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ABSTRACT

This thesis presents an optimal production decision analysis for a multinational firm under exchange

rate, carbon allowance prices, and demand uncertainties. Firms having production and sales in two

different countries experience both demand and exchange rate uncertainties. When exchange rates

move unfavorably, multinational firms face financial losses because of falling profits. Demand un-

certainties may result in underage cost when production quantities are less than the demand, or

overage cost when production quantities are more than the demand. Additionally, recent environ-

mental regulations on emissions of green house gases, particularly carbon dioxide emissions, also

pose risk on firms’s profitability. It is thus important for a risk-averse manager to decide how to

mitigate these uncertainties to protect the firm’s financial losses.

In order to address these issues, mathematical models that capture firm’s production allocation

problem under different scenarios of exchange rate, carbon emissions, and demand uncertainties

have been developed. The risk attitude of the firm manager is assumed to be risk averse and is

modeled by a mean-variance (MV) utility function. In order to hedge downside risk of exchange

rates and upside risk of carbon allowance prices, the firm takes long positions in currency put

and carbon call options, respectively. The objective is to maximize the MV function of the firm

subject to various capacity and demand constraints and determine the optimal number of currency

put and carbon call options. The firm possesses real options capability in the form of capacity

flexibility represented by a vector of discrete capacity levels to meet uncertainties of demand.

Demand uncertainties are assumed to follow regime-switching behaviors – considering both one-

state and two-state probability distributions. The stochastic behavior of exchange rate is modeled

by a geometric Brownian motion and its limiting case as a random walk. Functioning under a

cap-and-trade emission trading scheme, the firm is obliged to buy carbon allowances for its carbon

emissions. Carbon allowance prices are modeled as both geometric Brownian motion and geometric

Brownian motion with jump processes. Results demonstrate that integration of real options and

financial options increases the utility of the firm, while financial options reduce the variance of the

profit.
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Chapter 1

Introduction

Many firms have worldwide production and sales. For example, Bombardier, a Canadian multina-

tional aerospace and transportation company, has sales in the USA. The Delta Air Lines Incorpo-

rated, an US carrier, put order for new CSeries aircrafts from Bombardier. According to a report

by the Financial Post, Bombardier would gain from the recent decline in the exchange rate, as the

exchange rate went to US$0.85/CAD (≈ CAD1.176/USD) (Ratner 2015). Fluctuation in exchange

rate, therefore, plays a major role to the profitability of global firms. In 1982, Laker Airways filed

bankruptcy when the US dollar got stronger than the British pound, because Laker Airways had

expenses in US dollars and revenues in British pounds (Dornier et al. 1998). According to the

US Department of Commerce, in 2013, when one US dollar was, on an average, equal to 0.9711

Canadian dollar, Canadian visitors spent US$23.4 million in the U.S. However, the spending went

down 2% in 2015, because of the unfavourable exchange rate at 0.7830 CAD/USD (Sorensen 2015).

These are few among many examples where exchange rates play an important factor in the decision

making processes and firms need to take preventive measures against the uncertainty of exchange

rates.

Stricter environmental regulatory rules have also compelled firm managers to consider the cost

of green house gas emissions, particularly, carbon dioxide emissions. The advent of carbon emissions

market adds more risk to business companies and has a significant impact on investment planning

and management (McKinsey 2007). A PricewaterhouseCoopers (PwC) report (Pricewaterhouse-

Coopers, 2012) also shows that investors’ attentions in climate-related risk has risen significantly

in recent years. Analyzing the carbon emission data that are voluntarily exposed to the Carbon

Disclosure Project (CDP) by S&P 500 firms, Matsumura et al. (2014) find that for each additional

1000 tons of carbon emission, the firm value drops by approximately two hundred thousand dol-

lars. In order to counterbalance the decrease in the firm value, an effective way could be using

the financial options on carbon allowance prices under a cap-and-trade market based mechanism.
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The following section exhibits a simple example how financial derivatives could mitigate the risks

associated with exchange rate and carbon allowance prices uncertainties.

1.1 Impact of global warming in supply chains

A supply chain is a coordinated activities of organizations, people, information, and resources in

moving a product and service from producers to end-users. The supply chain management is the

management of this chain that facilitates the flow of products and services. It involves managing

storage of materials, work-in-process inventory, and finished goods from producers to consumers.

Disruptions in the chain adversely affect both producers and customers. Extreme weather conditions

are one of major factors that pose potential risks to supply chains. Increasing temperatures due to

climate change manifest high levels of uncertainty in supply chains. In other words, climate change

has an impact on supply chains. Supplies in commodities such as oil, natural gas, and electricity

are subject to extreme weather conditions. Supply chains in agricultural products, for instance,

rice and wheat are also influenced by weather behaviors. Scientists reason out global warming as

a major cause of such uncertain weather whims. Emissions of carbon dioxide from various human

activities are responsible for global warming and climate changes.

1.2 Risks associated with a supply chain

Uncertainty involves a situation in which there is imperfect or little information or no information

at all. It tends to produce an unpredictable and uncontrollable outcome. Uncertainty arises in

various ways in many fields, for instance, in finance, economics, insurance, engineering. Risk is a

consequence of uncertainties. Risk is the possibility of attaining or losing the value of something.

Following example illustrates a phenomenon of risk associated with exchange rates. The profit

from foreign sales varies with uncertain exchange rates. Let the index 1 be the local and 2 be

the foreign. hence, the sales quantity of a local production to a foreign market is assumed to be

x12 units. Similarly, x22 denotes the sales from the foreign production to the foreign market. Let

the sales price in the foreign market be s2. For a fixed value of s2, revenue from sales in foreign

market would be s2x12e, where e is the exchange rate between the two countries. The fluctuation

of exchange rate, e, would make the revenue uncertain. As an example, let x12 = 30 units sold

from Canada to the US market, and s2 = 5 USD. When e, for instance, varies linearly from 0.80

to 1.20 CAD/USD, from Figure 1.1 it is observed that an increase in the exchange rate increases

the profit in CAD. However, if the exchange rate drops, the profit (in CAD) also drops. Assume

that the firm functions under environmental restrictions and is obliged to buy carbon allowances

2



for its carbon emissions. Let β be the amount of carbon emission per unit of products, and δ be

the carbon allowance prices. The carbon dioxide emissions are assumed to be the total amount

of emissions per product from all stages of production and shipments. For producing x12 units

of product, the firm then experiences a carbon cost of δβx12. When δ varies, the profitability of

the firm also varies. Assume that the carbon allowance prices, δ, vary, for the sake of simplicity,

linearly from 2 to 5 CAD/tCo2 and let the emission rate, β, be 0.2 CAD/tCO2. Figure 1.1 also

shows that the profit drops under carbon emission cost and the gap between the profit with and

without carbon prices widens as the carbon price increases. This simple example exemplifies that

the firm cannot let the profit variations unattended due to fluctuating exchange rate and carbon

allowance prices. The situation even becomes grave when demand uncertainties are added to the

uncertainties of exchange rate and carbon allowance prices. Firms can hedge these uncertainties

utilizing real options and financial derivatives.
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Figure 1.1: Variations in exchange rate and carbon allowance prices affect the profitability of a
multinational firm.

1.3 Real options

Real options are “opportunities to delay and adjust investments and operating decisions over time

in response to resolution of uncertainty”(Triantis 2000). Real options are viewed as operational risk

management tools. Operational hedging are strategies to mitigate risk using operational instru-

3



ments (Van Mieghem 2003). These include different kinds of processing and switching flexibilities

among production locations or various production capacities. Four kinds of operational hedging

are classified by Van Mieghem (2003): (a) Reserves and redundancy, which include safety capac-

ity, safety inventory, and multi-sourcing; (b) diversification and pooling, for example, operating in

diverse markets; (c) risk-sharing and transfer, which includes entering a financial contract with a

third party; (d) reducing or eliminating root causes of risk.

A firm having capacity flexibility can safeguard demand variations by utilizing a set of discrete

capacity levels. Automobile industries have this kind of capacity flexibility. The firm can adjust

its capacity to meet a certain level of demand fluctuation. Consequently, there occurs a capacity

adjustment cost in the form of capacity expansion, i.e., the adjustment from a lower to a higher

capacity, and capacity contraction, i.e., the adjustment of capacity from a higher to a lower level

capacity. Any demand above the level of maximum capacity is assumed to be unsatisfied and lost.

1.4 Financial derivatives

1.4.1 Forward and futures contracts

A forward contract ties two parties is an agreement in which one party having a long position

agrees to buy an underlying asset from another party holding a short position at a specific price

at a specific future time (Hull 2009). Forward contracts are traded over-the-counter and can be

settled in cash at maturity, without delivering a physical asset. A future contracts is the same as

a forward contracts except that it is traded on an exchange having standard features.

1.4.2 Call and put options

A call option is a right to buy an underlying asset, for example common stocks, index, and foreign

currency, at a specified price on or before a specified future time. The buyer of an option has a long

position and the seller has a short position. The specified price is known as strike price or exercise

price. An option is a financial derivative, which derives its value from an underlying asset. A put

option is a right to sell an underlying asset at an exercise or strike price. Both call and put options

can be of two types, European and American. A European option is exercised at a specified time in

future, while an American option can be exercised before the specified time (Hull 2009). Options

differ from forward and future contracts such that forward and future contracts are commitment to

fulfill an obligation and options are right to exercise by the option holder without any obligation.

When the price of the underlying asset moves upward, call options get exercised. On the other

hand, when the asset price drops unfavorably, put options protect the downside risk of the falling
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Figure 1.2: A simplified exhibit of hedging profit decline due to exchange rates through currency
put and upside carbon emission cost through carbon call options.

asset prices.

Referring to the example in Section 1.2, the firm can hedge the downside risk of the exchange

rates by taking a long position in currency put options. For the sake of simplicity, let the exercise

or strike currency rate be 0.95 CAD/USD. This implies that whenever the exchange rate would

fall below this exercise price of 0.95, the put options will be exercised to hedge the falling currency

rate. The dotted line, A′B′, in Figure 1.2 shows that the firm can hedge the profit downfall by

using currency put options. If the firm also faces a carbon price risk, the increasing carbon cost

could be hedged by taking a long position in carbon call options. The example uses an exercise

price of 3.125 for carbon options. That is, when the carbon price will increase above the exercise

price, the call options would get exercised and hedge the upside risk of having higher carbon prices.

The ‘circled’ dotted line, ABC, shows that the use of carbon call options can mitigate the loss due

to carbon allowance prices. The line indicated by ‘BE’ has been shifted upward to the position of

the line ‘AB’ due to the use of currency put options and the line denoted by ‘BD’ has been moved

upward to the position of the line ‘BC’ due to the exercise of carbon call options. Figure 1.2 shows

a simplified example how a firm could use both currency put and carbon call options. This thesis

considers optimal production problems where exchange rates, carbon allowance prices, and demand

are all stochastic, that is, their values move in an uncertain manner with respect to time.
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1.5 Research motivation and objectives

Against the backdrop, this thesis is motivated to examine optimal production strategies for a multi-

national firm that experiences uncertainties in exchange rates, carbon allowance prices and demand.

When exchange rates fall unfavorably, the firm may incur a huge financial loss. Moreover, the firm

faces demand uncertainties from both markets. Stricter environmental regulations also force the

firm to buy carbon allowances under a cap-and-trade mechanism. It would be an interesting re-

search to examine how a firm tackles the uncertainties involving demand, exchange rates and carbon

allowance prices. Consequently, the objectives of the thesis are to find answers to following research

questions:

• How many forward contracts are needed to long, if the firm opts to long currency forward

contracts for hedging exchange rate risk under different supply chain topologies?

• How does the firm decide capacity allocation over a multi-period time frame under the ex-

change rate fluctuation when the firm is considered to have capacity flexibility to meet the

demand from a set of discrete capacity levels? If the firm opts to long currency put options,

how many options to long to hedge the currency risk?

• How does the firm decide over the capacity allocation under a cap-and-trade emission scheme,

if demand follows a stochastic two-state regime switching behavior? How can the correlated

behavior of two-state regime-switching demand and geometric Brownian motion of carbon

allowance prices be represented in a lattice? How many carbon call options to long?

• When demand, exchange rate, and carbon allowance prices all are considered to follow stochas-

tic behavior along with overage and underage costs, how does the firm’s decision alter? What

if the carbon allowance prices follow a geometric Brownian motion with jump processes? How

do overage and underage cost affect the allocation decisions? How many currency put options

and carbon call options to long to hedge both currency and carbon risks?

1.6 Research contributions

The contribution of this thesis lies in, at least, four aspects:

• While the literature in Adkins (1993), Huchzermeier and Cohen (1996), Broll et al. (1999),

and Ding et al. (2007) consider single period models, this thesis analyzes the production

allocation problem for a multinational firm in a multi-period setting. No one considers a

production allocation problem for a multinational firm under exchange rate uncertainties in
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a multi-period time-frame. The task is challenging in the sense that the decision taken at

current time affects the future decision.

• The thesis considers the growing concern over environmental issues for multinational firms.

To the best of the author’s knowledge, no one studies the use of carbon options in hedging

uncertainties associated with carbon allowance prices. In order to mitigate the upside risk of

carbon emission costs, this thesis examines the use of carbon call options to mitigate the risk.

Since in the literature, carbon allowance prices are modeled both as a geometric Brownian

motion (e.g., Chesney and Taschini 2008) and as a geometric Brownian motion with jump

process (e.g., Kou 2002), this thesis examines both processes for carbon allowance prices.

• The thesis also analyzes the stochastic product life cycles along with stochastic carbon emis-

sion prices. A novel lattice approach is utilized to model the correlated stochastic behaviour

of regime-switching demand and carbon price uncertainties.

• Most of the literature are based on analyzing only one uncertainty, for example, Adkins

(1993) examines the exchange rate risk, Bollen (1999) considers stochastic demand and Ben-

jaafar et al. (2013) consider carbon emission issue. To the best of the author’s knowledge,

no one considers the uncertainties from demand, exchange rate and carbon emission prices

simultaneously. This thesis examines the concurrent effect of demand, currency and carbon

uncertainties. Moreover, the literature (e.g., Ding et al. 2007) did not examine the costs of

overage (too much production) and underage (too less production). This thesis also addresses

the overage and underage costs in case of stochastic demand.

1.7 Organization of the thesis

The thesis is arranged as follows. Chapter 2 reviews the existing literature, points out research

gaps, and overall scheme of the thesis. Chapter 3 discusses the problem with a model that handles

the exchange rate uncertainties with forward contracts. Chapter 4 examines a multi-period case.

Chapter 5 considers regime–switching demand and geometric Brownian exchange rates. Chapter 6

considers all stochastic cases. Chapter 7 concludes the thesis.
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Chapter 2

Literature Review

Flexibility is the ability to adapt to changes that may take place in a firm. Both manufacturers and

customers require flexibility to deal with changes. Automobiles and electronic industries experience

shorter product life cycles. Demand rises, in these industries, are followed by demand decays.

Industries having capacity flexibility could capitalize the opportunities to get along such demand

variations. Capacity flexibility involves managerial decisions in expanding capacity, contracting

capacity, adjustment of capacity and/or postponing capacity allocation in order to minimize the

negative effect on the profitability. Capacity flexibility can be deemed as one of the real options

tool and also sometimes referred to as an operational hedging. In the literature, there are a number

of methods that addressed capacity flexibility. Van Mieghem (2003) provides a good review on

capacity management, investment and hedging.

2.1 Exchange rate uncertainties

A multinational firm having the supply chain network across different countries is vulnerable to

risks from various sources such as exchange rate uncertainty, demand uncertainty, price uncertainty,

political uncertainty, and lack of knowledge of customers and competitors in the foreign country

(Kogut and Kulatilaka 1994). Among those risks, the one often addressed in the literature is

exchange rate risk that can cause major loss. Especially, a firm having expenses in one currency

and revenues in another currency may incur loss, when the change in the expense currency is greater

than that in the revenue currency. For example, in 1982, Laker Airways filed bankruptcy when the

US Dollar got stronger than the British Pound, because Laker Airways had expenses in US dollars

and revenues in British Pounds. Cheung and Sengupta (2013) find that during 2000-2010 exchange

rate appreciation negatively impacted exports in India. Therefore, it is very important for a firm

to minimize risk from exchange rate uncertainty by using different risk hedging strategies that are
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explained later in this chapter.

2.2 Demand uncertainties

The product life cycle has also an impact on production and investment decisions. Products,

like automobiles, semiconductors, and fashion items like cosmetic and toiletry products, exhibit

specific patterns in their life cycles. Managers should understand the demand pattern and adjust

their strategies accordingly. During the introduction period of the product, demand pressure is

high and the production capacity should have adjustment capability to meet the growing demand

(Golder and Tellis, 2004). The level of demand vary dramatically across the stages of life cycle and

corresponding changes in the level of production should be made when demand starts to decay.

Bass (1969) proposes a model for sales pattern during the growth stage of the product. According

to the Bass model, the potential adopters of the product is influenced by both external factors, for

example, through advertising, and internal factors, through communications with previous adopters.

However, the assumption that the demand is likely to grow infinitely leads to an erroneous valuation

of a firm.

Product life cycle models, on the other hand, has the notion that demand decays at some point

because of saturated market and incoming new products. The changing underlying stochastic

processes over the course of product life cycle affect the future profitability and hence the value of

the firm. Chi and Liu (2001) evaluate a stochastic model for market entry and exit decisions during

the uncertain product life cycle. They assume that the product life cycle follows a stochastic process

characterized by a standard Brownian motion. Bollen (1999) frames a valuation that considers the

product life cycle. The product life cycle is assumed to follow a regime switching process with two

regimes, growth and decay. He has developed a lattice with five branches, in which one regime is

represented by a binomial and the the other by a trinomial branches. The step size of the branches

is adjusted to match the five branches with even space. He demonstrates that ignoring the product

life cycle undervalues the option to contract and overvalues the option to expand a project. In

fashion industry, cosmetic products like fragrance and perfumes are sensitive to changing consumer

preferences and the cosmetic products possess evolving and shorter product life cycles. Cucchiella

et al. (2010) propose a real option valuation model for cosmetic products assuming a Poisson

distribution for switching between the stages of the product life cycle. They utilize a binomial

lattice-base approach to find the net present value of the firm.

Demand uncertainties also cause underage and overage costs. From the perspective of a newsven-

dor model, producing too many products than the actual demand will induce overage cost, the firm
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will remain with many leftover. On the other hand, producing too little will induce an underage

cost, the firm cannot meet the demand and lose the goodwill. Chen and Parlar (2007) consider a

single-period newsvendor model with stochastic demand. The newsvendor opts for a put option

to mitigate financial losses due to low demand. The newsvendor transfers his risk to the option

writer for an amount equal to a risk premium plus the expected option payoff. In return, he/she

receives the exercise price from the option writer for each unit of demand that drops below the

strike quantity. The model determines the order quantity, exercise price and strike quantity of the

option.

2.3 Carbon allowance prices uncertainties

Like a greenhouse glass, the gasses in the atmosphere, for instance, carbon dioxide, nitrous oxide,

methane, perfluorocarbons, hydrofluorocarbons, and sulphur hexafluoride, allow the sun rays to

come into the earth, keep the earth warm, and shield the warmth trapped in the atmosphere. That

is why these gases are called greenhouse gases. The greenhouse gases hold heat and radiate back

some heat to the earth’s surface. Without these greenhouse gases, the earth would be very cold

having an average temperature of -180C instead of having the current average earth temperature of

around 150C. Nature herself maintains the balance of amount greenhouse gases in the atmosphere.

But the problem is that the emission of huge amount of carbon dioxide by human activities like

deforestation, industrialization, and burning of fossil fuels - coal, natural gas, and gasoline - has

caused an increase in the earth temperature. The concentration of carbon dioxide in the atmosphere

today is 42% more than the amount in the beginning of the industrial era in 1760. The earth’s

surface temperature is, therefore, increasing. According to a report by the Goddard Institute for

Space Studies of NASA, the average temperature of the earth has increased 0.80C since 1880 and

much of this increase has occurred recently in the 20th century.

