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Abstract 

Position Domain Synchronization Control for Robotic Manipulators 

 

Vangjel Pano  

A thesis for the degree of  

Master of Applied Science, 2013 

Department of Aerospace Engineering, Ryerson University 

Developed in this thesis is a new control law focusing on the improvement of contour 

tracking of robotic manipulators. The new control scheme is a hybrid controller based on 

position domain control (PDC) and position synchronization control (PSC).  On PDC, the 

system’s dynamics are transformed from time domain to position domain via a one-to-one 

mapping and the position of the master axis motion is used as reference instead of time. The 

elimination of the reference motion from the control input improves contouring performance 

relative to time domain controllers. Conversely, PSC seeks to reduce the error of the systems by 

diminishing the synchronization error between each agent of the system. The new control law 

utilizes the aforementioned techniques to maximize the contour performance. The Lyapunov 

method was used to prove the proposed controller’s stability. The new control law was compared 

to existing control schemes via simulations of linear and nonlinear contours, and was shown to 

provide good tracking and contouring performances. 
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Chapter 1: Introduction 

1.1 Background 

The first industrial robotic manipulator, Unimate, was created by George Devol and Joseph 

Engelberger in 1959. The initial design of the robotic manipulator weighted close to two tons and 

used hydraulic actuators and was controlled by a program on a magnetic drum. Although the first 

Unimate cost US$ 65,000, it was sold for only US$18,000 (International Federation of Robotics, 

2012). For the next years, robotic manipulators in the industry would not significantly change in 

size or capabilities. The first robots were used in the metal industry (i.e. metal pipe industry) and 

were mostly used due to their productivity, since they could operate for more hours than a human 

worker. However, in the 1970s, the emergence of micro-processors and the use of electrical 

motors lead to increased performance and versatility for the robotic manipulators. The more 

precise computer-controlled electrical motors could perform more elegant acts such as assembly, 

welding, cutting riveting etc. This was translated in an average yearly growth of 30% (Wallen, 

2008). 

 

Figure 1-1: A: Unimate (Bayliss, Jones and Bayliss). B: ABB IRB 1520ID (Alliance Communications Inc.).  

C: DaVinci Surgical System (WINTHROP Inc.) 



2 

 

Nowadays, the great precision as well as the increased productivity and lower production 

costs associated with them has made industrial manipulators a staple in current industrial 

production, from electrical and electronics production to surgical procedures and space 

exploration. As an indication, Taiwan’s Foxconn Technology Group in 2011 announced that was 

planning to increase its robot usage from 10,000 to one million by 2014 (Yee, 2011). 

An important research area of robotics and mechatronics is control. Each control type or 

control law is introduced to compensate for the innate imprecisions that are present on a system 

as well as other errors and disturbances which arise depending on the use of the system and 

usually cannot be calculated or accounted for. The causes of these inaccuracies can be 

summarized as (Slotine J. W., 1988): 

 Friction  

 Vibration dynamics 

 Mechanical hardware deficiencies  

 Inaccurate system dynamics 

 Process generated disturbances  

Due to the aforementioned factors, many types of control modes have been employed 

depending on the application and the environment of use. Robot control can be categorized as 

Free Space or Constrained Space depending on the obstacles present in the path of a manipulator 

(Dombre E. K., 2007). Another categorization distinguishes between Force and Position control. 

Force control focuses on regulating the force of a robotic manipulator which comes in contact 

with objects in applications such as cutting, milling etc. On the other hand, Position control is 
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appropriate when the manipulator should follow a specified trajectory, or at least to reach a set of 

point in space, in applications such as welding, assembling etc (Craig, 2005). 

The purpose of this thesis is to introduce position domain synchronization control as a valid 

and powerful control approach for the minimization of the errors in the dynamic response and 

the contour tracking of robotic manipulators. This is a critical area of research in the realm of 

control theory since a core aspect of industrial and technological evolution is the quest for faster 

and more accurate industrial processes.  

1.2 Motivation and Objectives 

The main goal of this research is to improve the contour tracking performance of a robotic 

manipulator. This thesis will propose a new control law based on position domain control (PDC) 

in order to minimize the tracking error and coordinate the motion of the joints of a serial robot. 

The use of this control law will result in the reduction of the contour error on the end-effector 

level and therefore, the ability to increase the speed and efficiency of industrial processes. The 

overall goals of the proposed controller can be summarized as follows:  

1. To provide an alternative to time domain synchronization control laws. 

2. To indicate the advantages of position domain control in nonlinear robotic systems. 

3. To introduce position domain synchronization control for serial robotic manipulators. 

4. To improve contouring performance for robotic manipulators. 

5. To allow for faster industrial procedures without loss of accuracy. 

6. To offer a simple, easy implementation of feedback control laws. 
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In this thesis, the proposed position domain synchronization control (PDSC) and the existent 

time domain position synchronization control (PSC) will be simulated for various types of 

contours. To exhibit the advantages of the synchronization approach, proportional-derivative 

control will also be simulated both in time domain (TD-PD) and position domain (PD-PD). The 

results of all simulations will be compared for the purpose of demonstrating the advantages of 

the PDSC. In summary, the following objectives will be fulfilled: 

1. Model the dynamics of a simplified RRR, planar, serial manipulator. 

2. Formulate a position domain synchronization controller. 

3. Perform a stability analysis for the proposed control law via the Lyapunov method. 

4. Compare the performance of the proposed controller and the existing time domain 

controller as well as well as a PD controller both in time and position domain. 

1.3 Organization of Contents 

The remaining thesis is organized as follows:  

Chapter 2: provides a literature review on previous research and control approaches to 

improve contour tracking performance of robotic systems. The review covers both independent 

and coordinated control schemes as well as an overview of more advanced types of control.  

Chapter 3: analyses the concept of position domain control (PDC) and the position 

synchronization control (PSC) principles. The dynamic model of a robotic system is transformed 

from time to position domain and a new control law is introduced which combines PDC and 

PSC. Lastly, a stability analysis is performed for the proposed control law using the Lyapunov 

method. 
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Chapter 4: includes a performance comparison of time domain and position domain 

controllers for various linear and nonlinear contours. 

