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Abstract

Shear viscosity calculation for particle-based flow

Master of Science 2014

Pradeep Kunwar

Applied Mathematics

Ryerson University

A particle-based method called multi-particle collision (MPC) dynamics is considered, and the shear vis-

cosity is calculated theoretically. As part of the particle-based mechanism, velocities of particles change

due to collisions and due to an applied external force used to create flow. The system’s temperature

increases due to the external force, and a thermostat is used to remove this excess temperature so as

to maintain constant temperature (isothermal) flow conditions. A theoretical expression for the shear

viscosity is derived and compared to existing viscosity expressions.

Additionally, results for MPC flow through a local constriction are assessed. The novelty of the

numerical results in this Thesis come from using a local thermostat rather than a global thermostat that

had been used in the past.
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Chapter 1

Introduction

The blood circulatory system of the human body is very complex and delicate, consisting of the heart,

blood and blood vessels, each with its own distinct function. The heart is also known as the blood-pump

which pumps 70 ml of blood through the circulatory system with each heart beat. Blood is a bio-fluid

consisting of plasma and cells, that delivers nutrients and oxygen to the body cells and removes waste

products of metabolism from those cells. In general, blood cells consist of red blood cells, white blood

cells and platelets. Approximately 7 percent of the total body weight in the human body is blood, and

the density of blood is approximately 1060 kg/m3, very close to that of water (1000 kg/m3). Blood

vessels are elastic, tubular, circulatory channels, such as an artery, a vein, or a capillary, through which

the blood circulates from the heart to the cells and from the cells to the heart. A viscoelastic model has

even been used to investigate the deformation of vessels when blood flows, and an arterial network model

was created for a branch of the blood circulation in the body consisting of a network of 45 viscoelastic

branches [4].

For effective circulation, each organ in the system should remain in healthy condition and should

carry out its functions in a cyclic fashion. Any interruption in the system can affect human health and

survival directly. Among all the circulatory problems, blood flow problems are primarily determined by

the blood vessel’s patency although there are several other contributing factors. Narrowing, or stenosis,

of blood vessels is the primary cause of impaired circulation, which typically results from a condition

called atherosclerosis. Atherosclerosis is the thickening and narrowing of blood vessels as a result of

accumulation of calcium and fatty materials such as cholesterol and triglycerides. This limits the flow

of oxygen-rich blood to the target organ of the body and stops it from functioning properly. In the 2005

database of the World Health Organization (WHO), 52 percent of the deaths of people in Hungary were

caused by circulatory disease. Nowadays, circulatory disease is increasing significantly in many countries

[4].

The exact cause of atherosclerosis is unknown. Many researchers believe it begins with an injury

to the innermost layer of the artery known as the endothelium. Researchers believe that factors such

as high blood pressure, elevated LDL (low density lypo-protein, or bad cholesterol), smoking, diabetes,

inflammation, obesity, an unhealthy diet, lack of exercise and family history of heart disease can con-
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CHAPTER 1. INTRODUCTION

tribute to the damage. Once the artery is damaged, blood cells called platelets build up there to try

to heal the injury. Over time, fats, cholesterol, and other substances also build up at the site, which

thickens and hardens the artery wall. The blood flow through the artery is decreased, and the oxygen

supply to organs also decreases. Blood clots may also form, potentially blocking the artery, or entering

the bloodstream and cutting off blood supply to other organs.

The effects of atherosclerosis differ depending upon which arteries in the body are affected, but it

primarily causes coronary artery disease such as angina (chest pain on exertion) and a heart attack or

myocardial infarction, cerebrovascular disease such as stroke, with the potential for permanent brain

damage, and peripheral artery disease such as narrowing in the arteries of the legs. Poor circulation

results in leg pain and poor wound healing, leading to amputations and renal disease. The axial velocity,

shear stress distribution, and resistance to flow are flow variables that have been determined for different

diseases such as polycythemia, plasma cell dyscrasias and Hb SS (sickle cell), and normal blood. Results

show that values of shear stress increase with an increase in the degree of stenosis, and decrease with an

increase of couple stress. A difference in axial velocities, shear stresses and resistance to flow were found

for different diseases and compared to normal blood [49].

There are many important studies related to hemorheology that have been performed in biomedical

research. The key parameters in physiology that play an important role in blood flow are: blood

pressure, lumen diameter, whole blood viscosity, compliance of vessels, and peripheral vascular resistance.

Some parameters in hemorheology, such as whole blood viscosity, plasma viscosity, hematocrit, RBC

deformability and aggregation, and fibrinogen concentration in plasma also play an important role in

arteriosclerotic vascular disease. Much research has been conducted to determine the blood viscosity in

patients with diseases such as ischemic heart disease and myocardial infarction. In [29], it was found

that there was a correlation between plasma viscosity and disease. Other researchers tried to find the

relationship between hemorheological parameters and blood flow. Rheological characteristics of human

blood plasma play an important role in the flow of blood [10].

In general, a fluid is a substance that has no shape of its own. The shape of a fluid depends on the

container it is in. Water, milk, blood, ethanol and air are fluids. Water, glycerine, air and ethanol are

examples of a Newtonian fluid. These types of fluids exhibit Newtonian characteristics for the shear-

stress shear-rate relationship. A Newtonian shear-stress shear-rate plot is a straight line whose positive

slope is the viscosity of the fluid.

If the graph between shear stress and shear rate is not a straight line, the fluid is classified as non-

Newtonian. There are many non-Newtonian models such as the power law model, the modified power

law model, and the Cross model for example. Another class of non-Newtonian models are viscoelastic

models. Blood is often treated as a non-Newtonian viscoelastic fluid. Other commonly used models

for blood include the Bingham plastic model, the Herschel-Bulkley model, the Casson model, and the

Quemada model.

Scientists and researchers in bio-medical fields are constantly looking for new approaches and they

often use modern computers to investigate and explore. Numerical simulation is a technique often used

to model the real world with the help of computer programming, that can be used to study the flow

behavior of a complex fluid. Simulation for complex fluids is a very challenging task for researchers

2



CHAPTER 1. INTRODUCTION

because of large resolution requirements, and diverse spatial and temporal scales. There are two major

methods used to visualize complex flow behavior. In general, these methods can be classified as the

Eulerian grid method, and the Lagrangian particle method.

Complex fluids have complex flow properties and are typically systems with large components that

are not easily describable using microscopic molecular dynamic simulation methods, because of large

system size and the inability to control the variables and the technological setting for study. Many of

these phenomena depend on such things as molecular weight, molecular number, and molecular shape

just to name a few. That is why researchers often choose mesoscopic methods. In mesoscopic physics,

the size of a particle is typically between 10−6 to 10−9 m. If the size of the particle is between 10−12 and

10−9 m, or less than 10−12 m, it is generally treated using microscopic and quantum physics approaches

respectively. In this Thesis, the mesoscopic approach is used.

Discrete particle-based simulations in the field of fluid dynamics are basically divided into two groups

namely lattice-based simulation methods, and off-lattice based simulation methods. The Boltzmann

method and lattice gas automata are the most popular simulation methods in lattice-based simulation

methods. The Boltzmann method is a powerful technique that can be used to simulate complex fluid flow

in complex flow geometries. It is based on the Boltzmann equation, and particles reside on specified grid

points with discrete velocities based on the grid configuration. In this method, fluid particles ”collide”

at discrete time steps. Lattice gas automata, or lattice gas cellular automata, are based on cellular

automata for simulation of fluid flow. The basic principle of the cellular automaton was invented by

Stanislaw Ulam and John von Neumann in 1940. Lattices consist of a discrete number of grid points in

each cell. The grid can be in any finite number of dimensions. At the beginning, cells are assigned a

particular state, and updated according to some mathematical rule that prescribes their next state, and

so on.

The most important off-lattice particle-based methods in fluid dynamics are dissipative particle

dynamics (DPD), direct simulation Monte-Carlo methods (DSMC) and multiparticle collision dynamics

(MPC). DPD was initially introduced by Hoogerbrugge and Koelman in 1992 [24]. DPD is a combination

of molecular dynamics and Langevin dynamics. In DPD, each particle is considered as a group of

molecules or atoms, and positions and velocities of each particle are considered as continuous variables.

