
Ryerson University
Digital Commons @ Ryerson

Theses and dissertations

1-1-2011

ViC : virtual cadaver - a prototype extendible
system for building photorealistic interactive
visualizations of human anatomy using game
development technology
Alexander Yakobovich
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations
Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by
an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

Recommended Citation
Yakobovich, Alexander, "ViC : virtual cadaver - a prototype extendible system for building photorealistic interactive visualizations of
human anatomy using game development technology" (2011). Theses and dissertations. Paper 883.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F883&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F883&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F883&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F883&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/883?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F883&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

ViC: VIRTUAL CADAVER – A PROTOTYPE EXTENDIBLE SYSTEM

FOR BUILDING PHOTOREALISTIC INTERACTIVE VISUALIZATIONS

OF HUMAN ANATOMY USING GAME DEVELOPMENT

TECHNOLOGY

by

Alexander Yakobovich, BSc, Ryerson University, Toronto, Ontario, 2009

A thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Science

in the Program of

Computer Science

Toronto, Ontario, Canada, 2011

©Alexander Yakobovich 2011

ii

I hereby declare that I am the sole author of this thesis. I authorize Ryerson University to lend

this thesis to other institutions or individuals for the purpose of scholarly research.

Alexander Yakobovich

I further authorize Ryerson University to reproduce this thesis by photocopying or by other

means, in total or in part, at the request of other institutions or individuals for the purpose of

scholarly research.

Alexander Yakobovich

iii

ViC: VIRTUAL CADAVER - A PROTOTYPE EXTENDIBLE SYSTEM FOR THE

PHOTOREALISTIC INTERACTIVE VISUALIZATION OF HUMAN ANATOMY USING

GAME DEVELOPMENT TECHNOLOGY

Alexander Yakobovich

MSc, Computer Science, Ryerson University, 2011

ABSTRACT

This thesis presents a Virtual Cadaver system, ViC, which allows users to interactively “cut open”

and visualize a highly realistic representation of 3D human anatomy, including skin, muscles,

bones, arteries and many other anatomical systems and structures. ViC’s interaction and

visualization functionality, coupled with a multi-touch interface, provide real-time cutaway

operations using simple and familiar gestures. To support the cutaway feature, ViC’s 3D human

anatomy dataset is preprocessed, breaking up the large anatomy system data meshes into smaller,

more manageable mesh “fragments”. The shape of each fragment is crafted to support

semantically meaningful cutaways while the “granularity” of the fragments supports interaction

efficiency. ViC uses game technology to enable highly realistic rendering of human anatomy.

Furthermore, ViC’s performance and cutaway capabilities were evaluated on consumer-grade

hardware to confirm that real-time interaction and visualization with highly-responsive multi-

touch input actions can be achieved.

iv

ACKNOWLEDGEMENTS

I wish to thank my supervisor Dr. Tim McInerney for the strong dedication to the work

documented by my thesis. His passion was reflected in the countless hours spent on guiding me

through the unfamiliar territory of developing a Master’s thesis. The effort and attention that he

invested in this work is unparalleled by anyone in my entire university career.

A big thank you to all my close friends for understanding the importance of my work and being

patient with me while I was sacrificing the many promises I made in order to finish it.

I heartfelt thank you to my mother, Irina Yakubovich, for her continuous support. Having

encouraged me every step of the way to only learn from the mistakes of the past and look

forward to the best of the future, she kept me going at times when it didn’t seem possible.

v

TABLE OF CONTENTS

Chapter 1: Introduction ... 1

1.1 Contributions... 4

1.2 Thesis Outline ... 8

Chapter 2: Literature Survey ... 10

2.1 Existing Approaches ... 10

2.2 Candidate Software Platforms .. 17

2.2.1 Game Engines .. 18

2.2.2 Frameworks and Toolkits .. 23

2.2.3 Graphics Modeling Tools .. 27

2.2.4 Visualization Packages .. 30

Chapter 3: Methodology and Implementation .. 34

3.1 An XNA-based System ... 36

3.1.1 Preprocessing ViC’s dataset .. 39

3.1.2 ViC’s Content Pipeline .. 42

3.1.3 Loading and Runtime ... 44

3.1.4 The Rendering Component: SunBurn Game Engine ... 45

3.1.5 The Collision Component: Picking with Triangle Precision 51

3.1.6 The Touch Interface Component: Input from gestures .. 54

3.1.7 The UI Component .. 56

vi

3.2 Using ViC ... 57

3.2.1 Camera Control .. 57

3.2.2 Cutaway ... 58

3.2.3 Input Combinations .. 60

3.2.4 UI ... 61

3.3 Extendibility .. 63

Chapter 4: Evaluation and Results .. 65

4.1 Interaction: Exposing a target anatomy object/system in context 66

4.1.1 Exposing the humerus through browsing operations only ... 66

4.1.2 Exposing the humerus through fine grained cutaway .. 68

4.1.3 Exposing the humerus in full context .. 70

4.1.4 Performing a complete cutaway of the right arm ... 72

4.2 Extendibility: Extending ViC beyond the prototype capabilities 73

4.2.1 Adding a component .. 73

4.2.2 Adding further non-component based functionality .. 75

4.3 Performance: Evaluating ViC’s performance before and after extendibility 77

Chapter 5: Summary, Conclusion and Future Work ... 81

5.1 Conclusion .. 82

5.2 Future Work .. 82

vii

LIST OF FIGURES

Figure 1: Opaque skin and fully transparent skin with underlying anatomy systems captured from

Google Body [2] ... 10

Figure 2: Google Body one slider control [2] ... 11

Figure 3: Google Body many sliders control [2] .. 11

Figure 4: Volumetric rendering in Voxel-Man [14] ... 13

Figure 5: Non-Photorealistic cutaway illustrations of human anatomy [16] 14

Figure 6: Interaction in Cyber Anatomy [19] ... 16

Figure 7: Unreal Engine 3 scene [20] ... 19

Figure 8: An example CryEngine 3 scene [23] ... 21

Figure 9: A test scene from the OGRE demo collection [24] ... 23

Figure 10: Volumetric Rendering in XNA [27] .. 25

Figure 11: Original visualization author Bill Lorensen [30] .. 26

Figure 12: 3D modeling in Blender using the node compositor [31] ... 27

Figure 13: Biped skeletons modeled using 3Ds Max [33] .. 29

Figure 14: Newell Teapot demonstrating MATLAB’s visualization capabilities [34] 31

Figure 15: XNA's placement in the execution hierarchy of a game application or system 36

Figure 16: ViC's placement in the execution hierarchy .. 37

Figure 17: High-level overview of ViC. ... 38

Figure 18: Model of arm muscles prior to any fragmentation .. 40

Figure 19: A color coded representation of the fragmented muscles consisting of a series of

tubular fragments .. 41

Figure 20: Model of skin of the arm prior to any fragmentation .. 41

viii

Figure 21: A color coded representation of the fragmented "patch"-like layout of skin 42

Figure 22: Diffuse map of skin [37] ... 46

Figure 23: Normal map of skin [37] ... 46

Figure 24: Specular map of skin [37] ... 46

Figure 25: The head mesh without any UV maps... 47

Figure 26: The head mesh with the diffuse map applied .. 47

Figure 27: The diffuse map of the head is applied.. 47

Figure 28: The head mesh with diffuse and normal maps applied ... 48

Figure 29: The normal map of the head is applied ... 48

Figure 30: The head mesh with diffuse, normal and specular maps applied 48

Figure 31: The specular map of the head is applied ... 48

Figure 32: A comparison of a scene with only ambient lighting and no self-shadowing to a scene

with a four-light setup and self-shadowing enabled ... 50

Figure 33: A Ray vs BoundingSphere test. Sample ray intersects the bounding spheres of

fragment 2 and 5, requiring a triangular collision test to determine which fragments were actually

collided with.. 52

Figure 34: A Ray vs Mesh Fragment test. On the triangular level the ray only collided with

fragment 5. .. 53

Figure 35: One finger being move down along the touch panel to move the camera view up 57

Figure 36: Camera view after the completion of the touch and move down gesture. 58

Figure 37: A cutaway action on an upper arm muscle commence at the touch point indicated ... 59

Figure 38: A quick swiping gesture along the length of the muscle removes the underlying

fragments... 59

ix

Figure 39: A cutaway of the entire muscle has been completed... 60

Figure 40: The skin option has been tapped. The UI option dimmed indicating that the skin

anatomy system is no longer visible and the skin has been hidden. Tapping it again will make the

skin visible. ... 62

Figure 41: The upper right arm becomes the focus of the camera after the area enclosed by the

circle was tapped ... 66

Figure 42: The skin visibility turned off. Veins, arteries, nerves and the lymph system were not

needed for this experiment, so they were hidden as well. .. 67

Figure 43: Muscle system visibility turned off exposing the humerus bone in the arm 68

Figure 44: The biceps brachii muscle being progressively removed in order to expose the

humerus. .. 69

Figure 45: Result of completion of the biceps muscle cutaway. .. 69

Figure 46: Two muscles were cutaway in order to fully expose the humerus. 70

Figure 47: The humerus is once again occluded by the veins, nerves, arteries and the lymph

systems. ... 71

Figure 48: Cutaways performed on sections of entire anatomy systems to expose the humerus . 71

Figure 49: A full cutaway of all anatomical systems of the right arm .. 72

Figure 50: Frame-rate under normal load. .. 75

Figure 51: Frame-rate under heavy load. .. 75

Figure 52: Interval data of the idle benchmark ... 79

Figure 53: Interval data of the single-threaded cutaway benchmark ... 79

Figure 54: Interval data of the multi-threaded cutaway benchmark ... 80

x

LIST OF ALGORITHMS

Algorithm 1: Collision checking algorithm .. 52

Algorithm 2: Frame-rate measuring algorithm. .. 73

Algorithm 3: Multithreaded version of Algorithm 1. ... 76

1

Chapter 1: Introduction

Modern-day medical imaging and computer simulation allow medical professionals to both view

and manipulate highly detailed medical data. For example, the entire field of radiology is heavily

dependent on the ability to visualize and measure data gathered from x-ray, ultrasound and

Magnetic Resonance Imaging, to name a few. With the advent of powerful graphics processors

and advanced computer algorithms, surgeons can now plan and even simulate surgical

procedures on virtual representations of patients [1]. Furthermore, visualizing and interacting

with real or hand-crafted 3D medical data enables medical educators and students to perform

tasks that would otherwise be inefficient, difficult or impossible to replicate on a real cadaver.

Despite the availability of powerful hardware and sophisticated visualization algorithms, simply

rendering highly detailed human anatomy data is only part of the medical professionals’ (users’)

needs. Even the most realistic renderings must be accompanied by flexible controls for

interactively generating meaningful contextual views of the data. Contextual data views de-

emphasize or cutaway part of an occluding anatomical object in order for the user to be able to

see a hidden (occluded) object while still retaining some visual cue of the occluding object shape.

Realizing this semantic view generation capability is especially challenging due to the inherently

difficult nature of interacting with 3D data that is projected onto a 2D plane for display. If the

user is not able to navigate through the visualization and select regions of interest, or if there is

limited ability to generate spatially local semantic views from the often huge 3D datasets, their

examination of the data remains at a global anatomy system level and is therefore often less

insightful. For example, certain anatomy “browsers” [2] provide the ability to view whole

2

anatomy systems
1

, such as the arterial, skeletal, and muscular systems, separately or in

combination. However, if the user wishes to visualize the spatial relationship of a specific artery

segment with respect to the neighboring bone and muscles, then these global anatomy system

views are often ineffective.

A complete visualization system is therefore one that provides not only powerful rendering

capabilities but also simple and intuitive interaction controls. The controls must be easily useable

and/or quickly learnable by users who are not computer graphics experts. This can be achieved

by utilizing automated, or pre-authored, controls that directly generate semantic views of the data

[3], rather than changing parameter values that indirectly affect the data view. That is, the

controls must encapsulate the ability to not just interact with the 3D data, but interact with it in

such a way that what the user sees and does is meaningful to them. The prime example is the

already mentioned issue of removing or deemphasizing an occluding anatomy object in order to

not only see the target object but also get a sense of the visual relationship between the two

objects.

Meaningful visualization and interaction capabilities are not the only challenges when

developing an anatomy visualization system. Given that the system must support photorealistic

rendering of the data as well as highly-responsive interaction controls, challenges of achieving

high performance when rendering and performing geometric computations arise. In addition, the

computer hardware that the system runs on must be affordable and accessible to its intended

users. This means that the system must be designed to effectively harness all the rendering and

compute power that is available on modern personal computers, such as Intel-based PCs.