Chapter 5: concludes the thesis and examines the findings of the simulation results and 

offers suggestions for further work and development of the position domain control principle. 
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Chapter 2: Literature Review 

Although usually assumed to be a single piece of machinery, robotic manipulators can be 

viewed as a group of devices that cooperate to achieve given tasks. Every robotic manipulator is 

nothing but a collection of actuators/motors and their respective linkage that are simultaneously 

used to perform motions that serve certain purposes. 

In that sense, the various proposed and applied control methods for the control of robotic 

manipulators can be categorized under two different groups: decentralized controllers (Figure 

2-1) and coordinated controllers (Figure 2-2). The former category includes control systems 

where each actuator (or any other part of the manipulator) is independently controlled by its own 

designated control  loop (controller, sensors, etc). Of course, the constraints, desired trajectories, 

etc, are provided by the operator but each actuator acts parallel to the others, as an independent 

unit, without realizing the existence of the rest of the mechanism. 

 

Figure 2-1: Decentralized Control 
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On the other hand, coordinated control systems try to interconnect the motion of each 

actuator and relate its behaviour with the behaviour of the rest of the system. This coordination 

can be a simple correlation of the various agents’ trajectories or it can take the form of collective 

influence on each agent’s control signal. Robotic manipulators under coordinate control systems 

are more “conscious” of their whole structure, a fact which affects their performance positively. 

 

Figure 2-2: Coordinated Control 

2.1 Decentralized Control  

2.1.1 PID/PD Control 

Inarguably, PID control and its other versions (PI and PD) have been the most popular 

control schemes for robotic manipulators. In fact with more than 90% of industrial applications 

incorporating some form of PID control, PID controllers dominate the world of feedback control 

(Astrom & Hagglund, 2001). For a multi-DOF robotic manipulator, PID control is used 

independently for each motion axis. For a robotic manipulator with   axes, the PID controller for 

axis   takes the following form:  

              ̇     ∫     
 

 

  (2-1) 
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where           is the tracking error of the axis motion, and           are constant positive 

definite gain matrices as shown in Figure 2-3.  

 

Figure 2-3: Ideal PID Control (Dean, 2002) 

The main advantages of the above controller are its simple, linear nature and ease of 

implementation. In spite of its simplicity, PID control is powerful enough to deal with practical 

issues such as actuator saturation and integrator windup. Furthermore, a great number of tuning 

techniques have been developed for PID controllers (Bansal , Sharma, & Shreeraman, 2012). 

Despite its success, however, PID control is still inappropriate for certain cases due to its 

inability to adjust to the system’s dynamics. The dynamic properties of a robotic manipulator 

vary with time due to wear, friction, disturbances, damage or simply changes in the conditions of 

use, i.e. different payloads, tasks or environment, creating a need for controller retuning with 

each new task. 



9 

 

2.1.2 PD with Desired Gravity Compensation 

 

Figure 2-4: PD control with desired gravity compensation (Kelly, 1997) 

To improve the stability and robustness of the control system, PD control with desired 

gravity compensation (PDcg) was developed (Takegaki & Arimoto, 1981). As shown in Figure 

2-4, this type of control is based on PID control, specifically PD control, with the addition of a 

feedforward element called “desired gravity compensation”.  This new term       is nothing but 

the gravitational torque vector as it is evaluated at the desired joint position and allows the 

controller to drive the robot in such a way that its joints can be placed at asymptotically desired 

trajectories regardless of the dynamic systems initial conditions. Mathematically this control law 

can be expressed as:  

              ̇           (2-2) 

where   is the tracking error,    is the desired joint position.  

Unlike PID control, PDgc is globally asymptotically stable. Nonetheless, this type of 

control features some of the weaknesses of the PID control. Calculating the gravity 

compensation requires exact knowledge of the dynamic system’s parameters and the robotic 

manipulator’s possible payload (Kelly, 1997). 
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2.1.3 Sliding Mode Control 

 

Figure 2-5: Sliding surface (Sabanovic, Fridman, & Spurgeon, 2004) 

To counteract the uncertainties of the dynamic system, a sliding mode control (SMC) was 

proposed (Bartolini, Pisano, Punta, & Usai, 2003).  The concept of a sliding mode surface is 

introduced, based on the tracking error of the system and defined as: 

     
 

  
        (2-3) 

where   is the tracking error for each joint and   is a positive constant. As defined, the sliding 

surfaces represent the frequency response of a low-pass first order linear system with the cross 

over frequency of          . Therefore, the objective of this control scheme is to bring the 

controllable variables as close the sliding surface as possible, i.e.      (Dombre & Khalil, 

2006).  As seen in Figure 2-5, chattering can be present in the dynamics of the system. To 

minimize this phenomenon, a boundary layer is defined to smooth out the control discontinuity 

in the sliding surface (Slotine & Li, 1991). Including the estimated dynamic parameters of the 

system as feedforward terms, the control law of the SMC becomes: 

      ̂  ̈      ̇    ̂   ̂   |  |    | ̇ |               (2-4) 
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where  ̂ and  ̂ are estimated dynamic parameters and   is the boundary layer. This control law 

produces good results for varying payloads and unknown dynamics and is far more robust than 

the aforementioned controllers. Conversely, SMC controllers still experience high chatter and 

energy losses and are generally harder to realize than PID due to their complexity (Slotine & Li, 

1991).  

2.2 Coordinated Control 

2.2.1 Master/Slave Control 

The first attempts of coordinated control in robotics focused on master-slave control of two 

robotic manipulators based on pre-existing bilateral master-slave controls for machine 

teleoperation (Yokokohji & Yoshikawa, 1994). A master-slave control scheme was proposed in 

(Arimoto, Miyazaki, & Kawamura, 1987). This control scheme uses the error on the end-effector 

level between the two manipulators to specify the controller input and can be mathematically 

expressed as: 

 ,
        

    
 {                        }       

      
    

 {             }       

  (2-5) 

where     and    are control gains,   and  are Jacobian and stiffness matrices respectively and 

subscripts     and     are used to indicate the master and slave agents. Despite its efficiency, 

this controller has difficulties in realizing complicated contours due to its use of the end-effector 

error which is hard to estimate efficiently while in motion. 

