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Abstract

Experimental data demonstrates that simultaneous injection of cancer cells at two distinct sites

often results in one large and one small tumour. Unbalanced tumour-stimulating inflammation

is hypothesized to be the cause of this growth rate separation, causing one tumour to grow

faster than the other. Here, a mathematical model for immune recruitment and competition

between two cancer sites is developed to explore the role of tumour-promoting inflammation in

the observed growth rate separation. Due to the experimental set-up, immune predation may

be neglected, focusing the model on tumour-promoting immune actions. A new mathematical

model with localized immune recruitment and competition between the two cancer sites is

developed using a multi-compartment ODE system. A simulated annealing algorithm is used

to fit the model to control data (one tumour burden). Stability and parameter sensitivity

analyses are used to explore the mathematical model and parameter space. Next, the two-

tumour scenario is predicted by testing parameter values tied to possible biological mechanisms

of action. The model predicts that indeed inflammation may be a contributor to growth rate

separation observed in simultaneous tumour growth, if one site is pre-inflamed compared to the

other.
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Chapter 1

Introduction

Inflammation is a powerful promoter of tumour growth that can cause unexpected tumour

growth dynamics [23]. In this thesis, a mathematical model for inflammation-driven tumour

growth is developed and analyzed, in an attempt to explain the surprising growth rate separation

observed in simultaneously injected tumours in mice.

In an interesting laboratory experiment, it was found that mice bearing two tumours (from

equal injections given on the same day) consistently grew one large and one small tumour [7]. In

the originating article [7], the data was analyzed through simulations of several mathematical

models for concomitant resistance. Their final proposed hypothesis was that both tumours

produce inhibitory signals that act to suppress tumour growth systemically. Then, given an

initially small difference in tumour volume, growth suppression would proportionally affect the

smaller tumour over the larger one, leading to the observed growth rate differences.

Contrasting the concomitant resistance theory, this thesis proposes that tumour-promoting

inflammation preferentially drawn to one site over the other may explain the different growth

rates. Unbalanced immune recruitment and positive feedback loops in the signaling networks

[23] may result in a larger accumulation of immune cells in one site over the other. This thesis

will explore this hypothesis mathematically to test whether unbalanced pro-tumour immune

actions can explain the observed growth phenomenon.

1.1 Cancer and Inflammation

Cancer is a disease characterized by uncontrolled cell growth that can form tumour masses in

tissue. Cancer cells can move throughout the body via the blood or lymphatic systems, and

they can initiate the growth of new blood vessels through angiogenesis. A highly vascularized

tumour will most likely have a large blood and nutrient supply as well as inflammatory immune
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CHAPTER 1. INTRODUCTION 1.2. MATHEMATICAL MODELS

cells which mainly act to support tumour growth [23, 4, 16].

Cancers have been called wounds that never heal. Inflammation, a major component of the

wound healing process, is activated by tissue damage (such as that caused by tumour growth)

[16]. The tissue damage and cell death caused in tumours triggers a chronic inflammatory

environment. This chronic state promotes the growth and spread of cancer by increasing an-

giognesis, remodelling the surrounding tissue, bringing nutrients and naive immune cells to the

tumour site, producing tumour growth factors, and generally increasing blood flow [16, 23].

Cancer cells can produce signals that reprogram surrounding tissues to perform actions that

support their growth [26]. They can distort immune signals to convert any anti-tumour actions

into pro-tumour actions, deactivate cytotoxic immune cells, and amplify and mimic recruitment

signals [16, 23, 13]. As the immune system interacts with cancer cells, it may sculpt the cell

phenotype, developing a less immunogenic variant that facilitates tumour growth and immune

evasion [13].

The cytokine and chemokine expression profile of the tumour microenvironment may be

more relevant than its specific immune cell content [23, 16]. Cytokines can either promote or

inhibit tumour development and progression, regardless of their source, by acting in concert to

selectively polarize immune cells [21]. That is, the actions of immune cells within the tumour

microenvironment are determined by the cytokine milieu present at the moment the naive cell

arrives.

1.2 Mathematical Models for Immuno-Oncology

Despite the mathematical modeling approach used to describe cancer-immune interactions, all

model simulations will invariably predict only three possible tumour outcomes: tumour escape

(obtaining large mass sizes), tumour elimination (being cleared from the host), and tumour

dormancy (sustaining periods of non-growth) [28].

Ordinary differential equation (ODE)-based models are an important framework used to

describe cancer-immune interactions because they are relatively simple to develop, analyze,

and numerically simulate compared to other mathematical techniques. In the literature, the

majority of cancer-immune research uses ODE models [19, 10, 18, 9, 11, 12, 14, 27, 28, 29]. Some

excellent reviews on this subject include a review of non-spatial time-varying models [14] and

a review of dormant or near-dormant tumour states [27]. Other mathematical methods include

stochastic differential equation-based models [20], models based on the kinetic theory for active

particles [1, 3], spatio-temporal partial differential equation-based models [22, 24, 2, 6], and

cellular automaton models [24, 15].