The consequences of the global warming are very alarming and grave. The arctic region is

suffering the most as mean-temperatures in the western Canada and Alaska have increased twice

the earth average. As a result, the arctic ice is reducing rapidly. Scientists apprehend that the

region might be ice-free by the 2040. The ice-loss has already affected the existence of polar bears

and other indigenous creatures. The Koyoto Protocol, an international treaty signed in Koyoto,

Japan in 1995 has agreed to reduce the amount of carbon dioxide based on the premises that the

global warming exists and the carbon dioxide produced by human activities is the main cause of

the global warming. To reduce the detrimental effect of greenhouse gases, mainly carbon dioxide

emissions, many countries in Europe and recently Canada have devised policies to harness carbon
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emissions.

There two carbon reduction policies, carbon tax and cap-and-trade. Carbon tax is the fee or

monetary price placed on the emission of carbon. Under the carbon tax policy, the government

imposes a fixed amount of tax on emissions. The tax is set by a government with an aim to reducing

pollution by carbon emissions. Government authorities can implement this policy by putting a

surcharge on carbon-based fuels and industrial processes. The provinces of British Columbia and

Quebec in Canada use carbon taxes as a part of their policies to reduce carbon emissions and to

encourage investments in renewable energy. In a cap-and-trade system, government puts a cap or

limit on the overall carbon emissions level from industry and tightens the cap yearly to achieve

a set emissions target. As the cap or the limit reduces and tightens each year, the tightening

of the emission limit causes industries to cross their emission limits or caps and purchase spare

quota from another company. The government monitors and distributes emission quotas through

auctions. This encourages firms to decrease their emissions and inspires to sell emission quotas

instead of purchase of quotas. Under the cap-and-trade system, the market dynamics evaluate the

emission price.

The U.S. successfully used the cap-and-trade policy to reduce emissions of sulphur dioxide

and nitrous oxide, which are responsible for acid rain. Tokyo launched its own cap-and-trade

system in 2010. The European Union (EU) Emissions Trading System (ETS) covers approximately

more than 11, 000 power and manufacturing industries including production of metals, papers, and

cardboards. According to InterContinentalExchange (ICE) Inc., during the period of from 2007

to 2010, the emission index varied from 8.50 to over 30 Euro per tonne of CO2. The Western

Climate Initiative (WCI) is formed by four Canadian provinces, Ontario, Quebec, Manitoba, and

British Columbia, together with seven U.S. states in order to implement a cap and trade scheme

from January, 2012. The aim of WCI is to reduce emission by 15% by 2020 from the emission level

of 2005 (Mnif and Davison 2011). EU carbon allowances are traded through exchanges, such as

European Climate Exchange (ECX) based in the UK, European Energy Exchange (EEX) based

in Germany, BlueNext based in France, and NASDAQ based in the US. The carbon products are

traded in the form of spots, futures, forwards, options and swaps. For example, the carbon product

coded as ‘NECSEP1-13.50’ stands for a carbon call option traded at NASDAQ for the strike price

of 13.50 (Lapierre, 2015). During the period from 2005 to 2008, trading volumes in EU emission

allowances has increased from 2.327 millions tons to 7.903 millions tons of carbon.

As stated earlier, the market based mechanism to control carbon emissions is known as carbon

cap-and-trade method. Companies can buy or sell such certificates and decide on their amount

of CO2 released into the atmosphere. The right to produce a particular amount of CO2 has now
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become a tradable commodity. A company with lower carbon emissions can benefit from selling its

allowances to higher carbon emitting companies (Benz and Trück 2009). Benjaafar et al. (2013)

propose mixed-integer optimization models that discuss the integration of carbon emission issues

into operational activities of procurement, production, and inventory management. In modeling

carbon allowance prices, Seifert et al. (2009) assume that the uncertainty in emission price dynamics

is driven by a standard Brownian motion. Benz and Trück (2009) analyze the log return of carbon

spot prices from January, 2005 to December 2006 as a Markov regime-switching model with two

regimes (base and spike regimes). Chesney and Taschini (2008) propose the carbon price dynamics

as a geometric Brownian motion. However, Huang (2010) assumes that the process could follow

either an arithmetic Brownian or a mean reverting motion. Daskalakis et al. (2009) study carbon

allowance prices from the Dutch European Climate Exchange (ECX), Norway based Nord pool,

and France based Powernext during the period from December, 2005 to December, 2007. They

examine six different stochastic processes to model carbon prices and observe that the carbon

allowance prices has a better fit with the geometric Brownian motion with jump processes than

that of other stochastic models.

2.4 Operational hedging

Operational flexibility is the ability to foresee changes in dynamic market conditions and ability to

respond to these changes by utilizing the firm’s operations capabilities (Huchzermeier and Cohen

1996). Firms utilize the volatility in the environment by exercising these options. Operational

hedging involves managerial decisions, such as selecting the production facility or market, post-

poning capacity allocation, expanding capacity, contracting capacity, and switching capacity to

diminish detrimental impacts of exchange rate and demand uncertainties (Boyabatli and Toktay

2004). Strategies of operational hedging are deemed as real options. This is the option to exercise

operational capabilities, for instance, expansion or contraction of capacity levels, in face of demand,

prices, and/or exchange rates uncertainties experienced by a multinational firm. This is also an

application of real options in the context of global supply chain. A firm having sales and produc-

tions in two different countries experiences both exchange rate and demand risks. Financial tools

like forward contracts and options are used to mitigate exchange rate risks. However, demand risk

cannot be effectively mitigated by using financial tools. Astute adjustment of resources, such as

postponing production decision until product demand is revealed can reduce the mismatch between

supply and demand (Boyabatli and Toktay 2004). In the literature, operational hedging is analyzed

along with financial hedging. An empirical study by Pantzalis et al. (2007) show that firms can
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utilize operational hedges in managing their risks.

Huchzermeier and Cohen (1996) show that a multinational firm may select the production

location, i.e, network structure. The firm may delay the production decision on how much to

produce until the demand and exchange rate are observed. When a firm has the right to postpone

the production quantity decision, the firm possesses the flexibility to choose a different network

structure that has an excess capacity. Their results demonstrate that the firm value increases

through the operational hedging. It reflects that real options has the capability to enhance the

value of the firm under uncertainty (Huchzermeier and Cohen 1996). In a risk-neutral setting,

where profit volatility is not of concern, Ding et al. (2007) show that the use of real options have

value-enhancing capabilities. Kogut and Kulatilaka (1994) utilize operational flexibilities by having

manufacturing plants located in two different countries with multi-period sales. They assume that

the exchange rate follows a mean-reverting process while the demand is assumed to be known.

Hodder and Jucker (1985) employ operational hedging by using geographically dispersed plant

locations under price and exchange rate fluctuations. Dasu and Li (1997) alter the production

quantities to minimize exchange rate risk for plants operating in more than one location. For a

single-period problem with probabilistic demand, Kazaz et al. (2005) used a two–stage stochastic

programming approach. Capacity allocation takes place in the first stage and the production

decision is made in the second stage after the realization of exchange rate. Van Mieghem (2003)

defines capacity as “a measure of processing abilities and limitations that stem from the scarcity of

various processing resources and is represented as a vector of stocks of various processing resources.”

Examples of operational hedging also include Ding et al. (2007) and Huchzermeier and Cohen

(1996). While Ding et al. (2007) propose postponement of logistics decision, Huchzermeier and

Cohen (1996) suggest holding of extra capacity and delaying the commitment of capacity invest-

ments, and Liu and Nagurney (1996) develop a model that switches among supply chain network

structures. These operational strategies are known as real options and used to reduce the risk

exposure by diminishing the downside risk in the long run. All of these are real options in form

of operational flexibility. The flexibility is gained by utilizing of excess capacity and/or stochastic

recourse.

2.5 Financial hedging

Financial hedging, on the other hand, refers to minimizing risks by having positions in financial

instruments, such as call options, put options, and forward contracts (e.g., Broll and Wong 1999;

Broll et al. 1999). Financial hedging is considered as a preferred method for hedging exchange rate
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uncertainty. Servaes et al. (2009) reported that 82% of international firms uses foreign exchange

rate derivatives. Cohen and Huchzermeier (1996) conclude that global firms utilizing financial

hedging have higher expectancy for profit than those firms that are not using it. Financial hedging

is advantageous in numerous ways. For example, risk from taxes, cost of financial distress, and

managerial risk aversion can be managed using financial hedging (Pindyck 1988). In Broll and

Eckwert (2000), forward contract is utilized to mitigate the exchange rate risk in a two-period

hedging strategy. One of the drawbacks of using the forward contract is that it limits the profit due

to an agreed upon fixed exchange rate even when the exchange rate changes favorably (Hull 2009).

However, using forward contract protects a firm against the downside risk of exchange rate (Hull

2009; Liu and Nagurney 1996). For a single period problem, Adkins (1993) hedges the exchange

rate risk by using put options, where the exchange rate follows a geometric Brownian motion and

the number of put options is calculated by minimizing the variance of the profit. Wong (2003b)

minimizes the utility function of the profit to determine the number of put options, where the

exchange rate is a random variable described by a probability distribution.

2.6 Integrated operational and financial hedging

Firms cannot manage their risks only by using financial instruments, but risk can be reduced by an

integrated approach (Miller 1992). Currently many firms use integrated method encompassing both

operational and financial hedging (e.g., Mello et al. 1995; Chowdhry and Howe 1999; Ding et al. 2007;

Chod et al. 2010). Mello et al. (1995) consider shifting the production to a low cost country with an

integration of financial markets in a continuous time to minimize exchange rate risks. Chowdhry

and Howe (1999) consider the fixed total capacities, which are allocated between the local and

foreign plants against the exchange rate movement in single period sales. The optimal hedging

policy is obtained through foreign currency contracts with considering uncertainty of demand.

Chod et al. (2010) examine the operational flexibility and financial hedging against the demand

uncertainty. The work showed that if demands are positively correlated, the product flexibility and

financial hedging are complements. One approach to dealing with capacity allocation is to delay

the capacity allocation until the currency and demand uncertainties are settled. Ding et al. (2007)

discuss the allocation delay along with financial option contracts on the currency exchange rate.

Exchange rate usually follows a geometric Brownian motion and option pricing is determined by

the Black and Scholes (1973) model. The optimal number of options is obtained by maximizing

the marginal utility function for a single period problem. A brief summary of the literature review

is provided in Table 2.1.
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While the existing literature highlights single period exchange rate risk hedging problems, this

thesis presents a multi–period risk hedging problem, in which decisions are taken in each period

depending on the level of capacity and the movement of the exchange rate. Path dependent profits

are calculated at each period integrating real options, in the form of capacity flexibilities, and

financial options, in the form of currency put options.

Table 2.1: A brief literature review on the exchange rate risk hedging strategies

Real options approach: operational flexibility

Author(s) Objective/Description

Kogut and Kulatilaka (1994) Propose a model that coordinates shifting of

production between plants in different countries

as the exchange rate moves stochastically.

Huchzermeier and Cohen (1996) A global supply chain model that switches among different

manufacturing flexibility by a combination of global supply flexibility

and supply chain linkage choices.

Kazaz et al. (2005) A two–stage capacity–and–production planning model that utilizes

the allocation decisions until the exchange rate is realized.

Aytekin and Birge (2006) An analytical model to investigate the operating policies in

response to the exchange rate uncertainty.

Financial derivatives approach: by using forward/options

Adkins (1993) Hedging exchange rate risk by using put options.

Broll and Eckwert (2000) A two–period hedging model using currency forward contracts.

Wong (2003a) A foreign currency risk hedging model by using cross hedging

forward contracts.

Approaches integrating operational flexibility and financial derivatives

Chowdhry and Howe (1999) A mean-variance model that combines operational hedging

and financial contracts under demand and exchange rate uncertainties.

Ding et al. (2007) A two–stage capacity–and–production planning model that invetigates

the effect of integrating capacity allocation and currency options

on capacity investment decisions for a risk averse firm.

2.7 Research gaps

While the literature on exchange rate risk hedging is rife with single period models, for example,

Huchzermeier and Cohen (1996), Adkins (1993), Broll et al. (1999), and Ding et al. (2007), there

is, to the best of the author’s knowledge, no model that deals with the integrated operational

and financial risk hedging problem in a multi-period time frame. Firms in the real world do not

take decision over a single period time frame, rather they take decisions over a multi-period time

frame. Multi-period models involve dynamic decisions, since the decision for the next period is

contingent on the current decision. This thesis examines production allocation decisions over a

multi-period time frame for a firm that has capacity flexibility and that is also exposed to exchange
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rate uncertainties.

Growing environmental concern has an impact on the production allocation decisions. While

Benjaafar et al. (2013) consider the carbon emission cost for inventory management, no one studies

the use of carbon options in hedging the carbon allowance price uncertainties. This thesis examines

the use of carbon call options to hedge the upward cost of carbon emissions. In order to examine

possible stochastic behavior of carbon allowance prices on the production allocation problem, carbon

prices are modeled in the form of geometric Brownian motion and geometric Brownian motion with

jump processes.

The thesis addresses another gap in the literature. The thesis considers uncertainties from

demand, exchange rate and carbon allowance prices simultaneously. For a two-stage supply chain

consisting of a domestic production plant having sales in both domestic and foreign markets, demand

and carbon prices uncertainties arise from the domestic market, while exchange rate uncertainties

appear from selling products to a foreign market. Therefore, the firm having domestic production

with sales in both domestic and foreign markets faces three uncertainties simultaneously stemming

from demand, carbon prices, and exchange rates. Most of the literature, consider only one un-

certainty at a time, for example, Adkins (1993) considers only exchange rate uncertainty, Bollen

(1999) considers stochastic demand, and Benjaafar et al. (2013) consider uncertainty of carbon

prices. This thesis, however, investigates concurrent uncertainties of demand, exchange rate, and

carbon allowance prices. Furthermore, current literature, for example, Ding et al. (2007) did not

consider the cost of overage (too much production) and underage (too little production). This

thesis takes into account the underage and overage costs, in case of stochastic demand.
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2.8 The overall scheme of the thesis

The overall scheme of the thesis is given in the following Table 2.2. Chapter 3 discusses a single

period production allocation problem with stochastic exchange rate and known demand. Chapter

4 discusses a multi–period production allocation problem with stochastic exchange rate and known

demand. Chapter 5 addresses a multi–period problem with regime–switching demand product

cycles and carbon prices uncertainties. Chapter 6 discusses a single period problem in which

demand, exchange rate and carbon prices are considered uncertain.

Table 2.2: The overall scheme of the thesis

Chapter Demand Exchange Carbon Models Objective

rate price

3 known stochastic – • domestic production production allocation

(Firm longs • domestic production & number of forward

currency with foreign subsidiary currency contracts

forward • foreign production with so as to maximize

contracts domestic subsidiary the mean-variance

• fully flexible model utility

4 known stochastic – • fixed capacity (no options) production allocation

(Firm has (Firm longs • fixed capacity with options & number of currency

capacity currency • flexible capacity (no options) put options

flexibility) put • flexible capacity so as to maximize the

options) with currency options mean-variance utility

5 stochastic – stochastic • fixed capacity (no options) production allocation

(Firm has (Firm longs • fixed capacity with options & number of carbon

capacity carbon • flexible capacity (no options) call options

flexibility) call • flexible capacity so as to maximize the

options) with carbon options expected value

6 stochastic stochastic stochastic • carbon prices modeled as production allocation

(with (Firm longs (Firm longs a jump process & number of currency

overage currency carbon • stochastic demand, exchange and carbon options

& underage put call rates, and carbon prices so as to maximize

cost) options) options) the mean-variance

utility

2.8.1 The mean-variance approach

Firm managers usually show risk averse attitude. An utility approach requires assessing the utility

function of decision makers and it is essentially a difficult task. On the other hand, the mean-

variance (MV) approach requires only the mean and the variance of the profit to determine the

objective function and thus is easily implementable and applicable (Tekin and Özekici 2015). The

MV approach trades off between the high return in term of mean and the low risk in term of
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variance.

The mean-variance approach has two important advantages: (a) they are implementable. That

is, only two moments, the mean and variance, are required and these two moments can be easily

evaluated; and (b) the approach provides reasonable insights and explanations even when the

decision maker might not know his/her utility function (Van Mieghem 2003). The MV function

value, U(π), can be expressed as:

U(π) = E(π)− γV(π), (2.1)

where E(π) is the expected profit, V(π) is the variance of the profit, and γ ≥ 0 is the mean-

variance ratio. The MV ratio, γ, measures the pace at which the firm compensates the variance

for expected profit value (Ding et al. 2007). In the case where the utility function is modeled as

U(π) = − exp(−γπ), the value of γ can be determined as, γ = −U′′(π)/U′(π). Chen and Parlar

(2007), for the quadratic utility function U(π) = a0+a1π−a2π2, shows that minimizing the variance

of the profit maximizes the expected utility. In their study, Chen and Parlar (2007) assume the

values of (a0, a1, a2) = (0, 1, 0.000005). In the study of Ding et al. (2007), the value of γ is assumed

to be 0.0002.

2.8.2 Dynamic programming approach

It is a recursive approach to solving multi-period optimal decision problems, when the current

decision influences the future payoff. The problem is formulated in a Hamilton-Jacobi-Bellman

equation, which is solved for the asset value by backward induction using a discount rate. The

solution moves in a backward recursive direction, discounting the future values and folding them

into the current decision. This discount rate should reflect the opportunity cost of capital of similar

risk. In a dynamic programming approach, intermediate values can be visible and the decision

process is transparent that enables to handle real options features efficiently (Bollen 1999). Section

4.2.1 in Chapter 4 illustrates how the dynamic programming approach is utilized to determine the

expected profit of the firm.

2.9 Summary

This chapter discusses the literature review, overall scheme of the thesis, mean-variance function,

and dynamic programming approach. The following chapters illustrate different models, respective

methodologies, solution approaches, and results.
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Chapter 3

Optimal production decision under

exchange rate risk using forward

contracts

This chapter presents an optimal production decision under exchange rate risk. The uncertainties

in the currency risk is hedged by using forward contracts. In this chapter, we develop models for

a global firm producing and selling in a domestic and a foreign country. The firm can produce

its product either in one of the countries or in both countries. Depending on where the firm pro-

duces its product, we consider four different models, namely, domestic production model, domestic

production with foreign subsidiary model, foreign production with domestic subsidiary model, and

two–plant fully flexible model. For each model, risk associated with exchange rate is hedged by us-

ing forward contracts. While maximizing the profit, the optimal hedging strategies (or production

quantities) for all models are analyzed from Section 3.1.1 to Section 3.2.3.

3.1 Models

The domestic country and the foreign country are indexed as 1 and 2, respectively. Demand in

each country is assumed to be deterministic and denoted by D1 and D2, while unit sale prices are

given as s1 and s2 in respective currencies. Capacity in each country is denoted by k1 and k2,

respectively. The product cost function is assumed to be convex (e.g., see Pindyck (1988)) and

given by gi(.) (i = 1, 2) as follows:

gi(xij) = ai + bixij + cix
2
ij. (3.1)
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where, ai, bi, and ci are constant and ci > 0. Variable xij (i, j = 1, 2) denotes the sale quantity

from country i to country j. Production capacity in each facility is allocated at time 0 and the

product is sold at time T . The number of forward contracts exercised at time T is ∆, which was

purchased at time 0. The random spot exchange rate at time t is denoted by et.

