Ryerson University

Digital Commons @ Ryerson

Theses and dissertations

Embedded e-maintenance for an FPGA-based
reconfigurable system

Dina Goldenberg
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations

b Part of the Electrical and Computer Engineering Commons

Recommended Citation
Goldenberg, Dina, "Embedded e-maintenance for an FPGA-based reconfigurable system" (2007). Theses and dissertations. Paper 308.

This Thesis Project is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and

dissertations by an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/308?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

big1q s (¥

Embedded e-Maintenance for an

FPGA-based reconfigurable system

By
Dina Goldenberg

A project
presented to Ryerson University
in partial fulfillment of the

requirements for the degree of

Master of Engineering

in the department of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2007
© Dina Goldenberg 2007

s

PROPERTY OF
AYERSON URIVBREITY LIBRARY

UMI Number: EC53694

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

®

UMI

UMI Microform EC53694
Copyright2009 by ProQuest LLC
All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346

Author’s Declaration:
I hereby declare that I am the sole author of this project.
I authorize Ryerson University to lend this project to other institutions or individuals for

the purpose of scholarly research.

Dina Goldenberg

I further authorize Ryerson University to reproduce this project by photocopying or by
other means, in total or in part, at the request of other institutions or individuals for the

purpose of scholarly research.

Dina Goldenberg

ii

Borrow List

Ryerson University requires the signatures of all persons using or photocopying this
project.

Please sign below, and give address and date.

Name Signature Address Date

iii

Acknowledgement

I would like to express my deep gratitude to my supervisor Professor Lev Kirischian for
his support and encouragement during my M.Eng project. I am very grateful for his

guidance and valuable advice.

I would also like to thank the Department of Electrical and Computer Engineering and
Embedded Reconfigurable Systems Lab (ERSL) for providing facilities and resources
necessary for this project. My special thanks to Mr. Valeri Kirischian for his technical

assistance during the experimental phase of this project.

iv

Embedded e-Maintenance for an FPGA-based

reconfigurable system

Abstract

In recent years with the use of Internet Technologies e-Maintenance systems for remote
connectivity, performance monitoring and diagnostics were introduced. As
reconfigurable systems based on FPGAs are becoming more and more popular due to
their low time-to-market and reprogrammable feature, new possibilities for e-
Maintenance are opened allowing remote repair of the system by sending new firmware
via Internet for reconfiguration of FPGA. Up until recently programming of FPGA has
been a complicated hardware design process. However, as FPGAs were evolving, their
reconfiguration time was significantly reduced and partial reconfiguration became
available, application programming into FPGA can be simplified as presented in [1]. This
method is based on temporal partitioning of FPGA and periodically reloading it with
segments of application for different tasks. This allows utilization of smaller and thus
much cheaper FPGA and also simplifies the programming. With the help of e-
Maintenance the whole system can be dynamically reconfigured. Remote programmer
can perform partial reconfiguration, chose the physical location in FPGA for
reconfiguration and upgrade different segments.

In this project a research of remote maintenance and reconfigurable systems is conducted

and an e-Maintenance system is developed for an FPGA-based platform.

Contents

1. Introduction
1.1 Motivation
1.2 Project Objective
1.3 Project Organization
2. Theory overview
2.1 Introduction
2.2 System Maintenance
2.2.1 Testing Process
2.2.2 Maintenance
2.2.3 Diagnosis
2.2.4 Built In Self Test
2.2.5 System Monitoring
2.3 E-Maintenance
2.3.1 Internet Communication
2.3.1.1 World Wide Web
2.3.1.2 Hypertext Transfer Protocol (HTTP)
2.3.1.3 Transfer Protocols
2.3.1.4 Transport Layer Protocols
2.3.2 E-Maintenance of Reconfigurable Systems
2.4 FPGA-based Systems
2.4.1 FPGA Architecture

2.4.1.1 LUT-based Logic Blocks

vi

11

12

13

14

16

16

18

19

22

23

24

24

2.4.1.2 SRAM-based Technology
24.1.3 Embedded RAM
2.4.1.4 Embedded Processor Cores
2.4.2 Diagnosis of FPGA
2.4.3 Partial Reconfiguration of FPGA
2.4.3.1 Run-Time Temporal Partitioning of FPGA Resources
2.4.3.2 Macro-Programming of FPGA-based Systems
2.5 Summary
. System Development
3.1 Introduction
3.2 Functional Specification
3.3 Requirements of the System
3.4 System Architecture
3.5 Hardware/Software Partitioning
3.6 System Hardware Components
3.6.1 Serial Communication
3.6.1.1 Serial Ports
3.6.1.2 RS-232
3.6.1.3 Ethernet Port
3.5.2 Memory
3.7 System Software Implementation
3.7.1 TCP/IP Stack Initialization

3.7.2 Interface Configuration

vii

25
26
27
29
30
30
33
35
36
36
36
37
38
39
41
42
42
43
43
44
44
45

45

3.7.3 Allocating Socket Buffers

3.7.4 Specifying a Listen Queue

3.7.5 HTTP server implementation

3.7.6 Communication With System Under Test

3.8

3.7.5.1 HTML page

3.7.5.2 MIME Type Mapping Table
3.7.5.3 CGI Functions

3.7.5.4 Resource Table

3.7.5.5 HTTP structure

3.7.5.6 Upload functionality implementation

3.7.6.1 Serial Port Setting
3.7.6.2 Communication Protocol

Summary

4. Experimental Results

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

Introduction

Testing Methodology

Experimental Setup

Setting the Network

Configuring the IP Address

HTTP Server Test

Upload and Download Functionality Test
Communication with FPGA Platform Test

Remote FPGA Reconfiguration Test

viii

45

46

46

46

47

47

48

49

50

52

52

53

55

56

56

56

57

60

60

62

64

67

67

4.10 Timing Analysis of Remote Reconfiguration of the FPGA 68

4.10.1 Baud Rate Test 69
4.10.2 FPGA Platform Response Time 70
4.10.3 File Transmission Initialization Time 71
4.104 Bitstream Upload Time 72

4.11 Estimation of Remote Reconfiguration for Xilinx Virtex 4

Family of FPGAs 73
4.12 Summary _ 75
5. Conclusions 76
References 78
Appendix Al — Schematic Diagram PowerCore FLEX I
Appendix A2 — Schematic Diagram Prototyping Board II

Appendix B1 — Photographic Image of e-Maintenance System Prototype

connected to FPGA-based Platform I
Appendix B2 — Photographic Image of System Setup for Measurements v
Appendix B3 — Photographic Image of the Whole System Setup v
Appendix C — Source Code for e-Maintenance System VI

Appendix D — HTML Source X1V

List of Figures

Figure 2.1. System realization process
Figure 2.2. Principal of testing

Figure 2.3. BIST hierarchy

Figure 2.4. E-maintenance system

Figure 2.5. TCP/IP reference model

Figure 2.6. Data flow and header utilization within TCP/IP network

Figure 2.7. The TCP header

Figure 2.8. The UDP header

Figure 2.9. Generic FPGA architecture

Figure 2.10. A simplified view of programmable logic block
Figure 2.11. LUT configuration

Figure 2.12. Simplified view of chip with embedded RAM blocks
Figure 2.13. Chip with embedded core outside of the main fabric
Figure 2.14. Stream processing circuit for Z; = A; + B; x C;
Figure 2.15. Run-time temporal partitioning

Figure 2.16. Utilization of Macro-Operators

Figure 3.1. Overall system block diagram

Figure 3.2. PowerCore Subsystems

Figure 3.3. RS-232 Interface

Figure 3.4. RJ-45 Ethernet Port Pinout

Figure 4.1. Testing Scheme

Figure 4.2. Experimental Setup for the prototype of e-Maintenance system

11

13

14

15

20

21

23

24

25

26

28

31

32

34

38

41

43

44

56

Figure 4.3. Photographic image of the e-Maintenance system
Figure 4.4. Detailed photographic image of MARS FPGA platform
Figure 4.5. Network Setting

Figure 4.6. Local Area Connection Properties

Figure 4.7. Setting Internet Protocol Properties

Figure 4.8. Home Page of e-Maintenance Server

Figure 4.9. File Browse Dialog from HTTP Server

Figure 4.10. Selected test file

Figure 4.11. File Download Dialog

Figure 4.12. Saving File Dialog

Figure 4.13. HP54620C logic analyzer used as a measuring tool for the system
Figure 4.14. Baud Rate Test

Figure 4.15. FPGA platform response time

Figure 4.16. File Transmission Initialization Time

Figure 4.17. Transmitted Bitstream Packets

58

59

60

61

61

63

64

65

66

66

69

70

71

72

List of Tables

Table 3.1. Serial Port Signals 42

Table 4.1. Estimated remote reconfiguration time for Virtex-4 family of FPGAs 74

xii

Chapter One

Introduction

1.1 Motivation

Maintenance of a system is the next important task after manufacturing and production.
Since system reliability is crucial for any sold product and customer satisfaction is of a
greatest value in the modern commercial world, the system maintenance must be
effective and inexpensive. In large complex systems reliability is difficult to achieve
since many boards and sub-blocks are involved in system design and integration and
therefore probability of malfunctioning and faults is high. When system malfunctioning is
detected in the field, the work to repair the system can be simplified if some information
about malfunctioning is known. Saving data to log files that later on will be viewed by
technicians can shed light on the source of the problem. Self check and self diagnostic
subsystems are designed and added to complex systems in order to facilitate maintenance
process. Latest Internet technologies have enabled remote connectivity to the system
which opens huge opportunities for design of remote e-Maintenance systems to perform
remote monitoring, remote access to log files and diagnostic. With new possibility to

reconfigure FPGA systems by downloading new firmware some remote repair work

became possible.

FPGA-based systems carry big advantages over ASIC systems due to possibility to be
reconfigured and adapt to different requirements for different applications. Due their
small sizes and high density they are vulnerable to external disturbances, which can cause
temporary or permanent damage. In case of SEU (Single Event Upset) the damage might

be not of a permanent nature and by simply reloading FPGA the problem can be fixed.

Also Internet connection opens possibilities for remote reconfiguration of the system for
new applications. As modern FPGA require significantly less time for reconfiguration
and posses the ability of partial reconfiguration constant periodic reconfiguration of
FPGA for different tasks becomes possible allowing utilization of smaller FPGA for
complex systems. These tasks can be programmed remotely and uploaded to FPGA

partitions with the help of e-Maintenance system.

1.2 Project Objective

The objective of this project is to conduct research in the area of e-Maintenance, which
includes system maintenance and Internet communication. FPGA-based systems study

has to be conducted as well.

Next, e-Maintenance for FPGA-based system has to be created. HTTP server is to be
implemented in order to provide remote connectivity to FPGA platform to allow
observing its performance and diagnostic, fixing malfunctions by reloading firmware and
upgrading the system by sending a new bitstream over the Internet and reconfiguring

FPGA dynamically.

Finally the role of e-Maintenance in periodic partial reconfiguration of FPGA systems

based on temporal partitioning for different applications is to be evaluated.

1.3 Project Organization

The project is organized in five chapters. First chapter opens with a brief introduction of

the project, stating its objective and organization.

Second chapter follows with theoretical overview of system maintenance in general and
e-Maintenance in particular including overview of Internet and its main protocols. FPGA-
based system is introduced followed by temporal partitioning and partial reconfiguration.

The role of e-Maintenance for FPGA programming and reconfiguration is discussed.

Development of Embedded e-Maintenance for FPGA-based Reconfigurable System is
presented in chapter three. Requirements of the system are determined, system

architecture is presented and detailed implementation is described.

Chapter four holds experimental results. HTTP server functionality is tested,
communication with FPGA platform is established, reconfiguration of FPGA-based

system is fulfilled and observation of different FPGA reconfigurations is presented.

Finally, conclusions are drawn in chapter five. Future work and possible further research

is discussed.

Chapter Two

Theory overview

2.1 Introduction
In this chapter theoretical overview is presented. It is divided into three major parts:
e system maintenance which talks about system diagnosis and testing process

e e-Maintenance and Internet communication

e FPGA-based system

2.2 System Maintenance

Every system goes through several stages within its lifetime as illustrated in Figure 2.1.
In the first stage the requirements of the system need to be determined according to

customer’s needs.

