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A Locaî-Feedback-Global-Cascade Model 
For Hierarchical Heart Rate Variability In 

Healthy Humans

Xiuzhong Gao, Master of Applied Science in the program of Mechanical Engineering, 

Ryerson University 2004

ABSTRACT

A broad view on Heart Rate Variability (HRV) study is made and the hierarchical 

structure is shown in Local-feedback-Global-Cascade (LFGC) model, whieh is built to 

explore the role of reflex feedback. This feedback, which integrates additive and multiple 

functionalities in multifractal cascade models, functions on the She-Waymire (SW) form 

of the hierarchical structure so that the concept of defect dynamics can be applied to 

LFGC model. The experimental evidence verified the existence of the hierarchical 

structure and showed discrete scale invariance in data supported the additive feedback 

law, which may exist in the cardiovascular system in harmony with this dynamical 

cascade model.
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Chapterl

Introduction

1.1 Introduction of Cardiovascular Regulation

The study of cardiovascular regulation consists of at least two major subfields: the heart 

and its peripheral organs and the dynamics and control of the heart rate. The former 

subject concerns mainly the mechanics of the heart, the vascular systems and the lung.

The latter subject concerns the interaction between the autonomic nervous system with 

the heart, the vascular and respiratory systems as well as their integration in the higher 

control centers in the brain stem. Hence, the heart rate fluctuation describes one of the 

most complex phenomena in nature. In particular, it characterizes the system behavior of 

the whole body and cannot be related to just one single set of organ functionalities. Given 

the vast body of literature on this subject, the scope of this introduction will be focused 

on the basic elements in the regulation of the heart rate.

The main objectives of cardiovascular regulation are to provide rapid transport of oxygen 

and nutrients, as well as to take away heat and metabolic wastes around the body. It relies 

on many “sensors” and “actuators” distributed in the body to achieve coordination of 

heart rate, blood circulation and respiration in order to perform the complicated task of 

cardiovascular regulation. The sensor inputs, or more commonly known as the afferent
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inputs, are derived from the so-called receptor sites in various locations of the body. They 

eventually converge at the spinal cord and then travel to the cardiovascular centers at the 

brain stem. After processing such signals via still largely unknown mechanisms, outputs 

or the efferent signals will arrive at the “actuator” sites in the lung, vascular system and 

the heart to perform normal ftmctions of these organs.

At the level of the heart, the efferent signal reaches the heart at the primary pacemaker 

site known as the sino-atiial (SA) node. The sequence of events following the excitation 

of the SA node can be summarized in four stages (Figure 1); the contraction of the a,tria, 

excitation of the atrial-ventricular node located at the wall between atria and ventricles, 

excitation of the Perkinje fibers, and the contraction of the ventricles. The occurrence of 

these events can be measured fi*om the (small) potential difference on the surface of the 

chest. This type of measurement is used to produce what is called the electrocardiogram 

(ECG). The contraction of the ventricles introduces a sharp peak in the ECG time trace 

and its location is designated as the R wave. The time span between the R waves, known 

as the RR interval (RRi), is precisely the inverse of the heart rate (See Figure 1). Mainly 

due to it easy access, RRi has been used as the primary variable for analysis in Heart Rate 

Variability.

The messenger system that is responsible for delivering sensor and actuator signals is the 

highly convoluted autonomic nervous system. When minor disturbance from either an 

internal or external source is present, the vascular system may regulate the blood 

circulation via muscle constriction or dilation. When a disturbance persists and reaches a
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significant level, the regulation must be accompanied by a system response such as 

increasing or decreasing the heart rate.

1%

R R .  i jO L te r v a l
R wave

\« A tr la l  
(  C o n trac tio n

^ s a h o o e X

PR ]

-----,QRS

Figure 1. (a) Heart and R wave, (b) RR interval (RRi).

Although using RRi to assess cardiovascular health is desirable since it is noninvasive, it 

captures nothing but the overall behavior of the cardiovascular dynamical system. It thus 

represents one of the most complex signals known in nature. It is known that a healthy 

cardiovascular system manifests itself in violent fluctuation of RRi. Counterintuitive to 

the conventional belief, heart disease is normally associated with significantly lower RRi 

variability. The purpose and the '. fin of heart rate fluctuation remain largely unknown 

to-date, and they continue to be the subject of interest for clinicians, physiologists, 

physicists and mathematicians.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.2 Heart Rate Variability and Characteristics of 

Ambulatory RR Intervals

Heart rate variability (HRV) is the term used to describe the apparent random fluctuation 

of RRi on a beat-to-beat basis. From the autonomic regulation point of view, HRV is a 

result of the intricate balance between the sympathetic (SNS) and parasympathetic 

nervous systems (PNS), where SNS tends to accelerate tlie heart rate (shorten RRi) and 

PNS tends to decelerate the heart rate (lengthen RRi). Although little is known regarding 

its physiological background, clinical data already show that HRV can provide an 

indirect measure of the health of the cardiovascular system since the mortality rate of 

heart diseased patients has been found to be inversely proportional to the degree of 

HRV. This section will demonstrate the characterization of RRi fluctuation. Following 

the language in statistical physics, this characterization is called HRV phenomenology.

Throughout the entire thesis, r{t) will be used to denote the RRi between the rth and 

( t +1) th heart beats and the RRi increment defined at a given time scale t  is given by:

Af{z) = r{t+ x) — r(t) (1)

A. 1/f Power Spectrum

Given the r(t) , the power spectral density function, G(f) , can be calculated using 

discrete-time fast Fourier transform (DFT):
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where œ is the frequency, j  = V ^ . Numerically, the time series is divided into 

overlapping sections, each of which is first detrended, and then Hanning windowed. The 

magnitude squared of the DFT of the sections are finally averaged to give G{f) up to the 

Nyquist frequency = 0.5.

Kobayoshi and Musha [1] reported the earliest result of power law in HRV. They found 

the power spectrum of r(t) has the following form

(2)

where G is the power spectral density,/is the frequency in either Hz or 1/beat, and p > 0  

is the power law exponent. For healthy subjects, p  was found to be w 1. In general, p  

can vary with physiological or pathological conditions [2, 3]. In particular, p  in heart 

disease is typically larger. In a clinical setting, this finding was used to suggest an inverse 

relationship between the degree of HRV and the health of the cardiovascular system. The 

RRi power spectrum from the daytime, ambulatory, RRi recording of a healthy subject is 

plotted in Figure 1 *. The 1/f-like power law is evident.

' The database used in this section is described in section 2.2.

5
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Figure 2. Power law power spectrum from healthy daytime HRV.

B. Self-similar Fluctuation of RRi

The 1/f-like power spectrum is known as the necessary condition for the property called 

self-similarity or scale invariance. A self-similar process is also called a fractal process. 

This property inaplies long-time memory or correlation in tlie underlying cardiac control 

process and supports the view that HRV is temporally_/racra/ [4].

Mathematically, the notion of a self-similar process x{t) can be formulated as

x(Ar) ^  (3)

where A are an arbitrary constant, H, a parameter known as the Hurst exponent and J

means “equal-in-distribution.” This definition means “patterns” repeat themselves over a 

magnification of scale by a A factor. The same RRi data that was used to generate the

L .
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power spectrum in Figure 2 is plotted in Figure 3. It is possible to qualitatively find the 

self-similarity of this time series. For example, Figure 4 plotted the same time series over 

17600 <t < 18300. It is seen that similar patterns exist in Figures 3 and 4. This is the 

demonstration of self-similarity in HRV. It should he noted quantitative verification of 

self-similarity cannot be achieved by (3) since it is not possible to find the exact 

distribution from numerical data. Generally, one may rely on the statistics derived from 

the distribution. For example, the power spectrum, which characterizes the second order 

statistics of the distribution, is a necessary condition for self-similarity.

Figure 3. RRI data for a typical healthy subject.
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1.72 X 10*t

Figure 4. A segment from figure2 {between vertical lines).

C. Increment Probability Density Function (PDF)

It was found that the increment probability density function (PDF) of healthy RRi 

typically shows the stretch-exponential —> exponential —> Gaussian (SEG) transition as 

the time r increases [5], The same data in previous Figures is used to calculate 

normalized histograms of At(t) fonr=2°,2 '’,2®,2'’ . The results are used to approximate 

the increment PDF plotted in Figure 5. The SEG transition is evident.

§

-2500 -2000 -1500 -1000 -600 2000 2500500 1000 15000

/oAr

L
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Figure 5. The increment PDF /^.(Ar) for a typical RRi data set for r = 2°, 2"̂ , 2®, 
2̂ '' (increasing in arrow direction). All curves are rescaled horizontally and 
vertically by arbitrary factors f ,  and l / / o , respectively, for clarity purpose.

The SEG transition has also been found in the PDF of the velocity increment. It has been 

successfully demonstrated in some turbulence models [6 ] and time series models 

constructed by summing Gaussian variables on the dyadic tree [7].

The transition may be characterized quantitatively by using conventional statistics. In 

what follows, the kurtosis of the increment PDF will be used to characterize the SEG 

transition.

The kurtosis K  is defined as the normalized fourth order central moment: given any 

random variable X with mean /i and variance or ̂

f -  (4)

where N  is the number of samples [8 ]. Although kurtosis has been a classical statistic, 

there is in fact no agreement as to what it can specifically characterize [9]. Some 

reseachers show that kurtosis captures the peakedness and flatness of the PDF and others 

emphasize the dependence of kurtosis on the tail behaviour [1 0 , 1 1 ].

For the purpose of this work, the K  value of the increment PDF is used to compare the 

theoretical values in the SEG transition. Specifically, the kurtosis for normal distribution 

has a value X = 3. A larger K>3  results for distributions which are more outlier-prone 

than the normal distribution. In particular, the kurtosis of the exponential distribution is
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K —9. A. smaller K<3  results for distributions which are less outlier-prone than the 

normal distribution.

The K  value was estimated for Ar(z) at r a n d  their values are plotted in Figure 

6  in logarithmic scales.

3.5

2.5

log2 ( X )

Figure 6. The Kurtosis curve estimated from the increment PDF of a typical RRi 
data set. The theoretical values for exponential & Gaussian K s  are shown as 
horizontal lines at 1oQ2(9)=3.1699 and 1092(8 ) = 1.5850, respectively.

The range of values covered by K  is clearly compatible to the view of SEG transition 

suggested by Figure 5. Furthermore, the existence of a power law relationship was found:

This power law relationship can be explained by the empirical law:

'S,(T) = (|A r(T)r)~f<

(5)

-f(p) (6)

10
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where (•) denotes statistical average and ̂  > 0 is a real number. Equation (6 ) can be 

applied in (4) by letting x = A r(r). Since jj. = (Ar(r)) = 0, the kurtosis becomes

_,ç{4)-2ç(2)

Hence, y = (d )-  2^ (2). More details about the empirical law (6 ) are discussed next.

D. Multifractal HRV

The empirical law (6 ) describes a power law structure function in HRV. This can be 

observed in Figure 7 where 5 i.2(î) of the data used previously is plotted against r  in log- 

log scales. Such a power law is in fact consistent with the definition of a scale invariant 

process (3). However, (3) cannot predict the property of the scaling exponent ^(p). By 

varying p = 0.25, 0.5, ..., 5, (p) can be estimated numerically and is shown in Figure 8 .

It is seen that ^ (p) is nonlinear. This is a typical property for HRV [5]. In the literature, 

a fractal process showing linear ^ (/») is said to exhibit monofractal scaling. In contrast, a 

nonlinear ̂  (p) implies multifractal scaling [5]. The notion of multifractality has been

established in the frameworks o f martingale theory of stochastic processes and large 

deviation theory in probability theory. It is beyond the scope of this thesis to conduct the 

analysis following such rigors. To study and investigate the change of the scaling 

property in HRV, C (p) will be used as a working definition to distinguish m ulti- (a 

nonlinear ^(p)) and monofractality (a linear Ç(p)).

