues extended the DSM method to the vibration 

analysis of many different homogeneous and composite beam models. Baneijee and 

Williams (1995) developed the DSM for a uniform Euler-Bemoulli beam, Baneijee and 

Williams (1996) extended that to the Timoshenko beam theory and then later this model 

was further extended to include an axial force (Baneijee, 1998). The DSM models for 

composite beams are developed based on the exact member theory (Baneijee and 

Williams, 1995). Furthermore, the elements of the frequency dependent stiffness matrix 

are derived in closed form. Were each element of the DSM matrix is evaluated based on 

algebraic expressions, resulting in faster execution compared to the numerical alternative 

matrix inversion method.

Using Reduce® software extensive manipulation was undertaken in the search for a 

symbolically inverted element DSM matrix (Baneijee and Williams, 1995). The 

computational time has been compared between the closed form solution and the 

numerical solution presented by Baneijee and Williams (1995). Their results revealed 

significant time reduction using the closed form solution. Given that the general DSM 

matrix is frequency dependent, a non-linear eigenvalue problem results. The natural 

frequencies are solved by application of the Wittrick-Williams root counting algorithm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(Wittrick and Williams, 1971; Wittrick and Williams, 1952) in conjunction with a 

numerical bisection method. For simple uniform beam configurations the DSM method 

requires only one element to produce the exact solution. For some cases involving more 

complex geometries the DSM has slower convergence than the FEM (Hashemi, 1998; 

Hashemi and Bomeman, 2003). It is for this reason that a new more flexible method was 

devised to include the advantages of both the FEM and DSM.

The Dynamic Finite Element (DFE) exploits the advantages of the FEM and DSM. It 

provides a general systematic procedure (i.e.. Integral Formulation based on the 

Weighted Residual Method (WRM)), which it shares with the FEM formulation and the 

accuracy and ability to converge on any particular natural frequency adopted from the 

DSM method. The proposed technique follows the same procedure as the FEM by 

formulating the element equations discretized to a local domain, then, element stiffness 

matrices are constracted and assembled into a single global matrix. The generality 

adopted from the FEM provides easy implementation to elements with higher 

complexity.

The Dynamic Finite Element (DFE) method was first proposed by Hashemi (1998) 

and has since been will established for the free vibration analysis of homogeneous beams, 

blades and beam-like structures ( Hashemi , Richard and Dhatt, 1999; Hashemi and 

Richard, 1999; Hashemi and Richard, 2(XK)(A); Hashemi and Richard, 2000 (B), 

Hashemi and Richard, 2001; Hashemi, 2002). It has been shown that the DFE method has 

higher convergence to the exact values than both the FEM and DSM for complex 

geometries (i.e. tapered beams). The Dynamic Trigonometric Shape Functions (DTSF’s) 

produce a frequency dependent stiffness matrix similar to the DSM. In fact, the DFE 

reduces to the DSM matrix for simple cases such as Euler-Bemoulli homogeneous 

uniform beams (Hashemi, 1998).

The goal of this research is to investigate laminated composite wings and to develop a 

DFE formulation for the free vibration analysis of such structures. Due to coupling terms 

found in the governing equations of motion arising from the composite nature of the 

material, the DSM will not reduce to the same matrix as the DFE as previously described 

for Euler-Bemoulli beams.
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As it will be discussed later in this thesis, when coefficients of the governing 

differential equation of motion are variable (e.g., a tapered configuration) the DFE can 

incorporate additional terms to increase the convergence rate of the solution. These 

additional terms known as deviator terms were first used by Hashemi (1998). Deviator 

terms are simply refining terms used to replace the initial averaged distribution of 

variables with the exact distribution. The addition of these deviator terms is the most 

important factor that differentiates the DFE from the DSM. The DFE, with its frequency 

dependent stiffness matrix, leads to a non-linear eigenvalue problem similar to the DSM 

where a dedicated Wittrick-William algorithm is then used to solve the system. It will be 

shown that the combined advantages of the FEM, DSM and refining deviator terms 

makes the DFE an accurate, flexible, and systematic method capable to advantageously 

determine the natural frequencies of free vibration of a beam or wing configuration. The 

DFE is validated by its higher convergence rate to the natural frequencies compared to 

other existing methods (Bomeman and Hashemi, 2003; Hashemi and Bomeman, 2003; 

Hashemi and Bomeman, 2004).

i.2  Pre-processing

Considerable analysis into the composite lay-up and stacking sequence must be 

accomplished before studying the free vibration of a materially coupled system. Since the 

rigidities will change with fibre angle, pre-processing must be carried out to determine 

the effective rigidities of the system for a particular fibre orientation. Solid rectangular 

cross-sections are among the simplest to analyse. Through a detailed literature survey it 

was difficult to find the values for effective bending, El, torsion, GJ, and coupled 

bending-torsion, K, rigidities of a composite beam. A number of references (Jones, 1998; 

Berthelot, 1999; Baneijee, 1998) clearly outline a general procedure in ^,Jculating the 

stiffness properties of an assumed solid rectangular beam cross-section. Most authors 

displayed the principal, transverse and longimdinal elastic modulus. Poison’s ratio and 

principal shear modulus, but did not show the numerical values for the effective 

rigidities. It is for this reason that additional efforts was required to develop a pre­

processor type program in MATLAB® to evaluate the effective rigidities of a composite
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beam. This program was later altered to calculate the effective rigidities for any fibre 

angle and stacking sequence.

The calculation of rigidities for a composite box beam is more complex than for the 

assumed solid cross-section. Reserchers such as Armanios and Badir (1995), 

Berdichevsky, Armanios and Badir (1992) produced a general formulation to evaluate 

the rigidities of a composite box-beam section. The box-beam rigidity calculation was 

essential to accurately describe a composite wing-box geometry. In these references, two 

types of box-beam configurations are considered, Circumferentially Asymmetric Stiffness 

(CAS) and Circumferentially Uniform Stiffness (CUS). The CAS configuration is the only 

configuration considered in this thesis as it exhibits the bending-torsion coupling 

behaviour. The CUS configuration results in extension-twist coupling. Smith and Chopra 

(1990) described a similar model of a box-beam, where rigidity calculations are based on 

either a symmetric or anti-symmetric configuration. Similar to the CAS, the symmetric 

configuration produces a bending-torsion coupling.

1.3 Thesis Organization and Modeiing Considerations

In the attempt to construct an accurate and complete wing model a progressive 

technique is implemented. In, brief, this thesis starts the wing idealization with a very 

simple uniform solid rectangular cross-section laminated composite beam model. Then, 

more geometric and material complexities are gradually incorporated in the model 

leading to stepped, tapered, and dually coupled configuration and finally, ending with a 

geometric- materially coupled tapered laminated composite wing box model.

The opening Chapter 1 gives a general introduction to the importance of mechanical 

vibrations and applicability of composite materials. Three of the most attractive vibration 

analysis techniques, FEM, DSM, and DFE, are outlined and briefly differentiated. The 

coupled bending-torsion coupling produced by an unbalanced lay-up of com porte plies 

is also described. The punjose of this research is stated and the overall outline of the 

thesis is presented.
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In Chapter 2, a short introduction to mechanical vibrations is first presented. Different 
categories of structural free vibrations, the associated discrete and continuous models, 

various types of resulting eigenvalue problems are also investigated. Then the dedicated 

solution methods to both the linear and non-linear eigenproblems are briefly introduced. 

The linear eigenvalue problem results from the assumed fixed polynomial shape 

functions. The is obtained when frequency dependent assumed shape functions are used 

to express the field variables of the problem. More emphasis is placed on the non-linear 

frequency dependent eigenvalue problem where implementation of the Wittrick-William 

root counting algorithm (Wittrick and Williams, 1971) to solve for the natural 

frequencies is presented. As it is then briefly discussed , the corresponding modes of 

coupled vibration can be extracted using a simple perturbation technique (Hashemi, 

1998).

In Chapter 3, the calculation of effective rigidities for both solid rectangular and thin- 

walled box beam cross-sections is presented. The calculation of effective rigidities is 

limited to symmetric or Circumferentially Asymmetric Stiffness (CAS) cross sections as 

these configurations produce coupled bending-torsion behaviour inherent to the design. 

The influence of fibre angle and stacking sequence for an unbalanced unidirectional 

composite will change the effective stiffness the beam or wing model, resulting in 

significantly different vibration response.

In Chapter 4, the Dynamic Finite Element (DFE) formulation for an Euler-Bemoulli 

uniform composite beam with a solid rectangular cross section is presented. The bending 

and torsion Dynamic Trigonometric Shape Functions (DTSF) are developed and used to 

form the frequency dependent stiffness matrix. The formulation is then applied to 

uniform and piecewise uniform stepped beams.

General tapered wing geometry is considered in Chapter 5. The DFE formulation is 

prepared with refining terms known as ‘deviator terms’ (Hashemi and Richard, 1999; 

Hashemi, 1998; Hashemi and Bomeman, 2003; Bomeman and Hashemi, 2003; Hashemi 

and Bomeman 2004; Bomeman and Hashemi, 2004) to enhance the tapered model. This
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formulation is applied to two different wing configurations: a linearly tapered by chord 

only (constant wing thickness), and a second wing model linearly tapered by chord and 

stepped by thickness wing. At the end of Chapter 5, a comparative study is also presented 

to illustrate the limitations associated with the application of the deviator terms. The 

importance of these limitations for consideration in further developments is then 

acknowledged.

Prior to Chapter 6, only material coupling resulting from an unbalanced lay-up in the 

composite wing is considered. In Chapter 6, not only material coupling terms but also 

geometric coupling effects are taken into account. The geometrical coupling arises from 

non-coincident mass and elastic axes in a wing box cross-section. Several dually coupled 

wing configurations are considered with applications of higher order tapers such as a 2"‘* 

and 2)̂  ̂ degrees. The CAS configuration is used to model the composite stiffness of the 

assumed thin-walled box-beam cross-section to ensure a bending-torsion coupled 

response.

Finally, the general conclusions are presented in Chapter 7 where the direction and 

future of the research are also stated.
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Chapter 2 Solution Methodology

2.1 Introduction

In general, the vibration analysis of an engineering system requires: the idealization of 

the system into a form that can be analyzed, the formulation of the governing equilibrium 

equations of this idealized system, the solutions of the governing equations, and finally 

the interpretation of the results. Physical systems may be broadly classified into two 

categories: discrete systems or cqntinuous systems. Based on laws of physics, an 

engineering problem is thus represented either by a discrete system, which is 

characterized by a set of algebraic equations involving a finite number of unknowns or 

degrees of freedom; or by a continuous system which is very often characterized by a set 

of partial differential equations with corresponding boundary conditions (Bathe, 1982; 

Hashemi, 2002).

The exact solution of the differential equations and which satisfies all boundary 

conditions is only possible for relatively simple systems, and numerical procedures must 

in general be employed to predict the system response. These procedures, in essence, 

reduce the continuous system to a discrete idealization that can be analyzed in the same 

manner as a discrete physical system. The free vibration analysis of a discrete or 

continuous system leads to a so called Eigenvalue problem.

2.2 Free Vibration Analysis Based on Discrete Models: Linear 
Eigenproblems

Critical buckling and undamped free vibration problems are often solved using finite 

elements to obtain a discrete model with a finite number of degrees of freedom. In 

vibration problems, an alternative discrete model is often obtained by “lumping” 

distributed masses at convenient points. Further, these models usually yield linear 

eigenvalue problems Hashemi (2002) as:

[K]{U] = Z[M][U] = 0; [ K { û} ) ] { U } = [ K - cô m ]{U] = 0 (0.1)
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which can be solved by many proven and secure mathematical methods. Here, K  and M  

represent stiffness and mass matrices of the system, respectively, and K(co) is the so- 

called Dynamic Stiffness Matrix (DSM) of the system. For a continuous system, the 

formulation generally leads to (Bathe (1982)):

Ẑ (m) = XL^iu) on a domain V, and = \ { u )  on boundary 5 of V (0.2)

where Lj, L2, h, and h  are linear differential operators. In the free vibration analysis of 

structures, the basic idea is to solve the relevant eigenproblem leading to the eigenvalues, 

X, and eigenvectors, {U}, which represent the natural frequencies, and the modes of 

structures, respectively. The characteristics of this model depend on the analysis to be 

carried out, in essence, the actual continuous system is reduced to an appropriate 

discrete system where the element equilibrium, constitutive relations and element 

interconnectivity requirements are satisfied (this will be discussed in more details farther 

in this thesis).

2.3 Analytical Formulation Based on Continuous Models: Non- 
Linear Eigenproblems

A practical structure, assembled from elements possessing distributed mass, will have an 

infinite number of degrees of freedom and an infinite number of natural frequencies. The 

“Exact” member, or element, equations exist for structures including plane frames, space 

frames, grids, and many plate and shell problems. For plane frames, the member 

equations often incorporate the stability functions for buckling problems, and their 

dynamic equivalents for vibration problems (Wittrick and Williams (1983)). In this 

thesis, the focus is on the free undamped vibration problems. The exact member 

equations are then used to assemble the overall dynamic stiffness matrix, K(eo), of the

10
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structure. The natural frequencies, in this case, will be obtainable from a non-linear 

eigensystem as in equation 2.1.

The elements of the displacement vector U, to which K(a>) corresponds, is the finite 

set of amplitudes of nodal point displacements, varying sinusoidally with time. The 

frequency dependent matrices \K(a»y\ resulting from the Dynamic Stiffness Matrix 

(DSM) method and Dynamic Finite Element (DFE) approach both lead to non-linear 

eigenvalue problems. The Finite Element Method (FEM) based on fixed interpolation 

functions leads to a linear eigenvalue problem. In the following sections, the solution 

methods for both linear and non-linear eigenproblems are briefly addressed.

2.4 Fixed shape functions and Linear Eigenprobiem soiution

In the conventional FEM formulation, the basis functions of the approximation space are 

generally polynomial expressions. The basis functions are then used to construct the 

‘Fixed’ interpolation functions (i.e. they only vary with element span-wise position x). 

The polynomial shape functions satisfy both completeness and inter-element continuity 

conditions. The solution of the natural frequencies pertaining to this technique is simple 

considering this is a linear eigenvalue problem (0.1). For simple systems, setting the 

determinant to zero leads to a linear algebraic equation from which the natural 

frequencies can be easily extracted. For more complex systems, with large number of 

Degrees-Of-Freedom (DOF), one could solve the resulting classical linear eigenproblem 

using an inverse iteration, subspace or Lanczos method (Bathe ,1982). It is important to 

notice that due to the approximate nature of the conventional FEM, one could only solve 

for as many natural frequencies as the total DOF of the system.

2.5 Dynamic trigonometric shape functions and Non-Linear 
Eigenproblem solution

11
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As it was stated in previous sections, the DSM and DFE formulations obtained from 

continuous models are different compared to the FEM considering the stiffness matrix is 

usually frequency dependent. One of the advantages of using a dynamic stiffness matrix 

is that natural frequencies are not missed. They lead to a non-linear eigenvalue problem 

as:

= 0 (&3)

There are two possible sets of solutions pertaining to the above equation.