Based on the requirements specification is prepared. Specification includes functional
characterics such as specifying inputs and outputs of the system, operating charateristics
such as power and frequency, environmental characteristics such as reliability of the

system at a certain temperature range, and so on.

In the next stage all the necessary data for the manufacturing stage is prepared. High-
level decisions are made about the overall structure of the system, its architecture, and the

strategies used to implement the system. The system is divided into functional blocks and

afterwards each block is being designed to details. After the design is complete, the first
stage of testing is conducted. It is meant to compare the actual system performance to the
required one and in this way to discover the defects of the system, which could be caused

by equipment malfunctions, defects in materials and human errors [2].

Requirements determination

Y

Specification

A 4

Design and Testing

Y

Manufacturing

Y

Manufacturing Test

Y

Maintenance

Figure 2.1. System realization process.

In the manufacturing stage mechanical transformation of materials into new products in
large quantities is conducted, assembling component parts into new products. After that

new products are tested again to verify they are working correctly.

Now the product is ready to be shipped to the customer. Ideally, its performance should
be 100% correct for as long as the customer needs to use the product. Unfortunately, the

reality is different. At a certain point some defects may appear in the system due to

improper handling, environment conditions, aging of the system, or initial defects that
were not discovered at the testing stage. Here the maintenance stage comes in, when the
supplier must check the system, find the source of the problem and replace the necessary
component. If the customer needs to add new features to the existing system, the supplier

upgrades it at the maintenance stage as well.

2.2.1 Testing Process

The role of testing is to detect whether there is a defect in the system and if possible to

locate it. Basic principal of testing is illustrated in Figure 2.2.

Test Digital Output Test
t
{Pattems Circuit ::> JLResponses} E> Comparator E:> Result
o ﬁ
Responses

Figure 2.2. Principal of testing.

A test performed on a system may be functional in which case the correct function of the
system needs to be verified [2]. A complete functional test will check each entry in the
truth table. In case of a large circuit with many inputs such test will take extremly long
time to finish. Therefore in most cases only a certain amount of test patterns is applied.
Another way to make a large system test less complicated is to divide the system into

smaller functional blocks and run an individual test on each of those blocks.

Another type of testing is called structural test. This type of testing depends on the

specific structure of the circuit such as gate types, interconnects, etc. These tests enable

developing algorithms with the help of fault models. A fault is representation of a defect

at function level.

Several levels of fault models are possible:

Behaivioral level — at this level, which is often called high level, the behaivior of
an electronic system is described in computer-readable form and is written in a
programming or a hardware description language. The variables and operations
correspond to specific application domain and the behaivioral faults refer to
incorrect execution of the language constructs. Examples of such faults are branch
fault, which affects a branch statement and causes it to branch to an incorrect
destination and instruction fault, which causes an instruction to be incorrectly
executed. Functional fault models of semiconductor memories are also a part of
behaivioral faults, since their function is very simple and exhausive functional test
is normally used.

Register-transfer level (RTL) — or sometimes called logic level, which uses a
netlist of gates. Stack-at faults are the most common fault models for this level.
Stack-at fault is modeled by assigning a fixed value to a signal line in the circuit.
Also common to this level are bridging fault, which represents a short between a
group of signals and delay faults.

Transistor level — often reffered as component level includes stack-open types of
faults, which are modeled as the switch being permanently in open or shorted

state, considering a MOS transistor as an ideal switch.

With the use of these fault models an algorithm for testing the system can be created.

Thus the system can be tested on different levels, from the highest to the lowest.

2.2.2 Maintenance

Maintenance is necessary whenever the system is malfunctioning. During maintenance
process the system is tested to determine which part of the system stopped functioning,

after which the faulty component is replaced.

Malfunctioning of the system can occur due to various reasons. With the help of latest
technologies semiconductor devices operate on a lower power voltages, have smaller
sizes and high density. However, these qualities make the system more volnerable to
external and internal disturbances such as electromagnetic interference, cosmic radiation

and power supply fluctuations [3]. All these disturbances can cause defects in the system.

Defects can be of permanent and temporary nature:

e Hard faults - caused by hardware defect in the circuit and considered to be faults
of a permanent nature. Such faults will produce steady system malfunction.
Examples of these faults are stack-at faults and stuck-open faults.

o Soft Faults - faults of no permanent nature. These faults happen as a result of
external interferences and are called Single Event Upset (SEU). These faults
happen occasionally even in case of no electromagnetic interference present and

power supply lines being steady, cosmic radiation can still cause SEU.

2.2.3 Diagnosis

Whenever any disturbance occurs, causing the system to stop functioning properly a
diagnosis must be performed. Diagnosis is a way to determine exactly what part of the
system is corrupted and how to solve the problem with minimum effort and cost. Testing
is a very important part of diagnosis.

Even for a relatively small system, consisting of several components, testing can be a
tedious process. Running an exhaustive test on a whole system and checking for all
possible faults will take an infinite amount of time. In order to perform diagnosis
effectively, the system must be divided into blocks and each block must undergo its own
separate test. Based on the results of those tests a decision can be made as to which

component in the system is faulty.

Diagnosis of a system can be performed on a structural and on a functional levels [4]. On
a structural level the division of the system into blocks is performed based on the system
structure that is a certain amount of printed circuit boards, chips, wiring etc. The system
is divided into blocks according to its components and each of them is tested separately.

After the testing is finished the faulty component should be found.

When the diagnosis is performed on a functional level, the testing is based on system
functionality. Each system has to perform certain functionality and it can be viewed as a
combination of several functional modules. Once the division of the system into these
modules is defined, a separate functional test can be performed on each of those modules,
thus revealing the faulty one. Functional module corresponds to an actual structural

component (or several components), which needs to be substituted. Functional and

structural levels may overlap which can create flexibility in a test design. This may allow

choosing the type of testing which is easier to perform.

In certain cases diagnosis of communication is necessary. In a complex system where
several components are constantly communicating with each other, system malfunctions
might be caused by communication faults. One of the tasks of system diagnosis is to
detect faults in communication. This can be accomplished with the help of
communication protocols, when the transmitting end can send special control messages
and the receiver must send appropriate acknowledgments. When the acknowledgement is
not received the source of the problem can be in faulty communication or defected
component. Communication between components can be improved by adding checksum
bytes to transmitted data. These bytes are analyzed by the receiver to verify the integrity
of data and if necessary the receiver can send a request to transmit the same data again.
Many different encoding techniques are used for verifying data integrity, among which

Cyclic Redundancy Check (CRC) is the most popular.

In reloadable systems, which require initialization stage malfunctioning can be caused by
faulty elements responsible for uploading the data/software. Usually these elements are
memory devices such as FLASH, SRAM, EPROM, etc. A common way to verify correct
functionality of such devices is to upload a small amount of data, read it back and
compare it with the original. If this test repeatedly results in an error a conclusion can be
drawn that the memory device is indeed faulty. With this procedure this single

component failure might be verified prior to system initialization stage.

10

2.2.4 Built In Self Test (BIST)

As technology evolves integrated circuits become more and more complex. Since it is
almost impossible to trace and probe internal signals in these circuits it is very difficult to
test them thoroughly and quickly. For such systems design-for-test (DFT) techniques are
a good solution for improving system testability such as Build In Self Test (BIST) [4].
BIST is very useful for maintenance and diagnosis, since it reduces test generation effort
at all levels. This test is specified as one of the system functions. At the highest level of
system test, this test is usually implemented in software. Software approach provides
flexibility, but on the other hand it can be slow and expensive to develop. Therefore for

some systems it is preferable to implement self-testing in the hardware.

Pattern
System Board Chip Generator
A
Test Test Test Circuit
Controller Controller Controller Under Test
Y
Response
Analyzer

Figure 2.3. BIST hierarchy.

BIST system hierarchy is shown in Figure 2.3. System test controller can activate the test
on all PCBs. Each PCB has its own test controller, which in turn activates self-tests on all
chips on the board. Likewise each chip test controller activates self-test of the chip itself.

After the tests are finished, the results are transmitted to the main test controller: all chips

11

test controllers transmit the results to board test controller, which collects them and sends
them further to test controller of the system. Upon receiving all the results, system test

controller is able to detect faulty chips and boards and isolate them.

2.2.5 System Monitoring

Real-time continuous monitoring is now generally considered to be a part of the
mechanism for improving system reliability [5]. It can significantly reduce the time spent
on testing the system, since just by observing the event log system specialist can
understand which part of the system is malfunctioning [6]. Also, some malfunctions will
only take place under specific conditions, which might not be reproduced in regular off-
line testing environment. In order to provide a proper event log, a monitor must
systematically observe execution behavior of the system. Its activity must not disturb
system functions and it must keep up with target execution by imposing real-time
constraints on its internal processing [7]. Such systems are important in general

applications that are subject to time-dependent process interaction anomalies.

12

2.3 E-Maintenance

Effective diagnostics and maintenance are very important factors in system cost, because
during the process of diagnostics and repair the system is not functioning. In many cases
when a problem occurs to the system, the supplier will send service engineers to
customer’s site to perform diagnostics, testing, and replacement of faulty components in
the system. Sometimes, the service engineer cannot resolve the problem solely and needs
to bring the symptom back to the supplier’s diagnostics center and uses the information
system to inquire the solution information or purchase the required maintenance
components. Thus the diagnosis and repair of failed system usually cannot be performed
immediately and therefore the downtime of the system can be long and can cause a

significant production loss.

With the development of Internet technologies remote connectivity to the system
becomes available. This opens huge opportunities for design of remote e-Maintenance
systems to perform remote monitoring, remote access to log files and diagnostic, which

can significantly reduce the downtime of the system [8].

On-site Remote
. Internet]
Maintenance server Maintenance server
A A
A\ 4 Y
Service
System .
engineer

Figure 2.4. E-maintenance system.

13

Figure 2.4 presents the concept of e-maintenance system. The system preferably
containing a self-testing mechanizm and an embedded monitoring device for effective
diagnosis is connected by a local network to on-site maintenance server. This server
receives log files and self diagnostic results from the system and keeps them in its
database, so that they are available for service engineers. Connected to a local host
service engineer can access these log files and diagnosis results by connecting to on-site
maintenance server through internet. He can view current status of the system, provide
diagnostics or even upgrade the system with new firmware without being close to the

system physically.

2.3.1 Internet Communication

The Internet is a global system of computer networks. Each computer is independent — a
host, and it can get information from any other computer. Internet provides services such
as file transfer, email and the World Wide Web. It uses a set of protocols called TCP/IP

(for Transmission Control Protocol/Internet Protocol).

Internet communications can be presented with the help of four layers, as illustrated in

Figure 2.5.

T

Apphcatlon layer o HTTP, FTP, Other Applications

" Transport layer TCP or UDP
Network layer IP
Data Link la);é} R Ethernet, Token Ring, Other Network interfaces

Figure 2.5. TCP/IP Reference Model.

14

Communications functions are divided into responsibilities of each specific layer [9].
These layers are:

e Application Layer — this layer is a client/server communication. Data is sent as
commands from the user.

e Transport Layer — is responsible for sending the data, determining whether it has
been lost and needs to be resend. Sometimes error check is performed at this
level.

e Network Layer — this layer manages the logical connection between two nodes of
the network.

e Data Link Layer — at this layer data is transmitted across single network.

The data flow within TCP/IP network is presented in Figure 2.6. Each network layer adds

a header to the data, so that the next layer can handle it properly.

Application Layer Ap}gi:tz;tion
Transport Layer H:S;)er Ap%i;z;ﬁon
Network Layer i eI:der Hzg(fer Ap%i:f:ion
Data Link Layer Fr;iit:v;/{();(dor HeI:der H’le;zcl:cfer Ap}gi:tt;tion

Figure 2.6. Data Flow and Header Utilization within TCP/IP network.

15

2.3.1.1 World Wide Web

The World Wide Web is a hypertext-based, distributed information system, which
provides its users with a graphical interface to access data stored anywhere in the world.
Hypertext is a method of creating online documents [9]. Documents written as hypertext
contain links to other documents or other resources. Hypertext provides visual indications
for these links, such as changing the shape of a mouse pointer when it is placed on a
section of a document that points to another resource or highlighting that link. Web

documents are created using Hypertext Markup Language (HTML).