3.1.1 Two-plant fully flexible system (General case)

In this model, the firm produces products in both foreign and domestic facilities and meet the

demand in both domestic and foreign markets (see Figure 3.1). This supply chain network provides

complete flexibility for the global firm. The sales quantity from domestic country 1 to domestic

market 1 is denoted by x11. In the same manner, x12 is the sale quantity from domestic facility 1

to foreign market 2. Similarly, x21 denotes the sales quantity from foreign facility 2 to domestic

country 1 and x22 is the sale quantity from foreign facility 2 to foreign country 2. At time t, the

profit, π, expressed in terms of the domestic currency is the sales revenue minus the production

cost as shown in Equation (3.2).

π = s1[x11 + x21] + s2et[x12 + x22]− g1(x11 + x12)− etg2(x21 + x22), (3.2)

where, [x11+x21] is the amount of products sold in the domestic market, s1 is the selling price, and

s1[x11+x21] is the revenue from selling the products in domestic country 1. Similarly, s2et[x12+x22]

is the revenue from selling in foreign country 2. The cost of production in domestic country is

g1(x11 + x12) and the cost of production in foreign country 2 is etg2(x21 + x22). The exchange rate

risk associated with the profit, π, can be hedged by exercising ∆ number of forward contracts at

time, t. These forward contracts were bought at time t = 0. The hedged profit, πh, therefore,

can be expressed, as in Equation (3.3), in terms of the profit, π, plus the payoff from the forward

contract, ∆(eft − et), where, ∆ is the number of forward contracts purchased at time, t = 0, eft is

the forward exchange rate, and et is the exchange rate at time, t.

πh = π +∆(eft − et), (3.3)

where eft = E[et]. The optimal number of forward contracts is calculated by maximizing the utility

of the profit, πh. The mean-variance utility function provides clear insights to decision makers and

is given by Equation (3.4).

U(πh) = E(πh)− γV(πh), (3.4)
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Figure 3.1: Domestic and foreign plants with domestic and foreign markets

where E(πh) is the expected profit, γ is the mean-variance ratio, and V(πh) is the variance of the

profit. In order to find the number of forward contracts, ∆, the utility of the hedged profit, πh, is

maximized by differentiating Equation (3.4) with respect to ∆.

∂U(πh)

∂∆
= −γ ∂V(πh)

∂∆
+
∂E(πh)

∂∆
(3.5)

Now, it can be proved that E(πh) = E[π] as follows:

E(πh) = E[π] + ∆ E[eft − et]

= E[π] + ∆{E[eft ]− E[et]}

= E[π] + ∆[eft − eft ]

= E[π]. (3.6)

Since E[π] does not depend on ∆, differentiating E[π] with respect to ∆, we have ∂E(π)
∂∆ = 0. Hence

the optimal number of forward contracts, ∆, can be obtained as follows.

∂U(πh)

∂∆
= −γ ∂V(πh)

∂∆

∂U(πh)

∂∆
= −γ ∂E(π

2
h)

∂∆
+ γ

∂E(πh)
2

∂∆
∂U(πh)

∂∆
= −2γ∆E[(eft − et)

2]− 2γE[(eft − et)et(s2[x12 + x22]− g2(x21 + x22))] (3.7)
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Equating ∂U(πh)
∂∆ = 0 in Equation (3.7), we have the following Equation (3.8):

−2γ∆ E[(eft − et)
2]− 2γE[(efT − et)et(s2[x12 + x22]− g2(x21 + x22))] = 0 (3.8)

Therefore, the number of futures contracts, ∆, are as follows:

∆ = −E[(eft − et)et(s2[x12 + x22]− g2(x21 + x22))]

E[(eft − et)2]
(3.9)

∆ =
s2[x12 + x22]− g2(x21 + x22))] E[e

2
t − eft et]

E[eft
2
+ e2t − 2eft et]

(3.10)

∆ =
s2[x12 + x22]− g2(x21 + x22))] (E[e

2
t ]− eft

2
)

E[eft
2
+ e2t − 2eft et]

(3.11)

The denominator, E[eft
2
+ e2t − 2eft et], in Equation (3.11), can be expressed as follows:

E[eft
2
+ e2t − 2eft et] = E[eft

2
] + E[e2t ]− E[2eft et]

= eft
2
+ E[e2t ]− 2eft E[et]

= eft
2
+ E[e2t ]− 2eft

2

= E[e2t ]− eft
2

(3.12)

The numerator, (E[e2t ] − eft
2
), in Equation (3.11), is cancelled out by Equation (3.12). Therefore,

the value of ∆ is as follows:

∆ = s2[x12 + x22]− g2(x21 + x22) (3.13)

Based on this optimal number forward contract, the hedge profit can be given by following Equation

(3.14).

πh = s1[x11 + x21] + s2e
f
t [x12 + x22]− g1(x11 + x12)− eft g2(x21 + x22) (3.14)

It is observed from Equation (3.14) that the uncertainty involving the exchange rate is removed

by using forward currency rate, eft . The hedged profit now can be maximized subject to local and

foreign demands and capacities. The problem is a non-linear optimization problem and the number
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of sale quantities, x11, x12, x21, and x22 can be obtained optimally by solving the following model.

max
x11,x12,x21,x22

πh = s1[x11 + x21] + s2e
f
t [x12 + x22]

−g1(x11 + x12)− eft g2(x21 + x22) (3.15)

s.t. x11 + x12 ≤ k1 (3.16)

x21 + x22 ≤ k2 (3.17)

x11 + x21 ≤ D1 (3.18)

x12 + x22 ≤ D2 (3.19)

x11, x12, x21, x22 ≥ 0 (3.20)

Constraint (3.16) states that the total local sale quantities are limited by the domestic production

capacity of k1. Equation (3.17) refers to the total foreign sale quantities are constrained by the

capacity, k2, of the foreign country. Constraints (3.18) and (3.19) set the limitations to the total

distribution quantities by the local market demand, D1, and the foreign market demand, D2, re-

spectively. Non–negativity constraints are imposed by Equation (3.20). The non–liner optimization

problem can be solved by using the Kuhn–Tucker method. Therefore, the Khun–Tucker conditions

are:

∂πh
∂ x11

− α1 − α3 = 0 (3.21)

∂πh
∂ x21

− α2 − α3 = 0 (3.22)

∂πh
∂ x12

− α1 − α4 = 0 (3.23)

∂πh
∂ x22

− α2 − α4 = 0 (3.24)

α1(k1 − x11 − x12) = 0 (3.25)

α2(k2 − x21 − x22) = 0 (3.26)

α3(D1 − x11 − x21) = 0 (3.27)

α4(D2 − x12 − x22) = 0 (3.28)
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where, α1, α2, α3, and α4 ≥ 0. Differentiating Equation (3.14) with respective to x11, x21, x12 and

x22, respectively, we get:

∂πh
∂ x11

= s1 − [b1 + 2c1(x11 + x12)] (3.29)

∂πh
∂ x21

= s1 − [b2 + 2c2(x21 + x22)]e
f
t (3.30)

∂πh
∂ x12

= s2e
f
t − [b1 + 2c1(x11 + x12)] (3.31)

∂πh
∂ x22

= s2e
f
t − [b2 + 2c2(x21 + x22)]e

f
t (3.32)

Substituting Equations (3.29) to (3.32) into Equations (3.21) to (3.24) we have:

α1 = −b1 + b2e
f
t − 2c1k1 + 2c2e

f
t k2 (3.33)

α2 = 0 (3.34)

α3 = −b2eft − 2c2D1e
f
t − 2c2D2e

f
t + 2c2e

f
t k1 + s1 (3.35)

α4 = −b2eft − 2c2D1e
f
t − 2c2D2e

f
t + 2c2e

f
t k1 + eft s2 (3.36)

The problem has multiple solutions depending on the relationship among the values of sales prices,

s1 and s2, and cost functions, g1(·) and g2(·). Assuming that the sales in the local market is more

profitable than the foreign market, i.e., s1 > s2e
f
t , and the cost of production in the local market

is cheaper, g1(·) < g2(·), and D1 + D2 = k1 + k2, the optimal number of sale quantities can be

obtained as follows:

x11 = D1 − x21 (3.37)

x12 = −D1 + k1 + x21 (3.38)

x22 = D1 +D2 − k1 − x21 (3.39)

Figure 3.2 shows the optimal sale quantities sold in domestic and foreign markets for a varying

level of capacity, k2, keeping the local capacity, k1, fixed. It is observed that when there is no foreign

subsidiary with k2 = 0, then the local plant tries to meet the local demand, as x11 = min(k1,D1).

Since the local sales are more profitable, when the foreign capacity, k2, is increased from zero, the

sales quantity, x21, from foreign subsidiary to the local market also increases in order to fill the

local market demand. When k2 reaches to a value equal to the difference of D1 and k1, the value

of x11 tends to decrease, while the value of x12, tends to rise as the local production plant starts

fulfilling the foreign demands. One can observe that the behavior of x11 is a mirror of that of x12,
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Figure 3.2: The optimal production quantities for a fully flexible model.

as x11 deceases, x12 increases. The production quantity, x22 remains zero until k2 reaches a value

equal to x21. After fulfilling the local market completely, the foreign production plant starts to fill

the foreign market demand and x22 commences to increases from the point where the value of k2

equals to x21. Note that as s1 > s2e
f
t , the demand of the local market has more priority because

of its having higher revenue from local sales.

The profit curve for a fully flexible model is shown in Figure 3.3. When foreign capacity, k2 = 0

at time t = T , the profit is s1k1 − g1(k1). The reason is that sales in the local market is considered

to be more profitable than the sales in the foreign market. That is why, when k2 = 0, the firm seeks

to maximize its profit by selling products to the local market. As k2 increases, the profit increases

and reaches at its maximum, when k2 = D1 +D2 − k1. Note that the model is generic and fits well

for other assumptions as well.

Figure 3.4 shows the effect of using forward contracts on the hedged and non-hedged profits.

When the exchange rate at time t = 0 is e0, the non-hedged profit is s1D1+s2e0D2−g1(k1)−e0g2(k2)
and the hedged profit is s1D1 + s2e

f
TD2 − g1(k1) − efT g2(k2). From the figure, it is observed that

when the exchange rate is below efT , the hedged profit is more than the non-hedged profit. When

the exchange rate is above efT , the hedged profit remains the same, although the non-hedged profit

is high. Therefore, it can be concluded that forward contracts hedge the downside risk of the firm.
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Figure 3.3: The hedged profit for different levels of capacity for a fully flexible model.

Figure 3.4: The hedged and non-hedged profits for a fully flexible model.

3.2 Numerical studies

In this section, we provide numerical examples discussed in Section 3.1. The following parameters

are considered in these examples: s1 = 110 CAD, s2 = 100 USD, D1 = 150 units, D2 = 50 units,

a1 = 1.0, b1 = 1.0, c1 = 0.3, a2 = 0.8, b2 = 0.5, c2 = 0.15. The forward exchange rate at time t = T

is efT = 1.2 CAD/USD.

3.2.1 Domestic production

From the generalized fully flexible model described above, special cases can be derived. This section

illustrates, as shown in Figure 3.5, that the firm has a production facility in the domestic country.

However, the firm sells its production in both domestic and foreign markets. Substituting x21 = 0

and x22 = 0 in Equation (3.13) and Equation (3.15), we find ∆ = s2x12 and the hedged profit at
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time t = T is πh = [s1x11 + efT s2x12]− g1(x11 + x12).

Figure 3.5: Domestic plant with domestic and foreign markets.

The optimization problem now can be stated as:

max
x11,x12

πh = [s1x11 + s2e
f
Tx12]− g1(x11 + x12) (3.40)

x11 + x12 ≤ k1 (3.41)

x11 ≤ D1 (3.42)

x12 ≤ D2 (3.43)

x11, x12 ≥ 0 (3.44)

The Kuhn–Tucker conditions can be written as:

∂πh
∂ x11

− α1 − α3 = 0 (3.45)

∂πh
∂ x12

− α1 − α4 = 0 (3.46)

α1(k1 − x11 − x12) = 0 (3.47)

α3(D1 − x11) = 0 (3.48)

α4(D2 − x12) = 0 (3.49)

Solving Equations (3.45)–(3.49) for the given parameters, we obtain, α1 = 0, α3 = 0, α4 = 10,

x11 = 132, and x12 = 50. Figure 3.6 depicts the optimal quantities sold in domestic and foreign

markets for different levels of capacity in the domestic plant. The exchange rate risk is hedged by
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using forward contracts. It is observed that when the capacity in the domestic plant is less than 50

units, which is same as the foreign market demand, the product is sold only in the foreign market.

It is due to the fact that the forward contract guarantees a revenue of 1.2 × $100 = $120 per unit,

which is more than the revenue of $100 per unit from the domestic market. When the capacity of

the domestic plant is more than 50 units, the foreign demand is fully satisfied and the rest is sold

in the domestic market up to 132 units. This implies that the optimal capacity at the domestic

plant is 50 + 132 = 182 units meaning that the domestic market demand, which is 150, will not be

fully satisfied. As a result, the total profit, as shown in Figure 3.7, is at the peak when the optimal

capacity is 182 units.
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Figure 3.6: Quantities sold in domestic and foreign markets for different levels of capacity in the
domestic plant

3.2.2 Domestic production with foreign subsidiary

In this model, in addition to domestic production, the firm also has a subsidiary production facility

in the foreign country to meet excess demand from the foreign market only. The supply chain is

shown in Figure 3.8. This model is preferred when producing in the domestic facility is cheaper

and the domestic production capacity is not sufficient to meet the demand from both foreign and

domestic markets. Setting x21 = 0 in Equation (3.2), we have at t = T :
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Figure 3.7: The total hedged profit for different levels of capacity in the domestic plant

Figure 3.8: Domestic plant and foreign subsidiary with domestic and foreign markets

π = s1x11 + s2eT [x12 + x22]− g1(x11 + x12)− eT g2(x22), (3.50)

Again substituting x21 = 0 in the general case, the optimal number of forward contracts, ∆ =

s2x12 + g2(x21) and the hedged profit, πh, can be expressed as:

πh = s1x11 + s2e
f
T [x12 + x22]− g1(x11 + x12)− efT g2(x22), (3.51)
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The optimization problem can be written as:

max
x11,x12,x22

πh = s1x11 + s2e
f
T [x12 + x22]

−g1(x11 + x12)− efT g2(x22) (3.52)

s.t. x11 + x12 ≤ k1 (3.53)

x22 ≤ k2 (3.54)

x11 ≤ D1 (3.55)

x12 + x22 ≤ D2 (3.56)

x11, x12, x22 ≥ 0 (3.57)

By using the Kuhn–Tucker conditions, following equations can be obtained as:

∂πh
∂ x11

− α1 − α3 = 0 (3.58)

∂πh
∂ x12

− α1 − α4 = 0 (3.59)

∂πh
∂ x22

− α2 − α4 = 0 (3.60)

α1(k1 − x11 − x12) = 0 (3.61)

α2(k2 − x22) = 0 (3.62)

α3(D1 − x11) = 0 (3.63)

α4(D2 − x12 − x22) = 0 (3.64)

Solving Equations (3.58)–(3.64) for the values stated earlier in Section 3.2, it is found that

α1 = 0, α2 = 75.4, α3 = 19, α4 = 29, x11 = 150, x12 = 0, and x22 = 50. Figure 3.9 shows

the optimal quantities sold in domestic and foreign markets for different levels of capacity in the

foreign subsidiary. It can be seen that the capacity in the foreign subsidiary is completely utilized

regardless of its capacity level. The demand from the foreign market is always met with use of

domestic and foreign subsidiary capacities because of higher revenue per unit as discussed in the

previous example. Domestic market demand is not fully satisfied when the capacity of the foreign

subsidiary is 0. However, as capacity in the foreign subsidiary is more than 18 units, demand

from the domestic market is fully satisfied. Figure 3.10 shows the total hedged profit. Since the

production cost in the foreign subsidiary is lower than that of the domestic plant, the profit keeps

increasing as the capacity at the foreign subsidiary increases and then the total profit levels out

once the foreign capacity is reached to 50 units. Hence, the optimal capacity at the domestic plant

is 150 units and the optimal capacity at the foreign plant is 50 units. In this example, having
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low-cost foreign subsidiary helps to increase the quantity sold and consequently it increases the

total profit.
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Figure 3.9: Quantities sold in domestic and foreign markets for different levels of capacity in the
foreign subsidiary
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Figure 3.10: The total hedged profit for different levels of capacity in the foreign subsidiary

3.2.3 Foreign production with domestic subsidiary

In this model, in addition to foreign production, the global firm has a domestic subsidiary production

facility to meet excess demand from the local market as shown in Figure 3.11 This model is preferred

when producing in the foreign facility is cheaper.
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Figure 3.11: Foreign plant and domestic subsidiary with domestic and foreign markets

Similar to previous sections, by substituting x12 = 0 in Equation (3.14), we obtain the hedged

profit, πh, at t = T as follows:

πh = s1[x11 + x21] + s2e
f
T [x22]− g1(x11)− efT g2(x21 + x22), (3.65)

The optimal number of forward contracts, ∆ = s2[x12 + x22]− g2(x21 + x22) and The optimization

problem can be written as:

max
x11,x21,x22

πh = s1[x11 + x21] + s2e
f
T [x12 + x22]

−g1(x11)− efT g2(x21 + x22) (3.66)

s.t. x11 ≤ k1 (3.67)

x21 + x22 ≤ k2 (3.68)

x11 + x21 ≤ D1 (3.69)

x22 ≤ D2 (3.70)

x11, x21, x22 ≥ 0 (3.71)

The Kuhn-Tucker conditions can be written as:
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∂πh
∂ x11

− α1 − α3 = 0 (3.72)

∂πh
∂ x21

− α2 − α3 = 0 (3.73)

∂πh
∂ x22

− α2 − α4 = 0 (3.74)

α1(k1 − x11) = 0 (3.75)

α2(D1 − x11 − x21) = 0 (3.76)

α3(k2 − x21 − x22) = 0 (3.77)

α4(D2 − x22) = 0 (3.78)

Solving Equations (3.72)–(3.78) for the given values in Section 3.2, we obtain α1 = 0, α2 = 0.4,

α3 = 64, α4 = 74, x11 = 75, x21 = 75, and x22 = 50. Figure 3.12 shows the optimal quantities

sold in domestic and foreign markets for different levels of capacity in the foreign plant. When the

capacity at the foreign plant is 0, the domestic subsidiary completely meet the demand from the

domestic market. As the capacity at the foreign plant increases from 0 to 50, it only meets the

foreign market demand. Once the foreign capacity exceeds the foreign market demand, the excess

quantities are sold in the domestic market until each foreign plant and domestic subsidiary equally

shares the demand from the domestic market. As a result, the optimal capacity at the foreign plant

is 125 units and it is 75 units at the domestic subsidiary. The total hedged profit in Figure 3.13

plateaus once the optimal capacity is reached. In this example, demands from domestic and foreign

markets are completely met. However, the total hedged profit is higher, since a large amount of

the total demand is met by the low-cost foreign plant.
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Figure 3.12: Quantities sold in domestic and foreign markets for different levels of capacity in the
foreign plant
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Figure 3.13: The total hedged profit for different levels of capacity in the foreign plant

3.2.4 A fully flexible system

Figure 3.14 shows the optimal quantities sold in domestic and foreign markets for different levels

of capacity in the foreign plant. When the capacity at the foreign plant is 0, the domestic plant

completely meets the demand from the foreign market due to higher revenue per unit as discussed

in example 1; and also domestic plants supplies 182 units to domestic market. As the capacity

at the foreign plant increases from 0 to 50 units, it meets the demand from the domestic market.

When the capacity at the foreign plant is 50 units, the capacity at the domestic plant is reduced to

150 units. Moreover, when the foreign plant capacity increases beyond 50 units, both plants share

the demand from both markets and the maximum profit is archived at the optimal domestic plant

capacity of 74 units and foreign plant capacity of 126 units. Beyond these capacity levels, the total

hedged profit is levels out as seen in Figure 3.15. Even though this model is fully flexible, demands

from domestic and foreign markets are completely met at the same optimal capacity allocation and

the same total hedged profit is obtained.
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Figure 3.14: Quantities sold in domestic and foreign markets for different levels of capacity for a
fully flexible system.
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Figure 3.15: The total hedged profit for different levels of capacity for a fully flexible system.