11
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00

log! ( X )

Figure 7. The power law Sp{r). The straight line demonstrates the linear fit of the 
power law.

0.5

0.4

Cl

-.2

0.1

Figure 8. Ç, (p ) curve for the data shown in Figure 6.
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1.3 Heart Rate V ariai, .ty as a Complex Dynamics 

Problem: Turbulence Analogy and 

Phenomenological Models

It was found that the HRV phenomenology is in many ways compatible to those observed 

in fluid turbulence. For example, both systems exhibit power law, SEG transition o f the 

increment PDF and multifractal scaling. This has been known as the turbulence analogy 

of long-term HRV [12]. Following this analogy, it was further found that the HRV 

phenomenology can be effectively captured by using the multiplicative random cascade. 

The purpose of this section is to review two recent HRV models; the stochastic feedback 

model (SFM) and the cascade model. These two models provide a sharp contrast in that 

SFM relies solely on the additive mechanism to generate HRV, whereas cascade relies on 

the multiplicative mechanism. Both models provide the reference for the new model 

proposed in this work.

1.3.1 Stochastic Feedback Model

SFM was introduced by P.C. Ivanov et al. to simulate the 1/f-like power law spectrum in 

HRV [13]. It was the first model that contains elements related to the physiology of the 

cardiovascular system. This particular aspect provides the main contrast to the entire 

phenomenology—based cascade model introduced in the next. Although SFM contains 

certain physiology elements, it missed the very basic component of multiplicative 

mechanism or cascade in HRV.

13
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The SFM assumes a time-dependent “equilibrium state” on which the cardiovascular 

regulation is based. It relies on feedback control to carry out the regulation so that the 

heart rate can return to the equilibrium state. The quantity that is controlled is exactly the 

RRi increment At(t) as introduced in Section 1.2. To relate to the physiology, SFM 

assumes inputs from the SA node activity, Isa, and SNS and PNS activities, /sns and /pns, 

respectively. The RRi increment is determined based on the rule: Ar(T) = Isa + ZsNS + ipNS- 

Hence, the fluctuation is determined entirely by an additive mechanism. Each of the Isa, 

ZsNs, fpNS has its beat-to-beat “equilibrium state” or set-point value denoted as Rsa, .^sns, 

^PNS, respectively. These set-point values are themselves random variables subject to 

some probability laws and correlation. Tire physiological activities Isa, Ism, h m  are thus 

“driven” by the fluctuation of the “equilibrium states.”

The SFM was found to be very effective in capturing the 1/f-like power law spectrum of 

RRi. It also predicts some pathologic states by exploring different combinations of the 

set-point values. However, these “numerical pathologies” are yet to be verified in clinical 

data.

1.3.2 Multiplicative Random Cascade Model

The cascade model was first proposed by D.C. Lin and R.L. Hughson to capture a 

broader range of HRV characteristics [5]. The model consists o f three elements: the 

multiplicative data generation, the probability law for the cascade component and the 

branching rule. Let the cascade RRi between fth and ( t 1) th heart beats be Kj (t) . The

14 L
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HRV cascade assumes T j  ( t )  to be given by the product of J  random variables

= (8 )
M

The cOj it) 's are real-value random processes on discrete times { e N} where

Q)j it)=cOj (fp) ) fortl'''* < t < tlJ^^,j=l, . . . ,J ,k = l ,2 ,  .... The time sets define the

branching structure on which the multiplication is conducted. Let = 4ii ~ 4''^

and^c/y^^ : . To ensure a self-similar r^ (0 , =1>1 is imposed, where À is

the characteristic scale of the cascade. Since A > 1, cOjit) for small j  is referred to as the 

large time scale components, as they fluctuate slowly, and those for large j  as the small 

time scale components, as they fluctuate faster. In this thesis, A = 2 is only considered 

and the resulting cascade is called the dyadic cascade.

The simulation conducted in the past assumed that cOj it) = Hj +wcr^. where t e { } ,

//; = 1, and w is a Gaussian variable with <w> = 0 and <w^> = 1. Assuming independent 

co/tys helps to simplify the analysis and allows one to write down the analytical form of 

certain statistics [12,14,15]. Using a different distribution for (Djit) will not change the 

result presented below. Finally, having cr̂  varying with j  is motivated from the fact that

RRi must be bounded. In addition to the obvious upper bound, RRi is also bounded 

below since the cardiac cells are refractory: namely, there is a finite time period before 

the cell membrane can be repolarized to propagate nerve impulses [16]. To ensure a

15
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bounded r j{ t)  even in the limit J  —> oo, cTj is assumed to be decreasing in j  so cOj (t) 's 

for small 7  are capable of large amplitude fluctuation and those for large j  fluctuate 

mostly around the mean value 1. The implementation of <Xj links the spatial and

temporal scales o f ( t)  in a specific way: namely, the large amplitude fluctuation is 

associated with the large time scale and the small amplitude fluctuation with the small 

time scale. This spatiotemporal condition further relates the large (small) time scale 

components to the low (h i^ )  frequency content r j { t ) . The cascade component with

decaying oj has been called bounded cascade in the literature.

Using cTj =cTo2““ -̂'“'̂  with 0 0  = 2'''^, a =  0.2 and J =  15, the bounded cascade model is

able to capture the phenomenology summarized in SEC. 1.2 very well. The simulation 

result is shown in Figure 9.

1.4 Objectives of Thesis

The main objective of the thesis is to further explore the HRV turbulence analogy by 

considering the hierarchical structure which was recently discovered in fluid turbulence 

[17]. The existence of the hierarchy provides an interesting alternative for the cascade 

construction in HRV. It is o f great interest to explore this alternative since the current 

cascade model contains only a multiplicative mechanism and a biological system is also 

known to operate via feedback regulation which functions in principle on an addition law. 

The objective o f the thesis is to integrate additive and multiplicative laws to simulate the 

HRV phenomenology. The hierarchical structure in turbulence provides the first example

16
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to achieve such integration. In particular, evidence for She-Leveque hierarchy in healthy 

HRV will be presented and the known hierarchy solution will be modified to build the 

new HRV model.

0.5
■2

■3 0.4

-4
0.3

■5

0.2
•6

I)
•7 0.1

■2 1 0 1 2 0 2 3 41 5

Figure 9. Simulated HRV phenomenology, (a) Simulated increment PDF 
logz ( U  (Arj)) versus Arj ai t  -  2 ,̂ 2®, 2''°, 2'^ (increasing in the arrow direction) 
and (b) for p  = 0.2, 0.4... 5. Note that the shown increment PDF’s were 
rescaled as in Figure 4 to give a clearer illustration. A Gaussian profile (solid line) 
was added to show the SEG transition at r =

1.5 Overview of Thesis

This thesis contains five Chapters and two Appendices. Chapter 2 describes the 

application of fluid turbulence hierarchy in HRV. First the hierarchy in the context of 

turbulence is reviewed. Then the idea is applied in HRV. Finally, the empirical evidence 

of the hierarchy in HRV is presented. Chapter 3 describes the detail of the new HRV

17
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model motivated by the existence of the hierarchy. First feedback is introduced into the 

HRV modeling. Then how such additive mechanisms may be integrated into the cascade 

structure is introduced. Finally, the numerical experiments to be carried out by the new 

HRV model are formulated. Numerical results are presented in Chapter 4 where the 

known HRV phenomenology from the model simulation data is examined and that the 

existence of the hierarchy in the model is verified. Conclusion and future works are given 

in Chapter 5.

18
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Chapter 2

The Hierarchical Structure in HRV

In this Chapter, the turbulence analogy of HRV is further exploited and the evidence of a 

hierarchical structure in the ambulatory daytime RRi taken from healthy subjects is 

presented. The hierarchy, first proposed by She and Leveque (SL) to understand the 

statistical properties of turbulent flows [18], provides a successful framework to 

characterize the deficiency of the Kolmogorov’s fluid turbulence theory. In section 2.1, 

the hierarchy in its fluid turbulence context is reviewed. In section 2 .2 , the idea of 

turbulence hierarchy is applied to HRV and the evidence of a HRV hierarchy in the RRi 

from healthy subjects is showed. In section 2.3, the only known cascade solution that 

solves the SL hierarchy exactly is introduced. The HRV model proposed in this research 

is motivated by this solution.

2.1 Introduction to Moment Hierarchy in Turbulence

The SL hierarchy in turbulence implies, over the length scale / ,

= A
p
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where 0  < yS < 1 is a parameter of the hierarchy, A^, a function ofj?, 5"^(z)= Av(/)j^^ ,

the pth order moment of the velocity increment Av(/)=v (/g + /) -  (/q ),

5 '"(/)s  limp_̂ „, Spif) and (•) denotes statistical average. Physically, the

hierarchy captures the law of energy cascade from the large scale to the small scale.

Since 5 “ (/) is dominated by the statistics of large Av(/), it characterizes the most intense 

fluctuation in the turbulence field. Given the scaling law 5^ (/) ~ , the hierarchy

implies the scaling model [18]:

= + (1 0 )

where Ag,C are two other parameters of the hierarchy.

Substituting (10) in to (9) and using 5"̂  (/) ~ can verify the scaling model and bring

further interpretations of the other parameters. Specifically, the ratios of the structure 

functions can now be given by:

Substituting (11) and (12) into (9) shows that the hierarchy can be established if  and only 

if  5’” (/) =/^'“. Hence, is the scaling exponent for the most intense fluctuation in the

turbulence field. In fluid turbulence, the parameter C measures the codimension of the 

physical space which is occupied by the flow showing the most intense fluctuation [18].

20
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It thus quantifies the size of the nei^boring space surrounding the most intense structure 

in the turbulence flow. In isotropic turbulence, a one-dimensional vortex has been 

suggested to represent such a violent structure. Hence, the corresponding C parameter 

equals 3 - 1 = 2 .  Since the equation of motion of cardiovascular dynamical system has 

not yet been written down, it is not possible to give a geometrical meaning to the C 

parameter in HRV. In this thesis, it will only be considered as a codimension parameter.

2.2 Experimental Evidence of She-Leveque Hierarchy 

in Healthy HRV

Based on the turbulence analogy (section 1.3) and the empirically observed ( t )  ~

in HRV, it is reasonable to assume that the hierarchy exists. The purpose of this section is 

to first formulate the hierarchy analysis in HRV and then to present evidence of the 

hierarchy in RRi from healthy subjects.

To apply the turbulence hierarchy to HRV, the following comparison is made: RRi versus 

velocity and the temporal scale ( r  ) versus the spatial scale (/). Hence, by hierarchy, it 

means that the same moment relationship (9) applied to the RRi structure fiinction,

namely, using = ^|Ar(r)|^^ and substituting rfor I in (9).

To check the hierarchy, consider for a pair o f fixed Tj andr^ :

(13)■^p+iFi) A--Ip
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^p+2 (^2 ) ‘5'p+l (^2 )
S - { t J - p (14)

Dividing (14) by (13) yields

p̂+2 (̂2 p̂+\ (̂2 ) P i-p
_ p̂+2 (̂1 V ̂p+l (̂1 ) _ (15)

If (9) holds, then (15), considered as a function of p , describes a power law with the 

scaling exponent given by .

To apply this result, 9 sets o f ambulatory RRi recording taken from healthy subjects 

conducting normal daily activities were used. The actual recording was carried out in 24 

hours in The Cardiovascular and Respiratory Dynamics Laboratory at the Kinesiology 

Department of the University of Waterloo. The participating subjects are volunteers that 

do not have any record of heart problems (mean age: 25, mean height: 174 cm, mean 

weight: 74 kg). A standard 2-lead electrocardiogram (EGG) recording was applied with a 

sampling rate of 1000 Hz. The demonstrations given in Chapter 1 are taken from this 

database.