—► |ü:o5^(ûj)| = 0 (0.4)

{ w j = 0  —► (<»)| = ~  ( 0  5)

Then, the method frequently used for determining the natural frequencies of the 

system is the Wittrick-Williams algorithm presented in different occasions by Wittrick 

and Williams (1971), Wittrick and Williams (1982), Wittrick and Williams (1983). The 

method is based on the sturm sequence properties of the frequency dependent stiffness 

matrix of the system and involves the input of a trial frequency. The number of natural 

frequencies exceeded by this trial frequency is then calculated as follows:

J =Jo+^Sn{^DSM] (0 .6 )

where J  represents the total number of natural frequencies of the system exceeded by the 

trial frequency, represents the total number of clamped-clamped (C-C) natural

frequencies of all elements exceeded by the trial frequency (i.e, (^)| = °° ) and is

calculated as

NE

1 . } .  (0.7)
*=]

12
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The term sgn{iSr^j^} is the sign . of Kdsm» and is determined by counting the 

number of negative elements along the leading diagonal of the upper triangularized 

matrix. This is accomplished after the/sT^j^ is fully assembled. The upper triangular

matrix is sensitive to pivotal operations, such that, during the gauss elimination 

procedure, the rows can be pivoted but not the columns. Then, from equation (0.6) the 

final number of natural frequencies exceeded by the trial frequency for the entire beam is 

calculated. Using a numerical method any natural frequency can be converged upon. 

This research uses the bisection technique as the convergence method. The bisection 

method is a no fault method in determining the solution.

There also exist combined methods to speed up the convergence of the solution. When 

^he bisection method brings the upper and lower limits on the eigenvalues sufficiently 

close, a quicker numerical procedure can be implemented such as linear interpolation 

presented by Hoorpah, Henchi and Dhatt (1994), Newton’s method discussed by Hopper 

and Williams (1977), parabolic interpolation discussed by Simpson (1984), or inverse 

iteration method (refer to Williams and Kennedy, 1988; Hashemi, 1998).

2.6 Extracting the modes

By implementing the Wittrick-William algorithm the resonant frequencies are 

established for the free vibration of a system. Difficulty arises from solving the equation 

for the modes of deformation due to the zero force vector residing on the right hand side:

[^^(® .)]{" '.}= { 0 l (0 .8 )

where, F  is the zero force vector corresponding to the free vibration of the structure.

At the resonant frequency, the dynamic stiffness matrix cannot be inverted due to the 

zero determinant. To obtain a non-trivial solution the frequency variable is manipulated 

so that the frequency dependent stiffness matrix is altered slightly. This perturbation must 

be small as to not deviate from the solution significantly.

13
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=û?„(l + LOxlO-‘) (0.9)

where is the altered frequency and i is any real number sufficiently large enough such

that a small perturbation is created. This new frequency is then substituted into equation

(0 .8 ) leading to:

[is:(û>J]{wJ = {F} (0 . 1 0 )

The force vector on the right side of equation (0.10) is also altered slightly.

F  = F  + 1.0xl0"'° (0.11)

where F  is the altered force vector.Then the modes can be evaluated by manipulating 

equation (0 .1 0 ) to:

{x,. } = [ % ) ] - '{ # }  (0 . 1 2 )

The order of perturbation of the frequency variable and the force vector F

depends on the numerical precision. Using double precision the 10^ order perturbation is 

acceptable to accurately describe the modes of deformation (Hashemi, 1998).

2.7 Conclusion

The Wittrick-William technique plays an important part in determining the natural 

frequencies and modes of free vibration. This method is used for both, but not limited to 

the Dynamic Finite Element method and Dynamic Stiffness Matrix method where the use 

of a frequency dependent stiffness matrix leads to a non-linear eigenvalue problem. The 

technique can equally be used as a solver for the FEM (Roach and Hashemi, 2003). This

14
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method is particularly advantageous with the capability of solving any range of 

frequencies.

15
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Chapter 3 Composite Rigidities

3.1 Introduction

The application of fibre-reinforced composite materials in the aerospace industry extends 

from commercial to military aircraft, such as the Boeing FI 8 , B2 Stealth Bomber, AV-8 B 

Harrier (Jones, 1998). The attractiveness of composites lies in their mechanical 

properties; such as weight, strength, stiffness, corrosion resistance, fatigue life. 

Composites are widely used for control surfaces such as ailerons, flaps, stabilizers, 

rudders, as well as rotary and fixed wings. That is why the analysis of composite 

structures is imperative for aerospace industry. The main advantage of composites is their 

flexibility in design. Mechanical properties of the laminate can be altered simply by 

changing the stacking sequence, fibre lay-up and thickness of each ply which leads to 

optimization in a design process.

3.2 Assumptions

The composite beam is modeled based on the chord-wise bending moment (about the z- 

axis) small compared to the span-wise moment (about the y  axis, see Figure 3-2). The 

chord-wise moment is then neglected. The composite material pertaining to this research 

is a unidirectional fibre reinforced composite material. The given information of any 

unidirectional composite material is the elastic modulus in both the longitudinal and 

transverse axis (see Figures 3-1 and 3-2), Poison’s ratio and the shear modulus in the 

principle directions.

16
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Figure 3-1: Unidirectional fibres surrounded by a matrix

Figure 3-2: Coordinate transformation from principal directions to global (x,y^) direction. Where El 

and Et and the longitudinal and transverse elastic modulae.

3.3 Effective rigidities for a solid cross-section

The reduced stiffness constants in the material principle directions are:

Q = = —

(0.13)

(0.14)

==(%T 0115)

where, , is the elastic modulus is the longitudinal direction. Ej. , is the elastic modulus 

in the transverse direction. Poisson’s ratio is denoted by and the principal shear

17
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modulus is denoted by Gjj.. For a plane stress state these reduced stiffness constants are 

sufficient to describe the stress-strain relationship as follows:

^12

Qn Qi2 Qi6

Q i2 Q22 Q26

Qi6 Q 26 Qee " 1 2 ,

(0.16)

In order to find the stresses and strains in the (jc, y, z) coordinate system a simple 

rotational transformation is needed as:

(0.17)

where T is the transformation matrix which is used to transform the reduced stiffness 

constants from the principal material fibre directions to a global (x, y, z) beam 

coordinates.

Then, the resulting transformed reduced stiffness constants for a unidirectional or 

orthotropic composite from its principal directions is (Berthelot, 1999):

Q, 1 = Q, ,cos“<̂ + Qg^sin*^ + 2 (Q , 2  +2Qa )sin V  cos% (/>

Q i2  =  (  Q n  +  Q22 -  4Q *  )  sin V  cos V + Q ,2  (cos" (p +  sin" ^ )

Qi6 = (Qii -  Qi2 -  2 Qgg ) sin (p cos  ̂ + (Qi2 -  Q22 + 2 Q% ) sin  ̂ cos <p 
Q22 = (Qi 1 sin" + 2(Q,2 + Qee) sin  ̂<pcos^  (p+ Q22 cos" (p 
Q26 = (Qn -  Q12 -  2 Qs6 )sin^^ cos + (Q,  ̂-  Q22 + 2 Qgg ) sin (p cos  ̂(p 
Qô6 = ( Qn + Q22 -  2 (Q,2 + Qee ) ) sin V  cos  ̂ + Q«i (sin" (p+ cos" <p)

(0.18)

From Berthelot (1999) and Baneqee (1998), the in-plane resultant matrix N(x, y) is:

pn (f,
N, = 1 \ 0 - 2y J-l/ 2

KJ . 1̂ 2 .

dz (0.19)

18
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and the resultant moment is:

=  r ;î r/ 2

1̂2

* (0 .20)

Both equations (above) can be merged into a single equation commonly known as the 

“Constitutive Equation”. The constitutive equation describes the stiffness matrix of a 

laminate plate. The resultant forces, and momeni.s are functions of the in-plane strains and 

curvatures (Berthelot, 1999).

N / A . A 2 A a B n B n A a "

A 2 A >2 A za B n B 2 2 A a ^ y y

A « •A e A sa 5 .a B z e B e e

B n B n B ,e A , A 2 A a

M y B n B 7 2 B 2 6 D ,2 A z A a A

A a B e e A a A a D e e .

0 ) 2 1 )

The sub-matrix A  is called the extensional stiffness matrix, sub-matrix B is called the 

coupling stiffness matrix and sub-matrix D is called the bending stiffness matrix 

(Berthelot, 1999). When the laminate is symmetric, by ply orientation and thickness, with 

respect to the mid-plane layer, the coupling matrix B is eliminated (B.j=0  ). The

coefficients corresponding to a bending-twist coupling are D■̂2 and .

The stiffness coefficients are defined by the following expressions from Berthelot (1999).

N L

A ;  “  ( Q 'j  )  A - ]  )
i=l k

NL1 N L  ____

*=1 *
1 M. __

J  *=1 k

(0.22)
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where \  is the distance from the mid-plane of the laminate (Figure 3-3).

' m ;

=
y

A16

A 2 I ^ 2 2

I A j g  Agg

A26

AT.

AT,
(0.23)

Figure 3-3: Composite Laminate beam consisting of multiple plies, 'where is the distance 
from the mid-plane of the composite.

For a bending-torsion coupling behaviour the chord wise moment is assumed to be 

zero so that the curvature can be eliminated from (above) and then the matrix (0.23) 

reduces to the following form:

' m ; A 22 A a ' 'A a '
.^ 6 ^66. .A 6.

[ A . r ' l A j
AT,,

tc.
(0.24)

The resulting matrix is then;

M.

A

AI

"^66 A11

A",,

- * y .

(0.25)
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The bending and torque intensities are related to the resultant moment and torque by 

(Baneijee, 1998);

M = —bM„
T = 26M

(0.26)
•O’

where b is the base (chord) of the laminate. For small deflections, the curvatures can be 

related to the bending slope 0  and torsion twist y/ as follows:

Ky =~e
K^=2y/'

(0.27)

so that the general form of the moment and torque is:

'm ' 'E l k '
T K GJ

(0.28)

where,

EI = b
\ A11 /

G J= 4b  

K  = 2b

16

A,

AII /

(0.29)

The El, GJ and K  represent the effective rigidities of the beam in the global (z, y, z) 

coordinate system. El, GJ, and K  represent, respectively, the bending rigidity, torsion 

rigidity and bending-torsion coupled rigidity. The effecti ve rigidities are functions of ply 

angle, thickness, and stacking sequence.

21
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3.4 Effective rigidities for a thin-waiied box-beam section

The calculation of composite rigidities for a box-beam is presented by Armanios and 

Badir (1995) and Berdichevsky et al (1992). The Circumferentially Asymmetric Stiffness 

(CAS) configuration would produce a bend-twist coupling. The reduced axial stiffness 

A(s), coupling stiffness B(s) and shear stiffness C(s) can then be developed from the 

constitutive equation (0 .2 1 ) as:

A ( ^ )  =  A i  ~
A22

B(s) = 2 

C (s)= 4

A e
AzAe 

Az V

Az

(0.30)

The current rigidities are based on the following thin-walled assumptions:

d « L ,  h «  d, h « R

where d  is the depth, h is the height, L  is the length of the beam and R  is the radius of 

curvature (refer to

Figure 3-4 ) (Berdichevsky et a l , 1992)..

Figure 3-4: General cartesian coordinate system

22
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The resulting effective rigidities are then obtained as:

B. a —
d + a —

C„

01 3 1 )

G J= -
d+ a C,

(0.32)

B.

2 d + a ^
L Q J

A; (0.33)

Figure 3-5: Box beam with rectangular cross- 

section (Box-section)

To differentiate the top and bottom panels from the side wall panels the subscripts t 

and V are used to represent top and sides, respectively. The inner area is denoted 

by .variables d  and a are, respectively, the depth and width of the box-section. These

effective rigidities can then be used as the coefficients to the differential equations of 

motion governing the materially coupled bending-torsion vibration of composite wings 

analyzed in Chapters 4 and 5. The same equations will also be then extended to 

asymmetric airfoil cross-sections. A pre-processing program was developed in Matlab®

23
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to calculate rigidity terms for various ply angles, laminates and cross-sectional 

configurations.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4 Uniform Laminated Composite Wing 
Modei

4.1 Introduction

In this chapter, the materially coupled bending-torsion vibration of laminated composite 

beam, based on an assembly of uniform beam elements, and using the Finite Element 

Method (FEM), Dynamic Stiffness Matrix (DSM) and Dynamic Finite Element (DFE) is 

presented. The DSM method is based on the exact solution to the governing differential 

equations of motion, as presented by Baneijee and Williams (1995). Therefore, for a 

uniform beam, the DSM needs only one element to achieve the exact natural frequencies. 

The DSM formulations can also be easily extended to approximate tapered geometry by 

using a piece-wise uniform stepped model. The FEM model is obtained using a Galerkin 

weighted residual method to formulate the element mass and stiffness matrices of the 

current uniform beam. In what follows, a Dynamic Finite Element method for the 

coupled vibration analysis of uniform and stepped composite beams is developed. The 

comparison is then made between the DFE results and those obtained from the FEM and 

DSM formulations in order to validate the proposed methodology.

4.2 Wing Model

A  cantilever composite beam with length L  and a solid cross-section is the basis of the 

model (see Figure 4-1). All rigidities are assumed constant along y  axis. The rigidities 

are: bending, El, torsion, GJ, and coupled bending-torsion, K. The rigidities can be 

determined either experimentally or based on the theory presented in Chapter 3. The solid 

cross section is assumed to be symmetric with different fibre layer orientations (see 

Figure 4-1), where w is the translational displacement associated with bending and V is 

the rotational twist associated with torsion.

25
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Fibre
Orientation

Layered
Plies

Figure 4-1: Composite Beam on a Right Handed Coordinate System.

4.3 Assumptions

The simplest model of a composite wing is represented by a uniform Euler-Bemoulli 

beam, where the bending slope is the derivative of the bending displacement with respect 

to the span-wise direction (Lilico et al, 1997). Shear deformation and rotary inertia are 

neglected by assuming a long slender beam. Further simplifications have been made by 

applying the St. Venant assumptions, which is a pure torsion state, and neglecting all 

warping effects. The beam is assumed to be composed of composite material with 

unidirectional fibre lay-up. With any composite, material couplings between extensional- 

twist and bending-twist arise from ply orientation and stacking sequence. This research 

will focus on the bending-twist couplings as the other coupling behaviours are being 

■investigated by other researchers (see, for example. Roach and Hashemi, 2003).