On the joint level, a different master-slave controller was introduced (Alford & Belyeu, 

1984) where a desired path can be defined for the master motion and a relative position is used 
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for the slave motion. To coordinate the motion, the controller uses the master motion’s actual 

position and via an error prediction matrix defines the change required in the slave motion’s 

command based on a hierarchical system. The coordination of the system is performed by a 

computer dedicated to that task, which is responsible for receiving the position data from the 

encoders.  

A similar approach was followed by (Rodriguez-Angeles & Nijmeijer, 2001) who used a 

PD + feedforward type controller. Once again, the trajectory of the master motion is freely 

defined and the slave motion’s control input is based on the master’s actual position. 

            ̂̇    (    ̂̇ ) ̂̇            ̂̇       (2-6) 

where  ,   and g are the manipulators dynamic parameters,    and    are controller gains 

with   being the tracking error, and subscripts   and   refer to master and slave motions. 

One can see that the actual position of the master motion is incorporated in the feedforward 

term of the controller and the error of the slave system is used in the PD segment. In cases where 

the position and error cannot be measured directly, observers can be used to estimate their values 

(Rodriguez-Angeles & Nijmeijer, 2001).  

The greatest drawback of the aforementioned controllers is their focus on two robot 

formations and their complete disregard of the coordination of the joint motions with each other. 

Additionally, the consideration of the slave motion as relative and proportional to the master 

motion creates difficulties when it comes to more complicate paths and tasks.  
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2.2.2 Position Domain Control 

A different approach was used by (Ouyang, Huang, & Zhang, 2011) who proposed a 

position domain control (PDC) structure. In PDC, the dynamics describing the slave motion are 

transformed from time domain to position domain using the position of the master axis as 

reference. The trajectories and dynamics of the slave axes are therefore expressed as functions of 

the master axis trajectory which itself is controlled by an equivalent time domain controller.  A 

PD controller in position domain for the slave axes has the following form:  

         (              )          
        

       (2-7) 

where the prime superscript indicates the relative velocity with respect to the master axis 

position. It should be noted that the actual position of each slave motion,       , is provided by 

the slave motion’s encoder or any other type of sensor used as in the case of time domain.  

PDC completely eliminates the error input of the master axis from the control signal. This 

way it achieves better contour performance than the controllers in time domain. Additionally, the 

resulting controller after the transformation is quite similar to its time domain counterpart, a fact 

which guarantees similar dynamic behaviour and stability for both controllers (Ouyang & Dam, 

2011).  

2.2.3 Cross-Coupled Control 

Another family of coordinated control schemes was created in the form of cross-coupled 

control (CCC) (Koren, 1980). Although each axis of the CCC system has its own feedback loop 

which is capable of detecting and eliminating the axis’ disturbance, the error that occurs on each 

axis will affect the control input of both axes. As seen in Figure 2-6, this controller cross-couples 
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the error in its dynamics and coordinate the motion of all axes with each other. The CCC 

controller uses the tracking error of each axis to derive the contour tracking error for the whole 

system. Thus, the CCC control loop is based on the task space error for its control input.  

 

Figure 2-6: Biaxial Cross-coupled Control (Koren, 1980) 

 The CCC scheme was able to outperform more conventional controllers like PID, but it 

was not able to produce satisfactory results for non-linear contours. To overcome this drawback, 

Koren and Lo (1991) introduced a variable-gain CCC control structure. Variable gains were 

added to the pre-existing controller which had the ability to change in value depending on the 

desired contour. Mathematically the variable gains were expressed as: 

 {
        

  

  

        
  

  

 (2-8) 
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where   is the tracking erro, and   and   are functions of the desired contour.This made the CCC 

controller capable of estimating the contour tracking error for nonlinear contour based on the 

radius of curvature with significant accuracy (Koren & Lo, 1991). 

A position domain approach to the CCC structure (PD-CCC) was introduced by (Dam & 

Ouyang, 2012). Through a transformation of the system dynamisc from the time domain to 

position domain, this CCC controller can be defined as: 

         
 
        

 
  

       
 
∫        

 

 

      
 
     

 
 ̇   (2-9) 

where    is the contour gain defined as in the time domain CCC case and    is the contour error. 

Similar to PID, position domain the CCC in position domain is defined on a master-slave basis 

for the axes. The performed simulations showed that PD-CCC had a better contour tracking 

performance than the time domain CCC, even in cases where the CCC performed better in the 

tracking errors. 

Despite its success, the design of the CCC controller limits it when it comes to the structure 

to be controlled. The more complicate the kinematics and dynamics of the system to be 

controlled the harder the estimation of the contour error, a fact which makes the implementation 

of CCC controllers in serial or parallel manipulators highly difficult or unwise.   

2.2.4 Position Synchronization Control 

To sidestep the problem of complicated contour estimation and bring the problem back to 

the joint space level, position synchronization control (PSC) was developed (Sun, 2003). This 

control concept introduced the notion of synchronization error, defined as the differential 

position error between the tracking errors of each axes pair, and coupled position error, defined 
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as a function of both position and synchronization errors. The coordination strategy is to bring 

each axis tracking error in a stable state and cause the position errors between the axes to 

converge to zero, i.e. 

                                 (2-10) 

Where   is the tracking error and   is the coupling parameter stemming from the constraints for 

each motion. 

Although this controller had an adaptive structure with feedforward, a model-free scheme 

was later suggested with a structure similar to a proportional-derivative controller (Sun, Shao, & 

Feng, 2007).  The position synchronization control loop has been proven to be quite versatile for 

various situation besides robotic manipulators and it has been used from CNC machines (Sun & 

Tong, 2009) to groups of synchronized mini helicopters (Shan, Liu, & Notwotny, 2005).   