Define

(p) = k  )! k  ))/(s,(r, )/ S ,  (r, ))

and the power law relationship in (15) is written as

22
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v„,sp*'̂ )~y,,,SpŸ (16)

Equation (16) was used to check the hierarchy as well as to estimate the p. The 

numerical results are summarized in Table 1. It is seen a wide range of p  values 

(0.6-0.9) is covered. The exact implication of the large P variation in physiology terms 

is not clear at this time. Using the typical RRi data in Chapter 1, Figure 10 and Figure 11 

further show consistent p  estimates over different sets of z\ and % (Table 2 and Table 

3), indicating a genuine hierarchical structure in healthy HRV.

Table 1. Numerical Results for Hierarchy

No. of Subjects 1 2 3
P Value 0.7480 0.8522 0.7555

No. of Subjects 4 5 6

3 Value 0.8016 0.8748 0.6543
No. of Subjects 7 8 9

3  Value 0.7724 0.8418 0.7305
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Figure 10. The plot of + 1) versus on base 2 log-log scales from
a typical RRi data set forp  = 0.25, 0.5, ..., 5. The solid line is the connecting line 
between data points and the dash line is the fitting line. See Table 2 for other 
parameters.

Table 2. /3 values for different and

r ,= 2 \r2 = 2 ^ ,y g = 0 .6 4 0 6 6 z- ,=2’ , z-2=2’°,/?=0.64082

T ]= 2 \r2 = 2 '\ /? = 0 .6 3 8 2 4 r,=2% T2=2*,/?=0.60207
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Figure 11. The plot of (/> + !) versus on base 2 log-log scales from
a typical RRi data set forp  = 0.25, 0.5, ..., 5. The solid line is the connecting line 
between data points and the dash line is the fitting line. See Table 3 for other 
parameters.

Table 3. p  values for different i, and

T ,=2\T2=2",)9=0.59887 r ,= 2 \r 2 = 2 \ ) 8 = 0 .6 9 6 6 4
T,=2%T2=2\)9=0.58007 T;=2\T2=2",)g=0.71191
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2.3 The She-Way mire Cascade

The She-Waymire (SW) cascade is an exact solution to the SL hierarchy [17]. The 

philosophy of the SW cascade forms the basis of the HRV model proposed in this thesis. 

In this section, the main ingredients of the SW cascade and its relationship with the SL 

hierarchy will be briefly covered. These ideas in Chapter 3 will be applied to develop the 

HRV model.

SW cascade is similar to the regular cascade but has a different construction of its 

cascade components. Since it has its origin in fluid turbulence, spatial scale / will be used 

again in this section.

The SW cascade assumes, for arbitrary scales /,/„, that the cascade is given by

,y
H 'CO.

\m=l J
(17)

where /3 < 1 is the same parameter used in the SL hierarchy Equation (9) and Tis a 

Poisson random variable. Since0 < yô < 1, the multiplicative of can be considered as a 

modulating event. She and Waymire described this term as “defect dynamics,” since it 

creates the effect of dampening the fluctuation.

Thepûi order moment of Wi, can be written as.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



log \ \ W n  ) = log n ® .
m = L

i+log ( |/î» |)

Using the PDF of the Poisson variable with a density À,

/ rO )  = exp
y'-

(18)

(19)

the moment of log can be found to be

a (/?^ - l )  (20)

based on the following transformation rule between the PDF's of Y  and . Let

X  = . Then, log (X)/log(J3) = Y and there is the relationship between the PDF's_/%(x)

and/yO):

f x  (x) =  f y  (log(x)/logO? ))
vlog(^)y

(21)

Equation (20) can be obtained by substituting (19), (21) into the definition of a moment. 

For SW cascade, the corresponding { } are assumed independent ,and (w,,^ ̂  = 1.

From these two assumptions, the moment of (\a>i...co, Y ) has a scale-dependent power

law relationship:

CO/...CO, (22)
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where y is a constant (Appendix A). Substituting the above and (20) into (18) yields

= Yp\o% + A()8 ^ - 1) (23)

The assumption (w,,^ ̂  = 1 dictates the value of 1  to be

_ ? W V l )
/ ? - l

(24)

Letting X and using (24), (23) can now be written as

log W„ log% (25)

It is now straightforward algebra to show

(26)

Similarly,

(27)

Equations (26) and (27) imply the exact form of SL hierarchy (9)

<  >  =  [<  - (28)

Note that x ~  characterizes the 5 ” (/) in the hierarchy of SW cascade.
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The significance of the SW cascade is that it is the first time SL hierarchy was exactly 

solved. The importance of including the modulating component is evident as it 

contributes to the extra term in (20), which in turn leads to the exact SL hierarchy form in 

(28).

The Poisson assumption may be generalized so long as

r  ) ] = ;  ;9)+ iog(%) (29)

where gip\ P) satisfies the following condition:

giP', P) - giP + P) -  p ’'■ (30)

29
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Chapter 3

The Local-Feedback-Global-Caseade Model

3.1 Motivation

Biological systems normally rely on feedback mechanisms to achieve local regulations 

that can sometimes create system-wide effects. For example, regional increase of the 

mean arterial pressure will be sensed and regulated by the vascular system. When the 

effect of blood pressure increase reaches major barorecepter sites, the effect o f feedback 

regulation may be sent to the cardiovascular centers in the brain stem to bring about a 

slower heart rate.

The feedback action is in principle governed by additive laws. Although cascade is able 

to capture HRV phenomenology very well (section 1.3.2), the additive mechanism is 

completely missing in its construction. The main objective of the model introduced in this 

Chapter is to integrate an additive law as local feedback into the cascade. Such a model is 

called a local-feedback-global-cascade (LFGC) model.

The way the feedback is introduced into the cascade is largely motivated by the empirical 

observation of SL hierarchy (section 2.2) and the philosophy of the SW cascade. In 

particular, the modulating effect in the SW cascade is simulated by using feedback. First, 

the feedback mechanism will be introduced in section 3.2. In Section 3.3, its integration
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with the cascade structure will be described. Finally, the numerical experiments to be 

executed by the LFGC will be given in section 3.4.

3.2 The Local Feedback Law in LFGC

As motivated by the SW cascade, the objective of the feedback in LFGC model is to 

reduce the fluctuation of the cascade component. The novelty of the model is the 

introduction of a scheduling law, which determines the timing of the feedback activation 

for the cascade components. Specifically, the following four assumptions form the basis 

of the feedback control in LFGC model;

A. There exist control set points Vj,j = 1 ,2 ,..., J, for the feedback on the cascade 

component.

B. The control is “one way” based on the a scheduling law: namely, the control applied 

to the cascade component of theyth generation is scheduled by the cascade 

component of the (/ -  l)th generation. Hence, it can be said the control is “directed” 

from the large to the small time scale components.

C. The scheduling law is defined by the branching rule of the cascade: namely, the 

control firom the (/ -  l)th generation to the jûi  generation will take effect only at the

instants when CDj_̂ changes its value.

D. The feedback control is a “mean-field” type position feedback. The objective is to 

bring the cascade component COj closer to the mean value jUj according to

(0  = Mj+'wOj (Fj -  Bj_  ̂) (31)
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where w is a the same Gaussian variable defined in the bounded cascade model 

(Section 1.3.2) and, for t„ = nSj-j, « = 1, 2, ...,

V '  =

It is seen that the feedback quantity, as determined by the parameter, is the average 

of the absolute difference between o /t)  and the control set point Vj . In this work, Vj will 

be set to be close to fij and Vj »  oj. Hence, when there is a large deviation of cOj (t)

from Vj , Bj_  ̂ will be large. As a result, œj {t) after control will tend to its mean value 

fij as the factor (Vj in (31) tends to be smaller.

3 3  Integrating feedback to cascade

The integration of the local feedback into the cascade can be best described by the 

simulation algorithm of the LFGC time series provided in Figure 12. The actual 

implementation is carried out by the numerical package MATLAB [19].

The simulation starts by initializing the parameters J, a j ,H j ,V j , j  ..., J. The

calculation starts at r = 1 and ends some pre-set terminal time t = N. The cascade 

component
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t = t + 1

Yes
Finisht> N

No

No

Yes

Initialize system 
parameter

reset

cOj =/yy+ w-cxj{Vj - Bj_̂ )

At t = 0, assign initiative values for 
the w e i^ ts  cOj {t) = jUj+ w- <jj

Assign CÛJ ( 0 +  w • cjj according
to bounded cascade given in section 
1.3.2

Compute the control instants based 
on assumption (C): =mod(î,<5 .̂_,)

according to {5j = 2 ,  y = 1 ~ J)

Figure 12. Program Flowchart for LFGC model
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COj is updated randomly according to the branching rule introduced in Section 1.3.2. The

feedback control is applied at the instant determined by the scheduling law according to 

(29). The time for control application is determined based on the assumption C in the 

previous Section. In numerical simulation, it can be easily found by using the mod- 

function in MATLAB, i.e. the control is applied whenever mod (ï, 5j_̂  ) = 0

(recall <5̂. =2^'^"''\y= 1,.. .,  J). Figure 13 shows the schematics of the scheduling law.

This process will repeat until the terminal time / = N is reached. Then, the simulated

J
LFGC time series rj(t) is obtained by the product .

7=1

3.4 Numerical Experiments

To study the LFGC model, it was considered as being parameterized by four sets of 

parameters; {Vj, j  = \ ~  J ) ,  {Hj , j  = \ ~ J ) ,  a  andog.

These parameters are varied in the numerical experiment described in this section. For 

each selected set of parameters, 100 LFGC time series were generated and used to form 

the ensemble for studying increment PDF, structure function and hierarchy.

In order to make systematic comparisons, the reference using F) =1 , = \ , a  = 0.2 and

ao = 2"’ ’̂  is defined and is called control case. This set of parameters was found to 

capture HRV phenomenology in healthy state very well; see Section 1.3.2.
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Figure 13. Schematic diagram of Additive feedback in cascade model
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The numerical experiments conducted in this thesis consist in varying the a  and fu 

parameters of the model. For the a  parameter, it is varied in the range of 0.1 to 0.3 with 

increment Aa = 0.025 (a total of 9 cases). The corresponding model set is referred to as 

the a  -group. For the fi parameter, it is varied from 0.4 to 1.6 with increment A/i = 0.2 

(a total of 7 cases) and the corresponding model set is referred to as the fx -group.

The a  -group is designed to study the qualitative change of the scaling property under the 

influence o f the feedback. It can be shown that the multiplicative mechanism turns into 

an additive one as a  increases [5]. This is due to the fact cr̂ . = and cjj 1

for large a  , in which case.

= ~1+ OiW+ O2 W+ ...+ o

by dropping the h i^ e r  order terms. It is thus clear rj {t) is formed by adding random 

variables on the dyadic tree. For small p, it has been found that the structure function is 

scaled by a linear (p) [4, 5]:

■S.W-

This means the a  parameter can induce a qualitative change on the scaling property 

oÎKj (t) . The purpose of studying the a — group is to document the change in scaling 

property under the influence of feedback in LFGC.
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The study of the fj. -group allows us to examine the effect of mismatch between the / i j 's,

the controlled value for the cascade component, and the Vj 's, the control set points by

which the control quantity is determined. The simulation results of these experiments will 

be given in the next Chapter.
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Chapter 4

Simulation Results

In this chapter, the simulation results of the LFGC model described in Chapter 3 v/ill be 

reported. First, the simulation of HRV phenomenology summarized in section 1.2 will be 

shown. Then, evidence o f hierarchy of the SL type will be presented. All computed 

quantities in the a  - and jj. -groups were averaged ftom the ensemble o f 100 sets of 

LFGC generated time series /y {t) of the corresponding parameter setting.

