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Abstract 

Characterization of Human Stability Using Vector 
Acceleration Signals 

©Joseph Santarcangelo, 2009 

Master of Engineering 

Department of Electrical and Computer Engineering 

Ryerson University 

Biomedical signals carry information about a physiological event. The part of the signal 
pertaining to a specific event is called an epoch. Once the event has been determined, the 
corresponding waveform may be segmented and analyzed based on many parameters[ 1]. 

As falls have increased in recent years due to an aging population, it is important to gain 
insight to the reaction of an individual to perturbations. One common method of studying 
human reactions is by using a balance aperture. 

This thesis describes the physical actions that produce acceleration on a balance 
apparatus and captures the acceleration on an accelerometer. Algorithms were developed 
to segment the unstable periods of the accelerometer signal. Wavelets were used as well 
as non-linear filters. The non-linear filters increased the amplitudes of periods of 
instability, simple signal models of the output of the non-linear filters where formulated 
and analyzed. Vector processing techniques were also developed. 

The experimental results demonstrate that the acceleration during unstable periods can be 
differentiated by its frequency content, by its discontinuous nature and by using vector 
relationships. The algorithms were tested with five individuals and had over 80% 
accuracy. 
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Chapter 1 

1.0 Introduction 

The incidence of falls has vastly increased in recent years as our population ages 

according to epidemiological reports. As such, more research is being conducted on the 

factors involved in falls, avoiding obstacles and changing directions being the most 

common. More specifically, efforts have been made in quantifying the human response to 

perturbations using a balance apparatus, as shown in Figure 1 [2], [3]. 

Figure 1: balance apparatus 

Operation of Apparatus: An individual stands on an unstable surface and tries to 

maintain balance by not allowing the apparatus to come into contact with the ground. The 

individual on the balance apparatus is never in true static equilibrium but appears to be in 

one of two states. The first state or the stable state is characterized by many tiny 

incremental movements of a short duration, whereby the arms stay in relatively the same 

position and the individual is hunched over with a stiff spine. The second or unstable 

state is characterized by large displacements, involving sporadic arm movements, weight 

shifting from one leg to another, with the individual moving back and forth, shown in 
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Figure 2. By placing an accelerometer on the balance apparatus, one can record relevant 

accelerations. 

Figure 2: individual on a balance apparatus (www.woodentoys.com) 

Unfortunately a quantitative method does not exist to determine what state an 

individual is in presently. The accelerometer signal characteristics are extremely variable 

from individual to individual and from trial to trial making methods segmentation based 

on statistical decisions difficult. Once the signal is segmented other physiological data 

can be analysed including the motion of the arms, neck and eyes. 

The variance in the signals amplitude, statistical content and spectrum make it 

difficult to use standard algorithms and filters. The algorithms were developed using time 

frequency analysis, a non-linear filter and vector signal processing. Continuous Wavelet 

Transform based algorithms worked well but multi-resolution wavelets did not perform 

as well which made the time frequency algorithms computationally expensive. The 

algorithm using vector signal processing used the angle generated by the relationship 

between acceleration vectors. It produced the best performance. This suggests that the 

relationship between vectors should be examined when studying accelerometer signals. 

2 



The non-linear filter was newly developed and characterized in the frequency domain. 

The new filter was tested with the accelerometer signal as well as generated signals. The 

output of the non-linear filter was similar to the angle relationship. This suggests that the 

non-linear operation captures correlations between vectors. The algorithm was tested 

with signals from five individuals and the three best algorithms performed with 

diagnostic accuracy over 80%. 

This thesis describes accelerometer segmentation algorithms used in fall and 

seizure detection and describes the challenges associated with segmenting the 

accelerometer signal. The physiological, perceptual and cognitive mechanisms of 

balances are discussed and used to determine parameters that can be helpful tn 

segmenting the signal. The analysis methods are discussed including linear time invariant 

systems, Fourier Transforms, Windowed Fourier Transforms, Wavelet Transforms and 

Multiresolution Analysis. A non-linear filter is developed and its Fourier Transform is 

derived. Vector signal processing is also discussed. A detailed description of the 

algorithms are given, the results of the algorithms are shown, modeled, analysed and 

compared. 
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Chapter 2 

2.0 Background Information 

2.1 Accelerometers 

Electronic accelerometers are dependent on piezo-electric properties. Piezo­

electric accelerometers consist of damped mass-spring systems, in which a piezoelectric 

element acts as spring and damper. This element generates an electrical charge in 

response to the mechanical force. 

Clinical applications of accelerometers include gait and balance evaluations, fall 

risk assessment and mobility monitoring [3-5]. The idea of utilizing an accelerometer to 

measure human movement was first proposed in the 1950s, but suffered many practical 

considerations. Like many electronic devices at the time, accelerometers were bulky and 

interfered with the motion of the subject. They were also very expensive and unreliable. 

Eventually accurate and inexpensive low power accelerometer devices were developed 

for air-bag release systems [3]. 

2.1.1 Accelerometer Segmentation Algorithms 

Two common applications of accelerometer signal segmentation algorithms are 

fall detection and seizure detection. Although the signal characteristics are different from 

those on a balance board, it is helpful to examine the methodology behind these 

segmentation algorithms. The main challenge of determining a fall detection algorithm is 

distinguishing a true falling event from normal activities such as fast walking, and 
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ascending and descending stairs [7]. Some algorithms depend on multiple sensors 

including an accelerometer, tilt sensor and gyroscope [6]. One common element of the 

reviewed methods is averaging the signal then using a threshold value to determine the 

segmentation periods of the signal [7 -9]. Some algorithms augment the classification 

using logic operations [8], others use the root-sum-of-squares of the three signals from 

each tri-axial accelerometer [9]. 

For distinguishing between normal daily activities such as sitting, standing, lying, 

and movement, statistical properties of the amplitude of the signal are effective, but time 

frequency methods are more effective when distinguishing between various complex 

movements. As a consequence, time frequency methods have been applied to seizure 

detection algorithms of accelerometer signal. Tamara et al [ 1 0] examined the use of Short 

Time Fourier Transform (STFT) and the Continuous Wavelet Transform (CWT), which 

involved examining the time frequency response of artificial signals such as sine waves 

and impulses, which represented the most important characteristics of the myoclonic 

seizures. The signals include damped sinusoids, decaying functions and sinusoids of 

different frequencies. These functions are commonly used in modeling the cognitive and 

physiological processes. This method cannot be applied in analysing the balance 

apparatuses signal as the signal is corrupted by noise and interference. 

The insight gained was used to analyze real patient data, and time-frequency 

measures were then used for myoclonic seizure detection. Discriminate analysis set-up 

was used on clinical data. It was found that both S TFT and CWT could be used for 

feature extraction for detecting myoclonic seizures [10]. 
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Nijsen and Janssen [11] also used wavelets to detect seizures, but their 

methodology was different. First they developed a physiological model of arm 

movements during certain epileptic seizures [11], then using this model they developed a 

wavelet that had maximum correlation which in tum would augment detection [12], 

Modeling the muscle activity that causes the accelerations during an epileptic seizures is 

not as involved as modeling regular muscle movements [ 11]. In addition, there is no 

complex muscle interaction, feedback or neural control process. 

