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Abstract 

VENTRICULAR FIBRILLATION DETECTION ALGORITHM FOR 

AUTOMATED EXTERNAL DEFIBRILLATORS 

Marjan M.Kusha 

Master of Engineering 

Department of Electrical and Computer Engineering 

Ryerson University, 2009 

The automatic external defibrillator (AED) is a lifesaving device, which processes and analy­

ses the electrocardiogram (ECG) and prompts a defibrillation shock if ventricular fibrillation 

is determined. This project investigates the possibility of developing a ventricular Fibrillation 

(VF) detection algorithm based on Autoregressive Modeling (AR Modeling) and dominant 

poles for the use in AEDs. In particular, the ECG segment is modeled using AR modeling 

and the dominant poles are extracted from the model transfer function. The dominant pole 

frequencies were then used in classification based on the distance measure. The potential 

use of this method to distinguish between VF and Normal sinus rhythm (NSR) is discussed. 

The method was tested with ECG records from the widely recognized databases of Ameri­

can Heart Association (AHA) and the Creighton University (CU). Sensitivity and specificity 

for the new VF detection method were calculated to be 66% and 94% respectively. The 

proposed method has some advantages over other existing VF detection algorithms; it has 

a high detection accuracy, it is computationally inexpensive and can be easily implemented 

in hardware. 
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Chapter 1 

Introduction 

People had always suffered from cardiac problems, but they usually died from other causes, 

especially infectious diseases, long before reaching the age when heart problems threatened 

their health. As medicine advanced and people lived longer, heart disease became a serious 

health issue. In fact, according to the Heart and Stroke Foundation, every 7 minutes, some­

one dies from heart disease or stroke in USA. Sudden cardiac arrest (SCA) is a major public 

health concern, as it claims the lives of more than 350,000 Americans every year-more than 

breast cancer, accidents, Alzheimer's disease and AIDS and murder (Figure 1.1). The most 

common cause of cardiac arrest is a heart rhythm disorder or arrhythmia called ventricular 

fibrillation (VF) [1]. 

Fortunately, SCA is reversible in most victims if it's treated within few minutes with an 

electric shock to the heart to restore the normal heartbeat. This process is called defibril­

lation. In fact, defibrillation is the definitive treatment for this life threatening arrhythmia. 

The first defibrillator (Figure 1.2) was developed by Claude Beck in 1947 and used spoons as 

electrodes. Major advances in defibrillation have been made and have resulted in the devel­

opment of Automated External Defibrillators (AED) and Implantable Cardioverter defibril­

lators (ICD). AEDs (Figure 1.3) are automated devices which analyze the electrocardiogram 

(ECG) signal and advise a shock in case of ventricular fibrillation. ICDs are small devices 

which can be implanted beneath the skin and function automatically for several years. They 
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Figure 1.1: Annual Deaths in USA 
[Courtesy: American Heart and Stroke Foundation] 

Murder 

detect and treat life threatening disorders of cardiac rhythm. Both ICDs and AEDs are 

becoming very popular these days because of their life saving potential. 

1.1 Characteristics of ECG Signal 

Heart is a four chambered mechanical pump with two atria for collection of blood and two 

ventricles for pumping out the blood. The pumping mechanism of the heart is coordinated 

by electrical signals. In a healthy heart electric impulses travel along specialized fibers and 

then dart from cell to cell , causing the muscle fibers to contract and relax. Contraction 

of the ventricles generates a high pressure region which opens up the valves and the blood 

pours from ventricle into atria. Contraction of the atria in turn causes the blood to flow to 

the body. A healthy heart shows a typical ECG form , called sinus rhythm and it basically 

consists of P, QRS, and T waves. Figure 1.4 shows a typical normal ECG signal. 
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Figure 1.2: Early defibrillator 
[Courtesy: Medical History Center/Case Western Reserve University) 

Figure 1.3: Automated External Defibrillator 
[Courtesy: Philips Medical Systems) 
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Figure 1.4: ECG tracing of normal cardiac cycle 

But when things go wrong during VF, the electric impulses do not travel along the special­

ized fibers; instead, the auto rhythmic cells throughout the heart generate signals instructing 

cardiac contractile cells to contract. This results in many unsynchronized contractions, so 

that the heart cannot contract forcefully. Without synchronized contraction blood cannot 

flow through the body and organs rapidly begin to fail; within 10 minutes, the victim will 

almost certainly die. ECG signal of a heart suffering from VF shows an irregular cosine like 

structure as shown in Figure 1.5. 

1.2 AED 

As was mentioned in previous section, when sudden cardiac arrest strikes , time is criti-

cal;survival is reduced by 10% for each minute that defibrillation is delayed (Figure 1.6). 

Brain death and permanent death start to occur in just four to six minutes after someone 

experiences cardiac arrest. Total response time from the time a 911 call is made until arrival 

of units and application of defibrillator often reaches 8-9 minutes. As a result, 95% of vic­

tims die before emergency personnel arrive. SCA is reversible in most victims if it's treated 

within a few minutes with an electric shock to the heart to restore a normal heartbeat. Use 
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Figure 1.5: ECG segment during VF 

of manual defibrillators requires considerable amount of training especially in interpreting 

the ECG and since cardiac incidents occur most often out of hospital automated external 

defibrillators (AEDs) were introduced to increase the survival rate. Use of AEDs requires no 

training and therefore they can be used in public places by untrained bystanders. In fact, 

having an AED on site is rapidly becoming a basic standard of emergency care, equivalent to 