4.4 DFE Formulation

The governing differential equations of motion for the materially coupled vibration of a 

uniform composite beam are (Baneijee, 1998):
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



22
Elw Kv/-'''+ = 0 (0.34)

dt^

where w(y,f) denote the beam flexural displacement and y/{y,t) is the torsion angle. El  

and GJ denote flexural and torsion rigidities respectively, m  is the mass per unit length 

and represents the polar mass moment of inertia per unit length of the wing. The 

material bend-twist coupling rigidity is represented by K  and primes denote 

differentiation with respect to span wise position y. Based on the simple harmonic motion 

assumption, the following separation of variables is applied on the flexural and torsional 

displacements (sinusoidal variation with frequency û>).

w(y, 0  = w(y)sinû>r 
(y(y,f) = 'F(y)sinû»

Then with substitutions of (0.36) into (0.34) and (0.35), the differential equations can 

be re-v/ritten in the following form:

Elw''"+ mco^w = 0 (0.37)

G7'T "+ Kw "'+ = 0 _ (0.38)

By implementing the Galerkin weighted residual method and integration by parts, the 

continuity requirements on the field variable are relaxed so that the integral weak form 

associated with equations (0.37) and (0.38) can then be obtained as:

Wf = ^\_EIÔw”w''+Kôw "^'-m (0^ôw\v\dy

+EI (0.39)
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W, = ' W '+ ' w"+

+G J[c?P 'P 'J (0.40)

+ 2s:[<^w’t

The above boundary terms can be associated with the Shear S(y), Moment M(y), and 

torque T(y) as;

^(y) =  E /(y )— + j[(y )—  (Q.41)
ax ax

M( y )  = - E I ( y ) ^ - K i y ) ^  (0.42)
oy dy

T(y) = G7 (y)— + %(y)TTT ^3)

Boundary conditions associated with clamped-free (cantilever) beam are 

w = w' = Y = 0 , and all force boundary terms are zero at the tip (y=L). The system is then 

discretized by 2-node 6 -DOF beam elements (Figure 4-2).

'F. Y,

9 ) -----------------------5 >
Node j  Node j+1

Figure 4-2: A 2-node 6-DOF beam element

Principle of Virtual Work (PVW) is also satisfied such that:

NE

= W, 4-W, = -W a r  = = 0 (0.44)
jt=i
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where, W* represents element internal virtual work and = 0  for free vibrations. 

After two integrations by parts on the differential equation governing the flexural motion, 

the element internal virtual work can be written in the following form:

(0.45)

where.

(•)

El
— [ < ^ v v  "  w w ] g

*'k

4

(0.46)

and.

Y GJ

Ih
{*♦)

(0.47)

The two above equations simply represent the bending and torsion contributions to the 

discretized internal virtual work for each element of length .

The basis functions are then chosen based on the solutions to the differential equations 

of (*) and (**). For the first differential equation (0.46) pertaining to bending, the 

following process is applied to formulate the trigonometric shape functions according to 

Hashemi and Richard (1999). The torsion interpolation functions are also evaluated in a 

similar way.
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4.4.1 Frequency dependent trigonometric shape functions.

T!:s non-nodal approximation for the flexural weighting function, , and the field

variable, w (^), can be written as;

(0.48)

Similarly for torsion:

(0.49)

where <5vv, w, < ^ ,'F  are discretized over a single element (0 < ^ < 1). The basis 

functions of the approximation space are chosen as:

COSCK̂ sin 6%̂ cosh —COS 05  ̂ sinh a ^  — sïna^
a

(0.50)

and, for torsion as:

COS)^ sin (0.51)

where.

a  ==  .4,
El

(0.52)

(0.53)

The basis functions are chosen as trigonometric terms based on the solution to the 

differential equations and were manipulated to reduce to Hermitian basis functions as
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a —>0 and 7  —>0. It is important to note that Hermitian basis functions have been used 

in beam finite elements for many years, since tbey satisfy the “Completeness” and 

“Compatibility” requirements. “Completeness” is satisfied by including the lowest order 

admissible term. The compatibility condition is also satisfied. With these conditions 

satisfied, the DFE with its Hermitian based Dynamic Trigonometric Shape Functions 

(DTSF’s) is guaranteed to converge to the exact solution. Classical basis functions of the 

standard “Hermite” beam element are [1, The bending and torsion

trigonometric basis functions lead to standard cubic and linear ones by taking the limit as 

a  —̂ 0  and —» 0 , respectively. These variables are frequency dependent as seen above 

in equations (0.52) and (0.53). When the frequency approaches zero the DTSF’s reduce 

to polynomial basis functions which lead to satisfying the required conditions of 

compatibility and completeness.

For the first bending basis function:

lim cos aâ  = l (0.54)or-» 0

The second basis function leads to:

a  (0.55)

The third basis function leads to:

i ^ co sh a ^ -c o s« ÿ  (0.56)limâ O (X

The fourth basis function leads to:

(0.57)
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The coefficients( ami  have no physical meaning and can be

replaced by nodal variables for bending Sw^,Sw^'^ and ^w,, wj, W2 , wj) and

for torsion dV^dXid ('P ,, 'P ^). The derivation of bending shape functions are only

considered in the following procedure, since, the torsion shape functions will follow the 

same development. Following the same systematic method as in FEM, one can write:

{w j =[%]{*)

(0.58)

(0.59)

Then,

K]=

1
0

cos(or)
a

-orsin(or) cos(<z)

0 
0

sinh(Gr) -  sin(or) 
o?

a  sinh(ar) + a  sin(ctr) a  cosh(or) -  cos(or)

0 0
1 0

sin(a) cosh(or)—cos(or)

a of

(0.60)

The nodal approximations for element variables w(^) and T (^ ) can then be rewritten

as:

5w{^~) = {Pf (^ )Y  j ’ {S w^]={N{Ç,û))Y  {S w„} (0.61)

(0.62)

Then,
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» -(f)= { p ,« )}  [ p .] ;{ 'v .} = { w (a ,]  {w}

T © = { P M ) f  [ f . ] ; ‘ { '! '.} = { N ( f ) , f  {T}

Expressions (0.63) can then be rearranged as: [ w ( ^ ) = [ N ] { h „ } ,  where 

{“n] w'l 'î'i Wj w’j 'E j is the element displacements (i.e., degrees of freedom) 

and [N] represents the dynamic shape functions in matrix form

(0.64)

The four trigonometric shape functions pertaining to bending are (Hashemi and 

Richard 1999; Hashemi, 1998):

N ,={cosh(ûr)cos(a^-or)-cos(or^)+cos(a)cosh(ûr^-ûr)-cosh(o:^)-sin(a)sinh(or^-C!r)
(0.65)

+sinh(cir)sin(a^-a) }/DEN

N 2 =-^{cosh(or)sin(a^-û:)-sin(Q:^)+sin(ûr)cosh(ûr^-a)+cos(«)sinh(a^-«)

+sinh( 6 ?)cos( a^-  or)-sinh( a ^ )} /DEN
(0 .66)

N 3 ={-cosh(<ar^-a)+cosh(or^)cos(or)+cos(a^)cosh(ci:)-cos(a^-or)+sinh(«:^)sin(£!r)
-sin(a^)sinh(a))}/DEN

N 4 = —{-sinh( a^-  or)-cosh( a^)sin(or)-cos( ûr^)sinh( <2 r)-sin(«^- or)+sinh( a^)cos( a)1_
- ,  ' ” ’ '̂'■'""“■ (̂0 .6 8 ) 

+sin( or^)cosh( a ) } /DEN

DEN=(2cosh(or)cos(or)-2) (0.69)

For torsion:
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sin y{l-C )  
sin y

(0.70) siny^ 
sin y

(0.71)

The six shape functions are plotted individually for first four natural frequencies of free 

coupled vibration of a uniform composite wing (see Figures 4-3 through 4-8). These 

shape functions are the approximations to the solution of the governing differential 

equations of motion.

- f  G  
-e- M

>  -2

0.9

0.6
—  n

0.4

•0.6

-O.l 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9
Nor>-dim*ns(onil Length of B eam

Figure 4-3: First flexural shape function plotted Figure 4-4: Second flexural shape function plotted 
for the first 4 natural frequencies of a uniform h»r the first 4 natural frequencies of a uniform 
beam beam.
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Figure 4-5: Third flexural shape function plotted Figure 4-6: Fourth flexural shape function plotted 
for the first 4 natural frequencies of a uniform for the first 4 natural frequencies of a uniform 
beam. beam
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Figure 4-7: First torsional shape function plotted 
for the first 4 natural frequencies of a uniform 
beam.
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Figure 4-8: Second torsional shape function 
plott ed for the first 4 natural frequencies of a 
uniform beam.

The above shape function plots display the inter-element continuity required to satisfy 

the compatibility condition. With the frequency dependent trigonometric shape functions 

determined, the dynamic finite element matrix can be constructed from equations (0.46) 

and (0.47). The DFE matrix can be expressed in two matrices as:

^ D F E  ~  ^U NC O U PLED  ^C O U P L E D (0.72)

The uncoupled matrix is obtained from the boundary term expressions extracted from 

the integration by parts. The coupled matrix is formulated from the integral expressions 

representing the coupling terms in both equations (0.46) and (0.47). The symmetry of 

coupled matrix can be seen in the equivalence in both integral expressions.

El
‘jfe
EÏ .

( ^ 2  " L *»

E
il

E
II

CJ

3

,3

GJ

E

El
0 *4

El,

E
H

E

GJ

GJ

0

0

W,'l,

0

0

{N.,'U

(0.73)
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K

0  0  [N̂ "N„] 0  0  {Ni''N.^y
0  0  (7V/NJ 0  0  {Ny'N,^]

[ N y ' N J  { N , " N „ )  0 { N y ' N „ ]  { N y ' N J  0
0  0  [Ny'NJ 0  0  [Ny'N„]
0  0  {N/'N,,} 0  0

{ N , " N „ }  [ N , " N J  0 0

(0.74)

K^pe represents the dynamic finite element matrix which is now ready for assembly 

in the usual finite element way. The coupled matrix is integrated symbolically to ensure 

the final dynamic finite element matrix is purely algebraic. With all expressions in the 

DFE matrix symbolically computed, there is no need for a numerical integration which 

decreases the required computational time. The symbolic integrations for the coupled 

matrix in equation (0.74) are carried using MAPLE©.

4.5 Numerical Results

Here the coupled vibrations of the composite wing configurations are considered. First, a 

uniform glass/epoxy wing beam model is analyzed. The second example represents a 

stepped piece-wise uniform cantilever composite beam. The natural frequencies and 

modes of vibration are studied. The DFE results are compared with those obtained from 

DSM and FEM approaches.

4.5.1 Free vibration of a uniform beam

The beam is composed of glass/epoxy composite material and made up of unidirectional 

plies with fibre angles in each ply set to +15°. The beam can be considered equivalent to 

a single thick ply (Banerjee and Williams, 1995) with a thickness of 3.18 nun and width 

of 12.7 mm. The material and geometric properties determined by Baneijee (1998), 

Banerjee and Williams (1996) and Baneijee and Williams (1995). The principle rigidities 

are experimentally found by Teh and Huang (1980) displayed in Table 4-1 and the 

effective rigidities are:
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Effective bending rigidity, El — 0.2865 Nm ;

Torsion rigidity, G J = 0.1891 Nm^;

Bending-torsion coupling rigidity, K=  0.1143 Nm^;

Mass per unit length, m = 0.0544 kg/m;

Mass moment of inertia per unit length, la  = 7.77 x 10'^ kg.in 

Length of the beam, L  = 0.1905 m.

Table 4-1: Material Properties of a glass/epoxy
Laminate

Et.- 9.71 GPa
E x 3.25 GPa

G lt 0.9025 GPa
Vlt 0.29

Thickness 3.18 mm

The variations of bending rigidity, El, torsion rigidity, GJ, and bending-torsion 

coupled stiffness, K, as functions of different ply angles displayed in Figure 4-9. This plot 

is particularly important for optimization since a wing composed of fibre-reinforced 

composite material can be designed for any desired stiffness and corresponding 

frequency response. A greater flexibility is available with composites which is not 

necessarily restricted to the plot shown in Figure 4-9: Plot of Rigidities vs Ply angle for a 

glass/epoxy composite.Different stacking sequences and ply thickness lead to a much 

greater domain of possible stiffness properties. Different stacking configurations will be 

considered in Chapter 5.

0.35

GJ
0.3

I
0.1

0.05

Figure 4-9: Plot of Rigidities vs Ply angle for a glass/epoxy composite.
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The convergence results for the four natural frequencies of a uniform glass/epoxy 

composite beam are presented in Figure 4-10 and the corresponding modes are found in 

the following Figure 4-10. It is observed that the DFE and the FEM converge nearly at 

the same rate for the first three natural frequencies. The DFE converges faster than the 

FEM for the fourth natural frequency (refer to Figure 4-10). This higher convergence rate 

can be attributed to the mode behaviour at this natural frequency. The fourth natural 

frequency is predominately torsion (refer to Figure 4-11 (d)). It has been observed that 

torsion plays a more important role at higher frequencies and the DFE converges 

significantly faster than the FEM as the frequency number is increased (Bomeman and 

Hashemi, 2003).

FEM r»«4 Notural Frequency 

DFE Firsi Natural Frequency 

FEW S econd Ndural Frequency 
DFE Second Natural Frequency 

FEM Th«d Natural Frequency 

DFE Third Natural Frequsncy 
FEM Fourth Natural Frequency 

DFE Fourth Natural Frequency

20 25
HUmbef of Element#

Figure 4-10: Convergence of DFE and FEM for the fîrst four natural frequencies of a uniform 
composite wing. Percent Error is relative to the exact values obtained from the DSM 
(Banerjee and Williams, 1995).

The two and three dimensional modes of deformation are also plotted in 4-11 (a)-(d) 

to give a visual representation of the behaviour of the wing when vibrating at the first 

four natural frequencies. All modes both 2D and 3-D have been normalized to properly 

distinguish the modes as bending, torsion or bending-torsion. Numerical values of the 

first five natural frequencies using various methods are presented in Table 4-2.
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(c)
Figure 4-11: Natural modes of free vibration for a coupled bending-torsion uniform composite beam, 
(a) First Natural mode; (b) 2"* Natural mode; (c) 3*̂  Natural mode;. Each 2D mode displacement due 
to torsion is represented by a dashed (—) line and bending is represented by a solid (-) line.
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Figure 4-12: Natural modes of free vibration for a coupled bending-torsion uniform composite beam, 
(d) 4"' Natural mode. Each 2D mode displacement due to torsion is represented by a dashed (—) line 
and bending is represented by a solid (-) line.

Table 4-2: Numerical values of the first five natural frequencies (Hz) using various methods are 
presented. ‘B’ denotes a predominant bending mode and ‘T’ denotes a predominant torsion mode.

Natural Frequencies of a Uniform Composite Beam 15° lay-up (Hz)

Natural Frequency FEM 20 Using DFE Using 20 DSM 1 Element

-tnd

4'h
-Ih

3 0 . 8 2
1 9 2 . 8 7  
5 3 8 . 4 7
6 4 8 . 8 7  

1 0 5 3 . 8 7

3 0 . 8 2  B 
1 9 2 . 8 7  B 
5 3 8 . 4 2  B 
6 4 8 . 7 4  T 

1 0 5 3 . 4 6  B

30.82
192.72 
537.38
648.73
1049.73

The exact results for the DSM are confirmed by the earlier works published by 

Baneijee (1998), Baneijee and Williams (1996), Banerjee and Williams (1995) for the 

first four natural frequencies.

Figures 4-12 to 4-16 display the variations of natural frequencies for a uniform beam 

over a range of ply angles. These figures are particularily useful for a quick reference of 

the ply angle for a desired frequency response. The uniform beam is composed of 

glass/epoxy composite material with the same dimensions as the first uniform model 

described in section 4.5.
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Figure 4-13: Variations in the‘first natural frequency for different ply orientations

From Figure 4-13 it is observed that the first natural frequency starts at its highest 

point at zero degrees. The natural frequency then decreases and levels out to a constant 

value at approximately 50 degrees. Similar trends in the second natural frequency are 

observed where the natural frequency levels at approximately 45 degrees ply orientation 

in Figure 4-14.

