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Abstract 

Distributed Denial of Service (DDoS) attacks is one of the most dangerous cyber-attack to 

Software Defined Networks (SDN). It works by sending a large volume of fake network traffic 

from multiple sources in order to consume the network resources. Among various DDoS attacks, 

TCP SYN flooding attack is one of the most popular DDoS attacks. In this attack, the attacker 

sends large amounts of half-open TCP connections on the targeted server in order to exhaust its 

resources and make it unavailable. SDN architecture separates the control plane and data plane. 

This separation makes it easier to the controller to program and manage the entire network from 

single device to make better decisions than when the control is distributed among all the switches. 

These features will be utilized in this thesis to implement our detection system. Researchers have 

proposed many solutions to better utilize SDN to detect DDoS attacks, however, it is still a very 

challenging problem for quick and precise detection of this kind of attacks. In this thesis, we 

introduce a novel DDoS detection system based on semi-supervised algorithm with Logistic 

Regression classifier. The algorithm is implemented as a software module on POX SDN controller. 

We have conducted various test scenarios, comparing it with the traditional approach in the 

literature. The approach presented in this thesis manages to have a better attack detection rate with 

a lower reaction time. 
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Chapter 1 

1 Introduction  

1.1 Problem Statement 

Software Defined Network (SDN) is an emerging networking paradigm that improves on the 

limitation of traditional network infrastructure. By moving the control plane to a centralized 

controller, SDN simplifies the policy enforcement and network configuration. In addition, the 

networking devices are made simple with lower costs.  

 

Despite the fact that SDN has obvious advantages such as centralization and network flexibility, 

it is as susceptible as traditional networks to network security attacks, a case in point, DDoS attack. 

Among DDoS attacks, TCP SYN flooding attacks is one of the most popular and effective attacks. 

TCP SYN attack exploits the weakness of the Transmission Control protocol (TCP). The attacker 

produces many half-open TCP connections on the targeted server in order to degrade its 

availability. Furthermore, when applied to SDN, TCP SYN flooding attack also introduces control 

plane saturation attack. In particular, the attacker generates a significant number of TCP SYN 

packets and elicits the data plane switches to forward them to the controller. As a result, the 

performance of the controller degrades and may not be able to respond to genuine requests in an 

acceptable time. In the worst case scenario the attack may lead to a network outage. 

 

In this thesis, we will propose semi-supervised machine learning algorithm by using Logistic 

Regression classifier to detect TCP SYN flooding attack in SDN, which utilizes the dynamic 

programmability nature of SDN to detect attacks. We have employed four important features 

(Packets, Bytes, Flows and One_Packet) to train our LR classifier off-line. The predictive model 

produced from off-line training is then used in on-line attack detection, and simultaneously 

continue to classify the incoming traffic, to update the training dataset to retrain our classifier.  We 

will implement extension modules on POX controller and evaluate it under different attack 

scenarios.  
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1.2 Research Objective and Contribution 

The target of this research is to detect DDoS attacks by utilizing the unique feature of SDN 

architecture. The main contributions of this thesis are: 

1. Propose a semi-supervised machine learning methodology for detecting DDoS attacks.  

2. Implement the proposed semi-supervised algorithm in the SDN environment. 

3. Compare, analyze and evaluate the proposed detection system with statistical approach 

[16] found in the literature. 

 

1.3 Thesis structure 

The rest of this thesis is organized in the following order: 

Chapter 2 provides necessary background information of SDN architecture and the current 

research of DDoS attacks in SDN networks.  

Chapter 3 describes the details of the proposed machine learning classifier in an off-line mode as 

well as an on-line mode. 

Chapter 4 determines the effectiveness of machine learning classification in an SDN/Open Flow 

environment by evaluating a Semi-supervised algorithm by using Logistic Regression classifier 

on an on-line network testbed. 

Chapter 5 closes the main body of the thesis by presenting the final conclusions and proposing 

Future work. 
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Chapter 2 

2 Background and Related Work 

This chapter covers Software Defined Networking (SDN) architecture in detail. We will take a 

look at SDN benefits, SDN-capable switching devices, SDN controller, OpenFlow protocol, and 

finally review previous work in SDN security will be reviewed. 

 

2.1 Architecture of SDN  

Software Defined Network (SDN) is an emerging architecture that moves the control plane from 

the networking devices, such as routers and switches to a centralized controller [2]. To increase 

the flexibility, the controller is also made programmable, the programmability of SDN provides a 

platform to researchers and network engineers to deploy new ideas and network applications. 

SDN network architecture can be defined as four pillars [2]: 

1. The control plane and the date plane are separated. 

2. Network traffic forwarding decisions are flow-based, instead of destination-based. 

3. Control logic is moved to an external entity, namely, SDN controller or Network Operating 

System NOS. 

4. The network is programmable through software applications running on top of the 

controller, which interacts with the underlying data planes devices. 

 

As shown in figure 1, the architecture consists of three layers. The infrastructure layer also known 

as data plane, comprises the forwarding elements for data traffic. The control layer, is an external 

control plane which manages and programs the infrastructure layer. Finally, the application layer 

contains network applications for the network features, such as network management [1].  
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Figure 1: SDN Architecture [1] 

 

2.2 SDN Security benefits 

SDN can be utilized to manage the entire network as if it was a single device, it will be considered 

as the hardware independent next generation networking paradigm in which the networking device 

from any vendors could be controlled through SDN. Network capabilities such as, global view of 

the network, dynamic updating of forwarding rules and so on, can facilitate DDoS attacks 

detection, however the separation of the control plane from the data plane leads to new emerging 

types of attacks. For instance, an attacker can exploit the characteristics of SDN to launch DDoS 

attacks against the control, infrastructure and application layers of SDN. We can observe some 

good features of SDN in defeating DDoS attacks in the following table [32]: 
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Good features of SDN Benefits for defending DDoS attacks  

 

Decoupled control and data plane It is able to establish large scale attacks and 

defence experiments easily.  

 

Controller centralized view of the 

network 

It helps to build a consistent security policy 

 

Programmability of the network by 

external applications  

 

It supports a process of harvesting intelligence 

from existing IDSs and IPSs  

 

Software based traffic analysis  

 

It improves the capabilities of a switch using any 

software-based technique.  

 

Dynamic updating of forwarding rules 

and flow abstraction  

 

It helps to respond promptly  

 

Table 1: Good features of SDN in defeating DDoS attacks [32] 

 

2.3 OpenFlow Protocol and OpenFlow Switch 

OpenFlow is a standard protocol that is used to provide communication between a controller and 

a network device. The OpenFlow architecture is made up of 3 main components: an OpenFlow 

switch/router, OpenFlow controller and a secure channel to connect the switch to the controller. 

The OpenFlow protocol allows the SDN/OpenFlow controller to install flows for hosts 

connected, and gather traffic statistic from switch through a secure communication channel as 

shown in figure 2. 

 

Figure 2: OpenFlow Protocol [29] 
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The network devices which is usually an OpenFlow switch, is only responsible to forward data. 

No proprietary vendor specific hardware is required. The forwarding behavior of a switch is 

controlled by the controller, which installs flow entries in the flow tables of the switch to steer the 

traffic to appropriate destinations [6, 23]. In such devices Ternary Content Addressable Memory 

(TCAM) is used to build flow table [30]. 

 

An example of OpenFlow enabled switch is shown in figure 3. In this figure, the header fields of 

arriving packets are matched against header fields located in the TCAM or flow table. The action 

column indicates what to do with the packet if a match is found, the action assigned to that entry 

is applied and the counter for the entry will be updated. If no match is found, then the switch 

forwards Packet_IN message to the OpenFlow controller over secure channel to obtain new flow 

rules. The controller processes the packet and sends Packet_OUT / Flow_MOD message back to 

the switch to be added to the flow table. 