Another great advantage of this control is that it allows for the cross-coupling of multiple axes, 

and therefore the improvement of contour tracking, without having to deal with the kinematics of 

the manipulator to be controlled. Since this thesis expands on the concept of position 

synchronization, a more detailed description of this controller follows in later sections. 

2.2.5 Event-Based Control 

 

Figure 2-7: Event Based Control Scheme (Astrom, 2007) 
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Finally, an alternative to periodic sensor sampling for dynamic systems is event based 

control.  Event based systems, instead of sampling the system state on a set time interval, sample 

the state of the system only when the measurement signal crosses a predefined threshold level.  

More specifically, during the operation of a system, the even detector generates a signal when an 

event occurs and sends it to the observer which is responsible for the estimations to be fed on the 

control signal generator (Astrom, 2007).  It is obvious that if the measurement signal does not 

cross the threshold, the feedback does not materialize for that measurement. 

 

Figure 2-8: Event Based PID Structure (Arzen, 1999) 

Due to its nature, event based control reacts faster to the changes of a system’s change than 

conventional periodic sampling control. This occurs because even if a change is detected in 

periodic sampling, the controller will act after the sampling procedure has finished whereas the 

event based system acts exactly when the change occurs. For the same reason,  event based 

systems require less CPU power than the periodic sampling system, making them quite attractive 

for situations where high computing powers are required. An event-based PID structure can be 

seen in Figure 2-8 (Arzen, 1999).  
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2.3 Other Control Schemes 

Sections 2.1 and 2.2 dealt with the fundamental control concepts for robotic manipulators. 

Yet more complex concepts of robot control exist which can be applied on the aforementioned 

controllers in order to enhance their performance in different ways. This section will examine 

some of multipart control techniques and more specifically will cover the concepts of adaptive 

control, iterative learning control, repetitive control and event based control. 

2.3.1 Adaptive Control 

Adaptive control was developed to compensate for the time-varying parameters of the 

control system, i.e. system dynamics, payload, operating environment. The main idea behind 

adaptive control is the use of a method to adjust the parameters of a controller online, based on 

the signals in the system. The sum of adaptive control systems can be categorized as model-

reference adaptive control laws (MRAC) or self-tuning controllers (STC), both schematically 

represented in Figure 2-9 (Slotine & Li, 1991).  On the MRAC the model to be controlled (plan) 

is assumed to have a known structure but some of its parameters are unknown. A reference 

model is employed to indicate the ideal response of the adaptive control system to external 

signals and an adaptation law is used to adjust the controller based on the difference between the 

reference model output and the actual output. Clearly, MRAC is centered on the adaptation law 

and the objective of each adaptation control design effort is to create an adaptation law which 

would minimize the tracking error to zero and bring the system to stability. 
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Figure 2-9: Adaptive Control: MARC on left and RTC on the right (Slotine & Li, 1991) 

Self-tuning controllers, on the other hand, employ a simpler architecture. The estimator of 

the system produces a set of estimated parameters based on the past plant inputs and outputs 

which the controller uses in order to produce the current control input for the plant. Both types of 

adaptive control feature come with various pros and cons, however, MARC systems have been 

more successful in the control of robotic manipulators, mostly due to their usually guaranteed 

stability and tracking error convergence (Slotine & Li, 1991). 

Adaptive control laws have been flexible enough to be employed in a various control 

structures, from PID loops (Kuc & Han, 2000) to SMC loops (Zhao, Li, Gao, & Zhu, 2008). 

Additionally, the time domain synchronization control was initially proposed as an adaptive 

control system (Sun, 2003). 

2.3.2 Iterative Learning Control 

While adaptive control laws try to produce more flexible and versatile robot behaviours, 

the iterative learning control (ILC) is to refine the performance of the robotic manipulator for a 

specific task through repetition. ILC stems from the fact that the majority of industrial systems 

are to repeatedly perform the same or similar tasks.  
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Figure 2-10: Iterative Learning Control (Moore, Chen, & Ahn, 2006) 

During the process, the input and output signals of the system are being saved in the 

memory of the system. The error between the two signals is used to construct the input signal for 

the new cycle. In contrast to conventional controllers which try to decrease the error of the 

system as time increases, ILC decreases the system error as the number repetition increases. A 

basic ILC algorithm can be expressed as:  

                 
 

  
      (2-11) 

where      is the system input and      is the error of the system output. The above equation 

also shows the main advantage of ILC. The initial conditions of the system are reset with each 

cycle, but the new input signal is created based on the previous cycle’s data. This allows for a 

“non-causal” processing on the errors and therefore ILC can anticipate and proactively respond 

to repeated disturbances (Moore, Chen, & Ahn, 2006).  Due to its nature as a control algorithm 

and not a singular controller, ILC has been easily implemented on conventional controllers for 

the control of robotic manipulators used for various processes (Bristow, Tharayil, & Alleyne, 

2006).  
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2.3.3 Repetitive Control 

Quite similar to the ILC, repetitive control (RC) also uses repetition of the process to 

achieve the stabilization of the system’s performance. Proposed by (Inoue, Nakano, Matsumoto, 

& Baba, 1981), RC can be mathematically expressed as: 

                       (2-12) 

where      is the system input and      is the error of the system output. In contrast to ILC, RC 

is used in continuous, periodical processes for tracking or rejecting exogenous signals.  For this 

reason, the RC system does not maintain the original initial conditions as the new cycle as the 

ILC does. Instead, the final values of the previous cycle are set as the new initial conditions for 

the new iteration (Wang, Gao, & Doyle, 2009). 

2.4 Tracking and Contour Error 

  Two important parameters of the dynamic response, and therefore the industrial 

performance of an industrial manipulator are the axial tracking of each motor and the contouring 

performance of the end effector. In control theory, these parameters take the form of the tracking 

error and contour error, respectively. Both errors result from phenomena such as backlash, 

friction, difference in actuator dynamics, disturbance loads, the contour shape itself, etc.  (Koren 

& Lo, 1991).   
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Figure 2-11: Tracking and Contour Error (Yeh, 2003) 

 The tracking error is defined as the difference between the desired trajectory of an axis of 

the robotic manipulator and the actual trajectory followed. In other words it is the measurement 

of the performance of the individual actuator and can be numerically defined as:  

        (2-13) 

where   is the desired postion and   the actual position.  