A Web server is a program that serves the files from Web pages to Web users on client
machines. Web client connects to Web server and sends a request for service. Web
servers are used for serving e-mail, downloading requests for File Transfer Protocol
(FTP) files, and building and publishing Web pages. Therefore web servers are required
to be compatible with application level protocols and TCP/IP protocol (or UDP).
Considerations in choosing a Web server depend on requirements of the system and may
include how well it works with the operating system and other servers, its ability to
handle server-side programming, security characteristics, and publishing, search engine,

and site building tools that may come with it.

2.3.1.2 Hypertext Transfer Protocol (HTTP)

Requesting and moving web documents from a server to a client is defined by Hypertext
Transfer Protocol (HTTP) [10]. HTTP is a request/response protocol: if the client needs
to receive service from the server it must send a request first. HTTP request includes a

request method to note what the client needs from the server, what resource the client

16

wants to manipulate through the Uniform Resource Identifier (URI) and a protocol
version. A server response also includes the protocol version, followed by a success or an

error code. The response also contains server information and web information.

The first HTTP version was HTTP/0.9. This was a very simple protocol for transferring
text files only. The next version HTTP/1.0 was a more complicated protocol allowing
transfer of many types of files and resources. However this protocol is based on a
perception that every time the resource is requested, a new connection must be
established. Since web pages became more complex containing several text and graphic
files, a new version was developed: HTTP/1.1. This version allows keeping one

connection open to send and receive more than one request/ response pair.

Several request methods are used in HTTP/1.1 such as:

e GET - clients use this method to request web content.

e PUT - used by clients to submit material to a specific web URI.

e POST — used by clients to add material to an existing URI.

e OPTIONS — a request for information about available communication options, so
that a client can determine the options and requirements of the resource or the
capabilities of the server.

e HEAD - used for testing hypertext links for accessibility and recent modification.

e DELETE - this method requests that the origin server deletes the resource
identified by the Request-URI.

e TRACE - clients use this method to see what is being received at the other end of

the request chain in order to use that data for testing or diagnostic information.

17

2.3.1.3 File Transfer Protocols

File Transfer Protocols allow the user to access files on remote hosts, send and receive
files through Internet [9]. There are two main protocols of such kind: File Transfer

Protocol (FTP) and Trivial File Transfer Protocol (TFTP).

With the help of File Transfer Protocol the user can operate on remote resources as if
they were on his local computer. The user can view the directories, open files, copy them
and move them. FTP is a full-featured protocol, it offers a vast variety of operations
between two hosts. Hosts can exchange files regardless of their operating systems or file
structure. FTP can handle any type of file and is very reliable. FTP uses two different
TCP channels. The first channel is for transferring data such as directory information and
transferred files. The second channel is for control purposes, through this channel

commands from the client to the server and backwards are sent.

TFTP is a simplified version of FTP. It is useful for hosts with limited memory, limited
file download requirement and less need for reliability. It cannot list directory content of
another host, its main purpose is to read files from and write files to a remote server.
TFTP uses UDP and therefore files are transferred through independent exchange of
packets. The client sends an RRQ (read request) or WRQ (write request) packet to the
server, containing the filename and transfer mode. The server replies with an ACK
(acknowledgement) packet and sends the first part of the file. The client sends an
acknowledgment upon receiving the packet, and the server sends the next part. This
process continues until the whole file is sent. TFTP protocol is very simple, it has only
five types of messages: Read request, Write Request, Data to be read or written,

Acknowledgment and Error.

18

2.3.1.4 Transport Layer Protocols

Transport layer provides interface between a network layer below and an application
layer above. There are two primary transport layer protocols: Transmission Control

Protocol (TCP) and User Datagram Protocol (UDP) [9].

TCP is a connection-oriented protocol, which means that the data can be transmitted from
one host to another only after both hosts have initiated a connection. This requires a
handshaking process called three-way handshake to be completed before establishing the
connection. One end is sending a request to the other host to open a TCP circuit. The
client-side of a connection sends an initial SYN segment to the server to show that the
synchronization process is taking place. Upon receiving the acknowledgment the server-
side should respond to a valid SYN request with a SYN/ACK. Finally, the client-side
should respond to the server with an ACK, completing the 3-way handshake and

connection establishment phase.

TCP connection is duplex, meaning hosts can send data at the same time and it will travel
in parallel. Also TCP is a reliable delivery protocol — it guarantees delivery of data
between two hosts. Both hosts must acknowledge of all data received from the other host.

In case of missing data it will be retransmitted.

19

TCP Header Structure is shown in Figure 2.7.

Source Port Number Destination Port Number

Sequence Number

Acknowledgment Number

Header | Reserved |TCP Flags Window size
Length

TCP Checksum Urgent Pointer

TCP Options

Data

Figure 2.7. The TCP header.

o The first two fields are source and destination port numbers. They are used by the
receiver and the transmitter respectively to identify each other.

e Since data is divided into packets rather than sending the whole chunk at once,
sequencing is necessary. Sequence number ensures that packets will not be
misordered and missing packets will be noted.

e Header length field is usually 4 bits in length, but since inclusion of options can
result in variable-length header, the presence of this field is necessary.

e TCP flag bits are used to negotiate and manage the connection. |

e Window field indicates the maximum number of bytes for the receiver to expect.

e Checksum field provides error detection capability.

o Urgent pointer field is used when the URG flag in TCP flags field is set indicating

that current TCP segment is urgent.

20

e TCP options field enables the support of various options such as Maximum

Segment Size.

Unlike TCP, UDP is a connectionless protocol, which means that an application using
UDP can have its data transmitted without establishing a connection with the receiver
first. This simplifies the communication process. UDP does not provide the reliability and
ordering guarantees that TCP does; messages (called datagrams) may arrive out of order
or go missing without notice. However, as a result, UDP is faster and more efficient for
many lightweight or time-sensitive purposes for which using TCP would result in a high

level of overhead. Also UDP header is simplified and is much smaller than that of TCP. It

is presented in Figure 2.8.

Source Port Number

Destination Port Number

UDP Datagram Length

UDP Checksum

Data

Figure 2.8. The UDP header.

e Source and destination port numbers are used by the receiver and the transmitter

respectively to identify each other.

e Length field indicates the length of UDP datagram.

e Checksum field is used when checksum is required by the application.

21

2.3.2 E-Maintenance of Reconfigurable Systems

Previous generation of E-maintenance systems dealt with embedded microprocessors
based systems. It was possible to conduct remote monitoring and diagnosis for them, thus
internet was merely servicing information exchange such as log files or testing results.

Today, as FPGA’s become more and more popular and many systems are based on them,
E-Maintenance can have a new important task — remote repair of the system through
dynamic reconfiguration of processor structure. Thus without substituting the hardware
remote reconfiguration of the system for repair as well as for new applications is

becoming possible.

22

2.4 FPGA-based System

FPGA stands for Field Programmable Gate Array. It is a digital integrated circuit that
contains programmable logic blocks and configurable interconnects between them [11].

Figure 2.9 illustrates generics FPGA logic and routing resources.

Programmable Programmable
interconnects logic blocks

Figure 2.9. Generic FPGA logic and routing resources.

Based on their implementation FPGAs can be reconfigured multiple number of times,

while other type of FPGAs can be programmed only a single time.

Today FPGAs are used to implement a variety of products such as communications
devices, digital signal processing applications and embedded microcontroller
applications. FPGAs are being used to implement designs that previously have been

implemented using application-specific integrated circuits (ASICs). Although the cost of

23

ASIC in massive productions is lower than that of FPGA, implementing design changes
is much faster in FPGA as well as the time to market of FPGA design is faster. These

qualities make FPGA very popular, especially for small innovative design companies.

2.4.1 FPGA Architecture

The main feature of FPGA is its ability to be reconfigured many times. In this section the
mechanism that allows reprogramming FPGAs is explained as well as some architectural

features.

2.4.1.1 LUT-based logic blocks

Lookup table (LUT) based blocks consist of a multiple input lookup table, a register that

can act as a flip-flop or a latch and a multiplexer, as shown in Figure 2.10.

a
b > Y
» q
d
clock

Figure 2.10. A simplified view of programmable logic block.

Each one of those blocks can be configured to perform a different function [11]. For

example, if LUT is required to perform the function y = (a OR b) AND (NOT c). The

24

LUT needs to be loaded with values as shown in Figure 2.11. 8-1 Mux represents a

cascade of transmission gates for selecting the desired SRAM cell.

Truth table Programmed LUT
a b c y
0|l 00O 0| opop —
0 1 0 1
i e 1| o010 — g1
1 0 0 1 0 011 —*
1 1 0 1
0 101 —* X
1 1 1 0
1 110 —™
0 111 —» T

Figure 2.11. LUT configuration.

Different number of inputs has been researched in the past. Today all successful

architectures use 4-input LUTs.

2.4.1.2 SRAM-based Technology

The majority of FPGAs are based on the use SRAM configuration cells [11]. Static RAM
is employed because the values in the cells don’t need to be refreshed as in dynamic
RAM. They remain unchanged unless altered by designer or until the power is removed
from the system. SRAM cell consists of multitransistor SRAM storage elements. Output
of each element drives an additional control transistor. Based on element’s content (0 or

1) this control transistor will either be OFF or ON.

25

SRAM-based FPGA has to be reprogrammed every time the system is powered on, which
requires the use of an external memory devise. Since each cell consists of several
transistors, it ‘consumes a lot of silicon. However, SRAM-based technology’s big

advantage is that these cells can be reprogrammed quickly and repeatedly.

2.4.1.3 Embedded RAMs

Since many applications require the use of memory, latest FPGAs include embedded
RAM called block RAM [11]. These blocks can be positioned around the periphery of the
devise or organized in columns, as shown in Figure 2.12.

Columns of embedded Arrays of programmable
RAM blocks logic blocks

Figure 2.12. Simplified view of chip with embedded RAM blocks.

Each block of RAM can be used independently or if a larger chunk of memory is needed,
several blocks can be combined to be used as one. They can be used to implement

different functions such as FIFO, state machines and so on.

26

2.4.1.4 Embedded processor cores

Most of electronic designs are implemented using microprocessors. Until recently
microprocessors have been included in the design as a separate device. Lately they
became available as part of high-end FPGAs [11]. These microprocessors are referred as
embedded cores. Using such FPGA saves the cost of having two separate devices, as well
as makes the design simpler, since there is no need in connecting those devices on board.
Microprocessor core can be implemented in FPGA in two ways: as hard core and soft

core.

A hard microprocessor core is a predefined block in FPGA, positioned at a certain place
in the chip. This place can be on the side of the main FPGA fabric called “strip”, as
shown in Figure 2.13. Additional functions can be added with microprocessor core such
as memory, peripherals, etc. More than one microprocessor can be embedded into the

chip.

Another option is for embedded core to be placed directly into the main FPGA fabric. In
this case the memory necessary for the core is formed from embedded RAM blocks, and
various peripherals are formed from programmable logic blocks. The advantage of this

position is speed gain due to proximity of microprocessor core to the main FPGA fabric.

27

Main FPGA fabric Strip
— A — - f_H

Microprocessor
core, RAM,
peripherals, etc.

Figure 2.13. Chip with embedded core outside of the main fabric.

Soft cores are programmed into FPGA by configuring a group of programmable blocks to
act as a microprocessor. Such core can be provided in a form of RTL netlist that will be
synthesized with the other logic or as a placed and routed block of LUTs. All additional
devices like memory controllers, interrupt controllers and so on are implemented in the

same way as microprocessor core.

These cores are simpler and up to 50% slower than hard cores. However they give the
designer the flexibility to include the core according to his needs as well as any
peripheral device. Also several cores can be implemented as long as there are enough

programmable blocks in FPGA.

28

2.4.2 Diagnosis of FPGA-based system

SRAM-based technology is very sensible to Single Event Upsets (SEU). Such events
may be originated by high energy particles hitting the silicon substrate, and thus changing
the logical state of the memory elements [12]. SEUs may alter the memory elements in
the design such as the content of a register in the data-path, or the content of the state
register of a control-unit. Another aspect of SEU effects is possible change in the content
of the memory storing the device configuration information, such as the content of a
Look-Up Table (LUT) inside a Configurable Logic Block (CLB) or the routing of a
signal in a CLB or between two CLBs. Therefore SEU by changing one bit can cause

malfunctioning of the whole device.