 

 

Figure 3: OpenFlow-enabled switch [31] 
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2.4 SDN Controllers 

SDN Controllers in a software-defined network is the brain of the network. SDN controllers use 

southbound protocol, such as OpenFlow, to communicate with the network devices. Figure 4 

shows current well-known SDN controllers including POX, ONOS, Floodlight and 

OpenDaylight.   

 
Figure 4: Different SDN Controllers [30] 

 

POX 

POX [33] is an open source controller for developing SDN applications. POX controllers provides 

an efficient way to implement the OpenFlow protocol which is the de facto communication 

protocol between controllers and switches. We have validated the proposed algorithm in our thesis 

in POX controller. 

 

2.5 DDoS attacks 

DDoS attacks are one of the most proper kind of network attacks. The aim of the attacks is to 

exhaust network resources and make the network unavailable to the legitimate users by sending a 
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large amount of attack traffic. The attacker usually sends a massive volume of packets to the 

attack target with spoofed source IP addresses to make it look like normal traffic. The 

differentiation between legitimate and malicious traffic sent by an attacker is one of the biggest 

challenges to detect DDoS attacks as shown in figure 5 

 

Figure 5: DDoS Attack on SDN controller [28] 

 

2.5.1 TCP SYN attack 

In TCP connection, the connection between legitimate host and server are established by using 

three way TCP handshake. As illustrated in figure 6, the client initiates SYN packet and server 

replies with SYN-ACK. The server entering the listening state allocates a transmission control 

block (TCB) to store user data and connection information. The server stays on this state for a 
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certain amount of time even if it does not receive the ACK from the client. If the client responds 

with ACK, the TCP connection will be established successfully [27]. 

 

However, this mechanism may be exploited by attackers using SYN spoofed attack. The attacker 

could launch SYN flooding that create half-open connections using forged IP addresses.  

As a result, the server queues will be congested, denying new TCP connections to legitimate hosts.  

 

Figure 6: TCP SYN Flood [27] 

 

2.5.2 UDP flood attack 

The fact that UDP is a connectionless networking protocol can make UDP more exposed to 

exploitation. It’s similar to TCP SYN flood attack, UDP flood attack can be initiated by sending a 

large number of UDP packets with spoofed source IP addresses to hide the source of attack. The 

attacker overwhelms the victim server leading it to be unreachable by other legitimate clients. 

 

https://en.wikipedia.org/wiki/Packet_(information_technology)
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2.5.3 ICMP flood attack 

Normally, ICMP is used in testing connectivity between two hosts, one of the hosts initiates an 

ICMP echo request to solicit an echo reply from the other host. Like TCP and UDP flood attacks, 

the attackers use spoofed or un-spoofed fabricated ICMP echo requests to overload a target 

network with data packets that leads to consume victim bandwidth and prevent access to the 

legitimate users [27]. 

 

2.6 Related Works 

The logically centralized control-plane in SDN architecture is a sword with of two edges. On one 

hand, its global view of the network and dynamic updating of forwarding rules, make it easier to 

detect and respond to DDoS attacks. On the other hand, it provides single point of failure in the 

network that make it a target for DDoS attacks. In this section, we will present a selection of 

previous research regarding DDoS attack detection and countermeasures using SDN. 

 

AVANT-GUARD [4] is a framework that rely on two modules to identify TCP SYN flood attacks. 

The first module named Connection migration, which is installed as an extension in data plane to 

act as a proxy for ingress SYN packets to prevent saturation attack from reaching control plane. 

The second module named actuating triggers which installed in the controller. If network traffic 

were identified as malicious, actuating triggers module enables an event for the controller to install 

flow rule in switch to decrease response time. The most conspicuous side effect of this mechanism 

is the performance penalty, since it utilizes connection migration, each flow needs to be classified. 

AVANT-GUARD requires upgrading all switches in data plane to support AVANT-GUARD 

features. 

 

The authors of [5] proposed solution called LineSwitch as an extension of AVANT-Guard. 

LineSwitch utilize SYN proxy technique in data plane switches for all TCP connections from given 

IP source. Once it detects the SYN flood attack, it will apply probabilistic black-listing and prevent 

all TCP packets from this IP source. This solution can effectively prevent the SYN flood attack 

against SDN network with little expense, however, similar to AVANT-GUARD, it is required to 

upgrade data plane switches when applying LineSwitch mechanism. 
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Chin et al. [26] proposed collaborative approach for detection and containment of TCP SYN flood 

attacks. They have implemented a system with two main components, the first component is 

sensory monitors which are distributed across the network for each open virtual switch (OVS). 

The second component is called correlator residing in the controllers. Once the monitor detects an 

attack, it informs the correlator by sending an alert message which holds a number of source IP 

addresses found in SYN packets. As a result, the controller manages further actions to either update 

normal traffic profiles, in order to avoid future false alerts or to mitigate effects of an attack by 

blocking malicious hosts. However, this work in a large scale network will create an overhead on 

the network, because it will need Monitors and Correlators for every OVS and Controllers 

respectively. 

 

Mohan Dhawan et al. in [7] proposed SPHINX as a solution to detect suspicious activity in the 

network using real-time flow graph. SPHINX is implemented as a module in the controller and 

can detect TCP flooding attack, by validating the rate of packet-in messages which correspond to 

the new SYN requests. SPHINX raises an alert if the rate of PACKET_IN messages is above the 

administrator-specified threshold. However, setting a control threshold for detecting SYN flooding 

attack is a static solution and would likely generate false alarms [8].  

 

SLICOTS [9] proposed as lightweight extension which is installed as a module in the controller to 

detect and mitigate SYN flooding attacks in SDN Environment. It monitors all ongoing TCP 

connections requests, however, SLICOTS validates 3-way handshake by installing temporary 

forwarding rules during TCP handshaking process. If the traffic is benign, it will install  permanent 

forwarding rules between the client and server. Otherwise, SLICOTS blocks the attacker that 

creates a high volume number of half-open TCP connections. The main disadvantage of this 

solution is the installation of temporary or new forwarding rules that might increase the bandwidth 

consumption in case there is a flash crowd user’s request. 

 

Nhu et al. [10] proposed a method to protect SDN network against DDoS flooding attacks. The 

authors analyzed the user behavior in terms of number of packets per connection using the fact 

that the number of packets per connection generated by the malicious users is usually smaller than 

the number of packets per connection generated by normal users. Therefore, DDoS attacks can be 
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detected based on the average number of connections and minimum number of packets per 

connection. If an attack is detected, the controller mitigates the attack by changing the default hard 

timeouts and idle timeouts of attacker flows to a minimum value to quickly remove them from the 

switch. However, the authors admit their approach will not scale for large traffic attacks. 

 

FloodGuard [11] system is divided to two modules to detect data-to-control plane saturation 

attacks. When the saturation attack is detected by FLOODGUARD, the packet migration module 

will redirect the table-miss packets in the OpenFlow switch to the data plane cache. At the same 

time, the proactive flow rule analyzer module will dynamically track the runtime value of the state 

sensitive variables from the running applications, convert generated path conditions to the 

proactive flow rules dynamically and install these flow rules into the OpenFlow switches. Then 

the data plane cache will slowly send the table-miss packets as packet_in messages to the controller 

by using rate limiting and round-robin scheduling algorithm. However, this approach needs 

additional devices to accommodate table-miss traffic and switches upgrades. 

 

Wang et al. [12] proposed Entropy-Based Distributed DDoS Detection Mechanism. The entropy 

algorithm is distributed in every OpenFlow switch to make it more intelligent. Within a predefined 

time period, it takes a copy of the packet number counter of the flow entry in switch table and 

calculate the probability distribution of destination IP address. Once a DDoS flooding attack is 

confirmed, this algorithm will send an alert information to the controller. The motivation is to 

detect attacks at the data-plane level in order to reduce overheads introduced by classifying traffic 

on the controller level. 