1
 An anatomy system or body system is a group of organs that work together, usually for a single

purpose

3

The final challenge that must be considered in the design of an interactive anatomy visualization

program is that of program longevity through extendibility. Programs that are designed for one

purpose with only a single set of capabilities that cannot be extended beyond the original

intentions of the developer are best described as applications. However, a program that can be

modified beyond its default capabilities by design, either through an Application Programming

Interface (API), in-application editing or source code that can accommodate expansion, can be

described as a system. An extendible anatomy exploration system should allow the intended user,

whether it’s the end user, a third-party developer, or a medical researcher, to expand the tool

beyond the given capabilities in order to add new functionality, modify existing functionality or

to completely redefine the ultimate purpose of the system.

This thesis presents a prototype virtual cadaver system, known as ViC, for the photorealistic

interactive visualization of human anatomy using game development technology. The thesis

presents solutions to all of the aforementioned issues and challenges. The following section

documents these solutions as contributions.

4

1.1 Contributions

This thesis presents a number of contributions delivered in a prototype system, known as ‘ViC’.

ViC is a real-time, visually compelling, high performance visualization system that features

interactivity elements allowing the user to perform a number of operations on a 3D dataset of

human anatomy that mimic real-world actions. ViC’s game engine based renderer uses

photorealistic rendering capabilities to generate close to real-world visuals. In addition, ViC is

designed to be extendible through the use of a component-based software model. The following

subsections present each thesis contribution in more detail.

AN INTERACTIVE VIRTUAL CADAVER

ViC is a system that is not only a browser of human anatomy but an interactive virtual cadaver.

The distinction between an anatomy browser and an interactive virtual cadaver is the ability of

the latter to manipulate 3D data at a fine scale, and not just the ability to navigate through it. A

browser typically allows the user to view, emphasize/deemphasize, isolate, and combine “global”

anatomy systems, such as the arterial system or the skeletal system, or perhaps also individual

anatomy objects. These viewing capabilities are often controlled using simple sliders. An

interactive virtual cadaver, on the other hand, encompasses these browsing capabilities as well as

the manipulation of regions or parts of individual anatomy objects, mimicking tissue cutting and

peeling operations on a real cadaver. That is, while a browser allows showing, hiding, isolating
2

and viewing objects, a virtual cadaver allows direct manipulation of object regions and parts.

2
Isolation of a 3D object involves removing, hiding or deemphasizing (e.g. through the use of

transparency) all other objects in a 3D scene in order to make the target object the only (or most)

visible object in the 3D scene

5

ViC uses a gesture-based operation in order to unwrap or peel away patches of skin or individual

muscles etc. to reveal the anatomy objects or systems that they occlude. The key feature of the

cutaway portion of ViC is the use of partitioned anatomical surface meshes, such as a muscle or

bone or artery, that are broken up into smaller pieces known as “fragments”. These fragments

can be progressively cut away with a simple sweep gesture of a finger on a touch screen,

allowing the user to expose underlying anatomy. The fragmentation of the anatomy meshes was

performed in a preprocessing step using a semi-automatic authoring system that subdivided the

meshes into logical pieces. For example, a tubular artery branch was fragmented into smaller

tubes. This “semantic fragmentation” constrains the interactive cutaway operation such that it

makes sense to the user. Constraining the cutaway in this manner can be contrasted to systems

that allow a user to cut away arbitrarily shaped regions of a surface mesh. Giving the user more

or full control over the cutaway inherently adds significantly more complexity to the process,

including the increase in the number of controls required to perform the operation, a dramatic

increase in the computational expense, and the addition of an intermediate step to interactively

define the cutaway region. The constrained cutaway operation in ViC, on the other hand,

requires minimal input from the user. Simple touch and drag gestures result in a progressive

cutaway of neighboring mesh fragments. For example, the skin fragments of the upper arm are

defined as patches that wrap around the arm, following the arm’s natural cylindrical shape. The

constrained cutaway operation unwraps some or all of these patches, as many as the user desires,

to expose the muscles, veins, etc., underneath. For this anatomy part, the unwrapping is well

understood by the user and allows the user to focus on the exploration of the anatomy rather than

on constantly thinking about how to define a region of an occluding mesh that will expose the

occluded anatomy of interest.

6

PHOTOREALISTIC REAL-TIME VISUALIZATION USING GAME ENGINE TECHNOLOGY

ViC takes advantage of game-engine
3
 based GPU-accelerated real-time rendering and shading. It

features photorealistic visualizations of human anatomy not just for the purpose of aesthetics, but

also for the purpose of realism and accuracy. All rendering, shading, lighting, post-processing

and other techniques that contribute to the realism of ViC are computed at run-time. The

resultant frame rate of the system is guaranteed to be no less than the refresh rate of a modern

LCD display – 60 frames per second – in order to create a smooth and realistic user experience.

TOUCH-BASED NATURAL CONTROLS

ViC features a very compact set of controls that are used for navigation and interaction using a

multi-touch based interface. A touch interface was chosen over a mouse/keyboard combination

as it offers a more natural interaction [4]. The controls are gesture-based with the gestures

ranging from a single finger swipe to multi-finger taps. The gestures are complimented with on-

screen notifications as well as selectable options.

EFFICIENT EXECUTION ON MAINSTREAM COMPUTER HARDWARE

ViC is built on top of a software platform that has been designed for consumer-level hardware.

This means that ViC does not require any specialized or overly expensive hardware that cannot

be purchased off-the-shelf at a local computer store. The hardware on which ViC was evaluated

is considered as a mid-high range gaming PC. The touch display on which ViC was evaluated is

a 30-point touch interface. However, ViC has been designed to run on a touch display that

supports just 2 touch points.

3
 A game engine is a system (often along with a development environment) that facilitates the

creation of computer games.

7

HARNESSES STATE-OF-THE-ART GAME DEVELOPMENT TECHNOLOGY

ViC uses a game development platform and a game engine that were created exclusively for

game development and deployment. This contribution serves as proof that a scientific

development project is not limited solely to scientific-grade packages/platforms. ViC uses the

Microsoft XNA framework [5] and the SunBurn [6] game engine for scene rendering, lighting

and post-processing. The photorealistic and efficient rendering of human anatomy achieved

using a game engine, with a minimal amount of programming, is unmatched by scientific

visualization platforms such as VTK (see Chapter 2). Scientific platforms currently do not

support a sufficient set of features presented at a high enough level of interface abstraction to

easily achieve similar results.

EXTENDIBLE SOFTWARE SYSTEM

ViC is designed to be modular and extendible system rather than an application. This creates

opportunities for other students or professionals to continually increase the functionality of ViC

towards a more complete representation of a real cadaver, dissectible with virtual surgical tools.

ViC’s modularity and extendibility is due to its use of a component based software model. ViC is

constructed using Microsoft’s free and publically available XNA game development framework

(see Chapter 3).

8

1.2 Thesis Outline

The remainder of this thesis is organized into the following chapters.

Chapter 2 is split into two separate but equally important sections. The first section is a survey of

numerous existing applications, platforms and techniques that focus on the interactive

visualization of 3D datasets of human anatomy. The approaches surveyed are unique in their

technical implementations, and each achieves some of the goals presented in the thesis

contributions. These existing approaches utilize different rendering techniques, such as

volumetric rendering or web graphics based rendering, as well as different interaction techniques

such as specialized surgical interfaces. Specific features and shortcomings of these approaches

are examined.

The second section is a survey of general visualization platforms, ranging from game engines to

modeling applications to even more generic kits such as Visualization Toolkit (VTK). These

platforms themselves do not offer sufficient “out of the box” support for the requirements of a

virtual cadaver system outlined in the contributions of this thesis. However, they do potentially

offer the foundation for creating one, albeit with a great deal more effort. These platforms were

considered as candidates for creating ViC.

Chapter 3 begins by explaining why the Microsoft XNA framework was chosen as the

foundation of ViC. The remainder of the chapter dissects ViC to explain how it works, how to

use it and how to extend it. The purpose of XNA as the foundation of ViC is explained, as well

as how its component based model contributes to ViC’s modularity, making it highly extendible.

The fragmentation preprocessing of the 3D human anatomy dataset that ViC utilizes to provide

its cutaway operation is also covered.

9

Chapter 4 presents a number of experiments to demonstrate that ViC is a true interactive virtual

cadaver as opposed to just an anatomy browser. Extendibility of ViC is also put to the test by

expanding its capabilities beyond those of the prototype
4
 presented. The chapter concludes with

performance evaluation both before and after system extendibility.

Chapter 5 summarizes the achievements presented through the prototype, ViC, and suggests

further improvements to the system through possible future work.

4
 The term prototype is used to refer to ViC’s stock functionality and capabilities throughout this

thesis.

10

Chapter 2: Literature Survey

In the pursuit of a balanced system that offers powerful interaction capabilities, longevity

through extendibility, realistic rendering capabilities and high performance, this chapter covers a

number of categories of existing work. These include similar human anatomy visualization

systems presented in the research literature or free/commercial software, as well as platforms that

could serve as foundation for ViC. The following sections describe a wide range of such existing

techniques, tools and frameworks.

2.1 Existing Approaches

GOOGLE BODY

Google Body (Body Browser) [2] is a 3D model viewer of the human body that features

navigation and peel back of anatomical layers (i.e. systems such as the skeletal system) through

transparency control. The browser allows the user to select anatomical parts to identify them, or

search for them by name. The principal input device, a mouse, is used to move the camera from

side to side or to rotate the camera around the upright human body. A single mouse button click

is used to select anatomy parts. A double-click is used to set the selected part as the view target

by isolating it.

Figure 1: Opaque skin and fully transparent skin with underlying anatomy systems captured from Google Body [2]

11

Google Body is a showcase of WebGL (Web-based Graphics Library) technology that allows a

WebGL-compatible web browser to render 3D graphics by executing graphics code directly on

the client’s graphics processor (Figure 1). This means that the entire Google Body client runs

inside a web browser.

While Google Body does not concentrate on realism in visualization or performance, its key

feature is in browsing through the peel back operation that is achieved through transparency. The

browser offers on-screen slider-based controls that allow the user to select the level of

transparency of the individual anatomy systems. The two modes of control for this collection of

sliders are simply called one slider (Figure 2) and many sliders (Figure 3).

Figure 2: Google Body one slider control [2]

Figure 3: Google Body many sliders control [2]

The one slider control allows the user to navigate through the layers of anatomy systems. This is

done by sliding the transparency control starting from the inner most parts (organs) all the way

up to the outer most system (skin). The many sliders control allows the user to set the

transparency of each anatomy system directly. As the user progresses through the slider in either

12

mode, various parts of each system are automatically removed once their alpha
5
 reaches near full

transparency.

Google Body’s approach to browsing the 3D dataset is limited. While the use of transparency has

been shown to be effective under numerous conditions [7] [8], it has the inherit nature of making

complex images far too noisy to properly retain their visual context, especially if more than one

layer is partially transparent. In the case of the complex shapes and complex spatial

interrelationships inherent in human anatomy, transparency alone severely limits the navigation

of Google Body. Globally reducing the alpha of an anatomy system does not guarantee the

contextual exposure of the local system region/part. The browser does not give the user direct

control over what parts the user can fade away using transparency, let alone the granularity of

such control. The browser itself is a web application and is not offered with an API (Application

Platform Interface) or extendibility capabilities of any kind, making changes to the above

limitations impossible.

VOXEL-MAN

Voxel-Man [9] takes another approach to human anatomy visualization and interactivity. Voxel-

Man is the general name given to numerous computer programs that use 3D volume models of

human anatomy derived from CT (Computed Tomography) scans, MRI (Magnetic Resonance

Imaging) scans or photography. The purposes of these individual programs include dental

trainers [10], anatomical atlases [11] and surgery simulators [12].

Voxel-Man uses volumetric rendering of 3D volume images as opposed to surface rendering of

3D model meshes. Surface meshes consist of connected triangles and a triangle is the

5
Alpha is the numerical value of a transparency parameter, ranging between 0% (transparent) and

100% (opaque), denoted by 0.0 and 1.0.

13

fundamental rendering element. Computer graphics hardware has evolved to optimize the

rendering of triangles. Volume images, on the other hand, can be thought of as a stack of images

and the individual rendering element is a voxel, which can be thought of as a tiny cube or 3D

pixel. In a nutshell, volume rendering can be visualized as the “firing” or casting of rays from

each pixel on a screen window through the volume image. Where a ray intersects voxels, a

cumulative color and opacity value is calculated based on voxel intensity values and user-

settable mapping functions. This color and opacity value is used to set the ray’s origin pixel on

the screen. Volume rendering (Figure 4) allows both the interior material of an anatomical

structure and the surface boundary between structures to be shaded [13].