  Alternatively, the contour error is the actual difference in distance between the desired 

path of the end effector and the actual path resulting from the actuated system (Ramesh, 2005). 

Obviously, for a robotic manipulator the contour error refers to the global coordinates of the en 

effector. Additionally, due to the nature of the contour error, different methods of must be 

employed for its calculation or estimation, depending on the path.  

2.4.1 Contour Error Calculation for Linear Contours 

 For linear contours, the contour error can be calculated as (Yeh, 2003):  

                     (2-14) 
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Where    and     are the tracking errors for the actual point   in the x-axis and y-axis 

respectively, and   is the angle formed by the desired point   , in the desired linear contour and 

the x-axis, as shown in Figure 2-12 

 

Figure 2-12: Linear Contour Error (Yeh, 2003) 

2.4.2 Contour Error Calculation for Circular Contours 

For a circular contour, the contour error can be easily calculated based on the Cartesian 

equation of a circle as (Yeh, 2003):  

     √                    (2-15) 

where         are the coordinates of the circular contour,   is the radius of the circle, and 

        are the coordinates of the actual point  . 

2.4.3 Free-Form Contour Error Estimation 

  In the case of a contour shape that cannot be classified as one of the above, the contour 

error cannot be easily calculated, in real-time or otherwise. In this report, the contour error 

estimation algorithm proposed by Cheng and Lee (2007). Although this algorithm is designed for 

real-time error estimation, it is also practical for off-line calculations.  
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Figure 2-13: Free-Form Contour Error Estimation (Cheng, 2007) 

 Consider two position vectors       and       indicating the desired and actual positions 

of the end effector for each time instant . The unit tangent vectors at points        and        are 

given as:  

       ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    
       ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

       
 (2-16) 

       ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    
       ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

       
 (2-17) 

where      √    
      

          is the magnitude of the position vectors. Hence at time 

instant    the distance between the two position vectors is given as:  

         ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗       ⃗⃗  ⃗     ⃗⃗⃗   (2-18) 

and the length of the projection of the distance (i.e. tracking error) can be calculated by: 

    
        ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗          ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   

‖      ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖
 (2-19) 

Now assume that a point         exists on the desired contour and the distance between 

this point and        is the real contour error. Assuming that the end effector has a desired 

velocity  ⃗⃗⃗⃗  ⃗ the time required to cover the distance   can be found to be:  
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      | ⃗ | (2-20) 

which is also the required time to travel from point         and       . Hence the previously 

unknown point         can be found to be:  

                                    (2-21) 

 Therefore, the contour can be calculate in a similar manner to the linear contour,  

                     (2-22) 

Where    and    are the tracking errors in the Cartesian axes and   is the reference angle 

between the vector                ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   and the horizontal x-axis, calculated as:  

         (
                    

                  
) (2-23) 

Concerning velocity  , if the end effector maintains a constant velocity          is equal 

to       . Usually through, the end effector of a robotic manipulator experiences significant 

changes in its velocity. Thus, an estimation can be used where the velocity is defined as the 

average of the desired (      ) and actual velocities (      ) for each time instant  . This is, in 

fact, the main reason that the resulting contour error value is considered estimation and not an 

exact calculation (Cheng, 2007).   

2.5 Remarks 

All of the above control schemes try to improve the contouring performance and dynamic 

response of a robotic manipulator based on different methodologies. Nevertheless, each control 

strategy features disadvantages which tend to overshadow its benefits, as is the case for the CCC 

controllers which are really hard to implement on other manipulators besides CNC. Yet, PSC 
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controllers have proven to quite adaptable when it comes to implementation without losing their 

effectiveness of characteristics (Sun, 2011) , and PDC controllers have shown superior contour 

tracking performance (Ouyang, Pano, & Dam, 2012). 

 To further progress the notion of position domain control, a new control law based on the 

position domain and position synchronization concepts will be introduced in the next chapter. 

The main incentive of this research it to combine the main advantages of PDC as a master/slave, 

event-driven control system and the PSC as a coordinated control scheme in order to improve the 

contour tracking performance of the system.  

Chapter 3: Position Domain Synchronization Control 

In this section the main principles of position domain control and position synchronization 

control are explored. The dynamic model of a robotic manipulator is transformed from time to 

position domain. Furthermore, the position domain synchronization controller is developed and 

some remarks are made. A stability analysis is performed to study the stability of the system.  

3.1 Dynamic Model  

The dynamic model of a robotic manipulator relates the torques and forces applied to the 

manipulator’s actuators to the joint positions, velocities and accelerations (Dombre & Khalil, 

2006). On mathematical terms, the dynamic model takes the following form:  

      ̈         ̇  ̇                ̇         (3-1) 

where: 
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       ̇    and  ̈    are the joint position, velocity and acceleration vectors, defined as 

functions of time. 

      is the symmetric and positive-definite inertia matrix  

       ̇  is the vector of coriolis and centrifugal forces 

      is the vector of gravity terms 

        ̇  is the vector of friction forces, and 

      is the vector of joint torques/forces. 

3.2 Position Synchronization Control  

3.2.1 The Synchronization Concept 

Assume a multiagent system with n agents given to perform a task that requires the 

coordination of each agent’s motion, i.e., an n-DOF robotic manipulator following a defined 

contour. The goal of synchronization control is to regulate and synchronize the motion of all 

agents so that a certain kinematics relationship is maintained for the agents as is required by the 

coordination task. Not unlike a sliding surface, the regulation of the agents to maintain a 

kinematic relationship can be understood as guiding the agents along the boundary of 

multidimensional a compact set. A time-varying desired shape in such a compact set can be 

introduced as        with   being a state vector and   the time. Then the boundary of the shape 

can be parameterized by a curve, denoted as          . 

Therefore, the synchronization of a system of multiple entities requires two main tasks to 

be performed. The first one is the classic control goal of bringing the state error of each agent as 

close to zero as possible as time increases, i.e.,      as    . The second task requires 
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maintaining each agent on the desired curve so that          . Both tasks are equally 

important and should be achieved simultaneously in order to achieve system synchronization. 