Particle interactions are due to three types of forces namely conservative forces, dissipative forces and

random forces. Conservative forces are used to model soft repulsion. Time steps are large and the system

rapidly reaches equilibrium. Dissipative forces are used for friction forces that reduce the relative velocity

of the particles. Random forces are used to compensate for loss of kinetic energy due to dissipative forces.

In this case, Newton
′
s second law can be written as a sum of these three forces, although the conservative

forces and the dissipative forces are negative because conservative forces are repulsive and dissipative

forces are friction forces (opposite force of system). The DSMC method is a particle-based technique

for simulation of fluid flow, appropriate for low density fluids. It was first proposed by Bird [7]. Here,

stochastic methods are used to solve the non-linear, time-dependent Boltzmann equations. In the DSMC

system, positions and velocities of the particle are continuous variables. The state of the system is thus

defined by the positions and velocities of the particles. The geometry under consideration is divided

into small cubical cells called collision cells, that provides a coarse-grained model for the system. In
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general, there are two main steps and these steps are free-streaming, and collisions. In free-streaming,

if there is no interaction between particles and no contact with the wall, particles move freely, and the

locations of the particles are updated according to the previous location and the current velocity of

the particle. In the collision step, it is assumed that particles collide with each other randomly, so the

particles are selected randomly within a cell for the collision. From the kinetic theory principles, the

collision probability for hard spheres is directly proportional to their relative velocity. In a cell, particle i

and j are two randomly selected particles that collide with each other. If the absolute relative velocity of

these particles is greater than the product of a random number R chosen from the uniform distribution

on [0, 1) with the local maximum relative speed, namely if

| vi − vj |> Rvmax, (1.1)

then a collision occurs. For finding the collision probability, only the magnitude of the velocities of the

particles is used and particles moving away from one another can also collide with this rule. Conservation

of momentum and conservation of energy provide four out of six equations that can be used to determine

the post-collision velocities of the particles. For the remaining two equations, it is assumed that the

direction of the relative post-collision velocities is uniformly distributed on the unit sphere. This means

that the remaining two conditions lead to a randomly chosen direction.

Multiparticle collision (MPC) dynamics was first introduced by Malevanets and Kapral in 1990 and

is a method that conserves energy and momentum in the system [36]. Most of the concepts between

MPC and DSMC are similar, with the key difference between them being the collision step. In the

collision step, post-collision velocities of particles in a collision cell are obtained using a rotation angle α

or - α. Therefore, the rotational operator, which is a stochastic rotation matrix, is used. This concept

is not part of the DSMC method, and that is one of the main reasons why MPC collisions are more

efficient numerically compared to DSMC collisions. Nowadays, MPC has become very popular in fluid

dynamics applications and has also been used in many other areas. Lamura and Gompper applied

multiparticle collision dynamics to simulate flow around a square and a circular cylinder in 2 dimensions

for Reynolds numbers ranging from 10 to 130 [34]. Allahyarov and Gompper investigated multiparticle

collision dynamics in three dimensional solvent flows in a channel with and without a spherical obstacle

[3]. Undulatory locomotion, the type of motion characterized by wave-like movement patterns, of fishlike

shapes moving through a fluid have been investigated in two dimensional multiparticle collision dynamics

[51]. Bedkihal et. al. have used MPC to study the steady flow through a constricted cylinder [6]. One

of the most important contributions to MPC dynamics is provided by Bolintineanu et. al. [9]. They

provided an in-depth discussion of the parameters of MPC dynamics such as, slip and no-slip at the

wall, cell size, viscosity, mean free path and consequences for fluid solid boundaries and thermostats.

Thermostatting is a process that automatically adjusts the temperature in a system to a desired level

in a particle-based method through velocity rescaling. The most common thermostats are the Ander-

son thermostat, the Berendsen thermostat, the Nose-Hoover thermostat, and the Langevin (stochastic)

thermostat. MPC with the Anderson thermostat has been introduced by Allahyarov and Gompper [3].
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In this method the velocity in the collision step is prescribed as

vi(new) = vGξ + vrani −
∑
j∈cell v

ran
j

Mξ
(1.2)

where vrani is a velocity chosen randomly from the Maxwell Boltzmann velocity distribution, Mξ is

the number of particles in the ξth cell, and vGξ is the mean velocity in the particular cell. Note that

i corresponds to particle i, and vi(new) denotes the velocity of particle i after the collision step. This

scheme is denoted by MPC-AT and it can be shown that it conserves linear momentum and kinetic energy,

but not angular momentum. To additionally incorporate angular momentum, a modified MPC-AT was

introduced. This method was denoted by MPC-AT+a [42, 21]. Later, the Anderson Thermostat was

introduced by Koopmana and C. P. Lowe in 2006 [33]. They compared the Anderson thermostat with the

Lower Anderson Thermostat and claimed that the Lower Anderson Thermostat was significantly more

efficient and more convenient than the previous Anderson Thermostat. The Lower Anderson Thermostat

conserved momentum and was Galilean invariant. In [23], a thermostat was used to interact with the

system at different time rates. Strong Thermostatting Interaction and Partial thermostatting interaction

were applied in MPC dynamics. A strong interaction was obtained by applying the thermostat at every

simulation step and weaker interaction was achieved by applying the thermostat at larger time intervals.

The specific aim of this Thesis is to study the dynamic fluids of flows of an MPC fluid in a cylinder with

a local constriction using a force applied along the y-axis to create flow in the system. Particle velocities

are changed due to collisions, flow acceleration and thermostatting. Collisions in MPC dynamics, as

well as free-streaming of the particles conserve mass, momentum and energy. Applying a force in the y-

direction adds energy to the system, changing the system temperature. To keep the system temperature

fixed, a thermostat is used to rescale the velocities. As part of our main contribution, the shear viscosity

is explicitly calculated theoretically, and discussed in the context of numerical results for flow through

cylinders with a local constriction.

This thesis is organized as follows: In chapter 2 the MPC background is provided discussing the

collision rule, the forcing, the thermostat, the connection between averages of the MPC system with

macroscopic flow variables, and equilibrium probability distributions. In chapter 3, the explicit expres-

sion for viscosity is calculated for the MPC dynamics described in chapter 2. Chapter 4 provides some

further details regarding the numerical implementation of the MPC dynamics, as well as simulation

results for flow through a local constriction. In the last chapter 5, we conclude the thesis with some

important conclusions and future work.
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Chapter 2

MPC Background

An MPC fluid consists of N identical point particles in a system volume that is divided into cubic cells.

The mass of each particle is m, and particles are uniformly distributed in the system. Lx, Ly and Lz

are the number of cells in the x, y and z directions respectively. On average, each cell ξ contains M

particles. Each particle has a continuous position ri and velocity vi, (i = 1, 2, 3, . . . , N) and these are

updated at discrete time intervals τ . A phase space is formed by particle positions and momenta and

is denoted by Π = (rNi ,P
N
i )= (r1,mv1, ....., rN ,mvN ). In the system, there are N particles and each

particle has three momentum components and three position coordinates. Therefore the dimension of

phase space is 6N . Particles undergo a sequence of steps at each time interval. First, particles collide

with the MPC collision rule, next, particles are accelerated by the external force in the y-direction, and

velocities are rescaled through a thermostat to maintain constant temperature in the system. Next,

particles free-stream.

In this Chapter, we outline the details of the key steps in the MPC dynamics: collisions, application

of a force with subsequent thermostatting, and free-streaming. Next we discuss in Section 2.4 the

dynamics imposed on particles when they hit the cylinder boundary. In Section 2.5 we discuss the grid-

shifting mechanism that is also invoked at each time step so as to ensure Galilean invariance in the MPC

dynamics. In Section 2.6 we describe the averaging mechanism used in order to connect the mescoscopic

system to the macroscopic flow velocities. Next, Section 2.7 provides the equilibrium distributions that

will be used when determining the theoretical expressions for the macroscopic viscosity of the MPC flow.

For flows that are not subjected to acceleration and thermostatting, the viscosity is presented in Section

2.8.