2.1.2 Accelerometer Segmentation 

The main problem of segmenting the stable and unstable periods is that the 

accelerometer signal varied a great deal from individual to individual. Stable and unstable 

periods for one individual would have different characteristics such as amplitude, 

duration and shape. The component of an accelerometer signal from two individuals is 

shown in Figure 3. Signal A (top) has two unstable 1 seconds to 2 seconds and 5 seconds 

to 6 seconds. The shape of the unstable periods is distinctive, with a sudden decrease in 

amplitude followed by a sharp increase in amplitude. The unstable periods are short in 

duration, about 0.50 seconds and have peak amplitude -0.17 m/s2 to -0.25 m/s2
, whereas 

the stable periods have amplitudes of between -0.1 m/s2 and 0.1 m/s2
. Signal B (bottom) 

has unstable periods that have completely different characteristics. The first period from 

samples 2 seconds to 3 seconds, has the same shape and duration as the unstable period in 

signal A, and the second unstable period, from 5 seconds to 9 seconds, has a completely 

different shape and duration. Some portions are square shaped while other portions 

oscillate from positive to negative values. The varying characteristics of accelerometer 
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signals from individual to individual makes it impossible to use a threshold value to 

segment the unstable periods. 

a)Y-component subject 2 
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"' 
I, r 

I ·.I ,r 0 - '' I 
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C\1 I I'', en -E -0.1 

-0.2 

1 2 3 4 5 6 
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0.1 
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Figure 3 signal A (top) and signal B (bottom) 

Comparing the signals in Figure 4, one can see that the spectrums of the signal 

have different forms. Although both signals have most of the energy distributed in the 

low frequency components the distribution of the spectrum has different form 20 to 50 

Hertz range. This makes it difficult to determine a cut-off frequency for conventional 

filtering. 
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a) 

Amplitude Spectrum of Subject One dB 
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Figure 4: a) spectrums of subject one b) spectrum of subject four (bottom) 
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2.2 Determining Signal Characteristics 

Standing straight involves keeping several joints and muscle groups in a 

geometric relationship with respect to the environment. Many factors affect the process 

of standing, such as what the individual task is at the time. Developments in posture 

control show that cognitive and perceptual factors can affect balance [14]. 

Posture is defined as: 

" ... the geometric relation between two or more body segments expressed in terms 

of joint angle(s) between segments. A complete geometry defining the posture of 

the whole body should include the relation of the body to the environment ... "[13] 

Understanding how the brain processes and reacts to sensory information in the process 

of balance provides quantified measurements that may be used in any signal 

segmentation algorithm. 

Posture is maintained by the central nervous system controlling different jointed 

segments of the body, reacting to gravity and some kind of external stimuli. The nervous 

system controls resultant torque around a joint to maintain posture. The process of 

matching resultant external torque with torque developed by muscles acting around that 

joint to maintain equilibrium can be defined as balance. 

The input to the neural systems is sensory information and the response is a series 

of motor outputs to the body, which control movements. The motor outputs do not 

activate individual muscles but rather groups of multiple muscles forming a 'muscle 
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synergy. Movement is a result of complex multiple motor outputs changed or modulated 

over time [13]. 

In balance control, motor command signals must be dynamically modulated in 

response to a suite of sensory information. When responding to perturbations, the motor 

outputs causing muscle-activation patterns are highly variable [14]. This is similar to 

what happens when an individual loses balance on an apparatus when performing a 

highly involved task. However, because the occurrence appears unpredictable, the 

response will be treated as that of an imposed perturbation [15]. 

The muscle synergy responsible for balance causes movement. Each movement is 

manifested on the balance apparatus, which then causes periods of stability to appear 

similar in characteristics regarding amplitude and shape. This interference makes 

developing a segmentation algorithm challenging as the characteristics of the interference 

such as amplitude and shape differ from individual to individual. The acceleration is 

proportional to the vector sum of forces. Therfore, one can model this interference as 

additive random function : 

Equation 1: signal model using random variables 

The variable~ is a random variable and n is the time index, X(n,~) represents the 

unstable parts of the signal and S(n, ~) represents the interference. The underlying 

mechanisms that generate X(n ~,)and S(n, ~)are not understood, they are assumed to be 

correlated. It was determined using Least Mean Squares fillters that both stable and 
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ustable periods of the signal was not staionary for a fixed period of time. This is shown in 

Appendx 1. 

A common method of studying standing balance is to record motions, reaction 

forces and torques between the feet and the ground and forces acting externally to the 

joint. This is similar to the balance board used to obtain trajectories of the arms and neck. 

The effect of imposed perturbations (disturbances) on an individual standing exerting 

torque at the ankle, to balance, involves exerting counter torque. An unpredictable 

perturbation of the support surface (balance board) causes activation of knee and hip 

muscles. These sudden changes are manifested on the balance board accelerometer signal 

as sudden changes in magnitude and direction. The hypothesis is that in these periods the 

accelerometer signal will become discontinuous. Reaction to the perturbations takes 

approximately a tenth of a second, voluntary reaction time is approximately a fifth of a 

second, this is because time for the postural reflex is longer than a spinal reflex [ 14]. 

Therefore one expects the frequency content of the signal to reflect this change. 

The mechanism of postural reflex involves sequential organization over several 

muscle groups. The way the body harnesses the muscle groups changes in the context of 

their specific adaptation. For example if a small support structure is bombarded with 

larger perturbations, hip flexion is used to induce forces at the ground instead of ankle 

torque [ 14]. The statistical content of the accelerometer signal will change as a direct 

consequence. 

The ability of the subject to re-establish stability is also affected by role and pitch. 

Leg and trunk muscles reaction appears dependent on vestibular signals. For example, 
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ankle torques for almost all perturbation directions were aligned along the pitch plane 

[15], therefore the individual's response is dependant on the pitch of the balance 

apparatus. 

The Hypotheses are summarised in Table 1 

Manifestation Interference Discontinuities Frequency Statistical 
Content Content 

Physiological The muscle Sudden changes Reaction to the The way the 
Mechanism synergy are manifested perturbations body harnesses 

responsible for on the balance takes the muscle 
balance cause board approximately a groups changes 
movement, this accelerometer tenth of a in the context 
is manifested signal as second of their specific 
on the balance sudden changes voluntary adaptation 
apparatus in magnitude reaction time is 

and direction, approximately a 
due to fifth of a 
activation of second [13], 
knee and hip this is because 
muscles time for the 

postural reflex 
is longer than a 
spinal reflex 
[13] 

Result This Hypothesis is Therefore one Therefore the 
interference that in these expects the statistical 
makes periods the frequency content of the 
developing a accelerometer content of the accelerometer 
segmentation signal will signal to reflect signal will 
algorithm become this change change as a 
challenging discontinuous direct 

consequence 

Table 1: Hypotheses Summary 
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Chapter 3 

3.0 Theory 

3.1 Time Domain 

Time-domain analysis is the study of the temporal characteristics of a signal over 

a prescribed period of time. Typical tools used in time-domain analysis include 

integration, differentiation, finding the correlation of two signals and using differential 

equations to describe a physical process. 

Linear, time invariant systems (LTIS) are integral to many signal processing 

applications such as filtering. These systems can be characterized by their response to the 

Dirac impulse defined as [16]: 

h(t) = L{o(t- u)} 

Equation 2: response to the Dirac impulse defmed 

L represents the response of the L TIS to the Dirac impulse. By using this impulse 

response, one may find the response of the system on a particular signal. This operation is 

referred to as a convolution, which is essentially the integrated product of two functions 

that have been time shifted over an observation time range. 

+oo 

L{f(t)}= J h(r)f(t --r)d-r 
-oo 

Equation 3: convolution integral 
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When a continuous signal is sampled at a period T, it becomes a discrete signal. 

If the signal is band limited and sampled at twice the bandwidth, the signal can be 

reconstructed without loss of information. Uniform sampling of the function f may be 

modeled as a weighted Dirac sum: 

00 

Lf(nT)8(t- nT) 
n=-oo 

Equation 4: Uniform sampling of the function/ 

The signal is now an array of numbers. This allows computers to process the 

signal information without the realization of a physical system. Many operations are 

analogous in both domains, like convolution [ 16-18]: 

00 

L{f[n]}= f[n] * h[n] =I, f[k]h[n- k] 

Equation 5: discrete convolution 

Operations like derivatives and integrals can be simulated. This is done with 

difference equations; tools used to represent digital systems are operations that involve 

delay. For example, one may now represent the process of averaging as follows [ 17 -18]: 

n+N 

L{f[n]} = L,J(p) = f(n)*(u(n+N)-u(n-N)) 
p=n-N 

Equation 6: averaging in convolution form 
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3.2 Fourier Analysis 

Frequency analysis is based on the fact that one can express an arbitrary periodic 

function as an infinite series of appropriately weighted sinusoidal functions. Fourier 

series is used to analyze periodic functions. The basic functions are {sin(kx), cos(kx) } 

(which are orthogonal) and the complex exponential exp(ikx) is used to simplify the 

calculations. 