having a smoke alarm. The simplicity of operation of the AED has greatly reduced training 

requirements and extended the range of people who are able to provide defibrillation. As a 

result, AEDs can be more widely deployed in public places. One of the greatest challenges 

in designing the AED is the design of its digital signal processing (DSP) algorithm. DSP 

is considered as the brain of AED as it has to decide on its own whether the rhythm is 

shockable or not; therefore, it is of vital importance that the ECG analysis algorithms used 

by AEDs differentiate well between shockable and non shockable rhythms. AED should not 

deliver a shock if the patient has collapsed due to a reason other than cardiac arrest; on the 

other hand, a successfully defibrillated patient should not be defibrillated again due to an 

analysis error, which would possibly bring the subject back into cardiac arrest [2]. 
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Figure 1.6: Survival rate as a function of time 
[Courtesy: American Heart and Stroke Foundation] 

1.2.1 External influences on AEDs 

An AED has to make its decision on the basis of the ECG signal obtained from 2 electrodes 

that are positioned on the patient's chest. The positioning of the electrode pads and quality 

of the electrode contacts are very important in acquiring the ECG signal since it might 

result in false ECG interpretation by the algorithm. The external disturbances on AED 

that might affect its diagnostic accuracy are: (1) Artifacts: Cardiopulmonary resuscitation 

(CP R), transport, respiration, motion of AED user. (2) Electric disturbances: Electrical 

fields (power line), radio communication, noise, implanted pace makers. 

T herefore, a good VF detection algorithm should be robust to the above mentioned 

artifacts and noise and should work well under those conditions. 

1.3 Measure of Diagnostic Accuracy 

As mentioned in the previous section, the accuracy of the DSP algorithm used to differentiate 

between VF and no VF is very important and can be obtained by comparing the VF /no VF 
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decisions suggested by the algorithm with the annotated decisions suggested by cardiologists. 

The cardiologists' decisions are considered to be gold. The main quality parameters used in 

the literature to investigate the diagnostic accuracy of the DSP algorithms are Sensitivity, 

specificity, and Receiver operating characteristic (ROC) [2, 4, 5]. The closer the values of 

sensitivity and specificity are to 100%, the better is the diagnostic accuracy of the algorithm. 

1.3.1 Sensitivity 

Sensitivity is the percentage of the cases labeled as ventricular fibrillation by the algorithm 

that are actually VF. It is defined as: 

DetectedC asesO JV F T P 

AllCasesO JV F Tp + F N' 

where T P is the number of true positive decisions, and F N the number of false negative 

decisions. In other words, sensitivity is the measure for how accurate the algorithm detects 

VF episodes in an ECG. 

1.3.2 Specificity 

Specificity is the probability to correctly identify no VF. In other words, it is the percentage 

of cases labeled as negative by the test that are actually negative. It is defined as: 

DetectedCasesO f"noV F" 
AllCasesof"noV F" 

TN 

TN+FP' 

where TN is the number of true negative decisions, and F P is the number of false positive 

decisions. In real applications of AEDs, the specificity is more important than the sensitivity, 

since no patient should be defibrillated due to an analysis error since this would possibly 

damage the myocardial and bring the patient back into cardiac arrest [2, 3, 6]. 

1.3.3 Receiver Operating Characteristic 

Measures of overall correct classification of patterns as percentages such as sensitivity and 

specificity provide limited indication of the accuracy of a diagnostic method. A special 

algorithm can have a high sensitivity, but a low specificity, or the opposite. In order to come 
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Figure 1. 7: Receiver Operating Characteristic 

to a single point quality parameter Receiver Operating Characteristic curve (ROC) is used. 

In other words, ROC curve describes the inherent tradeoff between sensitivity and specificity 

of a diagnostic test by plotting the sensitivity vs. specificity points obtained for a decision 

threshold or cut points of the decision stage of the algorithm. Measure of effectiveness of 

an algorithm is then given by the area under the ROC curve. A method that gives a larger 

area under the ROC curve indicates a better method than one with a smaller area [2, 4, 5]. 

Figure 3.10 shows a typical example of a ROC curve. 

1.4 AED Hardware Implication 

Figure 1.8 shows the overall block diagram of AED. The core subsystems of AED include: 

DSP processor for processing the chest-pad input, microcontroller for managing the user 

inputs, A/D converter for converting the analog ECG signals to digital information, D /A 
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Figure 1.8: Overall block diagram of AED 

converter for converting the digital signals from the DSP to sound allowing the user to hear 

instructional commands, very low noise amplifiers for amplifying the pad input and power 

management system for controlling the battery power. As explained in Section 1.2 DSP is 

considered as the brain of the AED system. There exists a wide variety of DSP methods 

and ideas for detection of VF in the literature, but not all these algorithms are suitable for 

embedding in an AED microprocessor system. Other than having a high diagnostic accuracy, 

these algorithms should be easily implementable and should work in real-time in an AED. 
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1.5 Organization of the report 

This project focuses on the VF detection algorithms used in AEDs, which therefore implies 

algorithms that are accurate and easy to implement in hardware. To this end, Chapter 2 

explains some of the existing VF detection algorithms, and gives the reader some details on 

their advantages and disadvantages and why most of these algorithms fall short for physical 

implementation. The remainder of this report is organized as shown in Figure 1.9. 