In mathematical descriptions of tumour growth, either exponential growth, Gompertzian
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CHAPTER 1. INTRODUCTION 1.3. CONCOMITANT RESISTANCE

growth, or logistic growth are assumed. For early time analyses, exponential growth is suffi-

cient. However, for late-stage analyses, Gompertzian or logistic growth models are preferred

because of the self-limiting property of these curves. The limiting size of the mass is termed the

carrying capacity, and it is typically assumed to be constant. The capacity refers to the tumour

microenvironment’s ability to support the tumour mass. Biologically, it then makes sense that

this capacity should increase as the tumour mass increases. Hahnfeldt et al [17] proposed a

mathematical model for a dynamically growing carrying capacity, which is incorporated into

the model developed in this thesis, as it is more biological.

1.3 Concomitant Resistance

As mentioned earlier, one possible explanation for the growth rate differences in the two-tumour

bearing mice is that of concomitant resistance [7]. Concomitant resistance is the phenomenon

where the presence of one tumour negatively influences the growth of another [25]. Several mech-

anisms have been proposed to explain the phenomenon, but no consensus has been reached [25].

Strong evidence for concomitant resistance is the noticeable growth rate increase of metastases

upon resection of the primary tumour [25]. Some possible mechanisms to explain concomitant

resistance include: (1) competition for nutrients between tumour sites, (2) production of anti-

angiogenic factors by the tumour masses, and (3) production of anti-proliferative factors by the

tumour masses [7].

Another possible mechanism that can cause concomitant resistance is concomitant immunity

[5]. This mechanism is generated by an anti-tumour immune response that is strong enough

to suppress small masses while not significantly altering the growth of the large tumour mass.

However, in the experimental data used in this thesis, the tumours are non-immunogenic,

meaning they do not generate a significant anti-tumour immune response. Thus, concomitant

immunity cannot be applied to explain the observed growth phenomenon.

Benzekry et al. [7] present several mathematical models to explore concomitant resistance

as a potential mechanism driving the observed growth rate differences in the studied exper-

imental data. They examine three mechanisms of action: (1) competition for nutrients, (2)

angiogenesis inhibition, and (3) proliferation inhibition. Models are composed of systems of

ordinary differential equations. By comparing numerical simulations to the experimental data,

they conclude that the proliferation-inhibition model is the most likely mechanism to explain

the growth separation observed.

The proliferation-inhibition model describes the growth dynamics of two tumours, where

each tumour is divided into proliferative (dividing) and quiescent (non-dividing) compartments

[7]. The proliferative cells are assumed to grow exponentially and to produce factors that act

3



CHAPTER 1. INTRODUCTION 1.3. CONCOMITANT RESISTANCE

both locally and systemically to transition proliferative cells into quiescent cells. Quiescent

cells are assumed to stay quiescent, i.e. they cannot transition back to the proliferative com-

partment. Their proposed model is below. Here Pi and Qi are the proliferative and quiescent

compartments, respectively, for each tumour i = 1, 2. The total tumour volume for each site is

the sum of the proliferative and quiescent compartments, Vi = Pi+Qi, for i = 1, 2. Below, α is

the exponential growth rate of the proliferative compartments, β is the rate at which prolifera-

tive cells transition to quiescent cells due to local signals, and γ is the rate at which proliferative

cells transition to quiescent cells due to systemic signals deriving from both tumour sites.

dP1

dt
= αP1 − (βP1 + γ(P1 + P2))1p1>0 P1(0) = V0,1

dQ1

dt
= (βP1 + γ(P1 + P2))1p1>0 Q1(0) = 0

dP2

dt
= αP2 − (βP2 + γ(P1 + P2))1p2>0 P2(0) = V0,2

dQ2

dt
= (βP2 + γ(P1 + P2))1p2>0 Q2(0) = 0

V1 = P1 +Q1

V2 = P2 +Q2

Here the transition from the proliferative compartment to the quiescent compartment is

controlled by the Heaviside function 1Pi>0, for i = 1, 2. These functions are equal to one

if Pi > 0 and zero otherwise. This enforces the fact that when factors are present but no

proliferative cells exist at that site, there is no transition into quiescence.

This thesis presents an alternative hypothesis to the proliferative-inhibition theory of con-

comitant resistance, to explain the observed growth rate differences in the experimental data.

Proliferation-inhibition requires one tumour to be larger than the other, and this is modelled via

different initial conditions (V0,1 > V0,2). As will be seen in this work, the developed model can

predict the data with equal initial conditions, assuming only a pre-inflamed tumour microen-

vironment. This result better fits the experimental setup, and results in a simpler biological

explanation.

The remainder of this thesis is outlined as follows. Chapter 2 presents and analyzes the

experimental data. Chapter 3 presents the biological hypothesis to explain the different tumour

growth rates and develops a mathematical model to test this hypothesis. Chapter 4 parame-

terizes the model using a simulated annealing algorithm, and Chapter 5 presents the results of

model analyses. Chapter 6 presents numerical results of model simulations designed to test the

biological hypothesis. And finally Chapter 7 concludes the thesis with a brief discussion and
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some potential future work.
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Chapter 2

Experimental Data and Data

Analysis

The experimental setup is designed to compare the growth rates of tumours in C57BL/6 mice

bearing either one or two cancer burdens. Both the control group (mice bearing one tumour)

and the experimental group (mice bearing two tumours) consist of 10 mice.

On day 0, the control group received one injection of 106 Murine Lewis Lung Carcinoma

(LLC) cells into the caudal half of the back. The experimental group received the same injection

but on both sides (106 LLC cells into each side). Full details of the experimental setup are

described in [7].