Equation 7: discrete complex weight coefficients 

The inner product maps the magnitude or energy of signal into discrete complex 

weight coefficients { Dk } . The magnitude represents the "weight" of the sinusoid with 

frequency k*ro. The phase information can also be used. 

00 

Xr (t) 
k=-oo 

D e Jkmt 
k 

Equation 8: functions expressed as weighted sinusoidal functions 

To represent non-periodic functions, we use Fourier transforms which are an 

extension of the Fourier series and are an example of an integral transform. The function 

X( co) is the spectral density, a continuous distribution of the sinusoid. 
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-too 

X ( m ) J x ( t ) e - 1 
(j) 

1 dt 
- 00 

Equation 9: Fourier Transform 

X( c.o) is a complex function so its magnitude and phase are usually studied. The inverse 

transform follows: 

X (t) 
1 + 00 -- J X ( m) e jmt d m 

21! 
-00 

Equation 10: Inverse Fourier Transforms 

Fourier transforms can also be used in discrete signal analysis, where it transforms the 

discrete time signal into a continuous function of c.o . 

00 

I, g(n)e-Jmn 
n=-oo 

Equation 11: Discrete Time Fourier Transforms 

The new function is periodic from -1t to 1t, if the spectrum is filtered at that 

bandwidth with a (rect(ro)) it will become continuous in time. The inverse transform is 

from -1t to 1t. One may gain new insight to operations such as averaging as follows. 
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sin( ( N + _!_ )m) 
f[n]*(u(n+ N) -u(n- N)) H f(m) 2 

sin(m) 
2 

Equation 12: Averaging in frequency domain 

Averaging simply attenuates the higher frequencies of the signal. The function can also 

be constructed via the following formula [17-18]: 

1 +7! 

g( n) =- J G( eim)eira dm 
21C 

-1! 

Equation 13: Inverse Discrete Time Fourier Transform 

The Discrete Fourier Transform (DFT) was implemented by uniformly sampling 

N discrete points on the spectrum. The basis functions are discrete sinusoids. An 

important fact in performing operations such as convolution, is that the DFT treats x[ n] as 

a periodic function of period N. 

} N-1 . 

D[k] = -L x[n]e- 1knn 

N k=O 

Equation 14: Discrete Fourier Transform 

3.2.1 Z Transform 

When analyzing a discrete system the Z transform is used. The Z transform is 

analogous to the Laplace transform and is defined as: 
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00 

H (z) = L, h[n]z-n 
n = -oo 

Equation 15: Z transform 

The region of convergence for a causal stable system is the interior of the unit circle in 

the z-plane. One important identity is: 

(v(n)) J.. 2 t 2 = ~ (v(n) + (-l)"v(n)) < <-~rasform { ~ Jv(z)+ V(-z)) 

Equation 16: down sampling up sampling Z transform identity 

For completeness, the inverse z transform is defined as follows [19]: 

x [ n] = 

Equation 17:inverse z transform 

3.4 Time Frequency 

Time Frequency analysis deals with the correlation of a signal with a family of 

waveforms that are well concentrated in time and frequency. These waveforms are 

denoted by time- frequency atoms, denoted by the set {;r }rer' where 'Y is an index 

parameter. It is assumed that 11;11 = 1 and (br e L2 (9{) . The linear time frequency 

transform can be defined as: 
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00 

Tf(y) = J f(t)¢J* r(t)dt = (f,¢Jr) 

Equation 18: linear time frequency transform 

The inter-product (f,¢Jr) can be interpreted as a distribution on the time 

frequency plain (t, co). The down side of much of time frequency analysis is that the 

resolution in time decreases with an increase of resolution in frequency and vice versa, as 

illustrated by Heisenberg uncertainty Theorem [ 16]. 

3.4.1 Windowed Fourier Transform 

Gaber introduced the Windowed Fourier Transform in 1946, it consisted of a 

signal correlated with a real symmetric window (g(t)=g(-t)) translated by u and 

modulated by the frequency ~: 

00 

Sf(u,~) = J f(t)g(t -u)e-i9 dt = (f,g"·') 

Equation 19: Windowed Fourier Transform 

With the following condition imposed: llgll = 1 and gu,( &f e L2 (9t) [16-20] . 
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3.4.2 Wavelet Transforms 

Wavelet Transforms offer different time frequency atoms. They decompose the 

signal into basis that are dilated and translated. The Wavelet Transform at time u and 

scales is: 

Wf (u, s) 

Equation 20: Wavelet Transforms 

To measure time evolution of frequency transients complex analytic Wavelets are used. 

In order to detect sharp signal transitions real Wavelets are used [20]. 

The magnitude of the Wavelet Transformer is a distribution referred to as a Scalogram. It 

is helpful in identifying signal characteristics at different points u and s. The energy 

function is defined as the square of the magnitude of the Wavelet Transform: 

I 1
2 

E ( u , s ) = Wf ( u , s ) 

Equation 21: Magnitude of the Wavelet Transform 

The distribution of energy in the Wavelet Transform offers insight to where the energy of 

the signal is located in time and frequency. The peaks of the Wavelet Transform offer a 

view of the temporal evolution of the frequency content of a signal. This is because the 

wavelet has a finite duration unlike the sinusoidal waveforms that make up the Fourier 
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Transforms. Figure 5 shows a sinusoid waveform that decreases in frequency at time 

600. Notice that the Scalogram peaks (wavelet modulus maxima) shifts from 200 to 400 

at about the same time. The phase of the Wavelet Transforms reveal the location of peaks 

in the Scalogram and the location of frequency shifts in time[16],[20]. 

a) Artificial Signal 

': iA A 'A (\ ·~ ~ 'A f\ 'A ~ : 

-O-~ WI-I-~~~~~..,J.....~.....· I-..li-\J -4L\l __,._) --V.L-\l --~~.-\1 ~lf \~l~ \lo!.l---\lJ~i\1 
1 00 200 DJ -400 500 600 700 1000 1100 

c) Phase Continuous Wavelet Transform Complex Gaussian 4th derivative 

20 
Q) 

(i 

t.l40 

60 

Figure 5: a) signal b) magnitude ofCWT c) phase of wavelet transform 

Singularities detection is also an important application in wavelets, the number of 

vanishing moments of a wavelet is key in determining performance in detecting 

singularities. Consider a signal f that contains a singularity. Let the signal f(t) be 

composed of two sub signals: 
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Equation 22: f(t) be composed of two sub signals: 

The first sub signal Pv(t) is m times differentiable in the neighbourhood [v-h,v+h] and 

hence contains no singularities. Taylor expansion of the signal lead to the following 

expression: 

Pv(t)= I f*~v) (t-v)* 
k=O k. 

Equation 23: Taylor expansion of sub signal 

The second part of the signal defined as Ev(t) contains the singularity. If a wavelet 

has n vanishing moments the following condition holds for all values of k: 

00 

J tklj/(t)dt = 0 

O~k~n 

Equation 24: wavelet that contains n vanishing moments 

Therefore, the Wavelet Transform using a wavelet that contains n vanishing 

moments of the signal f(t) is[ 16]: 

Wf ( u , s ) = W E v ( u , s ) 

Equation 25: Wavelet Transform of a singularities 

It can be shown analytically that the singularities can be detected by finding the 

abscissa where the wavelet modulus maxima converge at a finite scale [16]. This property 

is demonstrated in Figure 6. Notice that as the scale of the transform increases the energy 
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becomes more dispersed. The following is an example of a wavelet with vanishing 

moments, known as the Complex Gaussian wavelet. The Cp term is a polynomial, pis the 

order [16],[20]: 

Equation 26: Complex Gaussian 

a) Delta function . . 