Chapter 3 focuses on a novel method based on AR modeling for detection of VF. Details 

regarding the AR modeling, dominant pole, decision criteria, and the experimental results are 

also discussed. Chapter 4 discusses different methods of implementing algorithms developed 

in MATLAB on FPGA. Chapter 4 also reviews past attempts to remove the gap between 

the DSP design domain and physical implementation. Chapter 5, which is the last chapter, 

presents the conclusion. In summary, this work proposes a VF detection algorithm that is 

computationally inexpensive and can easily be implemented in hardware. 

10 



Figure 1.9: Organization of the project report 
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Chapter 2 

Literature Review-

There are a number of VF detection algorithms in the literature. These algorithms use 

different mathematical methods and transformations to extract certain features of a signal. 

The VF detection methods can be mainly categorized into three groups: 

Time domain: Time domain analysis requires less computational time, since there is 

no transformation of the signal into the frequency domain. Examples include Threshold 

Crossing Intervals Algorithm (TCI) [7] in which decisions are based on the number and 

position of signal crossings through a certain threshold, Autocorrelation Algorithm [8] which 

distinguishes between periodic (normal sine rhythm) and non periodic (VF) signals, and 

Tompkins algorithm [9] which uses slope, amplitude and width of the QRS information as a 

feature to perform the classification. 

Frequency domain: The signal is transformed into the frequency domain by means of Fourier 

transform. The main advantage of this method is that certain frequency noise such as high 

frequency noise can be easily removed. In addition, frequency dependent features of SR or 

VF can be easily treated in this domain [2]. Examples include Spectral Filters [10, 11] and 

Spectral Algorithms which analyze the energy content of different frequency bands. 

Combined methods: Example of this method which makes use of both time and frequency 

domain analysis is wavelet based algorithms [12]. The computational complexity of these 

algorithms might be higher than the techniques mentioned above. In the following sections 

some of the VF detection algorithms are explained in details. 

12 
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2.1 Ventricular Fibrillation Detection By Adaptive Al­
gorithm 

Ventricular Fibrillation detection by adaptive algorithm [13] is a relatively simple and accu­

rate method for discriminating VF from VT using a Least Mean Square (LMS) algorithm. 

In the first stage of the algorithm the ECG signal is fed into the LMS filter and the energy 

of the error signal (EE) is calculated. 

The second stage is the learning period in which the detection thresholds of VF and 

VT are determined. The threshold can be determined from the energy of the error signal. 

The EE is larger for the signals with greater power and worse autocorrelation. Since the 

autocorrelation of VT is better than that of VF and the average power of VF is greater than 

that of VT it can be concluded that the EE of VF is greater than that of VT. Figure 2.2 

shows the distribution of VF and VT energy error. Thus, in learning phase thresholds T1 

and T2 are obtained and the ECG signals with EE smaller than T1 can be considered VT 

and that larger than T2 VF. No decision will be made if EE is in the shadowing area. In 

this case sequential test is applied in which another segment of ECG signal is inputted to 

the LMS algorithm and EE is calculated until a decision is made. 

13 
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Figure 2.2: Distribution of EE 

2.2 Ventricular Fibrillation Detection Using Pseudo Wigner­
Ville Distribution 

Rosado et al. [14] presented a real time VF detection algorithm that combines both time 

domain and time-frequency domain parameters which results in lower computational calcula­

tions. Time domain parameters are used as an initial stage of the VF detection algorithm due 

to its good behavior in non-VF rhythms rejection. Discarding segments that are clearly dif­

ferent from VF results in increase in specificity and avoids the calculation of time-frequency 

distribution in such cases. In VF episodes prominent QRS peaks are inexistent; therefore, 

squaring the ECG time series x( t) (obtaining x( t)' ) results in increase of peaks, and dividing 

x( t)' by its mean ,f-L, results in unit mean. The variance value ,a-, for x( t)' is closely related 

to QRS peak presence; a high value is considered as no VF. 

1 I 1 v F - - [ X - 1]2 - a-( X ) 
- N f-L ( x 1 

( t)) - f-L ( x 1 
( t)) 

(2 .1) 

The second time domain parameter is called RatioSTD which is the quotient between 

the standard deviation of the derivative and the standard deviation of the absolute value of 

the derivative for the ECG time series. This parameter gives an idea about the symmetry 

between positive and negative values. In the case of normal Sine rhythm no symmetry exists. 

On the other hand, in t he case of VF, due to oscillating nature of the VF signal higher values 

14 



of RatioSTD are obtained. Figure 2.3 shows the percentile information about the VF like 

and non VF signals resulted from RatioSTD. Techniques for examining signals in the time 

and frequency domain have their limitations; they tell us where the signal component exists 

in the frequency domain, but they do not give information about how its frequency charac­

teristics change over time. In order to obtain a complete characterization of ECG signals a 

set of time-frequency parameters using Wigner-Ville distribution were calculated. Regarding 

the time-frequency parameters, Rosado et.al defined two spectral bands: BALO (2-14 Hz) 

and BAHI (14-28 Hz). For VF episodes, BAHI does not contain any energy components, 

opposite to non-VF rhythms. The time-frequency parameters used in the algorithm are: 

QTH: Percentage of the total number of nonzero terms existing in BAHI band 

VDL8: Standard deviation of the first-order derivative non-zero terms vector obtained by 

splitting the temporal segment into eight sub-segments. In case of normal sinus it takes a 

higher value due to the existence of bigger oscillations. 

LMTP: Indicates the maximum temporal length of the area enclosing higher energy than 

50% of the maximum. This value is higher in VF episodes than in normal sinus rhythms. 

Curve: Analyzing the number of non-zero terms at every frequency bin of spectral resolu­

tion in the BALO band, and performing a parabolic approximation for the obtained points. 