One way to avoid this problem is to use radiation hardened FPGA devices [13]. However,
these devices are much more expensive. Another possible solution is to use FPGAs based
on antifuse technology, but they have a major drawback — they cannot be

reprogrammable.

Therefore periodic testing of FPGA 1is necessary. It will detect the effect of SEU and by
reprogramming FPGA the defect can be fixed. FPGA-based systems which are designed
to work in outer space are equipped with a special reloading system. This system allows
to reprogram FPGA frequently while FPGA is in working mode. Such systems are very

expensive, but necessary in space conditions with very high ratio of SEU.

It is also important to test FPGA regularly because some manufacturing defects in the
reconfigurable hardware may result in faulty behavior only for spesific configurations.

The malfunctioning FPGA component may actually pass manufacturing test and work

29

properly for a number of different configurations, but one particular configuration might

cause it to fail [14].

E-maintenance opens new possibilities for repair of FPGA-based systems, since
whenever FPGA needs to be reconfigured, new firmware can be sent to the system

remotely via internet.

2.4.3 Partial reconfiguration of FPGA

Not only can FPGA be reprogrammed with new logic whenever it is necessary, but it can
also be reprogrammed partially [15]. A certain predefined subset of FPGA can be
reconfigured, while the rest of the device continues operating. The process of partial
reconfiguration is based on dividing FPGA into blocks according to their functionality
and reloading each block with it’s own bit stream. Thus in order to reconfigure a part of
FPGA, it is not required for the }yhole system to stop operating. This feature comes very

handy for systems that deal with mission-critical tasks that cannot be interrupted.

2.4.3.1 Run-Time Temporal Partitioning of FPGA Resources

Today digital signal processing systems need to process streamed data at very high speed.
Traditionally embedded microprocessors were the basis for designing such systems.
However, the performance of such systems is limited due to sequential process of
instructions execution in microprocessors. Furthermore, microprocessors require many
additional clock cycles for each instruction: instruction fetch, instruction decode, data
fetch, store result. Thus completion of a certain set of operations will take longer time

than just data processing itself.

30

For example, suppose the following set of operations is to be implemented:
Zi=A;+B;xC;, fori=1,2,...,100

For each value of vector elements 7 instructions have to be executed: load B, load C,
multiply B and C, load A, add A to the result of previous operation, increment i, compare
i to 100. Even if we assume that the number of clock cycles for each operation is 1, the

whole task will take 7 clock cycles * 100 = 700 clock cycles.

But if this function is to be implemented in a specially designed circuit presented in
Figure 2.14 it will take far less time to execute: Total time = Latency + Output rate * 1
clock cycle = 2 clock cycles + 100 * 1 clock cycle = 102 clock cycles. That is 7 times
faster. In reality multiplication and adding take much more time than 1 processor clock

cycle, therefore custom designed circuits operate even faster than shown in this example.

Ai Bi Ci
A/
Multiplier
Adder
Output

Figure 2.14. Stream processing circuit for Z; = A; + B; x C;

31

Growing demand for high-speed data processing resulted in moving away from
microprocessors to implementing such systems in ASIC or FPGA devices. As was noted
previously, ASIC has major drawbacks compared to FPGA, since FPGA has a lower
time-to-market and can be reprogrammed. Furthermore, use of partially reconfigurable
FPGA devices makes possible achieving high-cost efficiency. This is done by dividing
FPGA into segments when each segment is configured with a specific IP-core designed
for a certain task. After the task was executed, temporal results are stored in the memory
and a new configuration data reloads FPGA for the next portion of operations to be
executed. Such approach allows using same resources of FPGA for execution of different
tasks during different time periods and as a result minimization of hardware per task.
Figure 2.15 illustrates the concept Run-Time Temporal Partitioning when S;, Sy, ..., S;

are segments.

Config S1 | Config S2 Config Si Config S1
Process S1 | Process S2 Process Si | Process S1
Executing task k i Executing task k+1
- >
time

Figure 2.15. Run-Time Temporal Partitioning.

32

2.4.3.2 Macro-Programming of FPGA-based System

Utilization of FPGAs can be quite complicated. It is expensive and requires a lot of time
since many stages are involved: development, circuit design, prototyping and
verification. If a complex system is implemented it can result in using a large and
therefore extremely expensive FPGA due to complex routing inside the chip. As an
outcome a lot of FPGA’s logic resources will not be used for the processing itself. Also it
will require long compilation cycle. And finally, FPGA prototyping calls for highly
qualified developers. Such developers are hardware designers and usually are not experts

in the technological process itself.

A concept of Macro-Programming presented in [1] investigates the possibility of
simplifying task programming without detailed knowledge of FPGA hardware
organization. It is based on dividing the stream-processing application into segments S,
S,, ..., Si when each segment is linked to a given stream-processing unit configured in
FPGA. Each of those stream-processing units is called virtual hardware component
(VHC) and functions like IP-core, it is used for configuration of FPGA for a specific task
— macro-operator, it has interface to memory units for temporal data storage and possible
Input/Output interface. Assuming a library of VHC-cores can be produced that for every
category of applications, such library is to be supplied by vendors of FPGA platform.
Each VHC should be optimized for a certain task and associated with a specific macro-
operator. A sequence of macro-operators scheduled according to sequence of tasks is

called Macro-Program. Figure 2.16 illustrates the concept of using Macro-operators for

application programming.

33

~ Tack Sequence Macro-Program - VHC Sequence -

Input data
''''''''' Receive input data ———» VHC Load
° ------------- #| Macro-operator #1 ————> VHC1
e ------------- » Macro-operator #2 [VHC2
-------------- »{ Macro-operator #i |——» VHCi
--------- » Send output data ———» VHC Output
Output data

Figure 2.16. Utilization of Macro-Operators.

Such approach allows easier task programming since first of all breaking tasks into
segments simplifies the development of the system. Each separate segment is less
complicated thus it is easier to design a stream-processiﬁg circuit for its fulfillment.
Second, macro-operators could be used for execution of different tasks ahd this way a
library of macro-operators can be created. And ﬁnally, since the stage of hardware
implementation will be finished with the develppmerit of stream-processing circuits, task
programming itself becomes easy for the pr(')grar'nmér.‘He' needs to know how to operate
with macro-operators, that is parameterize them correctly and sequence them according
to the specific technological process. Eventually, the program will be a schedule of

macro-operators, loading appropriate bit-streams into FPGA in specified time periods.

34

Such program can be loaded to any system containing FPGA-based stream-processing
platform. E-maintenance system opens number of possibilities for Macro-programming.
The whole Macro-Program can be uploaded remotely. A library of Virtual Hardware
Components can be developed remotely and uploaded via Internet as well. If later on this
library has to be extended or updated, necessary VHC can be de§eloped remotely and
loaded via Internet. It can then be used by the Macro-Program for FPGA reconfiguration
for updated task. Thus the system can be upgraded without stopping the execution of it§

other tasks.

2.5 Summary

A theoretical overview of e-Maintenance and FPGA was presented in this chapter. As
part of e-Maintenance general system maintenance was described and overview of
Internet communication with main Internet protocols was demonstrated. Theoretical
background of FPGA was presented as well as latest possibilities for its reconfiguration

were studied.

35

Chapter Three

System Development

3.1 Introduction
In this project a prototype of e-Maintenance system for FPGA-based reconfigurable
system will be implemented. Requirements for such system, its architecture and

implementation are described in this chapter.

3.2 Functional Specification
An e-Maintenance system for FPGA-based reconfigurable system must possess the
following functionality:
e Provide remote connectivity to supporting personnel via Internet.
e Capable of receiving new firmware via Internet.
e Allow reloading FPGA’s firmware.
» Provide monitoring of reconfigurable system and keep log files of system events.
e Provide diagnostic of reconfigurable system.
e Allow viewing log files and reconfigurable system performance via any standard
browser.

e Allow downloading log files via Internet.

36

3.3 Basic Requirements of the System

In order to possess all the capabilities listed above this system must fulfill several basic
requirements. First of all it must contain an embedded web server to enable remote
connectivity, viewing log files of reconfigurable system, downloading them, and sending
new firmware if necessary. System maintenance web page presenting system
performance, faults and diagnostics must be designed. The system upgrade and

downloading log file will be accessed through maintenance web page.

Therefore the requirements of a web server are:
e To have one or two simple web pages.
¢ Provide uploading/downloading files capability.
e Provide TCP/IP connectivity.

e Provide compatibility with HTTP protocol.

Second, the system must have enough memory to store log files, embedded web server

related items such as web pages, controls, etc.

Finally, an embedded microcontroller is necessary to coordinate the whole system. It will
monitor reconfigurable system performance, maintain system log file and provide boot

loading to the system.

And like general embedded systems this system should be flexible, compact, low power

and low cost to be affordable for mass production.

37

3.4 System Architecture

The overall block diagram of the system is presented in Figure 3.1.

Ethernet
A
A

Data Control File Storage

System) > System
A
A4

Interface to FPGA-

FPGA-based system

A
Y

based system

Figure 3.1. Overall system block diagram.

The architecture of e-Maintenance system will be based on choosing a suitable
microcontroller and implementation of TCP/IP protocol. For the needs of this system an
8-bit microcontroller will be suitable since it combines sufficient functionality and

peripheral devices with less complexity and low cost.

Today there is a variety of available commercial technologies for implementation of
network-enabled devices [16]. There are several microcontroller boards on the market

that claim to be web-enabled while others can be built from a schematic and a few

38

components. Among such boards are PicoWeb using Atmel's AT90S8515
microcontroller [17] and HTTP, TCP/IP protocols, OT731 from Orlin Technology using
Microchip PIC16F877 microcontroller [18] and TCP/IP, UDP, PPP protocols [19],
PowerCore Flex [20] using Rabbit 3000 microcontroller [21] and HTTP, TCP/IP, FTP
protocols. Many of these devices are simply embedded web page servers, but for the
purposes of this project a microcontroller with a potential for a wider range of
applications is necessary. Convenient and available development tools and functionality
of protocols of different layers of Internet are also important. Based on all these criteria

PowerCore Flex from Z-World Inc. is selected as the platform for this project.

3.5 Hardware/Software Partitioning
Hardware and software partitioning are based on the project architecture and defined by
the chosen platform for the project.
The hardware in this case is as follows:
e 8-bit microprocessor.
e Static RAM for data.
e Flash memory for instructions storage.
e Serial Flash memory for file storage.
e Programming port for software development and debugging as well as hardware
for connection between the development environment and the board.
e Ethernet port.
e Serial ports for communication with serial flash and interfacing with system under

test.

39

e Serial cable with custom RS-232 headers for communication with system under
test. Since the RS-232 header on PowerCore prototyping board is not standard, a

custom cable for correct pinout had to be prepared.

PowerCore 3800 comes with Dynamic C which is an integrated development system
specially designed for programming embedded systems [22]. It provides a built-in full-
featured text editor, several quick compiling options and a number of debugging features
for an easy development of embedded software. Dynamic C comes with many function
libraries to support real-time programming, machine level /O and TCP/IP stack.
Dynamic C implementation of TCP/IP consists of several libraries [23]. These libraries
handle application layer protocols, such as HTTP and FTP, transport layer protocol and

Internet layer protocol.

The following things will be implemented in software:
e HTTP web server.
e TCP/IP protocol.
e Communication with system under test.

e Project-specific application program.

Application program will establish connection with remote web client, process
commands, control the uploading of FPGA firmware and downloading of log files,
manage the storage of those files in external memory, monitor reconfigurable system and
update log files. Implementation of TCP/IP is a set of Dynamic C functions, which have

to be called by application program to deal with protocols, Internet connection, etc. It has

40

to interface properly with application layer and that is a responsibility of application

program as well.

3.6 System Hardware Components

Figure 3.2 shows PowerCore FLEX subsystems based on Rabbit3000. Like most typical
embedded systems, it consists of CPU, program memory, data memory, crystal oscillator
and voltage level converter [24]. PowerCore FLEX also contains the Ethernet port, which

comes handy for this project implementation.

Ethernet Real-Time Program Flash
Clock 512K
A
\4
> J Data SRAM
. - v 512K
Rabbit 3000
Level Converter [« »>
_ CPU «—»| Code SRAM
512K
. A
RS-232 Serial
Communication Serial Flash
Driver i 1 MB

Figure 3.2. PowerCore Subsystems.