Although the constraints for the second synchronization task can take various forms, 

depending on the system’s nature and purpose, the following mathematical expression can be 

used without loss of generality: 

             {                     } ,            (3-2) 

where       is the state of the i
th

 agent,        is a constraint matrix based on the desired 

boundary, which on itself depends on the agent’s characteristics ;      is a common vector of 

characteristics that are applicable on the whole system but not on individual agents , and       is 

an offset of the i
th

 agent. 

The above equation indicates that all agents of the system can be related through the 

common vector      which requires a linear mapping from       to      denoted as {      }  

    .  For the existence of this unique linear mapping to exist, the constraint matrix        must 

be invertible. It should be noted that because       is based on the desired boundary, it is mainly 

determined by the topology of the given formation task. 

Assuming the existence of the inverse of matrix      , it follows that: 

        
     (            )  (3-3) 

However,      is a common vector for every agent. Hence for a system of n agents: 

   
     (            )       

     (            )       (3-4) 

Eq. (3-4) is expressed in terms of the actual state       of the i
th

 agent, but it can also be 

expressed in terms of the desired state   
    , 
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     (  

           )       
     (  

           )       (3-5) 

Subtracting Eq (3-4) from Eq (3-5), 

   
             

                
           (3-6) 

where   is the tracking error. 

Lastly,         
      can be defined as the coupling parameter of the i

th
 agent, leading to: 

                                      (3-7) 

The above equation is ultimately the synchronization control goal which all position error 

must satisfy in order for system to meet the coordination requirements (Sun, 2011). 

It should be noted that the coupling parameters do not always take the form of 

mathematical expressions, but they can simply be constants or identity matrices. Additionally, 

depending on the nature and purpose of the system, all the agents might have the same coupling 

parameter. In that case, the synchronization goal becomes:  

                      (3-8) 

Obviously, such is the case for a serial robot described by Eq. (3-1). 

3.2.2  Synchronization Errors 

With its introduction in control terms, a measure of synchronicity should be also 

introduced and employed in the control of the system. This measure, taking the form of 

synchronization error should satisfy the following criteria: 

1. The synchronization error should be defined according to the synchronization 

concept (i.e. Eq (3-8)) 
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2. The differential state error concepts in cross-coupling controllers can be used for 

the definition of synchronization error. 

3. The synchronization error should be independent of the agent population. 

4. The definition of the synchronization error should also include factors that produce 

constraints to the states in synchronization.  

With the above consideration, the synchronization error of a system can be defined as: 

    [

                     

                     
 

                         

]  (3-9) 
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]{

     

     
 

     

}              (3-10) 

Furthermore, a coupled error is introduced in order to make the tracking error   and 

synchronization error   converge to zero, defined as: 

                           (3-11) 

where   is a positive definite diagonal gain matrix and   is called the synchronization 

matrix. With the existence of         , the convergence of the synchronization error to zero 

implies that the tracking error also converges to zero and vice versa. Therefore, the control gain 

  should be properly chosen so that the         is positive definite with full rank. 

3.2.3 Model-free Position Synchronization Control 

With the theoretical background established and the required entities developed, a PD-type 

synchronized controller was proposed by (Sun, Shao, & Feng, 2007)  as: 
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               ̇    {        } ̇ (3-12) 

where       and   are diagonal positive gain matrices. It should be noted that the last term on 

the right-hand side was introduced for stability purposes and does not have significant 

contribution on the control input. 

3.3 Position Domain Control 

In position domain control, an n-DOF system is discretized between master and slaves 

agents. The motion of the master agent is sampled equidistantly and used as an independent 

reference, in the same manner as time is used in time domain control.  The motions of the slave 

agents are defined as functions of master motion and the contouring requirements of the system. 

The formulation of these functions necessitates the development of the system’s dynamic model 

on the position domain through a one-to-one transformation from the time domain as well as its 

representation as a master-slave system. The great advantage of position domain control is the 

elimination of the tracking error from the reference model, which minimizes the contribution of 

the master agent to the contour error of the system. Hence, in order for the position domain 

model to be effectively utilized, the master motion should be measured with as high precision as 

possible.  

3.3.1 Relative Derivative and Position Domain Mapping 

The first step for transforming a dynamic system to position domain is to develop a relation 

which relates the position domain to time domain. This is done by introducing the relative 

derivate of the i
th

 slave agent’s motion      with respect to the master agent’s motion     :  

   
   

   

   
  

 ̇ 

 ̇ 
    (3-13) 
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From Eq. (3-13) it can be easily understood that   
  is the speed ratio between the slave and 

master agent’s motions and it describes a synchronized motional relationship between the two 

motions. This relative derivative is called relative position velocity of agent   with respect to the 

master agent. 

In the same manner, the relative position acceleration can be defined as the second relative 

derivative,  

   
    

   
 

   
  (3-14) 

From Eq. (3-14), the velocity of axis i can be defined as: 

  ̇   ̇   
   (3-15) 

Hence, Eq. (3-15) can be expressed as 

  ̈     
    ̇     ̈   

   (3-16) 

The above equations show the relationship between absolute and relative motions. Eq. 

(3-15)  relates the absolute velocity in the time domain with the relative derivative in the position 

domain, whereas Eq. (3-16) relates the absolute acceleration with the relative acceleration. Both 

equations are used to transform the dynamic model from time domain to position domain. 

3.3.2 Dynamic Model in the Position Domain  

The dynamic model of Eq (3-1) can be de expressed in a master-slave structure as: 

 [
      

      
] [

 ̈ 

 ̈ 
]   [

      

      
] [

 ̇ 

 ̇ 
]  [

  

  
]  [

  

  
]   *

  

  
+  (3-17) 
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The dynamic model in Eq. (3-17) is a reinterpretation of Eq. (3-1) (3-17)as a master slave 

system in time domain. Subscript m refers to the master agent/motion and subscript s refers to 

the slave agents/motions. Therefore    is the reference position and is used as the reference for 

tracking a defined contour. Consequently, the dynamic model for the slave agents can be 

rewritten in position domain as a function of the reference    through a transformation from 

time domain     to position domain     ).  

