

TOWARDS ACCURATE FPGA AREA MODELS

FOR FPGA ARCHITECTURE EVALUATION

by

Farheen Fatima Khan

B.Tech, Jawaharlal Nehru Technological University, Hyderabad, India, 2002

M.Tech, Jawaharlal Nehru Technological University, Hyderabad, India, 2006

A dissertation

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in the Program of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2017

© Farheen Fatima Khan 2017

ii

Author's Declaration

AUTHOR’S DECLARATION FOR ELECTRONIC SUBMISSION OF A DISSERTATION.

I hereby declare that I am the sole author of this thesis. This is a true copy of the dissertation,

including any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this thesis or dissertation to other institutions or individuals

for the purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis or dissertation by photocopying or

by other means, in total or in part, at the request of other institutions or individuals for the purpose

of scholarly research.

I understand that my dissertation may be made electronically available to the public.

iii

Abstract

TOWARDS ACCURATE FPGA AREA MODELS FOR FPGA

ARCHITECTURE EVALUATION

Dissertation Submitted by:

Farheen Fatima Khan, Doctor of Philosophy, 2017

Electrical and Computer Engineering, Ryerson University, Canada

Advisor

Dr. Andy Ye

Electrical and Computer Engineering, Ryerson University, Canada

Field Programmable Gate Array (FPGA) devices are integrated circuit chips which can be

configured by the end user. FPGA architectures have evolved into heterogeneous System-on-Chips

(SoCs) devices in order to meet the diverse market demands. Integrating reconfigurable fabrics in

SOCs require an accurate estimation of the layout area of the reconfigurable fabrics in order to

properly accommodate early floor-planning. Hence, this work provides an evaluation on the

accuracy of the minimum width transistor area models in ranking the actual layout area of FPGA

architectures. Both the original VPR area model and the new COFFE area model are compared

against the actual layouts with up to 3 metal layers for the various FPGA building blocks. We

found that both models have significant variations with respect to the accuracy of their predictions

across the building blocks. In particular, the original VPR model overestimates the layout area of

larger buffers, full adders and multiplexers by as much as 38% while underestimates the layout

area of smaller buffers and multiplexers by as much as 58% for an overall prediction error variation

of 96%. The newer COFFE model also significantly overestimates the layout area of full adders

by 13% and underestimates the layout area of multiplexers by a maximum of 60% for a prediction

iv

error variation of 73%. Such variations are particularly significant considering sensitivity analyses

are not routinely performed in FPGA architectural studies. Our results suggest that such analyses

are extremely important in studies that employ the minimum width area models so the tolerance

of the architectural conclusions against the prediction error variations can be quantified. This work

proposes a more accurate active area model to estimate the layout area of FPGA multiplexers by

considering diffusion sharing and folding. In addition, we found that comparing to the minimum

width transistor area model, the traditional metal area based stick diagrams, in lieu of actual layout,

can provide much more accurate layout area estimations. In particular, minimum width transistor

area can underestimate the layout area of LUT multiplexers by as much as a factor of 2-3 while

stick diagrams can achieve over 85% -95% percent accuracy in layout area estimation. Based on

our work, we present correction factors to the commonly used FPGA building blocks, so their

actual layout area can be used to achieve a highly accurate ranking of the implementation area of

FPGA architectures built upon these layouts.

v

Acknowledgement

 Foremost, I would like to thank Almighty God for everything in my life.

I would like to express my heartfelt appreciation and sincere gratitude to my advisor, Dr. Andy Ye

for his invaluable guidance, support and patience throughout the course of the work. I am privileged

that he has given me an opportunity to work with him and help me refine and sharpen my skills. His

encouragement and assistance in revision of the papers have contributed significantly to my research

work. I am not only impressed by his profound knowledge and systematic research methodology but

his simplicity and gentle personality will always influence my future career as well as personal life.

Further, I am also thankful to Dr. Andy Ye for providing me a Lab with all amenities to help me

perform my research work for all the past years.

I also wish to thank my committee members Dr. Fei Yuan, Dr. Lev Kirischian and Dr. Vadim

Geurkov for generously offering their time, helpful suggestions and feedback.

I am highly indebted to my parents for their able guidance and who have laid the foundation of my

career by teaching me the morals and ethics that an ideal person needs to know. My best source of

inspiration is my dad who made me feel self-confident, and my mom who is my motivation. I deeply

express my gratitude for their eternal blessings. Moreover, I am highly obliged to my late father-in-

law for inspiring me to always do better than before.

I want to especially thank my husband, Arshad Mohammed without his support and encouragement

I could never finish the Ph.D. studies. I owe him for the sacrifices he has made to fulfill my dream. A

special thanks to my children, Aleena and Hamza for being patient and understanding during the past

years. Their endless love and long waits for me to play with them will always be remembered.

I am also thankful to my brother and sister and all my well-wishers who have provided me with

encouraging words to accomplish my goals.

Finally, and most importantly, I would like to greatly acknowledge the financial support from my

advisor, Dr. Andy Ye as well as Ryerson University.

http://www.ee.ryerson.ca/people/Kirischian.html

vi

Dedication

To my beloved parents & my husband, Arshad Mohammed.

vii

Table of Contents

Author's Declaration .. ii

Abstract ... iii

Acknowledgement ... v

Dedication ... vi

List of Tables ... x

List of Figures ... xi

Abbreviations ... xvi

List of Symbols .. xvii

Chapter 1 Introduction ... 1

1.1 Overview .. 1

1.2 Related Works .. 3

1.3 Motivation .. 6

1.4 Research Objectives ... 8

1.5 Framework ... 10

1.6 Contributions .. 11

1.7 Dissertation Outline.. 14

Chapter 2 Background ... 15

2.1 FPGA Architecture ... 15

2.1.1 Logic Block Architecture .. 17

2.1.2 Routing Architecture ... 24

2.2 Survey on High Level Area Estimation tools used for FPGA Based Systems 28

2.3 Minimum Width Transistor Area ... 30

2.4 Stick Diagrams ... 31

2.5 Summary .. 35

Chapter 3 CMOS based FPGA Components ... 36

3.1 Inverters .. 36

3.2 Buffers .. 42

3.2.1 4x Buffer ... 44

3.2.2 Multistage Buffer .. 49

viii

3.2.3 Tristate Buffers ... 51

3.3 SRAM... 52

3.4 Full adder.. 55

3.5 Summary .. 56

Chapter 4 Pass Transistor based FPGA Components Part I –Active Area Modeling ... 57

4.1 Multiplexer ... 57

4.2 2:1 Multiplexer ... 59

4.3 Active area modeling of 2:1 multiplexer.. 62

4.3.1 Diffusion sharing without transistor folding ... 64

4.3.2 Diffusion sharing with transistor folding .. 66

4.4 Active area estimation for larger multiplexers ... 68

4.4.1 Encoded Multiplexers ... 68

4.4.2 Decoded Multiplexers ... 68

4.5 Summary .. 69

Chapter 5 Pass Transistor based FPGA Components Part II – Layout of Multiplexers 70

5.1 Encoded Multiplexers .. 70

5.1.1 2-LUT ... 71

5.1.2 3-LUT ... 73

5.1.3 4-LUT ... 77

5.1.4 5-LUT and 6-LUT... 82

5.2 Decoded Multiplexer .. 83

5.3 Layout strategy for encoded and decoded multiplexers ... 85

5.3.1 Comparing mirroring strategy with row and column strategy suggested by VPR . 87

5.4 Summary .. 88

Chapter 6 Experimental Analysis and Results ... 90

6.1 Stick Diagram Comparison .. 91

6.2 Active Area Comparison .. 92

6.3 Selection of the number of metal layers for layout .. 96

6.4 Multiplexers based on 1x transistors .. 97

6.5 Effect of Transistor Size on the Consistency of Prediction Errors 99

6.6 Comparison of LUT multiplexer with Routing multiplexer .. 101

ix

6.7 FPGA CMOS components ... 104

6.8 Summary .. 106

Chapter 7 Conclusion and Future Research .. 107

7.1 Summary .. 107

7.2 Future Research .. 108

Appendix A – Layouts using 3 metal .. 109

Appendix B – Layouts using 2 metal ... 114

Appendix C – Deep Submicron SCMOS Magic rules ... 117

References .. 120

x

List of Tables

Table 1.1 : FPGA Architectural Parameters .. 6

Table 4.1: Effect of area on folding ... 67

Table 6.1: Stick Diagram and Layout comparison .. 91

Table 6.2: Active Area of Multiplexers .. 94

Table 6.3: Active Area CMOS based Components .. 95

Table 6.4 : INTEL 45nm Metal Stack [19] ... 96

Table 6.5 : Total Layout Area – Encoded and Decoded Multiplexers 100

Table 6.6: LUT Area vs Routing Multiplexer Area ... 104

Table 6.7 : Total Layout area –CMOS based FPGA Components 105

xi

List of Figures

Fig. 2.1: (a) Island-style FPGA architecture (b) FPGA tile .. 16

Fig. 2.2: Components of basic logic element (BLE) ... 18

Fig. 2.3: 2-LUT schematic and circuit diagram .. 19

Fig. 2.4: (K+1)-LUT created with two K- LUTs .. 19

Fig. 2.5: (K+2)-LUT created from four K-LUTs ... 20

Fig. 2.6: Stratix II ALM LUT .. 21

Fig. 2.7: Clustered Logic Block .. 22

Fig. 2.8: Logic cell of commercial FPGA tile .. 23

Fig. 2.9: A typical FPGA tile structure ... 24

Fig. 2.10 : Wire segments distribution ... 25

Fig. 2.11: Example of disjoint switch block .. 26

Fig. 2.12: Programmable switches (a) Unbuffered (b) Buffered uni-directional (c) Buffered

bi-directional ... 26

Fig. 2.13: Input connection Block .. 27

Fig. 2.14 Output Connection block (a) Unshared buffers for driving (b) Shared buffer for

driving .. 28

Fig. 2.15: Minimum width transistor area model .. 31

Fig. 2.16 : 2-LUT as a combination of 2:1 multiplexers .. 32

Fig. 2.17: 2 LUT multiplexer (a) Stick diagram illustration (b) Stick diagram illustration

using 3 metals. .. 34

Fig. 3.1: Inverter symbol, function, circuit diagram. .. 37

Fig. 3.2: Inverter DC characteristics for different sizing of pMOS transistor. 37

Fig. 3.3: Folding of transistors ... 38

xii

Fig. 3.4 : Inverter Layout (a) unit inverter ... 39

Fig. 3.5: Unit-Inverter layout considering minimum adjacent spacing 40

Fig. 3.6: Inverter Layout (a) 2x inverter unfolded, 1368λ2 (b) 2x inverters folded, 1568λ2 . 41

Fig. 3.7: 2x inverter (a) layout considering minimum adjacent component spacing and

ignoring power and ground (b) IRSIM Simulation for Inverter .. 42

Fig. 3.8: Buffer formed by a chain of inverters .. 43

Fig. 3.9: 4x buffer to drive large loads ... 44

Fig. 3.10: 2x buffer to drive small loads .. 44

Fig. 3.11: Layout of 4x Buffer, second stage transistors are with two folds (a) Good design

(b) Bad design resulting in slower gate as output is connected to two contacts. 45

Fig. 3.12: IRSIM Simulation for 4x Buffer ... 45

Fig. 3.13: 4x Buffer layout (a) no folds (b) two folds (c) four folds (d) IRSIM simulation .. 47

Fig. 3.14: Layout of 4x buffer with diffusion sharing (a) no folds (b) two folds (c) four folds

... 48

Fig. 3.15: 4x buffer (a) layout with minimum adjacent spacing (b) simulation 48

Fig. 3.16: Multistage Buffer 16x of stage ratio four ... 49

Fig. 3.17 : 16x multistage buffer with diffusion sharing (a) between first and second stage

inverter with no folds (b) between first and second stage inverter with two folds 50

Fig. 3.18: 16x multistage buffer with diffusion sharing at all stages 50

Fig. 3.19: Multistage buffer (a) layout showing minimum adjacent component spacing (b)

simulation... 51

Fig. 3.20: Tristate Buffer 5x minimum size .. 51

Fig. 3.21: Bi-directional paths using tri-state buffers .. 52

Fig. 3.22: SRAM (a) schematic (b) circuit diagram ... 54

Fig. 3.23: 6T SRAM Layout ... 54

xiii

Fig. 3.24 : Full adder (a) schematic (b) layout [21] .. 55

Fig. 4.1: 4:1Multiplexer symbol ... 58

Fig. 4.2 : 4:1 Multiplexer (a) Encoded (b) Decoded ... 58

Fig. 4.3: Transmission gate .. 58

Fig. 4.4: 2:1 multiplexer (a) schematic (b) layout with effective width 1x, area is 432λ2 59

Fig. 4.5: Different layouts of 2:1 multiplexers of size 4x with 2 folds and without diffusion

sharing(a) area is 24λ x 43λ (1032λ2) (b) area is 48λ x 28λ (1344λ2) (c) area is 31λ x35λ (1085λ2)

... 60

Fig. 4.6 : Layout of 2:1 multiplexer of size 4x with folding and diffusion sharing, (a) 2 folds-

area 880λ2 (b) 4 folds- area 1368λ2 .. 61

Fig. 4.7: Layout of 2:1 multiplexer of size 4x with diffusion widening and diffusion sharing,

area is 24λ x 30λ (720λ2) ... 61

Fig. 4.8 : Layout of 2:1 multiplexer of transistor size 16x (a) no folds, 24x78=1872λ2 (b) two

folds, 40x46= 1840 λ2 (c)four folds, 72x31=2232 λ2 .. 62

Fig. 4.9: (a) Two pass transistors with minimum width, weff=1 (b) 2:1 multiplexer from two

transistors (weff=1) with shared drain diffusion (c) 2:1 multiplexer of transistors with width

4 (weff=4) from diffusion widening (d) 2:1 multiplexer of transistors with width 10 (weff=10)

with two folds... 63

Fig. 4.10: Multiplexer with diffusion sharing (a) transistors with small drive strengths (b)

transistors with large drive strengths. .. 65

Fig. 5.1: 2-LUT schematic and circuit .. 71

Fig. 5.2 : Two different orientations of 2 LUT layout (a) Area is 49x43 λ2 (b) Area is 45x43 λ2

... 72

Fig. 5.3: 2-LUT layouts with internal connections (a) 49x53 λ2 (b) 45x53 λ2 72

Fig. 5.4: 2-LUT layout (a) effective transistor width 1x and resulted in area of 2640λ2

,(b)effective transistor width 6x and resulted in area of 4560λ2. .. 73

xiv

Fig. 5.5: 3- LUT layout when 2- LUTs are placed one below the other. Area is 49x96 =4704λ2

... 74

Fig. 5.6: 3-LUT layout when 2- LUTs are placed side by side. Area is 102x43= 4386 λ2 74

Fig. 5.7 3- LUT layout using 2 metals with internal connections. Area is 98x71=6985 λ2 .. 75

Fig. 5.8: 3-LUT multiplexer stick diagram illustration (a) 2 metal, (b) 3 metal 76

Fig. 5.9: 3-LUT layout (a) with effective transistor width 1x. Area is 98x71=6958 λ2 76

Fig. 5.10: 4 LUT layout, when output 2:1 multiplexer is placed in between the 3 LUTs. 77

Fig. 5.11: 4 LUT layout when output 2:1 multiplexer is placed below the 3 LUTs. 78

Fig. 5.12: 4-LUT layout, when output 2:1 multiplexer is placed in between the modified 3-

LUTs. .. 79

Fig. 5.13: Compact 4 LUT layouts with minimum internal white spaces 80

Fig. 5.14: 4-LUT multiplexer, stick diagram illustration (a) 2 metal (b) 3 metal 81

Fig. 5.15: 4-LUT layout (a) with transistor size 1x, Area is 98x134=13132 λ2 81

Fig. 5.16: 5-LUT layout. Area is 230x146=33580 λ2 ... 82

Fig. 5.17 : 6-LUT Layout. Area is 253x303=76659 λ2 .. 83

Fig. 5.18: 8: 1 Decoded Multiplexer ... 84

Fig. 5.19: 8:1 decoded multiplexer, 6x transistor size (a) 2metals, Area is 72x95= 6840λ2 (b)

3metals, area is 72x84=6048λ2 .. 84

Fig. 5.20: Layout using 2 metals (a)5-LUT layout (b) 8:1 decoded multiplexer 86

Fig. 5.21 : 4-LUT layout using 3 metals (a) mirroring technique with 1x transistors (b) row

and column technique with 1x transistors (c) mirroring technique with 16x transistors (d)

row and column technique with 16x transistors .. 88

Fig. 6.1 Active area comparison (a) Encoded and Decoded Multiplexers (b) CMOS based

components .. 93

Fig. 6.2: Layout area comparison (a) transistor weff=1 (b) transistor weff=6 (c) transistor

weff=16 .. 98

xv

Fig. 6.3 : Multiplexer (a) LUT (b) Routing ... 102

Fig. 6.4: Layout area comparison for CMOS components ... 105

xvi

Abbreviations

FPGAs Field Programmable Gate Arrays

SoC System-on-Chip

ASICs Application Specific Integrated Circuits

CAD Computer-aided Design

VPR Versatile Place and Route

COFFE Circuit Optimization for FPGA Exploration

MOSIS Metal Oxide Semiconductor Implementation Service

LUT Look-Up-Table

IO Input Output Block

BLE Basic Logic Element

LC Logic Cell

LB Logic Block

CB Connection Block

SB Switch Blocks

SRAM Static Random Access Memory

LAB Logic Array Block

ALM Adaptive Logic Module

CLB Clustered Logic Blocks

D-FF Data Flip-Flop

CMOS Complementary Metal Oxide Semiconductor

MOSFET Metal Oxide Semiconductor Field Effect Transistor

IC Integrated Circuits

xvii

List of Symbols

k LUT size (Number of inputs per LUT)

N Number of LUTs per cluster

I Number of inputs per cluster

L Wire segment length

Fc_input Logic cluster input pin connectivity

Fc_output Logic cluster output pin connectivity

Ntile Number of tiles that are required to implement the circuit

Ni Number of basic FPGA building blocks

Ei Estimated layout area of each building block of the FPGA tile

E Estimated layout area of the FPGA tile

Ai Actual layout area of each FPGA building block

A Actual layout area of the FPGA tile

i Each building block

α Scaling factor of the FPGA tile

αi Scaling factor for each FPGA building block

λ Half transistor length

n Number of folds of transistor

weff Effective width of transistor

z Number of inputs to decoded multiplexer

Ninv Number of inverters

Dmin Minimum delay

xviii

F Path effort

g Logical effort

h Electrical effort

Cout Output capacitance of the gate

Cin Input Capacitance of the gate

CL Load capacitance

mux Multiplexer

1

Chapter 1

Introduction

1.1 Overview

FPGAs (Field Programmable Gate Arrays) are widely used digital circuits to implement

several applications in digital signal processing, video/audio processing, biomedical engineering

and scientific computation. They have become very popular as compared to ASICs (Application-

Specific Integrated Circuits) due to their post fabrication re-programmability. Programmability of

FPGAs is due to the presence of programmable logic blocks and programmable routing. The logic

blocks are used to implement digital logic, while the programmable routing are used to connect

the logic blocks to form larger circuits.

In the present era, the demand for high-performance devices has led to Heterogeneous

Computing. FPGA devices known for post fabrication re-programmability of the hardware chip

can be integrated with other devices on a single chip. However, integrating reconfigurable fabrics

in SoCs (System on Chips) require an accurate estimation of the layout area of the reconfigurable

fabrics in order to properly accommodate early floor-planning also an accurate estimation would

help in FPGA architecture research. Hence, this research leads to heterogeneous computing with

FPGAs by providing area estimations of FPGA components based on layout work rather than area

based on simple equation-based models.