The regression parabola is less during VF than Normal sine rhythm. TMY: Number of points 

in a TFR having energy between 50% and 100% of the maximum energy value existing in 

the TFR. 

CT8: The temporal segment of the time frequency distribution is divided into 8 segments 

and its energy in BAHI band is measured for every segment. TE: Total energy of the distri­

bution in BAHI band 

15 
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Figure 2.3: Box-Plot results for RatioSTD parameter 
[Courtesy: Rosado et al.] 

2.3 Hilbert Transform 

Aman et al. proposed a method that differentiates SR from VF based on phase-space plots 

.This method [15] is based on a method which is used in analyzing nonlinear signals. Hilbert 

transform is defined using the Cauchy principal value (denoted p. v.) and is given by: 

X (t) = 2_P.V J x(T) dT 
H II t-T 

(2.2) 

Hilbert transform can be considered as the convolution of the functions x (t) and 1/Trt. 

Due to the properties of convolution it can be concluded that the Hilbert transform can 

be realized by an ideal filter whose amplitude response is unity and phase response is a 90 

degrees time shift at all frequencies w> 0. In the phase-space plot the signal is plotted on 

the x-axis, and the Hilbert transform of the signal, XH(t) is plotted on they-axis (Figure 

2.4). A 40 x 40 grid is produced and the number of boxes visited by the ECG signal is 

counted and the measure d is calculated: d = (visited boxes) / (number of all boxes) 

If dis higher than a certain threshold, the corresponding ECG segment will be classified 

as VF. In [15], the threshold was chosen to be 0.15. Similar approach based on time-delay 
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Figure 2.4: ECG signals (left) and their corresponding phase-space plots (right) 
[Courtesy: Aman et al.] 

approach is also given in [3]. 

2.4 Generalized Linear Method 

Krishnan et al. [5] used Generalized Linear Method (GLM) based classification model to 

distinguish VF from SR. GLM is a statistical linear model and is given by: 

y = A,B + E, (2.3) 

where Y is an N dimensional vector of observed responses, ,B is the unknown least square 

estimator, and A is a N (P + 1) matrix of known AR coefficients. During the first phase of 

the classification, the classifier needs to be trained using the known classes of ECG signals. 

In this phase, the auto regressive coefficients are calculated for each signal in the training 
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set, and the observed signals CY) is set to 1 for normal SR signals in the training set and -1 

for VF. The least square estimator ({3) can then be computed from: 

(2.4) 

The least square estimator is calculated only once from the training samples (from the 

known classes of ECG). After the training phase, the classification can be performed. In the 

classification process, the AR coefficients of the test data (ECG segment to be analyzed) 

are obtained. If the multiplication of the AR coefficients of the test data and the previously 

obtained estimator is positive, the signal is classified as NSR and if it is negative the signal 

is classified as VF. In this project Burgs algorithm was used to compute AR coefficients. 

AR model becomes less sensitive to model order P, for P more than three. However, the 

AR model of order four was selected for extracting the features. The criteria used in [5] 

for selecting the model order are the correlation coefficient p and the signal to noise ratio 

(SN R). The p and SN Rare given by equations 2.5 and 2.6 respectively. 

2:1=N (v(i)- m)(v(i)- m) 
(2.5) 

(2.6) 

where v( i) and v( i) are the original and the simulated signals, and m and mare the mean 

of the original and simulated signals respectively. 
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Chapter 3 

Methods 

As explained in chapter 2 there exists a wide variety of DSP methods and ideas for detection 

of VF in the literature, but not all these algorithms are suitable for embedding in an AED 

microprocessor system due to high computational complexity. These algorithms should be 

easily implementable and should work in real-time in an AED in addition to having a high 

diagnostic accuracy. In this chapter a new VF detection method based on AR modeling 

is proposed. The use of AR modeling for feature extraction has been proved to have some 

advantages over other existing methods. It involves less amount of computation and pro­

cessing time for extraction of features and classification which makes it suitable for real time 

classification in AEDs [5] .AR modeling has been used in various applications including clas­

sification of electroencephalograms [28]. In the proposed work, dominant poles are extracted 

from the model transfer function. These dominant poles represent the dominant features of 

the signal segments in the spectral domain and can be used for classification of the cardiac 

rhythm. The potential use of this method to distinguish between VF and Normal sinus 

rhythm (NSR) is discussed. Figure 3.1 shows the flow chart of the proposed method. 
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Figure 3.1: Proposed method 

3.1 ECG Recordings 

3.1.1 Data Libraries 

Clinical storage formats that are generally used include the Extended European Data Format 

(EDF), which is commonly used for electroencephalograms; HL7 (an SML- based format 

for the exchange of data in hospitals); and Waveform DataBase (WFDB). Among these 

formats, WFDB is an excellent (if not best) current choice for storing ECG data [17]. WFDB 

records have three main components: an ASCII header file, a binary data file, and a binary 

annotation file. The header file contains information about the binary file format variety, 

the number and type of channels, the lengths, gains, and offsets of the signals, and any other 

clinical information that is available for the subject. The separate header file allows for rapid 

querying. Any number of annotation files can be associated with the main binary file just 

by using the same name (with a different extension). In addition, WFDB allows the virtual 
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Database nsrdb CU database 

Number of Signals 18 35 

Table 3.1: Signals in the dataset 

concatenation of any number of separate files, without the need to actually merge them. 