300

^  250

200

100

50

10070 80 9010 30 40 50 600 20
P ly  A n g le  ( D e g r e e s )

Figure 4-14; Variations in the second natural frequency for different ply orientations

The third natural frequency (Figure 4-15) again levels at nearly 50 degrees much like 

the first mode hut an additional increase exists at the initial range from 0-12 degrees. The 

differences associated with variations in frequency can he attributed to the stronger 

influence of torsion on the higher modes of materially coupled vibration. This is observed 

especially in the fourth mode of vibration (Figure 4-16). The fourth mode displays
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predominance in torsion (refer to the mode shape from Figure 4-11 (d)). Figure 4-16 

deviates from the original trends found in the first two modes with greater fluctuations in 

frequency with different ply lay-ups

700

400

"8 300

100 •

1000 10 20 30 40 50 70 80 9060

P ty  A n g t«  ( D e g r e e # )

Figure 4-15: Variations in the third natural frequency for difierent ply orientations
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Figure 4-16: Variations in the fourth natural frequency for different ply orientations
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Figure 4-17: Variations in the fifth natural frequency for different ply orientations
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The fifth natural frequency in Figure 4-17 returns to the original trend found in the 

first two predominantly bending modes of vibration (refer to Table 4-2). By extending the 

results to the fifth mode a correlation is observed between the influence of torsion and the 

fluctuations in frequency with ply orientation.

4.5.2 Numerical example for a step beam

More complex geometries such as tapered wings are usually constructed using piecewise 

uniform steps. The convergence results for a step beam constructed with three steps can 

be found in Figure 4-17 and Figure 4-18. The beam rigidities at its root ( EI,GJ,K ) are 

identical to those of the previous uniform composite beam example and each step has the 

length of L/3. The second and third steps have the rigidity parameters equal to two-thirds 

and one-third of those for the root, respectively.

r  0 .6

UJ 0.5

-  4th NF DFE
---- A—-  4th NF Fa/1
---- X—-SrdNFDFE
-  B — 3rd NF Fa/1
- - - O" • • 2nd NF FBVI

-----1—-2ndNFDFE

---- * —-tstNFDFE
— e—- t s t N F F a i

20  25 30

Number of Total B em ents

Figure 4-18: Convergence for a step beam formed from three steps using the FEM and DFE for the 
first 4 natural frequencies. ‘NF’ represents Natural Frequency.
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Figure 4-19: Convergence for a step beam formed from three steps using the FEM and 
DFE for the S**", 6*, 7“* natural frequencies.

The percent error in Figures 4-17 and 4-18 is calculated based on the exact values 

obtained using the DSM method. The first three natural frequencies converged at nearly 

the same rate as the FEM (see also Bomeman and Hashemi, 2003). It is observed from 

Figures 4-17 and 4-18 that the DFE converges quicker than the FEM for higher 

frequencies. If a tapered formulation was used it would include the addition of deviator 

terms to compensate for the constant parameters assumed over each element. That would 

increase the convergence rates, and is the factor which distinguishes DFE from DSM 

method.

4.6 Conclusions

The DFE displays significantly better convergence than the FEM for higher modes in the 

cases of the uniform and stepped composite beam. The modes of materially coupled 

vibration have been classified based on predominance of either bending or torsion and 

correlations have been drawn based on the higher influence of twist on particular
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frequencies. Given the fact that the DFE approach is based on a general FEM type 

formulation the method can be easily extended to more complex element geometries such 

as tapered elements which will be covered in Chapter 5.
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Chapter 5 Tapered Wing Model

5.1 Introduction

A Dynamic Finite Element (DFE) formulation for the free vibration analysis of materially 

coupled uniform composite beam elements was developed in the previous chapter. In the 

present chapter, the DFE matrix for a generally tapered beam element is presented using 

frequency dependent trigonometric shape functions found in chapter 4. A homogeneous 

analysis of aircraft wings, rudders, helicopter blades, rotors, has been prepared using 

tapered beam elements for an accurate formulation of the frequency response. Tapered 

beams have been studied by various authors using the DSM (Baneijee and Williams, 

1985) and the DFE (Hashemi and Richard, 1999 and Hashemi, 1998). The DSM and 

FEM approximate a taper using uniform steps as seen in the section 4.5.2. The proposed 

DFE uses steps also; however, the addition of refining terms known as deviator terms 

alters the formulation to better represent a taper geometry. The deviators will be 

discussed in more depth in the DFE formulation (see also Bomeman and Hashemi (2003) 

and Hashemi and Bomeman (2004)).

5.2 Wing Modei

A  simplified beam representation for a tapered composite wing of length L and solid 

rectangular cross section is illustrated in Figure 5-1. Bending-torsion material coupling 

behaviour usually present in composite material is due to the unbalanced lay up. The 

beam model is characterized by bending rigidity El, torsion rigidity GJ, and coupled 

bending-torsion rigidity, K. Here, a symmetric laminate configuration is considered that 

consists of fibre orientations and thickness which are symmetric across the mid-plane of 

the laminate. Symmetric laminates result in bending-torsion couplings. The rigidities can 

be determined using classical laminate theory presented by Jones (1998), Berthelot
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(1999) and Baneijee (1998). The beam element considered consists of 3 DOF per node; 

bending displacement, bending slope and torsion angle, which results in a final 6 x 6  

element ̂ matrix (refer to Figure 4-2). The bending displacement is denoted by w(x,r) and 

torsion twist denoted by yr{x, t ) , where x  is the distance spanning the beam and h  is the 

element length.

(a)

A

/
/ h — >

F* element/  ^  X

Xk/  ^
/

L ^

Î
b(x)

(c)
(b)

Figure 5-1: (a) Tapered beam in Global (x, y, z) coordinate system, (b) Side view in (x, z) plane, (c) 
Beam cross-section.

5.3 Assumptions

A  constant thickness general taper is first considered (i.e., the beam does not taper by 

thickness of the multilayer composite). The mechanical and geometric properties can 

change with a contracting base. Next, the thickness will be changed along the span-wise
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direction by stepping the thickness. Due to feasibility reasons in design, the thickness 

must be stepped by multiples of layer reduction. The constitutive relationship between 

stresses and strains is applied using classical laminate theory presented in Chapter 2. The 

Euler-Bemoulli bending and St. Venemt torsion beam theories are employed. Shear 

deformation, rotary inertia and warping effects are neglected.

The variations in beam’s mechanical and geometric properties can be considered as 

(Baneijee and Williams, 1985):

L )  (5.1a)
b(x) = b \  l  + c

A(jc) = A,l 1 +  c - l  (5.16)

fj+ 2

GJix) = G J ^ \ l + c - \  (5.1c)

fEI{x) = EI^ l + c -  (5.Id)
I  LJ

Kix) = K ^ { \ + c ^  (5.iy)

where b^,A^,I^,GJ^,EI^andK^aie, respectively, reference beam model’s width, cross- 

sectional area, mass moment of inertia, torsion rigidity, bending rigidity and coupled 

bending torsion rigidity and are usually taken at the wing root. The constant ‘c’ must be 

greater - 1  to ensure the beam does not taper to zero before the end of the beam, n is 

usually 1  or 2  depending on the degree of taper.

5.4 DFE Formulation

The differential equations governing the free vibrations of a materially coupled laminated 

composite beam, incorporating variable properties are (Weisshaar, 1980):

Elix)
dx^ [ dx^

dy/'

a ( a

dx 

dx^

+ m(x) d^w
de

= 0 (5.2)

(5.3)
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The displacements can be assumed to have a sinusoidal variation with frequency co as:

w(x, t )  -  w { x )  sin a x  

t) = T (z ) sin 6 %

The sinusoidal variations from (5.4) can be substituted into equation (5.2) and (5.3) so 

that the governing equations of motion can be re-written as solely x dependent

a
a%

El{x)

a% Bx )  dx
AT(JC)

dx,2 + I^(x)W 0)^=0  (5.6)

The weighted residual method is employed and the integral form is altered to the weak 

form after two integrations by parts for the flexural portion and one integration by parts 

for the twisting portion. By re-writing the virtual work expression the inter-element 

continuity requirements are relaxed so that the approximation space for w is C '.

W} = ^ ( E I ( x)Sw "w ”+ K ( x ) S w ' ' ^ ' -m ( x W S w w ) d x  

+ [(E7(x)w"4- % (jc )y ) 'fw ]^ -[{EI{x)w"+ K ( x ) ^

W, = ^ [ - G J ( x ) â ¥ " ¥ ' -  K(x)â¥'w"+ I ^ { x )û /â ¥ ^ ] d x  

+ GJ(x) [â¥W X  + ü:(x)[<^w"]J

(5.7)

(5.8)

The resultant shear force, S(x), bending moment, M(x), and torsional moment, T(x), 

are based on the sign convention in Figure 5-2:
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8"w
S{x)=:— \E I i x ) — +K(x)

M i x )  =  - E I i x ) p ^ - K i x )

3'P 8 ^w
Tix)  = GJix)-— + K i x ) ^  

dx dx

dx

(5.9a)

(5.96)

(5.9c)

w n i  ÇI • ® 0

M M
T

©

Figure 5*2 Sign Convention, where S denotes the transverse force, M denotes the hending moment 
and T denotes the torque

Boundary conditions associated to clamped-free (cantilever) structure are such that all 

virtual displacements are zero at the wing root (i.e.. Fixed end, x=0) and all boundary 

force terms are equal to zero at the wing tip (x=L):

Sw =50  = &¥ = 0  atx  = 0 

S = M  = T = 0 at x  = L

(5.10)

(5.11)

The system is now discretized over the length of the beam where the principle of virtual 

work is satisfied:

m
(5.12)

^=1

where ^=x/lt. The bending and torsion contributions to the elemental virtual work, 

Wj , and W /, respectively, are:
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wd^

+

(*)
1 r

(5.13)
-|I

W;(a=f
(•*) (5.14)

+ G J(^) ^ w " â ¥ 'd ^
k  k

The coupling terms in (5.13) and (5.14) are equivalent and when written in matrix 

form they are only different by their dimensions. The coupling terms in the weak form 

ensure symmetry of the final element DFE matrix. Similar to the DSM the average 

parameters over each element for EI{^),  m (^), 7^(^), K(^) ,  are used in the

DFE such that the two expressions for flexural and twist are written as follows:

W
I

L *

wd(^

+ El

(♦)
1

^ S w " w '
I

L &
3 EI,„Sw"'w ^ ( ' ¥ ' S w " d 4  

I *

(5.15)

W

(**)

+ : ^  Jj m;" 
k  k

(5.16)
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The Dynamic Trigonometric Shape Functions (DTSF’s) are chosen such that the integral 

expressions (*) and(**) are zero. The DFE element matrix is constructed by the addition 

of the uncoupled matrix and the coupled matrix as:

where.

K,UNCOUPLED

DFE ^^UNCOUPLED ^C O U P L E D (5.17)

")o 0 0

h **
)o 0

**
0

0 0 0 0
h

n
")o 0

PI
f w " } .
**

0

‘■k
"lo 0

‘t
0

0 0
h

0 0

K.COUPLED

0 0 0 0

0 0 0 0 IV/'Af,,
N, "N„ ' 0 0

0 0 0 0 IV/AT,,
0 0 0 0

0 0

The uncoupled matrix is formulated from the boundary terms extracted from the 

integration by parts. The coupled matrix is formulated from the integral expressions in 

both equations (5.15) and (5.16).

5.4.1 Application of deviators.

As it was mentioned earlier, the DFE takes the average over each element much like the 

DSM for £ /(^ ) , m (^), and K(^).  These average parameters can then be
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adjusted to an exact representation of the element by including deviator terms. Deviator 

terms subtract the average parameters and add the exact variation parameters. The two 

expressions for flexural and twist from equations (5.7 and 5.8) can therefore be re-written 

as:

”'D£V
dx

(5.18)

- (G 7 _
GJ„

dx

(5.19)

The element integral expressions in equations (5.18, 5.19) can then be simplified 

similar to equations (5.13, 5.14) to yield the element equations for a tapered beam as:

=■
EJ

■ [Sw "w’~ Sw
II

Uncoupled Terms

K+ ^ f - ^ ^ ' S w ' ' d 4 + ^ ^ w ”&y'd4 + DEV
h h

(5.20)

where.

DEV i - E I ^  + Ef(f)) < N ”> { N r (G J ^  - GJ(#)) <N,'>{N, ']d^
h h

- « ( f ) )  < N >  {N]d^ + l,o}^ ][(/«„«- 4 (f)) < ^ . >  {^ ,M f (521)

+ i  i + K m  < N ”>{N, ' } d ^ + ^  I ( - ^ , _  +A:(f)) <N,'>[N"]d^  
k q
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The integral DEV expressions (5.21) were to be originally evaluated numerically for 

each trial frequency, co .The closed form analytical solution to the above deviator terms 

was later evaluated using MAPLE® symbolic math, and has increased computational 

efficiency greatly. The result, in this case, is a frequency dependent DFE stiffness matrix 

expressed in purely algebraic form. Element matrices are then assembled in the usual 

FEM way and the boundary conditions are introduced as a clamped-free cantilevered 

beam (e.g., using the penalty method (Cook, 2001 and Bathe, 1982)). Finally natural 

frequencies are found using a dedicated numerical bisection method in conjunction with 

the Wittrick-Williams root counting algorithm presented as by Wittrick and Williams 

(1971), Wittrick and Williams (1982) and Wittrick and Williams (1983) (see Chapter 2 

for more details).

5.5 Application of the Theory and Examples of Linearly 
Tapered Wings

To validate the DFE method a linearly tapered wing is first studied. The wing is modeled 

with beam elements for various taper ratios and the resulting natural frequencies are 

compared to other existing methods. For this example the wing only tapers by a 

contracting chord in the span-wise direction. The next example represents a dual tapered 

wing by chord and thickness, with different ply orientations and stacking sequences. It is 

important to note that the tapered thickness is created by changing the ply numbers along 

the wing length, similar to the stepped case. Consequently, there would be no need to 

apply deviators for the thickness variations.

5.5.1 Numerical tests for a linearly tapered beam.

The wing model is composed of glass/epoxy composite material with 15 degree fibre lay­

up. All mechanical and geometric properties at the wing root are the same as the uniform 

beam case studied earlier in Chapter 4. The coefficient c from equation (5.1 (a-/)) is set at 

its minimum -1 for the maximum possible taper. The reasoning for such a large taper is to
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show how faster the DFE will converge to the exact natural frequencies compared to the 

FEM and DSM. To approximate a tapered configuration, all three methods DFE, DSM, 

and FEM originally use piecewise uniform steps. The DFE then has the advantage of 

applying this refining technique by including deviator turns.

The 15 degree lay-up was initially used in order to reproduce and to confirm the 

calculations of effective rigidities with Baneijee (1998), Baneijee and Williams (1996), 

and Baneijee and Williams (1995). As a result, the same natural frequencies of a uniform 

beam presented in Chapter 4, were again obtained from the present DFE. The principal 

rigidities and Poison’s ratio are experimentally obtained (Teoh and Huang, 1976) (refer 

to Table 5-1).