Detailed schematics of PowerCore module as well as PowerCore Prototyping board are

attached in the appendix Al and A2.

41

3.6.1 Serial Communication

3.6.1.1 Serial Ports
Rabbit 3000 has six serial ports — A, B, C, D, E and F [21]. In the implementation of this
system three ports are being used:

e Serial port A is used as a programming port.

o Serial port B is used for communication with serial flash.

e Serial port E is used for communication with system under test.

Serial port signals are presented in the following table:

Table 3.1. Serial Port Signals.

Serial Port Pin Name | Signal Name | Function
Serial Port A PC6 TXA Serial Transmit Out
PC7 RXA Serial Transmit In
PBI CLKA Clock for clocked mode (bi-directional)
PD6 ATXA Alternate serial transmit out
PD7 ARXA Alternate serial receive in
Serial Port B PC4 TXB Serial Transmit Out
PC5 RXB Serial Transmit In
PBO CLKB Clock for clocked mode (bi-directional)
PD4 ATXB Alternate serial transmit out
PD5 ARXB Alternate serial receive in
Serial Port E PG6 TXE Serial Transmit Out
PG7 RXE Serial Transmit In
PG4 TCLKE Optional external transmit clock
PG5 RCLKE Optional external receive clock

42

3.6.1.2 RS-232

PowerCore Prototyping board has RS-232 serial channel, which is connected to RS-232
transceiver chip [20]. It provides voltage output required meeting the RS-232 standard, in
other words, it translates Rabbit 3000 voltages to RS-232 signal levels. Serial Port E
signals TXE and RXE are connected to RS-232 transceiver, thus communication with

system under test is done through this port. Figure 3.3 illustrates the interface to RS-232:

Rabbit 3000 RS-232 J1 Header
Transceiver Rs-232
TXE .)
™~
PG6 L~ 3 4
PG7 RXE <] 5 6
7 8
9 10
N

Figure 3.3. RS-232 Interface.

3.6.1.3 Ethernet Port

Finally, there is an Ethernet port for remote connectivity via Internet. PowerCore FLEX
module uses a 10/100-compatible 10Base-T Ethernet interface [20], which is the most
common scheme. Whether it is connected to a hub or Ethernet adapter, they can be a 10

Mbps unit, a 100 Mbps unit, or a 10/100 Mbps unit.

The RJ-45 connector is similar to U.S. style telephone connectors, except it is larger and

has 8 contacts. Ethernet port pinout is presented in Figure 3.4:

43

1. E Tx+
2. E_Tx-
3. E Rx+
6. E Rx-

Figure 3.4. RJ-45 Ethernet Port Pinout.

3.6.2 Memory

1 Mbyte serial flash is available for data storage [24]. It is used for storing web server
related items such as web pages, forms, etc. It can also be used for log file storage — once
the log is received from system under test, it has to be saved somewhere, so that it can be

made available for remote user.

3.7 System Software Implementation

Dynamic C has various libraries for implementing different layer protocols. HTTP
protocol is implemented by HTTP.LIB, and TCP/IP implementation is done in
DCRTCP.LIB [23]. Therefore these libraries should be included in the application
program and this is done with the help of the following macros:

#use "dcrtcp.lib"

#use "http.lib"

3.7.1 TCP/IP Stack Initialization

TCP/IP initialization is done by calling the function sock_init ()[23]. This function
takes care of the following:

e Subsystem initialization for TCP

o Initializing the packet driver

e Clearing router and other server tables

e Providing required delay for Ethernet initialization

3.7.2 Interface Configuration

Dynamic C has a set of predefined configurations in tcp_config. lib [23]. The first
configuration is going to be used. It is a simple configuration of single Ethernet interface.
Thus the following macro is necessary:

#define TCPCONFIG 1

3.7.3 Allocating Socket Buffers

There is a specific macro to define the number of sockets with preallocated buffers that
can be used successfully:

#define MAX TCP_SOCKET BUFFERS 1

Set this number to 1.

Next is to define TCP buffer size:

#define TCP_BUF SIZE 2048

45

3.7.4 Specifying a Listen Queue

In order to allow. handling of multiple HTTP requests the following function is used [23]:

tcp reserveport (80)

With this function a TCP port number 80 which is well known port reserved for HTTP is
specified to have pending connection queue which allows it to have many incoming
connection requests. New connections will be held in queue until current active
connection is terminated. Without this option incoming connection will be cancelled if

the socket is already in use.

3.7.5 HTTP server implementation
HTTP server allows clients access its resources such as HTML pages via web browsers
and serves clients requests through those pages. It is implemented by HTTP.LIB and it

requires setting up the network subsystem as was described in previous sections.

3.7.5.1 HTML page

In order for the HTML page to be available to the clients all of its contents including text
and image files is stored in the server’s memory. When the server receives a request from
the web browser referring to a specific web page, it looks up the name, opens the page
and sends the content back to the client. The web page is imported into flash memory by
using the #import directive:

#ximport "Project/HTML/emaintenance_server.html" index html

index html indicates the start of the file for the server to know where to get it.

46

3.7.5.2 MIME Type Mapping Table

The server has to present to the web browser how the content of the web page is to be
presented to the user. This is done in MIME (Multipurpose Internet Mail Extensions)
type mapping table which relates common PC-type file extension values to recognized
MIME types and vice versa. In the code it is done as follows [23]:
SSPEC_MIMETABLE_START

SSPEC_MIME(".htm", "text/html"),

SSPEC_MIME(".html", "text/html"),

SSPEC_MIME(".gif", "image/gif"),

SSPEC_MIME(".cgi", "")

SSPEC_MIMETABLE_END

3.7.5.3 CGI Functions

In order to serve user requests HTTP server invokes CGI functions. CGI (Common
Gateway Interface) is a standard for interfacing external applications with information
servers. Thus, when the user retrieves a specified resource through the web browser,
HTTP server calls an appropriate C function to generate a response to the user’s request.
This function is executed in real-time, and it can generate web page content dynamically
like causing the browser display information to the user as well as reading data that was

send by the browser.

In the HTML page actions that can be requested to be performed by the user are

presented as follows:

47

<FORM ACTION="upload.cgi" METHOD="POST"
enctype="multipart/form-data">

<INPUT TYPE="SUBMIT" VALUE="Upload"> </FORM>

When the user clicks the Upload button, a C function referred to upload.cgi action is

called.

3.7.5.4 Resource Table

When a user requests a specific action to be performed HTTP server needs to know
which CGI function to invoke. Information relating CGI functions and action parameters
in web pages is held in resource table [23]. It refers all the URLSs to the resources on the

server and is defined as follows:

SSPEC_RESOURCETABLE_START
SSPEC_RESOURCE XMEMFILE ("/index.html"”, index html),
SSPEC_RESOURCE_CGI ("upload.cgi", upload cgi),
SSPEC_RESOURCE FUNCTION ("/download.cgi",
download cgi),

SSPEC_RESOURCE_FUNCTION ("/DeleteSlot.cgi",
delete_slot_cgi),

SSPEC_RESOURCETABLE END

Thus, when Upload button is clicked, upload_cgi function is called.

48

3.7.5.5 HTTP structure

HTTP server is called from the main() function in an endless loop through

http handler () function [23]. Whenever the web browser sends a request to HTTP

server, http_handler () is calling for an appropriate CGI function. CGI function is

invoked with the only parameter — a pointer to HttpState structure. This structure

contains necessary information for development of CGI functions. It is holding internal

state variables of the HTTP server instance that is handling current request. Its content is

valid only within a CGI function called from the HTTP server. Fields of HttpState

structure that are used in the implementation of this project are:

s — socket associated with the HTTP server. It allows TCP functions to be used
such as sock read, sock write, etc.

substate — this is used to hold current state of state machine for CGI function.
Thus when a CGI function returns control back to the HTTP server, its values are
preserved for the next time it is invoked. This field can be accessed through
http getState() and http setState() functions and when CGI
function is called for the first time it is set to 0.

main_timeout — timeout for the server. Upon every call of http_handler ()
the web server checks against this timeout, and if it has been exceeded, current
processing is terminated, and the server goes back to its initial state. The server
resets this value when it changes states. This value is assigned with the help of the
following macro:

#define HTTP_TIMEOUT 16

Thus 16 is the number of seconds until the web server will time out.

49

e buffer[] — a buffer to contain data to be transmitted over the socket. Its size is
defaulted- to 256 bytes. It is accessed by http getData() and

http getDataLength () functions.

3.7.5.6 Upload functionality implementation

Unlike previous versions of Dynamic C when CGI functions were unable to handle large
amount of data coming from the browser and thus were limited to processing simple
forms, the latest version provides CGI functions with the enhanced capability of dealing
with large data sets [23]. This is extremely important for the development of this project
since one of its main purposes is to provide remote firmware upgrade for a reconfigurable

FPGA system. Therefore this system has to be able to receive Mbytes of data.

In order to use this feature the following macro has to be defined:

#define USE HTTP UPLOAD

When HTTP server receives incoming data it separates parts and parses the headers. It
then calls for the defined CGI function with data for each section and an appropriate
action code. Current action code is determined by calling the http getAction()
function, which return value indicates the reason CGI was called by HTTP server.
Possible action codes are:

e CGI_START - start of a new part of incoming data

e CGI_DATA - new chunk of data within current part

e CGI_END - end of current part of data, indicates the end of upload

50

* CGI_EOF - after the file has been uploaded, the action code is set to this state
to tell the HTTP server to stop calling this CGI function.

e CGI_ABORT - upload has been terminated as a result of user pressing the

cancel button or by the network.

Therefore, when a CGI function is invoked by ht tp_handler () the first thing to do is
to find out the reason it was called. http getAction () returns the action code and

afterwards each action code must be treated accordingly.

CGI_START - when the new data is incoming, HTTP server reads all the headers and
thus possesses all the necessary information about the data. By calling
http getContentLength(s) function with s being a pointer to HttpState
structure the length of the whole uploaded file can be found. Since the file is to be
transmitted to the board containing the FPGA system under test, all necessary

preparations for transmission are done at this stage.

CGI_DATA - at this point parts of uploaded file start coming and need to be processed.
By calling http getData() available data is retrieved and
http getDataLength () returns its length in bytes. It can be of any size up to the
value defined in HTTP MAXBUFFER, which was set to 256 bytes. The data is then

transmitted to system under test.

CGI_END - thisis to signal that the file has been uploaded in full. End of transmission

indication is sent to system under test.

51

CGI_EOF - After the upload of the file has been completed, HTTP server has to go
back to original web page and present it to the client. This is done by calling
http_switchCGI(s, "index.html") with the second parameter specifying the

location of that page.

CGI_ABORT - indicates loss of connection, therefore no point in handling anymore

incoming data, HTTP server has to go to initial state.

3.7.6 Communication with System Under Test

Uploaded bit-stream file is being transmitted on the fly to the platform containing FPGA
system and is saved in its internal memory. Upon the completion of receiving bit-stream
file from the remote client, a notification is sent to the board and FPGA is reloaded with

the new firmware.

Transmission of bit-stream file is done through serial port E, which is connected to RS-
232 transceiver. Thus communication with the board is fulfilled through RS-232

interface.

3.7.6.1 Serial Port Setting

Serial port is set to the following parameters:
Baud Rate - 115200 bps

Data bits - 8 bits

Stop bits - One stop bit

Parity - None

.52

Baud Rate is defined in the beginning:

#define BAUD232 115200

Also two buffers are defined for receiving data and transmission:
#define EINBUFSIZE 15

#define EOUTBUFSIZE 15

The rest of the parameters are configured upon opening the port E:

serEopen (BAUD232)

In order to work with 3-wire serial port instead of 5-wire, serial mode has to be
configured:

serMode (0)

Upon the beginning of transmission both buffers for receiving and transmitting the data
are emptied:

serEwrFlush ()

serErdFlush ()

3.7.6.2 Communication Protocol

To initiate the transmission, the following actions are required:
Transmit to platform: <0x41>

Receive from platform: <Ox3E>

Before sending new bit-stream, all appropriate slots must be deleted. To achieve this, the

following actions are required:

53

Transmit to platform:
Transmit to platform:
Transmit to platf;orxn:
Transmit to platform:
Transmit to platform:

Transmit to platform:

<0x41>, delay 100 ms
<0x65>, delay 100 ms
<0x72>, delay 100 ms
<0x73>, delay 100 ms
<0x6C>, delay 100 ms

<slot number> delay 40 seconds.