Figure 4: Volumetric rendering in Voxel-Man [14]

The Voxel-Man 3D-Navigator series is a collection of anatomical atlases that can be used to

interactively explore inner organs, brain and skull and the upper limb [15]. These systems are

aimed at trainee radiologists and allow for the interactive removal of entire anatomy objects.

Voxel-man’s volumetric rendering capabilities allow for realistic visualizations. However,

volume rendering is well-known to be much more computationally expensive than surface

14

rendering and requires either specialized graphics hardware or GPU acceleration. Voxel-man’s

programs are not extendible.

INTERACTIVE CUTAWAY SYSTEM

Li et al [16] presented a fairly well balanced approach to general interactive visualization that

has been applied to human anatomy data. Similar to ViC, this approach uses a two part system

including a preprocessing component that is used to “rig” a 3D dataset in order to constrain

interactive cutaway operations on it, and an interactive visualization component. This approach

allows meaningful and contextual interactive cutaway operations to be performed on the dataset

without any specialized interfaces or pre-set scenarios. The system also uses Non-Photorealistic

(NPR [17], Figure 5) shading based conventions in order to further visually augment the cutaway

operations. For example, edge shading is used to provide a visual cue about the surface

orientation.

Figure 5: Non-Photorealistic cutaway illustrations of human anatomy [16]

The system uses the GPU-accelerated Open CSG package [18] to support cutaway operations.

Constructive solid geometry (CSG) implements Boolean operations, such as union and

intersection, on two meshes. While this package supports efficient and robust cutaway operations,

15

the disadvantage of using this package is the inability to photo-realistically shade the output

mesh. The reliance on non-photorealistic visualization makes the system better suited for

illustration-based visualization that is commonly found in an anatomy textbook. While NPR may

be advantageous for creating a simplified and understandable visualization, a true virtual cadaver

system requires photorealism to better mimic the dissection of a real cadaver. Furthermore, since

ViC is not dependent on an external package such as Open CSG, ViC’s rendering style is

changeable and can readily accommodate NPR techniques.

Finally, despite powerful interaction capabilities, this system does not introduce any formal

extendibility capabilities that can be used to extend either of the two system components. The

reliance on Open CSG also restricts extendibility. For example, it may not be possible to add a

non-rigid physics component to the system to allow for elastic tissue simulation. ViC, on the

other hand, was designed to accommodate additional custom authored components or existing

components, such as a physics engine.

CYBER-ANATOMY

Cyber-Anatomy Med [19] is a real-time 3D anatomy explorer for education and illustrative

purposes. It is aimed at both professionals as well as medical and even high-school students. In

addition to standard navigation operations such as zooming, rotation and emphasis/de-emphasis,

it supports interactive peeling of muscles (Figure 6).

16

Figure 6: Interaction in Cyber Anatomy [19]

The peeling operation allows for the removal of layers such as individual muscle objects one by

one. Upon activation of the operation, the user can select a muscle to remove and slide it

anywhere within the 3D model space. The direction of removal of the peeled muscle depends on

the angle view of the camera. The option of resetting the position of the muscles automatically is

available to return them to their original location.

While the peeling away of individual muscles is useful for exposing other occluded anatomical

systems and structures, Cyber Anatomy Med provides this operation only for the muscular

system and not for other anatomy systems. This restriction limits the ability to build fully

meaningful contextual views. In addition, removal of an entire muscle object is also restrictive. It

may often be desirable to peel or cut away only a part of a muscle, or a part or region of other

types of anatomy, to better retain visualization context. The science and art of anatomy

illustration is very old and illustrators have discovered optimal ways of visualizing anatomy

objects, including the liberal use of partial cutaway of objects.

17

2.2 Candidate Software Platforms

This section is a survey of current mainstream software platforms that were considered as the

foundation of ViC. In order to achieve the goals outlined in the contributions (Section 1.1),

candidacy for the foundation of ViC was constrained to the following requirements:

 The platform must provide facilities for the representation and manipulation of 3D data.

Whether by established standards and/or technologies or by exclusively internal

capabilities, the technology must provide extensibility, to allow the end-user to customize

the parameters of the visualization and perform meaningful operations on it. The most

important operation is algorithmic, real-time, and/or procedural manipulation of 3D data.

 The platform must be affordable by the general public. More specifically, the cost (if any)

must be within a reasonable level (i.e. not requiring government/enterprise level funding).

 The platform must be compatible with mainstream hardware. Mainstream hardware is

defined as a standard Intel-based x86 processor
6
 and a mainstream or workstation-class

graphics processor unit. Hardware should not require any additional interface software

aside from the manufacturer supplied drivers, which should be included in the hardware

cost.

 The platform must be readily available. The product must not be exclusive or require

special status – in any context – to obtain. Any individual of the scientific research,

medical field or the general public should be able to obtain the technology.

6
 Despite their affordability, ARM-based SoC (System On Chip) solutions were not considered

on the grounds that as of the time of writing they still did not provide sufficient capabilities for

running ViC.

18

Since the documented platforms were originally designed for a specific purpose, they are placed

into common categories. The four main categories are:

 Game Engines: Systems that were originally designed to facilitate the creation and

development of video games.

 Frameworks (in some cases Toolkits): Systems that were originally designed to provide

(or automate) common low-level/boilerplate functionality and provide a high-level

interface to utilize this functionality.

 Graphics Modeling Packages: Packages that were originally designed to generate,

manipulate, animate, deform and render complex geometric models.

 Packages: Ready-to-use systems/applications that offer sufficient visualization and data

manipulation capabilities, typically via a graphical user interface and/or scripting

language.

Some platforms have either a relationship to, or dependency on, other platforms that are

described. In such cases, the platform was an eligible candidate only if the dependency did not

incur additional cost and/or unobtainable requirements.

The documented platforms in each category were chosen such that they are representative of that

category. That is, other, often numerous, platforms within the same category share similar

features and capabilities and were therefore omitted.

2.2.1 Game Engines

UNREAL ENGINE

19

The Unreal Engine [20] made its debut in 1998 in the first-person shooter (FPS) game titled

Unreal. Although originally designed as an FPS engine, throughout the years Unreal Engine was

used in other game genres ranging from action-adventure to MMORPGs (Massively multiplayer

online role-playing games). Figure 7 showcases rendering capabilities of the engine. The engine

was used for the development of the game America’s Army, which the United States military

admits, serves as a cost effective recruitment tool and as a propaganda device [21].

Figure 7: Unreal Engine 3 scene [20]

The Unreal Engine is also being used in the Serious Games
7
 realm. Digital content creator

Virtual Heroes developed an Emergency Medical Services (EMS) training simulator Zero Hour:

America’s Medic using Unreal Engine 3 [22]. In recent years, Unreal Engine’s purpose went

7
 A serious game is a computer/video game that serves any purpose other than entertainment.

The primary purpose is often education. ViC can be classified as a serious game.

20

beyond gaming. A children’s television show LazyTown uses the engine as a cost-effective

computer-generated imagery (CGI) tool.

The Unreal Development Kit (UDK) is the third and current iteration of the engine. Engine

creator Epic Games brands UDK as a complete professional development framework that

includes all the tools required to create games and other advanced visualizations and/or detailed

3D simulations.

The Unreal Engine is written in C++, making it portable across various desktop platforms

including Windows, Linux and Mac OS. The third iteration (Unreal Engine 3) is designed around

DirectX
8
 for Microsoft Windows. It is one of few game engines in the industry to support both

32-bit and 64-bit systems. Currently, UDK is available for Windows only.

Although the engine itself is written in C++, much of the application code can be written in

UnrealScript, C++ and Java based scripting language, used to author application flow and events.

Use of the UDK for non-commercial purposes is free of charge. Commercial usage is subject to

fees and royalties depending on profits and nature of business at Epic Games’ discretion. UDK is

closed source.

CRYENGINE

CryEngine (CryENGINE) [23] was originally developed as a technology showcase for GPU

manufacturer NVIDIA, but was later used for the first-person shooter title FarCry. CryEngine 2

was used in the award winning title Crysis. CryEngine 3 features include multi-core CPU

8
 DirectX is a set of media API that include functionality for graphics, audio, networking, input

and more.

21

support, deferred lighting
9
, soft body physics and more. Figure 8 showcases the combination of

the many advanced features used to achieve high level of realism with the engine.

Figure 8: An example CryEngine 3 scene [23]

The engine is available for Windows supporting both DirectX 9 and DirectX 10. The engine

developer (Crytek) advertises the engine as a tool for game development, education, simulation

and visualization, with each also determining the engine license type. While educational

licensing is free, most applications fall under a commercial license. Medical imaging, for

instance, is categorized as “Simulation”. Pricing depends on the nature of engine application and

is determined by Crytek. Binary (closed source) and Source (open source) are both available as

separate license types.

OGRE/AXIOM

9
 A rendering technique where the lighting information is applied after the scene is rendered in

order to increase performance.

22

OGRE (Object-Oriented Graphics Rendering Engine) [24] is a 3D graphics rendering engine

which was conceived in 1999 and finally released in 2005. OGRE is a scene-oriented engine

used to provide general solutions for graphics rendering. OGRE is used only for rendering

purposes since it does not provide support for audio, input, physics and other libraries thus

giving the developer freedom to choose their own supporting libraries. OGRE is designed in C++

while Axiom is a C# port. They are both open source and together cover Windows, Linux and

Mac OS X. OGRE has an Object-Oriented interface which follows a plug-in architecture, thus

minimizing the cost of rendering 3D scenes. Its support for both Direct3D (Microsoft’s

proprietary graphics API) and OpenGL (an open standard cross-platform graphics API) makes it

independent of any 3D implementation. In Windows it builds on Visual C++ [25] and Code

Blocks [26], in Linux it uses GCC 3+ and XCode in Mac OS X.

Some of the key features of OGRE are the automated tools for spatial culling (determining

what’s visible in order to increase rendering efficiency), transparency and render state (the state

in which the graphics card should be in to perform a specific rendering operation) management.

It supports shaders with vertex and fragment programs written in GLSL (OpenGL Shading

Language used to write code for the graphics processor in OpenGL), HLSL (High-Level Shader

Language used for graphics processor code with DirectX), and other languages. Some other

notable operations include multi-pass blending, texture coordinate generation and modification

and multi texturing. Developers may design with multiple material techniques having alternative

effects as OGRE automatically uses the best one supported.

OGRE accepts several data types and provides a sophisticated skeleton animation support. A

compositing manager, complete with a scripting language and post-processing interface for

numerous post-processing effects, is also included. Interoperability of OGRE is extended with

23

the availability of exporting tools for 3D modeling tools including 3Ds Max, Maya and Blender

amongst others.

Axiom, which is written in C#, is often referred to as the rendering middleware due to its

flexibility. It also supports both OpenGL and DirectX with tools for shader editing and other

rendering tools featured in OGRE. Figure 9 shows a test scene from the ORGE demo collection.

Figure 9: A test scene from the OGRE demo collection [24]

OGRE and AXIOM are both open source available under the MIT license free of cost.

2.2.2 Frameworks and Toolkits

XNA

Microsoft XNA [5] is a framework consisting of a set of tools with a managed runtime

environment that facilitates primarily computer game development. The post-preview build was

24

released to the public at the end of 2007. XNA’s primary goals are the reduction of repetitive

boilerplate code as well as the merger of various aspects of game development into a single

system that can be used on multiple platforms.

XNA was introduced in 2006 as a high level framework of the DirectX API. XNA uses the .NET

framework
10

 and the Compact .NET framework (a smaller, less functional version of the .NET

framework) on the Xbox 360 and Windows Phone 7 devices.

Despite the fact that XNA is aimed at game development, the framework does not contain any

game-specific components such as level editors, scripting or pre-built content editing, and is

therefore not branded as a game engine. Instead, it provides a vast high-level wrapper for

DirectX, allowing for visualization and interaction capabilities that are not exclusive to gaming

(e.g. Volumetric Rendering (Figure 10)).

10

 The .NET framework is a large general software framework for the Windows operating system

that encompasses functionality for user interface, web development, database connectivity,

networking, algorithms and more.

25

Figure 10: Volumetric Rendering in XNA [27]

XNA framework runs entirely in a managed environment. It supports C# as the principal

programming language, and High-Level Shader Language (HLSL) for graphics code.

XNA requires DirectX version 9.0c and fully supports Shader Model version 3.0. XNA

development binaries, toolset, and redistributables are free of charge. XNA is officially closed

source, although in some circumstances some of its code is released to the public for educational

purposes only.