Table 5-1 Material Properties of a glass/ epoxy 
composite Laminate.

El

Ex
G lt

Vlt

Thickness

9.71 GPa 
3.25 GPa 

0.9025 GPa 
.29 

3.18 mm

Referring to Figure 4-9 in Chapter 4, shows the variations of the effective rigidities vs ply 

angle for a glass/epoxy composite laminate. The 15 degree fibre angle falls into the range 

of maximum bending-torsion coupled rigidity. The natural modes of free vibration as 

result display this coupled vibration behaviour in the following section. The values of the 

natural frequencies for the linearly tapered composite wing, using the same root 

properties as used in the chapter 4 for a uniform beam, are presented in Table 5-2. The 

wing studied in this example is assumed to have a taper coefficient c=-l.

Table 5-2: The first five natural frequew'Jies (Hz) of a linearly tapered wing composed of 
glass/epoxy composite material, with a taper coefficient of c=-l

Mode n o . FEM 2 00  
E l e m e n t s

DSM 2 0  
E l e m e n t s P e r c e n t  E r r o r DFE 2 0  

E l e m e n t s
P e r c e n t

E r r o r
l " 62  . 7 3 6 2 . 5 5 0 .  0 0 2 8 6 2 . 7 4 0 . 0 0 0 1
2 “* 2 7 1 . 9 6 2 7 0 . 3 9 0 . 0 0 5 8 2 7 2 . 1 9 0 . 0 0 0 8
S"* . 6 6 0 . 6 8 6 5 4 . 7 8 0 . 0 0 8 9 6 6 2 . 0 1 0 . 0 0 2 0
4 '” 1 2 1 9 . 8 9 1 2 0 5 . 2 1 0 . 0 1 2 0 1 2 2 4 . 4 0 0 . 0 0 3 7
5'" 1 8 4 5 . 7 7 1 8 3 7 . 6 4 0 . 0 0 4 4 1 8 4 3 . 5 7 0 . 0 0 1 2
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Then, the resulting convergence results for various deviator terms are displayed in 

Figures 5-3 (a), (b), (c), (d), (e). The maximum taper ratio was used since it reflects the 

effectiveness of various deviator terms in the DFE versus the other methods. Since there 

are no published results for this tapered composite configuration the reference values 

have been determined using 2 0 0  finite elements.

—<v— EIDEV 
■ ■ "D - ■ G JD B/

-•if-yiDEW 
—4— KDBy

it it ft
l i r r A i r i T E I i r n i i T s

t

■W

CU DJ.

=6 =— 6 - 
_ »  *0 
B i n t  i n  t E l i m i i i i

DD ntBI

(a? (b)

D

I
:s
.Oh

K>IDDU

(c) (d)
Figure 5-3: Comparative study between DFE convergence rates for the first five natural frequencies 
of a linearly tapered composite wing (c=^/) incorperating different deviatory terms: (a) The first; (b) 
The second; (c) The thrid; (d) The fourth. ‘EIDEV’;, represents the bending rigidity deviator; 
‘GJDEV’, represents the torsion rigidity deviator; ‘KDEV’ represents the coupled bending-torsion 
rigidity deviator, ‘MDEV’ represents the mass deviator; ‘lalfDEV’, represents the mass moment of 
inertia deviator.
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Figure 5-4: Compai^tivc study between DFE convergence rates for the first five natural frequencies 
of a linearly tapered composite wing {c=-l) incorperating different deviatory terms: (e) The fifth 
natural frequencies. ‘EIDEV’;, represents the bending rigidity deviator; ‘GJDEV’, represents the 
torsion rigidity deviator; ‘KDEV’ represents the coupled bending-torsion rigidity deviator, ‘MDEV’ 
represents the mass deviator; ‘ïalfDËV’, represents the mass moment of inertia deviator.

th

The effect of deviator terms were compared individually based on convergence for 

various natural frequencies (Figures 5-3 (a), (b), (c), (d) and (e)). The mass deviator is the 

most significant term with the highest convergence rate for the first four natural 

frequencies. The fifth natural frequency showed the fastest convergence with the mass 

moment of inertia deviator (see Figure 5-3 (e)). The importance of the mass deviator 

matrix is consistent with mass matrix used in the FEM. That means, if  a lumped mass 

matrix was used in the FEM the quality of the results would have been less desired 

compared to the consistent mass matrix. From the modes in Figures 5-5 to 5-9 the 5 

natural frequency is a predominantly torsion mode which explains why the mass moment 

of inertia deviator shows greater significance. Further, the normalized modes presented in 

Figures 5-5 to 5.9, show the increased influence of torsion on the higher modes of free 

vibration. The first mode is predominantly bending with little torsion displacement 

whereas the fifth mode is predominantly torsion displacement. These modes characterize 

the coupled bending torsion behaviour accurately with 30 elements used for each mode. 

Using 30 elements for each mode was sufficient to obtain a smooth curve for the modal 

displacements.
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Figure 5-5: 1"* normalized natural mode of a 
tapered composite wing. A solid line {-) represents 
bending displacement and dashed line (--) 
represents torsion displacement.

Figure 5-6: 2™* normalized natural mode of a 
tapered composite wing. A solid line {-) represents 
bending displacement and dashed line (—) 
represents torsion displacement.
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Figure 5-7: 3”* normalized natural mode of a Figure 5-8: 4'*' normalized natural mode of a
tapered composite wing. A solid line (-) represents tapered composite wing. A solid line (-) represents
bending displacement and dashed line (--) bending displacement and dashed line (--)
represents torsion displacement. represents torsion displacement.
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Figure 5-9: S"" normalized natural mode of a tapered 
composite wing. A solid line (-) represents bending 
displacement and dashed l;ne (—) represents torsion 
displacement.

Fewer DFE elements are often required to converge accurately to the natural 

frequencies. Figure 5-10 shows that the principal natural frequency converges 

approximately to its exact value with only 20 elements. Convergence tests were carried 

out and revealed that the Refined Dynamic Finite Element (RDFE) including deviator 

terms has the fastest convergence (see Figures 5-10 to 5-12).

0.9 •

-  - DFE
— e — FEM 
— A— DSM

0.8

0.7

DFE +DEVS
J r  0 . 6  •

UJ 0.5 •

® 0.4

Q . 0.3

0.2

600 501 0 2 0 30 40

Number of Elements

Figure 5-10: Convergence of DFE, FEM, DSM and DFE +DEVs for the first natural 
frequency.
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Figure 5-11: Convergence of DFE, FEM, DSM and DFE +DEVs for the second 
natural frequency
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Figure 5-12: Convergence of DFE, FEM, DSM and DFE +DEVs for the third 
natural frequency
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It has been observed that the DFE without its deviator matr»” vields results almost 

identical to the FEM. The FEM is based on fixed polynomi baà* functions and a 

consistent mass matrix is used. The DFE, DSM and FEM use - . s m  'e  centre element 

averaging for a tapered beam element parameters. For the linear) ■ = red wing the nodal 

values for rigidities, mass and cross-sectional area have been defined in equation (5.1). 

The DSM has the slowest convergence for the first three natural frequencies (Figures 5- 

10 to 5-12). The convergence for the DFE increased considerably when the deviator 

matrix was included. The RDFE with deviators converged to the exact solution for the 

first natural frequency with only 20 elements (see Figure 5-10). The reference values are 

based on a mesh of 200 classical finite elements, where the cubic “Hermite” and linear 

interpolation functions are used to approximate the bending and torsion displacements, 

respectively.

The DFE was then tested on beams with lower taper angles. The current glass/epoxy 

tapered beam configuration was then tapered with a less excessive taper coefficient of - 

0.5 yielding a taper angle of approximately 1 degree from the horizontal. The 

convergence tests revealed that in this case the DFE did not consistently converge faster 

than the other methods to the exact solution for all frequencies. In fact, according to 

Figures 5-13 to 5-15, the DFE only converged faster for the 1®‘ fundamental natural 

frequency. The FEM resulted in the highest convergence rate for the second natural 

frequency (Figure 5-14), whereas, for the 3'^ natural frequency (Figure 5-15), the best 

convergence was obtained from the DSM. In Table 5-3, presented is the first three natural 

frequencies for a 1 degree tapered wing and the corresponding percent error relative to 

150 classical finite elements

Table 5-3: Comparison study based on small taper angles. The natural frequencies are 
for a 1 degree tapered composite glass/epoxy wing.

Mode no. DFE 20 
elements

Percent
error

DSM 20 
elements

Percent
error

FEM 2 0  
e l e m e n t s

Percent
error

3 7 . 8 3 0 . 0 0 0 1 3 7 . 8 0 0.0006 3 7 . 8 1 0.0004
2"" 2 0 6 . 1 3 0 . 0 0 0 8 2 0 5 . 8 4 0.0006 2 0 6 . 0 1 0.0002
3'" 5 5 3 . 5 6 0 . 0 0 1 9 5 5 2 . 1 6 0.0007 5 5 3 . 2 7 0.0013
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Figure 5-13: Convergence for the first natural frequency for a glass/epoxy 1 degree 
tapered beam
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Figure 5-14: Convergence for the second natural frequency for a glass/epoxy 1 degree 
tapered beam.
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Figure 5-15: Convergence for the third natural frequency for a glass/epoxy 1 degree 
tapered beam.

In order to determine the reason why the DFE does not consistently yield good 

convergence for all frequencies, the convergence results were plotted for RDFE with and 

without its deviator matrices in Figure 5-16. As it can be observed from Figures 5-14 and 

5-15 the DFE has slower convergence for the second and third natural frequencies when 

deviators are used.

- 1 s t  DFE 
 H 1st DFEnoDEVRs

— • - ̂  - 2nd DFE

X 2nd DFEnoDEVRs

—  A —  3rd DFE

—  4- —  3rd DFE noDO/ 8Z  0.6

0.5

15 20

Number of Bements

Figure 5-16: Convergence of the DFE with and without deviators for the first three 
natural frequencies
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This behaviour can be attributed to the fact that for very small taper angles the 

effectiveness of the DFE refining terms known as deviators terms are less pronounced. 

This is due to the numerical errors and it is expanded in the following section.

5.5.2 Limitations on dynamic finite element deviators.

Deviator expressions stem from the weak form of the differential equations of motion. 

These deviators are generally the difference between the average and exact representation 

of the element. Considering the example of a tapered wing, the DFE originally uses 

uniform beam elements to approximate the geometry. Then the application of deviators, 

essentially adjust the uniform (i.e., constant parameters) elements to better represent a 

tapered geometry (i.e., variable coefficients) leading to a more accurate wing-beam 

RDFE model. The power of these terms has been confirmed by and Hashemi (1998) and 

Hashemi and Richard (1999) for the analysis of homogenous metallic beams and blades, 

and discussed by Hashemi and Bomeman (2003) and Hashemi and Bomeman (2004) for 

composite beams. Deviators do in fact increase the convergence of the DFE which is seen 

through out this research (see Figures 5-5 to 5-8).

The deviator matrix is constructed from multiple sub deviator matrices depending on 

the formulation and the model adopted for the structure. For the example of a tapered 

wing with variable coefficients in the governing differential equation such as mass, m(x), 

mass moment of inertia, Ia(x), bending, EI(x), torsion, GJ(x), and bending-torsion 

coupling, K(x), which are each used to derive the deviator matrix (refer to equation 5.21). 

For a linearly tapered wing and using the properties in Table 5.1 the individual 

convergences for each deviator are observed in Figures 5-4 (a) through 5-4(e).

As discussed in section 5.5, these compensating matrices, particularly the mass and mass 

moment of inertia deviators generally increase the convergence rates of the natural 

frequencies (refer to Figs 5-4 (a)-(e)).

Although deviators generally increase the DFE convergence, there are instances where 

the application of these matrices produced undesirable results. With the introduction of 

numerical error, the addition of deviators can result in a decrease in convergence, 

particularly for very low taper ratio models that can be sufficiently approximated using
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uniform beam elements. “An acceptable FE formulation converges to the exact solution 

of the mathematical model as the mesh is indefinitely refined (neglecting errors due to 

finite precision computer arithmetic)” (see Cook, Malkus, Plesha and Witt (2001) pp. 

161). It is important to distinguish when deviators will increase or decrease convergence. 

Unfortunately the numerical error differs from one model to another based on the 

complexity of the formulation. This issue will also be discussed in chapter 6  for the 

geometrical and material bending-torsion coupled model.

A parameter study revealed that for the present model consisting of a solid rectangular 

cross-section the numerical error associated with the deviator terms is most pronounced 

for tapers less than 10 degrees (refer to Figure 5-17).

Figure 5-17: Illustration of composite wing taper angle

The deviators used for taper angles greater than 10 degrees result in more consistent 

convergence. This consistency in results suffers for taper angles between 5-10 degrees. 

The consistency is based on the convergence of each deviator matrix. It is observed that 

for 5° <<9 <10° some deviators increase the convergence rate while some decrease the 

convergence. Due to this inconsistency it is not recommended to use deviators for this 

range. For very small taper angles 0 ° < ^ < 5 °  adding the deviators only decreased the 

DFE convergence (see Figures 5-14 and 5 -15).

If the DFE can approximate a tapered geometry using uniform elements to a 

reasonable accuracy then there is no need to include the numerical error by implementing 

a deviator matnx. If the taper angle is large enough, in this example greater than 10 

degrees, the deviator terms will positively affect the DFE convergence rate. The deviator 

matrices are a distinct advantage that the DFE has over the other methods (FEM, DSM)
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although one has to be aware of the limitation on these deviators particularly for highly 

complex models.

5.5.3 A dually tapered wing model.

Here, a dually tapered wing model is considered. The wing geometry is presented in 

Figure 5-18. The composite material used for this example is Cytek 5245-T800 carbon 

fibre/epoxy. The mechanical properties of this laminate are displayed in Table 5-4 (see 

Taylor and Butler, 1997) and the wing dimensions are given in Table 5-5. The free 

vibration of wings with different lay-ups is presented for a dual varying geometry (i.e., 

linearly tapered by chord and stepped in thickness).

Figure 5-18: Dually tapered Cytek 5245-T800 carbon fibre/epoxy wing geometry

Table 5-4 Material 
Properties of Cytek 5445- 
T800 Carbon fibre/epoxy

R.
Et
G J l t

)̂L
P

165 GPa 
8 . 8  GPa 
5.0 GPa 

0.30 
1550 Kg/m^

Table 5-5 Wing Dimensions and 
configuration.

Lay-up #1 [ (3 0 ),/(-3 0 )J ,
Taper Coefficient -0.5

Lay-up #2 [(45),/ ( ^ 5 ) , ] ,
Taper Coefficient -0.75
Laver Thickness 0.125 mm

Length 0.1905 m
Root Chord 50.8 mm
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The composite wing considered for lay-up #1 consisted of 16 uniform layers at the root 

and reduced along the span-wise direction by four layers per step. Four steps are used 

with thicknesses of 2 mm and 0.5 mm at the root and tip, respectively. The convergence 

test results for the first natural frequency are shown in Figure 5-19. It is observed that for 

this frequency the convergence reaches 1 0 0  % accuracy with only 16 elements and then 

fluctuates with greater than 24 elements. These fluctuations are not uncommon as the 

FEM exhibits the same behaviour with a greater number of elements. The fluctuations are 

a result of numerical error associated with large global assemblies.