2.1 Multiparticle collision rule

According to the multiparticle collision rule, the pre-collision velocity vector v
′

i of particle i, (i =

1, 2, 3, . . . , N) is rotated randomly by means of a rotation operator Wξ, relative to the average cell

velocity (center of mass velocity) V
′

ξ. The post-collision velocity v
′′

i of the ith particle becomes

6



CHAPTER 2. MPC BACKGROUND 2.1. MULTIPARTICLE COLLISION RULE

v
′′

i = V
′

ξ + Wξ(v
′

i −V
′

ξ), (2.1)

where

V
′

ξ =

∑M
i=1 v

′

i

M
. (2.2)

and M is the average number of particles in a cell. The rotation operator is defined as

Wξ =

R11 R12 R13

R21 R22 R23

R31 R32 R33

 =

 l2x + (1− l2x)c lxly(1− c)− lzs lxlz(1− c) + lys

lxly(1− c) + lzs l2y + (1− l2y)c lylz(1− c)− lxs
lxlz(1− c)− lys lylz(1− c) + lxs l2z + (1− l2z)c

 (2.3)

where lx =
√

1− θ2 cos(ϕ), ly =
√

1− θ2 sin(ϕ), lz = θ, c = cos(α), s = sin(α), and ϕ and θ are

uncorrelated random variables chosen from a uniform distribution on the interval [0, 2π] and [−1, 1]

respectively, and α is a random rotation angle often chosen to be ±π/2.

Momentum and energy are conserved locally in a collision cell by the collision rule (2.1). Suppose m

is the mass of the particles and M is the number of particles in cell ξ. The momenta before and after

the collision of particles are
∑M
i=1mv

′

i and
∑M
i=1mv

′′

i respectively. Similarly, the kinetic energy before

and after the collision are

∑M
i=1m| v

′

i |
2

2
and

∑M
i=1m| v

′′

i |
2

2
respectively. It has been shown in [1] that

∑M
i=1mv

′

i =
∑M
i=1mv

′′

i and

∑M
i=1m| v

′

i |
2

2
=

∑M
i=1m| v

′′

i |
2

2
.

In Figure 2.1, we show a diagrammatic representation of a collision for two particles even though the

rule works for any number of particles in a given collision cell. Note that the collisions in MPC dynamics

are not the sum of pairwise collisions as used in DSMC, and hence are much more efficient numerically.

Using the notation v
′′

i =

v
′′

ix

v
′′

iy

v
′′

iz

, V
′

ξ =

V
′

ξx

V
′

ξy

V
′

ξz

, v
′

i =

v
′

ix

v
′

iy

v
′

iz

, we can rewrite the explicit velocity

components of v
′′

i according to (2.1) - (2.3) as:

v
′′

ix = V
′

ξx+c[(v
′

ix−V
′

ξx)−
∑

β=x,y,z

(v
′

iβ−V
′

ξβ)lβlx]+s[−(v
′

iy − V
′

ξy)lz + (v
′

iz − V
′

ξz)ly]+
∑

β=x,y,z

(v
′

iβ−V
′

ξβ)lβlx,

(2.4)

v
′′

iy = V
′

ξy+c[(v
′

iy−V
′

ξy)−
∑

β=x,y,z

(v
′

iβ−V
′

ξβ)lβly]−s[(v
′

iy − V
′

ξy)lz − (v
′

ix − V
′

ξx)lx]+
∑

β=x,y,z

(v
′

iβ−V
′

ξβ)lβly,

(2.5)

and

v
′′

iz = V
′

ξz + c[(v
′

iz−V
′

ξz)−
∑

β=x,y,z

(v
′

iβ−V
′

ξβ)lβlz]+s[(v
′

iy − V
′

ξy)lx + (v
′

ix − V
′

ξx)ly]+
∑

β=x,y,z

(v
′

iβ−V
′

ξβ)lβlz

(2.6)

7



CHAPTER 2. MPC BACKGROUND 2.1. MULTIPARTICLE COLLISION RULE

Figure 2.1: Diagrammatic representation of the multiparticle collision rule. The upper panel shows
the center of mass velocity and pre-collision velocities of the particles relative to the center of mass.
The lower panel shows the result of adding back the center of mass velocities to get the post-collision
velocities. The figure is modified from [36].
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CHAPTER 2. MPC BACKGROUND 2.2. FORCE AND THERMOSTAT

The expressions for v
′′

ix and v
′′

iz can also be found in Tüzel [56], and are discussed in more detail in

Section 3.1 in the next chapter.

2.2 Force and Thermostat

To achieve flow, a force F = mg = m

0

g

0

 is applied to all particles in the system. The force creates flow

in the y-direction. The post-collision velocities v
′′

i of particles are updated according to the following rule

v
′′′

i = v
′′

i +
F

m
τ = v

′′

i + gτ

0

1

0

 , (2.7)

where τ is the discrete time step.

The system energy increases if an external force is applied to the system this way, as the force

accelerates the fluid particles. Due to this increase, the actual temperature T
′′

of the system also

increases. To create isothermal flow with constant temperature T , a scaling factor h is introduced, that

can be used to maintain the local temperature. This is called thermostatting. Incorporating the local

thermostat, gives the thermostat rule vi = V
′′′

ξ + rescaling due to the thermostat, or rather

vi = V
′′′

ξ + h(v
′′′

i −V
′′′

ξ ), (2.8)

where

h =

√
2Eξ

m
∑M
i=1 ‖v

′′′
i −V

′′′

ξ ‖2
=

√
2Eξ

m
∑M
i=1 ‖v

′
i −V

′

ξ‖2
, (2.9)

and Eξ is a random number drawn from the Gamma Distribution (see section 2.7), that varies from cell

to cell and in time.

In order to see that the denominator for h in (2.9) in terms of triple-primed variables is the same is

that in terms of primed variables, we note that

‖v
′′′

i −V
′′′

ξ ‖2 = (v
′′′

i −V
′′′

ξ )T (v
′′′

i −V
′′′

ξ )

=
(
V
′

ξ + Wξ(v
′

i −V
′

ξ) + gτ − gτ −V
′

ξ

)T (
V
′

ξ + Wξ(v
′

i −V
′

ξ) + gτ − gτ −V
′

ξ

)
=

(
Wξ(v

′

i −V
′

ξ)
)T (

Wξ(v
′

i −V
′

ξ)
)

=
(
v
′

i −V
′

ξ

)T
WT

ξ Wξ

(
v
′

i −V
′

ξ

)
= ‖v

′

i −V
′

ξ‖2,

9



CHAPTER 2. MPC BACKGROUND 2.3. FREE-STREAMING

where from (2.3)

WT
ξ Wξ =

R11 R12 R13

R21 R22 R23

R31 R32 R33


T R11 R12 R13

R21 R22 R23

R31 R32 R33



=

c11 c12 c13

c21 c22 c23

c31 c32 c33

 ,

with cii = l2x + l2y + l2z = 1, for i = 1, 2, 3 and cij = 0, i 6= j, for i, j = 1, 2, 3. Thus

WT
ξ Wξ = I3X3. (2.10)

2.3 Free-Streaming

Since there are continuous positions r
′

i and velocities vi, free-streaming updates the positions of particles

in a time step τ according to

ri = r
′

i + viτ. (2.11)

The notation used here is consisted with the previous sections in that r
′

i is the position of the ith particle

at the beginning of the time step, and vi is the velocity after the collision, acceleration and thermostat

steps have occurred.

2.4 Boundary Condition

If an obstacle is placed in the system around which the fluid has to flow, the flow is affected by the

obstacle. Therefore the presence of an interface severely affects the dynamics of fluid flows. At the

macroscopic level, when fluids come in contact with a solid phase, the normal component of the velocity

at the interface must be zero. This means that it is impossible for the fluid to pass through the boundary.

The tangential velocity inherently depends upon the interaction at the interface. There are two ideal

situations in terms of boundary conditions, namely no-slip (or stick) and slip. In case of no-slip, the

tangential velocity of the fluid relative to that of the boundary must be zero. In slip boundary conditions,

the tangential component of the fluid is non-zero.