 

Seyed and Marc [13] proposed entropy to detect DDoS attacks against SDN controller. The 

solution utilizes lightweight module implemented at the controller side and mainly rely on two 

parameters: window size and threshold. For every 50-packet window, an entropy is calculated 

based on the frequencies of the destination IP addresses. An attack is declared if the entropy is 

below certain threshold for 5 consecutive windows. However, this approach may not be able to 

detect a low attack rate since it uses a predefined threshold value. 
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StateSec [15] is a novel approach that is added to switch processing capabilities to detect DDoS 

attacks. This approach extends the stateful SDN concept [14], and on top of it, DDoS detection 

and mitigation mechanism. StateSec detection process consists of three main stages: Traffic 

monitoring, anomaly detection and mitigation. The Traffic monitoring module is installed in the 

switch, it uses traffic features such as destination IP address, destination port, source IP address 

and source port. A lightweight anomaly detection module is integrated into the switch to calculate 

the entropy of each monitored traffic feature associated counters. If the entropy of one or multiple 

traffic features generates a drop or raise that crosses predefined thresholds, an anomaly is detected. 

The controller mitigation module installs mitigation rules into the switch through standard 

OpenFlow functionalities. However, software upgrade is needed for the switches. 

 

The author in [6] made a survey on current SDN solutions to different detection and mitigation 

techniques and highlighted pros and cons of each category. He proposed ProDefense framework 

an efficient system for DDoS attack detection and mitigation. It has three major components, 

namely, traffic flow collector, policy engine, attack detector and mitigation. The flow collector is 

used to collect traffic statistics from OpenFlow switches. The policy engine is used to define attack 

detection policy and mitigation policy. The detection utilizes exponentially weighted moving 

average (EWMA) filters based on three different variants of filters to control the false positive.  

These filters are highly reactive (HR) filter, intermediate reactive (IR) filter, and least reactive 

(LR) filter, which are used for smart grid applications in catastrophic, critical, and marginal 

categories respectively.  The attack detector module takes the input from Traffic Flow collector 

and generates security alerts with respect to the policy defined in Policy Engine. These security 

alerts trigger the mitigation module for taking appropriate action. However, details on the detection 

and mitigation mechanism itself were not provided. 

 

Dhaliwal’s [16] proposed statistical approach by implementing Exponential Weighted Moving 

Average (EWMA) and Exponential Weighted Moving Standard Deviation (EWMSTD) to detect 

and mitigate SYN and HTTP flood DDoS attacks. It uses the means and standard deviations of 

SYN packet hit counts and single-packets flows to compute various thresholds. The detection 

mechanism is divided into three attack detection phases. The first attack detection phase utilizes a 

time series window-based traffic statistic measurement. The detection algorithm continuously 
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monitors the rate of SYN packets arriving in each fixed 3-second time window, and compares it 

to a threshold at the end of each time window. The detection algorithm quickly raises a warning 

when the rate of SYN packets exceeds the threshold. However, a surge of legitimate traffic can 

also increase the rate of SYN packets arriving at the controller. Thus, in the second attack detection 

phase, further analysis is done by comparing the source IP addresses of all the flows to a database 

that contains valid source IP addresses. Traffic flows that have the match are considered legitimate. 

After that, the controller proceeds to the third phase where it computes the ratio of single-packet 

flows to the total number of flows and compares this ratio to a threshold. However, this method 

introduces some delay in attack detection. The statistical method based on time window, which is 

three consecutive time windows, each time window is 3 which equates to 9 seconds is considered 

to be inefficient in detecting large rate of attacks. Consequently, the network or controller could 

be broken before the detection mechanism reaches the ninth second in order to confirm an attack. 

 

Rodrigo Braga et al. [7] proposed a lightweight method for DDoS attack detection. The method 

utilizes the feature which natively exists in OpenFlow protocol to collect flows from switches 

periodically using flow collector module. The feature extractor module extract 6 tuple features 

from collected flow as follows: Average of Packets per flow (APf), Average of Bytes per flow 

(ABf), Average of Duration per flow (ADf), Percentage of Pair-flows (PPf), Growth of Single-

flows (GSf), and Growth of Different Ports (GDP). Finally, classifier module makes use of 

unsupervised machine learning algorithm Self Organization map, to classify the traffic pattern to 

benign or malicious traffic. However, the author methods can’t detect low rate attacks.  

Saurav Nanda et al. [18] proposed anomaly detection using four well-known machine learning 

algorithms to identify potential malicious connections. The author trained the following machine 

learning algorithms on historical data: C4.5, Bayesian Network (BayesNet), Decision Table (DT), 

and Naive-Bayes using WEKA framework. He implemented the trained model in SDN 

environment to predict anomalies in real time network. He showed that among the four algorithms, 

Baysian network achieved prediction accuracy 91.68 % on average.  

 

In [19] Restricted Boltzmann Machine (RBM) based Detection System for DDoS is proposed. The 

authors used unsupervised machine learning algorithm to self-learn defined network metrics. RBM 

get activated to classify the DDoS attacks after computing the threshold values of two features, the 
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first feature is the hit count of incoming packets to controller with same source IP address and 

MAC address of the switch. The second feature is energy consumption rate of switch. When Hit 

count of IP addresses is greater than predefined threshold value and energy consumption rate is 

higher for same MAC address, the flows of same source IP address and Destination IP address 

passed to RBM to classify the traffic to DDoS attack based on protocol type. If attack is declared 

by RBM, the packet will be dropped, otherwise the packets will be allowed to the controller. The 

RBM algorithm achieved detection rate 92%. 

 

In [22] proposed detection for intrusions and DDoS attacks using two machine learning classifier, 

SVM and Neural Network (NN). These two classifier model generated by using one feature which 

is counting the number of hosts per second. This value passed to the classifier for labeling. If the 

packet is classified as anomaly it will be labeled accordingly and the connection appeared to be 

anomaly detected, otherwise it will be treated as normal traffic and passed to the destination. 

However, the accuracy achieved is 80% and this is due to noise in the training dataset as data 

accumulated for every second. 

 

Trung et. al. [20] proposed an OpenFlowSIA protection technique to SDN from flooding attacks. 

OpenFlowSIA utilizes SVM machine learning algorithm to detect the attacks based on extracted 

features, which are collected from network switches statistics. They extract two features from 

network flows, the first feature is packet number per flow and the second feature is the flow 

duration. Once DDoS attack confirmed, the mitigation decides the type of the attack based on two 

types. The first type is attackers send a large number of flows and each flow consists of high packet 

numbers. The second type when flooding attackers generate a vast number of flows using fake 

source IP addresses and each flow transmits only form 1 packet. If it is the first type, the idle-

timeout of the flow change to 0. If the attack is the second type, DeleteFlowEntry function is used  

to delete the flows from switch flow-tables. Otherwise, the default flow idle-timeout value will be 

set to normal flows. However, the SVM model used is not adaptive. 

 

Ashraf et al. [21] provided a survey for different machine learning schemes for mitigating DDoS 

attacks in SDN environments. The authors studied advantages and disadvantages of supervised 

machine learning algorithms such as neural network, support vector machine, genetic algorithms, 
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fuzzy logic, Bayesian networks, and decision trees to differentiate between the benign traffic and 

attack traffic.  

  

Kokila et al [23] used SVM as a classifier to detect DDoS attacks. They found that SVM algorithm 

accuracy is 95% which outperform the other machine learning algorithms in their literature. 

However, their algorithm could only detect attacks without trying to mitigate these attacks [22] 

 

In [24] SVM trained model used for detecting malware by using only traffic features that can be 

extracted from Openflow messages. The controller collects flows periodically from the switches. 