3.3 Sensitivity tests with foreign exchange rates

This section provides sensitivity tests with respect to changing foreign exchange rates for the pro-

posed models.

3.3.1 Domestic production

This is an example for the domestic production model presented in Section 3.2.1. Figure 3.16 shows

the profit versus exchange rate at time t = 0, et, for different levels of domestic capacity, when

forward exchange rate at time t = T , efT , is 1.2. Solid lines are for hedged profit and dashed lines

are for non-hedged profit. This figure clearly demonstrates that downside risk is completely hedged

by forward contracts.
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Figure 3.16: Hedged and non-hedged profits for domestic production model

3.3.2 Domestic production with foreign subsidiary

This is an example for the domestic production with foreign subsidiary model. In this example, we

consider a fixed domestic production capacity, k1 = 200, while foreign capacity, k2, is varied from 0

to 50. The reason to choose k1 = 200 is to ensure that we have enough capacity to meet domestic

demand of 150 units and foreign demand of 50 units, when the foreign subsidiary capacity is 0.

Similarly, the maximum level of k2 is chosen as 50 units to guarantee that the maximum capacity

in the foreign subsidiary alone is enough to meet the foreign market demand. Figure 3.17 presents

the profit versus exchange rate at time T (i.e., eT ), for different levels of foreign capacity, when

forward exchange rate at time t = T , efT , is 1.2. Solid lines are for hedged profit and dashed lines

are for non-hedged profit. This figure shows that downside risk is mitigated by forward contracts.

3.3.3 Foreign production with domestic subsidiary

This is an example for the foreign production with local subsidiary model. In this example, we

consider fixed domestic production capacity k1 = 150, while foreign capacity, k2, is varied from 0 to
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Figure 3.17: Hedged and non-hedged profits for domestic production with foreign subsidiary

140. The reason to choose k1 = 150 is to ensure that the domestic subsidiary has enough capacity

to meet the demand from the domestic market, when the foreign plant capacity is 0. Similarly,

the maximum level of k2 is chosen as 200 units to guarantee that the maximum capacity in the

foreign plant alone is enough to meet the demand from foreign and domestic markets. Figure 3.18

presents the profit versus exchange rate, i.e., et, for different levels of foreign capacity, when forward

exchange rate at time t = T , efT , is 1.2. Solid lines and dashed lines are for hedged and non-hedged

profits, respectively. This figure shows that downside risk is mitigated by forward contracts. It is

also observed that when capacity increases, the expected profit also increases.

3.3.4 A fully flexible system

This example is for a two-plant fully flexible system. The domestic production capacity, k1, is fixed

at 200, while foreign capacity, k2, is varied from 0 to 200. The reason to choose k1 = 200 and the

maximum value of k2 = 200 are to ensure that any of the plants has capacity to satisfy the demand

from both domestic and foreign markets. Figure 3.19 presents the profit versus exchange rate for

different levels of foreign capacity. Solid lines and dashed lines are for hedged and non-hedged

profits, respectively. This figure shows that downside risk is hedged by forward contracts and the

hedged profit is greater than non-hedged profit for an exchange rate less than 1.2.
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Figure 3.18: Hedged and non-hedged profits for domestic subsidiary with foreign production
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Figure 3.19: Hedged and non-hedged profits for a fully flexible system.

3.4 Summary

In this chapter, we study two-level supply chain models having productions and markets in both

domestic and foreign countries. Consequently, the uncertainty in exchange rate and the non–linear

production costs play a crucial role in production and sales decisions. The exchange rate risk is

mitigated by using forward contracts. We consider four types of supply-chain models between two

countries, which are domestic production model, domestic production model with foreign subsidiary,

foreign production model with domestic subsidiary and fully flexible model.
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The domestic production model has no flexibility and is considered as a base model for the

sake of comparison with other models. The domestic production model with foreign subsidiary

is preferable at times when the local production cost is low and local capacity does not fulfill all

demands. In contrary, if the foreign production has the ability to meet the foreign demand and

foreign production cost is substantially lower than domestic cost, the optimized model consists

of local production for the local market and foreign production for foreign market. The foreign

production model with local subsidiary is preferable when the foreign production cost is low, thus

avoiding the production from local market. The fully flexible model consists of all the above models.

We utilize one stage hedging to optimize the firm’s profit by allocating the capacity between the

two countries as required based on firm’s demand and capacity constraints. Production capacity

is allocated at initial stage for a fixed forward exchange rate. Through this, the firm can make

business decision upfront. The models hedge downside risk and guarantee a given amount of profit

in the event of exchange rate uncertainties.
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Chapter 4

Multi-period optimal production

decision under currency exchange risk

using options

In this chapter, a multi-period optimal production decision problem for a multinational firm is

analyzed. The firm possesses capacity adjustment ability, i.e., the ability or flexibility to choose

a capacity level from a set of discrete capacity levels. Such flexibility, specifically mentioned as

capacity flexibility, enables the firm to meet demand variations. The exchange rate is considered

uncertain and is hedged by using both real and financial options. In a multi-period setting, i.e.,

t = 1, 2, . . . , T , the exchange rate uncertainty is hedged by using both real options (in the form

of capacity expansion and contraction flexibilities) and financial options (in the form of currency

put options). At period (t − 1), two decisions are made: (a) how much capacity to expand or

contract and (b) the number of put options to long. Both the operational and financial decisions

are exercised at the next period t and the capacity allocations are implemented and the currency

put options are exercised accordingly. For a flexible system, there occurs a certain cost for capacity

expansion or contraction in period (t− 1). This is discussed in detail in Section 4.1.3. The option

premium is determined by using the Black and Scholes (1973) model. For example, the put option

premium paid at period (t−1) is Pt−1, which is given by exp(−rfh){KtΦ(−d2)−etΦ(−d1)}, where
et is the exchange rate in period t, and Kt is the strick price of the put option in period t. The

option can be exercised in period t. Since an option on an underlying asset can be traded at different

exercise prices, Kt can be a vector. The value of d1 =
ln(et/Kt)+(r−rf+σ2/2)h

σ
√
h

and d2 = d1 − σ
√
h.

The Φ(.) is the cumulative distribution function for the standard normal distribution (Hull 2009).

In period t, put options are excised when Kt > et, otherwise put options remain unexercised and
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the premium paid at time (t− 1) is lost.

4.1 Models

A firm having a domestic manufacturing plant with a domestic market and an international market

is considered. The firm produces a single type of product and satisfies the multi-period known

demands from both markets. The manufacturing plant has a flexible system that has the ability

to change its capacity levels. In particular, the manufacturing system has the ability to increase

(expansion flexibility) or decrease (contraction flexibility) its capacity in response to the exchange

rate fluctuations so as to maximize the MV utility of the firm at each period of time. The price

for the product in both domestic and foreign markets is fixed in their respective currencies. As

the exchange rate between the two countries is stochastic, the revenue from the foreign market is

uncertain. Therefore, the manufacturer faces the risk from the exchange rate uncertainty. The

stochastic exchange rate between the two countries is modeled by using a geometric Brownian

motion (e.g., Dixit 1989; Adkins 1993). In a multi-period setting, the geometric Brownian motion

is discretized by using a binomial tree (e.g., Cox et al. 1979; Hull 2009). The probability that

the exchange rate moves along the upward branch is denoted by p, which is
(exp((r−rf )h)−d)

(u−d) , where

u = exp(σ
√
h), d = 1/u, r and rf are the risk free interest rates in the local and foreign countries,

respectively, σ is the volatility of the exchange rate, and h is the time step between periods (t− 1)

and t. The probability that the exchange rate moves along the downward branch is given by (1−p).
Production cost is calculated in the domestic currency. The production cost function, G(.),

is assumed to be non–linear and depends on the current capacity level, and is given by Equation

(4.1) (e.g., Pindyck 1988; Bollen 1999).

G(Qt) = a1Qt + a2Q
2
t /2Mt + a3Mt, (4.1)

where a1, a2, a3 are coefficients, Qt is the production quantity at time t, and Mt is the capacity at

time t, where Qt ≤ Mt, meaning production quantity at time t does not exceed the capacity at t.

Moreover, Qt = x11t + x12t , where x11t and x12t are sales quantities in local and foreign markets at

time t, respectively.

In order to investigate the effects of operational flexibility, financial options, and the integration

of real options (operational flexibility) and financial options in a multi–period time–frame, four

models are considered. Model I is a supply chain model with a fixed capacity system having

neither operational flexibility nor utilization of financial options. This model is assumed as a

reference model. In order to understand the effect of using financial hedging via financial options,
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this reference model is examined with put options in mitigating the exchange risk. We refer to

this model as Model II. Again, in order to understand the benefit of the operational hedging, the

reference model incorporates capacity flexibilities, expansion and contraction, at each period of

time. This model is called a flexible capacity system, Model III. Finally, in order to investigate the

effect of the integrated approach of using both operational hedging and financial hedging, Model

III, the flexible capacity system, is investigated with the addition of currency put options. We refer

it to as Model IV.

4.1.1 Model I: Fixed capacity system

In the fixed capacity system, the production capacity is to be determined at the beginning of the

planning period. This production capacity will then remain same throughout the planning period.

For example, in producing a specialty synthetic fiber, a significant amount of cost is associated

with setting up the line. Once a line is fixed, it will produce the fiber at a fixed rate. If a higher

rate is required, a new line with a higher capacity has to be installed. If this specialty fiber is

now to export in a foreign market, there involves the uncertainty in the profit due to the exchange

rate fluctuations. However, the model presented here is a generic one and is not coupled with

any specific example. The objective is to maximize the mean–variance profit function so that the

demands from a local and a foreign markets are met.

At time 0, the fixed capacity system has an option of choosing a capacity level among

{M1,M2, . . . ,MN}. This is denoted by Mi, where i = {1, 2, . . . , N}. For a given planning period

of T , the objective is to maximize the expected utility of the profit as:

U(πt) = {E(πt(et,Mi))− γV(πt(et,Mi))}, (4.2)

where γ is the mean–variance (MV) ratio, E[πt(et,Mi)] is the expected maximum profit, and

V(πt(et,Mi)) is the variance of the profit at time t, given the exchange rate, et, and the capacity

level, Mi, acquired at time t = 0.

The profit, πt, can be obtained by subtracting the cost of production, g(x11t + x12t), from

the sales revenue from the domestic market, s1q
l
t, and the sales revenue from the foreign market,

s2etx12t .

πt = s1x11t + s2etx12t − g(x11t + x12t), (4.3)

where, s1 is the local or domestic unit price, x11t is the production or sales quantity in the domestic

market, s2et, is the foreign unit price converted to the local currency, et is the exchange rate, and

g(x11t +x12t) is the total cost of the production in the domestic plant as defined in Equation (4.1).
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The optimal production quantities to produce at each time period for the local and foreign markets,

x11t and qft , are determined by the following optimization problem.

max
Mi

U(πt) (4.4)

s.t. x11t + x12t ≤ min(Mi,Dt) (4.5)

x11t ≤ D1t (4.6)

x12t ≤ D2t (4.7)

x11t , x12t ≥ 0 (4.8)

where the constraint (4.5) states that the total production is limited by the capacity of the plant

and the total demand Dt = D1t + D2t . The constraint (4.6) states that the total domestic sales

must be less than or equal to the total domestic demand. The constraint (4.7) states that the total

foreign sales must be less than or equal to the total foreign demand. The constraint (4.8) states

that all sales quantities must be positive. The numerical result for this model is provided in Section

4.2.

4.1.2 Model II: Fixed capacity system along with using currency put options

This section investigates what if the firm having a fixed capacity system, as described in Model I,

adopts currency put options in order to mitigate the exchange rate risk. Consequently, Model I is

modified with an addition of using currency put options. Put option contracts purchased in each

period are exercised in the next period depending on the exchange rate in that period. The profit,

πt, now takes the form as below:

πht = s1x11t + s2etx12t − g(x11t + x12t) + Yt{max((Ket − et), 0) − Pt−1 exp(rh)}, (4.9)

where, Yt is the number of put options to be exercised at time t and that were bought at time

(t− 1), Ket is the strike or exercise price, and Pt−1 is the option premium paid at the earlier time

period, and h is the time interval between time (t−1) and t. If we take the expectation of Equation

(4.9), we have the following expression.

E(πht) = E(s1x11t + s2etx12t − g(x11t + x12t)) +E(Yt{max((Ket − et), 0) − Pt−1 exp(rh)})

= E(s1x11t + s2etx12t − g(x11t + x12t)) (4.10)
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The optimization problem at each period can be described as follows:

max
Mi

U(πht) (4.11)

s.t. x11t + x12t ≤ min(Mi,Dt) (4.12)

x11t ≤ D1t (4.13)

x12t ≤ D2t (4.14)

x11t , x12t ≥ 0 (4.15)

The optimal number of options

It is assumed that the individual firm is more concerned to minimize its own income variance

relative to the variance of market prices (McKinnon 1967). Therefore, the optimal number of put

options can be obtained by minimizing the variance of the profit of the firm. The variance of the

profit, πt, as shown in Equation (4.11), is dependent on the following terms of the profit,

U(πht) = E(πht)− γV(πht)

= E(πt) + YtE[max(Ket − et, 0) − Pt−1 exp(rh)]

−γ[V(πt) + V[Yt[max(Ket − et, 0)− Pt−1 exp(rh)]]

+2{cov(πt, Yt[max(Ket − et, 0)− Pt−1 exp(rh)])}] (4.16)

Differentiating Equation (4.16) with respect to Yt and equating to zero as ∂U(πht)/∂Yt = 0, we

obtain the optimal number options to buy.

Therefore,

∂U(πht)

∂Yt
=

∂E(πt)

∂Yt
+ E[max(Ket − et, 0)− Pt−1 exp(rh)]

−γ
[

∂

∂Yt
V(Yt[max(Ket − et, 0) − Pt−1 exp(rh)])

+2
∂

∂Yt
{cov(πt, Yt[max(Ket − et, 0)− Pt−1 exp(rh)])}

]

(4.17)
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Since, ∂E(πt)/∂Yt = 0, equating Equation (4.17) to zero, we obtain

E[max(Ket − et, 0) − Pt−1e
rh] = γ

[

∂

∂Yt
V(Yt[max(Ket − et, 0) − Pt−1 exp(rh)])

+2
∂

∂Yt
{cov(πt, Yt[max(Ket − et, 0)− Pt−1 exp(rh)])}

]

(4.18)

We now take out the term, ∂
∂Yt

V[Yt{max(Ket − et, 0)− Pt−1 exp(rh)}], and simplify as follows:

∂

∂Yt
V[Yt{max(Ket − et, 0)− Pt−1 exp(rh)}] =

∂

∂Yt
{Y 2

t V[max(Ket − et, 0) − Pt−1 exp(rh)]}

= 2V([max(Ket − et, 0)− Pt−1 exp(rh)]) (4.19)

We obtain,

Y ∗
t =

E[max(Ket − et, 0) − Pt−1 exp(rh)]− 2 ∂
∂Yt

{cov(πt, Yt[max(Ket − et, 0) − Pt−1 exp(rh)])}
2γV([max(Ket − et, 0)− Pt−1 exp(rh)])

(4.20)

Similar to the justifications and approaches used in Tekin and Özekici (2015) and Chen and Par-

lar (2007), a risk-neutral probability measure is also imposed here under a complete arbitrage-free

market. Chen and Parlar (2007) has justified this condition under a quadratic utility function. They

also prove that the expected utility maximization is equivalent to the profit variance minimization.

Therefore, E[max(Ket − et, 0) − Pt−1 exp rh] = 0 and we obtain,

Y ∗
t =

− ∂
∂Yt

{cov(πt, Yt[max(Ket − et, 0)− Pt−1 exp(rh)])}
γV([max(Ket − et, 0)− Pt−1 exp(rh)])

(4.21)

Let these terms to be mentioned as:

A = πt = s1q
l
t + s2etx12t − g(x11t + x12t),

B = Yt{max(Ket − et, 0)− Pt−1 exp(rh)}.

The variance of A is expressed as follows:

V(A) = E[(A− E(A))2] = s2x12tE[(et − E(et))
2].
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The variance of B is expressed as follows:

V(B) = E[(B − E(B))2] (4.22)

= Y 2
t E
[

{max(Ket − et, 0)− Pt−1 exp(rh)}2
]

, (4.23)

E(B) = 0, because of the fair price of the option. Now, the covariance, cov(A,B), is:

cov(A,B) = E[{A− E(A)}{B − E(B)}] (4.24)

= Yts2x12tE [{et − E(et)}{max((Ket − et), 0) − Pt−1 exp(rh)}] (4.25)

To find the optimal number of put options, the variance of profit is minimized with respect to

Yt and solved for Yt. These are given by Equations (6.35)–(4.27):

∂V(A+B)

∂Yt
= 2s2x12tE [{et − E[et]}{max(Ket − et, 0)− Pt−1 exp(rh)}]

+ 2 YtE
[

{max(Ket − et, 0) − Pt−1 exp(rh)}2
]

. (4.26)

Yt =
s2x12tE [et {Pt−1 exp(rh)−max(Ket − et, 0)}]

E [{max(Ket − et, 0)− Pt−1 exp(rh)}2]
. (4.27)

Substituting the numerator of Equation (4.27) as C = s2x12tE[et{Pt−1 exp(rh)−max(Ket − et, 0)}]
and the denominator as D = E[{max(Ket − et, 0) − Pt−1 exp(rh)}2], we can express, Yt = C/D.

The numerator, C, can be simplified as:

C = s2x12tE[etPt−1 exp(rh)− etKet1{et<Ket} + e2t1{et<Ket}], (4.28)

where, 1{et<Ket} is an indicator function such that 1{et<K} = 1, when et < Ket and 1{et≥Ket} = 0,

otherwise. Therefore,

C = s2x12t

[

E[et]Pt−1 exp(rh)−Ket

∫ K

0
etf(et) det +

∫ K

0
e2t f(et) det

]

(4.29)

The denominator, D, from Equation (4.27) can be expressed as:

D = E[max(0,Ket − et)
2 + P 2

t−1 exp(2rh)− 2Pt−1 exp(rh)max(0,Ket − et)] (4.30)

= E[K2
et ] +

∫ K

0
e2t f(et) det − 2Ket

∫ K

0
etf(et) det − Pt−1 exp(rh) (4.31)

= K2(Pr(et < Ket)) +

∫ K

0
e2t f(et) det − 2Ket

∫ K

t0etf(et) det − P 2
t−1 exp(2rh)
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Therefore, the optimal number of put options, Yt, is given by Equation (4.32).

Yt =
s2et{E[et]Pt−1 exp(rh)−K

∫ K
0 etf(et) det +

∫K
0 e2t f(et) det}

K2(Pr(et < K)) +
∫ K
0 e2t f(et) det − 2K

∫ K
0 etf(et) det − P 2

t−1 exp(2rh)
. (4.32)

In Equation (4.32), E[et] = exp(µt + σ2/2) and

µt = ln(et) +
(r − rf )T

n
− σ2T

n
, (4.33)

∫ K

0
etf(et)det = exp

(

µt + σ2/2
)

Φ

(

ln(Ket)− µt − σ2/2

σ

)

, (4.34)

∫ K

0
e2t f(et) det = exp

(

2µt + 2σ2
)

Φ

(

ln(Ket)− µt − 2σ2

σ

)

. (4.35)

Plugging theses values in Equation (4.32), the optimal number of options to long at each period

can be determined.