The board has several slot numbers for loading partial cores. Large delay of 40 seconds is

needed due to the nature of the type of FLASH used.

Transmission of the bit-stream is performed as follows:

Transmit to platform:
Transmit to platform:
Transmit to platform:
Transmit to platform:
Transmit to platform:
Transmit to platform:
Transmit to platform:

Transmit to platform:

<0x6C >, delay 100 ms
<0x64 >, delay 100 ms
<0x63 >, delay 100 ms
<0x72 >, delay 100 ms
<0x01 >, delay 100 ms — this specifies the slot number
<0x00 >, delay 100 ms
<0x00 >, delay 100 ms

<0x00 >, delay 100 ms

Afterwards transmission of the file itself begins at full speed. Once the transmission is

completed, a notification is sent to the platform:

Transmit <OxFF> 16 times without delays to request reset of FPGA.

54

Finally, the port is closed, and in 3 seconds the board will timeout and reload bit-stream

located in slot #1.

3.8 Summary

In this chapter implementation concepts of e-Maintenance system for FPGA-based
platform were presented. Its specification and architecture were determined. Detailed
description of HTTP server implementation and communication with FPGA platform was

described.

PROPERTY OF

55 RYERSON UNIVERSITY LIBRARY

Chapter Four

Experimental Results

4.1 Introduction

Testing procedures and results for the prototype of e-Maintenance for FPGA-based
reconfigurable system are described in this chapter. Its functionality verification and
timing analysis are presented. Conclusions are drawn for other FPGAs based on the

results.

4.2 Testing Methodology

In order to test the developed e-maintenance system several things are required. First a
PC with web browser to function as a remote client. It should communicate via Internet
with HTTP server on PowerCore Flex system. And finally, the platform containing the
FPGA which is serially connected to PowerCore system. This scheme is presented in

Figure 4.1.

Remote Client System under
®C) @ PowerCore |€—» Test

Figure 4.1. Testing Scheme.

56

4.3 Experimental Setup

The experimental setup for the prototype of e-Maintenance system for FPGA-based

reconfigurable system is shown in Figure 4.2.

e-Maintenance System

Rabbit
Microprocessor

Serial Flash

Ethernet

FPGA Platform

| Loader |
oy]

Program
Flash

|cPLD Microcontroller

Figure 4.2. Experimental Setup for the prototype of e-Maintenance system.

57

Experimental setup consists of PowerCore FLEX board implementing the prototype of e-
Maintenance system, Multi-Stream Adaptive Reconfigurable System (MARS), data
interface to MARS, hub for Remote Client connection to PowerCore via Internet and
HP54620C logic analyzer for system measurements. Photographic images of the setup

are presented in Appendixes B1, B2 and B3 courtesy of ERSL.

Program
Serial Flash Memory SRAM Ethemet Port

Rabbit 3000
~Microprocessor
(other side of
the board)

Power Connector RS-232-

Figure 4.3. Photographic image of the e-Maintenance system.

Detailed photographic image of the e-Maintenance system is presented in Figure 4.3. It is
implemented on the base of PowerCore FLEX module. It incorporates Rabbit 3000

Microprocessor which implements the HTTP server for the e-Maintenance system. Serial

58

Flash memory is used for HTML pages and forms storage and it can also provide storage
for log files of system under test. Connection to Internet is attained via 10/100 Ethernet

Port, and RS-232 header is used as an interface to FPGA platform.

KX]
¥ Loader
LED output

Microcontroller
(other side
of the board)

CPLD

Program
Flash

. 5T v am, s v a
- m’u«ﬁzu/(u» 3

FPGA Vitex 4 FPGA LED output RS-232

Figure 4.4. Detailed photographic image of MARS FPGA platform.

Picture courtesy of ERSL.

Detailed photographic image of MARS FPGA platform is shown in Figure 4.4. It
incorporates the Virtex 4 XC4VLX160 FPGA. The loader consists of Microchip
Pic18LF8410 microcontroller which receives the incoming bitstream through RS-232,

CPLD XC95288XL for saving the bistream into Program Flash. CPLD is also used for

59

loading the FPGA itself. Data connection between the loader and FPGA is SelectMAP32,

which is a 32 bit data bus interface to the Virtex-4 configuration logic [25].

4.4 Setting the Network

In order to connect the network an Ethernet 10Base-T hub and two standard network
cables are used. This way a Micro-LAN is set up. Both the development PC and
PowerCore are connected to the hub using two straight through Ethernet cables, which in
turn is connected to the Internet through the adapter. The whole setting is presented in

Figure 4.5.

@ Adapter ————J Hub

PC

\ PowerCore

Figure 4.5. Network Setting.

4.5 Configuring the IP Address

The default configuration is used where the PowerCore module has its IP address set to
10.10.6.100 and the netmask is 255.255.255.0. The development PC is assigned the
address 10.10.6.101 with the netmask 255.255.255.0. This is achieved by doing the
following operations:

- Starting the Control Panel and selecting Network and Internet Connections

- Selecting Network Connections

60

- Right click on Local Area Connection and selecting the Properties
- In the Local Area Connection Properties window choosing Internet Protocol

(TCP/IP) Properties as illustrated in Figure 4.6:

421 QoS Packet Scheduler
%~ Network Monitor Driver

Internet Protocol (TCP/IP)

Duu.upuun ;
: ':Tlansrnlssmn Control Protocol/l ntenet Protocol The default

- : W|de area network protocol that provides comrnuntcahon
; across cf verse lnlefconnecled networks. . e

I‘" _Show u:on in nollflcallon area when connected :
Notlfy me when lhxs connpctuon has lln'nled orno connecllwty

oK . Cancél

Figure 4.6. Local Area Connection Properties.

- In the Internet Protocol (TCP/IP) Properties window click on Use the following IP

address and enter IP address 10.10.6.101 and netmask 255.255.255.0. Figure 4.7.

illustrates that:

61

i You cangetIP seltmgé assig
,thlo capablrty Othewi {

'rzss ”255 25 0

i TR

Figure 4.7. Setting Internet Protocol Properties.

4.6 HTTP Server Test

After the network has been set up, HTTP server is ready for testing. A client can connect
to it and send requests through web browser. Upon receiving HTTP packets the server
will be sending web pages back to the browser. When the server IP address 10.10.6.100
is entered in web browser’s address bar, home page of the server is displayed. Figure 4.8

shows the snapshot of that page:

62

i http://10.10.6.100f

h) Custornize Links *{_]: Free Hotmail awndowsMarLetplaceB\é\ﬁndow

Welcome to e-Maintenance Server!

The following quick and easy steps will allow you to reconfigure your system
without being physically near it

Before uploading a new bitstream slot content must be deleted

“"Delete Slot Contents. |

Browse for new bitstream you wish to reconfigure the system with

_Upload New Firmware

To download file storage click here

_rpahé" ST Toeniien il e L G SRR /

Figure 4.8. Home Page of e-Maintenance Server.

When homepage appears in the browser it means that network connection was

established properly and HTTP server is functioning.

63

4.7 Upload and Download Functionality Test

In order to test the upload functionality a test file has to be chosen through the browser.

By pressing the Browse button the dialog presented in Figure 4.9 is opened.

isize | Type®
 Ew 350KB BIN File
| MyRecent ic_| bi 1,232KB BITFile

DL * | [pic_tester_rev.bit 661KB BIT File

: jMy Documents B

o ITestFiIe.bin »

A TS T S R e e i e iR

Filesof type: - [AlFiles

Figure 4.9. File Browse Dialog from HTTP Server.

For this test TestFile.bin with size 359 KB will be used. After the file is chosen, it
appears in the edit box of the main page as shown in Figure 4.10. After pressing the
Upload New Firmware button, the file is sent to HTTP server. As the server receives data
packets it saves the file in the serial Flash for download functionality test to be conducted

right afterwards.

64

-Maintenance Server - Mozilla Firefox

G-pE e

}:i Custormze Lmks K} FreeHotma

Welcome to e-Maintenance Server!

The following quick and easy steps will allow you to reconfigure your system
without being physically near it

Before uploading a new bitstream slot content must be deleted

{Contents”|

Browse for new bitstream you wish to reconfigure the system with

|F:\Rye rson\Project\Files\Te stFile.bin

“'Upload New Firmware

To download file storage click here

[http:7710.10.6.100ffe.dat

Figure 4.10. Selected test file.

Once the upload of the test file has been completed, the download functionality can be

tested. By clicking the download file storage option on the bottom of the web page the

dialog presented in Figure 4.11 is invoked.

65

Name

: @TestFile.bin
| pic_tester.bit
: @pic_tester_rev.bit

359KB BINFile
1,232KB BIT File
661 KB BIT File

5/5/2007:

Figure 4.12. Saving File Dialog.

66

The file is to be saved under different name so that it can be compared to the original
later as shown in Figure 4.12. Once the file is downloaded its contents and size is
compared to those of the original file. They are exactly the same, therefore the upload

and download functionalities test is successful.

4.8 Communication with FPGA Platform Test

E-Maintenance system is connected to FPGA platform with a serial cable with RS-232
connectors. For communication between two platforms special communication protocol
has been developed as was discussed in previous chapter. FPGA-based system has
several slots for reconfiguring specific partitions. Before uploading new firmware slot
contents must be deleted. In order to do that on the web browser Delete Slot Contents
button must be pressed. E-Maintenance system sends appropriate commands to FPGA-
based system in accordance to communication protocol and once the slot contents have
been deleted the platform responds by LED flashing. This means that communication test

between two platforms has passed successfully.

4.9 Remote FPGA Reconfiguration Test

Once slot contents have been deleted, new firmware can be uploaded to the system. The
bit stream is selected through the web browser as was shown in section 4.7. Once Upload
New Firmware button is pressed, selected bit stream is uploaded to e-Maintenance server
via Internet and is transmitted to FPGA platform through serial communication. Upon
completion of the upload, appropriate protocol commands are sent to the platform in

order to reset the FPGA and to reconfigure it with new firmware. Once the

67

reconfiguration is complete, FPGA LED output signals that the reconfiguration was

successful.

4.10 Timing Analysis of Remote Reconfiguration of the FPGA
Measurements of the system were conducted using HP54620C logic analyzer, see Figure
4.13. The results were attained by measuring the RS-232 TX and RX signals on the

PowerCore FLEX module.

WA
Clear
Tax Cersers

Figure 4.13. HP54620C logic analyzer used as a measuring tool for the system.

Picture courtesy of ERSL.

68

4.10.1 Baud Rate Test

As was discussed in chapter 3 according to communication protocol between the e-
Maintenance system prototype and FPGA-based platform the baud rate was set to

115,200 bps with 8 data bits and one stop bit. Figure 4.14 examines the correctness of the
baud rate. It shows that 9 bits were transmitted in 78.4 ps. Therefore one bit is

transmitted in 8.71 ps whereas in theory it should be 8.68 pus which is a very close result.

Sampled @ 8003 6L + 36.0¢ 20.0%/ Snal £0 STOP

.
.

. L L4
NEREEEERE NN

! :
» I

.
v
»
.
*
.
»
.
»
.
.
.
»
.
. :
. .
. .
. .
.

"

a

I
|
|
i
I
l
l

s REBAOUL ey Clear
ine Binary Hexn Cursors

Figure 4.14. Baud Rate Test. Picture courtesy of ERSL

69

4.10.2 FPGA Platform Response Time

In order to initiate transmission to FPGA platform e-Maintenance system has to transmit
<0x41> according to communication protocol established between two platforms. In turn
the FPGA platform is expected to respond with <0x3E> within 100ms. FPGA platform

response time measurement is 71.2 ms as presented in Figure 4,15,

_Senmpled @ 4002 6L & 33.27 10.0%/ Snal #0 STOP

LR E———

l!llilttl‘llli,#llttlli!§1ii%i%t!!!l!l!’il!l‘illﬁi

1= 0.000 5
— Active Cursor —— ,......._........... Peadout --—--—-~—---; Clear
Binary Hex Cursoprs

Figure 4.15. FPGA platform response time. Picture courtesy of ERSL.