4.1 LFGC phenomenology

In this section, the phenomenology exhibited by the LFGC generated will be presented. 

As shown below, the LFGC phenomenology given in this section is consistent with those 

observed in the real data summarized in section 1.2.

A. 1/f power law

It may be expected that the 1/f-like power spectrum continues to hold in the LFGC 

generated data since self-similarity was built-in by the branching rule o f the cascade. 

Indeed, Figures 14 and 15 show such a 1/flaw in the simulated data taken from thea -  

and fj. -groups respectively. It is seen that a larger a  leads to a larger 1/f spectral 

exponent.
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Figure 14. Power spectrum in the a group of LFGC model. From left to right in 
the first row; a  =0 .1 ,  0.125, 0.15, the second row: a = 0.175, 0.2, 0.225, the 
third row: a  = 0.25, 0,275, 0.3. In each subfigure Abscissa: lcg2( / ) :  Ordinate: 
log2(p); solid line: power spectrum, dash line: fitting line.

A proportional relationship between the a  value and the 1/f spectral exponent is found; 

see Figure 16. But, for the /j. - group, no identifiable relationship between p  and p  is 

indicated (Figure 17).
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Figure 15. Power spectrum in the /j. group of LFGC model. From left to right in 
the first row: /i -  0.4, 0.6, 0.8, the second row// = 1 , 1.2, 1.4, the third row: // = 
1.6. In each subfigure Abscissa: log^( / ) ;  Ordinate: logjCP): solid line: power 
spectrum, dash line: fitting line.
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Figure 16. p versus a  relationship. (Circle: data points, solid line: connecting line 
between data points, errorbar represents one standard deviation)
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Figure 17. p versus p relatk .iship. (Circle: data points, solid line: connecting line 
between data points, errorbar represents one standard deviation)
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B. Self-similarity

Since self-similarity is bnilt-in from the branching rule o f the cascade, the simulated 

LFGC time series Tj (t) and the fragmented part o f it should exhibit self-similarity.

Figures 18 and 19 show a representative case taken from the a  -group with {Vj = 1},

{/ij  = I}, a  = 0.2 and oo = 2'*'^. Figure 19 shows the segment in the rectangular region

of Figure 18. Self-similar patterns can be seen. The 1/f-like power spectrum and the 

property o f self-similarity imply a fractal LFGC time series /y (t) . They suggest more 

details in the scaling o f LFGC generated time series, as investigated in C and D below.

C?

Figure 18. Representative time s e r i e s . Data taken from the a  group with 
{Vj =\},  { ^ j  =X\ ,cc =0 .2 .
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I

Figure 19. Rectangular region in Figure 17.

C. Increment PDF

The simulated LFGC time series Vj (t) were use to calculate its increment according to (1),

Ar}(t) = rj{t + x) - Kj{t). The increment PDF suggests the same SEG transition as

observed in Section 1.2. In what follows, the increment PDF's of the simulated time 

series in a  - and /i -groups at different t  values are shown. Then, the kurtosis is used to 

compare the theoretical values o f the SEG transition.

Figures 20 ~ 24 show the normalized histogram of Ar{x ) for r =2°,  2^, 2®, 2®, 2'^ of the 

control case, the a  -group and p. -group, respectively. In all cases, the SEG transition can 

be observed.
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Figure 20. Increment PDF in the Control case {Vj =1, fij = l , a  = 0.2) (Solid line 
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Figure 21. increment PDF taken from the a  -group with a  =0.1 (Symbol 
designation follows the same as Figure 18.).
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Figure 22. Increment PDF taken from the a -group with a  =0.3 (Symbol 
designation follows the same as Figure 18.).
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0.015•0.006 0.0050 0.01

Arj

Figure 23. Increment PDF taken from the -group with j j . =0.8 (Symbol 
designation follows the same as Figure 18.).
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Figure 24. Increment PDF taken from the -group with /i =1.6 (Symbol 
designation follows the same as Figure 18.).

The kurtosis of the nine cases in the a  -group was estimated. They are plotted on a base 2 

log-log scale and superimposed in Figure 25. Similarly, the seven cases o f the j j . -group 

are shown in Figure 26. Except for a  = 0.1 ~ 0.175 and /i = 0.6 ~ 0.8, all other cases 

exhibit the following two properties: (a) the kurtosis of the increment PDF crosses over 

the theoretical values from exponential to Gaussian distribution as r  increases and (b) the 

kurtosis exhibits a power law relationship with r. The property (a) suggests the SEG 

transition and the property (b) suggests (r) ~ , following the same argument in

Section 1.2.C that the structure function scaling implies K{ x ) ~x ^  and;;- = ^ (4 )-2 ^  (2). 

As shown next, the power law structure function can indeed be found in the LFGC 

generated time series. For the cases which do not show these two characteristics, the 

kurtosis value is bigger than 3 even for the largest rvalue used in the simulation.
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However, the decaying kurtosis curve suggests the transition will eventually take place as 

the approach to the Gaussian distribution to be realized in much larger rvalue. Compared

with the result of the real data (Figure 5), it implies these parameter values cannot be
\

used to simulate healthy HRV phenomenology.

5.5

3. a  = 0.152. a  = 0.125

4. a  = 0.175 5. a  = 0.2 6. a  = 0.225

4.5 7. a  = 0.25 8. a  = 0.275 ^ g 3

3.5

§ 2.5

log2 ( X )

Figure 25. Kurtosis Curves of the a  -group (dash line with circle: control case a 
= 0.2 ; solid line with triangle-right: a =0.1, with diamond: a =0.125, with triangle- 
upward: a =0.15, with square: a =0.175, with triangle-downward: « =0.225, with 
asterisk: a =0.25, with plus: a =0.275, with cross: a = O.3.). The high horizontal 
line is the kurtosis value for exponential distribution and the low horizontal line for 
normal distribution.
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5.5

2. n = 0.6 = 0.8= 0.4

5. n = 1.24.5

&

2.5

Figure 26. Kurtosis Curves of the n -group (solid line with plus: fx -  0.4 , with 
cross: = 0.6 , with square: // = 0.8 , dash line with diamond; ;/=  1 ,, solid line 
with asterisk: =1.2 , with triangle-left: /y =1.4 , with triangle-downward; Ju=^3
.).The high horizontal line is the kurtosis value for exponential distribution and the 
low horizontal line for normal distribution.

D. The Scaling Exponent c ip) of the Structure Function

Given the kurtosis result in C., now it will be confirmed that the structure function of the 

LFGC generated Kj (t) does exhibit a power law scaling
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a

where ( t)  = (\Arj (T)j^\ . This is shown in Figure 27 for a typical Sp{T) taken from the

a  -group.

io

h g 2 (x)

Figure 27. The power law 5^(r) for Time series /y(r) in a simulation for Vj= 1, 
^  =1, a =0.2  .The straight line demonstrates the linear fit of the power law.

Of particular interest in the study of the power law structure function is the dependence 

of the scaling exponent ^ (p) on the a  and p. parameters of the model. To this end, 

thei^ (/?)'s of the 100 samples in each simulation case of the a  -group (9 cases) and p  - 

group (7 cases) were extracted. They formihe ensemble to estimate the mean and 

standard deviation of ^ (p) for the corresponding parameter settings in these model
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groups. The numerical results are summarized in Figure 28 for the a  -group data and 

Figure 29 for the fj -group data.

Two observations can be made regarding the a  -group results: (a) there is less curvature 

in the ^ (^) in small pa s  a  increases and (b) there is a saturation of (p) =1 in all cases 

and the saturation point is located at smaller p  values for larger a  .

The first observation (a) is consistent with the past simulation result where a larger a  

value results in an approximately additive model, which in turns implies a more 

linear ̂  (p) ; see Section 3.3. The second observation (b) is a property of the bounded 

model. This is because the high order moment is dominated by large increments. Due to 

the boundedness of the model, there is a finite cutoff at the tails. This implies 

Sj  p (r) ~ 5p,(r) for/7, p ’> 1, and thus C{p)~C (p') for large p.

For the p  -group results, it is seen that the ^ (p) does not vary too much with p  . This 

implies the mismatch between the control set point and the mean value of a>j is not 

critical for the scaling property to exist.

Figure 30 and Figure 31 show the change of the standard deviation with p  in the a — and 

p  -group, respectively. It is seen that a larger a  ox p  value leads to a smaller standard 

deviation of Çip).
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0.5

a  = 0.25
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0.5

a  = 0.275
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0.5

a  = 0.3

40 2

Figure 28. Cip) in the a group, in each subfigure, abscissa: p; ordinate:  ̂(p) 
Confidence interval for ù, {p) is within its mean plus or minus one standard 
deviation.
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=  0.8= 0.4 (1 = 0.6
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= 1.4
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^  = 1.6

420

Figure 29.  ̂(j?) In the jj group. In each subfigure, abscissa: p; ordinate: ̂  (p) 
Confidence interval for 4 (p) is within its mean plus or minus one standard 
deviation.
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GO 0.08
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0.5 1.5 4.52.5 3.5

Figure 30. Standard deviation of  ̂(p) versus p in a  group (Solid line with plus 
sign; a  =0.1, with circle: a  =0.125, with asterisk: a  =0.15, with cross: a  =0.175, 
with square: a  =0.2, with diamond: a  =0.225, with triangle-downward: a  =0.25, 
with triangle-upward: a  =0.275, with triangle-right: a = O.3.). The standard 
deviation data come from Figure 26.
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4.50.5 3.51.5 2.5

Figure 31. Standard deviation of â,(p) versus p in p group (Solid line with plus 
sign; p = 0.4, with circle: p =0.6, with asterisk; p =0.8, with cross; p = 1, with 
square; p =1.2, with diamond; p =1.4, with triangle-downward; p =1.6.). The 
standard deviation data come from Figure 27.

4.2 Hierarchy

To prove the hierarchical structure in LFGC model, the same approach is followed in 

Section 2.2 by substituting the structure function of the LFGC generated /y (r) into (13) 

and (14); i.e., for a pair o f fixed andz^, consider

^ p + 2  (^ 1  ) A
- ^ P (13)
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l ’È.

^  p+2 ('^2 ) A ^  p+\ )

- .
S ~ ( v J (14)

Then the power law relationship (16) is checked to validate the hierarchy in the LFGC 

generated time series:

+  (IS)

where (p) = ( s , „ ( r J / ( r , ) ) / ( 5 , ( r ,  ) / S^(z , )).

As p  varies from 0.25 to 5, the power law behavior indeed was found when both sides of 

(16) are plotted on a log-log scale; see Figure 32 and Figure 33 for the typical case (V j-  

1, p  =l,û! =0.2). Also, Ti and are varied to check the consistency o f estimate. 

Table 4 and Table 5 show the results o f this calculation. The estimated J3 value is found to 

vary slightly with the t, and Zj parameters, as it should be.