There are several ways to implement these boundary conditions at the mesoscopic level. The more

common no-slip condition is generally implemented by means of a bounce-back (BB) rule. Malevanets

and Kapral [36] used the BB boundary condition when they introduced the MPC dynamics. When a

particle collides with a boundary, the normal and tangential components of velocities of particles are

reversed in BB. In this case the average relative velocity of the fluid near the wall is zero because the

relative velocity distribution of particles reflected from the wall mirrors the distribution of particles

approaching the wall [61]. In blood flow applications, the endothelium in blood vessels may give rise to

10



CHAPTER 2. MPC BACKGROUND 2.5. GRID SHIFTING

some slip. In this case, a generalized mesoscopic boundary condition that can incorporate slip at the

wall is needed. Such a BC was introduced in [61] and can be written mathematically as

vn = −v
′

n, (2.12)

vt = (2λ− 1)v
′

t. (2.13)

Here, v
′

n represents the normal component of the velocity of a particle before collision with the wall and

vn represents the normal component of the velocity of the particle after collision with the wall. Similarly

v
′

t represents the tangential component of the velocity before hitting the wall and vt represents the

tangential component of the velocity after hitting the wall. The (2λ − 1) factor determines the degree

of slip, and its value can be varied.

When λ = 0, then vt = -v
′

t, giving the BB condition that leads to macroscopic no-slip.

When λ = 0.5, then vt = 0, giving a loss-in-tangential (LIT) condition with large macroscopic slip.

When λ = 1, then vt = v
′

t, giving rise to a perfect slip condition that leads to uniform flow.

Unless λ = 0 or 1, this boundary condition results in some energy of the particle being lost when it

hits the wall. Therefore energy is not conserved in most cases incorporating slip this way. This effect is

minimized since a thermostat is used in our simulations.

2.5 Grid Shifting

Mean free path is the average distance traveled by a moving particle between collisions with other moving

particles. If the mean free path is less than the cell size, the same particles could collide more than once

with each other through the MPC collision rule. Such multiple collisions are also possible near the

boundary of the flow domain where velocities are typically smallest. If this happens, Galilean invariance

is no longer satisfied, and the molecular chaos assumption is violated (velocities are not uncorrelated and

independent). To overcome this problem, a grid shifting mechanism is used. This shifting mechanism

was first proposed by Ihle and Kroll [27]. In the grid shifting mechanism, before the collision step

takes place, all particles are shifted by the same uniformly distributed random translation vector. The

particles’ positions are thus randomized by the shift and it has been shown that this method restores

Galilean invariance [54].

2.6 Averaging Procedure (MPC)

Tysanner and Garcia have explained that calculating mean fluid properties is very easy, but depending

on the method used can lead to biased measurement in particle-based simulations of fluid flow [57]. Two

commonly used averaging methods are sample average measurement (SAM) and cumulative average

measurement (CAM). In SAM the average particle velocity in each cell at each sample is computed first

and then averaged over all samples. CAM sums the velocities of all particles in a cell over all the samples,

and then divides this cumulative total by the cumulative total number of particles in the cell to get the

11



CHAPTER 2. MPC BACKGROUND 2.6. AVERAGING PROCEDURE (MPC)

Figure 2.2: Top figure shows MPC-BB (λ = 0) and bottom figure shows MPC-LIT (λ = 0.5).
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CHAPTER 2. MPC BACKGROUND 2.7. THEORETICAL AVERAGES

mean velocity per cell. Tysanner and Garcia have shown that SAM can have bias due to the correlation

of fluctuations in the system and that CAM can be used to remove these correlations. Mathematically,

CAM can be expressed as,

〈uξ〉 =

∑Nξ(t1)
i∈ξ vi(t1) +

∑Nξ(t2)
i∈ξ vi(t2) + .......+

∑Nξ(ts)
i∈ξ vi(ts)

Nξ(t1) +Nξ(t2) + .......+Nξ(ts)
, (2.14)

where, 〈uξ〉 is the average velocity in cell ξ, ξ is the cell number, i ∈ ξ means that particle i is inside cell

ξ, Nξ(tj) is the number of particles in cell ξ at time tj , s is the number of samples used in the average

process and 〈uξ〉 is the macroscopic velocity vector for particles in the same cell.

Note that it is assumed that the system satisfies the ergodic hypothesis of thermodynamics and

instead of using many samples, successive time steps of a very long simulation are used instead. It has

been argued that the stochastic nature of MPC dynamics leads to noisy averages [46], but the CAM

method overcomes this problem and leads to smooth averages. Note that Malevaents and Kapral used

a simple weighted average [36, 37] although this method is not as common.

2.7 Theoretical Averages

In computing theoretical averages in the next chapter, the following probability density functions will

be used. The velocity distribution of an isothermal MPC flow at equilibrium, has been shown to be the

Maxwell-Boltzmann probability distribution. It is given by

p({v}) =

(
m

2πkBT

)3N

2
exp

(
− m

2kBT

N∑
i=1

v2
i

)
(2.15)

where N is the total number of particles in the system, kB is the Boltzmann constant, T is temperature

of the system, m is the mass of the particles, and {v} = v1,v2, ...,vN are the velocities of the particles

in the system. This probability distribution will be used in computing averages of velocities so as to

connect to macroscopic flow variables.

The probability density function for the kinetic energy Eξ of particles in cell ξ is prescribed to follow

the Gamma Distribution with parameters φ/2 and kBT . Mathematically, it is given by

p(Eξ|Nξ) =
1

EξΓ

(
φ

2

) ( Eξ
kBT

)φ
2

exp

(
− Eξ
kBT

)
. (2.16)

Here p(Eξ|Nξ) is the conditional probability density function for energy Eξ in the ξth cell given Nξ

particles in the cell, φ = 3(Nξ − 1) is the number of degrees of freedom within a collision cell ξ, Γ is

the Gamma function, T is the temperature of the system, and kB is the Boltzmann constant. This

distribution is the assumed distribution for the thermostat used in the MPC dynamics.
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CHAPTER 2. MPC BACKGROUND 2.8. TRANSPORT COEFFICIENTS

2.8 Transport Coefficients

It is possible to calculate viscosity and other macroscopic transport coefficients for MPC dynamics. In

the case of no forcing, Noguchi and Gompper [21] have shown that the fluid viscosity µ is equal to the

sum of a kinetic component µkin and a collision part µcol. The simple expression, for the α = ±π
2

rule

used in this Thesis, for 3D flow is given by

µkin =
ρkBT

m

[
5n

6(n− 1 + e−n)
− 1

2

]
∆t (2.17)

µcoll =
m

18a0∆t
(n− 1 + e−n) (2.18)

µ = µkin + µcoll (2.19)

where, ρ = mass density =
mn

a30
, n is the average number of particles in a cell, m is the mass of a particle

and a0 is the length of each cubic cell. This viscosity is the theoretically expected value for MPC flow

without forcing/thermostatting, and differs from our theoretical expression derived in the next chapter.
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Chapter 3

Viscosity Calculation

Using Green-Kubo relations, the viscosity of a fluid can be computed by calculating appropriate averages

using velocities of particles in the system, and equilibrium probability distributions. In Section 3.1 we

provide the explicit relationship between v(t+ τ) and v(t) according to the MPC dynamics described in

Chapter 2. In Section 3.2, we provide the details for approximating the subsequent viscosity of the MPC

flow using such Green-Kubo relations. Explicit expressions for the dynamics described in Chapter 2 do

not exist in the literature. Expression exist for flow that is not accelerated, and without a thermostat,

as provided in section 2.8, but not for accelerated, thermostatted flow.