70

4.10.3 File Transmission Initialization Time

File transmission initialization time result is presented in Figure 4.16. After the
transmission initialization command from e-Maintenance system was sent and response
was received from FPGA platform appropriate transmission commands are sent followed
by first data packet. Time elapse from the transmission initialization to first data packet

was 859.2 ms.

Sampled @ 1.6% GL & 3947 1007/ Sngl 40 SIOP
W«Ww“%

s
.
. F
:

tst 859 2ns 178t = 1184 Hz

~ fActive Cursur‘ g ;--—---—-——- Readout sy Clear
. Binary Hex Cursars

Figure 4.16. File Transmission Initialization Time. Picture courtesy of ERSL

71

4104 Bitstream Upload Time

First uploaded bitstream was of 746,055 bytes in size and its upload time was 3 min and
55 sec as measured by a counter implemented inside e-Maintenance system. Second
uploaded bistream was of 5,043,452 bytes in size and it was uploaded in 26 min and 10

sec.

Sempled @ 8.08 6L 7.58s 500%/ Sngl £0 STOP

3
.
)
)

'i!llitllllillilill’ll

. . *
. . .

r— Active Cursor -y Readout =————
t1 ---- %2 - - Tine Binary Hex Cursors

Figure 4.17. Transmitted Bitstream Packets. Picture courtesy of ERSL

Based on these measurements variation error for bitstream uploaded time can be
calculated: file size ratio is 5,043,452 bytes/746,055 bytes = 6.76. Therefore the expected

upload time of the second file is upload time of the first file multiplied by that ratio that is

72

235 sec x 6.76 = 1588.6 sec or 26 min and 28 sec. Thus the variation error is 1.1%. This
is due to the fact that uploading of the file is done via Internet and transmission of data
packets is asynchronous. Figure 4.17 presents this issue, it can be observed that time

periods between data packets varies between 100 ms to 250 ms.

4.11 KEstimation of Remote Reconfiguration for Xilinx Virtex 4 Family

of FPGAs

Based on the timing analysis above the analytical model for estimation of remote
reconfiguration for Xilinx Virtex 4 family of FPGAs can be created. The formula for

reconfiguration time will be as follows:

Total Time = Transmission Initialization Time + Bistream Upload Time + Loader Switch

Time + FPGA Reconfiguration Time.

Loader switch is done automatically as part of remote FPGA reconfiguration process.
After the bitstream file is fully uploaded, e-Maintenance system sends appropriate
sequence of commands and FPGA is reset. Depending on the size of FPGA reset time

varies between 300 us to 500 us.
FPGA reconfiguration time is calculated according to the following formula:
Time = (File size — Header size) / (Uploaded bytes x Uploading Frequency).

Header size is 72 bytes. 4 bytes are uploaded at a time since FPGA reconfiguration data

bus is 32 bits. Uploading frequency for which the measurements have been conducted is

50 MHz.

73

Estimated remote reconfiguration time for Virtex-4 family of FPGAs based on their
configuration size in Xilinx Virtex-4 Product Table [26] and the analytical model

presented above is summarized in Table 4.1.

Table 4.1. Estimated remote reconfiguration time for Virtex-4 family of FPGAs

FPGA Configuration Memory Bits Remote Reconfiguration Time
XC4VLXI15 4,765,568 3 min 8.05 sec
XC4VLX25 7,819,904 5 min 22.9 sec
XC4VLX40 12,259,712 8 min 8.45 sec
XC4VLX60 17,717,632 11 min 38.49 sec
XC4VLX80 23,291,008 15 min 17.9 sec
XC4VLX100 30,711,680 20 min 10.15 sec
XC4VLX160 40,347,008 26 min 10.9 sec
XC4VLX200 51,367,808 33 min 43.42 sec
XC4VSX25 9,147,648 6 min 1.06 sec
XC4VSX35 13,700,288 9 min 0.31 sec
XC4VSX55 22,745,216 14 min 56.44 sec
XC4VFX12 4,765,568 3 min 8.52 sec
XC4VFX20 7,242,624 4 min 46.05 sec
XC4VFX40 13,550,720 8 min 54.42 sec
XC4VFX60 21,002,880 13 min 47.84 sec
XC4VFX100 33,065,408 21 min 42.79 sec
XC4VFX140 47,856,896 31 min 25.18 sec

74

4.12 Summary

In this chapter e-Maintenance system prototype was tested. Testing setup was configured,
e-Maintenance system functionality was verified, its timing analysis was presented and

estimations for Virtex-4 Family of FPGAs were calculated based on the results.

75

Chapter Five

Conclusions

In this project an embedded e-Maintenance for an FPGA-based reconfigurable system
was developed. First, a study on system maintenance in general was conducted, followed
by overview of Internet communication and study of main Internet Protocols, such as
HTTP and TCP/IP. FPGA-based systems were described, their advantages and

utilizations were discussed.

E-Maintenance system development was presented. HTTP server was implemented for
remote connection with the system with upload functionality to receive new firmware
over the internet and download functionality to make possible for service personnel to
view log files of the system and conduct system diagnosis. Remote dynamic
reconfiguration of FPGA-based system was successfully achieved. Partial reconfiguration
of a chosen partition was also demonstrated. Timing analysis of FPGA-based system
reconfiguration was conducted. An estimation of a whole family of FPGA

reconfiguration was presented.

Successful implementation of this project opens possibilities for further study and
development of e-Maintenance for reconfigurable systems. Future development work
may include increasing upload speed by utilizing parallel communication between e-

Maintenance system board and FPGA platform, developing tests for e-diagnosis of

76

FPGA that would enable locating faulty partitions and automatic reloading with a
corresponding bit stream, testing the accuracy of data received over the internet, adding

internet security and developing an e-Maintenance system servicing multiple FPGA-

platforms simultaneously.

77

References

[1]

(2]

[3]

(4]

(3]

[6]

[7]

V. Kirischian, V. Geurkov, P. W. Chun and L. Kirischian, “Reconfigurable
Macro-Processor - Cost-Efficient Platform for Rapid Prototyping”, in Proc. of 17-
th International Conference FAIM-2007, Philadelphia, USA, June 2007, pp. 781-
788.

M.L. Bushnell, V.D. Agrawal, “Essentials of Electronic Testing for Digital,
Memory and Mixed-Signal VLSI Circuits”, Kluwer Academic Publishers, 2000.
V. Izosimov, P. Pop, P. Eles, Z. Peng, “Mapping of Fault-Tolerant Applications
with Transparency on Distributed Embedded Systems”, 9" EUROMICRO
Conference on Digital System Design: Architecture, Methods and Tools, pp. 313-
322, 2006.

M. Abramovici, M. Breuer, A. Friedman “Digital Systems Testing and Testable
Design”, Wiley-IEEE Computer Society Press, 1994.

R. Itschner, C. Pommerell, M. Rutishauser, “Remote Monitoring of Embedded
Systems in Power Engineering”, IEEE Internet Computing, vol. 02, no. 3, pp. 46-
52, 1998.

S. Deb, S. Ghoshal, V.N. Malepati, D.L. Kleinman, “Tele-diagnosis: remote
monitoring of large-scale systems”, Proc. IEEE Conf. Aerospace, vol. 6, pp. 31-
42,2000.

G. Walters, E. King, R. Kessinger, R. Fryer, “Processor Design and
Implementation for Real-Time Testing of Embedded Systems”, Proc. IEEE Conf.

Digital Avionics Systems, vol. 1, pp. B44/1 — B44/8, 1998.

78

(8]

[9]
[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

M. Hung F. Cheng S. Yech, “Development of a Web-services-based e-
diagnostics framework”, Proc. IEEE Int’l Conf. Robotics and Automation, vol. 1,
pp. 596-603, 2003.

G. Held, "The ABCs of TCP/IP", Aerbach Publications, 2003.

P. Loshin," TCP/IP clearly explained", Academic, Third edition, 1999.

C. Maxfield, "The design Warrior's Guide to FPGAs", Newnes Publishers, 2004.
M. Wirthlin, E. Johnson, N. Rollins, M. Caffrey, P. Graham, “The reliability of
FPGA circuit designs in the presence of radiation induced configuration upsets”,
11" IEEE Symposium on Field-Programmable Custom Computing Machines, pp.
133-142, 2003.

M. Violante, M. Ceschia, M. Sonza Reorda, A. Paccagnella, P. Bernardi, M.
Rebaudengo, "Analyzing SEU Effects in SRAM-based FPGAs", Proceedings of
the 9th IEEE International On-Line Testing Symposium, pp. 119-123, 2003.

W. Quddus, A. Jas, N.A. Touba, “Configuration self-test in FPGA-based
reconfigurable systems”, Proc. IEEE Int’l Symp. Circuits and Systems, vol. 1, pp.
97-100, 1999.

N. Dorairaj, E. Shiflet, M. Goosman, “PlanAhead Software as a Platform for
Partial Reconfiguration”, XCell Journal, pp. 68-71, 2005.

D. Eisenreich, B. DeMuth, “Designing Embedded Internet Devices”, Newnes
Publishers, 2003.

Atmel - Data Sheet for AT90S8515, Atmel corporation, www.atmel.com.

Microchip - PIC16F877 Data Sheet, Microchip Technology Inc.,

www.microchip.com.

79

[19]
[20]
(21]
[22]
[23]
[24]
(23]

[26]

Microchip - Application Notes, Microchip Technology Inc., www.microchip.com.

PowerCore FLEX Data Sheet, Z-World Inc., www.zworld.com.

Rabbit 3000 Microprocessor User’s Manual, Z-World Inc., www.zworld.com.

Dynamic C User's Manual, Z-World Inc., 2005, www.zworld.com.

Dynamic C TCP/IP User’s Manual, Z-World Inc., 2005, www.zworld.com.

PowerCore User’s Manual, Z-World Inc., www.zworld.com.

Xilinx Virtex-4 Configuration Guide, www.xilinx.com.

Xilinx Virtex-4 Product Table, www.xilinx.com.

80

Appendix A1 - Schematic Diagram PowerCore FLEX

] [J4 2x25 0.1 Inch Header

UJHEP: S F

Y

(.4
p e qﬁ’?_[—
] - =ra-—-|£
P E“‘sgi 3
joy oy N
dor to3 u e e 99

B | Hsvy
L] ‘m

$610—060
Ot

9 mnl TR ma
ks
)
=
=3
)
L2 Y.
w3 I"' A=
o

Cua Qe
—
N
0w
m,,,m -
o A 2
y dl
b3 a#

€ o 2 mal
14
E'
11
T

14

Appendix A2 - Schematic Diagram Prototyping Board

L] I —
\:ﬂ..ﬁhll o % . u_m _ 2,540 SPAONG
e T] SOCKET STNIPS INSTALLED _
rr v o RS232 -.n‘:._. .f«“- =
po— T —Th H_m e 2 war
o I - - n
A psay KT AL cie
7 - *»
[RS, 00| uF
4% F4K
) l I 14
| sayes p |rau 3
Ll M1y
—~—— N
+5v +3.3v -
POWER POWER _“-._ sPacen L
I&.M bl g
Lol
7 [
[l (
o -ty _4“ E.IIJ
o 1 3
—) i s ~
p— u |
PR bR =) Ty
i = o 5
= =
— Sp—=
\lﬂl]l“m by) |
% [o =
i e -
v v = — 1 . 1/74/83
-t Dy .
I
- B 090-0194
) W— A, r (=1 e) [= 1 o 4

1

Appendix B1 — Photographic Image of e-Maintenance System Prototype

connected to FPGA-based Platform

MARS601VS01]

-
=
-
-
-

favsenasn

111

Appendix B2 — Photographic Image of System Setup for Measurements

I“

TRXEr
e

v

Appendix B3 — Photographic Image of the Whole System Setup

IR RERARRR

I
TR

Vo o e BRIt

Appendix C — Source Code for e-Maintenance System

/**

Author: Dina Goldenberg
Ryerson University, MEng. Project

July, 2007

***********************'k**************‘k*******************************/

#class auto
#define TCPCONFIG 1
#define TCP_BUF_SIZE 2048

#define HTTP _MAXSERVERS 1
#define MAX TCP SOCKET BUFFERS 1
#define HTTP_ TIMEOUT 16