FPGA architectures are designed using an empirical approach with the help of CAD tools.

Different architectures are evaluated by mapping benchmark circuits to the architectural models

2

and various quality metrics such as speed, area, and power are measured and compared. The

resulting information is then used as a guide by the human architect to select the best suitable

architecture for a target application. Therefore, the reliability of this data is strongly dependent on

the accuracy of the models used by the different CAD tools in evaluating architectures.

Hence, this work provides an evaluation on the accuracy of the area model, the minimum width

transistor area model, in ranking the actual layout area of FPGA architectures. The minimum width

transistor area model is widely used area model in many previous FPGA architectural studies [1]-

[10], in estimating the implementation area of proposed FPGA architectures. This model was

originally introduced in the VPR tool as its area model and a modified version based on transistor

sizing is used in COFFE. In this work both the original VPR area model and the new COFFE area

model are compared against the actual layouts with up to 3 metal layers for the various FPGA

building blocks.

As our initial work, we compare the layout areas of LUT multiplexers with three area models,

VPR, COFFE and the traditional metal-area-based stick diagram layout area estimation technique.

Details of stick diagram area estimation are explained in Chapter 2 and its area analysis is presented

in Chapter 6 . We found that, comparing to the minimum width transistor area models, the VPR

model and the COFFE model, the traditional metal area based stick diagrams can provide much

more accurate layout area estimations. In particular, minimum width transistor area can

underestimate the layout area of LUT multiplexers by as much as a factor of 2-3 while stick

diagrams can achieve over 90 percent accuracy in layout area estimation. Then, we discuss the

layout strategy for different components and present a new mirroring technique for designing

LUTs, where larger size LUTs are created from smaller size LUTs using the mirroring technique.

The LUT multiplexer area comparison and mirroring technique are published in [12].

3

After that, we present correction factors for different components. In addition, we observed

that there is a wide range of inconsistency against the predicted estimations across various FPGA

components. As both VPR and COFFE area models use generic area estimation equations for all

components based on individual transistor count and the spacing between adjacent transistors, they

consider neither circuit topology nor the actual connectivity of adjacent transistors. To determine

accurate area estimations, in this work we take into account both circuit topology and connectivity

of neighboring transistors including metal and diffusion sharing. Later, we propose a more accurate

method to estimate active area for FPGA multiplexers extensively found in logic blocks and

routing architectures. In future, we plan to have an open source library of the actual layouts of

various FPGA components of different sizes. These layouts are skillfully designed best effort

manual layout to achieve compact area with minimum white spaces.

1.2 Related Works

Minimum Width Transistor Area has been used in many FPGA architectural studies [1]-[10]

in estimating the implementation area of proposed FPGA architectures. The model assumes a set

of basic building blocks for FPGAs and takes in a set of FPGA architectural parameters as input

[11]. It then estimates the total active area that is required to implement a given FPGA architecture

by counting transistors. The count assumes only minimum channel length transistors and each

minimum width transistor is counted as one unit of area, while the area of larger transistors are

scaled as a function of their width. The minimum width transistor area model has always been

considered to be a high fidelity model in ranking the implementation area of FPGA architectures

[11].

4

 In this work, we exam the fidelity of the minimum width transistor area model in ranking

the implementation area of FPGA architectures. It is based on the fact that the consistency of an

area model in over/under-predicting the actual layout area is extremely important in the model's

ability to correctly rank architectures. In particular, when a model consistently over/under-predicts

layout area, it will correctly rank architectures; even though the model gives inaccurate overall

layout area. When a model inconsistently over/under-predicts layout area, on the other hand, it will

lead to incorrect ranking of architectures. Consequently, in this work, we measure the consistency

of the minimum transistor area model in predicting the layout area of the various fundamental

FPGA building blocks.

The accuracy of the minimum transistor area model in ranking FPGA architectures is particular

important in the era of FPGA-based SOC designs. With ever-increasing logic capacity, there are

an increasing number of FPGA-based SOC designs [13][14]. These designs contain a mix of

reconfigurable fabric and fixed logic in order to maximize performance and minimize power

consumption of their target applications. Currently these FPGA-based SOC designs are mainly

from traditional FPGA companies, which have the knowhow of designing efficient reconfigurable

fabrics. As a result, these products are typically general-purpose in nature and are architected to

target a variety of applications. But as architectural-level research progresses, it has become

increasingly evident that reconfigurable fabrics can benefit a variety of applications from

processors to signal processing ASICs. Consequently, there is an increasing demand for non-

FPGA companies, such as CPU and ASIC manufacturers, to include reconfigurable fabrics on

their traditionally fixed logic products. To decide if reconfigurable fabrics should be included in a

specialized SOC design, it is extremely important to select the most efficient architecture for the

5

target application. It is important to understand the accuracy of the current de facto method of

estimating the area of reconfigurable fabrics in correctly ranking architectural alternatives.

The minimum width transistor area model is first used in [1] to investigate the effect of logic

cluster inputs on the implementation area of logic clusters. Subsequently, the model is used in

several major FPGA architectural studies on logic cluster topology [2]-[6], FPGA routing area [7]-

[9], effect of multi-bit routing resources on FPGA logic and routing area [10]. It also serves as one

of the fundamental models used by the VPR tools [11] [15]. Few studies, however, have been

conducted on the accuracy of the minimum width transistor area model. In particular, the study in

[16] [17] studies the automatic generation of FPGA tiles based on FPGA architectural parameters.

The automatically generated tile area is significantly larger than custom design tiles, which are

used in industrial designs; and consequently no direct comparison is made between the generated

tile area to the minimum width transistor area. The work in [18] used a modified version of the

minimum width transistor area model based on transistor sizing of individual transistors. However,

their justification is given to the modification based on layout work done for individual transistor

sizing and not on the actual layout of FPGA fabric. The work in [12] examines the accuracy of the

minimum transistor area model on predicting the overall layout area of FPGAs. The fidelity of the

model in ranking FPGA architectures, however, has not been examined before.

This work is based on the actual layouts drawn using the publicly available SCMOS (Scalable

Complementary Metal Oxide Semiconductor) deep submicron scalable layout rules in Magic [19]

[20]. Once the layouts are designed, we compare physical layout area and active area to the

predicted area of the minimum width transistor area models.

6

1.3 Motivation

The performance and logic density of FPGA architectures are strongly influenced by a set of

interrelated architectural parameters. In particular, Table 1.1 shows the set of architectural

parameters that define the cluster-based FPGA architecture extensively studied in academia. In

particular, k is the number of inputs per look-up table (LUT). Varying k has a direct effect on the

value of N, the number of LUTs per logic block, and the value of I, the number of inputs per logic

block, that should be used to achieve optimum performance and logic density. Varying L, the wire

segment length or multiple lengths, affects the optimum values of Fc_input, the number of input

connections per logic block input pin, and the optimum value of Fc_output, the number of output

connections per logic block output pin. Consequently, to identify an efficient FPGA architecture

for a target benchmark set, one needs to sweep through the set of architectural parameters and

empirically identify the most efficient parameter settings for each parameter. Due to time

consuming nature of VLSI layout, the FPGA architectural research community has avoided

measuring the actual implementation area of FPGA architectures based on actual layout area and

has relied on simple equation-based minimum width transistor area model to estimate the layout

area.

Table 1.1 : FPGA Architectural Parameters

Parameter Description

k LUT size (Number of inputs per LUT)

N Number of LUTs per Cluster

I Number of inputs per Cluster

L Wire segment length

Fc_input Logic cluster input pin connectivity

Fc_output Logic cluster output pin connectivity

7

This simple equation-based model, however, ignores wiring area and circuit topology. By

ignoring wiring area and circuit topology, the model can significantly over or under predict the

layout area of FPGA building blocks. More importantly since wiring demand and circuit topology

can vary significantly from one FPGA building block to another, the amount of over/under-

prediction can also vary significantly from one building block to another. The variation, in turn,

can significantly reduce the model's ability to accurately rank FPGA architectures.

 In particular, in VPR, the implementation area of a circuit on an FPGA is calculated by the

following equation:

blocksbuildingalli

iitile ENNE (1)

where Ntile is the number of tiles that are required to implement the circuit and Ni is the number of

basic FPGA building blocks of a given type in a tile and Ei is the estimated layout area of each type

of building block that the tile contains. Note that both Ntile and Ni values are architectural dependent,

they change as the architectural parameters shown in Table 1.1 changes. The Ei values, however,

are architectural independent and are only a function of the number and the sizes of the transistors

in a specific building block, and this equation mirrors the actual area measurement when the full

layout of an FPGA tile is available where the area can be measured by:

blocksbuildingalli

iitile ANNA (2)

where Ai is the actual layout area (including wiring area) of each FPGA building block.

It is important to note that if the estimated area Ei always consistently over/under-estimates the

actual layout area Ai by a constant factor α, (i.e. Ai = α * Ei for all i that belongs to all building

8

blocks), then the actual total layout area also varies from the estimated layout area by α (i.e. A = α

* E). Since the actual layout area is always a constantly scaled version of the estimated layout area

regardless of the architectural parameter setting, the architectural conclusions drawn using the

estimated area will always be the same as the ones drawn using the actual layout area.

If the scaling factor between Ai and Ei varies from component to component, (i.e. Ai = αi * Ei

for all i that belongs to all building blocks), then the total actual layout area, A, becomes:

blocksbuildingalli

iiitile ENNA (3)

The scaling factor between the actual layout area, A, and the estimated layout area, E, will then

be dependent on the Ni values, which are architectural dependent variables. Consequently, the

scaling factor between A and E will also be architecturally dependent and the architectural

conclusion drawn based on the estimated layout area will deviate from the architectural conclusion

drawn using the actual layout area.

In this work, we measure αi, the ratio between the actual layout area and the estimated layout

area, for each fundamental building block of the VPR FPGA architecture.

1.4 Research Objectives

Primary Objective

To study the accuracy of current area model. The current area model is based on active area

which is defined by the minimum width transistor area. The active area is generally used to

measure the area of any given FPGA architecture. Numerous studies [1]-[10] are based on active

area. For example Ahmed and Rose [5] state that 4-input LUT size when used in any logic cluster

9

gives better FPGA performance and density. There is no verification on the accuracy and fidelity

of the area model. These models neither consider circuit topology nor diffusion sharing.

Components which have exclusively parallel and in series connected transistors can extensively

employ diffusion sharing in order to minimize their layout area. This study is based on the actual

layout drawn based on lambda (lambda is half the minimum transistor length) rules. Once the

layouts are designed we compare physical layout area with active area. Given the importance of

area model in FPGA research and an improved area model will be proposed. The specific

objectives are:

 Create a more accurate method to estimate the active area of FPGA multiplexers by

considering layout factors including diffusion sharing, folding and connectivity of

transistors.

 Measure FPGA LUT layout area as LUT is scaled from 3-input to 6-input LUTs.

 Analyze the minimum number of metal layers needed to minimize the layout area of

fundamental FPGA building blocks.

 To draw conclusion on FPGA layout area, if area is metal limited or active area limited.

 Provide correction factors for the layout area of the various FPGA components over the

minimum width transistor area model.

Secondary Objective

 In future, create a library of layouts of widely used FPGA components and release it.

FPGA consists of large number of programmable logic blocks, each of which implements

digital logic. These logic blocks form an integral part of any FPGA architecture. Our additional

goal is to manually design layouts for these components in various transistor sizes and

10

configurations to meet different architectural specifications of widely used FPGA architectures.

Later, we will release the designed layouts of FPGA fabric in Magic. This is an initial step to make

FPGA design more accessible.

The manual layout design process is tedious and timing consuming, but will be closer to the

current commercial layouts practice. We use Magic, open source IC layout software which is based

on lambda rules [20]. The layouts can be scalable to any desired process, by specifying a new

value to lambda. Since the layouts are scalable to any process of choice, the effort put in creating

a library of generic FPGA components and making it publicly available will be a one-time effort.

Our research will open the doors for small semiconductor companies to initiate the development

of FPGA fabric at low cost. This will overcome the limitation of current commercial FPGA

products which are highly efficient but, their designs are completely dependent on a few

established FPGA vendors.

1.5 Framework

This research work focuses on island style, homogeneous FPGA architecture, where each

FPGA tile is identical and consists of logic blocks, connection blocks and switch blocks. In this

work, we examine the accuracy of using minimum width transistor area model, a widely used area

model in many previous FPGA architectural studies, in assisting floor-planning process. Both the

original VPR area model and the new COFFE area model are compared against the actual layouts

area of FPGA components designed using Magic and conventional stick diagrams area estimation

technique. Area comparison is done with VPR and COFFE as they are the only two currently

existing FPGA area estimation tools. Here, the FPGA architecture area estimation evaluation is

done for planar CMOS single die FPGA technology.

11

The layout tool is Magic, an open-source IC layout tool used to layout different FPGA

components. Magic layout tool was deliberately chosen as it is process independent and uses

scalable design rules. In contrast, using specific vendor design rules will yield a layout specific to

a process and will be hard for the layout design to be ported from one process to another process.

Our presented layout work is based on scalable MOSIS (Metal Oxide Semiconductor

Implementation Service) deep submicron design rules. Also, note that, Magic is not binded with

NDA’s (Non – Disclosure Agreements), this enables our layout work to be easily published.

The layout achieved for each FPGA component is our best effort manual layout. The layout

work was an exhaustive manual layout design process to achieve a compact area with minimum

white spaces. We have used up to 3 metal layers to layout all the FPGA basic building blocks.

Initially, only metal1 and metal 2 is used. Later, metal 3 is used to study the effect of area change

with more number of metals. In this study we focus on the layout area of multiplexers, as they are

one of the most widely used basic building blocks found throughout the FPGA architecture. We

also measure the layout area of other basic FPGA building blocks which are architectural

dependent. Layouts of larger transistor size 4x, 6x, 8x and 16x are also laid along with minimum

width transistor size,1x to study the effect of prediction error of both area models VPR and COFFE.

1.6 Contributions

The main contributions of the presented work are:

 Presents a novel layout strategy using mirroring technique to create higher order

multiplexers from lower order multiplexers. This ensures maximize design reuse and good

quality layouts.

12

 Presents new active area models for LUT multiplexers and decoded multiplexers based on

the mirroring strategy. True active area of a k-input LUT and decoded multiplexers can be

determined depending on the number of 2:1 multiplexers that it contains. This area model

is a universal area model for all SCMOS based technologies.

 Presents a mathematical equation to determine the best number of folds for transistors to

achieve minimum active area.

 Provides correction factors for basic FPGA building blocks. This includes pass transistor

based components and CMOS based components. The bloat factor differs from component

to component across an FPGA tile and within a single component it varies with transistor

size. The correction factors are presented for encoded and decoded multiplexers of varying

sizes and CMOS based components in Table 6.5 and Table 6.7 respectively.

 Presents skillfully designed layouts for common FPGA structures and identifies

inaccuracies in minimum width transistor area models used to make conclusion about

FPGA architecture.

The outcome of our research is:

 Demonstrates that the currently used models, VPR and COFFE work well on earlier FPGA

architectures (using only encoded multiplexers) but show for newer architectures (mix of

encoded and decoded multiplexers) the quality of area prediction of these models decreases

significantly.

 One of our study shows that a standard stick diagram based layout area model should be

developed for FPGA architectural evaluations. As the minimum width transistor area

13

models, such a model can remain IC-process independent and can greatly enhance the

accuracy of the conclusions drawn from architectural-level investigations by capturing the

effect of wiring as well as folding and diffusion sharing on layout area.

 Suggest the development of more accurate area models by taking into account actual

layouts including their connectivity and grouping of adjacent transistors.

Publication of this work is listed below:

Journal

J1. F.Khan and A.Ye, “A Study on the Accuracy of Minimum Width Transistor Area in

Estimating FPGA Layout Area”, Elsevier Microprocessors and Microsystems – Embedded

Hardware Design (accepted)

J2. F.Khan and A.Ye, “An Evaluation on the Accuracy of the Minimum Width Transistor

Area Models in Ranking the Layout Area of FPGA Architectures ”, ACM Transactions on

Reconfigurable Technology and Systems (TRETS) (submitted)

Conferences

C1. F.Khan and A.Ye, “An Evaluation on the Accuracy of the Minimum Width Transistor

Area Models in Ranking the Layout Area of FPGA Architectures”, 26th International

Conference on Field Programmable Logic and Applications (FPL), Lausanne, Sep. 2016,

pp.1-11 (acceptance rate: 21.3%) Received Best Paper Award

C2. F.Khan and A.Ye, “An Empirical Analysis of the Fidelity of VPR Area Models”, 24th

IEEE International Symposium on Field-Programmable Custom Computing Machines,

pp.138, May 2016. (poster acceptance rate: 40.6%)

14

C3. F.Khan and A.Ye, “Measuring the Accuracy of Minimum Width Transistor Area in

Estimating FPGA Layout Area”, 23rd IEEE International Symposium on Field-

Programmable Custom Computing Machines, pp. 223-226, May 2015. (short paper

acceptance rate: 38.9 %)

1.7 Dissertation Outline

This dissertation is composed of seven chapters and is organized as follows.

Chapter 1 presents the introduction by giving an overview of research, related works,

motivation and its objectives and contribution of the research work.

Chapter 2 describes background information on FPGA architecture including logic block and

routing architecture, minimum width transistor area model and discusses stick diagrams.

Chapter 3 presents detailed layouts of different CMOS based FPGA components along with

the layout techniques used.

Chapter 4 proposes a new minimum active area model for encoded and decoded multiplexers.

Chapter 5 reveals the layouts of pass transistor based components consisting of encoded and

decoded multiplexers.

Chapter 6 presents experimental results and an area analysis study is carried out by comparing

the actual layout area with both area models, the VPR and the COFFE models, and also compares

the layout area with stick diagram representations.

Chapter 7 concludes and indicates the future research.

15

Chapter 2

Background

This chapter provides the relevant background material related with our work. In the first

section, we discuss the FPGA logic block architecture followed by the FPGA routing architecture.

Next section presents the two minimum width transistor area models and finally the last section

discusses the traditional metal area based stick diagram area estimation.

2.1 FPGA Architecture

FPGA devices are integrated circuits, which are widely used in various applications. They

provide a great amount of flexibility as their hardware components can be reconfigured after

manufacturing depending on the requirements of a particular application. The hardware

components consist of logic blocks, and routing resources, which interconnects the logic blocks.

Depending on the routing architecture, FPGA’s are broadly classified as island-style, row-based

or hierarchical [11]. In this research work, we focus on the island style FPGA architecture

consisting of an array of tiles. It is so called because the logic blocks on either side are surrounded

by routing. This type of architecture is widely used both in industry as well as in academic research.

It is important to note that major commercial vendors Xilinx and Altera also use this type of

architecture. Below Fig. 2.1(a) shows typical island style FPGA architecture and (b) shows its

associated tile. An FPGA tile comprises of a logic block (LB), connection blocks (CB) and a

switch block (SB). Kuon, Eiger and Rose [16] state that this type of architecture when laid has

16

benefit of a regular structure as the tile is repeated. Hence, allowing an FPGA device to be created

by replicating the tile.

Fig. 2.1: (a) Island-style FPGA architecture (b) FPGA tile

The logic blocks are an integral part of FPGA architecture; they are used to implement digital

logic. The programmable routing comprises of connection blocks and switch block. The I/O blocks

are interconnected to the logic blocks via programmable routing. The entire routing architecture

results in a highly flexible network.

In our work the programming technology used for the FPGAs is Static Random Access

Memory (SRAM), as this is a widely used technology when compared to fuse, anti-fuse and flash.