3.1 Velocities in MPC Dynamics

In Chapter 2, the key steps affecting the velocity vi(t) of particle i at time t in a given time step are

outlined in detail. Notation here is consistent with Chapter 2 and a schematic representation of the

dynamics is as follows:

collision force thermostat
vi(t) = v

′

i −→ v
′′

i −→ v
′′′

i −→ vi = vi(t+ τ).
(3.1)

The mathematical expressions for each of these steps are given in (2.1), (2.7), and (2.8) and are

v
′′

i = V
′

ξ + Wξ(v
′

i −V
′

ξ) (collision) (3.2)

v
′′′

i = v
′′

i + gτ(0, 1, 0)T (force) (3.3)

vi(t+ τ) = V
′′′

ξ + h(v
′′′

i −V
′′′

ξ ) (thermostat). (3.4)

Combining these to write vi(t+ τ) in terms of vi(t) gives

vi(t+ τ) = Vξ(t) + hWξ(vi(t)−Vξ(t)) + gτ(0, 1, 0)T . (3.5)
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CHAPTER 3. VISCOSITY CALCULATION 3.2. VISCOSITY FOR LARGE MEAN FREE PATH

Note that

V
′

ξ(t) =

∑M
i=1 v

′

i

M
=

∑M
i=1 v

′′

i

M
= V

′′

ξ , (3.6)

and

V
′′′

ξ =

∑M
i=1 v

′′′

i

M
=

∑M
i=1 v

′′

i

M
+ gτ(0, 1, 0)T = V

′′

ξ + gτ(0, 1, 0)T . (3.7)

Using

Wξ =

R11 R12 R13

R21 R22 R23

R31 R32 R33

 , (3.8)

from (2.3), the x, y, and z components of vi(t+ τ) are

vix(t+ τ) = Vξx(t) + h[R11(vix(t)− Vξx(t)) +R12(viy(t)− Vξy(t)) +R13(viz(t)− Vξz(t))] (3.9)

viy(t+ τ) = Vξy(t) + gτ + h[R21(vix(t)− Vξx(t)) +R22(viy(t)− Vξy(t)) +R23(viz(t)− Vξz(t))] (3.10)

viz(t+ τ) = Vξz(t) + h[R31(vix(t)− Vξx(t)) +R32(viy(t)− Vξy(t)) +R33(viz(t)− Vξz(t))]. (3.11)

Comparing (3.8) with (2.3) and using the explicit expressions for Rij for i, j = 1, 2, 3 these equations

can be written as

vix(t+ τ) = Vξx(t) + h[c((vix(t)− Vξx(t))−
∑

β=x,y,z

(viβ(t)− Vξβ(t))lβlx)

−s((viy(t)− Vξy(t))lz − (viz(t)− Vξz(t))ly) +
∑

β=x,y,z

(viβ(t)− Vξβ(t))lβlx)]

viy(t+ τ) = Vξy(t) + gτ + h[c((viy(t)− Vξy(t))−
∑

β=x,y,z

(viβ(t)− Vξβ(t))lβly)

−s((viy(t)− Vξy(t))lz − (vix(t)− Vξx(t))lx) +
∑

β=x,y,z

(viβ(t)− Vξβ(t))lβly)]

viz(t+ τ) = Vξz(t) + h[c((viz(t)− Vξz(t))−
∑

β=x,y,z

(viβ(t)− Vξβ(t))lβlz)

−s((viy(t)− Vξy(t))lx − (vix(t)− Vξx(t))ly) +
∑

β=x,y,z

(viβ(t)− Vξβ(t))lβlz)]

3.2 Viscosity for Large Mean Free Path

From [56], the shear viscosity ν for large mean free path can be approximated by

ν =
µ

ρ
≈ τ

NkBT

(
C0

2
+

∞∑
n=1

Cn

)
, (3.12)
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where the first term is taken as half of C0 and

Cn =

∑
i,j

< vix(0)∆ξiz(0)vjx(nτ)∆ξjz(nτ) >

τ2
, for n ≥ 0. (3.13)

Here, ∆ξiz(t) = ξiz(t + τ) − ξiz(t) is the change in the z-component of the position of particle i from

time t to t+ τ , and ∆ξiz(t+ nτ) = ξiz(t+ (n+ 1)τ)− ξiz(t+ nτ) is the change in the z-component of

the position of particle i from time t+ nτ to t+ (n+ 1)τ . The bracket notation < · > is used to denote

averaging over the equilibrium distribution, namely

< f(vi) >=

∞∫
−∞

f(vi)p({v})d{v}, (3.14)

where p({v}) was specified in equation (2.15). In this calculation, we take m = 1.

From Ihle and Kroll [28], one can approximate ∆ξiz with τυiz for evaluation of Cn, but not for C0.

Thus

Cn ≈
∑
i,j

< vix(0)viz(0)vjx(nτ)vjz(nτ) >,n > 0. (3.15)

In other words [28],

C0 ≈

∑
i,j

< vix(0)∆ξiz(0)vjx(0)∆ξjz(0) >

τ2
=
NkBT

τ2
< (∆ξz)

2 > (3.16)

and

C1 ≈
∑
i,j

< vix(0)viz(0)vjx(τ)vjz(τ) > . (3.17)

In evaluating C1, we note that C1 has diagonal contributions (i = j) and off-diagonal contributions

(i 6= j).

For the diagonal contributions of C1, using (3.9) - (3.11), we can write

< vix(0)viz(0)vix(τ)viz(τ) >=< R11R33 >< h2[v2ix(0)v2iz(0)− v2ix(0)viz(0)Vξz(0)− v2iz(0)vix(0)Vξx(0)

+ vix(0)viz(0)Vξx(0)Vξz(0)] > + < R13R31 >< h2[v2ix(0)v2iz(0)− v2ix(0)viz(0)Vξz(0)− v2iz(0)vix(0)Vξx(0)

+ vix(0)viz(0)Vξx(0)Vξz(0)] > + < R11 >< h[v2ix(0)viz(0)Vξz(0)− vix(0)viz(0)Vξx(0)Vξz(0)] >

+ < R33 >< h[v2iz(0)vix(0)Vξx(0)− vix(0)viz(0)Vξx(0)Vξz(0)] > + < vix(0)viz(0)Vξx(0)Vξz(0) > . (3.18)

Recall the definition of the Rij from (2.3), and note that the bracket notation for the Rij indicates

averages over θ and ϕ, namely

4π < Rij >=

2π∫
0

1∫
−1

Rijdθdϕ, i, j = 1, 2, 3. (3.19)
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After manually computing all averages, we have

[< Rij >] =

< R11 > < R21 > < R31 >

< R12 > < R22 > < R32 >

< R13 > < R23 > < R33 >

 = (
1

3
+

2c

3
)I3X3 (3.20)

where I3X3 is the 3X3 identity matrix.

Similarly,

4π < RijRkl >=

2π∫
0

1∫
−1

RijRkldθdϕ, i, j = 1, 2, 3 and k, l = 1, 2, 3. (3.21)

Performing all calculations, the symmetric matrix of < RijRkl > is
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[<
R
ij

R
lk
>

]=
                       <

R
2 1
1
>

<
R

1
1
R

1
2
>

<
R

1
1
R

1
3
>

<
R

1
1
R

2
1
>

<
R

1
1
R

2
2
>

<
R

1
1
R

2
3
>

<
R

1
1
R

3
1
>

<
R

1
1
R

3
2
>

<
R

1
1
R

3
3
>

. . .
<
R

2 1
2
>

<
R

1
2
R

1
3
>

<
R

1
2
R

2
1
>

<
R

1
2
R

2
2
>

<
R

1
2
R

2
3
>

<
R

1
2
R

3
1
>

<
R

1
2
R

3
2
>
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R

1
2
R

3
3
>
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. . .
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R

2 1
3
>

<
R

1
3
R

2
1
>

<
R

1
3
R

2
2
>

<
R

1
3
R

2
3
>

<
R

1
3
R

3
1
>

<
R

1
3
R

3
2
>

<
R

1
3
R

3
3
>

. . .
. . .

. . .
<
R

2 2
1
>

<
R

2
1
R

2
2
>

<
R

2
1
R

2
3
>

<
R

2
1
R

3
1
>

<
R

2
1
R

3
2
>

<
R

2
1
R

3
3
>

. . .
. . .

. . .
. . .

<
R

2 2
2
>

<
R

2
2
R

2
3
>

<
R

2
2
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3
1
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<
R

2
2
R

3
2
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<
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2
2
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Substituting these values for < Rij > and < RijRkl > into (3.18) gives

< vix(0)viz(0)vix(τ)viz(τ) >≈< h2 >

(
1

15
+

8c

15
+

2c2

5

)
< [v2ixv

2
iz − v2ixvizVξz − v2izvixVξx

+ vixvizVξxVξz] > + < h2 >

(
1

5
− 2c

15
+
c2

15
− s2

3

)
< [v2ixv

2
iz − v2ixvizVξz − v2izvixVξx

+ vixvizVξxVξz] > + < h >

(
1

3
+

2c

3

)
< [v2ixvizVξz − vixvizVξxVξz] >

+ < h >

(
1

3
+

2c

3

)
< [v2izvixVξx − vixvizVξxVξz] > + < vixvizVξxVξz >, (3.22)

where we have also used the approximation < h2[...] >≈< h2 >< [...] > and < h[...] >≈< h >< [...] >,

and dropped the zero time dependence for brevity.