VTK

Visualization Toolkit (VTK) [28] is a free, open-source 3D system aimed at 3D visualization and

image processing. Internally, VTK is a C++ class library as well as a collection of interface

layers. It was created in 1993 as complementary software to the book "The Visualization Toolkit:

An Object-Oriented Approach to 3D Graphics" [29]. It is fairly exclusive to scientific and

26

medical applications and is neither branded nor used as a general visualization platform

supporting other applications such as computer gaming or cinematic rendering. However, given

its capabilities and extensibility it could, in theory, be used for any visualization application.

Figure 11 show an example of VTK’s rendering capabilities.

VTK is the core of numerous medical visualization and/or interaction applications including

Slicer and ParaView (which was created by Kitware, the developer of VTK).

Figure 11: Original visualization author Bill Lorensen [30]

ParaView can be described as the front-end of VTK, where VTK is a collection of classes that

facilitates the development of visualization applications and ParaView is an example of such

implementation. ParaView also supports client–server architecture to facilitate remote

visualization of central data.

VTK runs on Linux, Windows, Mac and Unix-based platforms. VTK consists of nearly 1000

C++ classes and over 1,000,000 lines of C++ code. Surface and volume rendering are both

supported by VTK. VTK is open source and is free of charge regardless of usage.

27

2.2.3 Graphics Modeling Tools

BLENDER

Blender [31] is a high-end 3D tool used for modeling, shading, animation, rendering, imaging

and real time 3D game creation. Its applications involve visual effects for animated films and

video games. Blender includes extensive and advanced simulation tools with its consistent and

flexible GUI with scripting available in the Python language.

Blender was authored and developed by a company founded by Ton Roosendal in June 1998.

Since then Blender has exchanged a few creditors and is now developed under the supervision of

The Blender Foundation, making it a well-established product.

Blender runs on Windows (2000, XP, Vista), Mac OS X, Linux, Sun Solaris, FreeBSD and SGI

Irix 6.5. Unofficial ports are also available for AmigaOS 4, BeOS, MorphOS, Pocket PC and

SkyOS. It is written primarily in C, C++ and Python. One of the key features of Blender is its

support of Python scripting in the user interface, allowing custom tools, prototyping and tool

creation.

Figure 12: 3D modeling in Blender using the node compositor [31]

28

Its rendering capabilities expand its usability and versatility owing to a fast built-in ray tracer
11

.

It allows layering (separation of objects; Figure 12) and passes along with object-to-object

baking (merging two mesh objects). Various texture maps are supported, including animated

mapping (which animate the surface of the object) and reflection mapping (which map a

reflection onto the object).

Game Blender, a free and open sourced game engine is a component of Blender, which offers

interoperable features such as collision detection, dynamics engine, and programmable logic. It

may also be used as a base for independent, real-time applications ranging from architectural

visualization suites to video game construction.

Blender is free and open source, available under the GNU General Public License. Blender has

simple requirements with a small installation kit despite its key-characteristics of high-end

modeling and imaging. This is in contrast with major modeling tools such as 3ds Max, which has

a significantly larger size and system requirements.

3DS MAX

3ds Max [32] is a design and modeling tool used to provide powerful 3D visualization, animation

and rendering. It supports only Windows (XP, Vista, 7) and is based on plug-in architecture

making it extendible. Its built-in scripting language, MAXScript, can be used for a variety of

purposes including the development of new tools, interfaces, plug-in modules and combining

existing functionalities.

3ds Max is a highly interoperable tool and having its own scripting language allows it to create

custom import/export tools, write procedural controllers and build batch-processing tools

11

 Ray tracing is a technique that traces the path of light with the screen pixel as the origin. The

resultant image is the effect caused by encountering the destination (the 3D object).

29

(automated tools), thus making it flexible and extensible. Aside from using MAXScript, it may

also be extended and customized through its SDK.

Figure 13 shows the modeling results along with various texture maps.

Figure 13: Biped skeletons modeled using 3Ds Max [33]

Inverse Kinematics (skeletons) tools are used to animate characters which include expressions,

scripts, wiring and list controllers. It features four plug-in tools namely, history dependent solver,

history independent solver, spline IK solver and limb solver, each of which aid in smooth

blending, better control and time efficiency. Character Studio is a key plug-in tool used for

human animation. The XView Mesh Analyzer aids polygonal manipulation helping optimize poly

models, topology, loop tools. Freeform capabilities allow users to create or modify meshes with

complete freedom.

3Ds Max is distributed under a propriety license and is priced at several thousand dollars for

commercial use and several hundred for academic use.

30

2.2.4 Visualization Packages

MATLAB

MATLAB (MATrix LABoratory) [34] is a technical computing language with an interactive

environment which is used for data visualization and mathematical models. MATLAB is a

proprietary product of MathWorks, which was created by Cleve Moler in the 1970s.

MATLAB has varying capabilities in 3D visualization ranging from simple mesh creation,

transparency mapping, volume rendering, multifaceted viewing and more. MATLAB’s

interpretation of data is formatted as matrices and vectors, which could define surface plots, grid

plots and mesh data.

MATLAB interfacing can be done in programming languages such as C, C++ and FORTRAN

although programming in MATLAB is primarily done in MATLAB code (m-code). MATLAB

runs on Windows (XP, Vista, 7), Linux and Mac OS X.

31

Figure 14: Newell Teapot demonstrating MATLAB’s visualization capabilities [34]

MATLAB’s 3D visualization capabilities (Figure 14), although not fast or advanced, provide a

flexible and easy to use interface for fairly large amounts of data. Most notably, MATLAB’s

integration with VTK gives it the power of VTK’s visualization without the need for explicit

conversation of data from its native format to VTK’s format. matVTK, a name given to the

framework integrating VTK and MATLAB, is an open source VTK wrapper which provides the

functionality of VTK directly in MATLAB’s toolbox set. The data flow design of matVTK

follows a pipe and filter architecture which helps compute multiple steps at once and time

stamps them to allow for faster re-computation. MATLAB is extended using a C, C++ and

Fortran API for MATLAB.

The matVTK framework is based on three major building-blocks namely, the Pipeline Handle,

the configuration interface and the graphics primitives. The Pipeline Handle is a VTK handle

used to keep track of the data sets used in a current scene. These may be used implicitly or

explicitly for multiple scenes. The configuration interface provides a tight knit control over

32

parameters such as filters, scene components and global settings. Graphics primitives refer to

MATLAB’s plotting functions on various VTK primitives.

IMAGEVIS3D

ImageVis3D [35] is a volume rendering application developed by the NIH/NCRR Center for

Integrative Biomedical Computing (CIBC). ImageVis3D has extensive volume visualization

capabilities featuring slice-based and GPU ray casting tools to visualize 3D data. ImageVis3D

was developed and initiated in 2007 and is publicly released under the MIT license. ImageVis3D

is currently funded and accessible through the Scientific Computing and Imaging Institute (SCI)

at the University of Utah.

ImageVis3D runs on Windows (XP, Vista, 7), Linux and Mac OS X. It is written in C++, and

wraps both OpenGL and DirectX. Various ImageVis3D tools provide flexibility and extensibility

in importing/exporting data. Multiple modules allow developers to build on them separately. The

scalability of the application is extended owing to its ability to run on relatively old hardware.

Along with Voxel-Man, ImageVis3D supports stereo rendering (stereoscopic 3D effects) through

anaglyph imaging
12

. It also has a fairly unique high-level feature, ClearView, that is designed to

explore specific areas in the data while preserving context information and removing visual

clutter at the same time.

The scalability in ImageVis3D comes from its ability to function out of core thus allowing it to

perform not only on the newest generation of graphics but also on common or older hardware

despite supporting fairly large data sets. The component design allows developers to not only

12

 A technique where the rendered frame contains encoded 3D (stereoscopic) information that is

viewable through red/cyan glasses.

33

extend it but also reuse parts of it such including the kernel. ImageVis3D is open-source and is

free of charge.

34

Chapter 3: Methodology and Implementation

The second section of the previous chapter lists numerous visualization platforms that could

potentially serve as the foundation of ViC. Although many of the candidate platforms excel in

one or more of the requirements documented in Section 2.2, very few offer a balance between all

of the requirements. The non-managed game engine kits from the Game Engines category were

ruled out primarily due to questionable licensing costs and terms and notoriously complex

development environments with a steep learning curve. Although they presented all of the

technical capabilities for implementing a virtual cadaver, the aforementioned problems

completely outweighed the balance of all requirements. Graphics Modeling Tools, despite their

very nature of geometry creation, manipulation and visualization, do not provide the out of the

box facilities for creating interactive, real-time visualizations. They are primarily targeted toward

digital artists. Many Packages also suffered from limited support for complex interaction

customization. MATLAB, for instance, offers only primitive 3D mesh visualization techniques

that are nowhere close to the realism required by a virtual cadaver.

In consideration for the requirements in Section 2.2 with particular focus on performance, cost,

feature set and support for longevity with respect to not only developing ViC, but also to

extending and running it, the list was narrowed down to three candidates: Axiom, VTK and

XNA. The XNA framework was ultimately chosen. XNA is an unrestricted framework for the

creation of 3D visualizations with support for advanced visualization and interaction. XNA and

its development environment as well as distribution binaries are free of charge and are publicly

available. XNA-based applications run on a standard x86 processor and a mainstream graphics

card that supports Shader Model 2.0, making it backwards compatible with low-end hardware.

35

Furthermore, XNA offers a high-level managed solution to building DirectX-based real-time

visualizations. With C# as the principal development language and .NET as the development

environment, XNA automatically inherits the many advantages of managed code execution [36].

XNA has been optimized well enough to run even on less powerful embedded .NET Compact

Framework based devices such as ARM-based mobile devices. It is also compliant with

DirectX’s shader language, HLSL
13

, allowing XNA to take advantage of any DirectX graphics

code.

The remainder of this chapter describes ViC’s implementation under the XNA framework. The

usage, capabilities and extendibility of ViC are also discussed.

13

 High Level Shader Language is a C-like language that is used to write graphics programs

(shaders) that run on the graphics processor as opposed to the CPU.

36

3.1 An XNA-based System

Microsoft XNA is a high-level game development framework that wraps the DirectX API and

uses the Microsoft .NET framework. It sits between the XNA-based system (for example, ViC)

or application and the DirectX API in the execution hierarchy (Figure 15).

Figure 15: XNA's placement in the execution hierarchy of a game application or system

XNA itself can be broken down into two fundamental parts, each with specific roles:

CONTENT PIPELINE

XNA’s content pipeline is used to import and process numerous types of data including 3D

models, images and audio. Multiple standard data formats are supported, but the pipeline is fully

extendible to support any standard or custom format. The data that goes through the pipeline is

ultimately transformed (processed) into XNA’s native format (.XNB) for runtime “consumption”.

The pipeline code is executed at build-time, which takes place when the project is built prior to

runtime.

Hardware

GPU/VRAM BUS CPU/RAM

Hardware Abstraction Layer

Driver

APIs/Graphics Libraries

DirectX (Direct3D)

Frameworks/Libraries

.NET XNA

Applications

An XNA Game

37

LOADING AND GAME LOOP

This part begins with game logic initialization and the loading of content assets
14

, followed by

the continuous execution of two key methods – Update and Draw. The looped execution of the

Update and Draw methods constitutes the concept of a game loop.

XNA’s Game class is the base class that defines the above execution model. ViC extends XNA’s

Game class, inheriting the aforementioned behavior (Figure 16).

Figure 16: ViC's placement in the execution hierarchy

Figure 17 provides an abstract overview of ViC’s software architecture giving a high-level

snapshot of its stock functionality and capabilities.

14

 An example of a content asset would be the model file where an anatomy system or the

complete dataset is located.

Hardware

GPU/VRAM BUS CPU/RAM

Hardware Abstraction Layer

Driver

APIs/Graphics Libraries

DirectX (Direct3D)

Frameworks/Libraries

.NET XNA

Applications

ViC

38

Figure 17: High-level overview of ViC.

ViC’s modularity, and ultimately its extendibility, is accomplished through the inheritance of

XNA’s game component model, which is implemented through two key classes,

GameComponent and DrawableGameComponent. The GameComponent class exposes the

Update method to custom update logic, and the DrawableGameComponent class exposes both

the Update and Draw methods to offer rendering
15

. Classes that extend either one of these

component classes follow the same execution flow as XNA’s base game class. Game

components are added to a game’s component collection and the execution of their code is

managed by XNA. Furthermore, individual game components are not required to be dependent

on the game that owns the component collection, making them self-contained modules. Sections

3.1.4 to 3.1.7 explain the key components of ViC. Furthermore, Section 3.3 explains how other

components can be added to extend ViC’s functionality.