In general, the experimental group consisted of mice where one tumour grew larger than

the other. Two mice in this group, however, grew tumours of similar size. Upon sacrifice, these

2 mice were found to bear tumours that were directly connected by large blood vessels. Since

these mice did not contain isolated tumours, they were excluded from the analysis.

Figure 2.1 shows the average tumour volumes with standard error (error bars) for the control

group as well as the experimental group divided into large and small tumours. The experimental

data suggests that in a mouse bearing two tumours, one grows at the control rate while the

other is comparatively suppressed. This is demonstrated in Figure 2.1 where an asterisk is used

to indicate statistically significant differences between the control group and the small tumours

(p-values less than 0.05). No statistically significant difference was found between the control

and large tumour groups.

Using the experimental data (average tumour size at discrete time points), cancer growth

rates are estimated for the three tumour groups: Control, Big, and Small tumours. To do

this, exponential and logistic growth models are fit to the data sets assuming either a fixed

(C(0) = 106 ≈ 1 mm3) or variable (C(0) = C0) initial condition. To measure the goodness-of-

6



CHAPTER 2. EXPERIMENTAL DATA AND DATA ANALYSIS

Figure 2.1: Experimental data for the control group and experimental group divided into big
and small tumours.

fit, the root mean squared error is used. It is defined by RMSE =
√

1
n

∑n
i=1

(
Ci − C(ti)

)2
where

Ci are the tumour volume measurements on day i and C(ti) is the model predicted tumour

volume on day ti, and n is the total number of data points available.

Table 2.1: Exponential and logistic growth models to be fit to the experimental data.

Fit 1 Fit 2 Fit 3 Fit 4

dC

dt
= αC

dC

dt
= αC

dC

dt
= αC

(
1− C

K

) dC

dt
= αC

(
1− C

K

)
C0 = 1 mm3 C0 = C0 mm3 C0 = 1 mm3 C0 = C0 mm3

1 free parameter 2 free parameters 2 free parameters 3 free parameters
α α, C0 α, K α, K, C0

7



C
H
A
P
T
E
R

2
.

E
X
P
E
R
IM

E
N
T
A
L
D
A
T
A

A
N
D

D
A
T
A

A
N
A
L
Y
S
IS

0 5 10 15 20 25 30
Time (Days)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

A
ve

ra
ge

 G
ro

w
th

 (
m

m
3
)

Average Growth for Control Mice - Exponential Fitting

Fit C(t) = e(  t)

 = 0.351
RMSE = 304.21

Exp Fit
Data

0 5 10 15 20 25 30
Time (Days)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

A
ve

ra
ge

 G
ro

w
th

 (
m

m
3 )

Average Growth for Control Mice - Exponential Fitting

Fit C(t) = C
0
 e(  t)

 = 0.152
C

0
 = 56.57

RMSE = 108.59

Exp Fit
Data

Figure 2.2: Control tumour data fit with the exponential model assuming either a fixed or fitted initial condition.
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Figure 2.3: Control tumour data fit with the logistic model assuming either a fixed or fitted initial condition.
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Figure 2.4: Small tumour data fit with the exponential model assuming either a fixed or fitted initial condition.
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Figure 2.5: Small tumour data fit with the logistic model assuming either a fixed or fitted initial condition.
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Figure 2.6: Big tumour data fit with the exponential model assuming either a fixed or fitted initial condition.
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Figure 2.7: Big tumour data fit with the logistic model assuming either a fixed or fitted initial condition.
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CHAPTER 2. EXPERIMENTAL DATA AND DATA ANALYSIS

The MATLAB fminsearch function is used to minimize the root mean squared error of

the model simulations to the data points for each data group. Results of the data fitting are

shown in Figures 2.2–2.7. Table 2.2 summarizes the fitted models and estimated growth rate

parameters. The two parameter models (exponential with C0 fit and logistic with C0 fixed)

both provide good fits compared to the one parameter exponential model. As expected, the

overall best fit is obtained by the three parameter logistic growth model as measured by the

smallest RMSE in all three tumour sizes. It is concluded that the data curves are best described

by the logistic model, even when comparing the two 2-parameter models. Thus, logistic growth,

rather than exponential, will be used in the model development, since it better describes the

data and is a more realistic model.

Table 2.2: Summary table of the estimated parameter values for the growth rate analysis.

Model Small Tumour Big Tumour Control Tumour

C(t) = eαt, C0 = 1 α = 0.328 α = 0.370 α = 0.351
RMSE = 121 RMSE = 379 RMSE = 304

α = 0.157 α = 0.135 α = 0.152
C(t) = C0e

αt C0 = 26.4 C0 = 93.4 C0 = 56.6
RMSE = 43 RMSE = 134 RMSE = 109

α = 0.441 α = 0.555 α = 0.485

C(t) =
K

(K − 1)e−αt + 1
K = 606 K = 1196 K = 1259

C0 = 1 RMSE = 24 RMSE = 85 RMSE = 36

α = 0.341 α = 0.388 α = 0.393

C(t) =
C0K

(K − C0)e−αt + C0
K = 685 K = 1309 K = 1356

C0 = 3.6 C0 = 7.53 C0 = 3.41
RMSE = 20 RMSE = 78 RMSE = 26
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Chapter 3

Hypothesis and Mathematical

Model

3.1 Hypothesis

The hypothesis presented in this thesis proposes that inflammation may be preferentially ac-

cumulating in one site over another causing the different tumour growth rates. The positive

feedback loops in pro-inflammatory signaling can cause a growth rate discrepancy between two

cancer sites by preferentially accumulating at one site over the other, amplifying initially small

deviations into significantly different tumour sizes. To test this hypothesis, mathematical mod-

eling is used to determine if unbalanced pro-tumour immune actions can explain the observed

growth phenomenon.