Anti-fuse and fuse can be programmed only once whereas flash can be programmed multiple times

but require special IC processes; SRAM can be reprogrammed unrestricted number of times and

can be implemented in conventional CMOS IC processes. As SRAMs do not need special IC

17

processes to manufacture, this enables FPGAs to be easily modified and updated after the

development cycle. A great amount of flexibility in the routing resources and logic blocks of FPGA

architecture is provided by the presence of reprogrammable SRAM switches. They are commonly

used to control pass transistors, multiplexers and tri-state buffers which we will review in the later

sections.

The sub-sections below provide an in-depth explanation of logic blocks and routing

architecture along with circuit level details.

2.1.1 Logic Block Architecture

The composition of a logic block has a great impact on FPGA area and speed. The basic unit

which implements logic is a look-up table (LUT) and associated with it is a data flip-flop (D-FF)

and a multiplexer to select whether a combinational or sequential circuit is realized. Together these

elements are generally termed as logic elements (LEs) or basic logic elements (BLEs) by Altera

and logic cell (LC) by Xilinx as shown in Fig. 2.2. Previous studies [1] and [5] have shown that

LUT size of 4 gives the best area and LUT size of 6 gives the best performance. Commercial

FPGAs use LUT size 4 or 6.

 For better performance LE/LC are grouped together and are commonly named as logic blocks

(LB). With additional circuitry, Xilinx term it as Configurable Logic Blocks (CLBs) and Altera

term it as Logic Array Blocks (LABs). Starting from Stratix II, Altera uses a new term as Adaptive

Logic Module (ALM) to describe its logic element the details of which will be presented later in

the chapter.

18

Fig. 2.2: Components of basic logic element (BLE)

Here, we present a bottom-up description of all the components of logic block architecture in

a hierarchy along with functionalities and implementations. We will first give the details of look-

up tables (LUTs) and its implementations. Then describe clustered logic blocks.

2.1.1.1 LUT

As discussed a LUT is the basic component which implements logic. A k-input LUT design

requires 2k SRAM cells and a 2k input multiplexer [11]. This can realize up to 22k boolean functions

by programming the 2k SRAM cells. As an example below, Fig. 2.3 shows the schematic of a 2-

input LUT and its equivalent transistor level circuit diagram using pass transistors. As shown a 2-

LUT requires 4 SRAM cells and a 4:1 multiplexer. A buffer is used to drive each input of a LUT

and an inverter is used to generate the complement of the input. The multiplexer function here is

realized by the pass transistors, which is one of several common implementations and may have

repeaters in a deep LUT [18]. Pass-transistors are the simplest form of a transistor switch with

least area utilization. The work, in [25] shows that as process technology scales down pass-

transistors soon could be replaced by transmission gates. However, pass transistors remain to be

used in current commercial FPGAs due to its high area efficiency.

19

Fig. 2.3: 2-LUT schematic and circuit diagram

Fig. 2.4: (K+1)-LUT created with two K- LUTs

2.1.1.2 Composable LUTs

They are formed when smaller sized LUTs are fasten together to create a larger sized LUT.

Fig. 2.4 shows one of the designs of (k+1)-LUT using two k-LUTs. Using composable LUTs one

can realize either the functionality of two k-LUTs or a single (k+1)-LUT. Note that, as the number

of inputs of a LUT is increased, more logic can be realized but on the other hand the complexity

within the LUT also exponentially increases. Hence composable LUTs give a better solution. They

are found since Xilinx Virtex-5 [35].

20

Note that a k-LUT can implement 22k
distinct functions. However, if they are n k-LUTs, one

can implement (22k)n
 functions. So, if they are two 4-LUTs one can perform (224

)2 = 225
 functions,

which is equivalent to the functions represented by a 5-LUT.

Fig. 2.5: (K+2)-LUT created from four K-LUTs

As another example, Fig. 2.5 shows a 6-LUT constructed from four 4-LUTs. This design

requires 3 additional multiplexers and a total of 19 inputs. This way of implementation can either

result in one of the following logic functions, four 4-LUT logic functions, two 5-LUT logic

functions or one 6-LUT logic function. However, each input pin is linked with routing resources,

as the number of inputs increases the area also increases making it highly area inefficient. So for

implementing larger LUTs, Altera uses another variation known as Adaptive Logic Module

(ALM) [22] discussed below. The main aim was to improve speed but also minimize area. It

presents how efficiently a 6-LUT is partitioned into smaller LUTs [22] taking advantage of the

high performance of 6-LUT an avoid area penalty form excessive inputs.

21

Fig. 2.6: Stratix II ALM LUT

2.1.1.3 Fracturable LUTs - Stratix II ALM

In Stratix II the fundamental component to implement logic is ALM (Adaptive Logic Module)

instead of LUT. Each ALM is associated with 2 flip-flops rather than 1 flip-flop to support two

logic functions. Thus, it has 8 inputs and 2 outputs. The largest LUT that a ALM can implement

is a 7-LUT. As shown in Fig. 2.6, a total of 8 inputs can be configured to implement in different

ways by sharing and unsharing inputs, providing greater flexibility. The ALM can implement two

4-input LUT, one 5-input and one 3-input LUT, one 5-input and one 4-input LUT, two 5-input

22

LUTs with two shared inputs, two 6-input LUTs with 4 shared inputs and one 7-input LUT. As

reported in [3][5] a 6-LUT has better performance and a 4- LUT is more area efficient. Hence, the

main aim of the ALM design is to have a balance between 6-LUT speed and 4-LUT area efficiency.

2.1.1.4 Clustered Logic Block

A logic block contains a cluster of basic logic elements (BLEs). A clustered logic block is

shown in below in Fig. 2.7. This is similar to the one used in [11] and [18]. The logic cluster has

N BLEs where each BLE is a k-input LUT and I is the total number of inputs to a logic cluster.

For better utilization of resources, [5] found that N*k inputs is not required and k/2 *(N+1) is

sufficient. In most academic research, the cluster is considered to be fully connected, that is all I

inputs and N outputs are internally connected to each k-input LUT [11]. Commercial architectures

can use less than fully connected logic clusters to increase area efficiency.

Fig. 2.7: Clustered Logic Block

23

It is also observed that for sufficiently large clusters, the area used by local interconnect will

exceed the area saved in global interconnect. Therefore, for an optimum balance of speed and

density cluster size of 3 to10 is typically used [5].

Commercial FPGA tiles such as the one shown in Fig. 2.8 and VTR tiles [15] can also include

arithmetical units such as full adders. Commercial logic blocks have evolved over time in an

attempt to gain more functionality and therefore are no longer pure k-LUTS. Hence, in our area

comparison we also consider full adder layout area with both area models [11] and [18]. Also, the

circuit topology of full adder is different from multiplexers. We would like to compare the

difference in predicted area with other components.

Fig. 2.8: Logic cell of commercial FPGA tile

2.1.1.5 Importance of multiplexers

In particular, the LUTs are implemented using multiplexers as discussed in Section 2.1.1.1.

Multiplexers are also used to connect the LUTs together to form logic blocks as shown in Fig. 2.9

[11]. Furthermore, as shown by Fig. 2.9, multiplexers are also the key building blocks of

connection blocks, which provide programmable connections between the routing tracks and logic

block input pins, and the key building blocks of switch blocks, which provide inter-routing-track

connections and logic blocks output to routing track connections [8]. Consequently, accurately

Full

Adder

3-LUT
M
U
X

M
U
X

3-LUT
D-FF

M
U
X

carry in

carry

out

clock

out

in1

in2

in3

in0

24

estimating the layout area of multiplexers is extremely important both in estimating the layout area

of FPGA tiles from their architectural specifications and in choosing FPGA architectural parameter

values in order to minimize FPGA layout area. As a result, in this study we focus on the layout

area of multiplexers, as they are one of the most widely used basic building blocks found

throughout the FPGA architecture. We also measure the layout area of other basic FPGA building

blocks including buffers, SRAMs and full adders.

Fig. 2.9: A typical FPGA tile structure

2.1.2 Routing Architecture

We discuss the routing architecture for island style FPGAs. An island style FPGA has routing

channels on all sides of the logic blocks. Routing within each logic block is termed as local routing

and the routing which interconnects the clustered logic blocks is termed as global routing.

k-LUT
D-FF

SRAM

M

U

X

M

U

X

Nth BLE

N BLEs

1st BLE

SRAM

MUX

S
R

A
M

k routing

muxes per

BLE

N

MUX

S
R

A
M

I

N feedbacks

N Outputs

Connection

block MUX

Logic Block

Clock

I Inputs

Vertical

routing

tracks
Horizontal

routing

tracks

Switch

block

MUX

25

Fig. 2.10 : Wire segments distribution

In any FPGA device, logic blocks are interconnected using programmable routing to form

larger circuits. Interconnections are possible with the help of routing wires, switch blocks and

connection blocks. The routing wires span both horizontally and vertically across the FPGA. Logic

blocks have routing channels on all four sides. The number of routing wires in each channel is

denoted by W. As shown in Fig. 2.10 each channel has wire segments of different lengths in order

to provide a balance of area and delay in a routing network. For example, longer wire segment

span multiple logic blocks and require fewer switches, thus have less area and have higher

performance. But longer wire segments are also less flexible and typically have lower utilization.

As suggested in [11], FPGA architecture should have a mix of 4 and 8 length of wire segments for

better area- delay product. The number of wire segments connected to each logic block input pin

is Fc_input and the number of wire segments connected to each logic block output pin is Fc_output.

The connection blocks connect the output of one logic block to the input of another logic block

via routing multiplexers. The multiplexers used in the routing architecture are decoded type or

could be hybrid and are used for faster connections. The details of decoded multiplexers are

discussed in Chapter 4

In the sub-section below we present switch blocks and connection blocks.

length 2 wires length 3 wires

length 1

wire

26

Fig. 2.11: Example of disjoint switch block

Fig. 2.12: Programmable switches (a) Unbuffered (b) Buffered uni-directional (c) Buffered bi-

directional

2.1.2.1 Switch Blocks

 A switch block consists of a set of switch boxes as shown in Fig. 2.11. Switch boxes consist

of a set of programmable switches that connect a horizontal wire segment to a vertical wire

segment. Fig. 2.12 shows programmable switches which are unbuffered, pass transistor based or

buffered switches which are unidirectional or bidirectional. Commercial FPGAs use unidirectional

buffered switches as they have higher performance and are more area efficient when compared to

bidirectional switches [8]. Programmable switches can connect each wire in other three directions.

Each wire segment spans one or more logic blocks, longer paths can be constructed by turning on

the programmable switches within the switch boxes. A variety of switch block design strategies

SRAM

SRAM

SRAM

(a) (c) (b)

SRAM

M
U
X

27

exist and each uses a unique topology to distribute switch boxes. In academia, depending on the

connection topology used they are mainly disjoint, Wilton and universal switch blocks [11][26].

2.1.2.2 Connection Blocks

Connection blocks are used to connect adjacent input and output logic block pins via routing

channels.

Fig. 2.13 shows the connection of logic block input pin and the routing tracks. As shown,

multiplexers are used for routing connections. The multiplexers used in routing architecture are

decoded type as they are faster [22].

Fig. 2.13: Input connection Block

For unidirectional routing architecture the output connection block is typically merged with

the switch block discussed in 2.1.2.1, Fig. 2.14 shows logic block output pin connections for bi-

directional routing architectures with routing wires using shared and unshared buffer switches.

Each logic block pin is connected to Fc_input number of routing wires. Buffers can also be shared;

buffer sharing lowers performance but is area efficient on the other hand. No buffer sharing results

in higher performance and has more area.

28

Fig. 2.14 Output Connection block (a) Unshared buffers for driving (b) Shared buffer for driving

2.2 Survey on High Level Area Estimation tools used for

FPGA Based Systems

This section presents a survey of high level area estimation tools used for FPGA

implementations for fast design space exploration. High Level Synthesis (HLS) tools would allow

designers to enter designs at a much higher level of abstraction. These tools would take the

algorithmic description of the required hardware together with certain area and performance

requirements of the designer, and perform an exploration of the design space to output the hardware

which meets the designer’s specifications. They are developed for different input description

languages. Their analysis is presented below.

 FPGA-based area estimators are either used in the context of fine grained or coarse grained

architectures. They either incorporate a physical model for the FPGA and estimate the area by

performing actual mapping [72][75] or by using modeling equations of the FPGA functional

resources [66] or by building a large database for all possible resource configurations.

Depending on the estimation methodology they can be broadly classified into two categories.

Techniques which considers HW/SW Partitioning and techniques which do not consider the

partition process. Area estimation for hardware/software partitioning schemes is discussed in

(a)
(b)

29

[66][67]. This enables maximum performance while satisfying the hardware resource constraints,

designers can decide which part of the application need to be ported to hardware and which part to

be executed on the processor.

Depending on the input description languages the other area estimation techniques are (C [67],

SA-C [70] , System C [75], MATLAB [67][70][72][67], VHDL[66]). Most of these tools perform

a transformation step to express the input description into an intermediate representation such as

Control Data Flow Graph (CDFG) [66], Data Flow Graphs(DFG) [71][70], Trimran IR [67][68],

VHDL AST [69] and VHDL[70] and then, the estimation process is applied on the intermediate

format.

While estimating area, the routing area is considered in the estimation process for accuracy in

[73] whereas in [71] it is not considered for small and medium designs as it constitutes a small

fraction of the overall area and for the others the routing effect is included as a constant scale

factor[75]. Also most of the above tools focus on the data path area estimation and ignore control

logic; others integrate control logic and data path estimation in one tool flow [66][67][69].

Among the tools which considered HW/SW Partitioning the one presented by Nayak [68] is

suitable for high level signal and image processing applications as it is developed for applications

in MATLAB. It considers the routing delay and includes area for both data path and control logic.

From the techniques which do not consider partitioning the one presented by Kulkarni [70][71]

in SA-C can be rated high. As the estimated error is not high and the time required for estimation

is only in the order of milliseconds. Also the SA-C compiler can readily analyze the code and

extract both fine grained and coarse grained parallelism. Hence, performing large number of

optimizations.

30

The tool presented by Deng et al.[69] in MATLAB has an estimated error of only 1.87% and

can be used for large designs and the time required for estimation is only in the order of

microseconds as compared to minutes for a synthesis tool and therefore enables early comparisons

to other approaches.

 In our research work we focus on VPR[11] and COFFE [18] tool which uses minimum width

transistor area model. Since minimum width transistor area is the current de facto method of

estimating the area of reconfigurable fabrics, and it can be easily calculated from a set of

architectural specifications. In this work, we investigate the suitability of using minimum width

transistor area to directly estimate the actual implementation area of FPGA-based reconfigurable

fabrics.

2.3 Minimum Width Transistor Area

Minimum Width Transistor Area has been used in several FPGA architectural studies in

estimating the implementation area of proposed FPGA architectures. The minimum width transistor

area model [11] defines one unit of layout area as the area required to layout the smallest transistor

that contain one contact for each source and drain diffusion area as shown in Fig. 2.15. Observe

that based on SCMOS deep submicron lambda based scalable rules [20][21], where lambda is half

the minimum transistor length. One unit of minimum width transistor area (mwt) corresponds to

16λx13λ (208 λ2). As the width of a transistor, x, increases, this layout area increases based on the

Equation 4 [11]. As shown the model is uni-dimensional and scales linearly as a function of

transistor width. The height, width and the number of metal layers that are required to achieve the

predicted layout area are not considered.

xxAreaVPR 5.05.0)((4)

31

xxxArea NMOSCOFFE 391.0128.0447.0)(_ (5)

xxxArea CMOSCOFFE 428.0127.0518.0)(_ (6)

COFFE area model discussed in [18] is based on individual transistor sizing of layouts. Its area

for NMOS transistors is given by Equation 5 and for CMOS transistors is given by Equation 6. This

area model has different coefficients and is based on the layout work of distinct transistors of

varying sizes and produces smaller area when compared to [18]. The minimum width transistor

area based on lambda based rules for NMOS only transistors corresponds to 200.93λ2 and for

CMOS transistors considering N-well spacing corresponds to 223.18λ2.

Fig. 2.15: Minimum width transistor area model

2.4 Stick Diagrams

Stick Diagrams are color coded schematic representation of a circuit at physical design level

useful for planning layout and routing of the integrated circuits. The basic colors used are red for

polysilicon (gate), green for n-diffusion (nMOS), brown for p-diffusion (pMOS), blue for metal 1,

purple for metal 2 and similarly other metals are represented by different colors. A cross mark in

minimum adjacent

transistor spacing

minimum width transistor area

3λ

4λ

3λ 2λ

12λ 4λ

poly

 diffusion

32

a stick diagram indicates a connection or via. Fig. 2.17 shows a detailed stick diagram

representation of 2-LUT multiplexer. Stick diagram representation shows relative placement of

components and all vias. It is a conventional method of estimating silicon area based on lambda

rules [21]. Layout area is estimated by counting the number of tracks both horizontally and

vertically. Each track pitch is defined by the width of metal wire used and the spacing between the

next metal wire. If the metal width is 4λ and the minimum spacing required for the next metal wire

is 4λ, then each track is 8λ. The track width varies depending on the metal used.

Fig. 2.16 : 2-LUT as a combination of 2:1 multiplexers

In this section we present the stick diagram representation of 2-LUT multiplexer and compare

its area prediction with the minimum width transistor area model of both VPR and COFFE. The

functionality and schematic of LUT is discussed in section 2.1.1.1. Here, Fig. 2.16 analyzes the

LUT multiplexer tree as a combination of several 2:1 multiplexers. A 2-LUT consists of three 2:1

multiplexers as highlighted in the above figure. The multiplexer function is realized by pass

33

transistors, which is one of several common implementations. The 2:1 multiplexer can be laid out

in different ways. Considering diffusion sharing of two transistors of 2:1 multiplexer, results in

much less layout area compared with the layout of two discrete transistors. Diffusion sharing is

not explicitly considered in both area models of VPR and COFFE. We consider these issues in our

work and attempted to compare the stick diagram area estimation with VPR and COFFE area

model. In our area estimation process, we initially use two layers of metal. Mostly, metal1 is used

for internal connections and metal2 for long distance routing. We also found that using additional

metal layers does not significantly reduce layout area of LUT multiplexers.

Estimating area of minimum width transistor area model to implement the pass transistor

network of the 2-LUT, the minimum width transistor area model of VPR predicts 1248λ2 of layout

area and COFFE predicts 1205.58λ2. This area, however, represents layout area of the layout of 6

nMOS transistors as shown in Fig. 2.16. This area estimation ignores the wiring area required to

connect the transistors and also does not consider diffusion sharing.

Now measuring area from stick diagram representation, consider implementing the same

schematic with the constraint that SRAM inputs comes from the left and select signals from the top,

the layout area required to implement the stick diagram is shown in Fig. 2.17(a). This can be

estimated using metal spacing based on the methodology outlined in [21]. As shown, the layout

would occupy 2 rectangular areas of 64λx24λ and 40λx24λ each. Consequently, the layout area as

predicted by the stick diagram is 2496λ2, which is 2x the area predicted by the minimum width

transistor area.

34

Fig. 2.17: 2 LUT multiplexer (a) Stick diagram illustration (b) Stick diagram illustration using 3

metals.

Further, one can reduce this layout area by increasing the number of metal layers employed. For

example, using three layers of metal, the layout area can be reduced to 2304λ2, as shown by Fig.

2.17(b). The area, however, still represent 1.84x minimum width transistor area and adding

additional metal layers does not further reduce layout area.

Consequently, the VPR and COFFE models exclusively used in FPGA architectural studies

provides inconsistent results in comparison to the stick diagram model which is used in more

general VLSI layouts. Therefore, there is a need to verify the accuracy of each of the three models

based on the real layout results.