15

 DrawableGameComponent’s Update method is used to update logic that will be used for

rendering in the Draw method.

39

3.1.1 Preprocessing ViC’s dataset

Among other formats, XNA’s content pipeline fully supports the .FBX standard model format

and the well-known .JPG/.PNG image formats. ViC’s 3D anatomy dataset [37] is kept in .FBX

files along with .JPG/.PNG material files that are imported and processed for use by ViC at

runtime. The .FBX files contain geometric descriptions of the anatomy meshes that make up the

dataset. Geometric descriptions typically define, among other properties, the 3D vertex positions

of the polygons (triangles) making up an anatomy mesh. The FBX files also contain anatomy

mesh material descriptions and these descriptions typically refer to the .JPG/.PNG material files.

A material description defines attributes such as mesh color and the material files contain texture

images that are ultimately “wrapped” around the geometry of each mesh, supporting

photorealistic rendering. The dataset meshes represent the skin, cardiovascular, circulatory,

digestive, lymphatic, muscular, nervous, respiratory and skeletal systems. The total size of the

dataset is approximately 5.4 million polygons that comprise a total of 190 meshes each

representing an anatomy part. The meshes are complemented with 10 high resolution sets of

textures that include diffuse, normal and specular UV maps sized at 4096 by 4096 pixels.

As mentioned in the introduction, to give ViC the feel of a virtual cadaver the individual

anatomy meshes must be fragmented and labeled. This fragmentation is performed as a

preprocessing step in a custom mesh “authoring” program. The fragmented meshes are then

stored in the .FBX files.

The fragmentation layout of an anatomy object mesh depends on the natural shape of the object,

the original digital artist’s layout of the rectangles and triangles making up the mesh, as well as

the type of the anatomy object. For example, most muscle meshes are tubular in shape and a user

would most often want to cut out tubular sections from the muscle in order to expose the bone

40

and arteries underneath. Consequently, ViC’s muscle meshes (Figure 18), were fragmented into

tubular sections
16

 (Figure 19), allowing the user to slide a finger along the length of a muscle and

remove a series of tubular fragments. Since real muscle is a solid rather than a surface, each

tubular section also contains two “end caps”. The skin (Figure 20) on the other hand, is a thin

sheet of tissue. It was fragmented into patches (Figure 21) to more closely resemble a skin graft

or surgical peeling or “unwrapping” of skin.

Figure 18: Model of arm muscles prior to any fragmentation

16

 Currently only the right arm has been fragmented in the prototype.

41

Figure 19: A color coded representation of the fragmented muscles consisting of a series of tubular fragments

Figure 20: Model of skin of the arm prior to any fragmentation

42

Figure 21: A color coded representation of the fragmented "patch"-like layout of skin

From a rendering perspective, labeled mesh fragments in the .FBX model file are no different

than regular meshes. The sole difference is in the naming convention. This convention and how

meshes that follow it become unique is explained in section 3.1.2.

3.1.2 ViC’s Content Pipeline

XNA’s content pipeline is a black box that takes a standardized file format, such as .FBX, and

processes it into XNA’s native .XNB file format. This allows the pipeline to take any

standardized or custom file type and transform into a format that XNA understands. ViC inherits

XNA’s pipeline and its functionality. However, further customization is needed in order to

support the prototype system’s interaction capabilities.

As mentioned in section 3.1.1, ViC’s 3D meshes are preprocessed in order to fragment them.

The fragmentation layout of each anatomy object is carefully considered such that the final

43

interactive cutaway operation is simplified, is well understood by the user, and makes sense in

the context of real-world cadaver dissection. Other factors that are taken into consideration or

constrain the fragmentation layout are the existing mesh rectangle layout as authored by the

digital artist and the degree of “granularity” of the fragments that balances the computational and

rendering expense against the ability of the user to generate a desired view of occluded anatomy.

As far as XNA is concerned, what is loaded from these models is nothing more than a collection

of meshes. However, ViC takes advantage of the pipeline’s extensibility to define the concept of

a mesh fragment. ViC’s content pipeline extension was customized to do two things when

building and loading a dataset that contains mesh fragments:

Detect a fragment: Mesh fragmentation involves a naming convention to notify ViC’s pipeline

that a mesh is a fragment of a larger mesh. Two parts are added to the beginning of the name of

an anatomy mesh when it is fragmented. The first is the addition of the letter ‘f’, which tells the

pipeline that this mesh is a fragment. The second is a numerical value indicating an index into

the sequence of fragments that together make up the original anatomy object.

Extraction of collision data: When a cutaway operation is executed, for example when the user

sweeps a finger along the touch screen over a fragmented mesh, a collision check against the

fragments is performed in order to determine which fragments the user is selecting for removal.

Section 3.1.5 explains this runtime process in more detail. However, it also requires collision

data to be extracted during system build-time. ViC’s content pipeline extracts the vertices of all

meshes that qualify as fragments and passes the information on to the collision component

(Section 3.1.5) which ultimately performs collision checking with triangular precision.

44

3.1.3 Loading and Runtime

Before ViC enters the game loop, it must first go through a loading process. The loading process

performs initialization of program logic, such as setting up the virtual cadaver scene and loading

of the human anatomy dataset.

At this stage, the dataset has already gone through ViC’s content pipeline and has been prepared

for rendering and interaction. When XNA loads 3D models along with their material files, all of

the data is sent directly to the GPU (Graphics Processor Unit) and a reference to that data is

retained. However, many of ViC’s operations require looking up meshes and mesh fragments by

name, making reference-based lookup insufficient.

In order to make the lookup of anatomy data efficient for ViC’s purposes, the data is not just

loaded into XNA’s default reference-based model containers, but is also loaded into an

AnatomyData class. This class uses a dictionary structure
17

 to store and lookup models and their

meshes by name. The class itself extracts the name of each mesh and uses it as a dictionary key,

while the actual data reference is submitted as a scene entity to the ViC’s rendering component

(further explained in Section 3.1.4), which becomes the dictionary value. The AnatomyData class

provides ViC’s components with the mesh data of any body part or system on demand simply by

a name lookup.

In addition to initialization of the base logic and data loading, during loading ViC also adds its

game components. Game components that are added to the ViC’s component collection undergo

the same process of initialization and loading as ViC’s base class prior to entering the game loop.

17

 .NET framework’s dictionary is a specialized data structure to keeps a collection of keys and

their associated values. In order to find a value, the associated key can be looked up in the

collection.

45

Once the components have gone through the loading process, they enter the game loop just like

the base class. Game loop management of ViC’s components is auto-managed by XNA.

3.1.4 The Rendering Component: SunBurn Game Engine

ViC’s 3D rendering is done by an XNA-powered game engine – SunBurn. The SunBurn game

engine itself is a standalone entity that is self-sufficient to be the foundation of an XNA

application. For ViC’s purposes, only its renderer is used as the rendering game component.

As previously mentioned, when the dataset is loaded by ViC, the 3D data is placed into the

AnatomyData class. The AnatomyData class uses a dictionary with mesh names as the keys, and

an instance of a SunBurn SceneEntity
18

 class for each mesh as the value. When the SunBurn

renderer enters the game loop, it iterates over all scene entities in the AnatomyData class and

renders them with their associated materials.

In order to create the most realistic rendering of the 3D human anatomy set possible, SunBurn

performs the following operations in real-time.

3.1.4.1 Maps and Materials

Human anatomy systems in the dataset that require the highest level of detail in order to look as

realistic as possible are represented not only by high poly
19

 meshes but also by supplementary

UV maps
20

. These maps include diffuse lighting maps, mesh vertex normal displacement maps,

18

 SunBurn uses an instance of the SceneEntity class to represent each 3D scene object such as a

mesh.
19

 An informal term used in the field of computer graphics to indicate that a mesh has a high

level of detail achieved through a high polygon count.
20

 A UV map is 2D representation (texture) of extra detail that is applied to 3D geometry. The

letters U and V refer to the coordinates on the texture, whereas X, Y and Z are used to describe

the 3D vertices of the geometry.

46

and specular lighting maps, each adding specific details to the surface of a mesh when it is

rendered.

Figure 22: Diffuse map of skin [37]

Figure 23: Normal map of skin [37]

Figure 24: Specular map of skin [37]

Diffuse Map (Figure 22): This texture map provides the color representation of a 3D object. The

color information of the diffuse map is constant and does not account for any lighting conditions.

Normal Map (Figure 23): This texture map carries additional 3D coordinates for surface normals

in order to create fake bumps and dents that increase the detail level of a mesh.

Specular Map (Figure 24): This texture map provides information for surface’s shininess and

highlight color. Higher (lighter) values in this map indicate shinier surfaces.

The SunBurn renderer applies these maps to a mesh to give it the most detailed appearance

possible. The captures from Figure 25 to Figure 30 show rendering results after applying each of

the UV maps to the mesh of the head:

47

Resultant mesh view: UV map application:

Figure 25: The head mesh without any UV maps

No UV maps applied

Figure 26: The head mesh with the diffuse map applied

Figure 27: The diffuse map of the head is applied

48

Figure 28: The head mesh with diffuse and normal maps

applied

Figure 29: The normal map of the head is applied

Figure 30: The head mesh with diffuse, normal and specular

maps applied

Figure 31: The specular map of the head is

applied

The combination of the above mentioned maps along with additional custom color information

(such as additional emissive color) constitutes the material of the mesh. Once the material is

49

applied to a mesh, the renderer proceeds to apply lighting and shadowing information (Section

3.1.4.2).

3.1.4.2 Lights and Shadows

To create an even more realistic scene, each mesh in the scene must be properly lit and generate

shadows that correspond to scene lights. To achieve this, SunBurn offers two types of lighting

modes:

Dynamic Lighting: A lighting mode where each light in the scene is calculated in real-time. If

the light properties (such as direction, position and intensity) change or if the object or camera

properties change, then the lighting of the scene is affected in real-time just like in the real world.

This mode offers realism at the expensive of performance.

Static (Baked) Lighting: A lighting mode where the lighting information never changes and is

therefore “baked” into an additional map called the light map, which is applied to the mesh just

like the material UV maps. This mode offers performance at the expense of realism.

Because ViC is a dynamic, interactive and extendible system, the dynamic lighting mode is

chosen to provide real-time lighting. There are two directional lights setup in the prototype with

one lighting the front of the cadaver, and the second lighting the back. An additional two spot

lights are setup around the interactive area of the prototype to provide additional lighting to the

currently fragmented area of the data.

Despite its contribution to realism, only limited shadowing is used. Global shadowing, where

each of the SceneEntity instances casts a shadow, is not used as it limits the visibility of the

interactive portion of ViC. However, to ensure that the element of realism is retained, self-

50

shadowing is used. Self-shadowing enables SceneEntity instances to casts shadows onto

themselves, but not onto other scene objects (Figure 32).

Figure 32: A comparison of a scene with only ambient lighting and no self-shadowing to a scene with a four-light setup and self-

shadowing enabled

As a consequence of dynamic lighting and shadowing, the number of polygons rendered in

ViC’s final scene is higher than the dataset’s 5.5 million polygons. Dynamic lighting and

shadowing require multiple passes at ViC’s dataset geometry resulting in approximately 8

million polygons rendered when the entire cadaver is visible.

3.1.4.3 Post processing

Post-processing is image processing that takes place after the final scene frame is constructed. In

both film/video production and real-time 3D rendering such as video games, post-processing is

used to improve the quality of the frame or add additional realistic or cinematic effects.

ViC uses two post-processors to increase the realism of the cadaver:

Bloom: Strictly speaking, the human eye never sees the bloom effect. Instead, bloom simulates

the fact that in the real world, camera lenses almost never focus perfectly. As a result the image

51

they capture often contains imaging artifacts where light around the brightest object in an image

obscures some parts of the object. This effect is better described as a cinematic effect.

SSAO: Screen Space Ambient Occlusion is an implementation of the ambient occlusion

technique that is suitable for real-time rendering. Ambient Occlusion is a shading technique that

adds realism to a 3D scene by accounting for the way light affects all surfaces in the real world,

including those that are considered non-reflective [38]. SSAO adds dark shadow-like areas that

simulate the attenuation of light due to occlusion.

To ensure that the scene is not “drowned” in a massive amount of post-processing that would

take away from the main interest and goals of ViC, both of these post-processors are set to the

most subtle level possible.

3.1.5 The Collision Component: Picking with Triangle Precision

As stressed previously, ViC is not just a browser but an interactive virtual cadaver with cutaway

capabilities. To offer interactivity in 3D, ViC must detect what part of the anatomy the user is

(virtually) contacting. Cutaway operation in the virtual cadaver is achieved through a touch

display. ViC fires a ray from the location of the user’s finger on the touch display into the scene

when the cutaway gesture is performed. This ray is used for an intersection test with the meshes.