♦ — DFEnoDEVs 
• — DFE 

DSM 
FBVIC  1 .4  -

S  0 .6  - 
“ ■ 0 .4  -

0.2 -

705 0 600 10 20 30 4 0
Number of Elements 

Figure 5-19: First natural frequency for Lay-up #1 with a c=-0.5.

The convergence results for the second natural frequency are displayed in Figure 5-20. 

For this mode the convergence of the DFE without deviators results in better convergence 

due to the limitations of the deviators discussed in section 5.5.1. Data trends in the 

Figures 5-19 to 5-21 for the first, second and third natural frequencies show similar 

convergence for the FEM and DFE (omitting the deviators expressions) with the DSM 

resulting in the slowest convergence. Similarities between the DFE and FEM are 

expected since both are Galerkin based formulations.
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Figure 5-20: Second Natural Frequency for Lay-up #1 with a c=-0.5
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Figure 5-21: Third Natural Frequency for Lay-up #1 with a c=-0.5.

The main difference is in the shape functions. The DFE uses Dynamic Trigonometric 

Shape Functions (DTSF’s), whereas FEM uses fixed polynomial shape functions. In 

previous applications of the DFE (see Hashemi and Richard (1999), Hashemi (1998)) the 

trigonometric shape functions have always satisfied the natural (free) boundary 

conditions. For composites beams where the addition of an extra coupling term is used, 

the present trigonometric shape functions become less effective since the natural 

boundary conditions are not satisfied, thus resulting in similar convergence between DFE, 

and FEM. It is with the deviator terms that the DFE is distinguished from the FEM and 

DSM.
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In contrast to the [(30)4/(-30)4]s symmetric stacking sequence, a [(4 5 )4/(-4 5 )4 ]s 
stacking sequence was also tested. The increased taper resulted in much more consistent 

convergences for the RDFE. For the first natural frequency (Figure 5-22) the DFE 

converges to the exact solution with only 8  elements and intermittently converges more 

rapidly than the other methods for the 2""̂ , 3”* and 4* frequencies (see Figures 5-23 to 

5.25).

4.5 -
DFEnoDEVs

2.5 -

0.5 ■

0 7010 20 50 6030 40

Number B em ents

Figure 5-22; First natural frequency for Lay-up #2 where c=-0.75
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Figure 5-23: Second natural frequency for Lay-up #2 where c=-0.75

For the 3'̂ '* natural frequency, the RDFE behaviour is slightly different for small number 

of elements, however, the DFE does still have the fastest convergence. To verify whether 

the RDFE would converge faster at higher modes, a convergence test for the fourth 

natural frequency was also carried. According to Figure 5-25 the fourth natural frequency 

still favours the RDFE. It is observed that by using a higher taper coefficient, the
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effectiveness of the deviators is more pronounced resulting in consistently faster 

convergence. The more complex the system, the better the RDFE converges compared to 

the other existing methods.

4.5 -
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Figure 5-24: Third natural frequency for Lay-up #2 where c=-0.75
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Figure 5-25: Fourth natural frequency for Lay-up #2 where c=-0.75

Table 5-6: The fundamental natural frequencies (Hz) of a carbon fibre/epoxy wing with a -0.75 taper 
coefficient

Natural
Frequency

FEM Using 
300 Elements 
(Benchmark)

DFE Using 
20 Elements

DSM Using 
20 Elements

FEM 
20 Elements

1“ 42.65 42.65 42.60 42.60
2nd 208.15 208.20 207.84 207.90
3rd 538.76 539.08 537.87 538.23
4th 957.52 956.83 955.01 955.53
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5.6 Conclusion

The DFE [simulation for the free vibration analysis of a uniform and tapered composite 

Euler-Beraoulli beam is presented. Natural frequencies and modes of free vibration have 

been determined and classified for two types of materials and multiple stacking 

sequences. The classification of these modes falls into bending, torsion, or bending- 

torsion modes which are characteristics of composite material. The DFE matrix is 

completely closed form based on trigonometric shape functions. Preliminary work 

entailed extensive symbolic integrations that were undertaken using MAPLE® software 

version 8 . Based on the results obtained, the DFE shows faster convergence than the 

FEM and DSM. This is particularly true in the case of highly tapered beams where 

deviator terms are used to adjust the DFE matrix to generate a more accurate 

representation of the element (i.e., RDFE). It is important to acknowledge the limitations 

on these deviators as for some cases they adversely affect the convergence rates, by 

adding numerical errors. The numerical error associated with more complex elements is 

less pronounced as the deviators increase the convergence significantly. From the 

observed results, the DSM accurately converges quickly to the solution for simple 

uniform elements. The FEM is fast and is best suited for multiple frequency outputs. The 

RDFE with its refining terms is validated in contrast to the other existing methods for its 

fast convergence to the solution particularly for higher modes of free vibration and for 

more complex elements. With the RDFE validated for tapered beam configurations, the 

formulation can then be advantageously extended to more realistic wing cross-sections 

such as box-beam section discussed in Chapter 6 .
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Chapter 6 Geometric and Material Coupled Wing 
Model

6.1 Introduction

The materially coupled composite, uniform and piece-wise uniform stepped wing beams 

were analysed in Chapter 4. The tapered wing configurations were then presented and 

discussed in Chapter 5. In this chapter, the wing model is extended to more complex 

configurations exhibiting not only the material but also geometrical couplings. Using a 

wing-box model for the wing cross-section and a circumferentially asymmetric stiffness 

(CAS) configuration for the composite ply lay-up, a more realistic composite wing model 

is generated. In the previous chapters, only material coupling was considered which 

arises from an unbalanced ply lay-up or symmetric stacking sequence. An additional 

geometric coupling arises from the cross-sectional geometry of the wing.

The piesent wing model, (Figure 6-2(a)) is modeled as a symmetric configuration 

where the materially coupled behaviour is characterized by bending-torsion coupled 

stiffness K. The added geometric coupling is a consequence of an offset of the mass 

centre axi i, Gs, from the geometrical elastic axis. Es, denoted by Xa. Any structural 

component located in front of the leading spar or behind the rear spar is considered not to 

contribute to the rigidity of the wing (Lillico, Butler, Guo and Baneijee, 1997). The 

omitted components do however contribute to the mass and inertia of the wing such that 

the mass centre, initially located at the geometric centre of the box, shifts slightly towards 

the rear of the wing-box (refer to Figure 6-2(£>)).

6.2 Model, Hypotheses and Simplifying Assumptions

The proposed wing model is constructed as a wing-box, where L  is the span-wise length 

and c is the wing chord. The lateral bending and twist displacements are governed by
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Euler-Bemoulli and St. Venant beam theories, respectively. Shear deformation, rotary 

inertia, commonly associated with Timoshenko beam theory, as well as warping effects 

are neglected.

Different stacking sequence and/or thickness of the thin-walled box-beam result in 

different coupling behaviours. For a circumferentially asymmetric stiffness (CAS) 

configuration the axial stiffness. A, must remain constant in all walls of the cross-section. 

The coupling stiffness, B, in opposite members is of the opposite sign as stated by 

Armanios and Badir (1995) and Berdichevsky et al (1992). As a result of axial stiffness, 

A, remaining constant, the corresponding thickness must also remain constant. Chandra et 

al. (1990) consider a symmetric configuration for a box-beam which consists of opposite 

walls having the same stacking sequence, although the stacking sequences between the 

horizontal and vertical members need not be the same. The CAS and symmetric 

configurations both lead to a bending-torsion coupled response for thin-walled beams.

The second configuration considered by Armanios and Badir (1995) and 

Berdichevsky et al (1992) was a circumferentially uniform stiffness configuration (CUS) 

where A, B, C, axial, coupling and shear stiffness, respectively, are constant throughout 

the circumference of the cross-section. Chandra et al. (1990) built-up similar 

configurations where the stacking sequence of opposite walls is of oppositely stacked, 

what they call anti-symmetric configuration. Anti-synunetric or CUS configurations are 

beyond the scope of this research and will not be discussed further. The CAS or 

symmetric configuration leads a bending-torsion coupled wing which will be used to 

model the wing-box composite plies.

L e a d i n g  s p a r

(o)

Figure 6-1: (a) 3-D drawing of a composite wing cross-section airfoil, with length = L.
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Leading spar

0.2c 0.4c

Figure 6-2: (b) Cross-section of a wing-box, where c is the chord length, A/jox is the wing-hox mass, 
E, and G, are, respectively, the geometric elastic centre and mass centre axis.

6.3 Theory

The differential equations governing the motion for the free vibration of laminated 

composite wings (presented in Figures 6-1 fa, b)) with geometric coupling ;s are given by 

Lillico et al (1997) as:

+ - K{x) dy/ d^w d̂ -yr
+ m{x) —-5—  m{x)x^ — Y  = 0

2

dx dx J dx\
+ m{x)x^

'  at"

(0.75)

(0.76)

The displacements can be assumed to have a sinusoidal variation with frequency a  as:

w(jc,r) =  >v(jc)sintaf

y/(x, t) =  'F(x) sin ox (0.77)
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The Weighted Residual Method (WRM) is employed and the integral form is re-written 

in the following weak form

Wf =  ^\^EI{x)Sw ”w''+K{x)S\v''^'-rn(^x)ai‘'ôw\v-\-m{x)(a‘'x^ôw^~^dx

+ [(E/(jc)w"+ Æ (z)'F ') '^^]o  -[{EI(x)w ''+  K ( x ) ^ ')Sw']^
(0.78)

; = ^ [ ~ G J (x )â V '^ '~  K (x )â ¥ 'w ''+ I^ (x )û j^â ¥ ^ -m (x )û )\â ¥ w 'jd x  

+ GJix) t  +  K(^x)[â¥w X
(0.79)

where two integrations by parts for the flexural portion and one integration by parts for 

the twisting portion have been applied. Similar to Chapter 5, by re-writing the integral 

equation the inter-element continuity requirements are relaxed so that once again the 

approximation spaces for w and <f> satisfy the and cP continuity requirements, 

respectively. Then, the resulting shear force, S(x), bending moment, M(x), and torsional 

moment, r(x), are:

S(x) =
dx

a'-E I ( x ) ^ + K ( x ) ~  
dx dx

ax

T(x) = G J { x ) ^ + K { x ) ^  ^
dx ax"

(0.80)

(0.81)

(0.82)

The sign conventions are similar to those already used in Chapters 4 and 5. Boundary 

conditions associated to clamped-free (cantilever) structure are such that all virtual and 

real displacements are zero at wing root (x=0) and all resulting forces are equal to zero at 

wing tip (x=L). Hence,
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Consequently,

ôw = 00 = â ¥  = 0  at x  = 0

S = M  = T = 0 at x = L

(0.83)

(0.84)

Expressions (0.78) and (0.79) also satisfy the Principle of Virtual Work (PYW) similar to 

formulation in Chapter 5. The system is then discretized by 2-node 6 -DOF uniform beam 

elements over the length of the beam. The wing can be discretized to a local domain 

^  = [0,l] (i.e., reference element) where, ^  = x ! L .  The uniform element virtual work 

expressions for bending and torsion contributions can then be written as;

w ; © = j ; m i4)l,û fSw
L *

wd(^

(•) (0.85)

H— w' — w]g + — *P 'Sw"d^ + rnx̂ lî Ct)̂  ô w ^ d ^
h 4

and

W:* (# )= ( - - ( G 7  (^ ,?P  ')
I

(**)
K

(0 .86)

The coupling terms in equations (0.85) and (0.86) are equivalent and when written in 

matrix form they are only different by their dimensions. The coupling terms in the weak 

form retain symmetry of the final element DFE matrix. The DFE takes the average over 

each element (similar to the DSM) for E I(^), m (^), G J(^), /^(^) and K(<^). Therefore,

after a certain number of additional integration by parts, the expressions for flexural and 

twist are found as:
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wd^

(*)

+^^[<yw "w '-<yw "V ]J, + :% -  l ^ ! 'S w ”d ^
K K

(0.87)

and.

W■ ; « ) = !

(*•)
1, K,

+ _ ^  [ ^  ' v p  +  _ _ ^  J j  VV 
‘t

+("!%«

(0 .88)

such that,

(0.89)

The Dynamic Trigonometric Shape Functions (DTSF’s) are then defined such that the 

integral expressions (*)and(**) are zero. The variable mechanical properties are 

averaged differently compared to the previous models developed. The following integral 

averaging technique is employed to allow for flexibility in the model.

(0.90)

so that the dually coupled wing-beam, exhibiting material and geometric couplings, can 

be easily extended to higher order taper configurations. F  can be any mechanical property 

varying along the wing span (refer to Figure 6-2).
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r (;ï) can be any 
order o f taper

Figure 6-3: : Dually tapered composite wing-box

Finally, the approximations to the field and test variable w, 'P , âw  and â ¥  are 

substituted into the above equations and the corresponding DFE matrices are obtained as:

K.UNCOUPLED

f

f

E L

f -
0 f i - N .h ‘t

f ' - -/V2 I 0

GJ

h

0
‘■k

L 0 0 0
w

0 f - W ’}.
‘t

-^4"}o 0
‘■k

0 GJ
Ik

0 0

0 0 0 0
0 0 0 0

0 N,N„ 0
0 0 0 0 ^ 3 ^ , 2

0 0 0 0

^2^12 0 AT,//,, 0

GJ

0

0

0

0

(0.91)

(0.92)
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K
- uMaterial

0 0 0 0 /V,"/V„
0 0 IV / 0 0 IV / /v „

iv /A /y 0 N //V ,, IV / IV / 0
0 0 N , ”N , : 0 0 /V/1V„
0 0 IV / IV / 0 0 / v / / v „

0 /V /2V ,/ /V / /V , / 0

(0.93)

Similar to equation (5.18) and (5.19) deviator expressions can also be added to refine the 

dynamic stiffness matrix RDFE to incorporate variable mechanical and/or geometric 

parameters:

+ 7+1

Eln
dx

+ -{-^ave + m(x)) + ( -  +m (x)x„(x))'F^w
"•dev ’’'̂ a.DEV

dx

(0.94)

+ (-GV +Gy(x))<yF'Y-K-2ir_ +A:(%))<yF'M/"
GJn

dx

+ (-(m x „ )^  +m{x)x^(,x))âVw
•a,DEV *̂aiDEV

dx

(0.95)

The only major difference between equations (0.94) and (0.95) and equations (5.18) and 

(5.19) is an added bending-torsion coupling associated with z^term. The deviator 

matrices are then constructed in the same way leading to:
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Uncoupled terms

+ (0.96)

Material Coupling terms

+mx^ Sw d^ + mx^ ^w â¥di^ + D E V 's
Geometric Coupling terms

where,

DEV = l j [ ( - E / _  + £ /(# ))< N ”> { N Jf (G J_-G 7(^)><N />{N , ']d^

+4 ^  f  (/"m. -/"(^)) < > {N} ] [ ( / ._  - / . ( ^ )  < AT, > (N, ( 0  ^7)

i  f  (-^m. + ̂ (^)) < AC> {AT, + 1  + AT(^) < AT/ > {AT")^^
4

Due to the unavailability a closed form symbolic integration for the deviator terms. The 

deviator terms rely on a numerical 16 point gauss quadrature integration.