3.1.2 Database Analysis 

The most extensive and freely available collection of ECG (and related) waveforms can be 

found on PhysioNet [18] (the MIT Laboratory for Computation Physiology's Web site) or 

one of its many mirrors. This collection of databases is consisted of hundreds of multi lead 

ECG recorded from patients who suffer from various known heart conditions, as well as 

examples of healthy ECGs, for periods from 30 minutes to more than a day. These records 

have been annotated by expert clinicians. These ECG signals can be used to evaluate the 

diagnostic accuracy of VF detection algorithm. 

Commonly used databases that can be found on PhysioNet are Boston's Beth Israel 

Hospital and MIT database (MIT-BIH), Creighton University ventricular tachyarrhythmia 

database (cudb), and the American Heart Association database (AHA). In this project the 

entire CU, and normal sine rhythm database (nsrdb) has been used. Table 3.1 shows the 

number of signals in each database. 

3.1.3 Preprocessing 

Signals from MIT-BIH Arrhythmia Database (mitdb) and CU database are sampled at 250 

Hz and the those from MIT-BIH Normal Sinus Rhythm Database (nsrdb) are sampled at 

125 Hz. In this analysis, signals from mitdb and CU database were down-sampled to the 

frequency of 125 Hz. The signals from the nsrdb data set do not have the desired resolution 

and in future work they will be interpolated so that all the data used in the analysis have 

a sampling frequency of 250 Hz. There are many different interpolation methods such as 
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Figure 3.2: Red-Spectrum of ECG segment before filtering, 
Blue-Corresponding segment after filtering 

Nearest-neighbor interpolation, Linear interpolation, Polynomial interpolation, Spline inter­

polation, Rational interpolation and trigonometric interpolation [27]. In the future work 

the appropriate algorithm will be chosen based on the following criteria: How accurate is 

the method? How expensive is it? How smooth is the interpolant? How many data points 

are needed? The ECG signals in the database were filtered prior to the analysis in order 

to remove the noise including respiration, muscle noise, and base line drift. First, a mov­

ing average filter of order 5 was applied to the signal .Then, high pass filter with a cut off 

frequency of one Hz was used for drift suppression. Finally, a low pass Butterworth filter 

with a limiting frequency of 45 Hz was applied in order to get rid of high frequency noise 

like interspersion and muscle noise. Figure 3.2 shows the ECG spectrum before and after 

filtering. 
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Figure 3.3: Each segment consists of at least one cardiac cycle 

ECG Segmentation 

Auto Regressive modeling given in equation 3.1 is a time invariant system and its obtained 

AR coefficients do not change with time. On the other hand, ECG signal is a nonstationary 

signal and its statistics change with time. So in order to be able to model the signal using 

equation 3.1 , ECG signal should be segmented. The periodic nature of ECG signal makes 

the segmentation easy. In segmentation care must be taken to pick at least one cardiac cycle 

so that the signal can be accurately modeled and can be useful in diagnosis. Cardiac cycle 

length or RR intervals differ for normal sinus rhythm and VF. In VF, the RR intervals are 

much shorter than in a NSR. In this study a sample size of 125 (1 second) was used which is 

adequate to capture most of the information from a particular cardiac cycle (Figure 3.4)[5]. 
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3.2 Autoregressive Modeling 

In AR modeling [5 , 16] , it is assumed that the nth value of a signal s[n] is given by a linear 

combination of its past values and some input u[n]: 

k=p 

S[n] = L a[k]s[n- k] + Gu[n], (3.1) 
k=l 

where pis the order of the predictor (model) , a [k]'s are the AR model coefficients , and G is 

a gain factor. It is assumed here that the input u[n] is totally unknown and the signal s[n] 

can be approximately predicted from a linearly weighted summation of its past p samples. 

Burgs algorithm was used in this work to compute the a[k]'s. The transfer function, H( z ), 

of the AR model is given by: 

H(z ) = ----;--
0---

1 + I:~:f a[k]z-k 
(3 .2) 

A critical issue in AR modeling is the AR order used to model the signal. AR order should 

be appropriately chosen to make sure that the signal is approximated with high accuracy. 

Various model orders were tested to obtain the best accuracy in the modeled signal. In this 

project Burgs algorithm was used to compute AR coefficients and the AR order was chosen 

to be 8. Figure 3.4 shows the spectrum of the normal ECG segment and its corresponding 

model spectrum for the selected model order. 

3.3 Dominant Poles 

Poles of the AR model system could be extracted from the model transfer function by 

factorizing the denominator of equation 3.2. In order to reduce the dimensions of the feature 

vector, dominant poles were used as they represent the dominant features of the signal in 

the spectral domain. Equation 3.2 may be factorized into individual pole contributions as 

follows: 

G 
H(z) = , I ( z - b1) ( z - b2) · · · ( z - bp) I (3.3) 
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Figure 3.4: a) Spectrum of normal ECG segment b) Corresponding model spectrum (p=8) 
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Figure 3.5: a)Spectrum of VF ECG segment b) Corresponding model spectrum (p=8) 
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where bl, b2 ... bp correspond to the complex poles of the transfer function H(z). Dominant 

poles are the ones which have the maximum distance from the origin in the z-plane. These 

dominant poles will represent dominant peaks of the signal in the spectral domain, and could 

be used as parameters for constructing feature vectors [16]. 

3.3.1 Classification 

In the previous section it was explained how the feature vectors consisting of the first and 

the second dominant pole frequencies are constructed. In this section, these feature vectors 

are used as a descriptor for classification of ECG signal into NSR or VF by the distance 

measure method. In this method a codebook of the mean of dominant pole frequencies for 

each ECG class is constructed. The codebook is constructed using 8 signals per class. In the 

classification phase, the features vector of the testing data is obtained and then compared 

to the vectors of the codebook by the Euclidean distance measure. 