3.2 Control Tumour Model

In this work, cancer and immune cell populations are assumed to grow according to a logistic

growth law that is mechanistically modified by their interactions. Further, the cancer population

has a dynamically growing carrying capacity. A generalization of this model can be found in

[29].

The control one-tumour model, equations (3.1)–(3.3), describe a system of three dependent

variables, C(t), K(t), and I(t), which represent tumour volume, cancer carrying capacity vol-

ume, and immune volume respectively. Parameter α is the intrinsic tumour growth rate and

K(t) is the dynamic cancer carrying capacity with stimulation coefficient p and inhibition coeffi-

cient q. The dynamic cancer carrying capacity (K(t)) is determined by a balance of stimulatory

(pro-angiogenic) and inhibitory (anti-angiogenic) terms [17]. The dynamic capacity thus grows

12
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in response to the growing cancer, which is more biological.

In the dynamic carrying capacity, parameters a and b determine the weight of pro-tumour

immune actions contributing to capacity growth. The majority of these signals are assumed to

originate from the cancer population, requiring a and b to be small. The weight of immune-

produced tumour-promoting factors (i.e. pro-angiogenic signals) that act to increase the tu-

mours carrying capacity is controlled by a, and the weight of immune-produced tumour-

inhibiting factors (i.e. anti-angiogenic signals) that act to limit the tumours carrying capacity

is controlled by b. Thus, in this study a > b so that more weight is placed on immune stim-

ulation of cancer carrying capacity than on inhibition. Further it is assumed that 0 ≤ a ≤ 1

and 0 ≤ b ≤ 2
3 . For the immune population, β is the intrinsic immune growth rate, KI is the

constant carrying capacity, and ρ is the cancer-induced immune recruitment.

dC

dt
= αC

(
1− C

K

)
C(0) = C0 (3.1)

dK

dt
= p(1 + I)aC1−a − qK(1 + I)bC

2
3
−b K(0) = K0 (3.2)

dI

dt
= β(I + ρC)

(
1− I

KI

)
I(0) = I0 (3.3)

3.3 Two-Tumour Model

In the two-tumour scenario, the hypothesis purports that one tumour site will be larger than

the other due to competition for pro-tumour inflammatory immune cells. To model this, two

sets of the control one-tumour model are coupled together via immune competition.

Let C1(t), K1(t), and I1(t) be the variables describing the big tumour site’s tumour volume,

cancer carrying capacity volume, and immune volume, respectively. Similarly, C2(t), K2(t),

and I2(t), describe the small tumour site’s tumour volume, cancer carrying capacity volume,

and immune volume, respectively. The model equations are thus:

13



CHAPTER 3. MODEL EQUATIONS 3.3. TWO-TUMOUR MODEL

dC1

dt
= αC1

(
1− C1

K1

)
C1(0) = C10 (3.4)

dK1

dt
= p(1 + I1)

aC1−a
1 − qK1(1 + I1)

bC
2
3
−b

1 K1(0) = K10 (3.5)

dI1
dt

= β(I1 + ρC1)

(
1− I1 + I2

KI

)
I1(0) = I10 (3.6)

dC2

dt
= αC2

(
1− C2

K2

)
C2(0) = C20 (3.7)

dK2

dt
= p(1 + I2)

aC1−a
2 − qK2(1 + I2)

bC
2
3
−b

2 K2(0) = K20 (3.8)

dI2
dt

= β(I2 + ρC2)

(
1− I1 + I2

KI

)
I2(0) = I20 (3.9)

Nominally, parameter values at each site should be the same as in the control one-tumour

model. The coupling of the two sites is introduced by requiring both I1(t) and I2(t) to draw

from the same systemic pool of immune carrying capacity, the constant KI . This is introduced

into equations (3.6) and (3.9).
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Chapter 4

Model Parameterization

For the control one-tumour model, some parameters are fixed and the remaining parameters

are fitted to our control experimental data. The fixed parameters include C0, I0, KI , a, and b.

From the experimental setup, C0 = 106 cells which is approximately 1 mm3. For the immune

population, no initial presence is assumed, I0 = 0 mm3, and KI = 1500 mm3, which is a similar

size to the maximal control tumour burden exhibited in the data. In this work, a = 0.2, which

allows immune cells to contribute to tumour promotion but requires the majority of stimulation

to originate from the tumour itself. Similarly, b = 0.1 (a value slightly less than a), limiting the

amount of tumour inhibition originating from immune actions.

The remaining model parameters (α, K0, p, q, β, and ρ) are determined by fitting the model

prediction to the control experimental data. To do this, a simulated annealing algorithm [8] is

used with the root mean squared error (RMSE) objective function, defined as

RMSE =

√∑n
i=1

(
Ci − C(ti)

)2
n

where Ci are the control tumour volume measurements on day ti, C(ti) is the model predicted

tumour volume on day ti, and n is the total number of data points available.