The (5 values of the a  -  and p -  group are summarized in Figures 34 and 35, 

respectively. In both cases, the estimates are made for r, =2^ a n d = 2 '°. Figure 33 

shows that /?is an increasing function of a. This is consistent with the model (10) and the 

Ç{p) results in Section 4.1. For (10), it can be seen that, as /? approaches 1, the 

corresponding ^(p) becomes more linear. In the Ç{p) results, it was found the consistent 

result that a larger a  implies & Ç(p) with less curvature. Figure 35 shows a similar rising 

trend between p and p,.
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Figure 32. Hierarchy line in control case for LFGC model. In figure circles are 
data points, solid line is connecting line between data points and dash line is a 
fitting line. With p = 0.25 ~5 Abscissa: log 2 (K,.r. (p )) :
Ordinate: log + 1)) ■

Table 4. Mean p  values for different t, and

T,=2%T2=2\)9=0.8467 T, =2^7-2 =2% =0.9358
r, =2%T2=2%^=0.8344 r,=2\T2=2'°,yg=0.9151

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.16

0.14

0.12

0.1

0.1 0.140.12 0.16 0.18

0.11

0.1

0.09

0.08

0.07

0.06

0.06 0.07 0.08 0.09 0.1 0.11

0.25

0.2

0.15

0.1

0.1 0.15 0.2 0.25

0.1

0.09

0.08

0.07

0.06

0.05

0.05 0.06 0.07 0.08 0.09 0.1

Figure 33. Hierarchy line in control case for LFGC model. In figure circles are 
data points, solid line is connecting line between data points and dash line is a 
fitting line. With p = 0.25 ~5 Abscissa: log (/?));
Ordinate: log (/, + !)) .

Table 5, meanp values for different r, and

r]= 2 \T 2 = 2 \)9 = 0 .8 5 5 8 r, =2% 72 =2% p =0.7875
r, =2',72 =2",>5=0.8525 7, =2% 72 = 2 '\  >5=0.8088
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CO.

a

Figure 34. the jfl parameters for a  group. Confidence interval for is within its 
mean plus or minus one standard deviation.

CO.

Figure 35. the yfl parameters for // group. Confidence interval foryS is within its 
mean plus or minus one standard deviation.
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Chapter 5

Conclusion and Future Work

From the simulation results it can be concluded that the LFGC model can effectively 

capture the HRV phenomenology; including the 1/f power law, self-similarity, SEG 

transition o f the increment PDF and multifractality. From the signal property point of 

view, this result implies a rather “stable” cascade-generated HRV phenomenology 

against “perturbation” by the feedback. In terms of the cardiovascular regulation, the 

numerical results suggest that feedback plays a less dominant role in the HRV genesis. It 

can be conjectured that the apparent random fluctuation of the heart rate is caused by the 

interaction of the higher control centers in the brain stem and the autonomic nervous 

system. This view is consistent with the recent study of the prolonged bad rest test [20]: it 

was found that the feedback-dominant baroreflex mechanism generates very different 

dynamics in the blood pressure fluctuation than the RRi dynamics.

The observation of the SL hierarchy in HRV provides the main motivation for the LFGC 

model. Although comparing the effect of the modulation effect in SW cascade with 

biological feedback and the scheduling law of the LFGC model are assumptions which 

cannot be easily verified in physiological terms, LFGC is interesting in its own right as it 

may represent a second solution to the SL hierarchy besides the SW cascade. However, 

more numerical tests are necessary to confirm this possibility [21].
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The physiological implementation of the numerical results is not clear at this stage. More 

tests are needed for this purpose in the future. Also, only the parameters a  and n  are

varied. In this work, the influence of the paiameter Vj to the underlying LFGC

phenomenology remains to be tested in the future. It would also be interesting to test the 

outcomes of the model by perturbing the cascade, such as its tree structure, distribution of 

the cascade component, multiplicative law, as well as the feedback control with a 

different scheduling law.
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Appendix A 

Moments of Product of Ca e Components

The moment of the product of cascade components, which characterizes how the 

observable varies at different scales, has a relationship with the underlying scales. This 

can be most easily shown in the cascade generated by independent and identically 

distributed (i.i.d.) components. In fluid turbulence, such a multiplicative structure is 

normally used to characterize the dissipation and the primary variable of interest is the 

product of the cascade components (rather than the increment). In this case, the 

dependence of the statistics on scales can be found analytically.

Consider the cascade generated by i.i.d. components. The product of the cascade 

components observed at two scales / and /„ is given by

w'u =n®. <Ai)
m —l

where (%'s are assumed i.i.d. Assuming dyadic cascade as in the present work and there 

are «-generation between scales I and then/?*-order moment of can be written in

logarithmic scales

iog((l r  )) ~ « log((l a  I" )} (A.2)
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where a  is the same random variable as the û?m’s. Note that for dyadic cascade, IJl = 2 

Substituting n, (A.2) becomes

r ) ) - - 4 l 0 E : n

u J

where = log2 ((̂ | co 1̂ )̂. Hence, the product of i.i.d. random variables on regular dyadic 

cascade has its moment statistics dependent on the scales via a power law relationship.

For bounded cascade where the cascade components are not i.i.d., the formulation is 

more involved. When the primary statistic of interest is the moment o f the increment, 

such as the structure function, numerical simulation indicated a similar scale dependence 

relationship [5]. However, no analytical result for the structure function has been worked 

out for the bounded cascade in the past.
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Appendix B

Main programs in Matlab

1. LFGC model program

% D y n a m i c  C a s c a d e  M o d e l  w i t h  L o c a l  F e e d b a c k

% (1)  s e t  p r o g r a m  p a r a m e t e r s

i s a v e = l ;  
p o s t p r o c e s s l = l ; 
p o s t p r o c e s s 2 = 0  ;
n t r i a l = i n p \ i t  ( ' e n t e r  n t r i a l  : ' ) ;

% (2)  s e t  c a s c a d e  p a r a m e t e r s

J = 1 5 ;
N = 3 2 7 6 8 ;
d e l t a = 2 " J . / 2 ( 1 : J ) ;
J l = f i x ( l o g 2 ( N ) ) ;  
k = o n e s

t a u = 2 . ^ l i n s p a c e { 0 , J - 1 , J ) ; 
n t a u = J ;
i f  J = = J 1 , n t a u l = n t a u ; e l s e , n t a u l = J l ; e n d  
q= . 2 5 : . 2 5 : 5 ;  
n q = l e n g t h ( q ) ;

s i g O = 2 * ( - 1 . 5 ) ; a l p h a = 0 . 2 ;  
s i g O O = s i g O * 2 . ^ ( - a l p h a * ( 0 : J - l ) ) ;

% (3 )  d e f i n e  s e t  p o i n t  V j , mu & i n i t i a l i z e  w a t  t = 0

V = o n e s (J , 1)  ;
m u = o n e s (J ,  1 ) * 1 . 6 ;
w = z e r o s (J , N + l ) ;
w ( : , 1 ) = r a n d n (J , 1 ) . * s i g O O ' +mu;

% (4)  s e t  c o n t r o l  r e l a t e d  p a r a m e t e r s

b u f f  e r = a b s  ( w ( 2  .-J ,  1 )  - V ( 2  : J )  ) ;

f o r  i t r i a l = l : n t r i a l  
d i s p ( n u m 2 s t r ( i t r i a l ) ) ;

f o r  i = 2 : N  % t i m e = l - N  c o r r e s p o n d s  t o  i = l ~ N
w l a s t = w ( : , i - l ) ; 
p e r t _ j p l = r a n d n * s i g O O (J ) ;
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w { J , i ) = m u { J ) + p e r t _ j p l ;  
s k i p = 0 ;
f o r  j = J - l ; - l : l

i f  m o d ( i - l , d e l t a ( j ) ) ~=0  
w ( j , i ) = w l a s t {j ) ;
b u f f e r ( j ) = b u f f e r ( j ) + a b s ( w l a s t ( j + 1 ) - V {j + 1 ) ) ;  % c o u p l e d  f r o m  

s m a l l e r  s c a l e  
e l s e

w { j + 1 , i ) = m u (j + 1 ) + p e r t _ j p l * ( V { j ) - b u f f e r ( j ) / d e l t a ( j ) ) ;
%w( j + 1 ,  i )  = m u ( j + l )  ; 
p e r t _ j p l = r a n d n * s i g O O ( j ) ; 
w ( j , i ) = m u (j ) + p e r t _ j p l ; 
b u f f e r ( j ) = a b s ( w ( j + 1 , i ) - V (j + 1 ) ) ;  

e n d
e n d

e n d
x = p r o d ( w ) ;
i f  i s a v e , x s ( i t r i a l , : ) = x ; e n d

i f  p o s t p r o c e s s l  
f o r  i = l : n t a u l

d x = x  ( 1 + t a u  ( i )  :N) - x  (1 : N - t a u  ( i )  ) ; 
f o r  j = l : n q

s ( i t r i a l , j , i ) = m e a n ( a b s ( d x ) - ( j ) ) ;
e n d
[ p ( i t r i a l , i , : ) , b ( i t r i a l , i , : ) ] = n o r m h i s t ( d x , 4 1 , m i n ( d x ) , m a x ( d x ) ) ;

e n d
e n d
c l e a r  x  
e n d
s a v e  1 8 v = l m u = l .  6 a l p ] ' , a = 0 . 2  . m a t  b  p  s  x s  

% s y s t e m  p a r a m e t e r s  :
% w [ J - b y - N + 1 ] : t h e  c a s c a d e  c o m p o n e n t s  w h e r e  
% w ( j , i )  d e s c r i b e s  t h e  j t h  l e v e l  w v a l u e  a t  t i m e  i
% N o t e  t h a t  t i m e  g o e s  f r o m  0 t o  N (N+1 s a m p l e s ) .
% V [ N - b y - 1 ] : t h e  c o n t r o l  l e v e l  f o r  w t o  r e t u r n  t o .
% mu [ N - b y - 1 ] : m e a n  o f  w ( j , :)
% s i g O ,  a l p h a :  t h e  v a r i a n c e  l a w  o f  t h e  b o u n d e d  c a s c a d e  
% b u f f e r  [ ( J - l ) - b y - 1 ] : t h e  c o n t r o l  l a w  t o  a d j u s t  t h e  
% w ( j , : )  t o  r e t u r n  t o  V a t  t i m e  t _ k ^ { ( j - l ) } .
%

% NOTES;
%

% A D e v i a t i o n  b t n .  V a n d  mu r e s u l t s  i n  ' m i s s - t a r g e t e d '
% c o n t r o l  a n d  l a r g e r  t h e  d e v i a t i o n ,  m o r e  i n t e r m i t t e n t -
% l o o k i n g  x ( t ) .

2. Increment PDF program for typical real HRV

f n = i n p u t ( ' e n t e r  f i l e n a m e : ' , ' s ' ) ; % f i l e  c a n  b e  o p e n e d  i n  w o r k s p a c e  s o  
i t  i s  n o t  n e e d e d  e v a l ( [ ' l o a d  ' f n ] ) ;
N = l e n g t h ( x ) ;
% J = f i x ( l o g 2  (N) ) ;
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w« e n d

J = 1 5  ;
t a u = 2 . ^ 1 i n s p a c e ( 0 , J - l , J ) ; 
n t a u = l e n g t h { t a u ) ; 
q= ( 0 . 2 5 : . 2 5 : 5 ) ;  
n q = l e n g t h ( q )  ; 
f o r  j = l : n t a u

d x = x ( 1 + t a u ( j ) : N ) - x ( 1 : N - t a u ( j ) ) ;