In this calculation, we note that, using the equilibrium velocity distribution (2.7), we have

< vix >= 0, < viz >= 0, (3.23)

and

< v2ix > =

∞∫
−∞

∞∫
−∞

....

∞∫
−∞

v2ix

(
m

2πkBT

)3N

2
exp

(
− m

2kBT

N∑
i=1

v2
i

)
dv1dv2....dvN

=

∞∫
−∞

v2ix

(
m

2πkBT

)1

2
exp

(
− m

2kBT
v2ix

)
dvix

=
kBT

m

= < v2iz >,

< v2ixv
2
iz > = < v2ix >< v2iz >

< v2ixvizvξz > = < v2ixviz

∑M
k=1 vkz
M

>

= < v2ixviz
viz
M

> +(M − 1) < v2ixvizvkz >, (k 6= i)

=
< v2ixv

2
iz >

M
+ (M − 1) < v2ix >< viz >< vkz >

=
< v2ixv

2
iz >

M
+ 0

and so on.

Thus, since m = 1 , the N diagonal contributions of C1 have the value

< vix(0)viz(0)vix(τ)viz(τ) >≈ 1

M
< v2ixv

2
iz > Υc = (kBT )

2
Υc (3.24)
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where

Υc =
1

3

[
< h2 >

(
2

5
+

6c

5
+

7c2

5
− s2

)(
1− 1

M

)2

+ < h > (1 + 2c)

(
2

M
− 2

M2

)
+

3

M2

]
. (3.25)

After similarly lengthy calculations, the N(M − 1) off-diagonal contributions of C1 can be written as

< vix(0)viz(0)vjx(τ)vjz(τ) >≈ (kBT )2ηc, (3.26)

where

ηc =
1

M2

[
< h2 > (

2

15
+

2c

5
+

7c2

15
− s2

3
)− 2 < h > (

1

3
+

2c

3
) + 1

]
. (3.27)

Thus,

C1 ≈ N (kBT )
2

[Υc + (M − 1)ηc] (3.28)

From [28],”The behavior over long-time intervals can be analyzed in a similar fashion. Consider C2.

Following the arguments of the last paragraph, there is a diagonal contribution proportion to Υ2
c and

an off diagonal contribution proportional to 2Υcηc, since at each time step, M − 1 particles become

correlated with particle i, and particle j can become correlated with particle i at either of the two time

steps. Note, however, that there are now additional-higher order-contributions which arise, for example,

when particle j becomes correlated with particle k which then becomes correlated with particle i. It is

easy to see that these contributions carry additional factors of
1

M
and are thus of higher order than the

diagonal and direct off- diagonal contributions considered above. However, these higher off-contributions

can be summed in the geometric series.”

It follows that

Cn
N(kBT )2

≈ (Υc + (M − 1)ηc)
n ≈ Υn

c + n(M − 1)ηcΥ
n−1
c +

n(n− 1)(M − 1)2η2cΥn−2
c

2
+ . . . . (3.29)

Substituting (3.28) and (3.29) into (3.12) gives

ν ≈ τ

NkBT

C0

2
+

τ

NkBT

( ∞∑
n=1

Cn

)
(3.30)

≈ τ

NkBT

C0

2
+ kBTτ

(
Υc + (M − 1)ηc

1− [Υc + (M − 1)ηc]

)
(3.31)

=
τ

NkBT

C0

2
+
kBTτ

2

 10(
1− 1

M

)
[5− < h2 > (−1 + 2 cosα+ 4 cos2 α)]

− 1

− kBTτ

2
.(3.32)

after using (3.25) and (3.27), and simplifying.

For C0 we have [28]

C0 =
NkBT 〈(∆ξ)2〉

τ2
(3.33)
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and 〈(∆ξ)2〉 ≈ 1

6
+ λ2. Since, the mean free path λ = τ

√
kBT , the viscosity now becomes

ν ≈ τ

2NkBT

[
NkBT

τ2

(
1

6
+ λ2

)]
+
kBTτ

2

 10(
1− 1

M

)
[5− < h2 > (−1 + 2 cosα+ 4 cos2 α)]

− 1

−kBTτ2
.

(3.34)

Simplifying, the corrected shear viscosity for large mean free path is given by

ν ≈ kBTτ

2

 10(
1− 1

M

)
[5− < h2 > (−1 + 2 cosα+ 4 cos2 α)]

− 1

+
1

12τ
. (3.35)

Note that using the x and z components in our calculation for Cn (see equation (3.13)) can be

changed to x and y or y and z giving the same ν as obtained in (3.35).
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Chapter 4

Numerical Results

In this Chapter, we provide the numerical results for MPC flow through a cylinder with a local constric-

tion using the MPC dynamics outlined in Chapter 2. We describe the flow domain in the first section,

and the cell-energy generation from an implementation perspective thereafter. Next we provide the

numerical results for MPC flow through the constriction. We determine the theoretically predicted vis-

cosity derived in this Thesis and the theoretical estimate for viscosity without use of a force/thermostat,

and compare the resulting predicted maximum centerline velocities to the numerically obtained profiles.

Next, effects of varying the force, the degree of constriction, and the wall slip value are presented and

discussed.

4.1 Geometry of the cylinder

Figure 4.1 shows a cross-section of the geometry of the cylinder, where y is chosen as the coordinate

in the axial direction. Assuming axial symmetry of the entire flow domain, including the constricted

portion of the cylinder, we can define the flow domain through specification of a y-dependent radius,

R(y). As developed in Akther [1], we impose that the radius of the cylinder be a differentiable function

of y with the unconstricted portion of the cylinder having constant radius R0. Let the constriction start

at y1, have minimum radius R0 − δ at y2, and end at y3. Assuming a third-order polynomial for R(y)

in the form

R(y) =


R0 if y ≤ y1,
ay3 + by2 + cy + d = A(y) if y1 < y ≤ y2,
ey3 + fy2 + gy + h = B(y) if y2 < y ≤ y3,
R0 if y ≥ y3,
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the values of the eight constants a, b, c, d, e, f , g and h can be computed using the following conditions:

Continuity of R(y) requires

A(y1) = R0, (4.1)

A(y2) = B(y2), (4.2)

B(y3) = R0. (4.3)

Differentiability implies

A′(y1) = 0, (4.4)

A′(y2) = B′(y2), (4.5)

B′(y3) = 0, (4.6)

and having a maximum constriction at y2 requires

A(y2) = R0 − δ, (4.7)

A′(y2) = 0. (4.8)

These eight conditions allow specification of the eight constants in R(y).

Letting the distance between y1 and y2 be l1, and between y2 and y3 be l2 (see Figure 4.1), so that

y2 = y1 + l1, (4.9)

y3 = y1 + l1 + l2, (4.10)

the equation of the cylinder can be written as:

R(y) =



R0, if y ≤ y1,
2δ
l31
y3 − 3δ(2y1+l1)

l31
y2 + 6δy1(y1+l1)

l31
y +

2δy31+3δy21l1−R0l
3
1

l31
, if y1 < y ≤ y2,

− 2δ
l32
y3 + 3δ(2y1+2l1+l2)

l32
y2 − 6δ(y21+2l1y1+l

2
1+y1l2+l1l2)

l32
y

+
3δl21l2+3δy21l2+6δy1l1l2+2δl31+2δy31+6δy21l1+6δy1l

2
1+R0l

3
2−δl

3
2

l32
, if y2 < y ≤ y3,

R0, if y ≥ y3,

where x = R(y) cos θ and z = R(y) sin θ.

4.2 Cell Energy Generation

As part of the thermostat step in the MPC dynamics, a random energy needs to be generated in each

cell at each time step, from the Gamma Distribution (see Chapter 3). There are several methods to

generate random numbers from probability distributions for simulation.
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Figure 4.1: Cylinder with constriction.

4.2.1 Acceptance Rejection Method

The most popular and most widely applicable method for generating random numbers is the Acceptance

Rejection method, which was invented by John Von Neumann [59, 19]. In this method, numbers that

follow a particular distribution are generated with the help of another known distribution for which

random numbers can easily be generated. The Acceptance Rejection method is particularly useful if

the inverse of the desired probability distribution is not possible to determine, in which case the Inverse

Transformation method to generate random numbers cannot be used. In this case, the Acceptance

Rejection method is convenient and efficient for generating random numbers from discrete and continuous

probability distributions.