4.1.3 Model III: Flexible capacity system

In each period, the flexible capacity system has an option to choose a capacity level among

{M1,M2, . . . ,MN}. This is denoted by Mi, where i = {1, 2, . . . , N}. Hence, from one period

to another period, capacity can be expanded, contracted, or unchanged. In a flexible system, the

capacity level can be adjusted at each period of time. That is, the capacity at any time t, Mt, is

such that Mt ∈Mi. The firm’s expected profit can now be calculated by Equation (4.36).

Expected profit = −c0M0 +

T
∑

t=1

exp(−rt) [E(π∗t (et,Mt−1)) + S(Mt−1,Mt)] , (4.36)

where, M0(∈ Mi) is the initial capacity level acquired at time 0, Mt−1 and Mt are the capacity

levels in time t − 1 and t, respectively, S(Mt−1,Mt) is the cost of switching the capacity from

Mt−1 to Mt. The cost of switching, S(Mt−1,Mt), can be either the cost of capacity expansion or

the cost of capacity contraction. The expansion flexibility is the ability to increase the capacity

of the system and the contraction flexibility is the ability to decrease the capacity of the system

(e.g., Bollen 1999; Wahab et al. 2008). In this model, the optimal capacity level for each period is

calculated. The risk of exchange rate fluctuation is mitigated by expansion or contraction of the

capacity. Therefore, the cost of expansion and contraction has to be considered.

Expansion capacity: The capacity increases between two consecutive sales period and that results

in an increased cost. The cost to expand the capacity level from Mt−1 to Mt (where Mt−1 < Mt)
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is given by the following Equation (4.37).

S(Mt−1,Mt) = c3c0(Mt−1 −Mt)− c5. (4.37)

c3 represents a percentage of the initial installment cost of unit capacity, c5 is the fixed cost and c0

is the unit capacity cost at time 0. In Equation (4.37), both c3 > 0 and c5 > 0.

Contraction capacity: When the capacity is reduced from level Mt−1 to Mt (whereMt−1 > Mt),

it results in cost reduction for the firm. This is given as follows:

S(Mt−1,Mt) = c4c0(Mt −Mt−1)− c5. (4.38)

where c4 is the percentage of unit cost, which can be negative or positive. In this model, it is

assumed to be positive (e.g., Bollen 1999).

The optimization model is the same as the fixed capacity model except the capacity level, Mt,

is chosen at each time period. The objective function is given by Equation (4.39).

max
x11t ,qft

U(πt) (4.39)

s.t. x11t + x12t ≤ min (Mt,Dt) (4.40)

x11t ≤ D1t (4.41)

x12t ≤ D2t (4.42)

x11t , x12t ≥ 0 (4.43)

4.1.4 Model IV: Flexible capacity system with put options

This model uses the currency put options along with the flexible capacity system described in

Section 4.1.3. That is, both real options and put options are used to hedge the exchange rate risk.

The number of put options to long is calculated by using Equation (6.38). The optimization model

is given as follows:

max
x11t ,x12t ,Yt

U(πt) (4.44)

s.t. x11t + x12t ≤ min (Mt,Dt) (4.45)

x11t ≤ D1t (4.46)

x12t ≤ D2t (4.47)

x11t , x12t ≥ 0 (4.48)
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4.2 Numerical studies

This section includes the numerical analysis of each model defined in Section 4.1.1 through Section

4.1.4. The first part of these numerical studies illustrates a simple example of a flexible system with

put options model considering three periods of sales. In Section 4.2.2 to Section 4.2.2, numerical

results show how the expected profit varies for each model as demand, the volatility of exchange

rate, unit capacity, and overhead cost are varied for both linearly changing and constant demands.

4.2.1 An illustrative example

This section illustrates the model via a numerical example for a planning period of 3 months. The

cost coefficients are: a1 = −1, a2 = 1.0, and a3 = 1.5. The volatility of the exchange rates is

σ = 0.11. The coefficients of capacity expansion and contraction are: s1 = 1, s2 = 0.9, s3 = 150,

and c0 = 15. The sale prices at the foreign and local markets are s2 = 30 and s1 = 45, respectively.

Demands in the foreign markets for months 1, 2, and 3 are 40, 55, and 70, respectively and the

local demands for months 1, 2, and 3 are 40, 50, and 60, respectively. The risk free rates in the

local and foreign markets are respectively, rl = 0.03 and rf = 0.06. The initial exchange rate is

assumed to be 2.0 with an exercise price of K = 2.10. The MV ratio, γ is assumed to be 0.002.

Let the capacity levels be: Mi = {M1 = 70,M2 = 100,M3 = 130}.
Figure 4.1 shows the movement of the exchange rate in a binomial lattice. At node ‘A’, the

initial exchange rate is assumed to be 2.00. In the next period, the exchange rate may go up to

2.0645 at node ‘B’ or go down to 1.9375 at node ‘C’. The value below the the exchange rate is

the number of put options to buy at each period. The number of options is determined as if one

contract represents one unit of foreign currency. However, it can be easily converted for a specific

foreign currency contact, for example, one contract represents 31,250 British Pounds (e.g., Hull

2009). Figure 4.2 shows the values of the profit calculated by using the non-linear optimization

model presented in Equations (5.4)–(41). The first value at each node corresponds to the profit at

the capacity level of 70, the second value refers to the profit at the capacity level of 100, and the

third one corresponds to the capacity level of 130. The path dependent profits are shown in two

separate columns. For example, at node ‘H’ the column at the left shows profits following the path

‘A–B–D–H’ and the right column shows the profits values corresponding to the path ‘A–B–E–H’,

because at nodes ‘D’ and ‘E’, the number of put options bought is different. In order to calculate

the expected profit at node ‘D’, for example, at the capacity level of 130 and without switching

the capacity, we get: 12651 = 5634 + e(−0.03×1/12)[0.45275(7190) + (1 − 0.45275)6906], by taking

into account path dependent profit at node ‘H’, and profit values corresponding to capacity level
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of 130 at nodes ‘G’ and ‘H’. Similarly, for the capacity pair of (130, 100) (i.e., capacity level of 130

at node ‘D’ and capacity level of 100 at both nodes ‘G’ and ‘H’), the expected profit at node ‘D’

is: 11589 = 5634 + e(−0.03×1/12)[0.45275(5870) + (1− 0.45275)5586] + S(130, 100). For the capacity

pair of (130,70), the expected profit at node ‘D’ is: 10273 = 5634 + e(−0.03×1/12)[0.45275(4550) +

(1−0.45275)4266]+S(130, 70). Therefore, the expected profit at node ‘D’ for a given capacity level

of 130 is 12651 = max(10273, 11589, 12651). Following the similar steps, we can obtain expected

profit values for the capacity levels of 70, and 100 at node ‘D’. These steps are repeated at each

node and the expected profit values at each node are given in Figure 4.3. The maximum expected

profit at the initial node ‘A’ is 14213 = max(15113− 15× 70, 15602− 15× 100, 16163− 15× 130).

Figure 4.1: A binomial lattice showing the movement of exchange rate (above) and the number of
options (below) at each node.

4.2.2 Numerical results

The following sections demonstrate numerical results for a planning period of 24 months. The

models are implemented for three different cases: (a) an increasing demand, (b) a constant demand,

and (c) a decreasing demand trend over the whole planning period. The reason is that the life cycle

of a typical product usually has a growth regime (an increasing demand trend), maturity regime (a

constant demand trend), and decay regime (a decreasing demand trend), and Guide et al. (2006)

mention that an analysis can be focused on a particular regime of the product life cycle in managing

and designing a supply chain.
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Figure 4.2: A binomial lattice showing profits of the firm at each node.

Figure 4.3: Expected profit of the firm corresponding to Figure 4.2.

Linearly changing demand

In this section, it is assumed that the demand increases linearly both in the domestic country and

in the foreign country in each sale period as D1t = Dl
0 + 10t and D2t = Df

0 +15t, where the initial

51



local and foreign demands are respectively, Dl
0 = 40 and Df

0 = 40, and 0 ≤ t ≤ 24. Figure 4.4

shows the effect of the exchange rate volatility on the expected profit for a fixed system (Model

I), a flexible system (Model II), a fixed system with put options (Model III), and a flexible system

with put options (Model IV).

It is observed from Figure 4.4 that when the volatility of exchange rate increases, the expected

value of the firm does not vary significantly. The fixed system along with using the currency put

options yields a little higher expected value than that of the fixed system without using put options.

The capacity expansion and contraction options are also important for the firm. The expected value

of the flexible system is little higher than that of the fixed system. The difference in the expected

values between fixed system and fixed system with currency put options is not very significant.
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Figure 4.4: The variation of the expected profit under the currency exchange rate volatilities

The profit variances for each model with respect to the changes in the exchanger rate volatility

is presented in Figure 4.5. It is observed that the variance of the profit increases as the the exchange

rate volatility increases. It is also observed from Figure 4.5 that the use of currency options causes

to reduce the variance of the profit.

Figure 4.6 shows the values of the expected utility with respect to the the changes in exchange

rate volatilities. This figure reflects the effect of the combination of the expected profit in Figure

4.4 and the variance of the profit in Figure 4.5. As the variance of the profit decreases with an

increase in the currency rate volatilities, overall the expected utility decreases as the volatility of

the exchange rate increases as observed from Figure 4.6.

Figure 4.7 shows the variation the expected profit with respect to the unit capacity cost. When
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Figure 4.5: The variance of the profit under the currency exchange rate volatilities
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Figure 4.6: The variation of the expected utility against the changes in exchange rate volatilities

the unit capacity cost increases, the expected value for the fixed system and fixed system with put

options decreases. Similarly, the expected value for the flexible system and flexible system with

currency put options also decreases. Figure 4.8 shows the effect of the overhead cost on the expected

profit for each model. In this case, when the overhead cost increases, the expected profit of each

model decreases. However, flexibility of the system compensates for increasing overhead cost and

hence the downward move of the expected profit of the flexible system decreases. The highest profit
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Figure 4.7: The variation of the expected value against the unit capacity cost

is obtained by integrating real options with currency put options. Figure 4.9 shows the variation of
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Figure 4.8: The variation of the expected value against the overhead cost

the expected utility against different mean-variance ratios. It is observed that the expected utility

moves downward as the mean-variance ratio, γ, increases. The reason is that a higher value of γ

puts more weightage on the variance and as a result the expected utility decreases.
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Figure 4.9: The variation of the expected utility against various mean-variance ratios

4.2.3 Constant demand

In this section, the demand is considered to be constant in each sale period as Dl
0 = 400 and

Df
0 = 300 in the domestic country and foreign country, respectively. In this case, with respect

to the volatility of exchange rate, Figure 4.10 shows the expected profit of fixed capacity system,

flexible system, fixed system with currency put options, and flexible system with currency put

options.

It is observed from Figure 4.10 that due to the constant demand there is no room for the

contraction or expansion capacity flexibility. Consequently, both fixed and flexible systems have

the same expected values. However, exercising of the currency put options makes a difference in

the expected values. Hence, the upper lines in Figure 4.10 refer to the fixed and flexible systems

with currency put options, while the lower lines denote the fixed and flexible systems without using

currency put options. Figures 4.11 shows the variances of the profit with respect to the changes in

currency volatilities. It is observed that the variance of the profit increases as the currency volatility

increases. It is also observed that the use of currency options reduces the variance of the profit.

The variation of the expected utility with respect to the currency volatilities is shown in Figure

4.12. As the variance of the profit increases with an increase in the currency volatilities, as observed

from Figure 4.11, the expected utility decrease with respect to an increase in currency volatilities.

Figure 4.13 and Figure 4.14 show that the expected profit decreases as the overhead cost and

the unit capacity cost increase.
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Figure 4.10: The variation of the expected profit under the currency exchange rate volatilities
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Figure 4.11: The variance of the profit under the currency exchange rate volatilities

4.3 Summary

In this chapter, the effect of exchange rate on the expected profit, variance and the expected

utility of the firm having flexible capacity levels is examined in a multi-period setting. The firm

has markets in both domestic and foreign countries. The exchange rate is considered to follow a

geometric Brownian motion. Four models are introduced. The first model is the fixed capacity

system that neither offers any flexibility in capacity nor uses any currency put options, and this is
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Figure 4.12: The expected utility under the currency exchange rate volatilities
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Figure 4.13: The variation of the expected profit against the overhead cost

referred as a base model. The second model is developed with a fixed capacity system along with

currency put options. As a result of the fixed capacity, this system does not have any real options,

but currency options are used to hedge the exchange rate risk. The third model is the flexible

system, which has the flexibility in the capacity in each sale period. In this model, real options

in the form of capacity flexibilities are used to hedge the exchange rate risk. The fourth model is

the flexible system with currency put options. This model represents the integration of both real

and finance options. Results demonstrate that the firm has the highest expected profit when real

options in the form of capacity flexibilities along with currency put options are utilized.
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Figure 4.14: The variation of the expected profit against the unit capacity cost

It is also observed that when the exchange rate has a higher volatility, the firm achieves a

higher expected profit; and when the unit capacity cost increases or the overhead cost increases,

the expected profit of the firm decreases. Either when demand increases or when demand decreases,

real options can offset the adverse effect of both exchange rate variations and cost variations. When

demand remains constant, real options can not offset such adverse effect but currency put options

can offset. In a nutshell, real options are useful when there is a demand variation, but financial

options can be useful even when there is no demand variation. Integration of both real and financial

options benefits the most.
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Chapter 5

Multi-period optimal production

decision with product life cycles using

carbon call options

This chapter considers that the product has a stochastic life cycle and the firm operates under carbon

dioxide emission regulations. The aim is to maximize the value of the firm through the selection of

an optimum production level along with the purchase of an optimal number of carbon call options at

each interval of time. This is consequently a multiperiod production decision problem. It is assumed

that the product passes through a life cycle of growth and decay phases or regimes. The stochastic

demand, therefore, is either in growth or decay regime and is represented by, θt ∈ (θgt , θ
d
t ). The firm

produces min(θt,Mt) number of units, where Mt is the optimal capacity level at time t. The firm

emits carbon dioxide by an amount of βmin(θt,Mt), where β is the amount of carbon dioxide per

unit of production. If δt is the price of carbon at time t, the cost of carbon is δtβmin(θt,Mt). If s is

the sales price and c is cost of production per unit, the firm earns a revenue of (s− c)min(θt,Mt).

Therefore, the profit, πt, can be expressed as πt = (s − c)min(θt,Mt) − δtβmin(θt,Mt). Since,

at each period, both the demand, θt, and the carbon prices, δt are uncertain and stochastic, the

profit πt is also uncertain and stochastic. An increasing carbon price causes to drop the profit,

πt. The downward profit can be counterbalanced by exercising Xt number of carbon call options

with a strike price, Kct . Therefore, the profit, πt along with carbon options can be expressed as

πt = (s−c)min(θt,Mt)−δtβmin(θt,Mt)+Xt(max(δt−Kct , 0)−Pt−1), where Pt−1 is the price of the

call option purchased at time (t−1). When δt goes high, the emission cost also goes high. However,

if the firm opts to long carbon call options, a payoff from exercising the options when the carbon

prices are higher than the strike price, Kct , is incurred and the firm can offset the downward profit
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caused by higher carbon prices. The correlated movement of θt and δt is represented by a lattice,

which is a discretized representation of continuous processes in the form of nodes and branches. At

each decision point of the lattice, the profit, πt, is maximized by obtaining the optimum capacity

level, Mt, and the optimum number of carbon options, Xt.

In order to analyze the effect of capacity flexibility, a fixed capacity system is introduced as a

reference system, in which the firm chooses a fixed capacity level, M0, from a set of capacity levels,

M = {M1,M2, . . . ,Mi}, at the beginning of planning period, t = 0, and maintains this capacity

throughout the planning period. On the other hand, a flexible capacity system is also analyzed, in

which the firm is able to switch its capacity, Mt, such that Mt ∈ M, from one time period to the

next time period. In switching the capacity from one period to another period, the firm experiences

a switching cost of either expansion or contraction. Both fixed and flexible capacity systems are

studied and compared with and without utilizing carbon options. The unit capacity cost is c0 and

the unit production cost is given by c1. The unit sale price is denoted by s, the risk free interest

rate is r, and T is the planning horizon.

5.1 The model

In order to examine the effect of various combination of carbon options and capacity flexibility,

four alternative valuation models are considered. The first model considers a fixed capacity system

without using any carbon options. The second model investigates a fixed capacity system with

carbon options. The third model analyzes a flexible capacity systems without using carbon options.

The fourth model examines a flexible capacity system along with using carbon options.

As stated earlier, the firm is considered to possess a capacity vector, M = {M1,M2, . . . ,Mi}.
In a fixed capacity system, an optimal capacity level, M0 ∈ M, is chosen in the beginning of

the planning period at time t = 0. The capacity, M0, remains the same at each time interval,

t ∈ {0, 1, 2, . . . , T}. The objective is to select an optimal capacity, at t = 0, that will provide the

maximum net present value. The fixed capacity system could be of two types: one is without using

carbon options and the other is with carbon options.

5.1.1 A fixed capacity system without using carbon options

The profit, πt(θt,M0), can be expressed as:

πt(θt,M0, δt) = (s− c1)[min(θt,M0)]− δtβ[min(θt,M0)] (5.1)
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where, (s− c1) is the profit per unit of sales, and min(θt,Mi) reflects that if the demand, θt, is less

than the capacity, M0, the firm produces at the level of θt and if θt ≥ M0, then the firm produces

up to the capacity level of M0.

5.1.2 A fixed capacity system with carbon options

If the firm chooses to use carbon call options, the firm could take a long position in call options

and exercise a number of call options, Xt, purchased in the previous period, if δt exceeds the strike

price, Kct . The price to buy an option at time (t− 1) is Pt−1. The profit, πct(θt,M0, δt), then can

be expressed as:

πt(θt,M0, δt) = (s − c1)[min(θt,M0)]− δtβ[min(θt,M0)]

+ Xt{max[(δt −Kct), 0]− Pt−1 exp(rh)}, (5.2)

where h is the time interval between two consecutive periods.

5.1.3 A flexible capacity system without using carbon options

For a flexible capacity system, there exists an option to choose a capacity level, Mt, from the

capacity vector, M, at each time interval, t. This system could be of two types: a flexible system

with carbon options and a flexible system without using carbon options. The profit, πt, for a flexible

capacity system can be expressed as follows:

πt(θt,Mt, δt) = (s− c1)[min(θt,Mt)]− δtβ[min(θt,Mt)]− c0Mt, (5.3)

where (s−c1)[min(θt,Mt)] is the revenue from sales, δtβ[min(θt,Mt)] is the cost of carbon emission,

and c0Mt is the cost installing the capacity level, Mt, at each time, t.

5.1.4 A flexible capacity system with carbon options

For a flexible capacity system with carbon call options, the profit, πt, can be expressed as:

πt(θt,Mt, δt) = (s− c1)[min(θt,Mt)]− δtβ[min(θt,Mt)]− c0Mt

+ Xt{max[(δt −Kct), 0]− Pt−1 exp(rh)} (5.4)

where, Xt is the optimal number of carbon options to be exercised at time t, Pt−1 is the option

price, Kct is the strike or exercise price for carbon options. The optimal number of carbon options,

Xt, is obtained by minimizing the variance of the profit, the details of which is discussed in Section
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5.2.3.

Expansion capacity: The cost to expand the capacity level from Mt to Mt+1 (if Mt+1 > Mt) is

given by Equation (5.5).

S(Mt,Mt+1) = c3c0(Mt+1 −Mt) + c5, (5.5)

where, c3 represents a percentage of the initial installment cost of unit capacity, c5 is the fixed cost

and c0 is the unit capacity cost. In Equation (5.5), c3, c5 > 0.

Contraction capacity: When the capacity is reduced from level Mt to Mt+1 (if Mt+1 < Mt)

results in cost reduction for the firm. This is given as follows

S(Mt,Mt+1) = c4c0(Mt −Mt+1) + c5, (5.6)

where, c4 is the percentage of unit cost where it can be negative or positive. Here, it is assumed to

be positive.