Section 3.1.6 gives a more in-depth look into how input is received from the touch panel and

how it is translated into gestures to provide high-level input information.

ViC’s collision component performs a ray-to-triangle intersection test against all interactive

objects in 3D space in order to detect selected fragments with triangular precision (Algorithm 1).

52

1. For each fragment

a. Perform a Ray vs. BoundingSphere test (Figure 33)

b. Record the names of all fragments that passed the above test

2. For each fragment that passed the Ray vs. BoundingSphere test

a. Perform ray-to-triangle intersection test (Figure 34)

b. Record the names of all fragments that passed the above test

Algorithm 1: Collision checking algorithm

Figure 33: A Ray21 vs BoundingSphere test. Sample ray intersects the bounding spheres of fragment 2 and 5, requiring a

triangular collision test to determine which fragments were actually collided with.

21

 The ray representation in these images is for the purpose of visualizing the collision

relationship. Fundamentally, a ray does not have physical dimensions.

53

Figure 34: A Ray21 vs Mesh Fragment test. On the triangular level the ray only collided with fragment 5.

The triangular intersection test [39] is a fast, CPU-side test that determines whether or not a ray

intersects one or more triangles of a fragment. While this test is fast enough for a real-time

application, given the size in polygons of ViC’s dataset, millions of polygons per frame would

have to be evaluated. This would make ViC’s collision component a bottleneck
22

. The solution is

to rule out all geometry that cannot be intersected by the ray through a much faster test, the

bounding sphere test. The bounding sphere test records the names of all fragments that contain

the ray in their bounding spheres. To determine whether or not their actual geometry intersects

the ray, the ray vs. triangle test is then performed only on the fragments that passed the bounding

sphere test.

Algorithm 1 runs on all meshes when the user makes the initial touch to determine which

anatomy part the user made contact with. Once the anatomy part represented by the selected

22

 A bottleneck is a situation where the performance of a system is slowed down by a slower

component.

54

mesh is determined, the cutaway process is locked to that part only. As a result, Algorithm 1

needs to run on the mesh fragments of the selected body part only during the cutaway process.

3.1.6 The Touch Interface Component: Input from gestures

Interaction with the virtual cadaver is achieved through a multi-touch display. To receive touch

data from the display and pass it on to ViC, the Windows Touch API [40] is used. The API

exposes three methods that record rich
23

 input data through the touch down, move and release

events. This data is recorded by ViC and the combination of these events is used to build

gestures
24

.

Gestures that involve interaction with the fragmented areas of the virtual cadaver also pass the

location of the finger(s) to the collision component (Section 3.1.5) that constructs a ray
25

to be

used for intersection tests. ViC uses the following core (required) gestures for interaction with

the virtual cadaver:

Touch and move: This gesture involves the user touching the touch panel for a half a second

(500 milliseconds), which enables camera control. Subsequent movement of the finger along the

touch panel without lifting is used to rotate the camera in that direction. Horizontal movement of

the finger is used to rotate the camera about the Y-axis. Vertical movement is used to rotate the

camera about the X-axis. The gesture ends when the user lifts the finger off the touch panel.

23

 The touch data includes the location of the touch, the timestamp, the size of the touch area,

whether or not the touch is a finger or a palm and more.
24

 A gesture is a high-level encapsulation of the way the user touches the touch panel.
25

 A ray is an imaginary line in 3D space that originates at the location of the touch and

continues perpendicularly to the plane of the touch display.

55

Tap: This gesture involves the user tapping (touching and instantly releasing) the touch panel.

This gesture is contextual. If this gesture is performed on a fragment, it becomes the object of

interest. The camera pans towards the object of interest to make it centered on the screen.

Additionally, if the camera zoom level is less than a certain threshold
26

, the camera automatically

zooms in on the object of interest. If this gesture is performed on a UI element, the option of that

element is executed. Section 3.1.7 covers the UI elements in-depth.

Pinch: This gesture involves the user touching the touch panel with 2 spaced-out fingers and

moving them towards each other or apart to zoom-in or zoom-out the camera view. The gesture

is registered only if the fingers are spaced apart. If the two fingers are touching when they make

contact with the touch display, a different (unused) gesture is fired.

Touch and move/swipe: This gesture involves the user touching and instantly proceeding to

either move or swipe along the touch panel. This gesture is contextual. If the user touches and

moves/swipes along an empty or non-interactive area of the virtual cadaver, no action is taken. If

the user touches and moves/swipes along a fragmented area, the collision component (Section

3.1.5) determines which fragments the touch made contact with, and performs the cutaway

operation. The cutaway removes the fragments according to the direction of the move/swipe and

the layout of the fragments. For example, if the user touches and swipes along a patch of skin,

the fragments are faded away.

In addition to the above required gestures, ViC also contains the following optional gestures that

are available on a touch panel that supports more than 2 touch points.

26

 ViC’s default zoom threshold for objects of interest is 2.85X.

56

Three-Finger Tap: This gesture involves the user tapping the touch panel with three fingers,

which resets all fragment cutaways that were performed on the virtual cadaver.

Four-Finger Tap: This gesture involves the user tapping the panel with four fingers, which

resets the camera view location and zoom level to make the center of the cadaver as the object of

interest.

3.1.7 The UI Component

The UI component complements ViC’s 3D scene with a 2D interface, which draws 2D elements

on top of the 3D scene. This interface is broken down into 2 parts:

Menu System: The extendible menu system is found on top of the screen, although it can be

configured to be on one on more of the 4 sides of the viewport. It contains a collection of icon-

based menu options that offer the toggling of the visibility of the various human anatomy

systems.

Notification system: The notification system displays notifications about ViC’s various events.

For example, if the user touches and holds the touch panel, the user is notified that the camera

control has been enabled as per the registered gestures of the touch interface component (Section

3.1.6).

57

3.2 Using ViC

3.2.1 Camera Control

ViC uses a Third Person Camera, which has an unrestricted horizontal movement but a

restricted vertical movement to a 180-degree view about the X-axis. This camera model mimics

how human beings turn their head to see around them and tend to only look up high enough to

see what’s directly above them, or only low enough to see their feet.

A user presses a finger and holds anywhere on the touch screen to activate the camera control.

Once the camera control is activated, the user moves a finger up/down the touch panel to move

the camera about the X-axis (Figure 35 and Figure 36) or left/right to move it sideways. The user

then lifts their finger off the touch panel to deactivate the camera control.

Figure 35: One finger being move down along the touch panel to move the camera view up

58

Figure 36: Camera view after the completion of the touch and move down gesture.

3.2.2 Cutaway

The removal or cutting away of part of an anatomy object in ViC is based on a common natural

gesture that uses the index finger to slide things out of the way. To understand this gesture,

picture a piece of paper the size of a post-it note that is placed on top of a book which is in turn

placed on a table. The move that involves the least effort to expose the part of the book that is

covered by the paper is to slide the paper off the book. Since the paper is the size of a post-it note,

only one finger is necessary for this gesture.

This natural sliding or swiping gesture is used to cutaway fragments in ViC. Moving/swiping

with a finger over a sequence of fragments removes them in real-time. In Figure 37, a cutaway

on an upper arm muscle commences with a touch followed by a swiping gesture in the direction

of the arrow (Figure 38).

59

Figure 37: A cutaway action on an upper arm muscle commence at the touch point indicated

Figure 38: A quick swiping gesture along the length of the muscle removes the underlying fragments

60

During the course of the cutaway gesture, the anatomy object on which the cutaway action began

remains the only object on which it can continue. The cutaway is complete when the user lifts the

finger or when the object has been completely removed (Figure 39).

Figure 39: A cutaway of the entire muscle has been completed

3.2.3 Input Combinations

Some of the gestures outlined in Section 3.1.6 can be used together in meaningful combinations.

CAMERA PAN + ZOOM

If the camera control has been activated, the camera can be rotated with the finger that is

currently in contact with the touch panel. However, if the second finger makes contact with the

touch panel while the first finger is still down, the zoom control is activated without deactivating

the camera control. Once the second finger is lifted, zooming of the camera ceases and the

camera rotating control continues.

61

CUTAWAY PRECISION

Once the cutaway process commences, ViC will continue to remove fragments that the finger is

making contact with. To skip a fragment while cutting, it is possible to navigate the finger

around the fragment then return to the object to continue the removal of the remaining fragments.

An alternative technique involves making contact with the touch panel with a second finger to

“halt” the cutaway process. The cutaway finger can continue moving along its intended path

without removing fragments that it is making contact with. To resume the cutaway, the second

finger is lifted. It is important to note that this combination is nearly identical to the camera pan

+ zoom combination. The only difference between the two combinations is context. In the

camera pan + zoom combination, the situation involves the activation of the camera control

prior to the second finger making contact with the touch panel.

3.2.4 UI

The default menu system offers selectable options that toggle the visibility of the individual

anatomy systems (Figure 40). Tapping a highlighted option removes the corresponding anatomy

system. Tapping a dim option brings back the view of the anatomy system along with any

cutaway operations that may have been applied to it.

62

Figure 40: The skin option has been tapped. The UI option dimmed indicating that the skin anatomy system is no longer visible

and the skin has been hidden. Tapping it again will make the skin visible.

63

3.3 Extendibility

The components that provide ViC with various unique capabilities are loosely coupled, meaning

they are modular enough to have little or no dependency on other components or ViC’s core

class [41]. The AnatomyData container is a completely independent class that can be accessed by

both the core of the system, its components or any other class. Furthermore, the AnatomyData

container is a read-only collection of data. Once ViC loads AnatomyData with the dataset and

builds the look-up dictionary, the entire class becomes a read-only container from which data

references can be retrieved through name-based look-up but nothing can be modified. This

ensures that independent components, which have no knowledge of other components or how

they interact with the data, do not modify the dataset and cause inadvertent effects on other

components that use it.

As mentioned in Section 3.1, ViC’s components extend XNA’s GameComponent and

DrawableGameComponent classes. These classes automatically subscribe the components that

extend them to XNA’s execution model. This makes the execution flow of any component

identical to the execution flow of the XNA-derived application (ViC), allowing XNA to safely

manage the execution flow of the component.

In order to extend ViC’s functionality through XNA’s component model, an extended

component class organizes its logic into two fundamental sections.

INITIALIZATION

This part of the execution flow requires the component to match the initialization and loading to

XNA’s two key methods – Initialize and LoadContent. The Initialize method requires the

component to perform all of its logic initialization prior to content loading or any graphics

64

operations. The LoadContent method requires the component to perform all of its loading of

content assets.

RUNTIME

This part of the execution flow requires the component to match the game loop through XNA’s

two key methods – Update and Draw
27

.

Despite the advantages of component-based modularity, extendibility of ViC is not restricted to

the component model. Some functionality is inefficient or outright impossible to be implemented

in a self-contained module. For this reason, any functionality that must reside in an independent

class that does not conform to XNA’s component model can be self-managed without any

complications. Section 4.2.2 demonstrates and evaluates such an example.

27

Draw method is required if the component derives DrawableGameComponent and intends to

render to screen.

65

Chapter 4: Evaluation and Results

In the preceding chapters it has been discussed that a virtual cadaver must offer not only human

anatomy browsing at the global anatomy system level but also interaction capabilities on a local

anatomy object region level. The visualization of human anatomy must allow the user to see

meaningful 3D views both with and without any interactive cutaway operations on the dataset.

The interaction on the dataset must be meaningful in order to allow the user to perform actions

that resembles real-world actions. The input actions must be intuitive and natural in order for

them to be easy to learn and easy to understand their effect. Additionally, in order to qualify as a

system, a program which provides these interaction capabilities must also be readily extendible.

Furthermore, all such achievements must not come at the expense of real-time performance; the

user’s visual feedback and interaction lag cannot become choppy or unbearably slow
28

.

To evaluate the interaction, extendibility, and performance capabilities of ViC, the following

sections document a number of experiments and performance measurements with respect to the

above requirements.

28

 In real-time rendering, the term slow usually refers to a low frame-rate.

66

4.1 Interaction: Exposing a target anatomy object/system in context

This scenario involves the gradual removal of occluding geometry to expose a hidden target

anatomy part/system while retaining visualization context. The target anatomy part for this

experiment was the right humerus, the upper arm bone from the shoulder to the elbow [42]. The

goal of this experiment was to expose the humerus enough to see its location relative to the

muscle system.

4.1.1 Exposing the humerus through browsing operations only

To demonstrate the difference between browsing and the cutaway ability of ViC, this experiment

was first performed with browsing operations only.