The simulated annealing algorithm works as follows:

1. Generate a random initial guess for parameter vector V = [α,K0, p, q, β, ρ], numerically

compute the solution C(t) by solving the ODE system using the dsolve command in

Maple, and calculate the objective function value RMSE

2. One at a time, perturb each parameter to generate a trial vector V ′, numerically compute

this new solution C(t) by solving the ODE system using the dsolve command in Maple,

and calculate the associated objective function value RMSE’.
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CHAPTER 4. MODEL PARAMETERIZATION

3. Accept this new parameter if the fit is better (RMSE′ < RMSE) or accept it some-

times if the fit is worse. Thus acceptance is determined by the probabilistic condition:

p ≤ exp
(
− 1
T (RMSE′ −RMSE)

)
, where p ∼ U(0, 1) is a uniformly distributed random

variable.

4. Repeat from 2 until convergence is met(
|RMSEave −RMSE|

RMSEave
< δ and

|RMSEave −RMSEmin|
RMSEave

< δ

)
with δ = 0.001, or until the number of iterations exceeds 35, 000 .

The scheme to perturb parameter values and the temperature T are updated as the algo-

rithm moves towards convergence. To estimate the fitted model parameters, the method was

run ten times with 35, 000 trials per parameter in each run.

Ten parameter fitting runs were performed (see results in Table 4.1) and the parameter set

with the best fit, as measured by RMSE, was chosen (run 4). This best fit is simulated and

shown in Figure 4.1. Parameter values were rounded to three significant digits (Final Set) and

used in all numerical simulations, unless otherwise stated. Note that all ten runs fit the data

well, as seen in Figure 4.2.

Figure 4.1: The best fit from the simulated annealing algorithm (run 4) numerically plotted
against the control experimental data.
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CHAPTER 4. MODEL PARAMETERIZATION

Table 4.1: Simulated annealing results from ten runs of the algorithm to fit the one-tumour
model parameters α, K0, p, q, β, and ρ to control experimental data. The minimum RMSE
parameter set (run 4) is highlighted in red. Run 4 parameter values were rounded to three
significant digits for use in all numerical simulations (Final Set).

α K0 p q β ρ RMSE

Run 1 0.59949 121.93 1.5545 0.012630 0.41162 0.28871 26.502
Run 2 0.72289 48.101 0.93735 0.0075513 0.41429 0.30035 25.340
Run 3 0.76722 40.617 0.65666 0.0052061 0.46719 0.74815 25.324
Run 4 0.78713 50.371 0.72609 0.0057981 0.53478 0.15241 25.259
Run 5 0.71542 83.812 0.71071 0.0056548 0.65263 0.091487 25.492
Run 6 0.75099 42.274 0.81046 0.0064677 0.28287 0.99941 25.262
Run 7 0.72814 36.384 0.59843 0.0046818 0.83172 0.59145 25.689
Run 8 0.57498 159.27 2.4627 0.018778 0.17165 0.62727 26.515
Run 9 0.63564 99.106 0.86330 0.0069123 0.52281 0.47301 25.440
Run 10 0.59944 169.16 1.2142 0.0096719 0.43812 0.25751 25.559

Final Set 0.787 50.4 0.726 0.00580 0.535 0.152 25.262

Table 4.2: Baseline fitted and fixed parameter values used in all numerical simulations unless
otherwise stated.

Fitted Parameters Fixed Parameters

α = 0.787 days−1 K0 = 50.4 mm3 C0 = 1 mm3 I0 = 0 mm3

p = 0.726 days−1 q = 0.00580 days−1(mm3)−
2
3 a = 0.2 b = 0.1

β = 0.535 days−1 ρ = 0.152 KI = 1500 mm3

In summary, the values of all model parameters, both fixed and fitted, used as a baseline in

all future simulations and analyses of this thesis are listed in Table 4.2.
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CHAPTER 4. MODEL PARAMETERIZATION

Figure 4.2: Ten runs of the simulated annealing algorithm produced ten parameter sets that
all fit the control data equally well (see Table 4.1). The set with the smallest RMSE, rounded
to three significant digits, was chosen to work with in all future simulations (Final Set in Table
4.1).
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Chapter 5

Model Analysis and Parameter

Sensitivity

5.1 Model Steady State Analyses

To explore the steady-state of the control one-tumour model, the equilibrium conditions are

found for equations (3.1)–(3.3). Three equilibrium points exist in the dynamical system,

two cancer-free points (C,K, I) = (0, 0, 0), (C,K, I) = (0, 0,KI), and one cancerous point

(C,K, I) = (Keq
c ,K

eq
c ,KI), where Keq

c =
[
p
q (1 +KI)

a−b
] 1

2
3+a−b .