5.2 Modeling carbon prices and demand dynamics

The carbon futures price δt is assumed to follow a geometric Brownian motion (Seifert et al., 2009)

as expressed by Equation (5.7).

dδt = µcδtdt+ σcδtdzc, (5.7)

where δt is the carbon futures prices at time t, µc and σc are the drift and volatility for the process

of carbon spot price, respectively, and dzc is the increment of the Wiener process with a mean 0

and standard deviation
√
dt.

A product life cycle includes the phases of growth, maturity, and decaying. Introduction and

growth phases or regimes are characterized by an increasing demand, the maturity phase represents

a stable demand and the decaying phase refers to a declining demand. Bass (1969), however,

proposes a two-phase product life cycle with exponential growth and decay. Bollen (1999) also

presents a two-regime product life cycle. In this study, the growth regime is assumed to follow a

geometric Brownian motion with the drift, µg and the volatility, σg, and the decaying regime is

assumed to follow another geometric Brownian motion with the drift of µd and the volatility of

σd. The drift of growth regime is assumed to be positive and the drift of the decaying regime is

assumed to be negative. The growth regime, θg, is defined by the following geometric Brownian

motion:

dθgt = µgθ
g
t dt+ σgθ

g
t dzg, (5.8)
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where µg is the drift of the growing demand, σg is the volatility of the process, and dzd is the

increment of the Wiener process. The decaying regime, θdt , is defined by the following geometric

Brownian motion:

dθdt = µdθ
d
t dt+ σdθ

d
t dzd, (5.9)

where µd is the drift of decaying demand, σd is the volatility of the process, and dzd is the increment

of the Wiener process. The instantaneous correlation between the Wiener increments dzc and dzg

is ρcg and between dzc and dzd is ρcd.

5.2.1 Lattice representation of correlated movements of demand and corre-

sponding carbon prices

In order to determine the firm value, a numerical solution approach is required that generates the

correlated movements of carbon allowance prices and regime-switching demand processes defined

by Equations (5.7)–(5.9). A lattice approach is a discretization of a continuous process and offers

advantages over a Monte Carlo simulation approach in terms of simplicity, computational time and

flexibility. In valuing the price an option, Cox et al. (1979) develop a lattice approach that discretizes

the stock price movements following a geometric Brownian motion. Boyle (1988) presents a lattice

model representing multiple underlying assets following a geometric Brownian motion. For a two-

state regime-switching underlying variable, Bollen (1999) develops a pentanomial lattice approach

for valuing European and American options. Wahab et al. (2010) value swing options on the

electricity prices using a three-state regime-switching model. In this thesis, a lattice that represents

the correlated two-state regime-switching processes and a geometric Brownian motion is utilized in

valuing a firm having a flexible capacity system.

In order to build a correlated lattice, a four step procedure is employed: (i) transforming two

correlated processes into uncorrelated ones, (ii) making two groups of uncorrelated processes by

selecting one uncorrelated process from each pair, (iii) building a pentanomial lattice for each group,

and (iv) forming a combined lattice by taking Cartesian product of both pentanomial lattices.

Following sections provide the details of each of these steps.

Let ψ1 and ψ2 are the uncorrelated processes, (θgt , δt), between the demand growth regime θgt

and the carbon prices δt (e.g., Hull and White 1990). Therefore,

ψ1 = σclnθ
g
t + σglnδt (5.10)

ψ2 = σclnθ
g
t − σglnδt (5.11)
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Using the Ito’s lemma, d(lnδt) and d(lnδt) can be expressed as:

d(lnδt) = [µc −
σ2c
2
]dt+ σcdzc (5.12)

d(lnθgt ) = [µg −
σ2g
2
]dt+ σgdzg (5.13)

Now the uncorrelated processes in Equations (5.10)–(5.11) can be expressed as: (Hull and White,

1990):

dψ1 = [(µc −
σ2c
2
)σg + (µg −

σ2g
2
)σc]dt+ σgσc

√

2(1 + ρcg)dzψ1 (5.14)

dψ2 = [(µc −
σ2c
2
)σg − (µg −

σ2g
2
)σc]dt+ σgσc

√

2(1 − ρcg)dzψ2 (5.15)

where dzψ1 and dzψ2 are the uncorrelated Wiener processes. Similarly considering the regime,

(θdt , δt), the uncorrelated processes can expressed as follows:

dψ3 = [(µc −
σ2c
2
)σd + (µd −

σ2d
2
)σc]dt+ σdσc

√

2(1 + ρcd)dzψ3 , (5.16)

dψ4 = [(µc −
σ2c
2
)σd − (µd −

σ2d
2
)σc]dt+ σdσc

√

2(1 − ρcd)dzψ4 , (5.17)

where, dzψ3 and dzψ4 are the uncorrelated Wiener processes. From these four uncorrelated processes

expressed by Equations (5.14)–(5.17), two possible combination of growth and decay regimes along

with carbon prices processes are formed and they are represented by two separate pentanomial

lattices respectively. A pentanominal lattice can efficiently describes a two state regime switching

behavior (Bollen 1999). Accordingly, a pentanomial lattice is formed from the combination of

processes, dψ1 and dψ3 represented by (θgt , δt)1 and (θdt , δt)1, respectively. The other pentanomial

lattice is formed from the combination of the processes, dψ2 and dψ4 represented by respectively

by (θgt , δt)2 and (θdt , δt)2. The means and volatilities are represented by µ1j and σ1j , and µ2j and

σ2j , where j = 1, 2 represent the growth and decay regimes, respectively. Table 5.1 summarizes the

mean and volatilities of these processes.

The step sizes of each lattice are given by the following equations (see Bollen 1999):

φωj =
√

σ2ωj + µ2ωj(dt)
2, ω = 1, 2 (5.18)

where, ω = 1 represents the first group of processes formed from the processes, (θgt , δt)1 and

(θdt , δt)1 and discretized into one pentanomial lattice and ω = 2 represents the second group of
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Table 5.1: Instantaneous means and volatilities of four uncorrelated processes

Processes Instantaneous means Instantaneous volatilities

(θgt , δt)1 µ11 = [(µc − σ2

c

2 )σg + (µg − σ2

g

2 )σc] σ11 = σgσc
√

2(1 + ρcg)

(θdt , δt)1 µ12 = [(µc − σ2

c

2 )σd + (µd − σ2

d

2 )σc] σ12 = σdσc
√

2(1 + ρcd)

(θgt , δt)2 µ21 = [(µc − σ2

e

2 )σg − (µg − σ2

g

2 )σc] σ21 = σgσc
√

2(1 − ρcg)

(θdt , δt)2 µ22 = [(µc − σ2

c

2 )σd − (µd − σ2

d

2 )σc] σ22 = σdσc
√

2(1 − ρcd)

processes formed from the processes, (θgt , δt)2 and (θdt , δt)2 and discretized into another pentanomial

lattice. As stated earlier, j = 1, 2 represent the growth and decay regimes in each group or lattice.

Adjustment of the step size is given by the following expression:

φωj =











φωk, if j = k,

Rjφω, if j 6= k,

where, R is the ranking process of j.

In a pentanominal lattice, each regime is represented by a trinomial lattice. The middle branch is

shared by both regimes. To reduce the number of nodes in the lattice, the nodes are merged by

adjusting the step size of one regime so that the step sizes of two regimes have a 1:2 ratio. The

binomial branch probabilities (up and down) are given by following expressions:

Pωku =
1

2

[

1 +
µωkdt

φωk

]

(5.19)

Pωkd = 1− Pωku (5.20)

After adjusting the step size, the conditional branch probabilities for the trinomial lattice are given

by following equations.

Pωju =
1

2

[

φ2ωj
(Rjφω)2

+
µωjdt

Rjφω

]

(5.21)

Pωjd =
1

2

[

φ2ωj
(Rjφω)2

− µωjdt

Rjφω

]

(5.22)

Pωkm = 1− Pωju − Pωjd (5.23)

In order to restore the values of correlated demand and carbon prices, the nodes of two individual

pentanomial lattices are merged together to form a two-dimensional lattice. As nodes are merged,

a node can represent any of two combined regimes. Figure 5.2 shows a combined lattice constructed

by merging two individual pentanomial lattices at t = 1. At each node, the lattice has the values

of demand and carbon prices.

65



Figure 5.1: Construction of two pentanomial lattices: group 1 (left) and group 2 (right).

Figure 5.2: Construction of a three-dimensional lattice built from two individual pentanomial
lattices at t = 1.

At time, t, the values of correlated demand and carbon prices can be retrieved by using an

inverse transformation. At a combined regime (θgt , δt), the value of correlated demand and carbon

prices are given as follows:

θgt = exp(
ψ1 + ψ2

2σc
) and δt = exp(

ψ1 − ψ2

2σg
) (5.24)

Similarly at combined regime (δt, θd) the value of correlated demand and exchange rate are given
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by follows:

θdt = exp(
ψ3 + ψ4

2σc
) and δt = exp(

ψ3 − ψ4

2σg
) (5.25)

5.2.2 The expected value of the firm

After constructing the lattice, the value of the firm can be determined by commencing the calcu-

lation from the end of the lattice. Using a backward recursion approach, the calculations move

towards the present node. At each node, the value is calculated as a function of carbon price, the

demand regime, and the capacity level of the previous period. Since the previous period’s opti-

mum capacity level is unknown, all possible prior capacity levels are taken into consideration. Let

π(ℜ,Mt, t) represent the value of the firm conditional on the capacity level, Mt, and the state of

the combined regime denoted by ℜ. The notion of ℜ is to indicate the combined regime with the

demand status and the carbon prices. Therefore, ℜ can be any of the combined regimes as (θgt , δt)1,

(θdt , δt)1, (θ
g
t , δt)2, or (θ

d
t , δt)2, the details of which are discussed in Section 5.2. The expected value

at time t is given by the following equation.

π(ℜ,Mt, t) = max
Mt∈ M

{π(θt,Mt, δt) + S(Mt,Mt+1) + E[π(ℜ,Mt+1, t+ 1]}, (5.26)

where, the E[., ., ., .] is the discounted expected value across the different combined regimes.

If the current combined regime, ℜ, belongs to the growth regime, (θgt , δt), it could remain in the

same combined regime, (θgt , δt), or could switch to the combined regime, (θdt , δt). Therefore, the

expected profit is:

E[π(ℜ,Mt+1, t+ 1]} =exp(−rh)[(1 − p(t))E[π((θgt , δt),Mt+1, t+ 1)]

+ p(t)E[π((θdt , δt),Mt+1, t+ 1)]], (5.27)

where p(t) is the probability of switching from regime (θgt , δt) to regime (θdt , δt).

If the current combined regime is (θdt , δt), the combined regime in the next period can be again

(θdt , δt). Therefore, the expected profit would be:

E[π(ℜ,Mt+1, t+ 1] = exp(−rh)[E[π((θdt , δt),Mt+1, t+ 1)] (5.28)

An important aspect is to use an appropriate discount rate. One approach is use the risk–free

interest rate as a discount rate, when returns are the risk–adjusted expected return. The risk

adjusted returns are obtained by deducting the risk premium, i.e., the excess return over the risk–

67



free return, from the process drift. Since the proposed model uses carbon futures prices and futures

prices are the expected value of the future spot prices in a risk–neutral world, the risk premium

for carbon prices is assumed to be zero. In case of stochastic demand, the demand risk is not also

priced assuming that the uncertainty of switch from growth to decay is diversifiable (Bollen 1999).

It is assumed that the firm constantly replaces the existing product with improved ones. However,

there are various ways to evaluate the market price of risk, for example, employing an equilibrium

pricing model using the Capital Asset pricing Modeling (CAPM). Calculating the risk adjusted

growth rate from the security derivative prices is another method of evaluating the market price of

risk (Hull 2009).

5.2.3 The optimal number of options

From Equation (5.4), we have the following expression:

πt(θt,Mt, δt) = (s− c1)[min(θt,Mt)]− δtβ[min(θt,Mt)]− c0Mt

+ Xt{max[(δt −Kct), 0]− Pt−1 exp(rh)} (5.29)

The expected utility is expressed as U(π) = E(π)− γV(π). Therefore,

E(π) = (s − c1)E [Q1]− βE [δtQ1]− c0Mt +XtE [max(0, δt −Kt)− exp(rh)Pt−1] (5.30)

where Q1 = min(θt,Mt). Assuming Q1 = min(θt,Mt), the components of Equation (5.4) can be

expressed as: A = (s − c1)Q1, B = βδtQ1, and C = X {max(δt −Kct, 0) − Pt−1 exp(rh)}, where h
is the time interval between t− 1 and t. The variance of the profit, pit, given in Equation (5.4) can

be expressed by the following expression.

V[πt] =V[A] + V[B] + V[C] + 2cov[A,B] + 2cov[B,C] + 2cov[A,C], (5.31)

Maximizing the expected utility with respect to Xt and equating it to zero, we obtain:

∂U

∂Xt
=

∂E[π]

∂Xt
− γ

∂V[π]

∂Xt
(5.32)

Since,

∂E[π]

∂Xt
= E[max(0, δt −Kct)− Pt−1 exp(rh)] (5.33)
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Therefore setting ∂U/∂Xt = 0 in Equation (5.32), we obtain,

0 = E[max(0, δt −Kct)− Pt−1 exp(rh)]− γ
∂V[π]

∂Xt
(5.34)

γ
∂V[π]

∂Xt
= E[max(0, δt −Kct)− Pt−1 exp(rh)] (5.35)

∂V[π]

∂Xt
=

1

λ
E[max(0, δt −Kct)− Pt−1 exp(rh)] (5.36)

A complete arbitrage-free market under some risk-neutral probability measure is also imposed

according to the justifications and approaches used in Tekin and Özekici (2015) and Chen and

Parlar (2007). Therefore, E[max(Ket − et, 0)− Pt−1 exp(rh)] = 0 and we obtain,

∂V[π]

∂Xt
= 0 (5.37)

Chen and Parlar (2007) has justified the condition that maximizing the expected utility is equivalent

to minimizing the variance of the profit under a quadratic utility function. Consequently, the firm

purchases a number of carbon option so that it minimizes the variance of the profit given by

the expression in Equation (5.29). where A = (s − c1)[min(θt,Mt)], B = δtβ[min(θt,Mt)], and

C = Xt{max[(δt −Kct), 0]− Pt−1 exp(eh)}. Equation (5.31) can be simplified as follows:

V[πt] =(s− c1)
2
V[Q1] + β2V[δtQ1] +X2

V[{max(δt −Kct, 0) − Pt−1 exp(rh)}]

+ 2cov[Q1, δtQ1]− 2cov[δtβQ1,X{(δt −K)+ − Pt−1 exp(rh)}]

+ 2cov[(s− c1)Q1,X{(δt −K)+ − Pt−1 exp(rh)}], (5.38)

where Q1 = [min(θt,Mt)], V[A] = (s − c1)
2
V[Q1], V[B] = β2V[δtQ1], and cov[Q1, δtQ1]. Since,

V[A], V[B], and cov[Q1, δtQ1] do not dependent on Xt, the differentiation of these terms with

respect to Xt turns out to be zero. Since E[(δt − Kct)
+ − Pt−1 exp(rh)] = 0, we can express

V[{max(δt −Kct , 0)− Pt−1 exp(rh)}] = E[{(δt −Kct)
+ − Pt−1 exp(rh)}2]. Therefore,

∂V[π]

∂X
=2XE[{(δt −Kct)

+ − Pt−1 exp(rh)}2]− 2cov[δtβQ1, {(δt −Kct)
+ − Pt−1 exp(rh)}]

+ 2cov[(s − c1)Q1, {(δt −Kct)
+ − Pt−1 exp(rh)}] (5.39)

The number of options, X, then can be obtained by setting ∂V[πt]
∂Xt

= 0.

Xt =
βcov[δtQ1, {(δt −Kct)

+ − Pt−1 exp(rh)}]− (s− c1)cov[Q1, {(δt −Kct)
+ − Pt−1 exp(rh)}]

E[{(δt −Kct)
+ − Pt−1 exp(rh)}2]

(5.40)
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The covariance terms in Equation (5.40) can be simplified as:

cov[δtQ1, {(δt −Kct)
+ − Pt−1 exp(rh}] = E[δtQ1{(δt −Kct)

+ − Pt−1 exp(rh)}]−

E[δtQ1]E[{(δt −Kct)
+ − Pt−1 exp(rh)}] (5.41)

cov[Q1, {(δt −Kct)
+ − Pt−1 exp(rh)}] = E[Q1{(δt −Kct)

+ − Pt−1 exp(rh)}]−

E[Q1]E[{(δt −Kct)
+ − Pt−1 exp(rh)}] (5.42)

Since E[{(δt−Kct)
+−Pt−1 exp(rh)}] = 0, replacing the expressions for the covariances in Equation

(5.40), we obtain the following expression for Xt:

Xt =
βE[δtQ1{(δt −Kct)

+ − Pt−1 exp(rh)}] − (s− c1)E[Q1{(δt −Kct)
+ − Pt−1 exp(rh)}]

E[{(δt −Kct)
+ − Pt−1 exp(rh)}2]

(5.43)

The numerator, E[δtQ1{(δt −Kct)
+ − Pt−1 exp(rh)}], in Equation (5.43) can be expressed as:

E[δtQ1{(δt −Kct)
+ − Pt−1 exp(rh)}] = E[δtQ1{(δt −Kct)1{δt>Kct}]− E[δtQ1Pt−1 exp(rh)}]

(5.44)

= E[δ2tQ11{δt>Kct} − δtQ1Kct1{δt>Kct}]− E[δtQ1Pt−1 exp(rh)],

(5.45)

where 1{δt>Kct} is an indicator function, which is equal to 1, if δt > Kct , otherwise 0. The expression,

E[δ2tQ11δ>Kc
], in Equation (5.45) can further be simplified as follows:

E[δ2tQ11δ>Kc
] = E[E[(δ2tQ11{δt>Kc}) | θ]] (5.46)

= E[Q1

∫ ∞

Kc

δ2t f(δt | θt)dδt] (5.47)

=

∫ ∞

0
Q1f(θt)

(
∫ ∞

Kc

δ2t f(δt | θt)dδt
)

dθt (5.48)

5.3 A numerical example

A numerical example illustrates the implementation of the model. Table 5.2 shows the coefficients

of the processes defined by Equations (5.7)–(5.9). These coefficients are the means and variances of

and carbon allowance prices and the demand processes. Based on these coefficients shown in Table

5.2, the mean and variance of the uncorrelated processes defined by Equations (5.14)–(5.17) are

calculated as shown in Table 5.3. For example, µ11 = 0.0241 = {0.06 − (0.042/2)} × 0.22 + {0.3 −
(0.222/2))} × 0.04.
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Table 5.2: Parameters of product demand and carbon

Product demand Mean Volatility

Growth µg = 0.30 σg = 0.22

Decay µd = −0.25 σd = 0.14

Carbon price µc = 0.06 σc = 0.04

Correlation coefficients

Growth ρcg = 0.10

Decay ρcd = 0.20

Regime switching parameters

Mean 33.6 months

Variance 6 months

Table 5.3: A numerical example of mean variances of the four uncorrelated processes

Process Mean Volatility

ψ1 → (θgt , δt)1 µ11 = 0.0241 σ11 = 0.0131

ψ3 → (θdt , δt)1 µ12 = 0.0020 σ12 = 0.0118

ψ2 → (θgt , δt)2 µ21 = 0.0021 σ21 = 0.0087

ψ4 → (θdt , δt)2 µ22 = 0.0187 σ22 = 0.0071

The step sizes are determined by using Equation (5.18). For example,

φ11 = 0.0043 =
√

0.02412 × (1/12)2 + 0.01312 × (1/12)

Similarly, φ12 = 0.0025, φ21 = 0.0034, and φ22 = 0.0026. For the adjustment of the step size for

group 1, since φ12 < φ11, the adjusted step size for group 1 will be, φ1 = max(φ112 ,
φ12
1 ) = 0.0025.