% c a l c u l a t e  s t r u c t u r e  f u n c t i o n  
f o r  k = l : n q

s  ( k ,  j  ) = m e a n ( a l3 s  (dx)  . ^q (k)  ) ;
e n d
% c a l c u l a t e  d i s t r i b u t i o n  ( p d f )  
b ( j , : ) = l i n s p a c e ( m i n ( d x ) , m a x ( d x ) , 4 1 )  ; 
p ( j , : ) = h i s t ( d x , b ( j , : ) ) ;
P  <j » : ) = P ( j , : )  . / s u m ( p ( j , : ) * ( b ( j , 2 ) - b {j , 1 ) ) )  ;

e n d

p l o t ( 2 . 2 * b ( l , : ) , ( 1 / 2 . 2 ) . * l o g 2 ( p ( l , : ) ) , ' b o ' , 2 . 2 * b ( 1 , : ) , ( 1 / 2 . 2 ) . * l o g 2 ( p ( l  
, : ) ) , ' b - ' )  

h o l d  o n

p l o t ( 1 . 5 * b ( 5 , : ) , ( 1 / 1 . 5 ) . * l o g 2 ( p ( 5 , : ) ) , ' r o ' , 1 . 5 * b ( 5 , : ) , ( l / l . 5 ) . * l o g 2 ( p ( 5  
, : ) ) , ' r - ' )  

h o l d  o n

p l o t ( 1 . 2 * b ( 9 , : ) , ( 1 / 1 . 2 ) . * l o g 2 ( p ( 9 , : ) ) , ' c o ' , 1 . 2 * b ( 9 , : ) , ( 1 / 1 . 2 ) . * l o g 2 ( p ( 9
, : ) ) , ' C-  ' )

h o l d  o n
p l o t ( b ( 1 2 ,  : )  , l o g 2 ( p ( 1 2 ,  : ) )  , ' g o ' , b ( 1 2 ,  : ) , l o g 2 ( p ( 1 2 ,  : ) )  , ' g -  ' ) 
x l a b e l ( ' f _ { 0 } \ D e l t a r ' )
y l a b e l ( ' l o g _ { 2 } ( f _ { \ t a u } ( \ D e l t a r ) / f _ {  0}  ) ' ) 
t i t l e ( ' RRi  i n c r e m e n t  P D F ' ) % g t e x t ( ' \ t a u  ' )

3. Increment PDF program for LFGC model

% f i n d i n g  t h e  p d f  amo ng  t h e  10 0 r u n  i n  d i f f e r e n t  t a u  
f n = i n p u t ( ' e n t e r  f i l e n a m e  : ' , ' s ' )  ; 
e v a l ( [ ' l o a d  ' f n ] ) ;

f o r  k = l
n t a u = k ;  % d i f f e r e n t  t a u  

f o r  i = l : 1 0 0
u ( i ) = m a x ( b ( i , n t a u , : ) ) ;  % u  d e n o t e s  up  l e v e l  o f  b i n  a n d  1 i s  NO. o f  

t a u - c a n  b e  c h a n g e d
d ( i ) = m i n ( b ( i , n t a u , : ) ) ;  % d  d e n o t s  down l e v e l  o f  b i n  a n d  1 i s  NO.  

o f  t a u

u m a x = m a x ( u ) ; % f i n d i n g  t h e  m i n i m u n  v a l u e  o f  u p  l e v e l  o f  b i n  
d r a i n = m i n ( d ) ; % f i n d i n g  t h e  m ax im un  v a l u e  o f  down  l e v e l  o f  b i n  
b k = l i n s p a c e ( d m i n , u m a x , 6 0 ) ;  % s e t i n g  u p  a  n e w  b i n  30  i s  t h e  r e d u c e d  
v a l u e  f o r  4 1  
f o r  i = l : 1 0 0

b r ( i , : ) = b ( i , n t a u , : ) ;  % r e d u c i n g  t h e  d i m e n s i o n  o f  m a t r i x  d u e  t o
M a t l a b  l i m i t a t i o n
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p r ( i , : ) = p ( i , n t a u , : ) ;  % s a m e  r e a s o n  1 i s  N o .  o f  t a u -  c a n  b e
r e p l a c e d

t ( i , : ) = i n t e r p l ( b r ( 1 , : ) , l o g 2 ( p r ( i , : ) ) , b k ) ;

e n d
% t m = m e a n { t )  ; 
f o r  1 = 1 : 6 0  

m ( i ) =0  ; 
s u m ( i ) = 0 ;  
f o r  j = l : 1 0 0

s u m ( i ) = s u m ( i ) + t ( j , i )  ; 
i f  t { j , i ) ==0

m ( i )  = m ( i )  +1
e n d

e n d

e n d
f o r  1 = 1 : 6  0

t m ( i ) = s u m ( i ) / ( l O O - m ( i ) ) ;
e n d
p l o t ( b k , t m , ' b + ' , b k , t m , ' g - ')  
h o l d  o n
%save  e a s e l  b k  t  
c l e a r  u  d  u m i n  dmax  
e n d
f o r  k=4

n t a u = k ;  % d i f f e r e n t  t a u  
f o r  1 = 1 : 1 0 0

u ( i ) = m a x ( b ( i , n t a u , : ) ) ;  % u  d e n o t e s  u p  l e v e l  o f  b i n  a n d  1 i s  NO. o f
t a u - c a n  b e  c h a n g e d

d ( i ) = m i n ( b ( i , n t a u , : ) ) ;  % d  d e n o t s  down  l e v e l  o f  b i n  a n d  1 i s  NO.
o f  t a u  
e n d
u m a x = m a x ( u ) ; % f i n d i n g  t h e  m i n i m u n  v a l u e  o f  u p  l e v e l  o f  b i n  
d m i n = m i n ( d ) ; % f i n d i n g  t h e  m a xi m u n  v a l u e  o f  d o w n  l e v e l  o f  b i n  
b k = l i n s p a c e ( d m i n , u m a x , 6 0 ) ;  % s e t i n g  u p  a  n e w  b i n  3 0  i s  t h e  r e d u c e d  
v a l u e  f o r  4 1  
f o r  1 = 1 : 1 0 0

b r ( i , : ) = b ( i , n t a u , : ) ;  % r e d u c i n g  t h e  d i m e n s i o n  o f  m a t r i x  d u e  t o
M a t l a b  l i m i t a t i o n

p r ( i , : ) = p ( i , n t a u , : ) ;  % s a m e  r e a s o n  1 i s  N o .  o f  t a u -  c a n  b e
r e p l a c e d

t ( i , : ) = i n t e r p l ( b r ( i , : ) , l o g 2 ( p r ( i , : ) ) , b k ) ;

e n d
% tm=m ean ( t  ) ,- 
f o r  1 = 1 : 6 0  

m ( i ) =0 ; 
s u m ( i ) =0 ; 
f o r  j = l : 1 0 0

s u m ( i ) = s u m ( i ) + t ( j , i ) ; 
i f  t ( j , i ) ==0

m ( i )  = m ( i )  +1
e n d

e n d
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e n d
f o r  1 = 1 : 6 0

t m ( i ) = s n m ( l ) / ( l O O - m ( i ) ) ;
e n d
p l o t ( b k , t m , ' b + ' , b k , t m , ' c - ' )  
h o l d  o n
% sa v e  e a s e l  b k  t  
c l e a r  u  d  u m i n  dm a x  
e n d
f o r  k=8

n t a u = k ;  % d i f f e r e n t  t a u  
f o r  1 = 1 : 1 0 0

u ( 1 ) = m a x ( b ( 1 , n t a u , : ) ) ;  % u  d e n o t e s  u p  l e v e l  o f  b i n  a n d  1 i s  NO. o f  
t a u - c a n  b e  c h a n g e d

d ( i )  =min . (b  ( i , n t a u ,  : ) )  ; % d  d e n o t s  do wn  l e v e l  o f  b i n  a n d  1 i s  NO.
o f  t a u  
e n d
u m a x = m a x ( u ) ; % f i n d i n g  t h e  m i n i m u n  v a l u e  o f  u p  l e v e l  o f  b i n  
d m i n = m i n ( d ) ; % f i n d i n g  t h e  m ax im u n  v a l u e  o f  down  l e v e l  o f  b i n  
b k = l i n s p a c e ( d m i n , u m a x , 6 0 ) ;  % s e t i n g  u p  a  n e w  b i n  3 0  i s  t h e  r e d u c e d  
v a l u e  f o r  4 1  
f o r  1 = 1 : 1 0 0

b r ( i , : ) = b ( i , n t a u , : } ;  % r e d u c i n g  t h e  d i m e n s i o n  o f  m a t r i x  d u e  t o
M a t l a b  l i m i t a t i o n

p r ( i , : ) = p ( i , n t a u , : ) ;  % s a m e  r e a s o n  1 i s  N o .  o f  t a u -  c a n  b e
r e p l a c e d

t ( i , : ) = i n t e r p l ( b r ( i , : ) , l o g 2 ( p r ( i , ; ) ) , b k ) ;

e n d
% t m = m e a n ( t ) ;  
f o r  1 = 1 : 6 0  

m ( i )  =0  ; 
s u m ( i ) = 0 ;  
f o r  j = 1 : 1 0 0

sv im ( i )  = s u m ( i ) + t  ( j  , i )  ; 
i f  t ( j , i ) ==0

m ( i ) = m ( i ) +1
e n d

e n d
e n d
f o r  1 = 1 : 6 0

t m ( i ) = s u m ( i ) / ( l O O - m ( i ) ) ;
e n d
p l o t  ( b k ,  t m ,  ' b x '  , b k ,  tm,  'm-  ' ) 
h o l d  o n
% sa v e  e a s e l  b k  t
c l e a r  u  d  u m i n  d m a x  «
e n d
f o r  k = 1 2

n t a u = k ;  % d i f f e r e n t  t a u  
f o r  1 = 1 : 1 0 0

u ( i ) = m a x ( b ( i , n t a u , : ) ) ;  % u  d e n o t e s  u p  l e v e l  o f  b i n  a n d  1 i s  NO. o f
t a u - c a n  b e  c h a i n g e d

d ( i ) = m i n ( b ( i , n t a u , : ) ) ;  % d  d e n o t s  down l e v e l  o f  b i n  a n d  1 i s  NO.
o f  t a u  
e n d
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u m a x = m a x ( u ) ; % f i n d i n g  t h e  m i n i m u n  v a l u e  o f  u p  l e v e l  o f  b i n  
d m i n = m i n ( d ) ; % f i n d i n g  t h e  m a x i m u n  v a l u e  o f  d o w n  l e v e l  o f  b i n  
b k = l i n s p a c e ( d m i n , u m a x , 6 0 ) ;  % s e t i n g  u p  a  n e w  b i n  3 0  i s  t h e  r e d u c e d  
v a l u e  f o r  4 1  
f o r  i = l : 1 0 0

b r ( i , : ) = b ( i , n t a u , : ) ;  % r e d u c i n g  t h e  d i m e n s i o n  o f  m a t r i x  d u e  t o
M a t l a b  l i m i t a t i o n

p r ( i , : ) = p ( i , n t a u , ; ) ;  % s a m e  r e a s o n  1 i s  N o .  o f  t a u -  c a n  b e
r e p l a c e d

t ( i , : ) = i n t e r p l ( b r ( i , : ) , l o g 2 ( p r ( i , : ) ) , b k ) ;

e n d
% t m = m e a n ( t ) ; 
f o r  i = l : 6 0  

m ( i ) =0 ; 
s u m ( i ) =0 ; 
f o r  j = 1 : 1 0 0

s u m ( i ) = s u m ( i ) + t ( j , i ) ; 
i f  t ( j , i ) = = 0

m ( i )  = m ( i )  + 1
e n d

e n d
e n d
f o r  i = l : 6 0

t m ( i ) = s u m ( i ) / ( l O O - m ( i )  ) ;
e n d
p l o t  ( b k ,  t m ,  'b +  ' , b k ,  t m ,  ' k -  ' ) 
h o l d  o n
%sa ve  e a s e l  b k  t  
c l e a r  u  d  u m i n  dmax  
e n d

f o r  k = 1 5
n t a u = k ;  % d i f f e r e n t  t a u  

f o r  i = l : 1 0 0
u ( i ) = m a x ( b ( i , n t a u , ; ) ) ;  % u  d e n o t e s  u p  l e v e l  o f  b i n  a n d  1 i s  NO. o f

t a u - c a n  b e  c h a n g e d
d ( i ) = m i n ( b ( i , n t a u , : ) ) ;  % d  d e n o t s  down l e v e l  o f  b i n  a n d  1 i s  NO.