Once it receives the feature that have number of packets, number of bytes, and duration of the 

flows. It processes this information to extract other features: Byte rate, Packet rate, and Average 

packet length. Finally, it passes these features to the SVM classifier to classify the traffic to normal 

or malware, the author achieved 95% accuracy. However, the trained model is not adaptive  

 

In [25] DDoS detection system implemented in SDN environment. The authors compared various 

methodologies of supervised machine learning algorithms such as Naive Bayes, K-Nearest 

neighbor, K-means and K-medoids to classify the traffic as normal and abnormal. Then these 

algorithms are trained on a dataset which consists of a feature counting the number of hosts 

connected in 10 seconds to the switch. It was tested and the results shows that Naïve Bayes is the 

best algorithm with 94 % accuracy. However, the classifier is not adaptive. 

 

Merlin [17] proposed two detection approaches, statistical approach and machine-learning 

approach. The statistical approach utilizes entropy computation for new flow arrival rate, packets 

per flow and flow duration to compute various thresholds. These thresholds are then used to 

differentiate normal and attack traffic. The machine learning approach implemented by Random 

Forest algorithm to detect the DDoS attack. The author showed that the proposed machine-learning 

approach outperform the statistical approach. However, the trained model wasn’t adaptive. 
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2.7 Chapter Summary 

This chapter covered SDN, Openflow, and controller background. We have presented a 

comprehensive survey on SDN. We have discussed the benefits of SDN, explained its main 

concepts and how it differs from traditional networking. 

 

We surveyed different approaches for detecting DDoS attacks and showed how SDN has been 

used as a platform specific to detect and mitigate DDoS attacks. 

 

The next chapter will focus on developing an effective solution using Semi-Supervised machine 

learning algorithm that can detect DDoS attacks more effectively with less false positive and 

negative alarms. 
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Chapter 3 

3 Proposed DDoS Detection System 

In this chapter, we will first introduce different types of machine learning. We then introduce our 

proposed method which utilizes semi- supervised learning algorithm by using Logistic Regression 

classifier to detect DDoS attacks. We define four features from the training datasets and use it to 

train our LR classifier off-line. Once the classifier is trained, it will be used for on-line attack 

detection, and at the same time, continue to classify the incoming traffic to update the training 

dataset to retrain our classifier in the background. 

 

3.1 Introduction to Machine learning 

According to Tom M. Mitchell [34], the machine learning (ML) can be defined as "A computer 

program is said to learn from experience E with respect to some class of tasks T and performance 

measure P if its performance at tasks in T, as measured by P, improves with experience E". 

 

An example of a Machine Learning program is email spam detection system that can learn from 

given samples of spam emails and nonspam emails called ham. The spam emails pattern may be 

contained in the senders email address or in the email subject phrases such as (“4U,” “credit card,” 

“free,” and “amazing”)[36].The prepared samples that detection system uses called the training 

dataset. Each training example is known as training datapoint. In this detection system we can 

define the task T to flag spam for new emails based on the experience E obtained from the training 

dataset and the performance measure P defined by accuracy which is the ratio of successfully 

classified emails to the total emails. 

 

Similarly we can utilize the machine learning capability in DDoS attack detection. Since the 

network traffic load is fluctuating, it’s hard to find a solution that identify the attack traffic from 

benign traffic with high accuracy using the traditional approach [16]. However, in machine 

learning, we can learn network traffic patterns and adapt to new traffic information with high 

accuracy by utilizing semi-supervised algorithm. 
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The machine learning tasks can be classified to supervised, unsupervised and semi-supervised 

learning as shown in figure 7. 

 

3.1.1 Supervised learning 

In supervised learning, input data, called training data, is fed to the algorithm. The training data is 

pre-classified and labeled. It is called supervised learning because the process of an algorithm 

learning from the training dataset can be considered as a tutor supervising the learning process. 

The training process continues until the model achieves a desired level of accuracy on the training 

data. This approach requires having a dataset that represents the system under consideration and 

can be used to estimate the performance of the selected method. A typical supervised learning task 

is classification. The spam filter is a good example of this, it is trained with many example emails 

along with their classes (spam or ham), and it must learn how to classify new emails [35]. 

 

3.1.2 Unsupervised learning 

Unsupervised learning is the opposite of supervised learning. The system tries to learn without a 

tutor. Input data is not labeled, thus, not classified. Therefore, the system mainly focuses on finding 

specific patterns in the input. An example of the unsupervised learning approach is clustering, 

which is used for detecting useful clusters in the input data based on similar properties defined by 

a proper distance metric such as Euclidian, Jaccard, and cosine distance metrics [36]. 

 

3.1.3 Semi-supervised learning 

Semi-supervised learning algorithms has been growing in popularity over the last decade. They 

are considered somewhere between unsupervised and fully supervised learning algorithms. The 

input data for the learning algorithm is a mixture of labeled and unlabeled data [35]. Semi-

supervised learning algorithms have the ability to save the time and effort to process the training 

data labeling. In addition, semi-supervised eliminates the human error that might occur during the 

labeling of the data. It has been found that unlabeled data, when used in combination with a small 

amount of labeled data, can produce considerable improvement in learning accuracy. In our 

research we will utilize semi-supervised algorithm with Logistic Regression classifier. 
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Figure 7: Types of Machine Learning for DDoS Detection [37] 

 

3.2 Feature Selection 

Data is required to train the machine learning algorithm to produce predictive model. The first step 

to create accurate predictive model is feature selection. By choosing best features we can get better 

detection accuracy whilst requiring less data. Fewer Features is desirable because it reduces the 

complexity of the model, and a simpler model is easier to implement and would have smaller 

overheads. We employ four features to build the training and testing data. We name these features 

as Packets, Bytes, Flows and One_Packet. The meanings of these features are given in table 2. 

Features Description 

Packets Total number of packets transmitted to server per time window 

Bytes Total number of Bytes transmitted to server per time window 

Flows Total number of flows destined to the server per time window 

One_Packet Total number of single packet flows destined to server per time window 

Table 2: Feature Selection of Dataset 
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The use of Packets and Bytes features are obvious. A DDoS attack will always increase the values 

of these features significantly. However, these two features alone cannot be relied on 100% in 

identifying that there is an attack for the occasional flash crowd traffic, which may also cause the 

increase of the values of these features. To improve the accuracy of the attack detection, we also 

include two extra features, One-Packet and Flows. The idea of using One-Packet feature derived 

from [16]. The detection method proposed by the author observed that flows that contain single 

packet are considered as a sign of DDoS attack with spoofed addresses, such as TCP SYN flood 

attacks. We can further improve the accuracy by including in our detection method the Flows 

feature as well. Reason being, in the DDoS attack, the attacker sends a large number of SYN 

packets to overflow the switch connection table with half-open connections, increasing the total 

number of flows or the value of the Flows feature. The values of these features are extracted from 

the traffic statistics stored in the Openflow switch every three seconds. The network traffic 

statistics collection will be discussed in more details in chapter 4. 

 

3.3 Semi-Supervised Machine learning 

Many algorithms and techniques have been proposed for DDoS attack detection. But less work 

has been done in the field of SDN networks based on machine learning, in particular semi-

supervised machine learning. In [37] the author proposed a new framework for QoS-aware traffic 

classification in SDN based on semi-supervised learning. This approach can classify the network 

traffic according to the QoS requirements. The system employs deep packet inspection (DPI) for 

network traffic to train semi-supervised learning based on Laplacian SVM classifier. The 

Laplacian SVM classifier achieved 90% accuracy which surpassed a previous semi-supervised 

approach based on k-means classifier. The other machine learning algorithms for SDN DDoS 

attack detection in [17] [18] [20] [23] [24] [25] were using supervised machine learning 

algorithms, which means the classifiers are trained with a fixed labeled  network traffic dataset, 

which represents a specific stationary traffic pattern. However, real life traffic is never stationary. 