6.4 Numerical Tests

6.4.1 Example of a quadratic tapered wing.

For the composite wing-box (Figure 6-1(6)) with tabulated properties displayed in Table 

6.1 the natural frequencies were determined for a quadratic tapered wing. Mechanical 

Properties are also displayed in the paper published by Eslimy-Isfahany and Baneijee 

(1997). For a CAS configuration the fibre orientation on, the top is [+15]2 degrees, 

bottom [-15]2 degrees and the sides [15/-15] degrees.

Using a pre-processor developed specifically for thin-walled Composite box-beams based 

on the formulation presented by Armanios and Badir (1995) and Berdichevsky et al 

(1992) the effective rigidities for graphite/epoxy are obtained to be E l = 4.43 MPa for
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bending, GJ= 1.19 MPa for torsion and K=\.15 MPa for coupled bending-torsion 
rigidities at the wing root. The effective rigidities of graphite/epoxy are plotted for 

multiple ply angles (Figure 6-3). From this figure the maximum value for the bending- 

torsion coupling rigidity is observed to occur at 15 degrees. Along the wing length, the 

stiffness properties will vary according to the order of taper.

xltf
12

£

9050
(Deyrw)

70 6020 60

Figure 6-4: Plot of Rigidities vs Ply angle for a graphite/epoxy 
composite.

Table 6-1: Material Properties of a graphite/epoxy composite Laminate

E l 206.92 GPa Width 50.8 cm
E t 5.17 GPa Taper Coefficient -0.5

G lt 3.10 GPa Depth 10.16 cm
V t i 0.25 Taper Coefficient -0.5

Thickness of Layer 1.016 mm Length 2.03 m
Mass centre offset -11.9 cm

The convergence test results for the first three natural frequencies of the quadratic 

tapered wing are presented in Figures 6-4 to 6 -6 . The comparison is made between 

the numerical results obtained from the ‘DFE with no deviators’, ‘RDFE 

incorporating the deviator terms’ and the reference natural frequencies were obtained 

from 120 conventional beam Finite Elements. The FEM model is based on cubic 

Hermite and linear approximation for bending and torsion displacements, 

respectively, and a constant mass matrix.
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Figure 6-5: Convergence of dually quadratic tapered wing-box for the first natural frequency.
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Figure 6-6: Convergence of dually quadratic tapered wing-box for the second natural 
frequency
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Figure 6-7: Convergence of dually quadratic tapered vring-box for the third natural frequency.

As it can be seen, in this case, the FEM converges faster than the DFE when 

deviators are not used. By including the deviator terms the convergence rates for all 

three frequencies increases significantly. This consistent convergence using the 

deviators shows that there are no apparent limitations on these terms. Referring to 

chapter 5, the deviators became more effective for higher taper angles. The quadratic 

tapered wing is now more complex such that the degrading effects resulting from 

numerical error is so small that they do not affect the positive refining results of the 

deviators.

A comparison is made between the fundamental natural frequencies of the 

graphite/epoxy composite wing obtained from FEM and DFE methods using different 

meshes. It is observed that the FEM errors for the first, second, and third natural 

frequencies, respectively, are approximately 20, 50 and 50 times higher than the 

corresponding DFE errors (see Table 6-2).
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Table 6-2: Fundamental frequencies in Hz for a graphite/epoxy quadratic tapered composite
wing

Mode number
120 elements 

FEM
10 elements 

DFE ERROR
10 Elements 

FEM ERROR

1" 3 1 . 7 4 3 1 . 7 3 0.025 % 3 1 . 5 7 0.53 %
7 4 . 3 6 7 4 . 4 0 0.050 % 7 4 . 1 9 0.24 %

3 ^ . 1 1 0 . 4 4 1 1 0 . 5 0 0.056 % 1 1 0 . 0 9 0.31 %

6.4,2 Cubic tapered wing.

Let us consider a dually cubic tapered wing-box with the same mechanical properties 

as in the previous example. The FEM and DFE convergence results for the wing’s 

first 5 natural frequencies are presented in Figures 6-7 through 6-11. By 

implementing a cubic variation the deviators associated with the DFE method amplify 

the convergence in contrast ‘o a linearly varying cross-section of low taper ratio seen 

previously in Chapter 5.

4.5-

3.5 -

2.5-

0.5 -

3520 25 300 5 10 15

Number of B em ents

Figure 6-8: Convergence of dually cubic tapered wing-box for the first natural frequency.
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Figure 6-9: Convergence of dually cubic tapered wing-box for the second natural frequency.
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Figure 6-10: Convergence of dually cubic tapered wing-box for the third natural frequency.
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Figure 6-11: Convergence of dually cubic tapered wing-box for the fourth natural frequency.

Only for the fourth natural frequency (Figure 6-11) greater convergence rates are 

obtained from the FEM, which is irregular since all other convergence tests favoured 

the DFE. In order to further investigate these results, the numerical values for 

frequencies are presented in Table 6-3.

4.5

3.5

“  2.5 ■
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30 3520 25150 5 10
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Figure 6-12: Convergence of dually cubic tapered wing-box for the fifth natural frequency.
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Table 6-3: Natural frequencies for a dually cubic tapered graphite/epo%y composite wing.

Mode
number

200 
elements 
FEM (Hz)

10 elements 
DFE (Hz)

Percent
error

10 Elements 
FEM (Hz)

Percent
error

1" 13  . 5 0 1 3 .5 2 ( B ) 0 . 0 9 13  . 3 3 1 . 2 7
2““ 4 0 . 5 8 4 0 . 7 2 (B) 0 . 3 5 4 0 . 0 7 1 . 2 6
3" 7 8  . 2 9 7 8 . 3 7 ( T ) 0 . 1 0 7 7 . 2 8 1 . 2 9
4"' 8 5 . 9 3 8 6 . 6 7 (BT) 0 . 8 6 8 5 . 6 5 0 . 3 2
S'" 1 3 1 . 3 6 1 3 1 . 4 6 (BT) 0 . 0 7 1 2 9 . 8 0 1 . 1 9

It is observed from the tabulated results that the DFE is significantly more accurate 

than the FEM by a factor of greater than 10. These results are expected as the DFE 

formulation is designed to be more accurate for complex elements such as the present 

dual cubic tapered model. The natural modes for the cubic tapered graphite/epoxy 

wing are displayed in Figure 6-13 to Figure 6-17. The modes of deformation have 

been plotted in both 2-D and 3-D spaces and have been normalized to better 

distinguish the modes as bending, torsion or coupled bending-torsion.

ÜS
OS

0.4

02
m

I
0.2 D.4 0.6 D-B 1 1.2 1.4 1j5 1.6

Instance from wine root (m)

-0.5

*3 -0 6

Figure 6-13: First predominantly bending mode of vibration for a composite graphite/epoxy 
cubic tapered wing in both 2-D and 3-D plots. For the 2-D plot the hending displacenment is 
represented by a solid line (-) and torsion is represented by a dashed line (—).
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Figure 6-14: Second predominantly bendipg mode of vibration for a composite graphite/epoxy 
cubic tapered wing in both 2D and 3-D plots. For the 2-D plot the bending displacenment is 
represented by a solid line (•) and torsion is represented by a dashed line (—).

From the first two plots in Figure 6-13 and Figure 6-14 it can be seen that the modes 

are predominantly bending with slight influence of twist. For the higher modes a 

stronger influence of torsion is observed particularly for the third mode in Figure 6-15 

where the mode is primarily torsion.

O S

03

•02

34

•03

-03

U.2 0.1 0.6 03
Kisttmoe f r m  wiog root W

13 1.6

Figure 6-15: Third predominantly torsion mode of vibration for a composite graphite/epoxy 
cubic tapered wing in both 2D and 3-D plots. For the 2-D plot the bending displacenment is 
represented by a solid line (-) and torsion is represented by a dashed line (--).
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Figure 6-16: Fourth bending-torsion mode of vibration for a composite graphite/epoxy cubic 
tapered wing in both 2D and 3-D plots. For the 2-D plot the bending cUsplacenment is 
represented by a solid line (-) and torsion is represented by a dashed line (»).

The bending-torsion coupling is apparent in the last two modes extracted, in Figure 

6-16 and Figure 6-17 for the fourth and fifth free vibration modes. Although the 

interpolated surface plot used in MATLAB® is exceptionally useful in visualizing 

these modes the cubic taper has been stretched into a rectangular surface such that the 

3-D surface plots are not necessarily to scale, but can still be useful differentiating the 

modes as bending or torsion.

02

-0 5

0 .2  0.4 0.6 0 5  1 1.2 1.4 1

[tistenoe f i m  wing root W
1.5

Æ

Figure 6-17: Fifth bending-torsion mode of vibration for a composite graphite/epoxy cubic 
tapered wing in both 2D and 3-D plots. For the 2-D plot the bending displacenment is 
represented by a solid line (-) and torsion is represented by a dashed line (--).
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6.6 Conclusion

The free vibration analysis of thin-walled composite wing-boxes with quadratic and 

cubic tapers is presented. By implementing the CAS configuration and non­

coincident mass and shear axes, the wing exhibits dually coupled vibration. The 

natural frequencies and modes of deformation have been extracted using the three 

methods, conventional FEM, DFE, and the refined DFE (DFE with deviators). These 

deviators take into account the variable geometric and/or material parameters of the 

wing model over each DFE. The convergence of the refined DFE (RDFE) is validated 

in comparison with the FEM method for multiple tapered geometries and ply 

orientations. The RDFE method provides a much higher convergence rate than 

classical finite elements. The corresponding natural modes of vibration were also 

evaluated and plotted using the advanced plotting features in MATLAB®. The 

programs coded in MATLAB® are discussed in the Appendix.
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Chapter 7 Conclusion

7.1 Concluding Remarks

The free vibration analysis of structures is a crucial part in the design of mechanical and 

aerospace structures. If the vibration of structures is neglected, this could lead to 

catastrophic failure of both static and dynamic systems. To prevent such failures an 

accurate investigation into the vibration response of a system must be carried out. Three 

of the most appealing techniques now available are the finite element method (FEM), 

dynamic stiffness matrix (DSM) method and the dynamic finite element (DFE) method. 

The methods each provide different advantages and disadvantages depending on the 

model considered and the output desired.

For the free vibration of wings, the FEM provides a quick solution for the natural 

frequencies and corresponding modes of defonnation. The systematic procedure used to 

formulate the element mass and stiffness matrices, with a Galerkin weighted residual 

method, shows a clear advantage over other weighted residual and variational methods. 

Also, the generality of the FEM step-by-step procedure allows for easy implementation to 

more complex elements.

The application of the DSM for the free vibration analysis of metallic and composite 

beam structures is well established. The formulation is based on a single frequency 

dependent stiffness matrix possessing both mass and stiffness properties. The 

implementation of the exact member theory, for uniform beams, gives this method the 

capability to converge on any fundamental frequency using only one element. The 

accuracy and CPU time associated with the post-processing of the DSM is a particularly 

attractive for the analysis of uniform beams. Although from the observed results in 

Chapter 5, the accuracy of the technique is less efficient for complex non-uniform 

elements.

The DFE has also been established for homogenous metallic beams. The goal of the 

present research was to apply the DFE formulation to the free vibrations of laminated 

composite wing-beams. The technique combines the advantages of both the DSM and
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FEM by providing a viable method for determining the natural frequencies of a structure. 

Based on the finite element method the DFE provides the same systematic step by step 

procedure to formulate the element stiffness matrix. The frequency dependent stiffness 

matrix adopted from the dynamic stiffness matrix method is produced by implementing 

dynamic trigonometric shape functions (DTPS). These DTFS’s are based on the solution 

to the governing uncoupled differential equations and also differentiate the DFE from the 

FEM.

From the observed results the DFE provides the fastest convergence to the exact 

solution for complex elements. The method provides such accurate results for non- 

uniform beams by implementing a deviator matrix, which differentiates the DFE from the 

DSM and FEM. From the results pertaining to taper configurations for both the solid 

rectangular cross-section in Chapter 5 and the thin-walled wing box-section in Chapter 6  

the deviators provide a much more accurate solution to the resonant frequencies based on 

the coarsest mesh. Although the deviators are designed to increase convergence, certain 

limitations do exist and must be acknowledged (outlined in section 5.5.2). These 

limitations only exist for small taper ratios where uniform elements are sufficient to 

achieve an accurate solution to the structure. For highly complex tapers, such as quadratic 

or cubic, the DFE’s observed results present a clear advantage over the other methods 

considered. Therefore the DFE is valid for elements which exhibit high complexity.

Generally, a finite element based model incorporates numerical integrations to 

integrate the integrand in the weak form of the governing differential equations of 

motion. Numerical (e.g.. Gauss quadrature) integration could be avoided if a closed form 

solution to these integrals can be reached. The incentive of producing element matrices 

based purely on algebraic equations is in the reduced CPU time required to execute a 

finite element based program. In the conventional FEM this is easily achieved using 

polynomial shape functions. In the present DFE formulation, due to the frequency 

dependent shape functions, extensive symbolic integrations have been undertaken using 

MAPLE® to produce an element dynamic stiffness matrix based completely on algebraic 

expressions. Symbolic expressions have been achieved for both uniform and tapered 

formulations in Chapter 4 and Chapter 5, respectively. Unfortunately a symbolic element 

matrix for the composite wing-box configuration prepared in Chapter 6  could not be
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achieved due to the complexity of the formulation. A Gauss quadrature technique, using 

16 integration points was then used to evaluated the integral expressions numerically.

The graphical user interface (GUI) prepared in the Appendix was coded in 

MATLAB®. Although a more efficient code execution could have been achieved using a 

programming language such as FORTRAN, MATLAB® was chosen since it provides an 

advanced graphical user interface. The extensive plotting features in MATLAB® give the 

user the capability to visualize the modes of deformation in two and tliree dimensions. 

The 3-D modes display a more visual representation of the bending and torsion 

deformations over the 2D plots.

It is an advantage to incorporate 3-D plots as it is easier to distinguish the natural 

modes of vibration as bending, torsion or bending-torsion. In addition, MATLAB® has 

the capability to convert an m-file function into a stand-alone program based on C++ 

code generation. Although the stand-alone feature in MATLAB® has not been utilized to 

its fullest extent, however, it presents an attractive factor in the decision of which 

program to use.

In a glance, by implementing a progressive technique in the development of a 

complete composite wing model, errors in the formulation and results are prevented. The 

DFE is formulated for composite aircraft wings and is validated in comparison with other 

attractive methods such as the DSM and FEM. Advantages and disadvantages are 

discussed for wings of various geometries and stacking sequences. It is also demonstrated 

that the DFE can be more advantageously applied to vibrating beam-like periodic 

structures constructed from complex elements and where higher modes of vibration are 

desired.