// serial buffer size
#define EINBUFSIZE 15
#define EOUTBUFSIZE 15
// serial baud rate

#define BAUD232 115200

// Iclude upload code
#define USE_HTTP_ UPLOAD

// No name lookups required
fidefine DISABLE DNS

#memmap xmem

// Sample library for PowerCoreFLEX series core modules
#use "PowerCoreFLEX.lib"

// The following MACRO's are preset for PowerCoreFLEX series core
modules

#define SF_SPI_CSPORT PDDR

#define SF_SPI_CSSHADOW PDDRShadow

#define SF_SPI_CSDD PDDDR

#define SF_SPI_CSDDSHADOW PDDDRShadow

#define SF_SPI_CSPIN 6

#use "sflash.lib"
#use "dcrtcp.lib"
#use "http.lib"

#ximport "Project/HTML/emaintenance_server.html" index_html
char bufData[2048];
char buffer[256];

int pageNum;
int lastPage;

VI

int buflen;
int counter;

// This table maps file extensions to the appropriate "MIME" type.
This is
// needed for the HTTP server.
SSPEC_MIMETABLE_START
SSPEC_MIME(".htm", "text/html"),
SSPEC_MIME (".html", "text/html"),
SSPEC_MIME(".gif", "image/gif"),
SSPEC_MIME(".cgi", "")
SSPEC_MIMETABLE_END

int write_ flash(int pageNum, char *buf)
{
char buf2[256];

printf ("\nWriting to page %d ", pageNum);
printf("%s", buf);
printf ("$s\n", buf + 128);

sf writeRAM(buf, 0, 256);

sf RAMToPage (pageNum) ;

return 0;

}

int read flash page(int iNum, char buf)
{
memset (buf, 0x00, sizeof (buf));
printf ("\nReading from flash page number %d\n", iNum);
sf pageToRAM (iNum) ;
sf readRAM(buf, 0, 256);

return 0;

void delay(unsigned long wDelay)

{
for (;wDelay>0;--wDelay);

}

int delete slot cgi (HttpState * s)

{
int getC, delayl00;

getC = -1;
delayl00 = O;

// Open serial port E
serEopen (BAUD232) ;
serMode (0) ;

// Clear serial buffers

VII

serEwrFlush();
serErdFlush();

printf ("Delete Slot #1 - waiting 40s ...\n");

serEputc(0x41);

do

{
getC = serEgetc();
delay(10);
delayl00++;

} while (delayl00 < 1000);

if (getC == -1)
{

printf ("No responce from the platform\n"):

}

serEputc (0x65) ;
delay(10000);
serEputc (0x72) ;
delay(10000);
serEputc(0x73) ;
delay(10000);
serEputc (0x6C) ;
delay(10000);
serEputc (0x01) ;
delay(10000) ;

printf ("Delay 40s...\n");
delay(1000000) ;

return 1;

int upload cgi (HttpState * s)

{

int sent, remain,
char serialBuf[256];

int i;
int temp;
temp = 0;

if (!http_getState(s))
{

http_setState(s, 1);

printf ("First entry:\n");
HTTP version=%s\n",

printf ("
http_getHTTPVersion(s)
http_getHTTPVersion(s)
http getHTTPVersion(s)
printf ("
http getHTTPMethod(s)
http_getHTTPMethod(s)
http getHTTPMethod(s)

getC, delayl00;

HTTP_VER 09 2 "0.9"
== HTTP_VER 10 2 "1.0"

HTTP_VER 11 ? "1.1" : "unknown");

HTTP method=%s\n",

HTTP_METHOD_GET ? "GET"

HTTP_METHOD_POST ? "POST"

HTTP_METHOD_HEAD ? "HEAD"
"unknown") ;

VIII

printf (" Userid=%d\n", http_getContext (s)->userid);
printf(" URL=%s\n", http getURL(s));
}

switch (http getAction(s)) {
case CGI_START:

buflen = 0;

pageNum = 0;

lastPage = 0;

getC = -1;

delayl00 = 0;

memset (bufData, 0x00, sizeof (bufData));

serEwrFlush () ;
serErdFlush () ;

printf ("Start transmission to platform ...\n");
delayl00 = 0;
serEputc(0x41);
do
{
getC = serEgetc();
delay(10);
delaylO00++;
} while (delayl00 < 1000);

if (getC == -1)
{
printf ("No responce from the platform\n");

}

serEputc (0x6C) ;
delay(10000);
serEputc (0x64) ;
delay(10000);
serEputc (0x63) ;
delay(10000) ;
serEputc (0x72) ;
delay(10000) ;
serEputc (0x01) ;
delay (10000) ;
serEputc (0x00) ;
delay(10000) ;
serEputc (0x00) ;
delay(10000);
serEputc (0x00) ;
delay(10000) ;

printf ("START content_length=%1d\n", http getContentLength(s));
// ContentLength - length of the whole uploaded file
break;
case CGI_DATA:
printf ("\nReceiving "); printf("%s\n", http getData(s));
if ((bufLen + http_getDataLength(s)) <= 256)

{
if (bufLen == 0)

IX

memset (bufData,

0x00,

sizeof (bufData));

memcpy (bufData, http_getData(s),

}

else

http getDataLength(s));

memcpy (bufData + buflLen, http getData(s),

bufLen
if (bufLen == 256)
{

// Send serial

memset (serialBuf,
memcpy (serialBuf, bufData,

0;

sent

remain 256;

http getDataLength(s));

buflen + http getDatalLength(s);

data
0x00, sizeof(serialBuf));

256);

while (sent!=256)

{

remain

}

256 - sent;
sent += serEwrite (serialBuf,

remain) ;

write_ flash(pageNum, bufData);

pageNum++;
bufLen 0;

}
}

else // Too much for one flash page

{
// Fill up the buffer

temp = 256 - buflen;

memcpy (bufData + bufLen, http getData(s), temp);

// Send serial data
memset (serialBuf, 0x00,

memcpy (serialBuf, bufData,

0;

sent
remain 256;
while (sent!=256)

{

remain 256 - sent;

sent += serEwrite(serialBuf+sent,

}

sizeof (serialBuf));
256);

remain) ;

write flash(pageNum, bufData):;

pageNum++;

// Write the rest of the data to the buffer

bufLen

memset (bufData, 0x00,

http_getDataLength(s) - temp;
sizeof (bufData));

memcpy (bufData, http getData(s) + temp, buflen);

}
break;
case CGI_END:
printf ("END -—==—=—m——--

if (bufLen > 0)
{

memset (serialBuf,

actual received length=%1d\n",
http getContentLength(s)):

0x00, sizeof(serialBuf));

X

memcpy (serialBuf, bufData, buflLen);
sent = 0;
remain = buflen;
while (sent!=buflen)
{
printf("Sending Serial data\n");
printf ("%s", serialBuf+sent);
printf("%s\n", serialBuf+128);
remain = buflLen - sent;
sent += serEwrite(serialBuf+sent, remain);
}
lastPage = bufLen;
memset (bufData, 0x00, sizeof (bufData));
buflLen = 0;

for (i=0; i<16; i++)
serEputc (0xFF) ;

printf("Final serial sent\n\n");
// Close serial port E
serEclose();
break;
case CGI_EOF:
printf ("EOF (unused content=%1d) \"%s\"\n",
s->content_length, http getData(s));
http_switchCGI(s, "index.html");
break;
case CGI_ABORT:
printf ("ABORT!\n");
break;
default:
printf ("CGI: unknown action code %d\n", http_getAction(s));
break;

}

return 0;

int download cgi (HttpState* state)
{

auto int i;

printf (" substate=%d\n",state->substate);
if (state->length)
{
// buffer to write out
if (state->offset < state->length)
{
state->offset += sock write(&state->s,
state->buffer + (int)state->offset,
(int)state->length - (int)state->offset);

else

state->offset = 0;

XI

state->length = 0;

}
else
{ .
switch(state->substate)
{
case 0:
strcpy(state->buffer, "HTTP/1.0 200 OK\r\nContent-type:
*//**\r\n\r\nn);
state->length = strlen(state->buffer);
state->offset = 0;
state->substate++;
counter = 0;
break;

case 1:
if (counter<=pageNum)
{
read flash page(counter, &buffer);
memset (buffer, 0x00, sizeof (buffer));
sf pageToRAM(counter) ;
if (counter == pageNum)
{
sf readRAM(buffer, 0, lastPage);
memcpy (state->buffer, buffer, lastPage);
state->length = lastPage;
}
else
{
sf readRAM(buffer, 0, 256);
memcpy (state->buffer, buffer, sizeof (buffer));
state->length = 256;
}
counter++;
state—>main_timeout=set_timeout(HTTP_TIMEOUT);
}
else
state->substate++;

break;

default:
state->substate = 0;
printf (" Terminating !!!!\n");
return 1;
}
}
printf ("\nreturning zero %d\n",state->substate);
return 0;

}

// The flash resource table is now initialized with these macros...
SSPEC_RESOURCETABLE_START
SSPEC_RESOURCE_XMEMFILE ("/index.html", index_html),
SSPEC_RESOURCE_CGI ("upload.cgi", upload_cgi),
SSPEC_RESOURCE_FUNCTION("/file.bin", download cgi),

XII

SSPEC_RESOURCE_FUNCTION ("/DeleteSlot.cgi", delete_slot_cgi)
SSPEC_RESOURCETABLE_END

void main()

{
char buf[20];
unsigned long i;
int n;

// Initialize I/0 to use PowerCoreFLEX prototyping board
brdInit():;

//Initialize SPI driver for use with serial flash.
sfspi init();
if(sf _init()) //Initializes serial flash chip.
{
printf("Serial flash initialize error!");
exit (1);
}
else
{
printf ("Flash init OK\n"):;
}

memset (bufData, 0x00, sizeof(bufData)):;
sock init();

http_init();

tcp reserveport (80);

pageNum = 0
lastPage

= 0;
buflLen = 0;

while (1)
{
http handler();

}

X

Appendix D — HTML Source

<html>
<head><title>E-Maintenance Server</title></head>
<body>

<pP>

<H1 align=center>Welcome to e-Maintenance Server!</H1>

<pP>

<H3 align=center>The following quick and easy steps will allow you to
reconfigure your system without being physically near it</H3>

<H3 align=center>Before uploading a new bitstream slot content must be
deleted </H3>

<HI1 align=center><FORM ACTION="DeleteSlot.cgi" METHOD="POST">
<INPUT TYPE="SUBMIT" VALUE="Delete Slot Contents">

</FORM></H1>

<P>

<H3 align=center>Browse for new bitstream you wish to reconfigure the
system with</H3>

<HI1 align=center><FORM ACTION="upload.cgi" METHOD="POST"
enctype="multipart/form-data">

<TABLE BORDER=0 CELLSPACING=2 CELLPADDING=1>

<TR>
<TD><INPUT TYPE="FILE" NAME="/A/new.htm" SIZE=70></TD>
<TR>
</TABLE>
<p>
<pP>

<INPUT TYPE="SUBMIT" VALUE="Upload New Firmware">

</FORM></H1>

<H3 align=center>To download file storage click here</H3>

</body>
</html>

XIV

	Ryerson University
	Digital Commons @ Ryerson
	1-1-2007

	Embedded e-maintenance for an FPGA-based reconfigurable system
	Dina Goldenberg
	Recommended Citation

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00015
	00016
	00017
	00018
	00019
	00020
	00021
	00022
	00023
	00024
	00025
	00026
	00027
	00028
	00029
	00030
	00031
	00032
	00033
	00034
	00035
	00036
	00037
	00038
	00039
	00040
	00041
	00042
	00043
	00044
	00045
	00046
	00047
	00048
	00049
	00050
	00051
	00052
	00053
	00054
	00055
	00056
	00057
	00058
	00059
	00060
	00061
	00062
	00063
	00064
	00065
	00066
	00067
	00068
	00069
	00070
	00071
	00072
	00073
	00074
	00075
	00076
	00077
	00078
	00079
	00080
	00081
	00082
	00083
	00084
	00085
	00086
	00087
	00088
	00089
	00090
	00091
	00092
	00093
	00094
	00095
	00096
	00097
	00098
	00099
	00100
	00101
	00102
	00103
	00104
	00105
	00106
	00107
	00108