To solve this issue, unsupervised ML was proposed for DDoS Attacks [17] [19], which employs 

unlabeled dataset as the training set. However, it is difficult for unsupervised ML-based 

approaches to achieve a good performance with low complexity. 

We propose a novel DDoS detection system which uses a semi-supervised algorithm with Logistic 

Regression classifier. The objective of a semi-supervised algorithm is to combine information from 
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unlabeled data with that of labeled data to iteratively improve the learning model for DDoS 

detection. 

The semi-supervised algorithm contains the following steps: 

 

1. Train Logistic Regression classifier on labeled dataset to produce a preliminary detection 

model. 

2. Use the trained model to classify unlabelled dataset. 

3. Add new classified data with high confidence to labeled dataset and reject data with lower 

confidence. 

4. Retrain classifier on previously labeled dataset plus the newly added labeled data. 

5. Iterate through steps 1 to 4 until the detection rate converges. 

 

3.4 Logistic Regression 

Logistic Regression (LR) is one of the most popular machine learning classifiers for binary 

classification [38] [39]. This is because it is a simple algorithm that performs very well on a wide 

range of problems. In addition to, it has probabilistic framework that make it easy to adjust 

classification thresholds or get confidence intervals, unlike SVM classifier [37] which doesn’t give 

probabilistic interpretation to the data.  

 

LR measures the relationship between the categorical dependent variable and one or more 

independent variables by estimating probabilities using a logistic function. The independent 

variables X are the features or Input data we are going to use to predict the target, the dependent 

variable is the target class variable or output data Y we are going to predict with values  0 or 1. 

LR is commonly used to estimate the probability that an instance belongs to a specific class, for 

example, what is the probability that this email is spam? If the estimated probability is greater than 

50%, then the classifier predicts that the instance belongs to spam with class labeled “1”, otherwise 

it predicts that it does not and is labeled “0”. In this case, the classifier is a binary classifier. 
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LR can be formulated as the conditional probability of the dependent variable 𝑌 = 𝐶 given 𝑋, 

where 𝐶 is the label or class. For attack detection, the classifier is also binary with 𝐶 = 1 if there 

is an attack and 𝐶 = 0 if there is no attack. 

LR probability is calculated by equation (1) and (2) using the logistic function 
1

1+𝑒−𝑧 
 , which is 

also known as the sigmoid function: 

𝑃(𝑌 = 1 | 𝑋) =  
1

1+𝑒−𝑧 
     (1) 

𝑃(𝑌 = 0 | 𝑋) =  1 −  𝑃(𝑌 = 1 | 𝑋)      (2) 

Where   

𝑍 =  𝜔0 +  𝜔1𝑋1 +  𝜔2𝑋2 + ⋯ +  𝜔𝑛𝑋𝑛   (3) 

 

Where 𝑋1,   𝑋2, … 𝑋𝑛 are the 𝑛 features inputed to the classifier. The coefficients ω0, …, ωn  are 

determined by utilizing maximum likelihood estimation (MLE) [38] based on the complete 

training dataset. Once the coefficients are determined, the LR probability can be calculated and 

the datapoint will be classified subsequently to attack “1” or no attack “0” as shown in figure 8.  

 

Figure 8: Logistic Regression Classifier 
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3.5 Overview of Attack detection 

The proposed detection methodology is divided into two phases, the off-line training phase and 

on-line adaptation phase. In off-line training, we have collected dataset from various simulation in 

the SDN environment to train LR machine learning classifier and export a predictive model. In the 

on-line phase, we have added to the POX controller three modules: data collection, traffic 

prediction, and classifier retraining. In the next sections we will discuss in more details our 

proposed detection system. 

 

3.5.1 Off-line Training Phase 

The proposed detection system exploits the semi-supervised machine learning (ML) algorithm by 

using LR classifier. In semi-supervised ML algorithm, we will use two datasets to produce the 

predictive model. The first dataset is labeled and it will be used to train the LR classifier, we 

denoted it as the training dataset. The second dataset is also labeled and is used for validation, we 

denoted it as the validation dataset. The learning algorithm doesn’t use the labels of the validation 

dataset, instead, the labels are used to validate the predicted output of the classifier. The details of 

creation for both datasets are provided in chapter 4. 

 

In step 1 of the off-line training, the training dataset, whose content has the format as shown in 

Table 3, is loaded to the training algorithm. Every row in the training dataset is a datapoint 

consisting of four features (X1, X2, X3, or X4) and a label (Y). The features, as mentioned before, 

are total no. of Packets, total no. of Bytes, total no. of Flows, and total no. of One_Packet flows. 

The label has the value of either 1 or 0 (attack or benign). 

 

X1  

Packets 

X2 

Bytes 

X3  

Flows 

X4  

One_Packet 

Y 

class 

358 26591 26 0 0 

290 21540 44 17 0 

212 13632 110 100 1 

214 13790 111 101 1 

202 12969 107 98 1 

Table 3: Examples of Training Dataset 
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With the training dataset, the training algorithm computes a set of coefficients (ω) using maximum 

likelihood estimation.  

 

In step 2, the coefficients derived in step 1 are used in eq. (3) to compute a value of 𝑍 for every 

datapoint from the validation dataset. From 𝑍, we calculate the logistic function and thus, the 

probability of that datapoint belongs to class 1 using eq. (1). We can also compute the probability 

of that datapoint belongs to class 0 using equation (2). In addition of being classified, the newly 

labeled datapoint with high confidence will be added to the training dataset for future retraining. 

 

Here we define a labeled datapoint that belongs to a given class 𝐶 with high priority as the 

datapoint with high confidence. For example, given a datapoint 𝑋 with  

𝑃(𝑌 = 𝐶|𝑋) ≥ 𝑃𝑡ℎ 

Where 𝑃𝑡ℎ is a predetermined threshold (in this thesis, 𝑃𝑡ℎ is set to 0.9, as described in chapter 4), 

then we will say that 𝑋 belongs to class C with high confidence. The datapoints associated with 

low confidence will not be added to the training dataset.  

 

The off-line mechanism will go through a number of iterations. In each iteration, it repeats steps 1 

and 2, but with the updated training dataset which includes the previous training dataset plus the 

newly added labeled datapoints. At the end of step 2, the mechanism checks the attack detection 

accuracy. If the detection accuracy of the current iteration is within 0.5% of the previous iteration, 

then the mechanism concludes that the iteration converges.  

 

Figure 9 below shows the flow chart of proposed off-line training mechanism. 
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Figure 9: Offline Detection Flowchart 
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3.5.2 On-line detection phase 

Our proposed on-line detection method is divided into three modules implemented within the POX 

SDN controller. These three modules are described below: 

 

Traffic collector: The POX controller manages traffic of network switches in a centralized way, 

it has global view of all connected switches and has the ability to analyze their traffic from the 

point of view of a DDoS attack. The collection of flow entries from an Openflow switch is 

performed at predetermined time intervals by traffic controller module. From this collection, 

important features are extracted and used to classify traffic as normal or as an attack. The definition 

of the time interval to collect flow entries is of great importance. If collection is made at over a 

longtime intervals, then there will be a substantial delay to detect an attack and consequently a 

reduction of the time available for a possible mitigation. On the other hand, if the time interval for 

the collection is too short, there will be an increase of overhead caused by feature collection. In 

our scheme we use 3 seconds interval. The module collects these statistics every 3 seconds from 

OpenFlow switches through a secure channel and stores them into a database called Flow 

Database.  

 

Traffic Predictor: In this module, for every three seconds a datapoint with the four extracted 

features (Packets, Bytes, Flows and One_Packet) are passed as the input to our predictive model 

obtained from the off-line training phase. The logistic functions (1) and (2) are computed. An 

attack is declared if 𝑃(𝑌 = 1|𝑋) > 0.5. Furthermore, the datapoint is inputted to the training 

dataset only if 𝑃(𝑌 = 1|𝑋) > 0.9.  On the other hand, if 𝑃(𝑌 = 0|𝑋) > 0.5, then the system 

declares no attack. Similarly the datapoint is inputted to the training dataset only if 𝑃(𝑌 = 0|𝑋) >

0.9. 