o f  t a u  
e n d
u m a x = m a x ( u ) ; % f i n d i n g  t h e  m i n i m u n  v a l u e  o f  u p  l e v e l  o f  b i n  
d m i n = m i n ( d ) ; % f i n d i n g  t h e  m a x i m u n  v a l u e  o f  d o w n  l e v e l  o f  b i n  
b k = l i n s p a c e ( d m i n , U m a x , 6 0 ) ;  % s e t i n g  u p  a  n e w  b i n  3 0  i s  t h e  r e d u c e d  
v a l u e  f o r  4 1  
f o r  i = l : 1 0 0

b r ( i , : ) = b ( i , n t a u , : ) ;  % r e d u c i n g  t h e  d i m e n s i o n  o f  m a t r i x  d u e  t o
M a t l a b  l i m i t a t i o n

p r ( i , : ) = p ( i , n t a u , : ) ;  % s a m e  r e a s o n  1 i s  N o .  o f  t a u -  c a n  b e
r e p l a c e d

t ( i , : ) = i n t e r p l ( b r ( i , : ) , l o g 2 ( p r ( i , : ) ) , b k ) ;

e n d
% t m = m e a n ( t )  ; 
f o r  i = l : 60  

m ( i ) =0  ;

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



I

s i a m ( i )  = 0 ;  
f o r  j = l : 1 0 0

s u m ( i ) = s u m { i ) + t ( j  , i )  ; 
i f  t ( j , i ) ==0

m ( i ) = m ( i ) +1
e n d

e n d
e n d
f o r  i = l : 6 0

t m ( i ) = s u m ( i ) / ( l O O - m ( i ) ) ;
e n d
p l o t ( b k , t m , ' b o ' , b k , t m , ' r - ' )  
h o l d  o n
% s a v e  e a s e l  b k  t  
c l e a r  u  d  u m i n  dmax  
e n d

x l a b e l ( ' \ C e l t a r ' )
y l a b e l ( ' l o g _ {  2 } ( f _ { \ t a u } ( \ D e l t a r ) )  ' )
t i t l e ( ' I n c r e m e n t  PDF f o r  v  = 1 \ m u  = 1 \ a l p h a  = 0 . 2 ' )  
% g t e x t ( ' \ t a u  = 2 ^ 0 ,  2 " 3 ,  2 " 7 ,  2 " { l 4 } ' )

4. Kurtosis Curve program for typical real HRV

f n = i n p u t ( ' e n t e r  f i l e n a m e  : ' ,  ' s ' ) ;  
e v a l ( [ ’ l o a d  ' f n ] ) ;
N = l e n g t h ( x ) ;
% J = f i x ( l o g 2 ( N ) ) ;
J = 1 5 ;
t a u = 2 . ^ l i n s p a c e { 0 , J - 1 , J ) ; 
n t a u = l e n g t h ( t a u ) ; 
q= ( 0 . 2 5  : . 2 5 : 5 )  ; 
n q = l e n g t h ( q ) ;

f o r  i t a u = l
d x l = x ( l + t a u ( i t a u ) : N ) - x ( 1 : N - t a u ( i t a u ) ) ;  

k u ( i t a u ) = k u r t o s i s ( d x l ) ;
e n d
f o r  i t a u = 2

d x 2 = x ( 1 + t a u ( i t a u ) : N ) - x ( 1 : N - t a u ( i t a u ) ) ;  
k u ( i t a u ) = k u r t o s i s ( d x 2 ) ;

e n d
f o r  i t a u = 3

d x 3 = x ( 1 + t a u ( i t a u ) : N ) - x ( l : N - t a u ( i t a u ) ) ;  
k u ( i t a u ) = k u r t o s i s ( d x 3 ) ;

e n d
f o r  i t a u = 4

d x 4 = x ( 1 + t a u ( i t a u ) : N ) - x ( 1 : N - t a u ( i t a u ) ) ;  
k u ( i t a u ) = k u r t o s i s ( d x 4 ) ;

e n d
f o r  i t a u = 5

d x 5 = x ( 1 + t a u ( i t a u ) : N ) - x ( 1 : N - t a u ( i t a u ) ) ;  
k u ( i t a u ) ^ k u r t o s i s ( d x 5 ) ;

e n d
f o r  i t a u = 6
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d x 6 = x ( 1 + t a u ( i t a u ) : N ) - x ( l : N - t a u ( i t a u ) ) ;  
k u ( i t a u ) = k u r t o s i s ( d x 6 ) ; 

end.
f o r  i t a u = 7

d x 7 = x ( 1 + t a u ( i t a u ) : N ) - x ( l : N - t a u ( i t a u ) ) ;  
k u ( i t a u ) = k u r t o s i s ( d x 7 ) ; 

e n d
f o r  i t a u = 8

d x 8 = x ( 1 + t a u ( i t a u ) : N ) - x ( 1 : N - t a u ( i t a u ) ) ;  
k u ( i t a u ) = k u r t o s i s ( d x 8 ) ;

e n d
f o r  i t a u = 9

d x 9 = x ( 1 + t a u ( i t a u ) : N ) - x ( l : N - t a u ( i t a u ) ) ;  
k u ( i t a u ) = k u r t o s i s ( d x 9 ) ;

e n d
f o r  i t a u = 1 0

d x l O = x ( 1 + t a u ( i t a u )  ; N ) - x ( 1 : N - t a u ( i t a u )  ) ; 
k u ( i t a u ) = k u r t o s i s ( d x l O ) ;

e n d
f o r  i t a u = l l

d x l l = x ( 1 + t a u ( i t a u )  : N ) - x ( l : N - t a u ( i t a u )  ) ; 
k u ( i t a u ) = k u r t o s i s ( d x l l ) ;

e n d
f o r  i t a u = 1 2

d x l 2 = x ( 1 + t a u ( . t a u ) : N ) - x ( l : N - t a u ( i t a u ) ) ;  
k u ( i t a u ) = k u r t o s i s ( d x l 2 ) ;

e n d
f o r  i t a u = 1 3

d x l 3 = x ( 1 + t a u ( i t a u ) : N ) - x ( 1 : N - t a u ( i t a u ) ) ;  
k u ( i t a u ) = k u r t o s i s ( d x l 3 ) ; 

e n d
f o r  i t a u = 1 4

d x l 4 = x ( 1 + t a u ( i t a u ) : N ) - x ( 1 : N - t a u ( i t a u ) ) ;  
k u ( i t a u ) = k u r t o s i s ( d x l 4 ) ;

e n d
f o r  i t a u = l S

d x l 5 = x ( l + t a u ( i t a u ) : N ) - x ( l : N - t a u ( i t a u ) ) ;  
k u ( i t a u ) = k u r t o s i s ( d x l 5 ) ;

e n d
p l o t ( l o g 2 ( t a u ) , l o g 2 ( k u ) , ' b o ' ) 
h o l d  o n
p l o t ( l o g 2 ( t a u ) , l o g 2 ( k u ) , ' g - ' )  
h o l d  o n
% l i n e = p o l y f i t ( l o g 2 ( t a u ) , l o g 2 ( k u ) , 1 ) ;
% z = p o l y v a l ( l i n e , l o g 2 ( t a u ) ) ;
% p l o t ( l o g 2 ( t a u ) , z , '  r - - ' )  
g r i d  o n ;

[ s c m x ,  s c m y ]  = g i n p u t  ( 2 )  ; 
i d l = m i n ( f i n d ( l o g 2 ( t a u )  >= s c r n x ( l ) ) ) ;  
i d 2 = m a x  ( f i n d  ( l c g 2  ( t a u )  <= s c m x  ( 2 )  ) ) ; 
c = p o l y f i t ( l o g 2 ( t a u ( i d l : i d 2 ) ) , l o g 2 ( k u ( i d l : i d 2 )  ) , 1)  ; 
r z e t a 2 = c ( 1 ) ;  

g r i d  o f f  ;
z = p o l y v a l ( c , l o g 2 ( t a u ) ) ;  
p l o t ( l o g 2 ( t a u ) , z , ' r - - ' )  
x l a b e l ( ' l o g _ 2 ( \ t a u ) ' )  
y l a b e l ( ’ l o g  2 ( K u r t o s i s ) ' )
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title(' Real HRV Kurtosis Curve2')

5. Kurtosis Curve program for LFGC model

% B a s e d  o n  1 0 0  s i m u l a t i o n
f n = i n p u t ( ' e n t e r  f i l e n a m e : ' , ' s ' ) ;  % f i l e  c a n  b e  o p e n e d  i n  w o r k s p a c e  s o  
i t  i s  n o t  n e e d e d  f o r  me 
e v a l ( [ ' l o a d  ' f n ] ) ;
N = 3 2 7 6 8 ;
J = 1 5 ;
t a u = 2 . ' ^ l i n s p a c e  ( 0 ,  J - l ,  J )  ; 
n t a u = l e n g t h ( t a u )  ; 
q = ( 0 . 2 5 : . 2 5 : 5 )  ; 
n q = l e n g t h ( q ) ; 
f o r  i = l : 1 0 0

x = x s ( i , : )  ; 
f o r  i t a u = l  

d x l = x (  1 + t a u ( i t a u ] : N ) - x ( 1 : N - t a u ( i t a u ) ) ;  
k u ( i , i t a u ) = k u r t o s i s ( d x l ) ; 
c l e a r  d x l

e n d
f o r  i t a u = 2

d x 2 = x ( 1 + t a u ( i t a u ) : N ) - x ( l : N - t a u ( i t a u ) ) ;  
k u ( i , i t a u ) = k u r t o s i s ( d x 2 ) ; 
c l e a r  d x 2

e n d
f o r  i t t i u = 3

d x 3 = x (  1 + t a u  ( i t a u )  :N) - x ( l  : N - t a u  ( i t a u )  ) ; 
k u ( i , i t a u ) = k u r t o s i s ( d x 3 ) ; 
c l e a r  d x 3

e n d
f o r  i t a u = 4

d x 4 = x ( 1 + t a u ( i t a u ) : N ) - x ( 1 : N - t a u ( i t a u ) ) ;  
k u ( i , i t a u ) = k u r t o s i s ( d x 4 ) ; 
c l e a r  d x 4

e n d
f o r  i t a u = 5

d x 5 = x ( 1 + t a u ( i t a u ) : N ) - x ( l : N - t a u ( i t a u ) ) ;  
k u ( i , i t a u ) = k u r t o s i s ( d x 5 ) ;  
c l e a r  d x 5

e n d
f o r  i t a u = 6

d x 6 = x  ( 1 + t a u ( i t a u )  : N ) - x ( l : N - t a u ( i t a u ) ) ; 
k u ( i , i t a u ) = k u r t o s i s ( d x 6 ) ; 
c l e a r  d x 6

e n d
f o r  i t a u = 7

d x 7 = x ( l + t a u ( i t a u ) : N ) - x ( l : N - t a u ( i t a u ) ) ;  
k u ( i , i t a u ) = k u r t o s i s ( d x 7 ) ; 
c l e a r  d x 7

e n d
f o r  i t a u = 8

d x 8 = x  ( 1 + t a u  ( i t a u )  :N) - x  (1 : N - t a u  ( i t a u )  ) ; 
k u ( i , i t a u ) = k u r t o s i s ( d x 8 ) ; 
c l e a r  d x8
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e n d
f o r  i t a u = 9

d x 9 = x ( 1 + t a u ( i t a u )  : N ) - x ( 1 : N - t a u ( i t a u )  ) ; 
k u ( i , i t a u ) = k u r t o s i s ( d x 9  ) ;  
c l e a r  d x

e n d
f o r  i t a u = 1 0

d x l 0 = x ( 1 + t a u ( i t a u ) : N ) - x ( l : N - t a u ( i t a u ) ) ;  
k u ( i , i t a u ) = k u r t o s i s ( d x l O ) ; 
c l e a r  d x