In 1 In 0_bar In 1_bar In 0

Op_2LUT

nmos

poly

metal1

metal 2

8 tracks * 6 tracks

- > 64λ x48λ

nmos poly

metal1 metal2

metal3

In 0 In 0_bar In 1 In 1_bar

Op_2LUT

6 tracks * 6 tracks

- > 48λ x48λ

(a)

(b)

35

2.5 Summary

In this chapter, we presented the type of FPGA architecture used in our study. We also discussed

the logic block architecture and presented a detail discussion on the implementation of LUTs and

logic blocks clusters. Routing architecture and its components where described. We then described

the VPR and COFFE theoretical area models used to estimate area. The VPR area model uses a

single equation to estimate area for both NMOS and CMOS components. In contrast, the COFFE

uses two separate equations to estimate area. The typical method of estimating area using stick

diagrams is also discussed and compared with VPR and COFFE indicating their inconsistency in

estimating area. The layout of various FPGA components examined in this work are presented in

Chapter 3 and Chapter 5 . The detailed area comparisons are presented in Chapter 6 .

36

Chapter 3

CMOS based FPGA Components

In this chapter we present different CMOS based FPGA components. A detail study is done at

logic level, transistor level design as well as layout design. Here, layout is manually done using

open source VLSI layout tool, Magic [20] and layout verification of components is done using

IRSIM tool [33]. The sections below discuss Inverters, Buffers, Tri-state Buffers and SRAM cells.

They are widely used CMOS based FPGA components found in logic blocks and routing

architectures. Full adder circuit is also considered as it is currently used in commercial FPGA logic

block architectures.

3.1 Inverters

Inverter is the basic unit of digital electronics. They are used in constructing buffers, tri-state

buffers, D flip-flops and SRAM cells. It is a key element of complementary logic enabled by

(Complementary Metal Oxide Semiconductor) CMOS technology. Devices using CMOS

technology are extensively known for low static power consumption and high noise immunity.

Inverters are made of both p-type and n-type Metal Oxide Semiconductor Field Effect

Transistors (MOSFETs). An inverter function can be explained as follows, for low input voltages

it outputs high voltage and for high input voltages it outputs low voltage.

37

Fig. 3.1: Inverter symbol, function, circuit diagram.

When designing CMOS circuits, the drive strengths of the transistors need to be balanced since

the mobility of electrons is approximately twice that of holes [28][21][28]. A pMOS transistor as

same size of nMOS transistor has higher resistance. To achieve symmetrical characteristics, equal

rise and fall delays, the pMOS transistor should be n times wider than the nMOS transistor. In Fig.

3.2, Cadence is used to simulate Inverter transfer characteristics for varying sizes of pMOS

transistor and the value of n is determined. We notice that Vin=Vdd/2, equal rise and fall is achieved

when n falls between 2 and 4. Depending on the process used, the size of pMOS transistor is

chosen. In our experimentation we consider the size of pMOS to be twice of nMOS transistor for

equal rise and fall delays.

Fig. 3.2: Inverter DC characteristics for different sizing of pMOS transistor.

38

Here, a unit inverter is one whose nMOS transistor is of unit size and pMOS transistor is twice

of unit size. The size of a transistor indicates the width of p-type or n-type channel. For example,

an inverter of drive strength 2x is one whose nMOS transistor is two times the width of unit size

transistor and pMOS transistor is four times that of unit size transistor. As the size of transistor

increases the layout of transistor also increases, but this can be made compact by folding the

transistor into multiple fingers.

Fig. 3.3: Folding of transistors

Folding or also known as fingering is a technique in which a wider transistor is equally divided

into smaller portions and connected in parallel and placed such that the diffusion regions are

(a)

(b)

39

shared. This essentially decreases the height of the wide transistor to be closer to square layouts

rather have layouts with higher aspect ratio. Folding results in reduced diffusion capacitance,

improved delay and reduced transistor active area. Due to folding, the gate (polysilicon) resistance

is also decreased. This also enables the transistor on and off faster [29]. The gate capacitance (gate

to source) at the input does not affect the delay because it is neither charged nor discharged during

an output transition [21]. As an example of folding technique, Fig. 3.3(a) above shows when

transistors are split into even (two) numbers, the ends are same (S, S). Here, the gate resistance is

decreased from R to R/4, enabling it to drive faster. As shown in Fig. 3.3 (b), when transistors are

split into odd portions the two ends are different (S, D), this leads to more connectivity and more

drain capacitance [29] [30]. Therefore, in this case even number of folds is preferred.

Fig. 3.4 : Inverter Layout (a) unit inverter

In this work we consider layout verification with:

 Different number of even folds.

 Diffusion sharing between adjacent inverter in multistage designs to reduce area.

45λ

24λ

40

 To the resultant layout additional 4λ is added to the width and height for minimum adjacent

spacing between components.

In particular, Fig. 3.4 shows the layout of unit inverter laid using Magic, an open source layout

tool. This results in layout area of 24λ x 45λ which is 1080 λ2. This layout area includes both the

power and the ground, represented by metal1, 6λ wide and also includes n-well. The nwell

surrounds pdiffusion by minimum 6λ in all directions. This layout area does not include additional

4λ adjacent spacing between other components. However, Fig. 3.5 presents the layout by including

minimum adjacent spacing and ignores power and ground. The reason behind this is power and

ground can be shared by multiple components and by including this would result in an

overestimation of area. Also, both VPR and COFFE area model do not consider power and ground

in their area model but considers minimum adjacent spacing. Hence, we have included minimum

adjacent spacing when estimating area. Fig. 3.5 results in layout area of 28λ x 37λ which is 1036

λ2.

Fig. 3.5: Unit-Inverter layout considering minimum adjacent spacing

37λ

28λ

41

Fig. 3.6: Inverter Layout (a) 2x inverter unfolded, 1368λ2 (b) 2x inverters folded, 1568λ2

The layout of 2x inverter is shown in Fig. 3.6. As discussed, a 2x inverter is one whose nMOS

transistor is two times of unit size transistor and thereby the pMOS transistor would be four times

the unit size transistor, pMOS is twice the width of nMOS. Fig. 3.6(a) shows layout of 2x inverter

without folding this resulted in total layout area of 1368λ2 and Fig. 3.6(b) shows layout of 2x

inverter, the pMOS transistor is with two folds this resulted in total layout area of 1568λ2. Compare

2x inverter layout area without folding and with folding technique. Note, folding technique reduces

the pMOS active area from 192λ to 160λ but overall layout area increases by 200λ2. Thus, folding

could be used for very wide transistors to result in compact layout. For area comparison with VPR

and COFFE, we use unfolded layout area as this resulted in reduced area. This layout area

considering minimum adjacent spacing and ignoring power and ground is shown in Fig. 3.7. This

corresponds to a layout area of 1372λ2. Layout verification is done using IRSIM tool [33]. IRSIM

24λ

57λ

32λ

49λ

(b) (a)

16λ

12λ

8λ

20λ

42

is a switch level simulator used as an interface with Magic. Fig. 3.7(b) shows the simulation of

inverter layout. When input, A is 0 or low the output Y is 1 or high, which describes the

functionality of inverter.

Fig. 3.7: 2x inverter (a) layout considering minimum adjacent component spacing and ignoring

power and ground (b) IRSIM Simulation for Inverter

3.2 Buffers

In FPGA design, buffers are widely used in logic block architecture and routing architecture.

Buffers are formed by a chain of inverters of gradually increasing sizes and are used to drive loads

with larger capacitances, this improves performance. Transistor sizing of buffers is done to

minimize area-delay product of an FPGA [18], larger transistors have more current handling

capability. Fig. 3.8 shows a buffer formed by a chain of inverters. Buffers can either be non-

inverting or inverting. The number of stages, inverters N in the chain determines the delay

characteristics. Delay is defined by two factors, a constant component called as parasitic delay, P

and a variable component proportional to the load present at the output called effort delay or stage

28λ

49λ

43

effort, F, given by equation 7. Parasitic delay depends on internal capacitance of the gate and does

not change with transistor size. The stage effort depends on two parts, logic effort, g and electrical

effort or fanout, h. Logic effort is a measure of how much input capacitance a gate requires to

match a unit inverter and electrical effort is the ratio of output capacitance of the load to the input

capacitance.

PNFD N /1

min [21] (7)

F = ∏ gihi where F is path effort, g is logical effort and h is electrical effort Cout/Cin (8)

The logical effort and parasitic delay for an inverter is 1[21].

Stage effort at each stage is F1/N which mainly depends on the output load CL to be driven and

input load. In Fig. 3.8, stage effort is represented by the variable k.

The minimum number of stages N can be calculated as log4F (4 = F1/N).

Theoretical calculations suggest stage effort of 4 is a good choice for minimum delay and with

15% additional delay it could vary between 2.7 to 6 [21].

Fig. 3.8: Buffer formed by a chain of inverters

44

In our layout work we use the same sizes of buffers as suggested by [11]. In logic block

architecture and connection blocks a buffer of two stages is used with drive strength of four times

the minimum. FPGA architectures most commonly used typically buffer sizes of 4x and 16x [11].

Fig. 3.9 shows a 4x buffer which maintains a stage ratio of four as discussed above. To drive

smaller loads as in LUT a two stage buffer is used as shown in Fig. 3.10 with drive strength of two

times the minimum.

Fig. 3.9: 4x buffer to drive large loads

Fig. 3.10: 2x buffer to drive small loads

3.2.1 4x Buffer

Here we discuss different design options for 4x buffer. Fig. 3.11 shows two layouts of 4x

buffer, where the second stage nMOS and pMOS transistors have two folds. Both layouts produce

similar output as shown in Fig. 3.12. The output capacitance in Fig. 3.11(a) is less when compared

to Fig. 3.11(b), as it is folded such that the output is connected to only one contact, resulting in

better performance. Also, the layout area of Fig. 3.11(a) is 528λ2 less when compare to Fig. 3.11(b).

45

Hence, the layout in Fig. 3.11(a) is considered to be a better design when compared to Fig. 3.11(b)

with less output capacitance and reduced area. Fig. 3.12 shows the simulation output of 4x buffer.

Note, 4x buffer is a non-inverting buffer, the output Y is same as input A.

48 λ

68 λ

(a) Area is 2736 λ2 (b) Area is 3264 λ2

Fig. 3.11: Layout of 4x Buffer, second stage transistors are with two folds (a) Good design (b)

Bad design resulting in slower gate as output is connected to two contacts.

Fig. 3.12: IRSIM Simulation for 4x Buffer

46

3.2.1.1 Effect of folding on layout area

In this sub section we present layouts of 4x buffer with no folds and with two folds and four

folds and compare their areas without diffusion sharing. Fig. 3.13 shows the different layouts of

4x buffers and its simulation. Fig. 3.13(a) shows 4x buffer without folding which resulted in layout

area of 3240λ2. Fig. 3.13(b) shows the layout of 4x buffer in which the second stage nMOS and

pMOS transistors have two folds this resulted in layout area of 2736λ2 and Fig. 3.13(c) shows the

4x buffer with four folds this resulted in area of 3072 λ2. Comparing layout areas of 4x buffer with

and without folding. Note that, layout area in which the second stage nMOS and pMOS transistor

have two folds resulted in minimum area. Observe that, the number of folds of a transistor may

either decrease or increase the layout area.

(a) Area is 3240λ2 (b) Area is 2736 λ2 (c) Area is 3072 λ2

81 λ

40 λ 64 λ

48 λ

48 λ

57

λ

47

Fig. 3.13: 4x Buffer layout (a) no folds (b) two folds (c) four folds (d) IRSIM simulation

3.2.1.2 Effect of diffusion sharing and number of folds on layout area

In this subsection we observe the effect of diffusion sharing and folding on layout area. Fig.

3.14 shows the layout of 4x buffer with diffusion sharing with no folds, two folds and three folds.

Note that, diffusion sharing is done between the first stage of inverter and second stage of inverter,

among sources of nMOS and pMOS transistors. Comparing layouts of Fig. 3.14 and Fig. 3.13,

note that diffusion sharing reduces the width of layout area for all the three layouts by 8λ. Fig.

3.14(b) gives the minimum layout area for 4x buffer with diffusion sharing and two folds.

For area comparison with VPR and COFFE we consider 4x buffer layout area with diffusion

sharing and two folds as this resulted in minimum area. Fig. 3.15 shows the layout area considering

minimum adjacent component spacing which results in area 2112λ2.

(d)

48

(a) Area is 2592λ2 (b) Area is 2280λ2 (c) Area is 2565λ2

Fig. 3.14: Layout of 4x buffer with diffusion sharing (a) no folds (b) two folds (c) four folds

Fig. 3.15: 4x buffer (a) layout with minimum adjacent spacing (b) simulation

32 λ

45 λ

57 λ

57 λ

40 λ

81 λ

44λ

48λ

49

3.2.2 Multistage Buffer

Fig. 3.16: Multistage Buffer 16x of stage ratio four

A 16x multi stage buffer, formed by a chain of inverters is shown in Fig. 3.16. The layout of

multistage buffer considers diffusion sharing and optimal number of folds to achieve minimum

area. In the previous section it is seen that layouts with diffusion sharing results in reduced area.

Here we present two different cases of diffusion sharing. One with diffusion sharing between 1x

and 4x inverter and the second case with diffusion sharing done between 1x and 4x and also

between 4x and 16x.

Fig. 3.17 shows two different layouts for first case. Note that, diffusion sharing is done between

the 1x inverter and 4x inverter, among sources of both nMOS and pMOS transistors, resulting in

a compact layout. This is achieved by flipping the 1x inverter so that both source of 1x and 4x can

share diffusion. Fig. 3.17(a) shows layout with diffusion sharing, where second stage transistor

has no folds and Fig. 3.17(b) shows layout with diffusion sharing, where second stage transistor

has two folds. Fig. 3.17(a) with no folds resulted in minimum area. On the other side when

diffusion sharing is done at both stages, transistor with two folds resulted in minimum area.

50

(a) Area is 6048 λ2 (b) Area is 6384 λ2

Fig. 3.17 : 16x multistage buffer with diffusion sharing (a) between first and second stage

inverter with no folds (b) between first and second stage inverter with two folds

 Area is 5928 λ2

Fig. 3.18: 16x multistage buffer with diffusion sharing at all stages

Fig. 3.18 shows the layout with diffusion sharing for second case, where diffusion sharing is

done between 1x and 4x inverter and 4x and 16x inverter. Note, diffusion sharing is not possible

72 λ 112 λ

84 λ

57 λ

104 λ

57 λ

51

between 4x and 16x inverter of Fig. 3.17(a), as the end of 4x inverter is drain terminal and the start

of 16x inverter is source terminal.

For comparison with VPR and COFFE, Fig. 3.19 shows the resultant layout area for multistage

buffer with adjacent component spacing and ignoring power and ground. This resulted in area of

5292λ2.

Fig. 3.19: Multistage buffer (a) layout showing minimum adjacent component spacing (b)

simulation

3.2.3 Tristate Buffers

SRAM

YA YA

SRAM

SRAM

A Y

1

2

5

5 x 5 x

5

10

Fig. 3.20: Tristate Buffer 5x minimum size

108λ

49λ

52

Fig. 3.21: Bi-directional paths using tri-state buffers

 Tristate buffers are also used to drive large loads; they function similar to buffer but they have

an additional input to control as a switch. Fig. 3.20 shows the schematic and circuit diagram of

tristate buffer. A tristate buffer is a buffer with an additional pass transistor. Switching is enabled

by pass transistor with SRAM cell. Note, that programmable interconnect in an FPGA is usually

based on tristate routing switches [34]. They are used to connect logic block output pin with routing

tracks. Tristate buffers and pass transistors are an example of such type of switches. It is

experimentally suggested that best area-delay is achieved when all tristate buffers are five times

the minimum size [11]. Tristate buffers are also used to create bi-directional paths in routing tracks

when connected back to back as shown in Fig. 3.21. Buffer sharing is also possible in connection

blocks as discussed in section 2.1.2.2. Since tristate buffers are not used in modern uni-directional

routing architecture their layout is not investigated in this work.

3.3 SRAM

Static Random Access Memory (SRAM) cells are used as memory cells which enable data to

be read or written and hold data as long as power is applied. SRAM is important for the

reprogramability of FPGAs. They are preferably used when compared to other memory elements

53

in FPGA architecture as they are easily compatible with CMOS processes and more dense when

compared with other memory devices like flip flops.

 Fig. 3.22 shows the schematic and circuit diagram of SRAM cell. As shown an SRAM cell

is commonly constructed from 6 transistors containing two inverters connected in a feedback loop

which holds the state and two access transistors to read or write the state. The bit lines are used to

transfer data for both read and write operations. Access to the cell is possible via the word line.

 Fig. 3.23 shows the layout of 6 transistor SRAM cell. Fig. 3.23 (a) shows the layout in which

all polysilicon (gate) are vertical which is usually preferred for deep submicron rules, this gives

layout area of 2173λ2 on the other hand Fig. 3.23(b) uses both horizontal and vertical polysilicon

which results in area of 1881λ2. On the other hand, VPR estimates area as 1248λ2 and COFEE

estimates area as 1339.08λ2.

(a)

54

Fig. 3.22: SRAM (a) schematic (b) circuit diagram

(a) Area is 2173λ2 (b) Area is 1881λ2

Fig. 3.23: 6T SRAM Layout

41λ

53λ

33λ

57λ

(b)

(a)

55

Fig. 3.24 : Full adder (a) schematic (b) layout [21]

3.4 Full adder

Full adder circuits are integrated in FPGA logic block architecture to increase performance.

However, FPGA tile architecture of VPR and COFFE do not include full adders in their logic

blocks, but commercial FPGAs include specific logic components such as full adders in their logic

blocks to increase performance. Full adder is reviewed for area analysis. Fig. 3.24 shows the

schematic and layout of full adder as described in [21]. Full Adder circuit has a different circuit

topology when compared with other components. It is important to note that unlike the recursively

Y-connected topology of multiplexers, the full adder circuit as shown in Fig. 3.24(a), contains

exclusively parallel and in-series connected transistors. These transistors can extensively employ

diffusion sharing in order to minimize their layout area. Fig. 3.24(b) shows the layout of full adder.

The layout area estimated using deep submicron rules is 6072λ2 whereas the area estimated by

VPR is given by 8112λ2 and area predicted by COFFE is given by 6888.96λ2.

46λ

132λ

4λ 4λ 4λ 4λ 4λ 4λ 4λ 16λ 12λ 32λ

4λ 4λ 4λ 4λ 4λ 4λ 4λ 4λ 4λ

5λ

6λ

6λ

6λ

5λ

4λ

2λ

2λ

2λ

2λ

6λ

4λ

4λ

(b)

56

3.5 Summary

In this chapter, we discussed the different CMOS based FPGA components commonly used in

a FPGA tile. It presents a compact layout and layout area for buffers and full adders.

Detail area analysis and comparison for CMOS based FPGA components are presented in

Chapter 6 .

57

Chapter 4

Pass Transistor based FPGA Components

Part I –Active Area Modeling

This chapter presents an in depth discussion on pass transistor based components. Here, we

review pass transistor based multiplexers. FPGA architecture consists of large number of

multiplexers in logic blocks as well as programmable routing resources. The multiplexers are

either encoded or decoded type. Encoded multiplexers are used to build LUTs. The multiplexer

tree of LUT is fully encoded and is realized by pass transistors using nMOS transistors. The

decoded multiplexers are mainly used as routing multiplexers, as they offer better area-delay

product in routing switches than encoded multiplexers[22][24]. Decoded multiplexers are also

constructed from pass transistors. This chapter describes the design of multiplexers to achieve

minimum active area.

A detail discussion is presented below starting from 2:1 active area minimization of multiplexers

followed by a discussion on the active area minimization for larger encoded and decoded

multiplexers.