0.5 -

0~--~·--~·~--~·--~·------·---·------·--~·----~·--~·--~ 
1 00 200 300 400 500 600 700 800 900 1 000 11 DO 

b) Magnitude of Continuous Wavelet Transform Complex Gaussian 4th derivative 

20 

Q) 40 co 
(.) 

(J1 

60 

80 

1 00 200 300 400 500 600 700 800 900 1 000 11 00 

Figure 6 :a)delta function b) the magnitude of is wavelet transform 

Discrete Wavelets are similar to continuous Wavelets, but the scale a and the 

location parameter b are measured in discrete intervals. The Wavelet used must be 

Orthogonal in translation on itself and in dilation, the Discrete Wavelet is defined as: 
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where ~ c L2 (9\) and f e L2 (9\) , the functions l/Jj ,n is known as the scaling 

function and forms an orthonormal basis for the space Vj , although there are many 

important properties of the subspace vj one of the most important is, vj c vj-1 . This 

means that any function in the subspace Vj can be written in terms of a linear 

combination of the function in the subspace Vj_1 • If we assume that Vo is the finest 

resolution we can construct a function in ~ as follows: 

1 t ~ . (1 t ) ~¢'(-) = L.th[n]¢J(t-n) wtth h[n] = ~¢J(-)¢J(t-n) 
~2 2 ~- ~2 2 

Equation 31: definition of scaling function filter 

It is helpful to think of the set of functions Vj_1 as "skinny function" and the set of 

functions Vj as their "fat cousin function". The actual wavelet functions also have a 

subspace associated with them denoted by Wj with its own projection operator Pw
1 

: 

Pw
1

/ = fb}n]~j.n with b}n] = j f(t)<{Jj,ndt 
n=-

Equation 32: projection of function onto wavelet subspace and projection operator 

Equation 33: wavelet 

An important property is ~ c Vj_1 , which is used similarly to the scaling function to 

define the following property. 
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1 t ~ (1 t ) ~qJ{-) = ~g[n]~(t-n) where g[n] = ~qJ(-)~(t-n) 
v2 2 n=-oo v2 2 

Equation 34: definition of wavelet of filter 

If g(m) = e-imh(m+ 1r) it can be shown that the wavelets and the scaling functions can 

form an orthogonal basis of vj-1" 

Haar Wavelet 
1.5 

J 
0 

-Q.5 

-1 

-1.5 
0 0.2 0.4 0.6 0.8 1.2 1.4 

Figure 9: Haar Wavelet 

The relationship between the wavelet and scaling function is important because it 

allows you to obtain the projection on the subspace Vj and ~ only with the projection 

on Vj_1 • One can obtain aj+1[n] known as the approximation coefficients and bj+1[n] 

known as the detail coefficients with just a} n] . A simple derivation to show that b1 [ n], 

a1[n] can be obtained froma0[n] is quite insightful, the detail coefficientsb1[n] are 

defined as: 

1 Joo (- 2k 
bl[k] = ,-;:- f(t)qJ(--)dt 

v2 -oo 2 
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Equation 35: first detail coefficients 

because ~ c Vo it may be written in a series expansion of the scaling function at a larger 

resolution : 

1 f- 2k ~ { 
00f 1 U - 2k f ~ cp(--) = £.J t/J(u- n) ~ cp( )du (t- n) 

v2 2 n--oo v2 2 - -oo x=u-2n 

oo{
00 

1 L 00 

= ~ lf)(x- (n- 2k)) .J2 qJ(~) Jf)(t- n) = ."fg(n- 2kytJ(t- n) 

b1[k] = J f(t) !g(n-2k)¢J(t-n)dt = !g(n-2k) J f(t)f/J(t-n)dt = !g(n-2k)a0[n] 
n=-oo k=-oo k=-oo 

[20] 

A similar relationship holds for the scaling function 

1 f t-2k a1[k] = r;::- f(t)t/J(--)dt 
v2 2 

Equation 36: approximation coefficients second iteration 

because V. c Vo the scaling function can be written as a linear combination of the scaling 

function of the smaller scaling. The weight is simply the inner product 

1 f - 2k ~ { foo 1 U - 2k f 
~ t/J(--) = £.J t/J(u- n) ~ t/J( )du (t- n) 

v2 2 n=-oo -oo v2 2 
x=u-2n 

= .~{lf)(x- (n- 2k)) ~ f)(~+xf)(t- n) = .~h(n -2kY(J(t- n) 

Now by inserting into the above a 1 [k] 
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a1[k] = J f(t) fh(n-2k)¢J(t-n)dt = fh(n-2k) J f(t)l/J(t-n)dt = fh(n-2k)a0[n] 
n=-oo n=-oo n=-oo 

a0 [n] can be approximated by the samples of the signal. Figure 7 shows how to obtain 

b1 [ n] , a1 [ n] , which can be implemented in hardware or software by simply convoluting 

with the filter h[ n] and g[ n] and down sampling the results. The process can be repeated 

An important property of this associated subspace is that vj-] = vj E9 wj . This 

implies that the scaling function and wavelet at resolution j spans the subspace by the 

scaling function j-1, symbolically: 

~~foo 1 u-2k 11 ( ~-2k). ~~foo 1 u-2k 1( 1 -~-2k) (ft/i._u-n))=-vL. t/i.._u-n)-¢1.:_-)du- /({A..--) +V2 t/i._u-n)-(/i.:-)du f-cp.._--) 
' k -oo J2 2 J2 ' 2 k -oo J2 2 'J2 2 

a j [n] = Lh(n- 2k)a j+I [k] + Lg(n- 2k)bj+I [k] 
k k 

a0[n] can be obtained by putting zeros between each sample ofb1[k], a1[k] convolving 

the resulting signals with the filters h[n] and g[n]. 

A[nl 

Figure 10: filter banks 
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The output after up sampling and filtering is referred to as the Averages Aj[n] and 

Difference Dj[ n]. The averages contain the low frequency components of the signal and 

the difference contains the high frequency components of the signal. One can also 

construct wavelets by using the proceeding filter banks relationship. Using the Z 

transform the following relationship can be obtained [23]: 

H(z)H(z)+G(z)G(z) = 2z-1 

- -
H(-z)H(z)+G(-z)G(z) = 0 

Most scaling and wavelet functions are not useable for many applications as they 

are not smooth or they have poor frequency resolution and the filters do not have a finite 

impulse response causing phase distortion, so most practical wavelets are Biorthognal. 

In many cases there is no close analytical expression for the wavelet or scaling 

function, but one can express them in terms of the filters [16],[21]: 
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Scaling function (time or space) Wavelet function (time or space) 

Approximations of the scaling 116lction db2 for 1 to 5 ~erations Approximations of the V\11\elet db2 for 1 to 5 ~erations 
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-1.5 
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Table 2: different wavelets and scaling functions 

One can construct wavelet bases that have vanishing moments. The definition of a 

polynomial of degree k is: 

00 

qk(t) = Lnk¢'(t- n) 
n=-oo 

Equation 37: polynomial of degree k 

For this project Daubechies wavelets are used, for short dBk where k the number of 

vanishing moments, hence the projection of q2(t) on the db2 wavelet should be 0 and 

the projection of q3(t) on the db2 wavelet should not be 0 [16]. 
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3.4 Non-Linear Filters for Low frequency Signal Segmentation 

Treating the samples of a signal like an array, vector and matrix operations can be 

used to gain valuable insight into many signal characteristics. Consider a vector of 

dimension N defined by: 

x = [x(O),x(l), ... ,x(N -l)f 

Equation 38: samples of a signal in vector form 

Each element of the vector consists of one sample of the signal. Consider matrix 

D defined by the following operation: 

x(O)x(O) 

x(l)x(O) 

x(1)x(N -1) 

x(O)x(1) .. 

x(1)x(1) .. 

x(O)x(N -1) 

x(N -1)x(N -1 

Equation 39: matrix D 

The elements of the matrix are specified as: 

Equation 40: elements of the matrix D 

The elements of D around the diagonal represent the cross-correlation between 

samples that occurred relatively close in time. The matrix D provides a helpful visual 
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tool in determining the temporal evolution of the signal statistics. Consider matrix D of 

the accelerometer signal shown in Figure 11, the red areas are where the signal is 

correlated with itself. These areas correspond to areas of instability. 