The two-tumour model, equations (3.4)–(3.9), has five possible equilibrium points as follows:

two cancer-free points

1 (C1,K1, I1;C2,K2, I2) = (0, 0, 0; 0, 0, 0)

2 (C1,K1, I1;C2,K2, I2) = (0, 0, Ieq1 ; 0, 0, Ieq2 ),

and three cancerous points

3 (C1,K1, I1;C2,K2, I2) = (Keq
C1,K

eq
C1, I

eq
1 ; 0, 0, 0),

4 (C1,K1, I1;C2,K2, I2) = (0, 0, 0;Keq
C2,K

eq
C2, I

eq
2 ), and

5 (C1,K1, I1;C2,K2, I2) = (Keq
C1,K

eq
C1, I

eq
1 ;Keq

C2,K
eq
C2, I

eq
2 )

where Ieq1 + Ieq2 = KI , K
eq
C1 =

[
p
q (1 + Ieq1 )a−b

] 1
2
3+a−b , and Keq

C2 =
[
p
q (1 +KI − Ieq1 )a−b

] 1
2
3+a−b .

Parameters a, b, p, and q figure prominently in the equilibrium sizes of the tumour volumes.

Since parameters a and b are fixed in this work, the effect of these parameters on tumour

equilibrium size is studied. Figure 5.1a shows the effect of increasing a on Keq
C , the control
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(a) Dependence of Keq
C on a (b) Equilibrium value trade-offs

Figure 5.1: The dependence of equilibrium tumour volume, Keq
C , in the control model, on

parameters a and b, shown in (a); and the dependence of equilibrium tumour volumes Keq
C1,

and Keq
C2, of the two-tumour model, on immune equilibrium size Ieq1 , shown in (b).

tumour equilibrium size, for various values of parameter b. Overall, when a is increased from

a = b to a = 1, the final tumour size increases less than 4%, suggesting that the values of a and

b chosen in this work do not significantly affect the results. That is, Keq
c is robust to changes

in a and b.

The competition for immune recruitment between the two sites in the two-tumour model

determines equilibrium tumour size for each site. Figure 5.1b shows that unless there is an

extreme difference in equilibrium immune sizes (i.e. Ieq1 � Ieq2 or Ieq2 � Ieq1 ), the two sites will

have comparable volumes (less than a 30% difference). Recall, however, that this equilibrium

analysis does not demonstrate behaviours for short time. This analysis suggests that even

though one site may have a faster growth rate than the other site at early times, for late times

the two tumour volumes will be comparable.

5.2 Parameter Sensitivity

A parameter sensitivity analysis is used to determine the local dependency of model predictions

on parameter values. In the control one-tumour model, there are both fixed and fitted parame-

ters. In the analysis, each parameter value is varied by 20% up or down from the value listed in

Table 4.2, and the relative change in tumour volume at day 15 is reported in Figure 5.2. Note

that for the fitted parameters, tumour growth rate α and cancer carrying capacity stimulation
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coefficient p are the most influential to tumour volume. For fixed parameters, initial tumour

volume C0 is the most influential, but this value is determined by the experimental setup.

Parameter Sensitivity for Fitted Parameters
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(a) Fitted Parameters

Parameter Sensitivity for Fixed Parameters
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(b) Fixed Parameters

Figure 5.2: Each parameter value is varied by 20% up and down and the relative change in
tumour volume at day 15 is reported.

Fitted model parameters q, β, ρ, and K0 have less influence on tumour size on day 15

compared to α and p. Similarly, the fixed model parameters a, b, and KI have less influence

compared to C0. This result is important as the values for a, b, and KI were chosen based on

arguments presented in Chapter 3.2 to simplify the parameterization process.
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Chapter 6

Numerical Simulations and Results

This chapter presents several numerical simulations of the two-tumour model designed to test

potential causative mechanisms related to the proposed biological hypothesis. All model simu-

lations are computed using the ODE45 command in MATLAB.

6.1 Single Variable Mechanisms

Using the two-tumour model, equations (3.4)–(3.9), single causative mechanisms are tested to

determine if differences in the corresponding test parameter value can explain the observed

growth rate differences. To do this, all parameter values are set to the nominal values listed

in Table 4.2 except the one parameter that corresponds to the test mechanism. This test

parameter is then allowed to vary, and the value generating the best fit to the two tumour data

(as measured by RMSE) is found.

First the initial tumour size at the smaller side (here assumed to be C2(0) = C20) is tested.

Biologically, this corresponds to the second injection containing less viable (less healthy and

less proliferative) cells compared to the first injection. Mathematically, this is described by

C20 ≤ C10, and this condition is fit to the experimental data by defining C20 = γC10, where

γ ∈ [0, 1] and C10 = 1 mm3. The best fit, as shown in Figure 6.1a is obtained when γ = 0.053.

This corresponds to the second injection (C20) containing only 5% of the viable cells in the

first injection (C10). This extreme difference required by the model to explain the data is not

acceptable as a potential mechanism because it is not biologically feasible given the experimental

setup. Thus, this single mechanism is rejected as a potential causative mechanism explaining

the different growth rates.

Next, immune growth rate is tested as a potential causative mechanism. Biologically, this

corresponds to different intrinsic growth rates between the two sides, due to different combina-

22



CHAPTER 6. RESULTS 6.1. SINGLE VARIABLE MECHANISMS

tions and levels of signaling factors (cytokines) present at the two sites. Mathematically, this

is described as β2 ≤ β1, and this condition is fit to the experimental data by defining β2 = γβ1,

where γ ∈ [0, 1] and β1 = 0.535 from Table 4.2. The best fit, as shown in Figure 6.1b is obtained

when γ = 0.228. This corresponds to the small tumour site having an intrinsic growth rate

of β2 = 0.122, potentially due to a decrease in immune recruitment and proliferative signals

at that site. This difference required by the model to explain the data is not acceptable as a

potential mechanism because the difference is large and thus determined to be not biologically

feasible. Thus, this single mechanism is rejected as a potential causative mechanism explaining

the different tumour growth rates.
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(a) Vary initial tumour size
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Figure 6.1: Two-tumour simulation testing differences in initial tumour size (a) and intrinsic
immune growth rate (b).