4.1 Multiplexer

A multiplexer is a data selector, with 2n inputs has n select lines. Fig. 4.1 shows the symbol of

4:1 multiplexer. Fig. 4.2(a) shows a 4:1 encoded multiplexer implemented as a binary tree using

pass transistors and Fig. 4.2(b) shows 4:1 decoded multiplexer implemented by pass transistors.

58

Alternatively, both encoded and decoded multiplexers can be implemented using transmission

gates instead of pass transistors [25].

Fig. 4.1: 4:1Multiplexer symbol

Fig. 4.2 : 4:1 Multiplexer (a) Encoded (b) Decoded

Fig. 4.3: Transmission gate

Transmission gates are made of both nMOS and pMOS transistors connected in parallel. Fig.

4.3 shows the symbol of transmission gate, the drain and source terminals of each FET transistor

op

SRAM

ip0

ip3 ip2

ip1

2:1

mux

2:1

mux

2:1

mux

2:1 mux

2:1 mux

2:1 mux

59

are connected together. Note that, the functionality of the transmission gate is similar to tristate

buffers, the gate terminals of FET transistors, S and S’ in transmission gate acts as control signals.

In our study, we only consider pass transistor based implementation of multiplexers as they

are currently the most commonly used multiplexer structures in commercial FPGAs [25], and they

consume significantly less layout area than transmission gate based multiplexers.

4.2 2:1 Multiplexer

Observe that, as shown in Fig. 4.2, both 4:1 encoded and decoded multiplexers are a

combination of three 2:1 multiplexers. Larger multiplexers are constructed from small

multiplexers. For example, an 8:1 multiplexer is built from two 4:1 multiplexers. Consequently,

larger multiplexers are also a combination of several 2:1 multiplexers. Hence, the 2:1 multiplexer

forms the primary building block for both encoded and decoded multiplexers of all sizes. In this

section, a detailed analysis on the layout strategy of 2:1 multiplexer is presented.

Fig. 4.4: 2:1 multiplexer (a) schematic (b) layout with effective width 1x, area is 432λ2

 The 2:1 multiplexer is built from two transistors as shown in Fig. 4.4(a). Given any

transistor size, the layout area of 2:1 multiplexer changes as a function of diffusion sharing and

transistor folding. Here we present different layouts of 2:1 multiplexers to motivate the need to

24λ

18λ

(b) (a) layout of distinct transistor

16λ

18λ

60

find a systematic method to find the minimum layout area of 2:1 multiplexers based on diffusion

sharing and transistor folding. Fig. 4.4(b) shows the layout of 2:1 multiplexer of effective transistor

width 1, with diffusion sharing of two transistors instead of two distinct transistors. The layout

area of 2:1 multiplexer results in 432λ2, which is smaller than the layout area 576λ2, of two distinct

transistors.

 Fig. 4.5: Different layouts of 2:1 multiplexers of size 4x with 2 folds and without diffusion sharing(a)

area is 24λ x 43λ (1032λ2) (b) area is 48λ x 28λ (1344λ2) (c) area is 31λ x35λ (1085λ2)

As the transistor size increases, one not only has to consider the issue of diffusion sharing but

also folding. For example, when the transistor size is increased to 4 times the minimum width,

there are three fundamental layout strategies: folding without diffusion sharing, diffusion sharing

with folding and diffusion sharing without folding. Each strategy affects the final layout area. In

particular, Fig. 4.5 shows the effect of folding but without diffusion sharing. Three different

layouts are shown, where each transistor has two folds and each transistor is placed differently.

Fig. 4.5(a) resulted in minimum layout area of 1032λ2. Fig. 4.6(a) shows the layout with 2 fold

and diffusion sharing; this resulted in area of 880λ2. Fig. 4.6(b) shows the layout with 4 fold and

diffusion sharing; this result in area of 1368λ2.

24λ

43λ

28λ

48λ

35λ

 31λ

(a) (c) (b)

61

Fig. 4.6 : Layout of 2:1 multiplexer of size 4x with folding and diffusion sharing, (a) 2 folds-

area 880λ2 (b) 4 folds- area 1368λ2

Fig. 4.7: Layout of 2:1 multiplexer of size 4x with diffusion widening and diffusion sharing,

area is 24λ x 30λ (720λ2)

Fig. 4.7 shows the layout of 2:1 multiplexer of transistor size 4x with only diffusion widening

and diffusion sharing; this resulted in area of 720λ2. The layouts above show that diffusion sharing

results in less area as compared with layouts without diffusion sharing since diffusion sharing

minimizes active area also reduces the overall wiring requirement of a layout. Also, note that for

transistor size 4, diffusion widening without transistor folding gives minimum layout area as

shown in Fig. 4.7.

40λ

22λ

(b)

40λ

(a)

40λ

72λ

19λ

30λ

24λ

62

Fig. 4.8, however, shows the diffusion sharing layouts when the transistor size is increased to

16x of minimum width. As shown, in this case, the layout area with two folds results in minimum

layout area. Consequently, the minimum layout area for a given transistor size is a function of the

number of folds that a layout employs.

Fig. 4.8 : Layout of 2:1 multiplexer of transistor size 16x (a) no folds, 24x78=1872λ2 (b) two folds,

40x46= 1840 λ2 (c)four folds, 72x31=2232 λ2

4.3 Active area modeling of 2:1 multiplexer

Both the VPR and the COFFE area models are based on the premise that, given unlimited

number of metal layers, the actual layout area will eventually approach active area [11]. Neither

area models, however, explicitly consider diffusion sharing and transistor folding. We discuss the

grouping of neighboring transistors for utilizing maximum diffusion sharing along with transistor

24λ

46λ

40λ

78λ

31λ

72λ

(a)

40λ (c)

40λ

(b)

40λ

63

sizing to generate area efficient layouts of 2:1 multiplexers. The effective width of the transistor is

represented by weff.

Fig. 4.9: (a) Two pass transistors with minimum width, weff=1 (b) 2:1 multiplexer from two

transistors (weff=1) with shared drain diffusion (c) 2:1 multiplexer of transistors with width 4

(weff=4) from diffusion widening (d) 2:1 multiplexer of transistors with width 10 (weff=10) with

two folds.

The 2:1 multiplexer can be laid out in different ways. Fig. 4.9(a) shows two discrete transistors

of minimum drive strength. If transistors have small drive strengths, a compact layout can be

created by simply sharing the drain diffusion of two transistors as shown in Fig. 4.9(b). Transistors

with average drive strengths can share diffusion regions after diffusion widening as shown in Fig.

4.9(c) and transistors with high drive strengths need both fingering and diffusion widening before

they are connected as shown in Fig. 4.9(d) to achieve less area [15]. Note that, in a practical layout

of 2:1 multiplexer when diffusion regions of two transistors are shared it results in much less layout

(b) G1

G2
G2

(a)

(d)
(c)

 weff=1

G1

G2

poly

G2

 weff =4 weff=5

 diffusion

G1

G1

64

area compared with the layout of two separate transistors as shown in Fig. 4.9(a). This is not

considered in both area models of VPR and COFFE.

We consider these issues in our work and attempted to compare the layout area with the

previous two area models for an FPGA fabric. Layouts for different sizes of multiplexers are

presented in Chapter 5 .

4.3.1 Diffusion sharing without transistor folding

Active area calculation with minimum transistor spacing of 2:1 multiplexer is discussed by

considering diffusion sharing and topology. Previous models [11] and [18] ignored diffusion

sharing, and active area calculation was based on two discrete transistors. Fig. 4.10(a) depicts an

area model for 2:1 multiplexer in terms of lambda without transistor folding while using diffusion

sharing to reduce layout area and diffusion widening to increase drive strength. According to deep

submicron SCMOS scalable rules the minimum width of a transistor with one contact is 4λ. Then

the width of a transistor with weff times the minimum width becomes 4weffλ. Considering diffusion

sharing, the active area would be less than two discrete transistors. In particular, when weff is equal

to one, two discrete transistors require the active area of 2 mwt while with diffusion sharing, as

shown in Fig. 4.10(a), becomes active area 1.5 mwt.

Consequently, active area equation of 2:1 multiplexer for transistors with weff wide transistors in

terms of lambda is given by

2
4)15)(49(

1:2
_

eff
w

mux
AreaActive (9)

2
24)49(

eff
w (10)

65

In terms of mwt, the equation becomes

mwt
effw

2208

224)49(

 (11)

mwt
weff

26

3)49(
 (12)

The equation above gives the true active area of 2:1 multiplexer for transistors that employ

diffusion sharing but do not consider folding.

Fig. 4.10: Multiplexer with diffusion sharing (a) transistors with small drive strengths (b)

transistors with large drive strengths.

1λ+2λ+1λ 4λ minimum adjacent

transistor spacing

minimum width transistor area

3λ

3λ

3λ

5*4λ 4λ

poly

 diffusion

weff(4λ)

(a)

weff(4λ)
n

minimum adjacent

transistor spacing

minimum width transistor area

3λ

3λ

3λ

(4n+1)4λ 4λ

poly

 diffusion

(b)

66

4.3.2 Diffusion sharing with transistor folding

When the width of the transistors increases, it becomes essential to fold the transistors to achieve

a compact layout for both area savings and performance [22]. Fig. 4.10(b) shows the area model

of 2:1 multiplexer formed by diffusion sharing and folding. When a transistor of width weff is

folded n times, the width of the diffusion region becomes weff/n. The resultant width in terms of

lambda is 4weff/nλ.

Using Fig. 4.10(b), one can generalize the active area equation of 2:1 multiplexer for transistors

with n folds in terms of lambda as:

2
4)24)(49(

1:2
_ n

n

eff
w

mux
AreaActive (13)

2
8)12)(49(

n

n
eff

wn

 (14)

In terms of mwt, the equation becomes

mwt

n

n
eff

wn

mux
AreaActive

2

2208

8)12)(49(

1:2
_

 (15)

mwt
n

n
eff

wn

26

)12)(49(

 (16)

Note, if n=1, the above equation is the same as Equation 7.

67

4.3.2.1 Number of folds

In this section we present the number of folds for any transistor size of a 2:1 multiplexer to

achieve minimum area. Table 4.1 below shows active area comparison without folding (1 fold)

and with 2 folds and 3 folds for different transistor sizes.

Table 4.1: Effect of area on folding

Transistor size without folding with 2 folds with 3 folds

4x 600 λ2 680 λ2 802 λ2

6x 792 λ2 840 λ2 952 λ2

10x 1176 λ2 1160 λ2 1250 λ2

12x 1368 λ2 1320 λ2 1400 λ2

Observe that, when transistor effective width, weff is 4 and 6 folding is not required and when

transistor effective width, weff is 10 and 12 the number of folds required are 2. We can conclude

that for small transistor sizes; there is no need of folding and only diffusion widening is sufficient

with diffusion sharing and for large transistors; folding is essential for significant area savings.

To determine the best number of folds in order to achieve the minimum active area, we can

differentiate Equation 16 with respect to n and set the derivative to zero as shown in Equation 17

and 18. Finally, Equation 19 shows the number of folds, n, that is needed to achieve minimum

active area as a function of the effective width, weff.

0
26

24

26

181:2
_

mwt

n
eff

w

n

mux
AreaActive

 (17)

68

18

42 eff
w

n (18)

eff
wstrengthdrivewith

transistoroffoldsofnumbertheisn

n
eff

w
eff

w

n 1,471.0
3

2

 (19)

4.4 Active area estimation for larger multiplexers

In section 4.1, we have observed that the primary building block of both encoded and decoded

multiplexer is 2:1 multiplexer. Thus, based on the number of 2:1 multiplexers contained in each

encoded and decoded multiplexer, true active area can be calculated as shown below.

4.4.1 Encoded Multiplexers

The exact active area of a k-input LUT can be calculated based on the number of 2:1

multiplexers that it contains. Thus the exact active area of a k-LUT is given by

muxAreaActive
k

LUTk
AreaActive 1:2_)12(_

 (20)

4.4.2 Decoded Multiplexers

Consequently, the exact active area of our decoded multiplexer layouts can be calculated using

the following equation,

rmultiplexethetoinputsofnumbertheiszwhere

muxAreaActive
dmuxz

AreaActive
z

1:2_)(
1:

_ 1
2

 (21)

69

4.5 Summary

In this chapter, we presented the importance of folding and diffusion sharing with change in

transistor size and effect on area. We observed that smaller transistors do not need folding only

diffusion widening is sufficient with diffusion sharing. However, folding is essential for larger

transistor sizes for significant area savings.

 This chapter also presented accurate active area models for both encoded and decoded

multiplexers and also described a mathematical equation to determine the best number of folds for

given transistor size.

70

Chapter 5

Pass Transistor based FPGA Components

Part II – Layout of Multiplexers

This chapter discusses the layout details of different sizes of encoded multiplexers used in

LUTs and decoded multiplexers used in the routing architecture. Different layouts in our study are

presented which led to achieve a compact layout. We have used up to 3 metal layers to layout all

the FPGA basic building blocks including multiplexers. Initially, only metal1 and metal2 is used.

Mostly, metal 1 is used for internal connections and metal 2 for long distance routing. Later, metal

3 is used to study the effect of area change with more layer of metal.

5.1 Encoded Multiplexers

LUTs are the basic components of FPGA which implements logic. LUTs are typically

implemented by encoded multiplexers. In Chapter 2 we have discussed their functionality and

schematic. Here, we explain the design of LUTs and also describe the different layouts for

different sizes of LUTs. Higher order LUT’s are created from lower order LUT’s using mirroring

technique.

One of our main focuses of research is a compact LUT layout design. Therefore, we exhibit a

detailed layout of 4 LUT, as it is a widely suggested size for best area [5][11]. However,

commercial FPGAs use LUT size as 6 which gives minimum area and delay product and therefore,

we have also laid 5 LUT’s and 6 LUT’s of varying sizes.

71

5.1.1 2-LUT

A k-input LUT design requires 2k SRAM cells and a 2k input multiplexer [11]. The SRAM

cells are the inputs to the multiplexer tree. Here, the multiplexer tree is constructed by pass

transistors. The 2-LUT design requires 4 SRAM cells and a 4:1 multiplexer. Fig. 5.1 shows the

schematic and circuit diagram of 2 LUT. Fig. 5.2, shows the layout of 2-LUT multiplexer tree, 4:1

multiplexer with minimum transistor width 1x. It comprises of three 2:1 multiplexers.

Fig. 5.1: 2-LUT schematic and circuit

We have laid the 4:1 multiplexers in two different ways and compared their area with and

without internal connections. Fig. 5.2 shows two different layout designs without internal

connections. Fig. 5.2(a) shows the layout when the output multiplexer is placed horizontal to one

of the input multiplexers. This has an area of 49x43 λ2 with white spaces only at the bottom and

could be used for other connections. Fig. 5.2(b) shows the layout when output multiplexer is placed

vertical and has an area 45x43λ2. This is little less when compared to Fig. 5.2(a). The final layout

72

with internal connections is shown in Fig. 5.3 and similar area difference is noticed as in Fig. 5.3,

the area with vertical 2:1 multiplexer at the output has lesser area.

Fig. 5.2 : Two different orientations of 2 LUT layout (a) Area is 49x43 λ2 (b) Area is 45x43 λ2

Fig. 5.3: 2-LUT layouts with internal connections (a) 49x53 λ2 (b) 45x53 λ2

Finally, we decide to use the first layout orientation with 8% more area. This is because all

multiplexers have the same orientation, having their polysilicons vertical. Also, fixed orientation

is a requirement for nanometer processes to have their low voltage transistors as vertical. Fig.

5.4(a) shows the 2 LUT layout with stacked via and transistor width 1x which resulted in an area

(b) (a)

43λ 43λ

 49λ
45λ

(b)
 49λ 45λ

53λ 53λ

(a)

73

of 2640λ2 and Fig. 5.4(b) shows the 2 LUT layout with stacked via and transistor width 6x which

resulted in an area of 4845λ2.

Fig. 5.4: 2-LUT layout (a) effective transistor width 1x and resulted in area of 2640λ2

,(b)effective transistor width 6x and resulted in area of 4560λ2.

5.1.2 3-LUT

A 3-LUT design requires 8 SRAM cells and an 8:1 multiplexer. In the layout process we have

constructed the 3-LUT multiplexer tree, 8:1 multiplexer from the already laid out 2- LUT. We

have tried two different approaches using mirroring technique. One by taking the mirror image of

2 LUTs side by side which resulted in area of 49x96λ2 and another by taking the mirror image one

below the other which resulted in area of 102x43λ2. Both methods use an additional 2:1 multiplexer

for the creation of 3-LUT multiplexer. Observe that, when 2 LUTS are placed side by side as

shown in Fig. 5.6 it results in less white space and less area with an area difference of 318λ2. Fig.

(a) (b)

 48λ 48λ

55λ

95λ

74

5.7 shows the final 3-LUT multiplexer tree with transistor size 1x and all internal connections with

an area of 6958λ2. Fig. 5.8(a) shows its associated stick diagram using 2 metals which resulted in

area 7680λ2 and Fig. 5.8(b) shows the stick diagram using 3 metals which resulted in an area of

4608 λ2. Fig. 5.9(a) shows the layout of 3-LUT multiplexer with stacked via and transistor size 1x

which resulted in an area of 6958λ2 and similarly Fig. 5.9(b) shows the layout of 3-LUT

multiplexer with transistor size 6x which resulted in an area of 10878 λ2.

Fig. 5.5: 3- LUT layout when 2- LUTs are placed one below the other. Area is 49x96 =4704λ2

Fig. 5.6: 3-LUT layout when 2- LUTs are placed side by side. Area is 102x43= 4386 λ2

 49λ

96λ

 102λ

43λ

75

Fig. 5.7 3- LUT layout using 2 metals with internal connections. Area is 98x71=6985 λ2

 2 LUT 2 LUT

2:1 MUX

3 LUT

In 1

In 0_bar
In 1_bar

In 0

nmos

poly

metal 1

metal 2

In 1

In 0_bar

In 1_bar

In 0

Op_3LUT

In 2 In 2_bar

10 tracks * 12 tracks - >80λ x96λ

(a)

76

Fig. 5.8: 3-LUT multiplexer stick diagram illustration (a) 2 metal, (b) 3 metal

Fig. 5.9: 3-LUT layout (a) with effective transistor width 1x. Area is 98x71=6958 λ2

 and (b) with effective transistor width 6x. Area is 98x111=10878 λ2

Op_3LUT

In 2 In 2_bar

In 0_bar

In 1
In 1_bar In 1

In 0_bar
In 0 In 0

6 tracks * 12 tracks - >48λ x96λ

(b)

(a) (b)
 98λ

71λ

111λ

98λ

77

5.1.3 4-LUT

A detailed study on the layout of 4 LUTs is carried out. Here, we have tried different options

to accomplish a simple floor plan but yet a compact layout with minimum area. A 4-LUT design

requires 16 SRAM cells and a 16:1 multiplexer. The layout of 16:1 multiplxer tree is designed

from two 3 LUTs and one 2:1 multiplexer. Below is an in-depth discussion of different options.

Option 1: In this layout a 4 LUT is designed from two 3 LUTs and a 2:1 multiplexer as illustrated

in Fig. 5.10. The 2:1 output multiplexer is placed inside, near the output of the 3 LUTs. This layout

results in more white spaces which are unutilized. Therefore, in our next layouts we try to minimize

the white spaces. The total area of 4 LUT with internal routing for this layout is 141 x 113 =15933

λ2.

Fig. 5.10: 4 LUT layout, when output 2:1 multiplexer is placed in between the 3 LUTs.

 141λ

113λ

78

Option 2: This layout in Fig. 5.11 is the modification of the first layout, option 1. Here, we try to

minimize the white spaces by placing the output multiplexer outside. We observed that the white

spaces could be reduced when the two 3 LUTs are placed side by side and the output multiplexer

just below the 3-LUTs. However, this resulted in higher area, 2.5 % more when compared to the

option 1. It was inspected that the extra area resulted from routing. The total area for this layout

with all internal routing is 122 x 134= 16348 λ2.