Substituting Eqs (3-15) and (3-16) to Eq. (3-17) for the slave motions, a dynamic model for 

the position domain slave motions is derived in the following form:  

 
  ̇

 

 
     

  
  

 
  ( ̈

 
     ̇

 
   ) 

 

 
  

 
   ̈

 
     ̇

 
    

            
    

(3-18) 

Remark 1: The above equation represents the dynamic relationship between the master motion, 

indicated by subscript m, and the slave motions, indicated by subscript  , in the position domain 

via the transformation described by Eqs (3-15) and (3-16). Clearly the nonlinearity of the time 

domain model in Eq. (3-17) is maintained in the potion domain. 

Remark 2:  From the above dynamics equation it can be deduced that the position of the master 

motion has greater influence on the system’s control than the master motion tracking error. 

Therefore, in order to achieve accurate contour performance, high precision measurement of the 

master motion’s position is required. Nonetheless, a high tracking precision of the master motion 

is not required for the position domain control since the master motion’s error is not to be 

included in the position domain controller. Therefore, a low cost actuator can be used for the 

master motion. 
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Remark 3: It is understood that the position domain control structure requires the master motion 

control to operate in the time domain. In that sense then PDC is the combination of two different 

controllers running in sequence as shown in Figure 3-1.   

 

Figure 3-1: Ideal Position Domain Control 

3.3.3 Position Domain PID Control law 

Following the position domain mapping described above, the PID control law described in 

Eq. (2-1) can be used to control the slave motions of Eq. (3-18) .This position domain PID 

control law is expressed as: 

                   
         ∫        

  

 

  (3-19) 

The stability of this controller was proven by (Ouyang, Pano, & Dam, 2012). 

3.3.4 Position Domain Synchronization Control law 

In order to take advantage of the synchronization control properties and the improved 

contour tracking performance of position domain control, a new control law is introduced for the 

slave motions of a multi-DOF robotic manipulator described in Eq. (3-18). First, the new error 

concepts have to be defined.  
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The tracking position error and relative derivative error in the position domain are defined 

as: 

         [

    

 
      

]   [
              

 
              

]  
(3-20) 

          [

     
 

       

]   [
                

 
                

] 

Similarly, the synchronization error is expressed as: 

        [

         

         

 
           

]   [

   
     

  
   

  
   

    
    

]            
(3-21) 

                

And the coupled error is: 

 {
  

                     

  
                        

  (3-22) 

It should be noted that the coupling terms have been reduced to unit values. This happened 

because the agents of the robotic manipulator are just the joints and are not restricted by anything 

more than just the predefined path their have to follow and their kinematics, which are expressed 

by parameter      in Eq. (3-7) which is not present in the synchronization control goal. 

Having defined the errors in the position domain, the position domain synchronization 

control law can be defined as: 

              
           

       (3-23) 

with           being constant diagonal gain matrices. The third term in Eq. (3-12) is not included 

in the new controller. This is because the third term was introduced to stabilize the system and 
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due to the presence of         , which of a small vale, it does not have a significant 

contribution in the control input. 

Taking into account the error definitions above, the control law in Eq. (3-23) can also be 

expressed in the following form: 

         ̅          ̅    
       (3-24) 

where  ̅              and   ̅             . 

Remarks 4: The position domain control law in Eqs (3-23) and (3-24) is similar to its counterpart 

in time domain shown in Eq. (3-12) with three essential differences. Firstly, the two control laws 

function in different domains. Furthermore, due to the different natures of the derivative coupled 

errors for each system ( ̇     and   
      ), the derivative gains of each controller have different 

physical meanings. Lastly, the controller in Eq (3-24) lacks the third term of the right-hand side 

of Eq. (3-12). The inverse term is present for the stability of the system and does not affect its 

performance. As it will be seen in later sections, the new controller does not require that feature 

for the stability of the system. Hence the third term was removed from the controller altogether.  

The new control law can be expressed in time domain terms by simply substituting Eqs 

(3-15) and (3-16) into (3-24): 

         ̅         
 ̅  

 ̇ 
  ̇     (3-25) 

where  ̅              and   ̅             . 

Remark 5: Eq. (3-25) shows that the derivative term of the position domain synchronization 

controller is variable in nature with its value depending on the value of the master motions speed. 
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If the master motion has a constant speed and is sampled equidistantly, the position domain 

controller can be viewed as a constant gain controller similar to the time domain PSC controller 

with similar stability properties. 

Remark 6: It should be noted that the PDSC controller is used for the synchronization of the 

slave motions and the master motion does not participate. This is because the master to slave 

synchronization is already achieved by the position domain structure itself. Consequently, the 

synchronization error for the master motion is eliminated and the master motion controller it 

reduced to a simple PD controller as visualized in Figure 3-2.  

 

Figure 3-2: Position Domain synchronization control Schematic 

Remark 7: Due the elimination of time from the control, Eqs (3-18) and (3-23) constitute an 

event-driven system. 
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3.3.5 Properties and Assumptions of the Dynamic Model  

For the new control law, a list of properties of a rigid robotic manipulator described by Eqs 

(3-1) and (3-17) are used in the stability analysis (Kelly, 1997). These properties are described as 

follows: 

P1: The inertia matrix      is symmetric and positive definite.     can be also be proven to 

be symmetric and positive definite without great difficulty. 

P2: The matrix  ̇          ̇  is skew symmetric and consequently,  ̇              ̇  

is skew symmetric as well. 

P3: The inertia and centrifugal-coriolis matrices must satisfy the following: 

 ,
 ̇         ̇        ̇ 

 ̇             ̇     
     ̇ 

  (3-26) 

P4:           ̇       and        ̇  are all bounded.  From P4 it can also be deduced that:  

i.     is bounded with ‖   ‖       

ii.     is bounded with ‖   ‖       

iii.    is bounded with ‖  ‖      

iv.    is bounded with ‖  ‖       for a normal operation condition 

Additionally, the following notation is introduced:       and       represent the 

smallest and largest eigenvalues of a positive definite matrix M. If a square M matrix is positive 

definite, then it is denoted as    . If a square matrix     is positive definite, then it is 

denoted as      . 