In summary, the proposed DFE provides design engineers with a powerful tool for the 

preliminary design stage where a huge FEM mesh is not preferred. Once the preliminary 

design is formalized, an elaborated refined FEM model can then be created for detailed 

analysis and fine tuning of the model.
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7.2 Future Work

The Dynamic finite element method will be extended to Timoshenko beam theory where 

the inclusion of shear deformation and rotary inertia are considered. The current 

formulation presented in Chapter 6  for a composite wing-box can also be extended to 

rotor blade design by addition of an axial force in the governing differential equations of 

motion. A composite rotor blade design would lead to analysis of aircraft propellers, 

helicopter blades and rotor and wind turbine stators in new generation of jet engines 

equipped with axial compressors. From the observed results for c omplex geometries 

published by Hashemi and Richard (1999), Hashemi (1998), Hashemi and Bomeman 

(2003), and Hashemi and Bomeman (2004), the DFE produces the highest convergence 

rates compared with conventional FEM and DSM methods. With the added complexity 

of the axial force produced by blade rotation, the deviators associated with the DFE 

formulation would result in even higher convergence rates compared to other existing 

methods.
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Appendix A: MATLAB® Dynamic Finite Element Wing 
Analysis.

A. 1 Introduction

A MATLAB® based program was developed to calculate the natural frequencies of the 

free vibration of a laminated composite wing. The graphical user interface (GUI) has 

been exploited to give the user a simple method for displaying the natural frequencies and 

modes of coupled free vibration. Two programs are explained in detail in this chapter so 

that any user can use these programs proficiently. The first program is the fiat composite 

cantilevered beam program which is designed to find the natural frequencies and 

corresponding modes for any solid rectangular cross-section composite. This beam 

program is extended to models that are tapered by chord if desired. The second program 

is designed for complex geometric cross-sections, specifically closed section wing-box 

configurations.

The wing-box configuration has the capability to account for mass distributions in the 

wing stmcture (e.g., engine) leading to an offset of the mass axis from the elastic axis. 

This offset produces a second coupling due to the mass distribution and geometry of the 

wing. Both programs incorporate a pre-processor to evaluate the effective stiffness of the 

composite lay-up. The first program utilizes the classical laminate theory to calculate the 

effective rigidities of the system. The second program incorporates the circumferentially 

asymmetric stiffness (CAS) configuration to evaluate the effective stiffness for a 

composite closed section wing-box design.
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A.2 DFE Uniform/'t apered Composite Beam Program

The first step for the analysis of a 

composite uniform or tapered wing is to 

select the desired method. Select the 

method that best fits the desired solution. 

For example, if multiple frequencies and 

modes are required, one would chpose the 

finite element method (FEM). For a quick 

accurate value for a particular frequency of 

a uniform beam the dynamic stiffness 

method would be of interest. For more 

complex geometries such as high tapers 

angles the dynamic finite element method 

may be used to achieve an accurate result. 

To select a method either double click one 

of the listed methods or highlight the 

selection and then click ‘Ok’

Solution

Please Select One of the Thiee Methods

Dynamic Stiffness Matrix Method (DSM) 
Dynamic Finite Element Method (DFE)

Select al

Ok Caned

Next, the mechanical properties of the 

composite must be known. The principal 19 7? % ^ hasty-tg-j.

values for longitudinal elastic modulus E , , zoTmmvwM Bwuc (*xuu» ren
|3.25o9

transverse elastic modulus shear a.oshMMorwû roL'n
|0.9025e9

modulus , Poisons ratio are 4.0Pobson raBo M
0.29

required so that the pre-processor can s.ar*jiit)ero( Laver» tNP 

evaluate the effective rigidities of the B.TN ckneaaolEachLnverm
anse-3

B. DenaSv
beam. The program is not limited to only 

one layer. Multiple .layers can be input at 

different fibre angles.
OK Cancel

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The fibre angles are measured form the 

fibre direction to the span wise direction of 

the model. The fibre angles are input one at 

a time from top of laminate to bottom. The 

stacking sequence is at the user’s 

discretion, but user should be aware that 

the program is designed for symmetric 

stacking only. This type of stacking will 

produce the coupled bending-torsion 

composite behaviour.

H B I

1 Dmflrw P t /  m w # # # )  1
|15

_ o ic  11 C«nc«l 1 1

The geometry of the solid rectangular 

cross-section beam must be defined. The 

corresponding boxes for beam length, root 

chord, and taper coefficient are required. If 

a uniform beam is desired than the user 

may set the taper coefficient to zero. The 

taper is limited to span-wise reducing 

chord only.

pefine Solution Properties H
Length 01 Bwwi

.1905 

Root chorO
.09525

Z .P noarC oeftldert
.75

OK Cancel

A simple and convenient wait bar has been 

implemented to give the user a sense of 

when the program will terminate.
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The solution properties are needed to 

define what type of solution output is 

required. The range of elements is needed 

and range of natural frequencies is input to 

define mesh refinement and number of 

modes desired. The upper and lower bound 

frequencies are input for the initial 

frequency. The accuracy of the natural 

frequencies can be set to any desired 

decimal greater than double precision. The 

accuracy is based on the bisection method 

in conjunction with the Wittrick-Williams 

algorithm.

m m
1 .Onlkil Bemert Rangs

h
2 .in n a ! Bemert Range

|5

1 S .tM iai R erao of Frequenciea

1 4 Find Ranoe o( F rsquendK

|5
S.DUpper Bound Freouency
|noo

S.EljOwar Bouid Frequency

|o
7.QAccurecY(lnpU Number of Decknds;Ca , 2»>J01

|5
B. OtiDil Modes 1 «yes and Oi«o

1“

OK i1 Cancel I

The solution is output in a list box. The 

output natural frequencies are based on the 

largest number of elements selected in the 

solution properties, to ensure the results 

are based on the most refined mesh.

Natural frequencies

H R B H T a '
192.864
538.395
648.732
1053.42

S e l e c t  dll

Ok Cancel
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To display the modes the user can double 

click on the values in the list box, then the 

corresponding mode will pop-up. The 

modes are displayed in both 2D and 3-D. 

The 3-D mode was added to give a visual 

representation of the actual deformation 

shape of the beam. For tapered beam 

configurations the 3-D modes will still be 

displayed in a rectangular plane.

An extra output is performed which 

corresponds to the frequency data for each 

element in the element range. This data is 

output in a 2D array of natural frequencies, 

columns being the frequency number and 

rows being the number of elements. A lotus 

123 file is written which can be opened by 

any database. This feature is particularly of 

interest for convergence analysis.

m m m B E E
t - l ! p  r d i ?  V i '- W  i n ? D T  T C O 5  . W r x k v , '- *  . * t c b

IQ

jti-

A.3 DFE Wing Analysis for Composite Wing-Box Sections

DFE Wing Analysis is designed for determining the free vibration response of composite 

thin-walled wing-box. The response of the wing can be solved using either the finite 

element method (FEM) or the dynamic finite element (DFE) method. The wing is 

modeled as beam assemblies with 3 degrees of freedom per node. The circumferentially 

asymmetric stiffness (CAS) configuration is employed to ensure the response is only 

coupled between bending and torsion.
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The initial pop-up menu is ‘Select a 

Method’ list box. This is where the user 

decides which method to use for the free 

dually coupled vibration of a composite 

wing. The finite element should be selected 

if the user desires a quick calculation of 

multiple frequencies. For more complex 

geometries such as tapers (e.g.. Linear, 

quadratic, cubic) then the DFE should be 

selected.

Unfortunately the DFE wifi run slower 

for tapered wings compared to the previous 

program for solid rectangular cross- 

sections. This runtime is slower due to the 

unavailability a closed form symbolic 

integration for the deviator terms. The 

deviator terms rely on a numerical 16 point 

gauss quadrature integration.

Ptease Select One d  ^  Three Method*

Dvnamic finite Element Method JDFE]

Select al

Ok Cancel

The mechanical properties of the composite 

are input in the corresponding boxes to the 

right similar to the previous described 

program. The difference in this program is 

that the layers are limited to multiples of 2  

since they must correspond to the 

circumferentially asymmetric, stiffness 

(CAS) configuration used in the pre­

processor to evaluate the effective rigidities 

of a composite box type section.

'D.efine Composite
1 lotfud^ iHtfy (gL)„

206.92=9

ZOTranrm
j 5.17.3 

9.PgiMratodiuifQLT1jllOmS
4.QPoWoni#oM
10.25

7 .t

ej2S3*L-
1521148
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The composite fibre angle is measured 

from span wise direction of the wing. The 

angle is only needed to be entered once, 

since the pre-processor automatically sets 

up the CAS configuration of [0]^,

top and bottom skins 

respectively and \91— for the sides.

Then, the composite wing geometry must 

be entered. The root width and depth must 

be input and the corresponding taper 

coefficients as well. The centre offset is 

defined based on the mass distribution of 

the wing and must be pre-calculated prior 

to program execution. This mass axis offset 

from the elastic axis produces a second 

bend-twist coupling.

Define Composite
Deüne Pty Anale (D egaw l for fCAS) ecntlnu^Kin

15

OK C m a l

Define Composite Geometry
1. Rod chord
125.48-2 

2. Rod depth
5l08b-2

S.iKhocd Toper Coem ckd

4.IDeBBi Ttnar CooM cW

S. M m  C8cdr8 ofTnt
I -5.32648-2

8. Laogth o1 Wing
203.2e-2

OK Cancel

Similar to the previously described solution 

properties, they are needed to define what 

type of solution output is required. The 

range of elements is needed and range of 

natural frequencies is input to define mesh 

refinement and number of modes desired. 

The upper and lower " ound frequencies are 

input for the initial frequency. The 

accuracy of the natural frequencies can be 

set to any desired decimal greater than 

double precision. The accuracy is based on 

the bisection method in conjunction with 

the Wittrick-Williams algorithm.

Define Solution Propértiës
1 .PntW  Bemert Range

n
2.DFInai Bemert Range

S.OrCai Range of Fraquendoe
1

4 Final Range d  Frequeodes

S.DUupcf Bound FraquencY
1100

e.DLower 9<xnd FfcquencY

7.DAcaycYftTeUM jiiberof D8dmate:Eql8>0.1.2«»j01

6. CXJiwi Mode» 1 -V 8 8 n d  P r o

OK Cancsl
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The solution is output in a list box. The 

output natural frequencies are based on the 

largest number of elements selected in the 

solution properties, to ensure the results are 

based on the most refined mesh.

DFÉ solution

Natural hequencie*

14.6445
43.0292
82.2672
115.602
183.159

S e le c t  .all

Ok Cancel

To display the modes the user can double 

click on the values in the list box, then the 

corresponding mode will pop-up. The 

modes are displayed in both 2D and 3-D. 

The 3-D mode was added to give a visual 

representation of the actual deformation 

shape of the beam. For tapered beam 

configurations the 3-D modes will still be 

displayed in a rectangular plane.

An extra output is performed which 

corresponds to the frequency data for each 

element in the element range. This data is 

output in a 2D array of natural frequencies, 

columns being the frequency number and 

rows being the number of elements. A lotus 

123 file is written which can be opened by 

any database. This feature is particularly of 

interest for convergence analysis.

igtfreNo.J
r ue F' K V I ; , u . i M s ,  Wsilrw u V*

m m

"t Î j

03  0 4  0» OB I  U  U  1 4  1 4

a. “
,
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Appendix B: Flow Charts

Uniform/Tapered Beam & Dually Coupled Wing Analysis Program
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Start

Get 
Properties 

of wing

Input Box

Uniform/Tapered Beam Program

Manual Input
Omitted from the 
wing analysis 
Program

Case for 
FEM

FEM Display
function ------► Natural

Frequencies

/ '  Case for DSM Display
<T DSM y ----------> function -------► Natural

Frequencies

Case for 
DFE

DFE Display
function ------- Natural

Frequencies

Output Natural 
Frequencies 
and Modes

End
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D o While

For 
Number of 
Elements

Start of 
FEM

Store 
Frequencies 

in Array

Thickness
function

Construct
Elem ent
M atrices

Output to 
Tapered

RigbaseDFE

Boundary
function

Solution
Function

Assembly
function

Calculate
Natural

Frequencies

Export 
Frequency data 

to  database

Export 
Frequency data 

to  database

This function is replaced with a new function for the 
wing analysis program. This allows the program to 
evaluate the stiffness of a CAS configuration
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W hile
count<Ne

For Nat 
= l:la s t

Thickness
function

Solution
Function

Start of 
DSM

DSM sub-flow 1

Splu function

Boundary
function

SignDFE

RigbaseDFE

Bisection

Store Frequency in 
Array

Export Frequency 
data to database

Output latest Frequency 
array to function
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Start of 
DFE

This function is replaced with a new function for the 
wing analysis program. This allows the program to 
evaluate the stiffness of a CAS configuration

Solution
Function

RigbaseDFE

While
count<Ne ' DFE sub-flow 1

Boundary
function

SignDFE

Store Frequency in 
Array

Bisection

For Nat 
=l:last

Export Frequency 
data to database

Ouqiut latest Frequency 
array to hinction
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Manual Input of
Solution
Properties

Output data to • 
function

Start of solution 
function
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User Input: 
Number o f Steps

Do While 
ok=l

If ok=l

.if ok =0, then 
Break

If  node=l

For number 
of Element 

Groiqis

Start o f thickness 
function.

Input dialog; Input 
thickness of 

selected step.

.if ok~l, continue

Output data to 
function

Set thickness for initial 
node as root thickness

Translate thickness for 
element to nodal 

thicknesses
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While
i<Nurabcr of 
Elements

Start of 
RigbaseGE02

Use of integral 
Averaging useful for 
higher order tapers

Calculate nodal 
values for 
varying 
parameters

Output Averaged 
Parameters to function

lfi>l

Start of 
RigbaseDFE

Calculate average 
parameters across 
element

Output Averaged 
Parameters to function

Calculate nodal 
values for 
varying 
parameters
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Forii=ND*(n-l)+l 
to ND*(n+l)

For jj=ND*(n-l)+l 
to ND*(n+l)

Start of 
Assembly

**ND is the Number 
of Degrees of

Output Shifted 
Matrix for 
summation

Shift rows by ii and 
columns by jj
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Start of 
boundary

Shift rows by ii 
and columns by

Output Shifted 
Matrix
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Equation 
Reference 3

Clamped-
clamped

frequencies

Assembly of 
element 
matrices

Equation 
Reference 2

DSM 
Sub-flow 1

Equation 
Reference 1

Back to 
DSMtapered

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



DFE 
Süb-floVv 1

Create
element
matrix

Create element 
symbolic 

deviator matrix

For the wing analysis 
program the deviators 
are evaluated using 
Gauss-quadrature

Numerically 
evaluate Deviator 

matrix

Sum element 
matrices to form 

final element matrix

Assembly of 
element 
matrices

Clamped-
clamped

frequencies

Back to 
DFEtapered
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If  diagonal 
elem ent is 
<0

F or i= l to  
Nt-ND

Signcount(i)=l

SignKDFE

Summation

Signcount

Return number of 
frequencies 
exceeded
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Bisection
Function

Set NF= 
Average of 
UB and LB

Output to 
Function

Lower bound 
Equals NF

Upper bound 
Equals NF
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IfSc<0

IfSc<0

sgnS=-l

sgnSC=-l

Output to 
function

signs=l

SClamped3

sgnSC=l

Compute the number of 
frequencies exceeded as a function
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