The Euclidean distance is defined as: 

D = (P- Q)T(P- Q), (3.4) 

where P is the 2 dimensional feature vector of the test data and Q is the 2 dimensional 

feature vector in the codebook. The tested ECG segment is classified to the class that 

minimizes the measured Euclidean distance. 

3.3.2 Implementation and Result 

The above explained algorithm was performed on the signals in the data set. Figure 3.6 

shows the distribution of dominant pole frequency for normal sinus rhythm and Figure 3. 7 

shows the distribution of dominant poles during VF. Comparing these two figures one can 

observe that in VF dominant poles are located closer to the unit circle whereas in NSR poles 

are located farther. In addition, dominant poles appear at different frequencies for normal 

and VF. The first dominant pole frequency for VF occurs at the region of 3-8 Hz; whereas 

for NSR it occurs in the region of 30-33 Hz. The second dominant frequency for the case of 
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Figure 3.6: Distribution of the Poles in Normal ECG Segment 
blue- 1st dominant pole, red- 2nd dominant pole 

VF occurs at 28-33 Hz and for NSR appears at 3-8 Hz. This result shows that the first and 

the second dominant frequency can be used as features to perform the classification. The 

classification scheme explained in section 3.3.1 was used to classify the ECG segment into 

NSR and VF. Figure 3.8 shows the feature space for the case of NSR and the misclassified 

samples are labeled. The quality of the VF fibrillation detection algorithm was measured by 

calculating Sensitivity and specificity and plotting the ROC curve (Figure3.10). Assuming 

that the annotations are 100% correct, the perfect algorithm would have value of 100% for 

the sensitivity and specificity. The sensitivity and specificity of the proposed method is 94% 
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and 66% respectively. The summary of the classification results are given in table 3.2. 
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Class VF NSR 
Type 
VF 94% 34% 
NSR 6% 66% 

Table 3.2: Classification result 
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3.3.3 Discussion and Future work 

Different values of AR modeling orders were tested for the ECG signals and the result showed 

that AR order of eight is sufficient to model the ECG signal. The classification result showed 

that AR modeling and dominant poles can be used to discriminate between VF and NSR. 

The proposed method has some advantages over the other existing algorithms. Most of the 

VF detection algorithms are not suitable for hardware implementation but the AR coeffi­

cients and dominant pole frequencies in the proposed method are easy to compute; in addi­

tion, classification based on distance measure is computationally inexpensive which makes 

it suitable for embedding in an AED microprocessor system. 

In this project, a fixed sample size of 125 samples has been used for AR modeling. As previ­

ously stated, each segment must be consisted of at least 1 cardiac cycle and the cardiac cycle 

length differs for NSR and VF; as a result , a variable sample size based on the estimation of 

the R-R interval might yield better results. 

In the application of AED specificity is more important than the sensitivity, since AED 

should not deliver a shock to a patient that has collapsed due to a reason other than cardiac 

arrest. Defibrillation due to an analysis error might cause cardiac arrest. Therefore, it is 

desired to obtain a low number of false positive decisions even if this results in the increase in 

the number of false negative decisions. This can be achieved by varying the decision thresh­

old the decision stage of the algorithm. The optimal decision threshold can be obtained from 

ROC curve. 

Next Chapter discusses different methods of implementing algorithms developed in MAT­

LAB on FPGA. It also reviews past attempts to remove the gap between the DSP design 

domain and physical implementation. 
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Chapter 4 

MAT LAB based FPG A design 

Many high-performance signal processing products are now being implemented in field pro­

grammable gate arrays (FPGAs). FPGAs can offer higher level of performance than the 

standard general purpose DSP processors; DSP processors are limited by fixed hardware 

architecture such as bus performance bottlenecks, a fixed number of multiply accumulate 

(MAC) blocks, fixed memory, fixed hardware accelerator blocks, and fixed data widths. 

Hence, the DSP processors are not suitable for certain applications that might require cus­

tomization. On the other hand, FPGAs provide a reconfigurable solution for implementing 

DSP applications as well as higher data processing power than conventional DSP proces­

sors. Therefore, DSP systems implemented in FPGAs can have customized architecture, 

customized bus structure, customized memory, customized hardware accelerator blocks, and 

a variable number of MAC blocks [25]. Traditionally, DSP design has been divided in to two 

types of activities: systems/ algorithm development and hardware/software implementation. 

For prototyping DSP algorithms DSP system designers and algorithm developers mostly use 

the MATLAB language. Hardware designers take the specifications created by the DSP 

engineers and create a physical implementation of the DSP design by creating a register 

transfer level (RTL) model in a hardware description language (HDL) such as VHDL and 

Verilog. Unfortunately there is a gap between algorithm and hardware design and this gap 

is even aggravated as algorithms continue to become more complex. Figure 4.1 shows the 

FPGA design flow for MATLAB based DSP algorithms. 
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Figure 4.1: FPGA design flow for MATLAB based DSP algorithms 
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In this section a brief introduction into VHDL language is given. In addition, past 

attempts to remove the gap between the DSP design domain and physical implementation is 

reviewed. It should be noted that there are many ways to implement a given DSP design on 

a given FPGA, but each implementation is different in terms of performance and the number 

of logic blocks used. Hence, the ability to quickly evaluate alternative implementations is 

critical to achieving high quality DSP realization in a timely manner [23]. 