The Acceptance Rejection method leads to random numbers from an arbitrary probability distri-

bution function with the help of a known probability distribution function from which the process of

drawing random numbers is well-known. The method is as follows. Let F (x) be the desired probability

distribution function and f(x) the corresponding probability density function for the random variable X

that is generated using the Acceptance Rejection method. Let G(x) and g(x) respectively be the known

probability distribution function and probability density function of the random variable Y that will be

used to draw random numbers. For the method, we will assume that the ratio f(x)
g(x) is bounded by k ≥ 0,

namely sup
x

f(x)
g(x) ≤ k. In practice, k is as close to 1 as possible, and the closer k is to 1, the more efficient

the algorithm. The details of the specific algorithm for continuous random variables are:

(i) Generate a random variable Y from a chosen probability distribution function G(x : σ2
g , µg) , where

σ2
g is the variance of the distribution and µg is the mean. Call the sample value y.

(ii) Generate a random variable U from the uniform distribution on the interval [0, 1]. Call the sample

value u.

(iii) If u ≤ f(y)
kg(y) , u ∈ [0, 1], accept y as a realization of f(x) (of X), otherwise reject u, and repeat (i)

to (iii).

Then, Y is a random variable corresponding to the desired probability density function f(y).
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4.2.2 Cell energy generation for MPC

Using the Acceptance Rejection method, we now describe the process of generating random numbers

that follow the conditional probability distribution p(Eξ|Nξ) as given in (2.16). We assume that Eξ ∈ R+

and that Nξ is a countable number. For simplicity we write p(E) instead of p(Eξ|Nξ) and we omit the

subscript ξ in E and N .

For the probability density function in (i), as in [23], we choose for convenience the exponential

distribution

g(E) =
α

c
exp(−α|E − Em|), (4.11)

where c = 2 − exp(−αEm), Em =
φ
2−1
β , α = β

√
2
φ , and β = 1

kBT
. To generate random numbers from

the exponential distribution, we use the Inverse Method.

Let G(E) be the cumulative probability distribution function for the random variable E. Then

G(E) =

∫ E

0

g(x)dx, (4.12)

=


1− 1

c
eαEme−αE if E < Em,

1

c
e−αEm(eαE − 1) if E > Em.

(4.13)

By definition of a probability distribution function, 0 ≤ G(E) ≤ 1. Thus, using the Inverse Method, we

let G(E) be a uniform random variable. Then the energy E of the exponential distribution is

E =

{
− 1
α log(c(1−G(E))) + Em, if G(E) > c−1

c ,
1
α log(e−αEm + cG(E)) + Em, if G(E) ≤ c−1

c .
(4.14)

This completes step (i).

For step (ii), the uniform random variable U is obtained using a standard random number generator

for uniform random variables.

For step (iii), it can be shown that

p(E)

g(E)
≤ cmax (4.15)

where

cmax = max
E

(
p(E)

g(E)

)
(4.16)

=
α

Γ(φ2 )
β
φ
2E

φ
2−1
max exp(−βEmax − α|Emax − Em|), (4.17)

since the maximum value of c occurs when E = Emax =
φ
2−1
β−α .

Thus, we accept E if U ≤ p(E)
cmaxg(E) , otherwise we reject E and repeat steps (i)-(iii).
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Figure 4.2: Target probability density function p(E) compared to the bounding probability density
function cmaxg(E)

In Figure 4.2, we plot the desired probability density function p(E;β, φ) together with the exponential

density function g(E;α, φ). Here α = β
√

2
φ and p(E;β, φ) < cmaxg(E;α, φ) for all E, as shown in the

figure. For the method to work, p(E) must be bounded above by cmaxg(E), and for the method to work

most efficiently, p(E) is as close as possible to cmaxg(E).

Implementation of the Acceptance Rejection method for generating random numbers E that follow

the desired p(E) using the above exponential density function leads to the following. In Figure 4.3

we compare the histogram of 10, 000 random numbers for E using the above approach, to the desired

probability distribution p(E). As can be seen in the Figure, there is excellent agreement between the

histogram and the desired p(E).

27



CHAPTER 4. NUMERICAL RESULTS 4.2. CELL ENERGY GENERATION

Figure 4.3: Comparison of the histogram of 10, 000 random numbers generated using the Acceptance
Rejection method to the target probability density curve p(E).
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4.3 Numerical Results

For all of our MPC simulations, we used ρ = 20, m = 1, kBT = 1, τ = 1, a0 = 1, N ≈ 20 million, and

∆x = ∆y = ∆z = 1. There are 1200 cells in the y-direction and 29 cells in the x and z directions in the

system. We considered 40000 time steps in total, with cumulative averaging starting at 5000. For the

geometry, (see Figure 4.1) the radius of the cylinder in the unconstricted portion is R0 = 10.5, the center

of the cylinder in the xz plane is (xc, zc) = (14.5, 14.5), l1 = 20, l2 = 10, and y1 = 600.5. The degree

of constriction δ is varied from 0.5 to 2. Note that the value of δ = 0 means there is no constriction

in the cylinder. The values of the force g are chosen as 0.005, 0.01 and 0.02. Increasing the value of g

essentially increases the flow speed in the system. For the boundary condition, values of λ are varied

from 0 to 0.5. The value of λ plays an important role in the boundary condition as discussed in Chapter

2. We chose the values of λ = 0 (BB), 0.1, 0.2 and 0.5 (LIT) for comparison. In this thesis, the no-slip

boundary condition (BB) and LIT are emphasized.

4.3.1 Comparison of Shear Viscosity

The function h given in (2.9) is the square root of the ratio of the energy Eξ to kinetic energy calculated

from relative velocities, namely |v′i − v
′

ξ|2. In our theoretical estimate for the viscosity (3.35), < h > is

the average value of
√

Eξ
m∗|v′

i
−v
′
ξ
|2

2

over the cells ξ in the system. Using output from the simulation for

approximately 3.1 million values for h, we estimate the value of < h > and < h2 > to be 1.0102356 and

1.0426231 respectively.

In Figure 4.4 we plot the shear viscosity with thermostat (3.35) and without thermostat (2.19). We

note that using the thermostat increases the viscosity of the fluid.

In Figures 4.5 and 4.6 we plot velocity cross-sections at y = 100.5 for MPC-BB (Fig. 4.5) and

MPC-LIT (Fig. 4.6) along with the best parabolic fits using regression.

Figures 4.7 and 4.8 show the corresponding density cross-sections.

In order to determine how good our theoretical estimate for the viscosity is, we use the numerically

obtained maximum centerline velocity to estimate ν for the flow. For flow through a cylinder with fixed

cross-section,

v(z) =
mg
(
R2 − (z − zc)2

)
4ν

+ vs. (4.18)

Thus, the maximum centerline velocity has the value

vmax =
mgR2

4ν
+ vs. (4.19)

Solving this for ν gives

ν =
mgR2

4(vmax − vs)
. (4.20)
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Figure 4.4: Comparison of shear viscosity with and without thermostat.
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Figure 4.5: Axial velocity cross-section for MPC-BB (no-slip) with best parabolic fit. The equation for
the parabolic fit is v = −0.2885539209 + 0.0825548278y − 0.002845674y2.
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Figure 4.6: Axial velocity cross-section for MPC-LIT (slip) with best parabolic fit. The equation for the
parabolic fit is v = −0.258305808 + 0.084189849y − 0.002904962y2.
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Figure 4.7: Density cross-section for MPC-BB (no-slip).
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Figure 4.8: Density cross-section for MPC-LIT (slip).
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λ vs vnummax νnum < h2 > ρ νtherm νno therm

0.5 0.0320 0.3517 0.43106 1.1421168 19.88475 0.44091 0.43022
0 0 0.3102 0.44429 1.0426231 19.96936 0.45441 0.43004

Table 4.1: Comparison of theoretically predicted viscosities to the numerically obtained value, using
viscosity expressions with and without thermostat.

In Table 4.1 we compare the viscosity as predicted by (4.20) for the numerically obtained value of vmax

(labelled νnum), to the viscosity according to our theoretically derived expression (3.35), labelled νtherm

and to existing expressions in the literature (labelled νno therm).