 

Classifier Retraining: In this module, semi-supervised algorithm will work in the background to 

retrain LR classifier using the same approach similar to step 2 of the off-line mechanism. The only 

difference is that the input datapoints are derived from the on-line traffic instead of the verification 

dataset. The module starts the retraining at the controller every 90 sec. To limit the size of the 

dataset, we delete the oldest data from previous simulations whenever the size of the data exceeds 

certain threshold. 

Figure 10 below shows DDoS detection system implementation. 
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Figure 10: DDoS Detection System Implementation 
 

3.6 Chapter summary 

In this chapter, we discussed our proposed method which utilizes Logistic Regression classifier 

based on semi supervised learning to detect DDoS attack. We employed four features (Packets, 

Bytes, Flows and One_Packet) to train our LR classifier off-line. The predictive model produced 

from the off-line training is then used in the on-line attack detection in SDN controller, and at the 

same time, continue to classify the incoming traffic to update the training dataset for the retraining 

of our classifier in SDN background. 

 

In the next chapter, results of the proposed DDoS detection method will be evaluated. 
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Chapter 4 

4 Simulations and Performance Analysis 

In this chapter, we will conduct a comprehensive simulation study to evaluate our proposed semi-

supervised machine learning algorithm, later we will compare our approach to the statistical 

approach from Dhaliwal et al. [16].  

 

4.1 Experimental environment  

To obtain the dataset and test the performances of our proposed DDoS attack detection system, a 

virtual network is constructed using the same experiment and setting used for [16]. In order to 

make a fair comparison, we have setup the same simulation environment using the same network 

tools as in [16]. In the following subsections, we give a brief introduction of these tools. 

 

4.1.1 POX controller 

The POX controller allows an easy way to implement OpenFlow/SDN experiments [33]. It is a 

Python-based SDN controller. POX comes with a number of switch learning modules. The one 

that is used in our solution is L2_multi module. 

 

4.1.2 Mininet  

Mininet [34] is the network emulator that we used in our thesis to create a desirable underlying 

network. It is a popular network emulation tool for SDN research. In the Mininet environment, 

virtual hosts and switches can be created and interconnected to form any given network topology. 

This tool also has a Python API, which facilitates the creation of custom topologies and 

experiments, providing a powerful method to rapidly prototype a network.  

 

4.1.3 Network Traffic Generator 

Two python scripts were created to generate benign TCP SYN traffic based on client-server socket 

programming, one runs on the client and the other on the server [16]. The time durations to open 

the socket connection and send get-request packet are randomly generated. Figure 11 shows the 

state of TCP connections in web server backlog 1.1.1.10 (Local Address) on port 80 and no. of 
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benign hosts (Foreign Address) in an established state, which means that the connection is fully 

established and 3 way-handshake between hosts and server have been completed. 

 

For SYN flood attacks we used Hping3 [40] tool to generate attack traffic. We have created an 

attacker python script which ran Hping3 tool with various network parameters such as number of 

packets, interval duration, and random source-destination IP addresses. Figure 12 illustrates the 

connection states at web server backlog where a large number of state connections from random 

IP addresses in a SYN_RECV state. The SYN_RECV state indicates that the connection is only 

half-open and the legitimacy of the requested host is still not completed. 

 

 
Figure 11: Server backlog Benign Connections 

 
Figure 12: Server Backlog Attack Half-Open Connections 
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4.1.4 Network Setup 

The experiment is done on a Dell laptop Intel® Quad Core i7-3740QM CPU, 2.70 GHz with 16.0 

GB RAM. The operating system is Linux Ubuntu 16.04 LTS and Mininet version 2.3.0d1. 

 

Using Mininet python API, a custom topology is created for our experiments network topology as 

shown in figure 13. The network consists of two switches, 57 hosts and a controller as shown in 

figure 13. There are 49 benign hosts, each runs a python client script. They are divided into three 

groups: groups A, B and C. In addition, 7 hosts are setup as the attackers, each runs an Hping3 

attacking tool. All the benign hosts send requests to the web server, which is connected to S1 inside 

the network. The web server is also the attack target. All the benign and attack hosts are located at 

the external network. The traffic generated by them goes through S2 to reach the web server. 

 

 
Figure 13: Network Topology 

 



32 
 

4.2 Off-line Training Implementation 

The proposed semi-supervised algorithm is implemented using Python Scikit-learn open source 

machine learning libraries [41]. Scikit-learn is used in implementation of classification methods in 

Python. Thus our classifier LR can be easily integrated with POX controller as a module. To our 

best knowledge, currently there is no publicly available SDN traffic dataset in the research 

community. Therefore, we used private dataset to train our detection model and tested the DDoS 

defense through real‐time DDoS attacks. In the subsequent sections, we will discuss the dataset 

generation. 

 

4.2.1 Dataset 

Network traffic dataset is the most important part in training our model. We run different scenarios 

using the network topology as shown in figure 13. We will use python client and server socket 

scripts to generate data flows with “realistic behaviors” at the network or transport level, mixed 

with attack traffic using python script that run Hping3 tool generate TCP SYN flood attack traffic.  

 

4.2.2 Network Traffic Patterns  

The traffic pattern in real life is non-stationary. To mimic this characteristic, we introduce 3 traffic 

groups, Group A, Group B and Group C. The clients of each group use the same traffic parameters 

as shown in table 4 to generate random traffic. To generate a non-stationary traffic pattern, Clients 

of different groups generate traffic at different periods as shown in figure 14. 

In figure 14, the benign TCP traffic generation is divided into 5 periods. In the first period, only 

the clients of Group A generate web traffic to communicate with the server. In the second period, 

clients in both Groups A and B generate traffic. In the third period, the clients in Group B stop and 

clients in Group A continue. In the fourth period, the clients in Group C start along with those in 

Group A to send traffic to the web server. In the final period, Group A traffic generation stops and 

clients in Group C continue until the end of the experiment. The period of benign traffic generation 

is around three minutes.  

In the attack traffic pattern, the attack is generated by Hping3 attack tool. The number of attacking 

hosts, which generate spoofed SYN packets, ranges from 2 to 7 attackers. By changing the number 

of attacking hosts, we can control the level of attack as shown in table 5. We repeat the same 
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benign traffic scenario (Figure 13) mixed with the attack traffic in some periods for an additional 

3 minutes. The total time for benign and attack traffic generation is around 6 minutes.  

 

Figure 14: Network Traffic Pattern [42] 

 

Parameters Group A Group B Group C 

No. of clients 14 20 15 

Traffic type HTTP HTTP HTTP 

Avg. Inter-arrival time between connections 1 sec 1 sec 1 sec 

No. of Connections per client 10 15 12 

No. of Get requests per connection 6 8 7 

Table 4: Benign Traffic Pattern 
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 Attack Rate(pkts/sec) Attack Type No. of Attackers Group A 

 

Group B 

 

Group C 

 

20 TCP SYN 2 10 16 23 

30 TCP SYN 3 10 16 23 

40 TCP SYN 4 10 16 23 

50 TCP SYN 5 10 16 23 

60 TCP SYN 6 10 16 23 

70 TCP SYN 7 10 16 23 

Table 5: Attack Traffic Pattern 

 

4.2.3 Network Traffic Statistics Collection 

In order to feed our classifier with required network traffic data in offline and on-line mode, we 

have created module in the controller to collect network traffic statistics from Open Flow switches 

and store them into a Flow Database (FD). FD keeps network traffic statistics for active flows such 

as packet count, byte count, source IP address, destination IP address, source port and destination 

port. The traffic statistics are updated every 3 seconds. Figure 15 (a) below shows the statistics 

collected according to the traffic pattern as described in Figure 14.  