Fig. 5.11: 4 LUT layout when output 2:1 multiplexer is placed below the 3 LUTs.

134λ

 122λ

79

Fig. 5.12: 4-LUT layout, when output 2:1 multiplexer is placed in between the modified 3-LUTs.

Option 3: This layout in Fig. 5.12 is the improved version of option1; keeping the output

multiplexer inside and minimizing the internal white spaces. Here, the 3 LUT layout was also

slightly modified to further minimize the white spaces. The area for this layout is 134 x 111=

14874 λ2, resulting in 6.6 % (1059 λ2) area saving when compared to option1.

Option 4: This layout is our final 4 LUT layout with minimum internal white spaces and the most

compact layout. The 3 LUTs layout used here is presented in Fig. 5.13. The 2:1 multiplexer at the

output is placed below the 3 LUTs. This layout resulted in the best area when compared with all

the three layout options. The total area with all internal routing is 104 x 126 =13104 λ2. An area

saving of 17% is achieved when compared to option 1 layout and an area saving of 13% is achieved

when compared to option 3. Fig. 5.13 shows the corresponding compact 4-LUT layout with

minimum internal white spaces.

 134λ

111λ

80

Fig. 5.13: Compact 4 LUT layouts with minimum internal white spaces

 104λ

126λ

In 1
In 0_bar

In 1_bar In 0

nmos

poly

metal 1

metal 2

In 1 In 0_bar In 1_bar In 0

In 2 In 2_bar

In 3 In 3_bar

Op_4LUT

19 tracks * 12 tracks - >152λ x96λ (a)

81

Fig. 5.14: 4-LUT multiplexer, stick diagram illustration (a) 2 metal (b) 3 metal

Fig. 5.15: 4-LUT layout (a) with transistor size 1x, Area is 98x134=13132 λ2

and (b)with transistor size 6x, Area is 98x233=22834 λ2

In 0

In 3_bar

12 tracks * 16 tracks - >96λ x128λ (b)

In 2 In 2_bar

In 0_bar

In 3 In 1

In 0_bar

In 0

In 1_bar

Op_4LUT

(a)
(b)

233λ

98λ

134λ

98λ

82

Stick diagram representation of 4-LUT is shown in Fig. 5.14. Fig. 5.14(a) shows the 4-LUT

stick diagram using 2 metals which resulted in an area of 14592λ2 and similarly Fig. 5.14(b) shows

the 4-LUT stick diagram using 3 metals which resulted in an area of 12288λ2. The final 4-LUT

layout with stacked via is shown in Fig. 5.15.

5.1.4 5-LUT and 6-LUT

Similarly, higher order LUTs can be created using mirroring technique. Fig. 5.16 shows 5-

LUT layout using 2 metals with an area of 33580 λ2. Fig. 5.17 shows 6-LUT layout using 2

metals with an area of 76659 λ2.

Fig. 5.16: 5-LUT layout. Area is 230x146=33580 λ2

230λ

146λ

83

Fig. 5.17 : 6-LUT Layout. Area is 253x303=76659 λ2

5.2 Decoded Multiplexer

The decoded multiplexers are commonly used to implement the local routing networks and

connection blocks [8][22]. They offer better area delay product in routing switch blocks when

compared to encoded multiplexers. Fig. 5.18 shows the schematic of an 8-input decoded

multiplexer, with a two-level multiplexer topology used in [18][24]. Observe that the decoded

multiplexer is also constructed from pass transistors and the 2:1 multiplexer forms the primary

building block. The 8-input decoded multiplexer contains five 2:1 multiplexers as own in

schematic. Fig. 5.20(b) shows the layout of 8-input decoded multiplexer.

253λ

303λ

84

 4-input decoded multiplexer is discussed in Chapter 4 Fig. 4.2(b) shows the 4-input decoded

multiplexer schematic. It contains three 2:1 multiplexers and its layout is similar to the 4-input

encoded multiplexer.

Fig. 5.18: 8: 1 Decoded Multiplexer

Fig. 5.19: 8:1 decoded multiplexer, 6x transistor size (a) 2metals, Area is 72x95= 6840λ2 (b)

3metals, area is 72x84=6048λ2

 SRAM

ip7

ip0

ip5 ip4

ip3 ip2 ip1

2:1 mux

2:1

mux

2:1

mux

ip6

2:1

mux

2:1

mux

(a) (b)

72λ 72λ

95λ
84λ

op

85

Fig. 5.19(a) shows a compact 8:1 decoded multiplexer of transistor size 6x using 2 metals that

resulted in 6840λ2 and Fig. 5.19(b) shows a compact 8:1 decoded multiplexer of transistor size 6x

using 3 metals that resulted in 6048λ2.

5.3 Layout strategy for encoded and decoded multiplexers

In this work, we initially laid out 4:1, 8:1, and 16:1 encoded multiplexers using both 2 layers

and 3 layers of metals and 1x, 4x, 6x, 8x and 16x minimum width transistors. These multiplexers

correspond to 2-input, 3-input, and 4-input LUTs, respectively. Higher order LUTs 5 and 6 have

also been laid. A general strategy of mirroring is used to reuse the lower order multiplexers to

create higher order multiplexers. In particular, as shown by, a higher order LUT can be created by

two lower order LUTs and an additional 2:1 multiplexer.

To ensure good layout quality and maximize design reuse, we first create a dense 2:1

multiplexer for a given number of metal layers and transistor size. A 2-LUT is then created by

mirroring one 2:1 multiplexer into two 2:1 multiplexers and by adding an additional 2:1

multiplexer to select the outputs of the two mirrored multiplexers. Similarly a 3-LUT is created by

mirroring one 2-LUT into two 2-LUTs and adding an additional 2:1 multiplexer to select the

outputs of the two mirrored 2-LUTs. The same process is repeated for creating other higher order

LUTs. Given this mirroring strategy, the exact active area of a k-input LUT can be calculated based

on the number of 2:1 multiplexers that it contains.

86

Fig. 5.20: Layout using 2 metals (a)5-LUT layout (b) 8:1 decoded multiplexer

We use similar layout strategy to create layouts for 4:1, 8:1 and 16:1 decoded multiplexers.

These multiplexers are also based on the same layout of 2:1 multiplexers used in the layouts of the

encoded multiplexers. In particular, our decoded multiplexers are based on the two-level

multiplexer topology used in [18],[22], and [24] as shown in Fig. 5.18. As with encoded

multiplexers, six versions of layouts are created for each decoded multiplexer by varying the

number of metal layers from 2 to 3 and using 1x, 6x and 16x minimum width transistors. The two-

metal layout of the 8:1 multiplexer is shown in Fig. 5.20(b). As shown the decoded multiplexer is

also constructed out of a series of 2:1 multiplexer layouts.

It is important to note that since the interconnect area of a layout depends on the transistor

drive strength, weff, the number of metal layers used and the circuit topology of a component,

wiring contributes to a significant amount of the total layout area of multiplexers. This is due to

the large number of input signals and the recursively Y-connected topology of the multiplexers,

which limit the extent of diffusion sharing. Consequently, the Y-topology of multiplexers requires

4

LUT

3

LUT

2:1

Mux

2 LUT

2:1

Mux

72λ

46λ

(a)
(b)

87

more layout area per unit of active area than the layout of the series and parallel topologies found

in other FPGA components such as buffers and full adders.

5.3.1 Comparing mirroring strategy with row and column strategy

suggested by VPR

Comparing the above mirrored layout strategy to the strategy suggested by the VPR area model

[11], where transistors are uniformly distributed in a row and column format. In particular, a 4-

LUT requires 30 transistors and hence, can be arranged in six rows and five columns. After

diffusion sharing and interconnect of transistors we found that the mirroring strategy works well

for layouts containing small transistors where wiring area dominates the total layout area. In

particular, as shown by Fig. 5.21(a) and (b), for transistor size 1x our layout strategy using

mirroring technique is 13% smaller than the row and column strategy for laying out 4-LUTs where

the row and column strategy evenly distributes the 15 2:1 multiplexers over 5 rows and 3 columns.

(a)

(b)

2:1

Mux

3 LUT

2 LUT
2:1 Mux 2 LUT

96λ

 124λ

 119λ

 113λ

3 LUT

88

Fig. 5.21 : 4-LUT layout using 3 metals (a) mirroring technique with 1x transistors (b) row and

column technique with 1x transistors (c) mirroring technique with 16x transistors (d) row and

column technique with 16x transistors

As transistor size increases, however, the active area starts to dominate the total layout area and

the area advantage of the mirroring strategy correspondingly reduces. As shown by Fig. 5.21(c)

and (d), the mirroring strategy is only 1.5% smaller than the row and column strategy where the

transistor size is increased to 16x minimum width.

Consequently, for all our experimental analysis we have considered the layout area resulting

from mirroring strategy as it results in minimum layout area.

5.4 Summary

In this chapter, we described the layouts of encoded and decoded multiplexers for different

multiplexer inputs. It reveals the exhaustive layout work done to achieve compact area. This

chapter also presented a novel mirroring technique for multiplexers where higher order

(c) (d)

2:1 Mux 2 LUT

2:1

Mux

3 LUT

2 LUT

3 LUT

256λ 257λ

 180λ
 182λ

89

multiplexers can be created from lower order multiplexers. The mirroring technique discussed

resulted in minimum area when compared with the layout strategy of VPR.

90

Chapter 6

Experimental Analysis and Results

This chapter presents the experimental results. We first compare the actual SCMOS deep

submicron layout area for LUT multiplexers for minimum size transistor, 1x with stick diagram

area prediction which is IC process independent and also with minimum width transistor area

models VPR [11] and COFFE [18]. We have put our best effort to make the layouts as compact

as possible and compare the area results.

We second compare the theoretical minimum layout area (the active area) against the VPR and

the COFFE area predictions. We then justify the number of metal layers that are used in our work

and compare the full layout area with the predicted layout area of VPR and COFFE. In particular,

we measure the area that a model over/under-estimates as a percentage of the actual layout area

(i.e. (Ei - Ai)/Ai or 1/αi - 1), where Ai is the actual layout area (including wiring area) of the FPGA

building block, Ei is the estimated layout area and αi is the ratio between the actual layout area and

the estimated layout area. Results for both the estimated area from the VPR area model and the

COFFE area model are presented. Both the encoded and decoded multiplexer layout areas are then

presented as a function of the multiplexer size and transistor size.

 We later compare LUT multiplexers with routing multiplexers. Detail analysis and

comparison is provided. In particular, an example of 16:1 multiplexer is used to discuss the

difference when it is used as a LUT multiplexer and when it is used as a routing multiplexer.

91

Finally, the models' ability to predict the layout area of multiplexers is compared to the models'

ability to predict the layout area of CMOS-based FPGA building blocks.

Table 6.1: Stick Diagram and Layout comparison

 Area in λ2

LUT

mux

size

Layers
Stick

Diagram

Layout

Area
Difference

%

Difference

VPR

Area [11]

Layout

area /

VPR

area

COFFE

Model

[18]

Layout

area /

COFFE

area

2

LUT

mux

2

metal
3072 2640 432 16

(6x208)

1248

2.25

1205.6

2.33

3

metal
2304 2208 96 4 1.77 1.83

3

LUT

mux

2

metal
7680 6958 722 10

(14x208)

2912

2.40

2813

2.48

3

metal
4608 4704 -96 -2 1.62 1.67

4

LUT

mux

2

metal
14592 13132 1460 11

(30x208)

6240

2.10

6027.9

2.18

3

metal
12288 11904 384 3 1.91 1.97

5

LUT

 mux

2

metal
37632 33580 4052 12

(62x208)

12896

2.60

12457.6

2.70

3

metal
29952 29252 700 2 2.27 2.35

6

LUT

mux

2

metal
85312 76659 8653 11

(126x208)

26208

2.93

25317.18

3.03

3

metal
67392 63036 4356 7 2.41 2.49

6.1 Stick Diagram Comparison

Here we compare the layout area for different LUT multiplexers for minimum size transistor, 1x,

with stick diagram prediction and also compares the layout area to the VPR area model [11] and

the COFFE area model [18]. Note that, early FPGA architectural studies used LUT multiplexers

constructed out of 1x transistors [11]. Table 6.1 compares stick diagram area with actual SCMOS

deep submicron layout area for transistor size 1x. As shown in column 6, the stick diagram model

accurately estimates the layout area to within 85% -95% of the actual layout area. Note that the

92

inaccuracy is mainly due to the fact that in stick diagram track separation is uniformly considered

to be 8λ but in the actual layout this may vary from 6λ to 8λ. As shown in column 8 and 10, both

area models underestimate the actual layout area by a factor of 2-3. The reason for the

underestimation is that both of these models only consider transistor spacing and size but do not

consider the actual connectivity between the transistors. From our analysis we observe that stick

diagram area is much closer to the actual layout area. Stick Diagrams can achieve over 90 percent

accuracy in layout area estimation while remaining IC-process independent. This work is presented

in [12].

6.2 Active Area Comparison

Both the VPR and the COFFE area models are based on the premise that, given unlimited

number of metal layers, the actual layout area will eventually approach active area [11]. Neither

area models, however, explicitly consider diffusion sharing and transistor folding.

The true active area used by a 2:1 multiplexer can be calculated using Equation 14, which

taking into account of diffusion sharing. The area then can be minimized for a given transistor size,

weff, based on Equation 17, which calculates the best number of folds, n, for a given value of weff.

Table 6.2 shows the minimum active area calculations for the transistor sizes of 1x minimum

width to 34x minimum width for the 2:1 multiplexer. Also shown are the estimated VPR area and

COFFE area in column 3 and 4 respectively and column 5 and 6 shows the percentage of

over/under-estimations for each model as a percentage of the actual active area. The percentage

values are also plotted in Fig. 6.1(a).

93

Fig. 6.1 Active area comparison (a) Encoded and Decoded Multiplexers (b) CMOS based

components

As shown, for both the encoded and decoded multiplexers, VPR overestimates active area by

33% to 139% for transistor sizes of 1x-34x. The COFFE model, on the other hand, performs much

better and overestimates for small transistor sizes of 1x-6x from 14% to 29% and is very close to

the active area for larger transistor sizes which ranges from overestimation of 9% (8x) to

underestimation of 3% (34x).

Note that, for our layouts shown in Fig. 5.20(a) and Fig. 5.20(b), the 2:1 multiplexer is

repeatedly used to construct larger multiplexers. As a result, as shown by Equation 15 and 16, the

-20%

0%

20%

40%

60%

80%

1x inverter 2x inverter 4x buffer 16x buffer full adder

D
if

fe
re

n
c
e

Active Area -CMOS components

 VPR COFFE

(b)

(a)

94

active area of a larger encoded or decoded multiplexer can be calculated as the product of the

number of 2:1 multiplexers that the multiplexer contains and the active area of one 2:1 multiplexer.

Since both the VPR and COFFE models can be similarly decomposed into the product of the

number of 2:1 multiplexers that a multiplexer contains and the active area of one 2:1 multiplexer,

the over/under-estimation values shown Fig. 6.1(a) also represent the over/under-estimation values

of all multiplexers investigated in this work.

Table 6.2: Active Area of Multiplexers

Multiplexer Area in λ2

Transistor size Active Area VPR Area COFFE Area
VPR%

difference

COFFE%

difference

1 312 416 402 33 29

2 408 624 522 53 28

4 600 1040 724 73 21

6 792 1456 904 84 14

8 984 1872 1072 90 9

10 1176 2288 1233 95 5

12 1320 2704 1388 105 5

14 1480 3120 1540 111 4

16 1640 3536 1689 116 3

18 1800 3952 1835 120 2

20 1960 4368 1978 123 1

22 2120 4784 2120 126 0

24 2280 5200 2261 128 -1

26 2440 5616 2400 130 -2

28 2600 6032 2538 132 -2

30 2744 6448 2674 135 -3

32 2893 6864 2810 137 -3

34 3043 7280 2944 139 -3

Table 6.3 shows the measured active area for buffer sizes of 1x to 16x as well as the full adder

presented in Chapter 3 . The table also shows the VPR and the COFFE estimated area for these

95

components in column 3 and 4 respectively. The percentages of over/under-estimation are then

shown in column 5 and 6, respectively, and are plotted in Fig. 6.1(b).

Table 6.3: Active Area CMOS based Components

 Area in λ2

Component Active Area VPR Area COFFE Area
VPR %

difference

COFFE %

difference

1x inverter 544 520 510 -4 -6

2x inverter 736 1040 678 41 -8

4x buffer 1472 1976 1471 34 0.1

16x buffer 4416 7176 3813 63 -14

Full adder 4712 8112 6889 72 46

As shown, VPR underestimates for 1x inverter by 4% but overestimates for larger inverters

and buffers and full adder by a maximum of 72%. In contrast, COFFE underestimates for inverters

and buffers by a maximum of 18% and overestimates for full adder by 46%.

Overall the VPR model ranges from underestimating active area by 4% to overestimating

active area by 139%. The COFFE model has a smaller range of error. In particular, it has a range

of underestimation of active area by 14% to overestimation of active area by 46% for CMOS

components and underestimation by 3% to overestimation by 29% for multiplexers.

It is also important to note that active area calculations based on Equation 15 and 16 and

minimized by Equation 14 are equal to the actual active area measured from our layouts.

Consequently, they are much more accurate for calculating the active area of multiplexers than

both the VPR and COFFE models due to their additional consideration for both diffusion sharing

and transistor folding. Furthermore, since the layout for many basic CMOS components such as

buffers and full adders are widely available [21], an active area model based on the direct

96

measurement of the actual layout area is feasible for CMOS components and is also more accurate

than both the VPR and COFFE models.

6.3 Selection of the number of metal layers for layout

We use the publicly available Intel 45nm process metal stack as our guide to decide the number

of metal layers to use in the layout of the fundamental FPGA building blocks on typical

commercial IC processes. In particular, Table IV shows the metal stack for the Intel 45nm process

[21]. As shown, only the bottom 3 metal layers are minimum width. The higher level layers have

significantly increased minimum metal width and consequently are less suitable for short distance

connections. Consequently, in this work we use up to 3 metal layers for intra-building-block

routing.

Table 6.4 : INTEL 45nm Metal Stack [19]

Layer thickness(nm) width(nm) pitch(nm)

M9 7 µm 17.5 µm 30.5 µm

M8 720 400 810

M7 504 280 560

M6 324 180 360

M5 252 140 280

M4 216 120 240

M3 144 80 160

M2 144 80 160

M1 144 80 160

Using only the minimum width metals allows us to create a set of highly flexible layouts for

FPGA building blocks that can be used across a wide range of IC processes with a minimum

amount modification. Furthermore, we observe only 5%-10% area reduction when metals are

97

increased from 2 to 3 layers. Since the M9 layer is reserved for distributing power to different

power-gated domains across the die [21] on the Intel process, this leaves us with 2 metal layers for

power and clock distribution and 3 metal layers for implementing global and local routing network

on this 9 metal layer process.

6.4 Multiplexers based on 1x transistors

The layout area of the multiplexers investigated in this work is shown in Table 6.5. Also shown

are the VPR estimated area and COFFE estimated area for each component in column 5 and 6

respectively. Finally, the area that the VPR and COFFE model over/under-estimates as a

percentage of the actual layout area is shown in column 7 and 8 respectively.

 Since early FPGA architectures exclusively use encoded multiplexers that are constructed out

of 1x transistors [11], we first investigate the layout area of these multiplexers. The percentages of

over/under-estimation are plotted in Fig. 6.2(a). The figure shows that both VPR and COFFE

underestimate the total layout area of the encoded and decoded multiplexers.