Similarly, φ2 = 0.0051. Figure 5.3 (left) shows the branch probabilities for group 1 from the

combination of the uncorrelated processes, (θgt , δt)1 and (θdt , δt)1 and Figure 5.3 (right) shows the

branch probabilities for group 2 from the combination of the uncorrelated processes, (θgt , δt)2 and

(θdt , δt)2. The branch probabilities are calculated by using Equations (5.21)–(5.23). For example,

P12u = 0.4650 = 0.50 × [1 + {−0.0021 × (1/12)/0.0025}].
Figure 5.4 shows the lattice representation of the combined regimes 1 and 2 at t = 2. The

‘circle’ in the figure refer to nodes generated from the combined regime 1, which represents the

combination of the uncorrelated processes of (θgt , c)1 and (θdt , c)1. There are 9 nodes denoted by
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Figure 5.3: Branch probabilities of the respective pentanomial lattices: (left) group 1; (right) group
2.

circles at t = 2. These 9 nodes are generated from the combination of three branches from the

process, (θgt , δt)1 and three branches from the process, (θdt , δt)1. Similarly, there are 4 nodes denoted

by the ‘crosses’ representing the combined regime 2 generated from the combination of two branches

from the process, (θgt , δt)2 and two branches from the process, (θdt , δt)2. Each node in Figure 5.4

has three values – the profit of the combined regime 1, the profit of the combined regime 2 and the

branch probability to reach this node at t = 2 from the node at t = 1.

Figure 5.5 shows the the lattice representation of the combined regimes 1 and 2 at t = 3. Each

node from the lattice at t = 2 generates 13 nodes at t = 3. Since some nodes will merge together

at t = 3 as indicated by overlapping ‘circles’ and ‘crosses’ in Figure 5.5, there will be 41 nodes in

the lattice at t = 3. The expected value at regime 1 can be calculated by multiplying the values at

regime 1 to their respective branch probabilities as shown in Equation (5.49).

27860.3159 = 0.132663 × 27080.31824 + 0.313687 × 28906.61 + 0.114548 × 30872.86 +

0.065624 × 25455.5727 + 0.15517 × 27200 + 0.056663 × 29029.86 +

0.038232 × 23935.3346 + 0.090402 × 25570.63 + 0.033012 × 27291.18 (5.49)

Similarly, the expected value at regime 2 is calculated in Equation (5.50).

26613.6678 = 0.373395 × 27121.58 + 0.091685 × 28968.63 +

0.429466 × 25513.04 + 0.105453 × 27250.35 (5.50)
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(54078.27, 53446.94)

0.132663

(57738.23, 57074.96)

0.313687

(61667.08, 60970.03)

0.114548

(57995.72, 57347.46)

0.056663

(54534.68, 53930.26)

0.033012
(51082.65, 50509.70)

0.090402
(47820.85, 47281.73)

0.038232

(50852.14, 50273.52)

0.065624)

(54195.90, 53573.74)

0.373395

(57869.08, 57217.64)

0.091685

(54419.59, 53817.05)

0.105453
(50964.45, 50383.95)

0.429466

(54322.06, 53708.16

0.15517)

Figure 5.4: Nodes of the lattice at t=2.

Figure 5.5: Nodes of the lattice at t=3.
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The expected profit in the middle node at t = 2, is determined by using Equations (5.27)–(5.28).

54323.7409 = 27200 + exp(−0.05 × (1/12))

×(0.50 × 27860.3159 + 0.50 × 26613.6678) (5.51)

53703.0087 = 27200 + exp(−0.05 × (1/12)) × (1.0 × 26613.6678) (5.52)

5.4 Numerical results

This section presents a numerical analysis of a firm that produces a single product with a regime–

switching life cycle and has an associated carbon emission cost per unit of production. The expected

values of the firm is analyzed with respect to the changes in the mean and volatility of the demand

pattern and carbon prices. The sale price, s, is assumed to be $40 per unit. The initial demand of

the product is 1000 units. The cost of the initial capacity installment, c0, is $10 per unit. Whenever

the flexible capacity system expands or contracts its maximum production by an unit, there occurs

a fixed cost of c5 = 300 and a variable cost of c3 = 1.0 for capacity expansion and c4 = 0.9 for

capacity contraction, as a fraction of the unit capacity installation cost, c0. The carbon emission

rate, β, is assumed to be 0.40tCO2 per unit of production. As stated in Section 5.2, the carbon

prices are assumed to follow the geometric Brownian motion with an initial price of $7 per tCO2

emission. The carbon call option strike price, Kc, is assumed to be $10 per unit of option. The risk

free discount rate, r, is 5%. Regime–switching demand and the stochastic carbon prices parameters

are given in Table 5.2.

Figure 5.6 shows the expected value of the firm with respect to the changes in the mean of the

growth regime of the demand. It is observed that as the mean demand increases, the expected value

of the firm also increases. The reson is that the increasing demand naturally tends to bring more

revenue and consequently more expected profit for the firm. It is also observed that when the firm

employs flexible capacity and adjusts its capacity from one time interval to the next time interval,

the firm experiences a higher expected value than the value when the firm decides to utilize a fixed

capacity system throughout the planning period. The options of capacity flexibility evidently add

value to the firm. Another observation is that the integration of real option, in the form of capacity

flexibility, and the financial options, in the form of carbon call options, causes a higher expected

value in comparison to when only real options is used. The reason is when the impact of carbon

price uncertainties are hedged through the carbon call options, the firm can increase its capacity

levels, that contributes to an increasing expected profit. Similar observations are found in Figure
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5.7 when the average decay demand increases.
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Figure 5.6: Expected value of the firm with respect to the mean demand of the growth regime.
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Figure 5.7: Expected value of the firm with respect to the mean demand of the decaying regime.

Figure 5.8 shows the expected profit of the firm with respect to the varying mean of carbon

prices. It is observed that the expected profit decreases, as the mean carbon prices increase.

However, the usage of the carbon call options along with flexible capacity options offers the highest

expected profit for the firm.

The effect of the changes in the volatilities of the growth and decaying regimes of the demand

pattern can be observed from Figure 5.9 and Figure 5.10. As the volatility of the demand growth

regime increases, the expected profit for both fixed and flexible systems using carbon options

increase, while the expected profit for both fixed and flexible systems without using carbon options

remain almost unchanged. However, an increase in the volatility of the demand decay regime
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Figure 5.8: Expected value of the firm with respect to the mean of carbon allowance prices.

decreases the expected profit for both fixed and flexible systems with carbon call options. The

reason is that the firm can reap more profit, when the uncertainty in the growth regime of the

demand is higher. On the other hand, when the volatility in the decaying regime of the demand

increases, the firm becomes reserved in utilizing the carbon options and the expected value decreases.

Figure 5.11 shows the expected profit with respect to the changes in the volatility of carbon

allowance prices. It is observed that as the volatility of the carbon allowance prices increase, the

expected value for both fixed and flexible systems using the carbon options increases. carbon options

add more values to the firm both in the cases of fixed and flexible capacity systems. Uncertainty in

the carbon prices encourages the firm to use more options that contributes to the higher expected

profit of the firm.

The effect of carbon strike price, Kc, on the expected value of the firm is presented in Figure

5.12. It is observed that as Kc increases, the expected values of the firm for both fixed and flexible

systems with carbon options decrease. The reason is that an increasing carbon strike price causes a

drop in option payoff, which eventually affects the expected profit of the firm. However, the expected

value for the flexible system with options drops more rapidly than that of the fixed system. As

stated earlier, when carbon price uncertainties are hedged through carbon call options, the firm

increases its ability to utilize the capacity flexibility, and it contributes to an increasing expected

profit. The reverse phenomenon is also true that when the payoff from carbon options tends to

decrease, the system retards to use its capacity flexibility and tends to move toward a fixed system.

Figure 5.13 and Figure 5.14 show the sensitivity of the correlation coefficients between carbon

prices and demand in both growth and decay regimes, respectively, on the expected value of the
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Figure 5.9: Expected value of the firm with respect to the volatility of the growth regime.
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Figure 5.10: Expected value of the firm with respect to the volatility of the decaying regime.

firm.

5.5 Summary

This chapter considers two risks, namely, demand and carbon price uncertainties for a firm that

possesses a flexible capacity system. The proposed model considers an integration of operational

hedging in the form of capacity allocation and financial option with carbon call option. The model

assumes a multi-period time frame in which demand follows a regime–switching behavior. The

carbon prices are assumed to follow a geometric Brownian motion. Four possible scenarios are

considered, namely, a fixed capacity system without using carbon options, a fixed capacity system
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Figure 5.11: Expected value of the firm with respect to the carbon allowance prices volatilities.
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Figure 5.12: Expected value of the firm with respect to the series of carbon strike prices, Kc.

with carbon options, a flexible capacity system with carbon options and a flexible capacity system

with carbon options. The number of option is calculated by minimizing the variance of the profit

and the optimal capacity allocation by maximizing the expected profit. The proposed approach

helps the firm make business decision upfront by avoiding downside risk. It also guarantees a

favorable profit regardless of the uncertainties in demand and carbon prices.
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Figure 5.13: Expected value of the firm with respect to the correlation coefficients between the
carbon prices and demands in the growth regime.
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Figure 5.14: Expected value of the firm with respect to the correlation coefficients between the
carbon prices and demands in the decay regime.
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Chapter 6

Optimal production decision under

exchange rate, demand, and carbon

price uncertainties

This chapter considers uncertainties of exchange rates, demand, and carbon allowance prices simul-

taneously. An interesting feature of this chapter is that the demand uncertainties are considered

with underage and overage costs. The underage cost occurs when the production does not meet

the demand. The overage cost arises when the production exceeds the demand. Furthermore,

the carbon allowance prices are considered to follow a geometric Brownian motion with a jump

process. In order to compare the effect of underage and overage costs along with the usages of

currency and carbon options, two models are developed – one in Section 6.2 with known demand,

known exchange rates, and with stochastic jump process for carbon; and the other in Section 6.3

with stochastic demand, stochastic exchange rates using options, and stochastic carbon prices with

jumps. Consequently, the option pricing for stochastic jump process is also discussed.

6.1 The models

The quantity the firm sells to domestic market is denoted by variable x11, whereas the quantity

the firm sells its locally produced goods to foreign markets is represented by x12. The optimal

capacity allocation for the firm is given by χ and c0 is the unit capacity cost. Unit production cost

is given by c1. D1 and D2 represent domestic and foreign market’s demand respectively. Variable

s1 denotes the unit sale price in the local market in its local currency, whereas s2 denotes unit sale

price in foreign market. The spot price of the exchange rate is represented by e. The carbon spot

price at time t is denoted by δt. The strick price of exchange rate is denoted by Ke and the strick
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price of carbon is denoted by Kc. Pe and Pc are prices of currency put option and carbon call

option, respectively. The risk free interest rate is r and T is the time between the production and

sale.

6.2 Stochastic carbon prices with given exchange rate and demand

In this section, it is assumed that the firm experiences carbon allowance prices uncertainty, while

exchange rate and demand are assumed to be known. The stochastic behavior of the carbon

allowance prices is assumed to follow a geometric Brownian motion with jump process, the detail

of which is discussed in the following section. Accordingly, the profit is given by Equation (6.1):

π = (s1− c1)x11+(s2e− c1)x12−βδt(x11+x12)− c0χ exp(rT )+X {max(δt −Kc, 0)− Pc exp(rT )} ,
(6.1)

where (s1 − c1) is the unit profit from the local sale, (s2e − c1) is the unit profit from the foreign

sale, c0χ is the total capacity cost, βδt(x11+x12) is total emission cost, max(δt−Kc, 0) is the payoff

from the carbon call options, and Pc exp(rT ) is the premium value at time, T . Since exchange rate

and demand are known and carbon prices are stochastic, we consider only carbon call options in

this case. The expected utility is the function of the expected profit and the variance of profit and

it is expressed as:

U(π) = E(π)− γV(π), (6.2)

where E(π) is the expected profit, V(π) is the variance of the profit, and γ is the mean-variance

ratio.

6.2.1 Modeling carbon allowance prices as a stochastic jump process

Carbon cap-and-trade method is a market based mechanism to control carbon emissions. A moni-

toring authority imposes a cap or limit on the emission of carbon dioxide and allows firms to trade

emission permits among them. In Europe, one emission certificate, also known as European Union

Allowance (EUA), allows to emit one tonne of CO2. Companies can buy or sell such certificates

and decide on their amount of CO2 released into the atmosphere. The right to produce a particular

amount of CO2 has now become a tradable commodity. A company with lower carbon emissions

can benefit from selling its allowances to higher carbon emitting companies (Benz and Trück 2009).

In modeling carbon allowance prices, Seifert et al. (2009) assume that the uncertainty in emission

price dynamics is driven by a standard Brownian process. Benz and Trück (2009) analyze the log

return of carbon spot prices from January, 2005 to December 2006 as a Markov regime-switching
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model with two regimes (i.e., base and spike regimes). Daskalakis et al. (2009) analyze and compare

six empirical and theoretical configurations of carbon prices behavior and find that the geometric

Brownian motion with jump process is a better model in terms of parameter significance.

In this chapter, the carbon spot price is assumed to be driven by a Brownian motion along

with a Poisson jump process. The jump process is assumed to be double exponentially distributed,

which consists of two exponential functions joined together on a threshold (Daskalakis et al. 2009).

Accordingly, the carbon price δt is assumed to follow the price dynamics as follows:

dδt
δt

= µdt+ σdWt + d

(

Nt
∑

i=1

(Vi − 1)

)

, (6.3)

whereWt is a standard Brownian motion, Nt is a Poisson process with rate λ and Vi is a sequence of

independent identically distributed nonnegative random variables. The logarithm of the variable,

V , Y = log(V ) has an asymmetric double exponential distribution with the density:

fY (y) = p · η1 exp(−η1y)1y≥0 + q · η2 exp(−η2y)1y<0, (6.4)

where η1 > 1, η2 > 0. The probabilities of upward and downward jumps are given by p, q ≥ 0, and

p+ q = 1. That is, Yi is given by the following equation.

ln (Vi) = Yi =











ξ+ with probability p,

−ξ− with probability q,

where ξ+ and −ξ− are exponential random variables with means 1/η1 and 1/η2. Solving Equation

(6.3), we obtain the following dynamics for carbon price:

δt = δ0e
σWt+(µ− 1

2
σ2)t

Nt
∏

i=1

Vi, (6.5)

where δ0 is carbon price at time t = 0.

82



6.2.2 Carbon Option pricing for a jump process

The price of an European call option on the underlying carbon price that follows a geometric

Brownian motion with jump process can be obtained as (Kou 2002):

Pc = δ0γ

(

r +
1

2
σ2 − λζ, σ, λ̃, p̃, η̃1, η̃2; ln(

Kc

δt
), T

)

−Kc exp(−rT )γ
(

r − 1

2
σ2 − λζ, σ, λ, p, η1, η2; ln(

Kc

δt
), T

)

, (6.6)

where p̃ = p
1+ζ ×

η1
η1−1 , η̃1 = η1 − 1, η̃2 = η2 + 1, λ̃ = λ(ζ + 1), and ζ = pη1

η1−1 + qη2
η2+1 − 1, and

γ(µ, σ, λ, p, η1, η2; ln(
Kc

δ0
), T ) :=

∫ ∞

Kc

f(δt)d(δt) = P (δT > Kc) (6.7)

6.2.3 Number of carbon call options

Differentiating Equation (6.2) with respect to X, we obtain

∂U(π)

∂X
=
∂E(π)

∂X
− γ

∂V(π)

∂X
(6.8)

The expected profit is given by the following equation:

E(π) = (s1−c1)x11+(s2e−c1)x12−β(x11+x12)E(δt)−c0χ exp(rT )+XE [max(δt −Kc, 0)− Pc exp(rT )]

(6.9)

Differentiating Equation (6.9) with respect to X, we obtain

∂E(π)

∂X
= E [max(δt −Kc, 0) − Pc exp(rT )] (6.10)

Under the no-arbitrage pricing method, the expected payoff from the carbon call option is zero.

Therefore,

E [max(δt −Kc, 0)− Pc exp(rT )] = 0 (6.11)

Therefore, maximizing the utility is equivalent to minimizing the variance of the profit.

Since exchange rate, e, and demand, x11 and x12 are given, the first four terms in Equation

(6.1), (s1 − c1)x11, (s2e − c1)x12, βδt(x11 + x12), and c0χ exp(rT ) are constant. Assume that,

AC = −β(x11 + x12)δt and BC = X {max(δt −Kc, 0)− Pc exp(rT )}. The variance of profit can be

given by following expression.

V[π] =V[AC ] + V[BC ] + 2cov[AC , BC ] (6.12)
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Variance of the profit, V[π], is the summation of variance of AC = −β(x11+x12)δt and the variance

of BC = X {max(δt −Kc, 0) − Pc exp(rT )}. Because of known demand and exchange rate, the

terms (s1 − c1)x11, (s2e− c1)x12, βδt(x11 + x12), and c0χ exp(rT ) are also known and these terms

do not affect the variance of profit. The variances and covariance of AC and BC can be expresses

as in Equations (6.13)–(6.15):

V[AC ] =β
2(x11 + x12)

2
V[δt] (6.13)

V[BC ] =X
2
E
[

{max(δt −Kc, 0)− Pc exp(rT )}2
]

(6.14)

cov[AC , BC ] =−Xβ(x11 + x12)E [{(δt − E(δt))} {max(δt −Kc, 0)− Pc exp(rT )}}] (6.15)

The optimal number of carbon call option, X, is obtained by minimizing the variance of profit as

follows.

∂V[π]

∂X
=2β(x11 + x12)E [{−δt + E[δt]}{max(δt −Kc, 0)− Pc exp(rT )}]

+ 2XE
[

{max(δt −Kc, 0) − Pc exp(rT )}2
]

(6.16)

Setting Equation (6.16) to zero, Y is given by Equation (6.17).

X =
2β(x11 + x12)E [{δt − E[δt]}{max(δt −Kc, 0)− Pc exp(rT )}]

E [{max(δt −Kc, 0)− Pc exp(rT )}2]
(6.17)

Equation (6.17) can be simplified to

X = β(x11 + x12)

{
∫∞
Kc
δ2t f(δt)d(δt)−Kc

∫∞
Kc
δtf(δt)d(δt)− E(δt)Pc exp(rT )

∫∞
Kc
δ2t f(δt)d(δt)− 2Kc

∫∞
Kc
δtf(δt)d(δt)− P 2

c exp(2rT ) +K2
c

∫∞
Kc
f(δt)d(δt)

}

.

(6.18)

Further simplification of the integral in Equation (6.18) can be obtained by using the gamma

function given in Equation (6.7). Therefore, from Equation (6.7) we obtain:

∫ ∞

Kc

δtf(δt)d(δt) = δ0γ(r +
1

2
σ2 − λζ, σ, λ̃, p̃, η̃1, η̃2; ln(

Kc

δ0
), T ). (6.19)

where p̃ = p
1+ζ × η1

η1−1 , η̃1 = η1 − 1, η̃2 = η2 + 1, λ̃ = λ(ζ + 1), and ζ = pη1
η1−1 + qη2

η2+1 − 1. To

calculate the value of
∫∞
Kc
δ(t)2f(δt)d(δt), we have to find the process of δ2t . Assuming Zt = δ2t =
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[δ0e
σWt+(µ− 1

2
σ2)t∏Nt

i=1 Vi, ]
2 and by using Itô’s lemma, we obtain:

Zt = δ20e
2σWt+(2µ−σ2)t

Nt
∏

i=1

V 2
i

= Z0e
2σWt+(2µ−σ2)t

Nt
∏

i=1

V 2
i

= Z0e
2σWt+(2µ−σ2)t

Nt
∏

i=1

e2Yi ,

where

Yi(Z) = 2Yi =











2ξ+ with probability p,

−2ξ− with probability q,

where ξ+ and ξ− are exponential random variables with means 1/η1 and 1/η2. Hence σZt = 2σ,

µZt = 2µ− σ2, λZt = λ, η1,Zt = η1/2, and η2,Zt = η2/2.