 All traffic statistics are then filtered to extract the most important features that will be used as the 

training dataset for LR classifier to detect DDoS attack, Figure 15 (b) shows extracted features 

from traffic statistics collections. In our thesis, we employ four features which are Packets, Bytes, 

Single Flow and Single Packet as discussed in section 3.5.2. Figure 15 shows the traffic statistics 

collections and the most important features in one of our simulations run. 
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(a) Traffic Statistics Collection 

  

(b) Feature Extraction 

Figure 15: Traffic Statistics Collection and Feature Extraction 
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4.2.4 Dataset Preparation 

We have conducted 7 simulation scenarios using the network traffic patterns described in the 

previous section. For each scenario we recorded in FD (Flow Database) around 6 minutes of 

normal traffic mixed with attack traffic. After each scenario, we have extracted the required feature 

and labeled datapoint according to the timestamp. Then we have exported each dataset in CSV file 

format as illustrated in Figure 6. Finally, we have combined two simulation scenarios which last 

for 12 minute in one dataset CSV file and the remaining 5 scenarios which last for 30 minutes in 

separate dataset CSV file. 

Figure 16 below shows part of the dataset which consists of 4 extracted features: Packets, Bytes, 

Flows and One_Packet. The last column of the dataset is the class label which is either 0 for benign 

traffic or 1 for attack traffic. We divided our dataset into two datasets. The first dataset is labeled 

and it will be used to train the LR classifier. The second dataset is also labeled but it is used for 

validation. The semi-supervised learning algorithm doesn’t use the labels of the validation dataset, 

instead, the labels are used to validate the predicted output of the classifier. 

  

Figure 16: Generated Dataset 
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4.3 Evaluation Metrics 

In general, the performance of our proposed detection system is evaluated in terms of accuracy 

(AC), False Positive (FP), False Negative (FN). A good detection requires high accuracy and low 

no. of false positive and false negative. A confusion matrix is used to calculate these parameters. 

In the confusion matrix, True Positive (TP) is the number of attacks recorded correctly by 

classifier. True Negative (TN) is the number of times the normal traffic recorded correctly by 

classifier. False Positive (FP) is the number of times the normal traffic was classified as attack 

traffic. False Negative (FN) is the number of times attack traffic were classified as normal traffic.  

Accuracy (AC): Accuracy rate = No. of correct Predictions / Total No. of Predictions 

Which is, 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 
  (1) 

 

In the subsequent sections, we will present the results of off-line and on-line detection results based 

on FP, FN, and Accuracy Rate. 

 

4.4 Off-line Training Results 

The performance of the semi-supervised ML algorithm depends on the value of confidence 

threshold. The key to our algorithm working successfully is the accurate selection of threshold. 

We selected the threshold empirically by optimizing the accuracy on the validation dataset. We 

add datapoints with high confident to the labeled dataset, then we use them to retrain our classifier 

and get our final model.  

 

With the training dataset, we started to train the LR classifier using maximum likelihood 

estimation. Then, the model is optimized by finding the desirable threshold which leads to optimal 

classification accuracies on the validation dataset. To find the desirable threshold, we validate our 

semi-supervised algorithm with four different confidence thresholds: 60%, 70%, 80%, and 90%. 

Based on the confidence threshold, we add the datapoints with high confidence to the training 

dataset, otherwise we reject the less confident datapoints. We retrain classifier on previously 

labeled dataset plus the newly added labeled datapoints. For each iteration, we calculate the 

accuracy. We found that the accuracy converges within 8 iterations.  
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Table 6 shows the results of accuracy for confidence threshold based on the no. of iteration. We 

found that lower threshold of 60% or 70% will results in decline in the accuracy for our model. 

On the other hand, we obtained higher accuracy for the threshold of 80 % or 90 %. In our 

experiments, we will employ 90 %. The advantage of choosing a 90% threshold is that the system 

will admit lesser number of datapoints to the training dataset. The disadvantage is that the 

convergence is slower. 

Threshol

d 

Iteratio

n 1 

Iteratio

n 2 

Iteratio

n 3 

Iteratio

n 4 

Iteratio

n 5 

Iteratio

n 6 

Iteratio

n 7 

Iteratio

n 8 

90 91.53% 94.35% 96.02% 96.40% 97.43% 97.81% 98.71% 99.10% 

80 91.53% 95.77% 96.66% 98.72% 99.10% 99.10% 99.10% 99.10% 

70 91.53% 95.89% 97.81% 98.84% 99.10% 99.10% 98.97% 98.97% 

60 91.53% 96.02% 98.33% 98.97% 99.10% 99.10% 98.79% 98.84% 

 

Table 6: Comparison of 4 different Confidence threshold 

 

4.5 On-line Detection Results 

In order to evaluate our proposed model, we compare the performances of our approach with the 

approach from [16]. The test environment is shown previously in figure 13. In the next sections 

we will discuss two scenarios with two different characteristics of the network traffic patterns as 

follow: 

 

4.5.1 Benign Traffic Pattern 1 

In this scenario, we have tried to make the benign network traffic pattern realistic as possible. A 

python client script is running on 45 hosts and a server script on a single host for at least three 

minutes of simulation. We divided these hosts to three groups, Group A (10 hosts), Group B (15 

hosts), and Group C (20 hosts). Each group of hosts are sending multiple web connections to the 

server randomly at different times as shown in table 7. When the experiment begins, Group A 
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hosts start sending traffic to the web server. After Group A finishes Group B starts sending traffic 

followed by Group C. Table 7 shows the traffic pattern “1” parameters. 

 

Parameters Group A Group B Group C 

No. of clients 10 15 20 

Traffic type HTTP HTTP HTTP 

No. of Connections per client 10 12 15 

Avg. HTTP Connection duration time  8 13 10 

Avg. Inter-arrival time between connections in sec. 1 1.2 1.3 

No. of Get requests per connection 6 7 8 

Table 7: Traffic Pattern 1 

 

4.5.2 Traffic Pattern 2 

In this scenario, both Group A and Group B hosts start sending traffic at the same time to generate 

flash crowd event followed by Group C at the end. We also increase the number of hosts in each 

group to 15, 20 and 25 with a total of 60 hosts. When simulation starts a total of 35 hosts starts 

sending traffic, while the remaining 25 hosts in group C are activated to send after hosts in Group 

A and B finish sending. Table 8 shows the traffic pattern “2” parameters. 
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Parameters Group A Group B Group C 

No. of clients 15 20 25 

Traffic type HTTP HTTP HTTP 

No. of Connections per client 8 10 12 

Avg. HTTP Connection duration time.  8 sec. 13 sec. 10 sec. 

Avg. Inter-arrival time between connections in sec. 0.5 sec. 0.7 sec. 0.9 sec. 

No. of Get requests per connection 5 6 7 

Table 8: Traffic Pattern 2 

 

4.5.3 Attack Traffic 

In order to generate TCP SYN DDoS attack traffic mixed with normal traffic pattern “1” in first 

scenario, Hping3 tool is used at two attacker hosts to generate constant low rate attack traffic with 

random source IP spoofing. Both attackers start the attack after 60 seconds in all the simulations 

for one minute. We issued the following hping3 command on two attacker hosts: 

hping3 -i u200000 -S '1.1.1.10 -p 80 --rand-source 

 

The above command sends 5 pkts/sec SYN packets, which will be 10 pkts/sec in total from both 

attacking machines, to the address of web server ('1.1.1.10) on port 80 with random source address, 

where –i is interval wait uX for X microseconds. In our setup, –i u200000, and so each machine 

generates 5 packets per second. 