The figure also shows that for the same type of multiplexers, there is little variation in

percentage of over/under-estimation for the VPR model. In particular, the percentage of

underestimation only varies by 6% (from 52% to 58%) when VPR is used to estimate the layout

area of encoded multiplexers with 2 layers of metal. The variation grows to 10% (from 38% to

48%) for 3 layers of metal. When both encoded and decoded multiplexers are considered, however,

the variation in the percentage of underestimation grows. Specifically, the variation grows from

6% to 21% and 11% to 26% for 2 and 3 layers of metals respectively. Similarly, the COFFE model

underestimates the layout area by 54% to 60% (a variation of 6%) for 2 layers of metal and by

98

40% to 49% (a variation of 9%) for 3 layers of metal for encoded multiplexers. The variation grows

from 6% to 21% and 9% to 24% for 2 and 3 layers, respectively, when both types of multiplexers

are considered.

Fig. 6.2: Layout area comparison (a) transistor weff=1 (b) transistor weff=6 (c) transistor weff=16

The result shows that both the VPR and COFFE model are likely to produce very accurate

ranking of earlier FPGA architectures where only encoded multiplexers are used throughout the

architectures and where the buffers and pass transistors do not consist of a significant amount of

total layout area. For newer architectures which employ a mix of encoded and decoded

-70%

-60%

-50%

-40%

-30%

-20%

-10%

0%

2- LUTor
4:1 dmux

3-LUT 4-LUT 8:1 dmux

D
if

fe
re

n
c
e

Total Layout Area Comparision -Transistor

weff=1

VPR -2metals VPR -3metals

COFFE - 2metals COFFE- 3metals

-60%

-40%

-20%

0%

20%

40%

2- LUTor 4:1
dmux

3-LUT 4-LUT 8:1 dmux

D
if

fe
re

n
c

e

Total Layout Area Comparision -Transistor
weff=6

VPR -2metals VPR -3metals

COFFE - 2metals COFFE- 3metals

-60%

-40%

-20%

0%

20%

40%

60%

2- LUTor
4:1 dmux

3-LUT 4-LUT 8:1 dmux

D
if

fe
re

n
c

e

Total Layout Area Comparision - Transistor
weff =16

VPR -2metals VPR -3metals

COFFE - 2metals COFFE- 3metals

(a) (b)

(c)

99

multiplexers [22], however, the accuracy of both models in correctly ranking the layout area of

FPGA architectures decreases due to the increased variation in prediction errors.

The result also shows that the COFFE area model has similar accuracy for estimating the layout

area of 1x multiplexers as the VPR area model. Similar variations also exist between the prediction

error of the COFFE model and the VPR model (21% for 2 layers and 26% vs. 24% for 3 layers).

This is due to the fact that the COFFE model has a similar amount of error in estimating the active

area of 1x multiplexers as the VPR model (29% vs. 33%) as shown in Fig. 6.1(a).

6.5 Effect of Transistor Size on the Consistency of Prediction

Errors

Modern FPGAs are increasingly incorporating multiplexers that are constructed out of larger

transistors [18]. To investigate the effect of transistor sizing on the consistency of the prediction

errors, we laid out multiplexers using transistors that are 6x of minimum width and 16x minimum

width. Fig. 6.2(b) and Fig. 6.2(c) plots the over/under-estimations as a percentage of the actual

layout area for multiplexers.

Along with Fig. 6.2(a), the figures show that the prediction error of the VPR model varies

significantly with changing transistor sizes. In particular, the variation in prediction error varies

from an underestimation of 48% (16:1 encoded multiplexer, 1x) to an overestimation by 38% (16:1

encoded multiplexer, 16x; and 8:1 decoded multiplexer, 16x) for an overall variation of 86% for 3

metal layers and layouts with 2 metal layers have a similar variation of 91%.

100

Table 6.5 : Total Layout Area – Encoded and Decoded Multiplexers

 Area in λ2

Component
Transistor

size
Reference

Metal

Layers

Layout

Area

(λ2)

VPR

Area

COFFE

Area

VPR %
difference

COFFE %
difference

2 LUT (4:1

encoded mux)

1x
Fig. 5.4(a) 2 2640 1248 1206 -53 -54

A1 3 2208 1248 1206 -43 -45

6x
Fig. 5.4(b) 2 4560 4368 2708 -4 -41

A7 3 4128 4368 2708 6 -34

16x
B3 2 9523 10608 5066 11 -47

A10 3 8989 10608 5066 18 -44

3 LUT (8:1

encoded mux)

1x
Fig. 5.9(a) 2 6958 2912 2813 -58 -60

A2 3 4704 2912 2813 -38 -40

6x
Fig. 5.9(b) 2 10878 10192 6319 -6 -42

A8 3 8526 10192 6319 20 -26

16x
B4 2 22320 24752 11820 11 -47

A9 3 17978 24752 11820 38 -34

4LUT (16:1

encoded mux)

1x
Fig. 5.15 (a) 2 13132 6240 6028 -52 -54

A3 3 11904 6240 6028 -48 -49

6x
Fig. 5.15 (b) 2 22834 21840 13541 -4 -41

A9 3 22158 21840 13541 -1 -39

16x
B5 2 47160 53040 25328 12 -46

A12 3 46080 53040 25328 15 -45

4:1 dmux

1x
Fig. 5.4(a) 2 2640 1248 1206 -53 -54

A1 3 2208 1248 1206 -43 -45

6x
Fig. 5.4(b) 2 4560 4368 2708 -4 -41

A7 3 4128 4368 2708 6 -34

16x
B3 2 9523 10608 5066 11 -47

A10 3 8989 10608 5066 18 -44

8:1 dmux

1x
Fig. 5.20(b) 2 3312 2080 2009 -37 -39

A6 3 2664 2080 2009 -22 -25

6x
Fig. 5.19(a) 2 6840 7280 4514 6 -34

Fig. 5.19(b) 3 6048 7280 4514 20 -25

16x
B6 2 13320 17680 8443 33 -37

A13 3 12810 17680 8443 38 -34

The COFFE model has a reduced variation. This is mainly due to the more accurate active area

estimation at larger transistor sizes as shown in Fig. 6.2(a). The variation, however, still is

significant and ranges from an underestimation of 56% (8:1 encoded multiplexer, 1x) to an

101

underestimation of 25% (8:1 decoded multiplexer, 6x) for an overall variation of 24% for 3 metal

layers and layouts with 2 metal layers has a variation of 26%. These variations are a direct result

of the models not considering the effect of transistor sizing on diffusion sharing and transistor

folding. Furthermore, the models do not consider the varying proportion of wiring area and active

area as the transistor size increases.

6.6 Comparison of LUT multiplexer with Routing

multiplexer

The inconsistency in the VPR and COFFE models in estimating layout area can create biases in

FPGA architectural studies. For example, a 16:1 multiplexer can be used to construct both a 4-

LUT and a 16:1 routing multiplexer. In constructing the 4-LUT, the 16:1 multiplexer requires an

additional 16 bits of SRAM as shown in Fig. 6.3(a). In constructing the 16:1 routing multiplexer,

on the other hand, only 4 bits of SRAM is required as shown in Figure 14(b). Since 6-transistor

SRAM cells are typically used in FPGAs ([11] and [18]) both the VPR and COFFE area models

more accurately predict the true layout area of SRAM cells than the true layout area of

multiplexers, both models produce a more accurate layout area prediction for 4-LUTs because of

larger number of SRAM cells than 16:1 routing multiplexers. In particular, when the 16:1

multiplexer constructed using 1x transistors is used to construct a 4-LUT, both the VPR and

COFFE area models are relatively accurate and the true layout area is only 17% and 12% bigger

than the estimated area of VPR (as shown in row 5 column 11 of Table 6.6) and COFFE (as shown

in row 5 column 13 of Table 6.6) models respectively.

102

Fig. 6.3 : Multiplexer (a) LUT (b) Routing

When used to construct a routing multiplexer, on the other hand, the actual layout area is 48%

to 46% larger than the estimated area of VPR (as shown in row 5 column 10 of Table 6.6) and

COFFE (as shown in row 5 column 12 of Table 6.6) respectively. Such a large variation in

estimation error would lead to architectural studies that unfairly favor the use of LUTs over routing

multiplexers. In particular, studies such as [1], where the utilization of LUTs within basic logic

clusters are sacrificed in order to increase overall area efficiency by increasing the efficiency of

local and global routing resources, should take into account these variations in LUT and routing

multiplexer area to more accurately characterize the optimal trade-offs between LUT utilization

and routing resource utilization.

Table 6.6 also shows LUT area versus routing multiplexer area in row 3 to 7 for multiplexers

of sizes 4:1 to 64:1 with 1x transistors. As shown, for small multiplexer sizes, the variation

between the area estimation made by the VPR and COFFE area models and the true layout area

are relatively small for both LUTs and routing multiplexers. In particular, for 4:1 routing

multiplexers, the true layout area is 21% (row 3 column 10) and 17% (row 3 column 12) larger

SRAM0

SRAM3

ip15

LUT multiplexer

ip14

ip1

ip2

ip3

Routing multiplexer

 SRAM1

 SRAM0

 SRAM2

 SRAM15

 SRAM14

ip0

16:1 16:1

ip0

(a) (b)

103

than the area prediction of the VPR and COFFE area models respectively for routing multiplexers.

The 2-LUT constructed using the same 4:1 multiplexer, on the other hand, is 10% (row 3 column

11) to 5% (in row 3 column 13) larger than the area model predictions. As the multiplexer size

increases, the variation increases as well. In particular, for 64:1 multiplexers, the true layout area

is 108% (row 7 column 10) and 110% (row 7 column 12) larger than the area model predictions

for routing multiplexers, while the 6-LUT constructed using the same multiplexer is only 50%

(row 7 column 11) and 24% (row 7 column 13) larger than the area model predictions.

The table also shows the area comparison between true layout area and area model predictions

for larger transistor sizes (from row 9 to row 27). As shown, large prediction variations persist at

larger transistor sizes. In particular, for the 64:1 multiplexers and 16x transistor size, true layout

area is 117% (row 27 column 12) larger than the COFFE area model prediction for routing

multiplexers while the true layout area is only 65% (row 27 column 13) larger than the COFFE

area model prediction for LUT area. It is also important to note that in architectures that contain a

mix of transistor sizes and multiplexer sizes, the prediction variations can be even larger. For

example, the true layout area is 20% (row 13 column 10) smaller than VPR area model prediction

for 8:1 routing multiplexers constructed out of 16x transistors. If the same architecture also

contains 64:1 routing multiplexers of 1x transistors, the true layout area of these multiplexers is

108% (row 7 column 10) larger than the VPR area model. Similarly, the COFFE area prediction

varies from 130% smaller than the true layout area (64:1 routing multiplexer with 8x transistors)

to 4% smaller than the true layout area (3-LUT with 1x transistors). These results show that

correction factors produced by this work are important in increasing the accuracy of future FPGA

architectural studies in selecting the correct mix of FPGA resources for implementing efficient

FPGA fabrics on SOCs.

104

Table 6.6: LUT Area vs Routing Multiplexer Area
 1 2 3 4 5 6 7 8 9 10 11 12 13

1

M
u

lt
ip

le
x
e
r

T
ra

n
si

st
o

r
 s

iz
e Layout Area VPR Area COFFE Model

Layout area / VPR

Area

Layout area /

COFFE Area

2
Mux

area

Routing

mux

with

SRAM

LUT

mux

with

SRAM

Routing

mux

with

SRAM

LUT

mux

with

SRAM

Routing

mux with

SRAM

LUT mux

with

SRAM

Routing

mux

with

SRAM

LUT

mux

with

SRAM

Routing

mux

with

SRAM

LUT

mux

with

SRAM

3 4 to 1 1x 2208 4548 6888 3744 6240 3876.80 6548 1.21 1.10 1.17 1.05

4 8 to 1 1x 4704 8214 14064 6656 12896 6819.80 13497.8 1.23 1.09 1.20 1.04

5 16 to 1 1x 11904 16584 30624 11232 26208 11370.30 27397.5 1.48 1.17 1.46 1.12

6 32 to 1 1x 29252 35102 66692 19136 52832 19135.60 55196.8 1.83 1.26 1.83 1.21

7 64 to 1 1x 63036 70056 137916 33696 106080 33330.78 110795.58 2.08 1.30 2.10 1.24

8

9

4 to 1

4x 3360 5700 8040 5616 8112 4843.97 7515.17 1.01 0.99 1.18 1.07

10 8x 4896 7236 9576 8112 10608 5887.19 8558.39 0.89 0.90 1.23 1.12

11 16x 8989 11329 13669 13104 15600 7736.83 10408.03 0.86 0.88 1.46 1.31

12

13

8 to 1

4x 7056 10566 16416 11024 17264 9076.59 15754.59 0.96 0.95 1.16 1.04

14 8x 10192 13702 19552 16848 23088 11510.78 18188.78 0.81 0.85 1.19 1.07

15 16x 19402 22912 28762 28496 34736 15826.61 22504.61 0.80 0.83 1.45 1.28

16

17

16 to 1

4x 19220 23900 37940 20592 35568 16206.24 32233.44 1.16 1.07 1.47 1.18

18 8x 29264 33944 47984 33072 48048 21422.35 37449.55 1.03 1.00 1.58 1.28

19 16x 52208 56888 70928 58032 73008 30670.56 46697.76 0.98 0.97 1.85 1.52

20

21

32 to 1

4x 49700 55550 87140 38480 72176 29129.94 65191.14 1.44 1.21 1.91 1.34

22 8x 76964 82814 114404 64272 97968 39909.90 75971.10 1.29 1.17 2.08 1.51

23 16x 117298 123148 154738 115856 149552 59022.86 95084.06 1.06 1.03 2.09 1.63

24

25

64 to 1

4x 107532 114552 182412 73008 145392 53641.73 131106.53 1.57 1.25 2.14 1.39

26 8x 166860 173880 241740 125424 197808 75549.39 153014.19 1.39 1.22 2.30 1.58

27 16x 241500 248520 316380 230256 302640 114391.87 191856.67 1.08 1.05 2.17 1.65

6.7 FPGA CMOS components

Layout area comparison of other FPGA-related CMOS components is done against the VPR

and the COFFE models as shown in Table 6.7. The same data is plotted in Fig. 6.4. We measured

the layout area of 1x, 2x, 4x, 16x buffers and the full adder. Note that both models underestimate

area for 1x, 2x, and 4x buffers. VPR overestimates the area of 16x buffers and full adder while

105

COFFE underestimate area for 16x buffer and overestimates for the full adder. Overall the

estimation error ranges from an underestimation of 50% to overestimation of 36% for the VPR

model for an overall variation of 84%. For the COFFE model, the variation ranges from an

underestimation of 51% to overestimation of 13% for an overall variation of 64%.

Both models show a large variation in prediction error for CMOS components due to the large

variation in circuit topology and wiring demand across CMOS circuits.

Table 6.7 : Total Layout area –CMOS based FPGA Components

 Area in λ2

Component Reference

Full

Layout

Area

VPR Area COFFE Area
VPR %

difference

COFFE %

difference

1x inverter Fig. 3.5 1036 520 509.6 -50 -51

2x inverter Fig. 3.7 1372 1040 678.08 -24 -51

4x buffer Fig. 3.15 2112 1976 1470.56 -6 -30

16x buffer Fig. 3.19 5292 7176 3812.64 36 -28

Full adder Fig. 3.24 6072 8112 6888.96 34 13

Fig. 6.4: Layout area comparison for CMOS components

-60%

-40%

-20%

0%

20%

40%

60%

1x inverter 2x inverter 4x buffer 16x buffer full adder

D
if

fe
re

n
c

e

Total Layout Area Comparision -CMOS
Components

VPR COFFE

106

6.8 Summary

This chapter has described the experimental analysis performed to determine the accuracy of

minimum width transistor area models widely used in FPGA architectural studies. We investigate

the suitability of using minimum width transistor area to directly estimate the actual

implementation area of FPGA-based reconfigurable fabrics.

We first compared the actual SCMOS deep submicron layout area for LUT multiplexers for

minimum size transistor, 1x with conventional stick diagram area prediction and also with

minimum width transistor area models of VPR and COFFE. We second compared the theoretical

minimum layout area (the active area) against the VPR and the COFFE area predictions. We then

compared LUT multiplexers with routing multiplexers. Finally, we compared the models ability

to predict multiplexer layout area with the predicted layout area od CMOS based components.

107

Chapter 7

Conclusion and Future Research

This chapter summarizes the conclusion of our study and the contribution of this research and

also presents the future work to be addressed.

7.1 Summary

Based on our layout work, for commonly used FPGA components we conclude that the

minimum width transistor area models [11] and [18] do not give accurate area estimations nor does

it scale with the same factors for all components. They are inaccurate especially in layouts where

wiring area dominates. COFFE underestimates for buffers and encoded and decoded multiplexers

with any number of inputs but overestimates for full adders. However, VPR underestimates for

encoded multiplexers and small size buffers and overestimates for decoded multiplexers with large

transistor sizes, large size buffers and full adders. This variation is due to the fact that different

components have different circuit topologies. Components which have exclusively parallel and in

series connected transistors can extensively employ diffusion sharing in order to minimize their

layout area. Minimum width transistor area models from [11] and [18] also do not consider the

connectivity and grouping of adjacent transistors. More accurate area models for FPGA

components can be developed based on actual layouts by carefully taking into account the actual

connectivity and grouping of adjacent transistors.

108

7.2 Future Research

 Create an open source version of the layouts of the actual FPGA building blocks, so their

actual layout area can be used to achieve a highly accurate ranking of the implementation

area of FPGA architectures built upon these layouts.

 Study the effect of placement of 2:1 multiplexer in LUTs and decoded multiplexers to

further minimize area.

 We presented new active area models for both encoded and decoded multiplexers. Further,

development of more area models for other logic block components like buffers and 1-bit

full adder could be formulated depending on circuit topology and connectivity of

transistors and also components from routing architecture like switch blocks and

connection blocks of the FPGA architecture could be examined.

 Our current work mainly focused on layouts of FPGA logic block architecture

components and routing architecture for carefully selected representative multiplexer

sizes and buffers. One can also explore collecting layout data on other components such

as block RAMs and multipliers for the future. Later integrate all the components of logic

block and routing architecture to form an FPGA tile.

109

Appendix A – Layouts using 3 metal

Area is measured by considering adjacent minimum inter component spacing.