100 

200 

C\1 300 c 

400 

500 

600 

2 

100 200 

A 

3 
sec 
B 

300 
n1 

4 5 

400 500 

6 

600 

Figure 11: signal m/s2(top) and image of matrix D red are the largest values (bottom) 

These results suggest samples corresponding to periods of instability are closely 

correlated in an interval. A running average value of matrix D in a square area 

(2K + 1 )x(2K + 1) should provide a measure of signal instability. Rather than calculating 

the products and then summing the elements of sub-matrix D, it can be readily shown that 

the following two expressions are identical: 
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( 
1 )2 

n+K n+K 

s,(n) = 2K + 1 .,~K .,~:(n,,n,) 

= (( 
1 

)tx(n+k)J

2 

2K +1 'k=-K 

Identity l:sub-matrix summing 

A derivation of this identity is given below: 

n+K n+K n+K n+K n+K n+K 

s(n) = L Ld(n.,n2 ) = L Lx(n.)x(n2 ) = L x(n1) Lx(nJ 
n1=n-K n2 =n-K n1=n-K n2 =n-K n1=n-K n2 =n-K 

= ( ( x( n - K) + .. + x( n) + .. + x( n + K) )( ( x( n - K) + .. + x( n) + .. + x( n + K)) 

= ( ( x( n - K) + .. + x( n) + .. + x( n + K) )2 

=(kt/(n+k) J 
Short durations of positive and negative activity corresponding to high 

frequencies cancel out. Increasing the exponent from m=2 improves the results, thus 

leading to the following: 

sm(n) = (( 
1 

J±x(n +k)Jm 
2K +1 'k=-K 

Equation 41:non-linear averaging fdter 

When m equals one, the new signal is simply a uniform discrete average. If the 

modulus of the argument in equation 40 is less than one, then sm(n) approaches zero 

exponentially. Similarly, if the value of the modulus is larger than one, the output 

approach infinity as m approaches infinity. Therefore, scaling of the signal may be 
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necessary depending on the type of implementation. Figure 12 shows the output of 

different values ofm, the 2K+l term was dropped out of the equation. 

When m equals one, the new signal is simply a uniform discrete average. The 

figure below shows the new signal of different values of m. if m is even, the new signal 

will be positive. 

a)Y-component subject 2 
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=B;g -en -E 
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b)New Signal m=1 
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""'"- 5 
E 0 

1 2 3 4 5 6 
Samples 

Figure 12: output of non-linear filter for different values of m for subject 2 

The unstable regions have relatively larger amplitudes and the signal is 

considerably smoother. This new signal will make segmentation much simpler by 

amplifying the desirable characteristics and attenuating undesirable characteristics, this 

can be quantified with time domain analysis and transform domain analysis. For 
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implementation the averaging interval we be denoted by K and the interval will be 

causal. 

The generation of the larger amplitudes can be quantified with time domain 

analysis. Consider a causal implantation on the following signal: 

sm(n) =(~(AO(n-a+k)+ BO(n-b+k)) J 
Equation 42: delta function input to non-linear filter 

Where the delta function at point-a represents an event of interest of amplitude A 

and the delta function at point-b represents another event with amplitude B, as long as 

K +a >b, the new signal will equal: 

sm(n) = Am(u(n -a+ K) -u(n-a))+ Bm(u(n-b+ K)-u(n-b)) 

Equation 43: response of delta function to non-linear filter 

The above formula demonstrates that the amplitude of the new signal is related to 

m and that two delta functions must be K + 1 samples apart to be distinguished. The 

signal output is shown along with the output equation. 

sm(n) = ( ~(20(n-4+k) +30(n -8 + k)) J = 2m(u(n- 2) -u(n-4))+3m(u(n -6) -u(n- 8)) 

Equation 44:example of response of non-linear filter to a delta function 
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Figure 13: output of new filter for different values of m 

This difference is related to the frequency of the signal. Consider the following signals: 

y(n) =sin( !E..n)(u(n- 20)- u(n- 40)) + 15 cos( 7r n) 
10 3 

Equation 45: signal composed of two sine waves 

The high-frequency component has 15 times the amplitude of the low-frequency 

component. This has a masking effect which makes it difficult to detect the peaks in the 

lower frequency range in y(n). After applying the new filter shown in Figure 16, the 

peaks comprised of the low frequencies become more and more apparent as m increases. 

This suggests that the filter's frequency characteristics are not only associated with the 
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averaging interva12K+l but with the exponent parameter m. Fourier analysis illuminates 

the process: 

sin(r(10 n) (u(n-20)-u(n-40)) 

<( 0 

-1 
10 20 30 40 50 60 

n 

15cos((r(3) n) 

IIl _:~[ 
__l__ __ _L__ ~-= 10 20 30 40 50 60 

n 

y(n) 

10 

(.) 0 

-10 

10 20 30 40 50 60 

Figure 14a) low frequency part of signal y(n) b) high frequency component of signal y(n) c) y(n) 
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Figure 15 a)s1(n) for signal y(n) and b) s2(n) for signal y(n) c) s10(n) for signal y(n) K=3 
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The discrete-time Fourier transform (DTFT) ofs1(n) is [16]: 

3{s,(n)}=5;(0J)= .~(( U: +l ~x(n+k) }-j"' 
=(-1-lY(m) sin((K +0.5)m) 

2K+lr s~~) 

Equation 46: discrete-time Fourier transform of St(n) 

As K increases, the width of the main lobe of the spectrum decreases thus 

filtering out higher frequencies. Therefore, the ability to attenuate lower frequencies is 

determined by the value of 2K + 1 the order of the filter. As the value of m goes to 

infinity, the DTFT for the new filter (with respect ton) converges to: 

Equation 47: discrete-time Fourier transform of sm(n), for large values of m 

Equation 48: normalization constant 

S(m) = s. (m) 
c 

Equation 49:normalized spectrum 

1r 

1-Ls = J mS(m)dm 
-Tr 

Equation SO:mean of spectrum 
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1C 

a 2s = f<m-JLs) 2S(m)dm 
-1C 

Equation Sl:variance of function 

The derivation is 46 given below: 

a 
Let n= 1 

"'mas 

a c m tr" j-a 

( J ( 
w Jm 

sm rmu, = ( 211" ) J. S(w)e rma. dw 

Taylor series expansion of exp(u) gives: 

• 1C £, L S ( m)( m-Jl, )dm= 0 

( 
a ]-(CJm( a2Jm jJ!~. a s -- 1-- e 

m rma 27! 2m 
s 
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m~oo( C )m -a2 j mJ.L, a 
= 2K e-2 e Tma. [23] 

s (n) = - e 2 ejmj.L, n 
( 

C )m -n
2
ma; 

m 2K 

Now consider Sm(~) to be a continuous, complex-valued function of se 9t 

The Fourier transform then becomes: 

The discrete-time Fourier transform becomes: 

m 
00 

-((l)-mJJs-2nif 

S ( ) C 1 L 2m0'2 (J)- e s 

m - (2 )m-1 ~ 2 1r 210n a I=-«> s 

The equation shows that three parameters affect the spectrum: the variance, mean 

and the value of m. The mean and variance are related to the signal and the averaging 

window. If the signal is composed of higher frequencies, the mean will be larger and if 
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the signal is composed of a large range of frequencies, the variance will be larger. 

Assuming that the majority of the single energy is concentrated in the lower part of the 

spectrum, the size of window 2K + 1 will be inversely proportional to mean and variance. 

A small variance ensures that the effects of spectral overlap are small. The equation also 

shows that the spectral characteristics are not only determined by the order of the 

difference equation but by the parameter m. This is shown below with several signals, 

the closed form expression for the mean is derived in appendix 2. 