 

To generate constant low rate attack traffic mixed with normal traffic pattern “2” in second 

scenario, following hping3 command is used on two attacker hosts: 

hping3 -i u100000 -S '1.1.1.10 -p 80 --rand-source 

The above command sends 10 pkts/sec SYN packets, which will be 20 pkts/sec in total from both 

attacking machines. 
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For each scenario 50 simulations runs are performed. Each simulation lasts around 3 minutes. 

While the simulation is running if an attack is suspected, an attack alarm is raised. 

 

4.5 Results 

The table below summarizes the number of False Positive (FP) and False Negative (FN) reports 

on while traffic patterns “1” and “2” are tested. 

 Traffic Pattern 1 Traffic Pattern 2 

No. of Simulations 50 50 

 Error Counts Error Probability Error Counts Error Probability 

FP 1 2% 3 6% 

FN 0 0% 0 0% 

Algorithm Detection Rate 98% 94% 

Algorithm Failure Rate 2% 6% 

Table 9: FP and FN detection rate reports under different traffic patterns 
 

As shown in table 9, the results obtained in the traffic pattern “1”, show a high detection rate of 

98% and our approach demonstrates to perform very well in this scenario. The high rate of 

detection is due to confidence threshold that gives the ability of the algorithm to learn new traffic 

pattern. Although the detection rate in traffic pattern “2” declines a little, the semi-supervised 

algorithm adaptation helps to keep the detection rate at 94%. 

  

4.6 Comparison between Statistical and Machine Learning Approach  

In this section we will compare the performance of our proposed machine learning based DDoS 

Detection algorithm with the statistical approach of Dhaliwal et al [16]. 
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In [16], the author proposed a DDoS attack detection and mitigation algorithm. He computed 

threshold using Exponential Weighted Moving Average (EWMA) and Exponential Weighted 

Moving Standard Deviation (EWMSTD) to detect SYN flood DDoS attacks. The detection 

algorithm run in three phases, each phase run in a 3-second window. In the first phase, the detection 

algorithm raises a warning when the rate of SYN packets that arrives at the controller exceeds the 

threshold. In the second phase, further analysis is done by comparing the source IP addresses of 

all the flows to a database that contains valid source IP addresses. Traffic flows that have the match 

are considered legitimate. In the third detection phase, the algorithm proceeds to computes the 

ratio of single-packet flows to the total number of flows and compares this ratio to a threshold.   

The comparison is done in two scenarios. First scenario consists of traffic pattern “1” and false 

positive reports are computed. Similarly, in second scenario false positive reports are observed 

under traffic pattern “2”. For each scenario 50 simulations runs are performed. Each simulation 

lasts around 3 minutes. 

 

4.7 Results  

Figure 17 illustrates the first scenario when Traffic Pattern “1” was used with 50 simulations runs. 

In Our detection approach based on a one 3 seconds window, the number of false positive reports 

detected in our approach is 98%, which is slightly lower by 2% than Dhaliwal’s algorithm that 

does not generate any false positive reports with FPR 0 and detection accuracy of 100%. However, 

we have repeated the simulations with three consecutive windows similar to the statistical 

approach [16] and we have achieved 100 %.  
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Figure 17: Traffic Pattern 1 Comparison Between Statistical and ML Approaches 

The table below summarizes the results. 

 Machine Learning Based Statistical Based [16] 

No. of Simulations 50 50 

 Error Counts Error Probability Error 

Counts 

Error 

Probability 

FP 1 2% 0 0% 

FN 0 0% 0 0% 

Algorithm Detection 

Rate 

98% 100% 

Algorithm Failure Rate 2% 0% 

Table 10: FP and FN Reports Comparison Between Statistical and ML Approaches Pattern 1 
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80%
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90%

95%

100%

Statistical Based [16] Machine Learning Based

False Positives Detection Rate Traffic Pattern 1
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As shown in table 10, in traffic pattern “1”, our algorithm is able to perform with a 98% detection 

with one false positive report. However, in Dhaliwal’s approach the algorithm is able to perform 

with a 100% detection rate. Even though we are slightly lower in FPR detection rate, we use a 3 

sec window to detect the attack. In contrast, work in [16] method introduces delay that is 3 times 

longer in attack detection. This is due to the fact that his method needs to examine the traffic in 

three consecutive windows (9 seconds) before an attack can be confirmed. This restriction would 

be ineffective in dealing with large attacks, which could overwhelm the network or controller in a 

very short time before the controller could take any countermeasures. We repeated the simulations 

using our approach with the modification that an attack is declared only if the datapoints in three 

consecutive windows are all tested attack positive. With this modification, our approach can also 

achieve 100 % FPR detection rate.  

 

Figure 18 shows false positive reports for the second scenario when traffic Pattern “2” was used 

with 50 simulations runs. It is observed that our detection approach has an FPR of 94%. On the 

other hand, Dhaliwal’s approach has an FPR of only 84%. This clearly indicates that our proposed 

approach outperforms Dhaliwal’s approach in terms of false positive reports.  

  

Figure 18: Traffic Pattern 2 Comparison Between statistical and ML Approaches 

The table below summarizes the results. 

86%
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Statistical Based [16] Machine Learning Based

False Positives Detection Rate Traffic 

Pattern 2
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 Machine Learning Based Statistical Based [16] 

No. of Simulations 50 50 

 Error Counts Error Probability Error 

Counts 

Error 

Probability 

FP 3 6% 7 14% 

FN 0 0% 0 0% 

Algorithm Detection 

Rate 

94% 86% 

Algorithm Failure Rate 6% 14% 

Table 11: FP and FN Reports Comparison Between Statistical and ML Approaches Pattern 2 

 

As shows in table 11, for traffic pattern “2”, our algorithm is able to perform with a 94% detection 

(3 false positive reports) rate; while Dhaliwal’s approach has a 86% detection rate (7 false positive 

reports). It is because the flash crowd traffic is highly non-stationary. The statistical method in 

Dhaliwal’s approach relies on mean and standard deviation for detection that cannot capture the 

non-stationary traffic pattern effectively. The machine learning algorithm in our approach can 

learn the non-stationary traffic pattern through off-line and on-line training. Consequently, our 

approach identifies flash crowd traffic much more accurately. 

 

4.8 Chapter Summary and Discussion 

The results in this chapter show how the proposed defense scheme effectively detects TCP SYN 

flood DDoS attacks in different traffic patterns. We summarize the results as follows. 

 The results show that the proposed approach can detect different attack traffic pattern and 

detect the TCP SYN flood attack with high accuracy and with no false negative. 

 The comparison between statistical approach from Dhaliwal’s and our approach shows 

that our approach outperforms Dhaliwal’s approach in terms of false positive detection 

rate, especially for flash crowd traffic. 
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Chapter 5 

5 Conclusion and Future Work 

5.1 Conclusion 

In this thesis, we have employed the features of SDN architecture such as centralization and 

Programmability of the network to detect difficult type of DDoS attacks, TCP SYN flooding 

attack. 

We have successfully implemented semi-supervised machine learning algorithm by using Logistic 

Regression classifier to detect TCP SYN flooding attack in real-time SDN environment. We have 

employed four important features (Packets, Bytes, Flows and One_Packet) to train our LR 

classifier off-line. The predictive model produced from off-line training has been used in on-line 

attack detection, and at the same time, continue to classify the incoming traffic to update the 

training dataset to retrain our classifier. Our results have clearly proved that our detection system 

is reliable with no false negative and very few false positive.  

 

5.2 Future work 

In our future work, we will develop a semi-supervised machine learning algorithm that is able to 

detect more types of DDoS attacks. In addition to, we will propose countermeasures to mitigate 

various types of attacks without the sacrifice of benign traffic. Since our work is done on simple 

testbed virtual environment, we will try in the future to cover more topologies to the performance 

of our proposed approach. 
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