No. Component

T
ra

n
si

st
o

r

si
ze

Layouts

A1

2-LUT

4:1

Encoded

and

Decoded

Multiplexer

1x

A2

3-LUT

8:1

Encoded

Multiplexer

1x

A3

4-LUT

16:1

Encoded

Multiplexer

1x

46λ

48λ

98λ

48λ

96λ

124λ

2208λ2

11904λ2

4704λ2

110

A4

5-LUT

32:1

Encoded

Multiplexer

1x

A5

6-LUT

64:1

Encoded

Multiplexer

1x

A6

8:1

Decoded

Multiplexer

1x

284

λ
29252λ

2

103λ

309λ

204λ

63036λ
2

37λ

72λ
2664λ

2

111

A7

2-LUT

4:1

Encoded

and

Decoded

Multiplexer

6x

A8

3-LUT

8:1

Encoded

Multiplexer

6x

A9

4-LUT

16:1

Encoded

Multiplexer

6x

48λ

86λ

4128λ2

98λ

87λ

8526λ2

98λ

226λ

22148λ
2

112

A10

2-LUT

4:1

Encoded

and

Decoded

Multiplexer

16x

A11

3-LUT

8:1

Encoded

Multiplexer

16x

A12

4-LUT

16:1

Encoded

Multiplexer

16x

101λ

89λ
8989λ

2

178λ

101λ

17978λ
2

180λ

256λ

46080λ
2

113

A13

8:1

Decoded

Multiplexer

16x

A14

16:1

Decoded

Multiplexer

16x

105λ

122λ 12180λ
2

137λ

201λ

27537λ
2

114

Appendix B – Layouts using 2 metal

No. Component

T
ra

n
si

st
o

r

si
ze

Layouts

B1

16:1

Decoded

Multiplexer

1x

B2

4-LUT

16:1

Encoded

Multiplexer

6x

7474λ
2
 74λ

111λ

22834λ
2
 98λ

233λ

115

B3

2-LUT

4:1

Encoded

and

Decoded

Multiplexer

16x

B4

3-LUT

16:1

Encoded

Multiplexer

16x

B5

4-LUT

16:1

Encoded

Multiplexer

16x

9523λ
2
 89λ

107λ

22320λ
2

180λ

124λ

180λ

262λ

47160λ
2

116

B6

8:1

Decoded

Multiplexer
16x

120λ

111λ

13320λ
2

117

Appendix C – Deep Submicron SCMOS Magic

rules

C.1. Common Layers

Name of layer What layer represents Color/Type

ndiff ndiffusion

pdiff pdiffusion

nwell well

pwell well

poly polysilicon

pc
contact from metal1 to

polysilicon

ndc
contact from ndiffusion to

metal1

pdc
contact from pdiffusion to

metal1

m1 metal1

m2 metal2

m3 metal3

m2c
contact (connects metal 2 to

metal 1)

118

m3c
contact (connects metal 3 to

metal 2)

C.2. Commonly used Design Rules

Structure Minimum Value (λ)

pdiff width 4

ndiff width 4

ndiff-pdiff spacing 12

nwell width 12

nwell- pdiff overhang 6

pwell width 12

pwell- ndiff overhang 6

pdc/ndc width 4

pdc/ndc – pdc/ndc spacing 3

poly width 2

poly-poly spacing 3

pc width 4

pc-pc spacing 4

poly-gate overhang 3

poly-diff spacing 1

m1 width 3

m1-m1 spacing 3

m2 width 3

m2-m2 spacing 4

m2c width 5

m2c-m2c spacing 4

m3 width 3

119

m3-m3 spacing 4

m3c width 5

m3c-m3c spacing 4

120

References

[1] V. Betz and J. Rose, “How Much Logic Should Go in an FPGA Logic Block?,” IEEE

Design & Test Magazine, vol. 15, no. 1, pp. 10-15, Jan-Mar. 1998.

[2] A. Marquardt, V. Betz and J. Rose, “ Using cluster-based logic blocks and timing-driven

packing to improve FPGA speed and density,” in Proc. 1999 ACM/SIGDA Inter.

Symp.FPGAs, pp. 37-46, 2009.

[3] A. Marquardt, V. Betz and J. Rose, “Speed and area tradeoffs in cluster-based FPGA

architectures,” IEEE Trans. VLSI Sys., vol. 8, no. 1, pp. 84-93, Feb. 2000.

[4] G. Lemieux and D. Lewis, “Using Sparse Crossbars within LUT Clusters,” in Proc. 2001

ACM/SIGDA Inter. Symp. FPGAs, pp. 59-68, Feb. 2001.

[5] E. Ahmed and J. Rose, “The Effect of LUT and Cluster Size on Deep-Submicron FPGA

Performance and Density,” IEEE Trans. VLSI Sys., vol. 12, no. 3, pp. 288-298, Mar. 2004.

[6] G. Zgheib, L.Yang, Z. Huang, D. Novo, H. P-Afshar, H. Yang, and P. Ienne. “Revisiting

and-inverter cones”. in Proc. 2014 ACM/SIGDA Inter. Symp. FPGAs, pp.45-54, Feb. 2014.

[7] V. Betz and J. Rose, “FPGA Routing Architecture: Segmentation and Buffering to

Optimize Speed and Density,” in Proc. 1999 ACM/SIGDA Inter. Symp. FPGAs, pp. 59-68,

Feb. 1999.

[8] G. Lemieux et al., “Directional and Single-Driver Wires in FPGA Interconnect,” in Proc.

2004 IEEE Inter. Conf. FPT, pp. 41–48, Dec 2004.

[9] A. M. Smith, G. A. Constantinides, and P. Y. K. Cheung, “Area estimation and

optimization of FPGA routing fabrics,”in Proc. 2009 Inter. Conf. FPL, pp. 256-261, Sept

2009.

121

[10] P. Chen and A. Ye, “The effect of multi-bit correlation on the design of field-programmable

gate array routing resources,” IEEE Trans. VLSI. Syst., vol. 19, no. 2, pp. 283-294, Feb.

2011.

[11] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-Submicron FPGAs,

Boston: Kluwer Academic Publishers, Feb. 1999.

[12] F. Khan and A. Ye, “Measuring the Accuracy of Minimum Width Transistor Area in

Estimating FPGA Layout Area”, in Proc. FCCM 2015, pp. 223-226.

[13] Zynq-7000 All Programmable SOC Overview, Xilinx Inc, Sanclose, CA,2014.

[14] Meeting the Performmance and Power Imperative of Zettabyte Era with Genaeration 10,

Altera Corp.,Sanclose, CA,2014.

[15] J.Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu, K. Nasartschuk, M. Nasr, S. Wang,

T. Liu, N. Ahmed, K. B. Kent, J. Anderson, J. Rose,and V. Betz, “VTR 7.0: Next

Generation Architecture and CAD Systemfor FPGAs,” ACM TRETS, vol. 7, no. 2, June

2014, pp. 6:1–6:30

[16] I. Kuon, A. Egier, and J. Rose. “Design, layout and verification of an FPGA using

automated tools,” in Proc. 2005 ACM/SIGDA Inter. Symp. FPGAs, pp. 215-226, Feb. 2005.

[17] K. Padalia, R. Fung, M. Bourgeault, A. Egier, and J. Rose. “Automatic transistor and

physical design of FPGA tiles from an architectural specification,” in Proc. 2003

ACM/SIGDA Inter. Symp. FPGAs, pp 164-172, Feb. 2003.

[18] C. Chiasson and V. Betz. “COFFE: Fully-Automated Transistor Sizing for FPGAs”, in

Proc. 2013 IEEE Inter. Conf. FPT, pp. 34-41, Dec. 2013.

[19] MOSIS Scalable CMOS, MOSIS Integrated Circuit Fabrication Service, Marina del Rey,

CA, 2009.

[20] Magic VLSI Layout Tool, http://opencircuitdesign.com/, 2015

122

[21] N. H. E. Weste and D. Harris, CMOS VLSI Design Circuits and Systems Perspective,

Pearson Addison-Wesley, 2005.

[22] D. Lewis et al., “The Stratix II™ Logic and Routing Architecture,” in Proc. 2005

ACM/SIGDA Inter. Symp. FPGAs, pp. 14-20, Feb. 2005.

[23] A. Gupta, J. P. Hayes, “Optimal 2-D cell layout with integrated transistor folding,” in Proc.

1998 IEEE/ACM Inter. Conf., Comp.-Aided Des., pp. 128-135, 8-12, Nov. 1998.

[24] C. Chen et al., “Efficient FPGAs using Nanoelectromechanical Relays,” in Proc. 2010

ACM/SIGDA Inter. Symp. FPGAs, pp. 273-282, Feb. 2010.

[25] C. Chiasson and V. Betz, “Should FPGAS abandon the pass-gate?,” Field Programmable

Logic and Applications (FPL), 2013 23rd International Conference on , pp.1-8, 2-4 Sept.

2013.

[26] I. Kuon, R. Tessier, and J. Rose. 2008. FPGA Architecture: Survey and Challenges. Found.

Trends EDA, pp.135-253, Feb 2008.

[27] A. H. Lam. An Analytical Model of Logic Resource Utilization for FPGA Architecture

Development. Master's thesis, University of British Columbia, 2010

[28] J. Rabaey, Digital Integrated Circuits: A Design Perspective. Upper Saddle River, NJ:

Prentice Hall, 1996.

[29] L. E. Han, V. B. Perez, M. L. Cayanes and M. G. Salaber, CMOS Transistor Layout

KungFu, http://www.eda-utilities.com/, 2005.

[30] C. Saint, J. Saint, IC Mask Design: Essential Layout Techniques, McGraw-Hill Publishers,

May 2002.

[31] D. Clein, CMOS IC LAYOUT: Concepts, Methodologies, and Tools, Newnes Publishers,

Dec, 1999.

[32] R. J. Baker, CMOS Circuit Design, Layout, and Simulation 2nd ed., Wiley-IEEE Press,

2005.

http://www.eda-utilities.com/

123

[33] IRSIM- Open Circuit Design, http://opencircuitdesign.com/irsim/

[34] G. Lemieux and D. Lewis. 2002. “Circuit design of routing switches”. in Proc. 2002

ACM/SIGDA 10th Inter. Symp. FPGAs. pp 19-28, 2002.

[35] R. Zurawski, Embedded Systems Design and Verification, CRC Press, Jun 25, 2009.

[36] I. Kuon and J.Rose. “Measuring the Gap between FPGAs and ASICs”. In IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, Volume 26,

Number 2, pp. 203-215, February, 2007.

[37] H. Wong, V. Betz, and J.Rose. 2011. “Comparing FPGA vs. custom CMOS and the impact

on processor microarchitecture”, in Proc. of the 19th ACM/SIGDA Inter.Symp. Field

programmable gate arrays (FPGA)., pp 5-14, 2011

[38] A. H. Pereira, V. Betz “CAD and Routing Architecture for Interposer-based multi-FPGA

systems”, in Proc. of the 22nd ACM/SIGDA Inter. Symp. Field programmable gate

arrays (FPGA), pp. 75- 84, 2014.

[39] VPR and T-VPack User's Manual, http://www.eecg.toronto.edu/vpr/VPR_5.pdf

[40] COFFE User’s Manual,

http://www.eecg.utoronto.ca/~charlesc/COFFE_User_Manual.pdf

[41] Ognjen Šćekić, FPGA Comparative Analysis, 2005, EFT, University of Belgrade

[42] P. Chow, Soon Ong Seo, J. Rose, K. Chung, G. Paez-Monzon and I. Rahardja, “The design

of an SRAM-based field-programmable gate array. I. Architecture,” in IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, vol. 7, no. 2, pp. 191-197, June 1999.

[43] P. Chow, Soon Ong Seo, J. Rose, K. Chung, G. Paez-Monzon and I. Rahardja, “The design

of a SRAM-based field-programmable gate array-Part II: Circuit design and layout,” in

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 7, no. 3, pp. 321-

330, Sept. 1999.

http://www.eecg.toronto.edu/vpr/VPR_5.pdf

124

[44] J.Luu, C. McCullough, S. Wang, S. Huda, Y. Bo, C. Chiasson, K. Kent, J. Anderson, J.

Rose, and V. Betz ,“On Hard Adders and Carry Chains in FPGAs”, in Proc. FCCM 2014,

pp. 52-59.

[45] S. A. Chin, J. Luu, S. Huda, J. H. Anderson, “Hybrid LUT/Multiplexer FPGA Logic

Architectures”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol.

24, no. 4, 2016, pp.1280 - 1292.

[46] J.Luu, Ph.D Thesis, University of Toronto.

[47] J. Cong, Y.Ding, “FlowMap: An Optimal Technology Mapping Algorithm for Delay

Optimization in Lookup-Table Based FPGA Designs”, in IEEE Transactions on

Computer-Aided Design, Volume 13, Issue 1, January, 1994, pp. 1-12.

[48] V.Betz and J.Rose. “FPGA Routing Architecture: Segmentation and Buffering to Optimize

Speed and Density”. in Proc. of the International Symposium on Field-Programmable

Gate Arrays, February, 1999, pp. 59-68.

[49] M. Purnaprajna, P Ienn. “A Case for Heterogeneous Technology-Mapping: Soft versus

Hard Multiplexers”. 2013 IEEE 21st Annual International Symposium on Field-

Programmable Custom Computing Machines, Seattle, WA, 2013, pp. 53-56.

[50] Guy Lemieux and David Lewis. Design of Interconnection Networks for Programmable

Logic. Kluwer Academic Publishers, 2004.

[51] G. Zgheib, M. Lortkipanidze, M. Owaida, D. Novo, and P. Ienne. 2016. “FPRESSO:

Enabling Express Transistor-Level Exploration of FPGA Architectures”. in Proc. of the

2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA

'16). ACM, New York, pp. 80-89.

[52] H. Parandeh-Afshar, H. Benbihi, D.Novo, and P. Ienne. 2012. “Rethinking FPGAs: elude

the flexibility excess of LUTs with and-inverter cones”. In Proc. of the ACM/SIGDA

international symposium on Field Programmable Gate Arrays (FPGA '12). ACM, New

York, NY, USA, pp.119-128.

125

[53] Spartan-6 FPGA User Guides, Spartan-6 FPGA Configurable Logic Block User Guide,

http://www.xilinx.com/support/documentation/user_guides/ug384.pdf

[54] 7 Series FPGAs Configurable Logic Block (v1.6), Xilinx, 2014.

[55] 7 Series FPGAs Overview (v1.15), Xilinx, 2014.

[56] Virtex-4 Family Overview (v3.1), Xilinx, 2010.

[57] Virtex-5 Family Overview (v5.0), Xilinx, 2009.

[58] Virtex-6 Family Overview (v2.4), Xilinx, 2012.

[59] Stratix Device Handbook, Volume 1, Altera Corporation, 2005.

[60] Stratix II Device Handbook, Volume 1, Altera Corporation, 2007.

[61] Stratix III Device Handbook, Volume 1, Altera Corporation, 2010.

[62] Stratix IV Device Handbook, Volume 1, Altera Corporation, 2012.

[63] Stratix V Device Overview, Altera Corporation, 2014.

[64] A. Gupta and J. P. Hayes, “A hierarchical technique for minimum-width layout of two-

dimensional CMOS cells,” Proceedings Tenth International Conference on VLSI Design,

Hyderabad, 1997, pp. 15-20.

[65] D. Hill and N. S. Woo, “The benefits of flexibility in lookup table-based FPGAs,” in IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 12, no.

2, Feb 1993, pp. 349-353.

[66] M. B. Abdelhalim and S. E. D. Habib, “Fast FPGA-based area and latency estimation for

a novel hardware/software partitioning scheme,” 2008 Canadian Conference on Electrical

and Computer Engineering, Niagara Falls, ON, 2008, pp. 775-780.

http://www.xilinx.com/support/documentation/user_guides/ug384.pdf

126

[67] Siew-Kei Lam, Wen Li; Srikanthan, T. “High level area estimation of custom instructions

for FPGA-based reconfigurable processors,” 6th International Conference on Information,

Communications & Signal Processing, 10-13 Dec. 2007, pp.1-5.

[68] A. Nayak, M. Haldar, A. Choudhary and P. Banerjee, 2002, “Accurate area and delay

estimators for FPGAs,” Proceedings Design, Automation and Test in Europe Conference

and Exhibition, Paris, 2002, pp. 862-869.

[69] L. Deng, K. Sobti and C. Chakrabarti. 2008. “Accurate models for estimating area and

power of FPGA implementations,” IEEE International Conference on Acoustics, Speech

and Signal Processing, Las Vegas, NV, 2008, pp. 1417-1420.

[70] D. Kulkarni, Walid A. Najjar, R. Rinker, and Fadi J. Kurdahi., “Fast area estimation to

support compiler optimizations in FPGA-based reconfigurable systems,” 10th Annual

IEEE Symposium on Field-Programmable Custom Computing Machines, 2002.

Proceedings, pp. 239- 247.

[71] D. Kulkarni, Walid A. Najjar, R. Rinker, and Fadi J. Kurdahi. 2006. “Compile-time area

estimation for LUT-based FPGAs”. ACM Trans. Des. Autom. Electron. Syst. 11, 1 (January

2006), pp. 104-122.

[72] M. Xu and F. Kurdahi. “Area and Timing Estimation for Lookup Table Based FPGAs”. In

Proceedings of the 1996 European conference on Design and Test (EDTC '96). IEEE

Computer Society, Washington, DC, USA, pp. 151-157.

[73] M. Xu and F. Kurdahi, “ChipEst-FPGA: a tool for chip level area and timing estimation of

lookup table based FPGAs for high level applications,” Proceedings of the ASP-DAC '97.

Asia and South Pacific, 28-31 Jan 1997, pp.435-440.

[74] C. Brandolese, W. Fornaciari and F. Salice, “An area estimation methodology for FPGA

based designs at systemc-level,” 2004, Proceedings. 41st Design Automation Conference,

San Diego, CA, USA, 2004, pp. 129-132.

127

[75] X. Wei, J. Chen, Q. Zhou, Y. Cai, J. Bian, X. Hong, “MacroMap: A technology mapping

algorithm for heterogeneous FPGAs with effective area estimation,” Field Programmable

Logic and Applications, 8-10 Sept. 2008, pp.559-562.

[76] V. Betz and J. Rose, “Circuit design, transistor sizing and wire layout of FPGA

interconnect,” In Proceedings of the IEEE Custom Integrated Circuits, 1999., San Diego,

CA, 1999, pp. 171-174.

[77] K. Roy, “Optimum Gate Ordering of CMOS Logic Gates using Euler Path Approach: Some

Insights and Explanations”, Journal of Computing and Information Technology –

CIT15,2007, pp. 85-92.

[78] B.Bas, VLSI Lecture Notes, University of California, Davis.

[79] K. Huang, Y. Hu, X. Li, B. Liu, H. Liu and J. Gong, 2012. “Off-path leakage power aware

routing for SRAM-based FPGAs,” Design, Automation & Test in Europe Conference &

Exhibition (DATE), Dresden, 2012, pp. 87-92.

[80] C. Lavin, M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson and B. Hutchings, 2011

“RapidSmith: Do-It-Yourself CAD Tools for Xilinx FPGAs,” 21st International

Conference on Field Programmable Logic and Applications, Chania, 2011, pp. 349-355.

[81] http://rapidsmith.sourceforge.net

[82] A. Singh and M. Marek-Sadowska. 2002. “Efficient circuit clustering for area and power

reduction in FPGAs”. In Proceedings of the 2002 ACM/SIGDA tenth international

symposium on Field-programmable gate arrays (FPGA '02). ACM, New York, NY, USA,

59-66.

[83] A. Lam, S. J. E. Wilton, P. Leong and W. Luk, “An analytical model describing the

relationships between logic architecture and FPGA density,” 2008 International

Conference on Field Programmable Logic and Applications, Heidelberg, 2008, pp. 221-

226.

128

[84] A. A. Aggarwal and D. M. Lewis, “Routing architectures for hierarchical field

programmable gate arrays,” Proceedings 1994 IEEE International Conference on

Computer Design: VLSI in Computers and Processors, Cambridge, MA, 1994, pp. 475-

478.

[85] Haixia Gao, Yintang Yang, Xiaohua Ma and Gang Dong, “Analysis of the effect of LUT

size on FPGA area and delay using theoretical derivations,” Sixth international symposium

on quality electronic design (isqed'05), 2005, pp. 370-374.

[86] S. Yan, D. Li, L. Wang, Y. Xiao and M. Tang, “A novel methodology of layout design by

applying euler path”, 2010, 10th IEEE International Conference on Solid-State and

Integrated Circuit Technology, Shanghai, 2010, pp. 818-820.

[87] F.Khan and A.Ye, “An Empirical Analysis of the Fidelity of VPR Area Models”, 2016,

24th IEEE International Symposium on Field-Programmable Custom Computing

Machines, Washington, DC, May 2016, pp.138.

[88] F. Khan and A. Ye, “An evaluation on the accuracy of the minimum width transistor area

models in ranking the layout area of FPGA architectures,” 2016, 26th International

Conference on Field Programmable Logic and Applications (FPL), Lausanne, 2016, pp.

1-11.