1! 1! 
z1 (t) = cos(-t2

) ~ m. (t) = -t 
500 250 

Equation 52:chirp function 
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Figure 16:a) z1(n) b) s4(n) of z1 (n) for K=4 c) s30(n) of z1 (n) for K=4 
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Figure 17:a) Z1 (ro), b) S6(ro) of Z1 (ro) with for K=4 c) S30(ro) of Z1 (ro) with K=4 

Figure 18 shows a unit step function corrupted with additive Gaussian noise with power 

0.5 dB symbolically represented as z2(n). Examining Figures 18( c) and 18( d), as m 

increases the amplitude of the step function increases while the noise is attenuated. The 

output also appears sharper as m increases and Figure 19 shows the spectrum for 

increasing values of m. It is evident spectrum tends to be of Gaussian shape. 
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Figure 19: spectrum of signal for different values of m, it is evident that as m increases the spectrum 
approaches a Gaussian shape a) Zz (m) the DTFT of the original signal, b) S6(m) with K=4 Zz (m) 
for K=4 c) S30(m) of Zz (m) with K=4 

As m gets larger, the spectrum of the signal approaches a Gaussian shape. This 

means that most of the energy is centralized in the lower frequencies and thus accounting 

44 



for the relative increase in the amplitude in those locations. Also, the width of the 

spectrum is proportional to m so that the higher frequencies are attenuated and the sharp 

jumps created by a broad frequency range are preserved. 

3.5 Vector processing 

The accelerometer signal can be treated as a time dependent series of three-

dimensional vectors. Each component of the vector represents the acceleration in a 

particular direction. This is denoted by: 

r(n) = [x(n),y(n),z(n)Y 

Equation 53: time varying vector 

Vector processing has been used in image processing and has several advantages, 

it does not disregard the correlation between vector components, a variety of vector filters 

can be created, and results tend to be better than normal methods [24]. 

Spherical coordinates are commonly used in describing three-dimensional 

tracking. The coordinate system is shown below [25]: 
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Figure 20: relationship between Cartesian coordinates and spherical coordinates system, bold arrows 
indicate new unit vectors 

Calculating the accelerometer in not important but using many of the parameters is useful 

in segmenting the signal. The magnitude of the vector may be used: 

Equation 54:magnitude of time varying vector 

The angle from the z-axis to the xy plane may also be used this angle reflects the pitch: 

( -~(~x(n)2 + y(n)2 J ¢J n) =tan 
z(n) 

Equation 55: angle from the z-axis to the xy plane 

3.6 Algorithms 

Three algorithms were created to detect periods of instability. These algorithms 

used the continuous wavelet transform. 
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Stable periods of the signal are characterized by small amplitude motions and 

sharp sudden movements. Unstable periods are characterized by large amplitudes, long 

motions littered with sharp transitions caused by the subject suddenly shifting. 

Sometimes these had extremely short periods of instability. The movements of the 

subject manifest themselves on the balance board accelerometer: stable periods as a low 

amplitude high frequency signal, unstable periods as a low frequency signal littered with 

sharp discontinuities and short periods of instability consisted of sharp almost 

discontinuous high amplitude motion. The algorithms were developed to adjust for these 

changes. 

3.6.1 Time frequency Based Algorithm 

Analysis with Windowed Fourier Transform also proved difficult, although the 

difference between stability and instability was evident. On inspection, there were many 

practical issues, such as the window edges which interfered with the segmentation 

algorithm and too much energy was located at the lower frequencies. Also the signal was 

not stationary for a constant period of time; this would have to be taken into account 

when choosing a window size because the signal must be stationary in a given window. 

The high frequency motions of the stable portions of the signal appeared in the 

low scales of the Scalogram. Periods of instability were evident in all scales; longer 

periods of instability had the majority of the energy distributed in the lower scales. For 

analysis purposes the scales of the transform that provided the best results were used for 
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the subjects tested. Analytic wavelets proved more accurate in detecting long periods of 

dynamic activity, the phase proved useful in finding short periods of instability. 

The complex Gaussian and the Morlet wavelet were tested. The Morlet wavelet 

was used because it could detect changes in frequency and the Gaussian was used 

because of its ability to detect discontinuities. The Gaussian was used at the end because 

the Scalogram was smoother. Changing the number of vanishing movements did affect 

the characteristics of the Scalogram but not the segmentation period. 
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Figure 21: a) accelerometer signal y component b) Magnitude of CWT Gaussian 
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Figure 22: a) accelerometer signal y component b) Magnitude of CWT Morlet 

Multiresolution analysis had mixed results. It was apparent by examining the 

distribution of wavelet coefficients that the signal was unstable, but areas of sharp 

transitions in the signal that were not associated with unstable periods had a similar 

distribution. This is shown in Figure 23 where the unstable period between samples 1 00 

and 150 had a similar distribution to that of sharp peaks between samples 230 and 250. 

The average of the signal was also very smooth, making it easier to use algorithms based 

on derivatives, but the amplitude of the peaks of stable periods was attenuated. 

Preliminary segmentation was not very successful so algorithm development focused on 

complex CWT. 
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Figure 23: Accelerometer Signal y component (top) and wavelet coefficients (bottom) 

In order to segment periods of dynamic balance an algorithm with adjustable 

parameters was used to identify stable and unstable states, let Lo represent the segmented 

periods level zeros. Level one (Lt) and level two (L2) were more accurate but had a 

greater chance of missing periods of instability. All three levels used a numerical 

approximation of the wavelet transform from one component of acceleration of the 

accelerometer signal, the range of scales were chosen to coincide with those scales 

associated with instability. 

For level one segmentation a new signal f(u) (in reality it's a discrete signal 

f(nu))was created. Each point in f(u) consisted of the maximum magnitude value of 

scale with respect to the point u. 
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Figure 24: f(u) red super imposed over signal normalized amplitude 

After f(u) was obtained a simple threshold value of mean of f(u) plus the 

variance of f(u) was used to indicate when to begin the segmentation process. This 

segment region will be written symbolically as So. The segmenting would stop when the 

first local maximum of f(u) fell below the threshold value. This method did have 

drawbacks. If the subject was always unstable, the method would only classify unstable 

regions with the most intensity. Also if ratio of amplitudes of unstable regions to stable 

regions was too low the algorithm would misclassify periods of the signal. Adding the 

variance to the mean did make the segmenting more accurate. 
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Figure 25 a) normalized segmented period where red has a amplitude of one super imposed over 
signal b) magnitude of CWT 

Figure 25 shows the segmented period and the corresponding Scalogram. The 

periods of instability corresponding 500 to 600 have been segmented, but the short period 

of instability from 105 to 130 has not been segmented. In order to segment these periods 

of short periods of instability the phase of the Wavelet transform was used. 

The phase of the WT provides information about the peak. Values of 3.14 specify 

a peak at that particular time and scale, because sharp signal transitions are composed of 

all frequencies they show up as peak at all scales. Depending on the signal factors that 

affected the threshold the short periods of instability may not have had enough energy to 
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be manifested in the Scalogram in a range that could be detected using the Ievel-l 

segmentation algorithm. 

In order to segment the peaks that were missed by the level one segmenting a new 

parameter was added. If the phase was 3 .14 for all scales in those ranges that period 

would be segmented. Figure 26 demonstrates this process. The green lines on the phase 

plot represent the start and end of points of zero phase. Below the corresponding 

segmented portions this segment region will be written symbolically as St.The yellow 

regions are also sharp jumps in the signal but did not correspond to any signal activity. 
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Figure 26 :phase of CWT with different segmented period super imposed (top) signal with different 
segmented period super imposed (bottom ) 
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Figure 25 a) normalized segmented period where red has a amplitude of one super imposed over 
signal b) magnitude of CWT 

Figure 25 shows the segmented period and the corresponding Scalogram. The 

periods of instability corresponding 500 to 600 have been segmented, but the short period 

of instability from 105 to 130 has not been segmented. In order to segment these periods 

of short periods of instability the phase of the Wavelet transform was used. 