Next, initial immune size is tested as a potential causative mechanism. Nominally, in all

simulations, no initial immune presence is assumed. Here, however, initial immune presence is

tested to determine if increasing the initial condition can explain the different tumour growth

rates. Biologically, this corresponds to one site already containing inflammatory immune cells

potentially due to injury (bruise or bite for example) prior to injection. To fit the model

prediction to the data, I20 = 0 and I10 is allowed to increase positively. The best fit, as shown

in Figure 6.2a is obtained when I10 = 103 mm3, which is a large initial presence compared to

the other site. This extreme difference required by the model to fit the data is determined to

be not acceptable, and thus, this single mechanism is rejected.

Finally, immune recruitment is tested as a potential mechanism. Biologically, this corre-

sponds to the strength with which the local cancer presence is attracting immune cells, and is

determined by the signalling factors they produce. Mathematically, this is describe by ρ2 ≤ ρ1,
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(a) Vary initial immune size
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Figure 6.2: Two-tumour simulation testing differences in initial immune size (a) and immune
recruitment (b).

and this condition is fit to the experimental data by defining ρ2 = γρ1, where γ ∈ [0, 1]

and ρ1 = 0.152 from Table 4.2. The best fit, as shown in Figure 6.2b is obtained when

γ = 0.033. This corresponds to the smaller tumour site having an immune recruitment param-

eter of ρ2 = 0.005, which is determined to be unacceptably small. Thus, this single mechanism

is rejected as a potential causative mechanism explaining the different tumour growth rates.

All four of the single parameter mechanisms tested above have been rejected because they

require extreme differences between the two sites which are determined to be unacceptable and

not biologically feasible. Thus, combinations of these parameter values will now be tested.

6.2 Combination Variable Mechanisms

The first combination of mechanisms tested, includes the four single parameters described in

the previous section (C20, β2, I10, and ρ2). The result of allowing all four of these parameters to

vary at once is shown in Figure 6.3a. The best fit requires C20 = 0.3 mm3, β2 = 0.9β1, I10 = 15

mm3, and ρ2 = 0.9ρ1. Although the immune growth rate (β2), the immune recruitment (ρ2),

and even the initial immune presence (I10) are all acceptably small deviations off their baseline

values, the initial cancer presence (C20) is not. The best fit requires the second tumour injection

to contain only 30% of the number of viable cells in the first injection. This is determined to

be not biologically feasible and this combination is thus rejected.

Next, the initial carrying capacity of each site is tested as a potential causative mechanism.

To fit the model prediction to the data, both K10 and K20 are allowed to increase positively
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from zero. Recall that the baseline value for K0 = 50.4 mm3 (see Table 4.2). To fit the data, it

is expected that K20 ≤ K10, and in fact the best fit requires K10 = 204.3 mm3 and K20 = 2.1

mm3, as shown in Figure 6.3b. This corresponds to the first site initially having a much larger

capability to support tumour growth than the second site, potentially due to an increased

vasculature and/or inflammatory presence. The difference in initial capacity values required

by the model to fit the data, however, is determined to be too large, and thus this test case is

rejected.
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Figure 6.3: Two-tumour simulation varying either the four parameters C20, I10, β2, and ρ2 in
(a), or varying the initial carrying capacities K10 and K20 in (b).

The next combination of mechanisms tested involves all six parameters described so far,

(C20, I10, β2, ρ2, K10, and K20). The result of allowing all six of these parameters to vary at

once is shown in Figure 6.4a. The best fit requires C20 = 0.5 mm3, I10 = 1 mm3, β2 = β1,

ρ2 = 0.1ρ1, K10 = 146 mm3, and K20 = 53 mm3. This best fit has an RMSE = 99.5, which

is the smallest achieved so far. Note that the immune growth rate β2 = β1 and the initial

immune presence I10 ≈ I20. Further, immune recruitment ρ2 is only 10% of ρ1, however, the

sensitivity analysis shows that the model output is not very sensitive to ρ, and so this difference

may be acceptable. Initial cancer presence at site two, C20, is only 50% of that associated with

site one, which is again deemed to be unacceptable and not biologically feasible. This fit also

requires a large difference between the initial carrying capacities of the two sites, which is also

not acceptable. These large differences in initial cancer presence and carrying capacities require

the rejection of this combination of mechanisms.