4.1 Hardware Description Language 

VHDL stands for VHSIC (Very High Speed Integrated Circuits) Hardware Description Lan­

guage. VHDL is a language that is used to describe the behavior of digital systems. VHDL 

designs can be simulated and translated into a form suitable for hardware implementation. 

This language looks similar to conventional programming languages, but there are some im­

portant differences. The main difference is that hardware description language is inherently 

parallel, i.e. commands, which correspond to logic gates, are executed (computed) in paral­

lel, as soon as a new input arrives. VHDL enables the designer to describe the design in its 

structure, to specify how it is decomposed into sub designs and how these sub designs are 

interconnected. In addition, it enables the designers to simulate the design before sending it 

off for production, so that the designer has a opportunity to compare alternative approaches 

and test the correctness without the delay and expense of multiple prototyping [26]. 

4.1.1 Levels of representation and abstraction 

A digital system can be represented at different levels of abstraction: Behavioral, Structural 

and Physical. This keeps the description and design of complex systems manageable. Figure 

4.2 shows different levels of abstraction. 

The highest level of abstraction is the behavioral level that describes a system in terms of 

what it does (or how it behaves) rather than in terms of its components and interconnection 

between them. In addition, it specifies the relationship between the input and output signals. 

The structural level, on the other hand, describes a system as a collection of gates and 
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Figure 4.2: Levels of abstraction: Behavioral, Structural and Physical 
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components which is closer to the physical realization of a system. 

VHDL describes a digital system at the structural or the behavioral level. The behavioral 

level can be further divided into two kinds of styles: Data flow and Algorithmic. The 

dataflow representation describes how data moves through the system (registers). The data 

flow model makes use of concurrent statements that are executed in parallel as soon as data 

arrives at the input. In other words, in data flow model the order in which statements are 

given does not matter. This is in contrast to conventional, software programs that execute 

the statements in a sequential manner. VHDL allows both concurrent and sequential signal 

assignments that will determine the manner in which they are executed. 

4.2 Converting MATLAB floating point computations 
to fixed point 

4.2.1 Numeric representations 

Numeric representation in digital hardware may be either fixed or floating-point. The dif­

ferences between fixed and floating- point processors are significant and they require very 

different internal implementation, instruction sets and approaches for algorithm implemen­

tation. In fixed-point representation, the available bit width is divided and allocated to 

the integer part and the fractional part, with the extreme left bit reserved for the sign (2's 

complement). In contrast, a floating-point representation allocates one sign bit and a fixed 

number of bits to an exponent and a mantissa. Figure 4.3 shows the Fixed point and float­

ing point representation. In fixed-point, relatively efficient implementations of arithmetic 

operations are possible in hardware. In contrast, the floating-point representation needs to 

normalize the exponents of the operands for addition and subtraction [22, 23, 24]. 

Most FPGA designs of digital signal processing applications are limited to fixed point 

arithmetic due to the cost and complexity of floating point hardware. On the other hand, 

MATLAB is optimized for floating-point mathematical operations and it slows down signif­

icantly with fixed-point representations, in which each operation checks for overflow, under­

flow, rounding, and so forth. Hence, the first step in the flow to map MATLAB algorithm 
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Figure 4.3: Fixed point and floating point representation 

into hardware is the conversion of the floating point MATLAB algorithm into a fixed point 

version. 

The strategies for floating-point to fixed- point conversion can be categorized into two 

groups [19, 20]. The first one is an analytical approach in which the finite word length 

effects are analyzed due to fixed-point arithmetic. The second approach is based on bit-true 

simulation originating from the hardware designers. The analytical approach started from 

attempts to model quantization error statistically; then it was expanded to specific linear 

time invariant (LTI) systems such as digital filters, FFT, etc. The potential benefits of the 

bit-true simulation is that it can handle non-LTI systems as well as LTI systems [19]. There 

has been some work in the recent literature on automated compiler techniques for conversion 

of floating point representations to fixed-point representations [20]. 

4 .2.2 Fixed point modeling in MATLAB 

Fixed-point representation is provided using the MATLAB quantization functionality namely 

"quantizer()" and" quantize()" that comes with the Filter Design and Analysis (FDA) Tool­

box [19, 22]. 

The "quantizer" function is used to define the quantizer object, which allocates the 
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bit-widths to be used along with whether the number is signed or unsigned, what kind of 

rounding is to be used, and whether overflows saturate or wrap. The "quantize()" function 

applies the quantizer object to numbers, which are inputs to and outputs from arithmetic 

operations. For example, a quantization model of type signed fixed-point, with 16 total bits 

with one sign bit, 7 integer bits, and 8 fractional bits, rounding to the nearest representable 

number toward a and handling overflow with saturation is defined as follows in MATLAB: 

quant =quantizer("fixed"; "floor"; "saturate"'; [16 8]); 

Xq =quantize( quant; X); 

This quantizer object is used to quantize an arbitrary numerical value "X". The resulting 

number "Xq" has a double floating-point representation in MATLAB, but can be exactly 

represented by a 16-bit fixed-point signed number with 7 integer and 8 fractional bits. 

4.3 Techniques for translating MATLAB/Simulink to 
RTL 

Once the DSP algorithm is proved in MATLAB or Simulink and the system architecture 

is defined at a high level of abstraction, the design has to be transformed into a physical 

implementation. Traditional techniques for removing the gap between the architectural and 

implementation domains typically fall into two main categories: language translation, and 

intellectual property (IP) instantiation and netlisting [23]. 