The phase of the WT provides information about the peak. Values of 3.14 specify 

a peak at that particular time and scale, because sharp signal transitions are composed of 

all frequencies they show up as peak at all scales. Depending on the signal factors that 

affected the threshold the short periods of instability may not have had enough energy to 
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The phase method works well for short periods of instability and offers excellent 

time localization, but for longer periods of instability the method failed. The failure may 

be because when peaks are close in duration the phase exhibits strange patterns, the final 

segmentation periods were: Segmented period using phase 

Wavelet 
Transform 

----+ 

Segment 
Periods using 
Phase S1 

f(u) is obtain threshold 
from the value off(u) 
maximum r---+ mean using ---+ 
magnitude of plus the 
CWT variance f( u) 

Segment 
Periods using 
Phase S1 

Figure 27: time frequency flow chart 
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Figure 28: different segmentation periods of time frequency algorithms 

3.6.2 Non-Linear Averaging Filters Algorithm 

L3 

Lt 

L2 

The segmentation algorithm for the Non-Linear Averaging filter used a simple threshold 

value to segment the signal. A new signal was created using three components from the 

accelerator. This new signal was filtered via the Non-linear averaging filter. The 
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Chapter 4 

4.0 Results and Discussion 

All three components of the accelerometer signal were sampled at 1 00 Hz and 

loaded on to Lab View, the algorithms were developed and tested in Matlab. Five 

subjects took part in the study. 

The diagnostic accuracy was used as the main performance measure of the 

segmentation algorithms. In order to maximize diagnostic accuracy both sensitivity and 

specificity had to be maximized. The stable and unstable periods were segmented 

manually and the algorithms were tested. These parameters are defined below: 

Variable Value 

a Number of samples classified as unstable 
and that where designated as unstable 

b Number of samples classified as unstable 
and that where designated stable 

c Number of samples classified as stable and 
that where designated stable 

b Number of samples classified as stable and 
that where designated unstable 

Table 3: test parameters 
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Parameter Value 

Sensitivity a --
a+c 

Specificity d --
b+d 

Diagnostic Accuracy a+d 

a+b+c+d 

Positive Predictive Value a 
--
a+b 

Negative Predictive Value d --
c+d 

Prevalence a+c 

a+b+c+d 

Table 4: Values of Sensitivity, Specificity, Diagnostic Accuracy, Positive Predictive Value, Negative 
Predictive Value and Prevalence 

4.1 Results of Time Frequency Algorithm 

Looking at the Results for the three different segmentation algorithms using 

contuse wavelets transforms, the Complex Gaussian was used because it had the best 

results. 

The results suggest that simply using the magnitude of CWT maxtmtses 

diagnostic accuracy. This suggests that the signal ts discontinues during periods of 

instability. Multiresolution results were not included. 
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Period 

Lo 

Lt 

L2 

Positive Negative 
Diagnostic Predictive Predictive 

Sensitivity Specificity Accuracy Value Value 

0.691 0.931 0.810 0.891 0.757 

0.615 0.662 0.653 0.665 0.624 

0.191 0.838 0.491 0.423 0.505 

Table 5 mean value of different time frequency algorithms for five individuals 

Mean Value Time Frequency 

1 ~--~~---------=~~------~--------~ 
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Figure 31:mean value of different time frequency algorithms for five individuals 

4.2 Results of Non-Linear Averaging Filters Algorithm 

The optimal values of M was 4, the optimal threshold value was 0.1 and the 

optimal value of2K+1 was 9. These values for each subject are shown below. 
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L=9 Positive Negative 
M=4 Diagnostic Predictive Predictive 
Th=0.1 Sensitivity Specificity Accuracy Value Value Prevalence 
Subject 0.900 0.853 0.875 0.839 0.909 0.460 
1 
Subject 0.791 0.956 0.913 0.864 0.928 0.261 
2 
Subject 0.639 0.884 0.757 0.856 0.695 0.518 
3 
Subject 0.625 0.923 0.762 0.906 0.677 0.540 
4 
Subject 0.798 0.988 0.871 0.991 0.754 0.615 
5 
mean 0.751 0.921 0.836 0.891 0.79279405 0.479 

Table 6 best trial of non-linear filter algorithm 

Positive Negative 
Diagnostic Predictive Predictive 

K' Sensitivity Specificity Accuracy Value Value Prevalence 
5 0.740 0.926 0.829 0.890 0.79 0.479 
6 0.708 0.929 0.818 0.891 0.778 0.479 
7 0.724 0.931 0.826 0.895 0.791 0.479 
8 0.724 0.929 0.825 0.892 0.787 0.479 
9 0.751 0.921 0.836 0.891 0.793 0.479 
10 0.721 0.932 0.825 0.899 0.777 0.479 
11 0.721 0.932 0.824 0.900 0.776 0.479 
12 0.691 0.931 0.810 0.891 0.757 0.479 

Table 7: mean values of trials with different signal parameters 
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Figure 32: mean values of trials with different signal parameters 

These results suggest that the variance of bandwidth is a key parameter in the 

signal segmenting process. Subject two had the most accurate segmentation results, with 

diagnostic accuracy ranging from 0.91 to 0.93, subject three had the least accuracy with 

diagnostic accuracy ranging form 0.65 to 0. 72. 

Figure 34 and Figure 35 show their output of the non-linear filter, the unstable 

areas and the segmented areas. It is evident that each unstable period has a spike of 

amplitude associated with it, the spike are most likely cased by activation of knee and hip 

muscles. The greater the duration between these spikes the more accurate the 

segmentation algorithm. 
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Figure 33: subject 2 a) output of non-linear filter, stable periods in red and segmented periods in 
green b) r(n) 
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Figure 34: subject 3 a) output to non-linear filter, stable periods in red and segmented periods in 
green b) r(n) 
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The raw acceleration signal was corrupted with noise and interference making it 

difficult to formulate a model of the signal. Using the output of the non-linear filter 

could be modeled using simple functions in one second intervals. These are summarized 

and compared below. 

Function How Parameters Affect How Parameters Relate Back 
Segmenting to Balance 

A)e-..wu(n) * K(u(n)-u(n- N)) A.: if the damping parameter l.. 
gets to large the signal decays 

- reflect the ability to become 
to fast and some periods are 

stable, large values my suggest 
missed 

the individual is strong 
N: is small the periods are physical, perceptual and 
missed cognitive abilities 

K :if is to large many unstable - small values imply constant 
periods are missed sudden motion 

N 
-reflect the change of 
acceleration, a small value of N 
means the individual is moving 
rapidly 

B) e-..w sin2 (0n)) A.: if the damping parameter 0 
gets to large the signal decays 

Moving of the arms shifting of to fast and some periods are 
missed, this term is 

trunk may be manifested on the 

proportional to m 
balance board. This my 
reflected in the signal as 

n: large values ofthe oscillations, this suggest that 
modulating term effects the the individual is weak and must 
accuracy, using large values of compensate 
m and K , negate this term 

Table 8: Function used to model output of non-linear filter 
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Figure 35: function A compared to output of non-linear filter s4(n) using subject 2 

0.9 

0.8 
I ;:~lion B A=0.07 ,f.!=1Ti20 ,. 
~--------------------~ -

0.7 -

~ 
0.6 

.!:::! 
"ffi 0.5 
E 
0 z 0.4 

0.3 

0.2 -

0.1 -

0 I 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Seconds 

Figure 36: function B compared to output of non-linear filter s4(n) using subject 3 
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4.3 Inverse Tangent Algorithm 

The results for the Inverse tangent algorithm 

Positive Negative 
Diagnostic Predictive Predictive Preva 

Sensitivity Specificity Accuracy Value Value lence 
Subject 0.794 0.915 0.859 0.888 0.839 0.460 

1 
Subject 0.853 0.940 0.917 0.834 0.948 0.261 

2 
Subject 0.881 0.652 0.771 0.731 0.840 0.518 

3 
Subject 0.717 0.906 0.804 0.9 0.732 0.540 

4 
Subject 0.913 0.928 0.919 0.953 0.869 0.615 

5 
Mean 0.832 0.868 0.854 0.861 0.845 0.479 

Table 9: results for the Inverse tangent algorithm 

The vector results show that changes in the pitch are important in segmenting the 

signal. This manifestation is difficult to analyse without referencing other data, therefore, 

they are discussed more in depth in comparative results. 