e n d
f o r  i t a u = l l

d x l l = x ( 1 + t a u ( i t a u ) ; N ) - x ( l : N - t a u ( i t a u )  ) ; 
k u ( i , i t a u ) = k u r t o s i s ( d x l l ) ; 
c l e a r  d x l l

e n d
f o r  i t a u = 1 2

d x l 2 = x ( 1 + t a u ( i t a u ) : N ) - x ( l : N - t a u ( i t a u )  ) ;  
k u ( i , i t a u ) = k u r t o s i s ( d x l 2 ) ; 
c l e a r  d x l 2

e n d
f o r  i t a u = 1 3

d x l 3 = x ( 1 + t a u ( i t a u ) : N ) - x ( 1 : N - t a u ( i t a u ) ) ;  
k u ( i , i t a u ) = k u r t o s i s ( d x l 3 ) ; 
c l e a r  d x l 3

e n d
f o r  ' a u = 1 4

d x l 4 = x ( 1 + t a u ( i t a u ) : N ) - x ( l : N - t a u ( i t a u ) ) ;  
k u ( i , i t a u ) = k u r t o s i s ( d x l 4 ) ; 
c l e a r  d x l 4

e n d
f o r  i t a u = 1 5

d x l 5 = x ( 1 + t a u ( i t a u ) : N ) - x ( l : N - t a u ( i t a u ) ) ; 
k u ( i , i t a u ) = k u r t o s i s ( d x l 5 ) ; 
c l e a r  d x l 5

e n d
c l e a r  x  
e n d
k u r = m e a n ( k u )  ;
p l o t ( l o g 2 ( t a u ) , l o g 2 ( k u r ) , ' b o ' )  
h o l d  o n
p l o t ( l o g 2 ( t a u ) , l o g 2 ( k u r ) , ' g - ' )  
h o l d  o n  
g r i d  o n ;
[ s c m x ,  s c r n y ]  - g i n p u t  (2 )  ;

i d l = r a i n ( f i n d ( l o g 2 ( t a u )  >=  s c r n x ( l ) ) ) ;
i d 2 = m a x ( f i n d ( l o g 2  ( t a u )  <= s c m x ( 2 ) ) ) ;
c = p o l y f i t ( l o g 2 ( t a u ( i d l : i d 2 ) ) , l o g 2 ( k u r ( i d l : i d 2 ) ) , 1)  ;
z 5 ( i ) = c  ( 1 )  ;
g r i d  o f f ;
z = p o l y v a l ( c , l o g 2 ( t a u ) ) ;  
p l o t ( l o g 2 ( t a u ) , z , ' r - - ' )  

x l a b e l ( ' l o g _ 2 ( \ t a u ) ' )  
y l a b e l ( ' l o g _ 2 ( K u r t o s i s ) ' )
t i t l e ( ' K u r t o s i s  C u r v e  f o r  V = i  \mu  = 0 . 1  \ a l p h a  = 0 . 2 ' )
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6. Hierarchical structure program for typical HRV

f n = i n p u t { ’ e n t e r  f i l e n a m e  : ' ,  ' s ' ) ;  
e v a l ( [ ' l o a d  ' f n ] ) ;
N = l e n g t h ( x ) ;
% J = f i x ( l o g 2 ( N ) ) ;
J = 1 5 ;
t a u = 2 . ^ 1 i n s p a c e ( 0 , J - l , J ) ; 
n t a u = l e n g t h ( t a u ) ; 
q = ( 0 . 2 5  : . 2 5 : 5 )  ; 
n q = l e n g t h . ( q )  ;

f o r  j = l : n t a u
d x = x ( l + t a t l (  j  ) :N) - x ( l  : N - t a u (  j  ) ) ;

% c a l c u l a t e  s t r u c t u r e  f u n c t i o n  
f o r  k = l : n q

s ( k , j ) = m e a n ( a b s ( d x ) . * q ( k ) ) ;
e n d

e n d  
t a u l = 7 ; 
t a u 2 = l l ;

q =2  0 ;
s h l ( l : q ) = s ( l : q , t a u l ) ;
a i d  : 1 8 ) = s h l  ( 3 : 2 0 )  . / s h l  ( 2 : 1 9 )  ;
b l ( 1 : 1 8 ) = s h l ( 2 : 1 9 ) . / s h l ( 1 : 1 8 ) ;
s h 2 ( 1 : q ) = s ( 1 : q , t a u 2 ) ;
a 2 ( l : 1 8 ) = s h 2 ( 3 : 2 0 ) . / s h 2 ( 2 : 1 9 ) ;
b 2 ( 1 : 1 8 ) = s h 2 ( 2 : 1 9 ) . / s h 2 ( l : 1 8 ) ;
a ( l : 1 8 ) = a 2 ( 1 : 1 8 ) . / a l ( l : 1 8 ) ;
b ( l : 1 8 ) = b 2 ( 1 : 1 8 ) . / b l ( 1 : 1 8 ) ;
c l e a r  t a u l  t a u 2  q  s h l  s h 2  a l  b l  a 2  b 2
p l o t ( l o g 2 ( b ( 1 : 1 8 ) ) , l o g 2 ( a ( 1 ; 1 8 ) ) , ' b o ' )
h o l d  o n
p l o t ( l o g 2 ( b ( 1 : 1 8 ) ) , l o g 2 ( a ( l : 1 8 ) ) ,  ' k -  ' ) 
h o l d  o n

c = p o l y f i t ( l o g 2 ( b ( 1 : 1 8 ) ) , l o g 2 ( a ( 1 : 1 8 ) ) , 1 ) ;  
t y p i c a l _ h r v = c ( 1 ) ^ 4  ;

z = p o l y v a l ( c , l o g 2 ( b ( 1 : 1 8 ) ) ) ;  
p l o t ( l o g 2 ( b ( l : 1 8 ) ) , z , ' r - - ' )
t i t l e ( ' H i e r a c h i c a l  S t r u c t u r e  L i n e  i n  T y p i c a l  H R V )  
g t e x t  ( ' \ t a u _ l = 2 ' ^ 6 ,  \ t a u _ 2 = 2 " ^ { l 0 } ' )
l e g e n d ( ' d a t u m  p o i n t ' , ' c o n n e c t i n g  l i n e ' , ' f i t t i n g  l i n e ' )

7. Hierarchical structure program for LFGC model

( P r o g r a m  a f t e r  % c a n  b e  u s e d  f o r  o n e  t r i a l  p l o t t i n g )  
% H i r a r c h y  s t r u c t u r e  t e s t  
f n = i n p u t ( ' e n t e r  f i l e n a m e : ' , ' s ' ) ;
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e v a l ( [ ' l o a d  ' f n ] ) ;
t a u l = 7 ;  % c o n t r o l  c a s e  V = 1  m u= l  a l p h a = 0 . 2  
t a u 2 = l l ;
f o r  i t r i a l = l : 1 0 0
cj=20 f
s h l ( i t r i a l , l : q ) = s ( i t r i a l , 1 : q , t a u l ) ;
a l ( i t r i a l , 1 : 1 8 ) = s h l ( i t r i a l , 3 : 2 0 )  . / s h l ( i t r i a l , 2 : 1 9 ) ;  
b l ( i t r i a l , 1 : 1 8 ) = s h l ( i t r i a l , 2 : 1 9 )  . / s h l ( i t r i a l , 1 : 1 8 )  ; 
s h 2 ( i t r i a l , 1 : q ) = s ( i t r i a l , 1 : q , t a u 2 ) ;
a 2 ( i t r i a l , 1 : 1 8 ) = s h 2 ( i t r i a l , 3 : 2 0 )  . / s h 2 ( i t r i a l , 2 : 1 9 ) ;  
b 2 ( i t r i a l , 1 : 1 8 ) = s h 2 ( i t r i a l , 2 : 1 9 ) . / s h 2 ( i t r i a l ,  1 : 1 8 )  ; 
a d t r i a l ,  1 : 1 8 )  = a 2  ( i t r i a l , 1 : 1 8 )  . / a l  ( i t r i a l ,  1 : 1 8 )  ; 
b ( i t r i a l , 1 : 1 8 ) = b 2 ( i t r i a l , 1 : 1 8 ) . / b l ( i t r i a l , 1 ; 1 8 ) ;
% c l e a r  t a u l  t a u 2  q  s h l  s h 2  a l  b l  a.2 b 2  
% p l o t ( l o g 2 ( b ( i t r i a l , 1 : 1 8 ) ) , l o g 2 ( a ( i t r i a l , 1 : 1 8 ) ) , ' b o ' )
% h o l d  o n
% p l o t ( l o g 2 ( b ( i t r i a l , 1 : 1 8 ) ) , l o g 2 ( a ( i t r i a l , 1 : 1 8 ) ) , ' g - ' )
% h o l d  o n

c = p o l y f  i t  ( l o g 2  (b  ( i t r i a l ,  1 : 1 8 )  ) , l o g 2  ( a d t r i a l ,  1 : 1 8 )  ) , 1 )  ;
s h c a s e l S  ( i t r i a l )  = c  (1 )  ''4. ;
e n d
c l e a r  t a u l  t a u 2  q  s h l  s h 2  a l  b l  a 2  b 2  
% 2= p o l y v a l ( c , l o g 2 ( b ( i t r i a l , 1 : 1 8 ) ) ) ;
% p l o t ( l o g 2 ( b ( i t r i a l , 1 : 1 8 ) ) , z , ' r - - ')
% l e g e n d ( ' d a t u m  p o i n t H i e r a c h i c a l  l i n e L i n e a r - f i t t e d  l i n e ' )
% x l a b e l ( ' l o g _ 2  H x ')
% y l a b e l ( ' l o g _ 2  H y ' )
% t i t l e ( ' H i e r a c h i c a l  S t r u c t u r e  L i n e  i n  s i m u l a t i n  1 0 0  f o r  c o n t r o l  c a s e ' )
c l e a r  a  b  c  i t r i a l  z
s h c a s e l 8 m = m e a n ( s h c a s e l S ) ;
p l o t ( s h c a s e l S , ' b o ')
h o l d  o n
p l o t ( s h c a s e l S , ' g - ' )  
h o l d  o n
y  ( 1 : 1 0 1 ) = s h c a s e l 8 m ;
x = 0 : 1 0 0  ;
p l o t ( x , y , ' r - ' )
x l a b e l ( ' N o .  o f  S i m u l a t i o n ')
y l a b e l ( ' \ b e t a ’ )
t i t l e ( ' \ b e t a  v a l u e  i n  c a s e  V = 1  \mu  = 1 . 6  \ a l p h a  = 0 . 2 ' )  
l e g e n d ( ' d a t u m  p o i n t c o n n e c t i n g  1 ' n e a v e r a g e  \ b e t a  v a l u e ’ ) 
s a v e  b e t a l S  s h c a s e l S

8. Program for finding slope o f structure function

f i n d  z e t a
f n = i n p u t ( ' e n t e r  f i l e n a m e  ; ' , ' s ' ) ;  
e v a l ( [ ' l o a d  ' f n ] ) ;
[ n c a s e s , n q , n t a u ] = s i z e ( s ) ; 
f o r  i = l : n c a s e s

s s = s q u e e z e ( s ( i , : , : ) ) ;  
p l o t ( l o g 2 ( s s ( 1 2 , : ) ) , ' o - ' ) ;  
g r i d  o n ;
[ s c r n x , s c r n y ] = g i n p u t ( 2 ) ;
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i d = c e i l  ( s c r n x ( l )  ) : l : f i x ( s c r n x ( 2 )  )
f o r  i q = l : n q

c c = p o l y f i t { i d , l o g 2 ( s s ( i q , i d ) ) , 1 ) ;
z e t a 9 ( i , i q ) = c c ( 1 ) ;

end
end
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