4.3.1 Language t ranslation : H and translat ion 

Hand translation involves no automation and yet, it is not uncommon to find design teams 

using this approach. There are numerous problems associated with this flow. The first key 

problem is that there is a gap between those working in the MATLAB/Simulink domain and 

hardware engineers working in the implementation domain and there few engineers who are 

experts in both domains. In addition, it is very time consuming to hand-code the RTL for 

a large, complex design. Another problem with this approach is that the implementation is 

device-specific. Even though the RTL synthesis (process by which an RTL is turned into a 
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Hand Tr nslation 

Figure 4.4: Hand translation of MATLAB /Simulink to RTL 

design implementation in terms of logic gates) tool is capable of targeting the RTL to any 

FPG A, achieving the best implementation requires that the RTL be coded with a specific 

device in mind. 

4.3.2 Language translation : Auto interactive translation 

There exists auto interactive translation that has the ability to go directly from MATLAB 

M-code representations into equivalent RTL. This process is called "algorithmic synthesis". 

The way in which this works is as follows. Consider a mathematical function in MATLAB 

such as y = fft(x). In MATLAB it is possible to present the input with an entire frame of 

data and immediately receive a corresponding frame of output without any time having 

elapsed, but there is no obvious corresponding implementation for such a construct. The 

solution is for the user to analyze the M-code associated with the DSP design and, for 

each abstract construct such as y = fft(x), to assign the function a new name such as y = 

myfft(x) and to specify details as to a specific implementation to be associated with this 

function. For example, in the case of the "myfft", the user should select between different 

ways of implementing the algorithm; decide whether to perform buffering and storage using 

FIFOs, registers, or RAM blocks; and make micro-architecture decisions such as how many 

pipeline stages to use. Once all the constructs have been treated in this manner, the RTL 

representation can be generated using the library of forms-based functional specifications. 

Same as hand translation, a major problem with this approach is the gap between the 
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algorithm developers and the hardware engineers and there few engineers who are experts 

in both domains. In addition, the performance of the design is not clear until the design has 

been fully converted into RTL. 

4.3.3 Language translation: MATLAB/Simulink ---+ C/C++ ---+ 

RTL 

An alternative approach is to translate the design in MATLAB to C/C++ and then use 

a tool that translates a design from a C/C++ representation to either an equivalent RTL 

description or directly into an implementation-level netlist. Both MATLAB and Simulink are 

capable of generating C/C++ representations, but this is rarely used to create a hardware 

implementation of the DSP algorithms. Instead, it is common to hand translate the design 

from MATLAB/Simulink to C/C++ representation. 

A concern with this approach is that C/C++ unlike HDL is inherently sequential in 

nature. In order to overcome this problem, representations have to be augmented with 

keywords called pragmas (pragmatic information) that specify concurrency, resource-sharing, 

and timing. 

Some of these design flows take the C/C++ representation and synthesize it directly into 

an implementation- level and others use a synthesis/translation engine to generate RTL and 

then use the RTL synthesis to progress into the final implementation. These latter flows are 

preferred by some because RTL synthesis technology is extremely mature, whereas many 

C-based synthesis engines are not. 

4.3.4 IP Instantiation 

A growing number of major FPGA companies have created libraries of intellectual property 

(IP) m9dels, where each IP model represents some DSP operation such as FFT. Each model 

has an instantiation in Simulink which is called a blockset, and an identical instantiation 

in the FPGA domain. Once the design is proved in Simulink, it can be quickly and easily 

transferred into the implementation realm as a parameterized netlist. If the IP is RTL-based, 

it can be more easily used across all implementation technologies. Non-RTL-based IP on 
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Figure 4.5: IP instantiation and netlisting 

the other hand is usually less portable. Similar to other techniques explained so far, a major 

problem with this technique is the gap between the algorithmic and implementation domains. 

Although the DSP engineers are supposed to be working at a high level of abstraction in 

the Simulink, in reality they hav~ to make low-level implementation-specific decisions that 

are really in the scope of the hardware design engineers. For example, in the case of a FIR 

block, the DSP algorithm designer has to specify how to implement the delay line (RAM 

versus distributed registers), how much latency is to be involved, whether or not to use a 

shared MAC infrastructure, and so forth. It can be concluded that this method is the most 

automated approach, but one big issue with this solution is that it is vendor specific; that is , 

once a design is created in Simulink using a vendor-supplied library of IP blocks, the design 

cannot easily be used for FPGA of another vendor. 

41 



Chapter 5 

Conclusions 

The focus of this project was mainly on the VF detection algorithms used in AEDs, which 

therefore implies algorithms that are accurate and easy to implement in hardware. Chapter 

1 gave a brief introduction on ECG signal characteristics, requirements of VF detection 

algorithms and AEDs. In Chapter 2 some of the existing VF detection algorithms was 

explained, and some details on their advantages and disadvantages was given. It was also 

discussed why most of these algorithms fall short for physical implementation. Chapter 3 

proposed a novel method based on AR modeling and dominant pole frequencies for detection 

of VF. Details regarding AR modeling, dominant pole, decision criteria, and the experimental 

results were also discussed. The proposed AR modeling and dominant poles method have 

been shown to be effective for the classification of VF and NSR. This method has a high 

detection accuracy and is also suitable for real-time implementations into AEDs. Chapter 4 

discussed different methods of implementing algorithms developed in MATLAB on FPGA. It 

also reviewed past attempts to remove the gap between the DSP design domain and physical 

implementation. 
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