∫ ∞

Kc

δ2t f(δt)d(δt) = δ0γ(r +
1

2
σ2δ2t

− λζ, σδ2t , λ̃, p̃, η̃1, η̃2; ln(
Kc

δ0
), t). (6.20)

Substituting Equation (6.19) and Equation (6.20) in Equation (6.18), we obtain the number of

carbon call options, Y0.

6.2.4 Numerical results

This section illustrates numerical results. In this regard following parameters are considered: x11

= 500, x12 = 350, s1 =50, c1 = 20, s2 = 40, e0 = 2, c0 = 5, r = 0.05, T = 0.5, δ0 = 100, β = 0.02,

η1 = 10, η2 = 5, p = 0.5, σ = 0.16, λ = 20, and Kc = 98. Figure 6.1 shows the number of call

options to long against the strike price, Kc. It is observed that as the strike price increases, the

number of call options required to long also increases. A higher value of strike price reflects more

risk. In order to hedge this higher risk, the firm needs to buy more options. Figure 6.2 shows the

number of call options to long with respect to the number of jumps, λ. As the jump rate increases

the number of call options required to long decreases. Increasing jump tends to occur due to a

sudden increase in carbon prices, that in turn results in to reduce the number of call options to

long. As the carbon price volatility increases, the number of options to buy also increases. Figure

6.3 shows the number of call options to long with respect to the volatility of the carbon prices.

Since increasing volatility increases the carbon price uncertainties, the number of options required

to hedge the risk also increase. Figure 6.4 and Figure 6.5 show the expected profit and variance

of the profit, respectively, with regard to the changing volatility of carbon allowance prices. It
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Figure 6.1: Number of carbon call options with respect to the strike carbon prices, Kc
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Figure 6.2: Number of carbon call options to long with respect to jump rate, λ

is observed that while the expected profit is more when the volatility of carbon prices increases,

the variance is reduced due to the utilization of carbon call options. The firm achieves a higher

expected value with a reduced volatility in profit.
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Figure 6.3: Number of carbon call options to long with respect to the volatility of carbon prices, σ
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Figure 6.4: Expected profit of the firm with respect to the volatility of carbon prices, σ
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Figure 6.5: Variance of the profit with respect to the volatility of carbon prices, σ
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6.3 Stochastic exchange rate, demand, and carbon prices

When both carbon call and currency put options are considered, the profit is expressed as follows:

πhc =(s1 − c1)Q1 + (s2e− c1)Q2 − c0X exp(rT )− βδt(Q1 +Q2)− Uc −Oc

+ Y {max(Ke − e, 0) − Pe exp(rT )}+X {max(δt −Kc, 0)− Pc exp(rT )}

(6.21)

where (s1 − c1) is the unit profit from the local sale, min(χ,D1) is the number of quantity sold in

the local market that is obtained from the minimum of the capacity, χ, and the local demand, D1.

The unit profit from the foreign sale is (s2e − c1), where the exchange rate, e, is stochastic, c0χ

is the total capacity cost, min(max(χ−D1, 0),D2) is the leftover quantity sold to foreign country,

max(Ke − e, 0) is the currency put option payoff, max(δt −Kc, 0) is the carbon call option payoff,

Uc is the underage cost and Oc is the overage cost. The overage cost is calculated by multiplying

the unit production cost and number of quantity left over in the storage. The left over quantity

is different between the total production quantity, χ and total sales quantity in both market,

min(χ,D1) + min(max(χ−D1, 0),D2).

Oc = c1(χ−min (χ,D1) + min (max(χ−D1, 0),D2)). (6.22)

The overage cost is calculated by sum of profit loss by not satisfying the local and foreign markets.

Profit loss by local market is given by not satisfying the local demand. Which is given by unit profit

gain from the local sale, which is s1 − c1. different between the local demand and sold quantity in

local market is D1 −min(χ,D1).

Uc = (s1 − c1){D1 −min(χ,D1)}+ (s2e− c1){D2 −min(max(χ−D1, 0),D2)} (6.23)

The utility of the profit can be expressed as:

U(πhc) = E(πhc)− γV(πhc) (6.24)

In order to find the number of carbon call option, Equation (6.3) is differentiated with respect

to Y as in Equation (6.3):
∂U(πhc)

∂X
=
∂E(πhc)

∂X
− γ

∂V(πhc)

∂X
(6.25)
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Because of no-arbitrage risk-neutral assumption, ∂E(πhc)
∂X = 0. Therefore, maximizing the ex-

pected utility is equivalent to minimizing the variance.

6.3.1 Number of carbon call options

To calculate the optimal number of carbon call option X for the firm, we minimize the variation

of profit.

V[πhc] =V[(s1 − c1)Q1] + V[(s2e− c1)Q2] + V[β(Q1 +Q2)δt] + V[Uc +Oc]

+V[Y {max(δt −Kc, 0) − Pc exp(rT )}] + 2cov[(s1 − c1)Q1, (s2e− c1)Q2]

− 2cov[(s2e− c1)Q2, β(Q1 +Q2)δt]− 2cov[β(Q1 +Q2)δt,X {max(δt −Kc, 0) − Pc exp(rT )}]

+ 2cov[X {max(δt −Kc, 0) − Pc exp(rT )} , (s1 − c1)Q1]

+ 2cov[X {max(δt −Kc, 0) − Pc exp(rT )} , (s2e− c1)Q2]− 2cov[(s1 − c1)Q1, (Uc +Oc)]

− 2cov[(s2e− c1)Q2, (Uc +Oc)] + 2cov[(Uc +Oc), β(Q1 +Q2)δt]

− 2cov[X {max(δt −Kc, 0) − Pc exp(rT )} , Uc +Oc)] (6.26)

Differentiating the variance of profit with respect to the number of call options,Y , is given by

Equation (6.27).

∂V[πhc]

∂X
=2XE[{max(δt −Kc, 0) − Pc exp(rT )}2]− 2E[(Q1 +Q2)δt {max(δt −Kc, 0)− Pc exp(rT )}]

+ 2E[(s2e− c1)Q2 {max(δt −Kc, 0) − Pc exp(rT )}]

+ 2E[(s1 − c1)Q1 {max(δt −Kc, 0)− Pc exp(rT )}]

− 2E[(Uc +Oc) {max(δt −Kc, 0)− Pc exp(rT )}] (6.27)

Therefore optimal number of call options is given by following equation:

X =
G

H
, (6.28)
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where

G = E[(Q1 +Q2)δt {max(δt −Kc, 0) − Pc exp(rT )}] (6.29)

− E[(s2e− c1)Q2 {max(δt −Kc, 0) − Pc exp(rT )}]

− E[(s1 − c1)Q1 {max(δt −Kc, 0)− Pc exp(rT )}]

− E[(Uc +Oc) {max(δt −Kc, 0) − Pc exp(rT )}]

H = E[{max(δt −Kc, 0)− Pc exp(rT )}2] (6.30)

In this case, local and foreign demands influence the jump size of the carbon spot price. We assume

that the relation between the spot price and demand is given by following relationship:

p = b1Ψ(D1) + (1− b1)Θ(D2), (6.31)

where 0 ≤ b1 ≤ 1 and Ψ(.),Θ(.) are function of local and foreign demands. We also assume that,

Ψ(D1) = (D1−a
b−a ) and Θ(D2) = (D2−c

d−c ), where a, b, c, and d are positive constant and satisfy the

following conditions: d < c, b < a. Therefore the jump probability p is function of local and foreign

demand. The expected profit for the global firm is given by Equation (6.32).

E[πhc] =(s1 − c1) E[Q1] + E[(s2e− c1)Q2]− c0χ exp(rT )

− E[Uc]− E[Oc]− βE[(Q1 +Q2)δt]

(6.32)

6.3.2 Number of currency put options

The optimal number of options, Y , is obtained by maximizing the utility of the profit, U(π) =

E(π)− γV (π). Here, E(π) is not dependent on X. Therefore, the optimal number of currency put

option is obtained by minimizing the variance of profit. Assume that Ae and Be are defined as

follows:

Ae =(s2 − c1)D1 + (s2e− c1)D2 − c0χ exp(rT )

Be =Y {max(K − e, 0) − Pe exp(rT )}
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Then the variance of πh is expressed as:

V[πh] =V [(s2 − c1)D1 + (s2e− c1)D2 − c0χ exp(rT ) + Y {max(K − e, 0) − Pe exp(rT )}]

=V[Ae +Be]

=V[Ae] + V[Be] + 2cov[Ae, Be]

(6.33)

Now, V[Ae], V[Be], and cov[Ae, Be] can be expanded as follows:

V[Ae] =E [(s1 − c1)D1 + (s2e− c1)D2 − c0χ exp(rT )

−E [(s1 − c1)D1 + (s2e− c1)D2 − c0χ exp(rT )]]

V[Be] =Y
2
E
[

{max(K − e, 0) − Pe}2
]

cov[Ae, Be] =E [{(s2 − c1)D1 + (s2e− c1)D2 − c0χ exp(rT )

−E[(s2 − c1)D1 + (s2e− c1)D2 − c0χ exp(rT )]}Y {max(K − e, 0) − Pe exp(rT )}]
(6.34)

To find the optimal number of put options, the utility of profit is differentiated with respect to X.

Since exchange rate and carbon prices are independent of each other, we individually deduce the

number of carbon call options and the number of exchange rate put options. Hence,
∂E[π]

∂Y = 0 and

the variance of profit differentiated with respect to Y is given by Equation (6.35).

∂V[π]

∂Y
= 2E [{Ae − E[Ae]}{max(K − e, 0) − Pe exp(rT )}] + 2Y E

[

{max(K − e, 0) − Pe exp(rT )}2
]

(6.35)

From Equation (6.35), the optimal number of put option is obtained as Equation (6.36).

Y =
E [(E[Ae]−Ae) {max(K − e, 0)− Pe exp(rT )}]

E [{max(K − e, 0) − Pe exp(rT )}2]
(6.36)

The second order derivation of the variance of the profit with respect to X is given by the

Equation(6.37), which is always positive. This shows that the optimal number of option, X,

reduces the variance of profit.

∂2V[π]

∂Y 2
= 2E

[

{max(K − e, 0) − Pe exp(rT )}2
]

(6.37)
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Equation(6.36) can be simplified as follows.

Y =P/Q

P =− E [(Ae − E[Ae]){max(K − e, 0) − Pe exp(rT )}]

=s2X2E [(E [e]− e)max(K − e, 0)]

=s2X2{E [e]Pe exp(rT )−K

∫ K

0
ef(e) de +

∫ K

0
e2f(e) de}

Q =E
[

{max(K − e, 0)− Pe exp(rT )}2
]

=E
[

max(0,K − e)2 + P 2
e e

2rT − 2Pe exp(rT )max(0,K − e)
]

=K2P (e < K) +

∫ K

0
e2f(e) de− 2K

∫ K

0
ef(e) de− Pe exp(rT )

=K2P (e < K) +

∫ K

0
e2f(e) de− 2K

∫ K

0
ef(e) de− P 2

e e
2rT

From Equation(6.35), the optimal number of options X can be given by Equation (6.38)

Y =
s2X2[E [e]Pe exp(rT )−K

∫ K
0 ef(e) de +

∫K
0 e2f(e) de]

K2P (e < K) +
∫K
0 e2f(e) de− 2K

∫ K
0 ef(e) de − P 2

e e
2rT

(6.38)

6.3.3 Numerical results: Stochastic exchange rate, demands, and carbon prices

From Figure 6.6 four significant observations can be deduced: (1) It is observed that the expected

profits without overage and underage costs (see the lines with square and circle markers in Figure

6.6) are higher than the profits with underage and overage costs. The firm with no obligation to

comply with the overage and underage costs enjoys more freedom on its production allocation, that

causes to obtain a higher expected profit; (2) options does not play a significant role in gaining

the expected profit. That is why, the curves for the expected profits with and without options

merge together; (3) Below the optimal production allocation of 850, the expected profit drops.

The reason is that at a lower capacity allocation, the firm can not meet the demand fluctuation

effectively, which results in higher overage and underage costs and consequently the profit goes

downward; (4) if overage and underage costs are not considered, the firm tends to overestimate the

expected profit.

The variance of the profit with respect to production allocation is shown in Figure 6.7. Following

observations can be drawn from this figure: (1) at a lower capacity allocation, for example, less

than 550, when overage and underage costs are not considered, the variance of the profit turns out

to be lower. However, with overage and underage costs, the variance of the profit is higher; (2) at

a higher capacity allocation, for instance, more than 900, the overage and underage costs do not
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Figure 6.6: Expected profit of the firm with respect to production allocation, χ

affect the variance significantly; (3) at a higher capacity allocation, the variance of the profit is

influenced by the utilization of options. It is observed that options reduce the profit variance at a

higher capacity allocation; (4) At a lower capacity allocation, the options do not play a significant

role in reducing the variance of the profit; and (5) below the capacity allocation of 600, overage and

underage costs affect the variance of the profit, and above the capacity allocation of 600, options

influence the variance.
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Chapter 7

Conclusion

This thesis focuses on the analysis of optimal production allocation problems for a multi-national

firm under exchange rate, demand, and carbon prices uncertainties. The firm possesses the ability

to adjust its production capacity by having different levels of capacity. The uncertain behavior of

these variables – exchange rates, demand, and/or carbon allowance prices, alone or combined, can

significantly impact the profitability of the firm, and can cause the firm plunge into deep financial

crisis. In order to encounter these uncertainties, the firm can adopt an real options approach in

the form of capacity adjustment flexibility, or can opt to utilize financial instruments like forward

contracts and options, or can adopt an approach combining both real and financial options. This

thesis analyzes a relative comparison these approaches under different scenarios and finds the best

approach that maximizes a mean-variance function for a risk-averse manager.

When the firm undergoes exchange rates uncertainties with known demands, the firm can utilize

forward contracts. The stochastic behavior of exchange rates is modeled as a random process. The

aim is to decide how many contracts to buy and how many production quantity to allocate optimally

to both local and foreign markets that maximizes the expected utility of the firm. Four different

scenarios are considered: fully flexible, domestic production, domestic production with foreign

subsidiary, and foreign production with domestic subsidiary systems. Results show that the firm

can hedge the risk from the exchange rate uncertainties by utilizing forward contracts.

In a multi-period setting, the firm can also choose to buy currency put options to hedge exchange

rate uncertainties and exercise the options when exchange rates drop below a strike exchange rate.

The objective is to decide how many options to buy at each period of time that maximizes the mean-

variance utility function subject to the allocation of optimal production capacities to both local and

foreign markets. The firm utilizes both capacity flexibility and currency put options. Investigation

of different scenarios, for instance, fixed capacity system, fixed capacity system with currency put

options, flexible capacity system, and flexible capacity system with currency put options, show that
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the integration of real and financial options benefits the firm most.

A product can have a stochastic life cycle, in which the demand for the product may rise in a

growth regime, and then can fall after some time in a decay regime. A firm may function under

stricter emission regulations and also produces a product that has a regime-switching behavior.

This thesis also examines this case in a mutil-period setting. The correlated behavior of regime-

switching product life cycle along with a stochastic geometric Brownian motion behavior of carbon

allowance prices is modeled in a lattice approach.

A firm experiences uncertainties from demand, carbon prices, and exchange rates simultane-

ously. Moreover, the firm may face overage (too many production) and underage (too low produc-

tion) costs. The firm opts for both carbon call options and currency put options. The aim is to

decide how many call and put options to buy considering overage and underage costs. Results show

that there exists an optimal capacity allocation below which the expected profit drops sharply, if

overage and underage costs are considered. If the firm does not consider the overage and underage

costs, the firm overvalues its expected value.

7.1 Summary of contributions

The contributions of this thesis include four aspects. Firstly, this thesis examines production alloca-

tion problems in a multi-period setting for a multi-national firm under exchange rate uncertainties.

To the best of the author’s knowledge, this multi-period production allocation approach for a

multinational firm under exchange rate uncertainties is the first of its kind.

Secondly, to the best of the author’s knowledge, the literature did not study the use of carbon

options in hedging uncertainties associated with carbon allowance prices. This thesis analyzes the

use of carbon call options to hedge the carbon emission risk. Carbon prices are modeled in the

form of both geometric Brownian motion and geometric Brownian motion with jump processes.

Thirdly, this thesis investigates the stochastic product life cycle under environment emission

regulations in which the stochastic carbon emission prices is modeled as a geometric Brownian

motion. The correlated stochastic behavior of regime-switching demand along with carbon price

uncertainties is modeled in a novel lattice approach. This approach is also the first of its kind.

Fourthly, this thesis analyzes the integrated effect of demand, currency and carbon uncertainties

for a multi-national firm. Moreover, the costs of overage when production exceeds demand and

underage when production falls short of demand. This thesis addresses the overage and underage

costs in the case of stochastic demand.
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7.2 Challenges, limitations, and future research

One challenge is to modeling exchange rates appropriately. The right modeling of a stochastic

process is essential to deduce the correct expected profit and the variance of the profit. This

thesis assumes that the exchange rates follow a geometric Brownian motion. However, Bollen et al.

(2000) model exchange rates as a regime-switching model. There is probably no unique stochastic

model that fits all time frames. The similar statement is also true for the carbon allowance prices

uncertainties. Extracting model parameters is another challenge. In this thesis, we use jump

parameters from Kou (2002). Daskalakis et al. (2009) analyze a total of 273 data from European

Energy Exchange (EEX) carbon prices from March, 2005 to April, 2006 and find that prices vary

from 10 to 29 Euros per EUA with an average of 21.66 Euros. They observe two extremes of about

15% in magnitude in the daily movements. They find a leptokurtic distribution with positively

skewed returns. The jump parameters are derived from the maximum likelihood (ML) approach.

Model reproducibility and model validation are two concerns for any research work on modeling

and simulation. For model reproducibly, this thesis includes detailed numerical examples that show

step by step procedure to implement the proposed models. Detailed calculations are provided

for three period problems with adequate illustrations and figures. For instance, jump/step sizes,

branch probabilities, profits, and corresponding expected values at each time period are clearly

explained. Any reader can easily verify these models using real life data. with a different set of

data anyone can calibrate, verify, and reproduce these models. The programming languages used

in this thesis are MATLAB and C. For model validation, real world exchange rates data are utilized

to extract geometric Brownian motion parameters. Moreover, parameters for demand and carbon

prices uncertainties used in this thesis are in accordance with similar research publications in the

literature. The developed models are generic ones; anyone can extract parameter values from real-

world data, plug these parameters into the proposed models, and can assess the expected profit of

a manufacturing firm.

The current research can be extended in many ways. One could be to consider a supply chain

model in which production and sales occur in more than two countries. The network would be

an intricate one and the hurdle would be to model correlated exchange rates from two different

countries and to find an appropriate hedging strategy. Another way to extend the research is to

consider options along with forward contracts to hedge exchange rate risks. The objective is to

compare results among the scenarios when only forward contracts are used, only options are used,

and when both of these financial tools are used. Considering stochastic product life cycles along

with stochastic exchange rate in a multi-period time frame could be another interesting extension.
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Since environmental regulations on manufacturing companies are becoming stricter day by day,

incorporating the cost of the carbon dioxide emission into this model could be another challenge.

Another extension of the research could be to consider three uncertainties, demand, carbon prices,

and exchange rate, simultaneously over a multi-period planning horizon. The challenge is to model

the correlated behavior of these variables and to determine the expected value of the firm.
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