The last combination of mechanisms tested, are those associated with a pre-inflamed site

prior to injection. Parameters that describe this environment are I10, I20, K10, and K20. Note
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Figure 6.4: Two-tumour simulation varying either the six parameters C20, I10, β2, ρ2, K10,
and K20 in (a), or varying the pre-inflamed parameters I10, I20, K10, and K20 in (b).

that other parameters are fixed to be equal between the two sites: C10 = C20, β1 = β2, and

ρ1 = ρ2 at the baseline values listed in Table 4.2. The result of allowing these pre-inflamed

parameters to vary is shown in Figure 6.4b. The best fit requires I10 = 35 mm3, I20 = 0 mm3,

K10 = 34 mm3, and K20 = 18 mm3. The differences between the two sites in parameter values

are not large and thus deemed acceptable. Further, the fit is visually good, and the RMSE

= 104.9, which is not the best achieved in this work, but is still a very good fit. The biological

mechanisms underlying these four parameters correspond to one site being pre-inflamed prior

to cancer cell injection. This could be caused by a bruise or injury to the site before the

experiment started which is a possibility. This pre-inflamed combination of mechanisms is thus

accepted as the best prediction of the model to fit the experimental data within the framework

of the proposed biological hypothesis.
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Discussion and Conclusions

Experimental data shows that when two tumours are injected simultaneously, their growth rates

may differentiate causing one slow and one fast growing tumour. This thesis presents unbalanced

accumulation of tumour-promoting inflammation as a potential biological explanation for this

growth rate separation. It then develops and analyzes a mathematical model designed to test

this hypothesis. The model formulation involves a multi-compartment ODE system capturing

tumour volume, cancer carrying capacity, and immune volume at each of the two injection sites.

To explore the shape of the experimental data, exponential and logistic growth models were

fit to the data, assuming either a fixed or variable initial condition (C0 = 106 cells ≈ 1 mm3).

The best fit to the data was the 3-parameter model, the logistic model with an initial condition

fit to the data. Of the two 2-parameter models considered, the logistic model also provided

a better fit compared to the exponential model. The logistic growth model was thus used to

describe tumour growth in the developed ODE system.

The model is formulated such that the cancer volume is assumed to grow according to a

generalized logistic law that is mechanistically accentuated by tumour promoting inflammation

altering the dynamic carrying capacity. The hypothesis explored here suggests that one tumour

site may be larger than the other because of unbalanced accumulation of tumour-promoting

immune cells. Competition for immune recruitment between the two sites determines the local

immune presence at each site, but their combined size is limited by the fixed immune capacity

KI .

Some model parameter values were fixed to simplify the parameterization process. Specif-

ically, a = 0.2 and b = 0.1 were chosen such that more weight of immune action was placed

on tumour promotion rather than inhibition (a > b), and the majority of cancer growth was

stimulated by the tumour itself (a and b small). Additionally, KI = 1500 mm3 was chosen

such that the immune response obtained a similar maximal size as the control tumour burden.
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Nominally C0 = 1 mm3 as this was the experimental setup, and and I0 = 0 mm3 as no initial

immune presence was assumed. Model parameterization was then performed using the control

(one-tumour) model and data. The remaining model parameters (α, p, q, β, ρ, and K0) were

estimated using a simulated annealing algorithm. Of ten runs, the parameters obtaining the

smallest RMSE were chosen to work with in all simulations.

A numerical parameter sensitivity analysis was performed by varying each parameter value

by 20 percent (up and down) and reporting the relative change in tumour volume on day

15. Of the fitted parameters, intrinsic tumour growth rate (α) and cancer carrying capacity

stimulation coefficient (p) were the most influential to tumour volume. For fixed parameters,

initial tumour volume C0 was most influential but this value is determined by the experimental

setup. Importantly, fixed parameters a and b were found to be some of the least significant

parameters to tumour volume, which supports the choice to fix these values prior to data fitting.

Numerical simulations of the two-tumour model were performed to test the biological hy-

pothesis. To do this, either single parameters or combinations of parameters were fit to the

two-tumour data. RMSE was used to measure the goodness-of-fit for each simulation. The

best fit was found by perturbing all six considered parameters / mechanisms. However, due

to biological constraints, it is suggested here that the most biologically probable combination

of parameters that enable the model to fit the data are the pre-inflamed parameters: I10, I20,

K10, and K20. This combination of parameters fit to the two-tumour data describes a situation

where one site has a slightly larger initial immune presence and a slightly elevated initial cancer

carrying capacity than the other site. These slight differences between the two sites allow the

model to predict one fast and one slow growing tumour in a biologically feasible scenario.

Biologically, this work highlights the significant influence that inflammation can have on

tumour growth. The model demonstrates that inflammatory cells have the potential to al-

ter growth dynamics significantly, and in a systemic (whole-host) manner. This extends not

just to multiple tumour burdens, such as in metastatic conditions, but also to the different

growth rates observed within the same tumour type across individuals (inter-patient variabil-

ity). Inflammation is a hallmark of cancer, associated with all cancer types, and it provides a

simple explanation for the experimental data focused on in this study, compared to concomitant

resistance or other mechanisms.

7.1 Future Work

In this thesis, I presented a mathematical model to describe the effects of localized inflammatory

immune recruitment and competition between two cancer sites on tumour growth rates, using

a multi-compartment ODE system. Further work could incorporate concomitant resistance
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mechanisms of angiogenesis inhibition or proliferation inhibition into the model formulation

developed here. Then, the concomitant resistance mechanisms could be compared to the in-

flammation mechanism within the same model framework, to determine which mechanisms best

describe the two-tumour experimental data. Furthermore, the development of a PDE model

from this ODE framework would expand on the spatial aspects of the immune competition and

allow further numerical testing of the proposed hypothesis.
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