STAGE 1:

To navigate to the general area of the right humerus – the upper section of the right arm – a point

on the skin in that general area was tapped (Figure 41).

Figure 41: The upper right arm becomes the focus of the camera after the area enclosed by the circle was tapped

67

STAGE 2:

The visibility of the skin was turned off with the goal to possibly expose some of the visibility of

the skeletal system (Figure 42).

Figure 42: The skin visibility turned off. Veins, arteries, nerves and the lymph system were not needed for this experiment, so

they were hidden as well.

STAGE 3:

At this point, the humerus was still not visible. The only browsing operation left at this point was

to turn off the visibility of the muscles (Figure 43).

68

Figure 43: Muscle system visibility turned off exposing the humerus bone in the arm

The humerus was finally exposed in Figure 43. However, by this point the experiment failed.

While the humerus was clearly visible, the intended context – exposing the humerus in its place

relative to the muscles – has been completely destroyed.

4.1.2 Exposing the humerus through fine grained cutaway

The experiment in Section 4.1.1 failed at Stage 3 due to the fact that exposure of the humerus

meant the complete destruction of the context by removing the entire muscle system or retaining

a noisy context through the use of partial transparency. This experiment was repeated with the

replacement of Stage 3 with ViC’s fragment cutaway approach. The biceps brachii [42] muscle

was cutaway (Figure 44) in order to remove only enough muscle tissue in an attempt to expose

the humerus without completely destroying the context.

69

Figure 44: The biceps brachii muscle being progressively removed in order to expose the humerus.

Figure 45: Result of completion of the biceps muscle cutaway.

70

Figure 45 shows the humerus partially visible in its appropriate context. The cutaway process

was repeated for the second occluding muscle – brachialis anticus [42] – in order to fully expose

the humerus (Figure 46).

Figure 46: Two muscles were cutaway in order to fully expose the humerus.

Figure 46 shows the humerus fully visible, with only two occluding muscles cutaway. The

visualization context – the humerus location relative to the muscular system – remains in-place.

4.1.3 Exposing the humerus in full context

In the previous experiment, the humerus was exposed in the context of the muscular system with

the cutaway of the two occluding muscles. However, this view is not sufficient if the user’s goal

is to expose the humerus in its full context.

For this experiment, all of the omitted systems from the previous experiment were set to visible

again (Figure 47).

71

Figure 47: The humerus is once again occluded by the veins, nerves, arteries and the lymph systems.

In order to once again expose the humerus, the occluding parts had to be removed. However, this

time, entire systems were occluding the humerus, as opposed to just single anatomical structures

such as the brachialis anticus and biceps brachii muscles.

Figure 48: Cutaways performed on sections of entire anatomy systems to expose the humerus

72

Cutaway of sections of the veins, arteries, nerves and the lymph system were performed in order

to remove the occluding portions. The humerus was once again exposed in context with not only

the muscular system but all of the anatomical systems (Figure 48).

4.1.4 Performing a complete cutaway of the right arm

In the previous two experiments, cutaways were performed in order to expose a target

anatomical structure. Another operation that a user might be interested in performing is the

general exploration of the right arm area through cutaway operations. As already shown in the

first experiment, browser capabilities are limited to anatomical system level when it comes to

general exploration. If the user wishes to explore further into the anatomical systems themselves,

full control to cutaway all systems must be provided.

Figure 49: A full cutaway of all anatomical systems of the right arm

Figure 49 shows how a number of cutaways were performed an all of the anatomical systems of

the right arm in order to completely cut through it. All of the spatial relationships have been

retained and all anatomical systems are still visible in their contexts relative to each other.

73

4.2 Extendibility: Extending ViC beyond the prototype capabilities

Section 3.3 provides an in-depth look into the component extendibility and how components

comply with XNA’s execution flow in order to become fully managed by XNA. This section

evaluates the extendibility capabilities by extending ViC’s functionality.

4.2.1 Adding a component

Section 4.3 evaluates ViC’s performance to determine whether or not it runs at a minimum of 60

frames per second as per the feature-contribution listed in Section 1.1. To determine and

benchmark the frame-rate of ViC, a profiler component was added to the component collection.

A profiler is a tool that can be used to determine and benchmark the performance of a real-time

rendering application. ViC’s profiler component will simply measure and show the frame-rate.

The following algorithm [43] provides an accurate way to measure the frame-rate of an XNA

application:

1. Initialize the frame counter and current elapsed time to zero

2. When rendering

a. Increment the frame counter

3. When updating

a. Increment the current elapsed time

b. Check if the current elapsed time is greater than or equal the target time (1 second)

c. If b. is true

i. Subtract one second from the current elapsed time

ii. Record the value of frame counter
29

iii. Restart the frame counter

d. Otherwise carry on until the next update call

Algorithm 2: Frame-rate measuring algorithm.

29

 This is technically the return value of the algorithm. It is not “returned” but instead accessed

when the frame rate value is being displayed.

74

Note that the above approach maps perfectly to XNA’s execution flow and therefore easily

becomes a self-contained component. The first step resides in the component’s Initialize method

while the third step belongs in the component’s Update method. In order to count a rendered

frame, this approach requires the current frame counter to be incremented inside the Draw

method, subsequently placing the third step into the Draw method. As a result, this requires the

profiler to be a DrawableGameComponent despite the fact that it does not technically need to

render anything. The profiler passes the resultant frame-rate to its parent (the core ViC class)

which in turn displays the frame-rate in the title bar of ViC’s window. The profiler component

was added to ViC’s component collection. Since this component is just a frame counting

benchmark tool, it does not require access to the AnatomyData container.

To verify the accuracy of the profiler component, its results were compared against fraps – a

commercial frame-rate measuring tool that is known to be accurate.

The results of both the profiler and fraps were compared through two simple experiments. In the

first experiment, the frame-rate of ViC under normal load was noted. Under normal load, a

properly functioning and well-performing XNA application should run at the refresh rate of the

monitor
30

 with vertical synchronization
31

 on. Figure 50 shows the frame-rate measured by ViC’s

profiler component (in the title bar) matching that of which was measured by fraps (just under

the title bar).

30

 A modern day LCD refresh rate is 60 hertz.
31

 Vertical synchronization (or V-sync) forces the completion of a frame rendering, prior to

clearing the screen buffer and rendering the next frame. This is used to prevent tearing, a quality-

impacting condition in which a mishmash of both frames appears on the screen.

75

Figure 50: Frame-rate under normal load.

Figure 51: Frame-rate under heavy load.

To force the frame-rate to drop without any practical purpose, ViC’s core update method was

populated with junk code executed in a large loop. The consequence of the increased load was

the reduction of the frame-rate by 20 frames per second. Figure 51 shows that both ViC’s

profiler component and the control (fraps) detected and agreed on this figure, verifying the

profiler’s accuracy.

4.2.2 Adding further non-component based functionality

Despite the advantages of the component model, ViC’s extendibility is not bound to it. Further

functionality and capabilities can be encapsulated by any class that does not necessarily extend

XNA’s game component classes. Calls to these classes’ methods can be made directly from

ViC’s core class or through other components. A common instance of such scenario would be a

third party library that has its own mechanism that is not modeled around XNA’s execution flow.

As an example, ViC was further extended with a third-party concurrency library. ParallelTasks

[44] is an XNA library that acts as a task scheduler to distribute the application load between all

available processor cores. It is designed to mimic the Microsoft Task Parallel Library.

ParallelTasks does not follow XNA’s execution flow. In fact, the library has only one method

that must be executed in the game loop in order to execute all of the currently scheduled tasks.

76

The functionality of the entire library is encapsulated in its static Parallel class, methods of

which can be called on demand. ParallelTasks was imported into ViC as a separately built .NET-

based library and its namespaces
32

were exposed in ViC’s core class. ParallelTasks’

RunCallbacks method call was placed in the core class Update method.

Section 3.1.5 explains how the collision component uses a fast triangle collision test to determine

which of the fragments are selected by a gesture. The test iterates over all fragments that passed

the bounding sphere test. Although this is a fast test, it is a brute-force (exhaustive search)

approach and would therefore not scale with a sharp increase in the number of fragments. To

solve this problem, the second step of the collision component’s collision checking algorithm

was modified to include the functionality of the ParallelTasks library:

1. For each SceneEntity in AnatomyData that is a fragment (has collision data)

a. Perform a Ray vs. BoundingSphere test (Figure 33)

b. Record the names of all fragments that passed the above test

2. Use ParallelTasks’ parallel ForEach method to create a task for each of the fragments that passed the Ray vs. BoundingSphere

test

a. Perform ray-to-triangle intersection test (Figure 34)

b. Record the names of all fragments that passed the above test

Algorithm 3: Multithreaded version of Algorithm 1.

ParallelTasks automatically scales the number of tests in step 2 of the collision checking

algorithm to n processor cores. The results of the collisions are returned when ViC’s core class

Update method calls ParallelTasks’ RunCallbacks method.

Section 4.3 documents the evaluation of the resultant performance gain from the above extension

to confirm that parallelization was functioning properly and had a positive effect on ViC’s

performance.

32

 A namespace is a categorization mechanism for a collection of related classes.

77

4.3 Performance: Evaluating ViC’s performance before and after

extendibility

In order to qualify as a real-time system, ViC must run at a minimum frame-rate of 60 frames per

second. The release
33

 of ViC is automatically locked to a frame-rate of 60 frames per second,

since vertical synchronization is turned on for the final build. However, in order to benchmark

the true performance of ViC, determining just the fact of whether or not ViC is running at 60

frames per second is not enough. A more meaningful measure is required in order to conclude

whether or not the prototype can handle further extendibility. Furthermore, to determine whether

or not the functionality that was added in Section 4.2.2 truly improved the performance of ViC,

the real (and not just vsync locked) frame-rate has to be measured. As a result, a much more

thorough benchmarking mechanism than the one presented in Section 4.2.1 is required.

For the purpose of an accurate benchmark, a profiler build of ViC is configured. This build is

identical to the release build, with the only difference being that vertical synchronization is

turned off. This does not require the GPU rasterizer to wait for one frame to be drawn on screen

before starting to draw the next. As a result, this enables ViC to run at its maximum frame-rate as

opposed to the maximum vsync locked frame-rate of 60 frames per second. To record

meaningful data with these changes, the profiler component from Section 4.2.1 is further

modified to record a snapshot of the frame-rate figure every second for the duration of the

benchmark.

To evaluate ViC’s performance, three benchmarks were setup: idle, single-threaded cutaway,

and multi-threaded cutaway.

33

 A release build of a .NET application is one that has been stripped of all debug symbols and

optimized for usage as a final product.

78

IDLE

This benchmark involved ViC, in its state before the addition of the component in Section 4.2.2,

running without any user intervention. The purpose of this benchmark was to determine the stock

performance of ViC without any input.

SINGLE-THREADED CUTAWAY

This benchmark involved ViC, in its state before the addition of the component in Section 4.2.2,

running while cutaway operations were continuously performed on the most heavily fragmented

of the human anatomy systems – the muscles. The purpose of this benchmark was to determine

ViC’s stock performance while the prototype’s principal operation – cutaway – was utilized.

MULTI-THREADED CUTAWAY

This benchmark evaluated ViC, in its state after the modifications in Section 4.2.2, to determine

whether or not the non-component based extendibility of ParallelTasks had an intended (positive)

effect on ViC’s performance. As with single-threaded cutaway, cutaway operations are

performed continuously on the muscle system.

The three benchmarks were run for 10 seconds each, capturing 10 snapshots of the frame-rate.

The benchmarks were performed on a PC with the following specifications: Intel i7 930 CPU,

6GB of RAM, GeForce GTX 480 GPU, and Windows 7 64-bit OS.

79

Figure 52: Interval data of the idle benchmark

With an average of 124.07 frames per second, the idle benchmark indicates that ViC was running

at more than twice the locked frame-rate. This proves that ViC’s stock performance is well

beyond the required minimum in order to run at 60 frames per second. However, this test does

not address the question of how much room for extendibility remains as the principal

functionality, cutaway, is not utilized.

Figure 53: Interval data of the single-threaded cutaway benchmark

80

With cutaway in action, the single-threaded cutaway benchmark highlighted a drop in

performance. While the average frame-rate in this benchmark was still higher than the minimum

required, a loss of an average of over 40 frames per second with during continuous cutaway,

indicates that the collision component was consuming a significant amount of CPU time.

Furthermore, this means that ViC’s performance is likely to degrade even more with a sharp

increase in the fragment count or granularity.