Our theoretical expression agrees better with the numerical result in LIT (λ = 0.5) than in BB

(λ = 0).

4.3.2 Effect of varying force

In Figures 4.9 and 4.10 we plot the scaled centerline densities for various values of g in a constriction

with δ = 0.5 for both the no-slip (BB) and slip (LIT) cases. It can be seen from Figure 4.9 that in

the no-slip (BB) case, the scaled centerline densities form a peak and dip as g increases, with larger

peaks/dips for larger g values. This same trend is observed in the case of slip (LIT) in Figure 4.10.

When comparing slip to no-slip, the peaks and dips are slightly larger in the case of slip, but otherwise,

the curves are quite similar.

In Figures 4.11 and 4.12 we plot scaled centerline velocities for various values of g in the same

constriction. This time, dips are formed first (rather than peaks) that become more severe for larger

values of g, and peaks thereafter decrease as g increases. Similar trends in the case of slip (LIT) can be

seen in Figure 4.12, with slightly lower dips and peaks.

Worth noting here is that in comparison to using a global thermostat (see results in [2]), the centerline

density curves here lead to much larger peaks with little distinction in the qualitative behaviour of the

graphs with or without slip. Likewise for the centerline velocity curves.

4.3.3 Effect of varying degree of constriction

In Figures 4.13 and 4.14 we plot the scaled centerline densities for various values of δ in a constriction

with g = 0.005 for both the no-slip (BB) and slip (LIT) cases. In both figures, the trend of increasing

peaks/dips in the scaled centerline density curves as δ increases can be seen. There is little difference in

the curves, except that the dips are slightly lower in the case of slip (see Fig. 4.14).

For the scaled centerline velocities, increasing δ has the effect of leading to a dip that is lower for

larger δ values, followed by peaks that increase as δ increases (see Figure 4.15). There is very little

difference in the slip and no-slip curves when comparing Figure 4.15 and Figure 4.16.

Worth noting again is the similar peaks attained in the slip and no-slip case in the scaled centerline

velocities using a local thermostat (here) compared to much lower peaks in addition to post-constriction

dips when using a global thermostat in [2].
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Figure 4.9: Scaled centerline densities for various values of g in a constriction with δ = 0.5 in the no-slip
(λ = 0, BB) case.
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Figure 4.10: Scaled centerline densities for various values of g in a constriction with δ = 0.5 and slip
(λ = 0.5, LIT).
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Figure 4.11: Scaled centerline velocities for various values of g in a constriction with δ = 0.5 in the
no-slip (λ = 0, BB) case.
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Figure 4.12: Scaled centerline velocities for various values of g in a constriction with δ = 0.5 and slip
(λ = 0.5, LIT).
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Figure 4.13: Scaled centerline densities for various values of δ in a constriction with g = 0.005 in the
no-slip (λ = 0, BB) case.
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Figure 4.14: Scaled centerline densities for various values of δ in a constriction with g = 0.005 and slip
(λ = 0.5, LIT).
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Figure 4.15: Scaled centerline velocities for various values of δ in a constriction with g = 0.005 in the
no-slip (λ = 0, BB) case.
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Figure 4.16: Scaled centerline velocities for various values of δ in a constriction with g = 0.005 and slip
(λ = 0.5, LIT).
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Figure 4.17: Scaled centerline densities for various values of λ in a constriction with g = 0.005 and
δ = 0.5.

4.3.4 Effect of varying slip

In Figure 4.17 we plot the scaled centerline density in a constriction with δ = 0.5 and g = 0.005, and

vary slip. It can be seen that there is little change in the curve as slip increases. Similarly, there is little

change in the scaled centerline velocity as slip increases as can be seen in Figure 4.18.

4.4 Summary

When using a local thermostat (here) compared to a global thermostat (as in [2]), the following can be

observed:

(i) Adding slip leads to a parabola that is shifted upwards compared to no-slip, unlike in [2] where the

maximum is lowered when slip is added.
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Figure 4.18: Scaled centerline velocities for various values of λ in a constriction with g = 0.005 and
δ = 0.5.
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(ii) The density cross-sections in the case of slip show some accumulation of particles near the wall with

a subsequent lower density in the center of the cylinder, but this effect is significantly lower with

a local thermostat used here, compared to a global one used in [2]. For comparison, the density in

the center here is approximately 19.8 while in [2] it is approximately 12.4.

(iii) Scaled centerline velocity and density curves are very similar in the case of slip and no-slip, while slip

curves in the case of a global thermostat had significantly different features (eg. post-constriction

dip rather than pre-constriction dip).

(iv) Varying force, degree of constriction, and slip leads to expected results with use of a local thermo-

stat, namely: increasing force or degree of constriction increases the peaks in the centerline velocity

and density curves, and increasing slip seems to have little effect in a given constriction geometry.

(v) The theoretical estimate for viscosity derived in this Thesis needs further improvement in that a

more theoretical estimate for < h2[. . .] > and < h[. . .] > is needed.
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5.1 Conclusions

The work in this Thesis was motivated by blood flow through the human circulatory system, which

was briefly introduced in the Introduction. There have been many reports in various medical journals

where it was mentioned that the viscosity of blood and that of plasma are important parameters in

hemorheology. Human blood in various diseased conditions can significantly change the viscosity when

compared to that of blood in healthy conditions.

In this Thesis, we considered a particle-based method called multiparticle collision (MPC) dynamics

for flow simulations. In MPC dynamics, many particles in a local cell collide through an idealized rotation

operator. An external force was applied to the system in the y direction to creat flow. Due to an increase

in the velocities of particles, the particles gain energy and thus increase the system temperature. To

maintain constant temperature, a thermostat is applied. The thermostat is a local, rather than global,

thermostat, and the local energy in a cell is assumed to follow a gamma distribution. For boundary

conditions, both slip (LIT) and no-slip (BB) was considered. This was discussed at length in chapter 2

of this Thesis.

In chapter 3, the shear viscosity for the MPC dynamics was derived by calculating specific correlation

functions that connect to the viscosity of the system. These are called Green-Kubo relations. A large

mean free path was assumed.

In chapter 4, various results for flow through a constriction were provided, in addition to viscosity

estimates based on existing vicosity relations, and the one derived in this Thesis. Additionally, we noted

some key feature changes in the centerline density and velocity curves when using a local thermostat

(here) compared to a global thermostat that was used in [2].

Our key findings in this Thesis are as follows. In the case of no-slip, we found no significant difference

in using a global versus a local thermostat in flow through a constriction. On the other hand, when

slip is incorporated, scaled centerline velocity and density curves have different features when using a

local rather than global thermostat. In particular, pre-constriction dips can be seen when using a local
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thermostat while a global thermostat gives rise to a post-constriction dip in the scaled centerline velocity

curves. Slip and no-slip simulations give rise to similar curves, both quantitatively and qualitatively,

when using a local thermostat, and this is not the case when using a global thermostat. Additional-

ly, the velocity cross-section is found to be the no-slip parabola shifted upwards when using a local

thermostat, which is quite different when a global thermostat is used. The density cross-section shows

some accumulation of particles near the wall in flow with slip, but this accumulation is significantly less

than when a global thermostat is used. Increasing force or degree of constriction increases the peaks

in the centerline velocity and density curves, as expected, and increasing slip seems to have little effect

in a given constriction geometry. Finally, our theoretical estimate for the viscosity needs some further

improvement for better estimates (numerically or theoretically) for the terms involving h.

5.2 Future work

There seems to be some discrepency between the theoretical viscosity expression derived here, and that

obtained numerically. Likely the approximation of < hn[. . .] >≈< hn >< [. . .] >, for n = 1, 2 is one

reason for this, and how to deal with averages involving the thermostat factor hn from a theoretical

perspective needs further analysis.

Additionally, other flow geometries should be considered so as to test the versatility of the viscosity

expression, as well as the use of the local thermostat, in MPC flow through complex flow domains.
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Appendix

In this appendix, we show how correlation functions relate to the Boltzmann constant.

The velocity vi = (vix, viy, viz) in three-dimensions for particle i follows the Maxwell-Boltzmann

velocity distribution (2.7) where i ∈ [1, N ] and N is the total number of particles in the system. For

particle i, 〈v2ix(0)v2iz(0)〉

=
∞∫
−∞
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....
∞∫
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Now,
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Thus,
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