4.4 Comparative Results 

The results for the time frequency algorithm that performed best, the non-linear 

averaging filter with optimum parameters and inverse tangent algorithm are set out 

below. positive predictive value, negative predictive value and prevalence were also 

included. 

65 



Time 
Frequency 
Algorithm 
L1 
Non-
Linear 
Averaging 
Filters 
Algorithm 
Inverse 
Tangent 
Algorithm 

Positive Negative 
Diagnostic Predictive Predictive 

Sensitivity Specificity Accuracy Value Value 

0.691 0.931 0.810 0.891 0.757 

0.751 0.921 0.836 0.891 0.793 

0.832 0.868 0.854 0.861 0.845 

Table 10 Comparative Performance of algorithms 

1 -r-----:----........--....-----------, 
0.9 -r----~F~~~~~---:------.:::-1 0.8 -1--~<r----f. =------'-~!::ii21n---"---'----l --.-- Time Frequency 

Algorithm L 1 

Prevalence 
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Figure 37: comparative performance of algorithms 
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The similar performance between each algorithm suggests that the hypothesis is 

correct. The table below demonstrates how each algorithm amplifies the desirable 

characteristics and attenuates the undesirable characteristics. 

Manifestation Interference Discontinuities Frequency Statistical 
Content Content 

Physiological -the muscle -sudden changes -reaction to the -the way the body 

Mechanism and synergy are manifested on perturbations takes harnesses the 

Result responsible for the balance board approximately a muscle groups 
balance cause accelerometer tenth of a second, changes in the 
movement, this is signal as sudden voluntary reaction context of their 
manifested on the changes in time is specific adaptation 
balance apparatus magnitude and approximately a -therefore the 
-this interference direction, due to fifth of a second, statistical content 
makes developing activation of knee this is because of the 
a segmentation and hip muscles- time for the accelerometer 
algorithm Hypothesis is that postural reflex is signal will change 
challenging in these periods the longer than a as a direct 

accelerometer spinal reflex consequence 
signal will become -therefore one 
discontinuous expects the 

frequency content 
of the signal to 
reflect this change 
[13] 

Wavelets -only scales that -wavelets with -only scales that -only scales that 
are correlated with vanishing are correlated with are correlated with 
instability are used moments are used instability are used instability are used 

Non-Linear -samples of -the filter does not -the filter -samples of 

Averaging regions of totally dissipate amplified the regions of 

Filters 
instability are frequencies frequency content instability are 
closely correlate in assorted with associated with the closely correlate in 
a interval this is discontinuities unstable periods a interval this is 
amplified my the amplified my the 
non-linear filter non-linear filter 

Inverse tangent -correlation activation of knee -unknown -correlation 

algorithm between vector and hip muscles between vector 
components form the components 
dissipates noise discontinuous , but amplifies periods 

also case a change of instability 
in pitch 

Table 11: Comparative Performance Table 
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One interesting observation is that non-linear averaging and the angle output from 

the inverse tangent had similar results, this is shown below. The output of the filter 

corresponds to changes in the pitch. Changes in pitch are caused by the force imparted by 

the feet pressing down on the balance apparatus, it is assumed that the activation of knee 

and hip muscles validating the hypothesis. 

Normalized Output 
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Figure 38: non-linear averaging filter (blue )and the angle output from the inverse tangent (red) 
(normalized) 

Building on the models of the signal above the damping parameter and the 

oscillations is key to the signals segmentation process. These may be useful in 

formulating measurable parameters used for diagnosis. These processes are reflected in 
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the time frequency algorithms and vector process algorithms, but it is difficult to 

formulate a model based on these parameters. 
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Chapter 5 

5.0 Conclusion 

It is apparent that as the population ages and becomes prone to injuries due to falls, 

loss of balance must be better understood. This thesis examined the response to 

perturbations on a balance apparatus and developed signal processing algorithms to 

segment periods of instability based on the acceleration vector obtained by an 

accelerometer on a balance apparatus. 

As an individual stands on a balance apparatus in a stable state, the individual 

uses complex muscle synergies, causing the balance apparatus to accelerate. These 

actions cause accelerations that are similar to acceleration patterns exhibited during an 

unstable state. Thus parameters like amplitude, signal energy and bandwidth are difficult 

to establish because the signal characteristics change so much from individual to 

individual, making it difficult to establish parameters to classify unstable states. 

It was established that the signal could be segmented using vanishing moments via 

time frequency analysis from CWT, but using discreet wavelet transforms with vanishing 

moments was not as effective. 

A non-linear averaging filter was also developed to segment the signal that amplified 

the areas of instability; this filter was also tested on generated signals. The behaviour of 

the filter was explained in the frequency domain, but results suggest that there are more 

underlying complex statistical properties. 
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An inverse tangent algorithm was also developed. This algorithm demonstrated that 

the correlation between vector components is important in segmenting the accelerometer 

signal. 

The models formulated suggest that a damping of the signal and the oscillations is 

key in determining the algorithms accuracy. The damping reflects the main process of 

stabilization and the oscillations may be regarded as interference. The next step is to see 

how factors such as age changes this parameter and records the changes of different 

systems of the body during unstable periods. 

The algorithms were tested with five individuals and were found that the Diagnostic 

Accuracy was over 80%. 
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Appendix 1- Least Mean Squares filters 

Adaptive Filters are the practical counterpart to optimum filters, the primary 

mechanism of functionality is reducing the mean squared error of the desired response 

y(n,~) with respect to the input signal x(n,~) . The learning curve is the mean squared 

error average across all realizations and measures the performance of the adaptive filter 

and is defended as 

J ( OJ;n) = E { y( n, () - OJT ( n )~( n, ()} ( A.l.l) 

The value of vector omega must be determined to minimize the learning curve. 

This learning curve can be minimized implicitly, but for practical considerations in is 

done using a search method like Newton Raphson method that determines the valued of 

omega the minimizes mean squared error. 

OJk =mk=I +uVJ(m;n)(A.l.2) 

The gradient in with respect to omega and k is the index of iteration, and u is a 

constant dependent on the particular search method used. Recursive least squares was 

used because the convergence rate is only dependent on the filter order M, and can be 

found by 2M+ 1. The actual search method can be written as: 
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W: = mk=I + R-1x(n)e(n) (A.l.3) 

R is the autocorrelation matrix and e(n) in the error. 

If ~is a delayed version y and the learning curve suddenly diverges after a 

period of steady state operation the signal is no longer stationary. 

It was fond the learning curve of the RLS increased during periods of instability, 

but was much less effective then other methods. Because the learning curve never 

converged the signal was regarded as unstable. 

Accelerometer Data X 
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-Q.1 

100 200 300 400 500 

Learning Cun.e RLS 

I' I 

50 100 150 200 250 300 350 400 450 500 550 

Figure A.l.3 RLS learning curve subject 1 
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Appendix 2-Derivation of Mean 

Jl, = ~ J mX(m)sin([K +~.s]m) dm 
-n sinh-) 

1 J!( ~ ( ) -jon sin([K + 0.5 ]m) d =- m~xne m 
C -n ·~ sin(~) 

00 

L x( n) 1( • ([ ] ) = n=-oo f mstn K +0.5 m e-jondm 

C . (m) -1r Sln l 

00 

L x(n) 1r ejw(K+O.s) _ e-jw(K+0.5) . 
= n=-oo f- m e-1ondm 

c . -j!!!.. 
-1( (1- elw)e 2 

-expanding by geometric series 
00 

Lx(n) 1( 00 

= n=--C f m(ejw<K+t> -e-jmK~-jonLejapdm 
-1( p=O 

=- Lx(n) L-------
21tj oo ( oo ( -1)-n+p+K J 
C n=-- p=O (-n+m+K)(-n+m+K -1) 

this can be solved numerically 
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