Figure 54: Interval data of the multi-threaded cutaway benchmark

Utilizing the extended functionality documented in Section 4.2.2, the multi-threaded cutaway

benchmark shows that parallelization of the collision checking algorithm from Section 3.1.5,

increased ViC’s performance by an average of over 25 frames per second. With the final average

frame-rate of 106.1 frames per second, the extended version of ViC was performing well above

the minimum required performance.

81

Chapter 5: Summary, Conclusion and Future Work

With the advent of powerful graphics processors, medical professionals are now able to view and

manipulate highly detailed renderings of human anatomy data. Whether it is for the purpose of

medical education or surgical simulation, interactive medical visualization systems can provide

capabilities that are impractical or expensive on a real cadaver.

As discussed in Chapter 1, just rendering human anatomy data is only part of medical

professionals’ needs. The visualization of 3D data must be accompanied by powerful contextual

view capabilities and interaction controls. The controls must be constrained, effectively

simplifying what would otherwise require complex user input actions. The combination of these

powerful controls and photorealistic rendering of the data should create meaningful

visualizations and operations that are analogous to real-world procedures.

In addition to the aforementioned technical requirements of a virtual cadaver system, such a

system must also be designed in such a way that nothing beyond affordable mainstream

hardware would be required to run it. With real-time performance a key element in the user

experience, the system must effectively harness the readily available compute and rendering

power of mainstream hardware.

Finally, for a system to offer longevity even beyond its original intended purpose, it must also be

extendible. Whether by exposing an API, or offering a feature of in-application expandability or

even exposing its source code, the term system is reserved only for a program that offers such

capabilities.

82

5.1 Conclusion

This thesis presented ViC, a real-time, photorealistic, high performance human anatomy

visualization system that offers interaction capabilities designed to mimic operations on a real

cadaver. In addition to advanced, touch screen based interaction using natural gestures, ViC also

features highly realistic data rendering capability by using state-of-the-art game engine

technology. ViC is designed to be fully extendible through two different approaches. By

following its component-based model, additional functionality can be placed into a self-

contained module that follows the execution flow of ViC’s foundation, XNA. This has the added

advantage of complete automation of such component’s code execution. Secondly, in situations

where following XNA’s execution model is not possible, additional functionality can be placed

into a class of any design which can access data and call ViC’s stock functionality on-demand.

Performance of ViC both before and after extendibility was evaluated to ensure that the system

runs at a real-time rate of a minimum of 60 frames per second.

5.2 Future Work

Currently ViC’s interactive area is limited to the right arm. All meshes in the arm have been

fragmented, including bones, muscles, arteries, veins, nerves, and the lymphatic system. Once

the entire data set has been fragmented, ViC’s cutaway functionality must be verified for all

fragmented meshes. In addition, the end cap regions of a solid mesh fragment (such as the

muscle or bone) are currently rendered using a solid color. These end caps must be more

realistically rendered using a texture image and shading effects such as edge shading.

Despite the very nature of ViC as an extendible system, a number of improvements to the current

prototype can be made particularly in its interaction capabilities. The collision component

83

currently performs at high-speed but its exhaustive search collision testing should be replaced

with a more efficient component, such as a physics engine. Physics engines offer more complex

capabilities including high-performance collision checking through spatial subdivision

optimizations such as quad-trees [45], as well as more realistic features such as soft-body

simulations. This improvement will become even more important once the entire data set is

fragmented.

Taking advantage of more advanced physics capabilities can also potentially provide further

useful interaction operations that mimic interactions with a real cadaver. For example, the

incorporation of soft body physics would allow for an interaction operation such as a pull with a

medical instrument to elastically move tissue out of the way in order to see hidden tissue.

Finally, the preprocessing program itself should be incorporated into ViC’s content pipeline or

even the runtime of ViC. This merged system could then expedite or even inspire the

development of new types of operations directly in ViC’s rendering context.

84

REFERENCES

[1] Ravindran, S. (2011, June 21). Stanford students use new virtual dissection table to study

anatomy. Retrieved July 3, 2011, from Contra Costa Times:

http://www.contracostatimes.com/science/ci_18319433?nclick_check=1

[2] Google Labs. (2010). Google Body. (Google) Retrieved July 14, 2011, from

http://bodybrowser.googlelabs.com/

[3] Dyck, J., Pinelle, D., Brown, B., & Gutwin, C. (2003). Learning from Games: HCI Design

Innovations in Entertainment Software. Proceedings of Graphics Interface, (pp. 237-246).

Halifax, Nova Scotia.

[4] Forlines, C., Wigdor, D., Shen, C., & Balakrishnan, R. (2007). Direct-touch vs. mouse input

for tabletop displays. Proceedings of the SIGCHI conference on Human factors in computing

systems, (pp. 647-656). New York, NY.

[5] Microsoft Corporation. (n.d.). XNA Game Studio 4.0 . (Microsoft) Retrieved August 26, 2011,

from http://create.msdn.com/en-us/resources/downloads

[6] Synapse Gaming LLC. (n.d.). XNA Game Development and Engine Technology. (Synapse

Gaming) Retrieved August 26, 2011, from http://www.synapsegaming.com/

[7] Čmolík, L. (2008). Relational Transparency Model for Interactive Technical Illustration.

Proceedings of the 9th international symposium on Smart Graphics, (pp. 263-270). Berlin,

Heidelberg.

[8] Diepstraten, J., Weiskopf, D., & Ertl, T. (2002). Transparency in Interactive Technical

Illustrations. Computer Graphics Forum, 21(3), pp. 317-325. Oxford.

85

[9] VOXEL-MAN - Surgery Simulators and Virtual Body Models. (n.d.). (University Medical

Center Hamburg-Eppendorf) Retrieved August 26, 2011, from http://voxel-man.de/

[10] Pohlenz, P., Gröbe, A., Petersik, A., Von Sternberg, N., Pflesser, B., & Pommert, A. (2010).

Virtual dental surgery as a new educational tool in dental school. Journal of Cranio-

Maxillofacial Surgery, 38 (8), 560-564.

[11] Hacker, S., & Handels, H. (2009). A framework for representation and visualization of 3D

shape variability of organs in an interactive anatomical atlas. Methods of information in medicine,

48 (3), 272-281.

[12] Reddy-Kolanu, G., & Alderson, D. (2011). Evaluating the effectiveness of the Voxel-Man

TempoSurg virtual reality simulator in facilitating learning mastoid surgery. Annals of the Royal

College of Surgeons of England, 93 (3), 205-208.

[13] Drebin, R. A., Carpenter, L., & Hanrahan, P. (1988). Volume rendering. SIGGRAPH

Comput. Graph., 22 (4), 65-74.

[14] VOXEL-MAN Gallery. (n.d.). (University Medical Center Hamburg-Eppendorf) Retrieved

August 26, 2011, from http://www.voxel-man.de/gallery/

[15] VOXEL-MAN - Virtual Body Models. (n.d.). (Voxel-Man) Retrieved August 26, 2011, from

http://www.voxel-man.de/3d-navigator/

[16] Li, W., Ritter, L., Agrawala, M., Curless, B., & Salesin, D. (2007). Interactive cutaway

illustrations of complex 3D models. ACM Transactions on Graphics, 26 (3), 31-40.

86

[17] Gooch, B., Gooch, P., Shirley, P., & Cohen, E. (1998). A non-photorealistic lighting model

for automatic technical illustration. Proceedings of ACM SIGGRAPH 98, (pp. 447-452). Orlando,

FL, USA.

[18] Kirsch, F. (n.d.). OpenCSG - The CSG rendering library. Retrieved August 26, 2011, from

http://opencsg.org/

[19] Cyber Anatomy Med. (n.d.). (Cyber Anatomy) Retrieved August 26, 2011, from

http://www.cyber-anatomy.com/product_CAHA.php

[20] Unreal Technology. (n.d.). (Epic Games, Inc) Retrieved August 26, 2011, from

http://www.unrealengine.com/

[21] Morris, C. (2002, June 3). CNN Money - Your tax dollars at play. (CC) Retrieved April 5,

2011, from http://money.cnn.com/2002/05/31/commentary/game_over/column_gaming/

[22] Zero Hour: America's Medic. (n.d.). (The George Washington University and The George

Washington University Medical Center) Retrieved August 26, 2011, from

http://zerohour.nemspi.org/

[23] Crytek | MyCryENGINE. (n.d.). (Crytek) Retrieved August 26, 2011, from

http://mycryengine.com/

[24] OGRE – Open Source 3D Graphics Engine. (n.d.). Retrieved August 26, 2011, from

http://www.ogre3d.org/

[25] Visual C++. (n.d.). (Microsoft) Retrieved August 26, 2011, from

http://msdn.microsoft.com/en-us/library/60k1461a.aspx

87

[26] Code::Blocks. (n.d.). Retrieved August 26, 2011, from http://www.codeblocks.org/

[27] Hayward, K. (n.d.). Volume Rendering 102: Transfer Functions. Retrieved September 9,

2011, from Graphics Runner: http://graphicsrunner.blogspot.com/2009_01_01_archive.html

[28] VTK - The Visualization Toolkit. (n.d.). (Kitware) Retrieved August 26, 2011, from

http://www.vtk.org/

[29] Schroeder, W., Martin, K., & Lorensen, B. (1993). Visualization Toolkit: An Object-

Oriented Approach to 3D Graphics. Kitware.

[30] VTK - The Visualization Toolkit. (n.d.). Retrieved September 4, 2011, from

http://www.vtk.org/VTK/project/imagegallery.php

[31] Blender. (n.d.). (Blender Foundation) Retrieved August 26, 2011, from

http://www.blender.org/

[32] 3ds Max - 3D Modeling, Animation, and Rendering Software. (n.d.). (Autodesk) Retrieved

August 26, 2011, from http://usa.autodesk.com/3ds-max/

[33] Calo, T. F. (n.d.). Retrieved September 9, 2011, from Tucho online portfolio:

3dart_wanted_gallery: http://artbytuchoweb.blogspot.com/2009/11/3dartwantedgallery.html

[34] MATLAB - The Language Of Technical Computing. (n.d.). (MathWorks, Inc) Retrieved

August 26, 2011, from http://www.mathworks.com/products/matlab/index.html

[35] ImageVis3D. (n.d.). (NIH/NCRR Center for Integrative Biomedical Computing) Retrieved

August 26, 2011, from http://www.sci.utah.edu/cibc/software/41-imagevis3d.html

88

[36] Gough, J. (2005). Virtual machines, managed code and component technology. Proceedings

of the Australian Software Engineering Conference, ASWEC, 2005, pp. 5-12. Washington, DC,

USA.

[37] cgshape. (n.d.). Human Male Anatomy - Body, Muscles, Skeleton, Internal Organs and

Lymphatic. Retrieved September 8, 2011, from TurboSquid: http://www.turbosquid.com/3d-

models/human-male-anatomy---3d-model/584511

[38] Mittring, M. (2007). Finding next gen: CryEngine 2. ACM SIGGRAPH 2007 courses (pp.

97-121). San Diego: ACM.

[39] Möller, T., & Trumbore, B. (1997). Fast, Minimum Storage Ray-Triangle Intersection.

Journal of Graphics Tools, 2 (1), 21-28.

[40] Windows Touch: Developer Resources. (n.d.). (Microsoft Corporation) Retrieved September

4, 2011, from MSDN: http://archive.msdn.microsoft.com/WindowsTouch

[41] Schmidt , H. W., Crnkovic , I., Heineman , G. T., & Stafford, J. A. (2005). A Hybrid

Component-Based System Development Process. Proceedings of the 31st EUROMICRO

Conference on Software Engineering and Advanced Applications, (pp. 152-159). Washington,

DC, USA.

[42] Taj Books Ltd. (2004). Atlas of Anatomy. Burnaby: Giunti Editorial Group.

[43] Hargreaves, S. (2007, June 8). Displaying the framerate. Retrieved August 2, 2011, from

Shawn Hargreaves Blog - Game programming with the XNA Framework:

http://blogs.msdn.com/b/shawnhar/archive/2007/06/08/displaying-the-framerate.aspx

89

[44] ParallelTasks Threading Library for Windows and Xbox360. (n.d.). Retrieved September 9,

2011, from CodePlex - Open Source Community: http://paralleltasks.codeplex.com/

[45] Tang, B., & Miao, L. (2010). Real-Time Rendering for 3D Game Terrain with GPU

Optimization. Proceedings of the 2010 Second International Conference on Computer Modeling

and Simulation, Vol. 1, pp. 198-201. Washington, DC, USA.

	Ryerson University
	Digital Commons @ Ryerson
	1-1-2011

	ViC : virtual cadaver - a prototype extendible system for building photorealistic interactive visualizations of human anatomy using game development technology
	Alexander Yakobovich
	Recommended Citation