For positive definite matrices, the following properties will be used (Arendt & Schleuch, 

2009): 



39 

 

P5: If    , then      . 

P6: If      , then          . 

P7: If      and     is a real number, then    . 

P8: If     and    , then      ,      , and       

Finally, the following reasonable assumptions are used. 

A1: The master motion    is a monotonically increasing function with the second order 

derivative for             .  

A2:  The velocity  ̇  and acceleration  ̈ of the master motion are bounded in the desired 

trajectory region. 

A3: The desired contour trajectory         is second order continuous for             .   

3.4 Stability Analysis 

3.4.1 Theorem 

Theorem: For a rigid robotic manipulator described in the position domain by Eq. (3-18), 

if the position domain synchronization control law in Eqs (3-23) and (3-24) is applied to control 

a contour tracking of the robotic manipulator, and the following conditions in Eq. (3-27) are 

satisfied, then the controlled robotic manipulator is globally asymptotically stable for contour 

tracking. 
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 ̅      ̅     

   ̇    
   ̈      

  ( ̅  )   ̇ 
          

  ( ̅  )  
 

 
      ̇    

   ̈     

    ̅     ̈   ̇ 
       

 

 
      ̇    

   ̈     

 (3-27) 

where   is a user defined constant matrix,  ̅              and   ̅            . 

3.4.2 Control Gains and Synchronization Matrix 

The synchronization matrix can be proven to be positive definite as follows: 

                 [

   
     

  
   

  
   

    
    

](

  

  

 
  

,  (3-28) 

                             

   
 

 
        

                

where             are positive nonzero elements.  

Therefore,   is positive definite. By also choosing    ,     and   to be positive definite, 

 ̅   and  ̅   are also positive definite as products of positive definite matrices. 

3.4.3 Proposition 

Assume a matrix   is a symmetric matrix expressed as: 

   *
  
   

+  (3-29) 

Let   be the Schur complement of a matrix   in   (Arendt & Schleuch, 2009), that is: 

            (3-30) 
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Then the matrix   is positive definite if and only if   and   are both positive definite, i.e. if 

    and    , then    . The proof of this proposition can be found in (Arendt & Schleuch, 

2009). 

To prove the stability of the new control law, the following matrix,  , has to be proven to 

be symmetric positive definite. 

    *
 ̅   ̇ 

    

 ̇ 
     ̇ 

    

+          (3-31) 

Proof: The synchronization control gains are symmetric diagonal matrices with positive 

constant elements. From Eq. (3-27), it is known that  ̅   is a symmetric positive definite matrix, 

and  ̅    . From P1, we know that     is a symmetric positive definite, i.e.     

   
  and      . Therefore,   is a symmetric matrix. 

From conditions (3-27), we have: 

   ( ̅  )   ̇ 
            (3-32) 

From Eq. (3-32) , it can be concluded: 

  ̅    ̇ 
        (3-33) 

As       and      , according to P5-P7, we have: 

    
    ̇ 

  ̅  
     (3-34) 

According to the definition of a positive definite matrix, Eq. (3-34) can be rewritten as: 

    
    ̇ 

  ̅  
      (3-35) 

Furthermore, based on Eq. (3-35) and      , according to P8, we have: 
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  ̇ 
         

    ̇ 
  ̅  

          (3-36) 

Then, according to P1 and reorganizing Eq. (3-36) : 

    ̇ 
       ̇ 

    
   ̅  

     ̇ 
       (3-37) 

Hence, according to the Proposition and Eq. (3-37), matrix   is proved to be symmetric 

and positive definite.  

3.4.4 Stability Analysis 

Using the definition of the tracking error in Eq. (3-20),   the dynamic model in Eq. (3-18) 

can be rewritten in an error function format as follows: 

 ,
    ̇ 

       
        ̈       

          ̈      ̇       

 ̇ 
      

         ̅       ̈      ̇    
       ̅                     

        (3-38) 

According to the properties and the assumptions, we have: 

 

  ‖ ̇ 
       

        ̈       
          ̈      ̇       ‖  

     ‖ ̇ 
    

  ‖     ‖ ̈    
 ‖     ‖ ̈ ‖     ‖ ̇ ‖  ‖  ‖  ‖  ‖

  ‖ ‖  
    (3-39) 

Eq.    (3-39) indicates that parameter   is bounded. 

For the dynamic system defined in position domain in Eq.(3-18), we define the following 

Lyapunov function: 
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) (
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     ̅      

(3-40) 

   
 

 
   

     
  *

 ̅      ̇ 
 

    ̇ 
     ̇ 

 
+ (

  

  
 )  

 

 
  

     ̅      

From the above discussion, we know that Q is symmetric positive definite. Therefore the 

Lyapunov function in Eq. (3-40) is a positive definite function: 
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           (3-41) 

In position domain control, the reference angular position is an independent variable that 

with the same characteristics and use as t in time domain (monotonically increasing or 

decreasing, etc).    and      are functions of the independent variable. Therefore, the derivative 

of V is related to variable     in this stability analysis.  

From Eq. (3-40), the derivative of V along the contour tracking errors of the system is 

given by: 
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+ (

   
  

  *    
     ̅       

(3-42)   
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Considering P2 and P3, and applying Eq.(3-26),        (3-38),     (3-39) to (3-42): 

 
  

   
     

  ̅        
 
        ̈   ̇ 

       
 
  

(3-43) 

    
     ̇    

   ̈            
     

    

Since    ̇    
   ̈     is positive definite from Eq. (3-27), we have: 

   
     ̇    

   ̈         
 

 
      ̇    

   ̈        
       

      (3-44) 

Applying Eq. (3-44) to Eq. (3-43): 

 
  

   
  ‖  ‖  ‖  

 ‖ ‖ ‖    
 ( ̅   

 

 
      ̇    

   ̈      *     
(3-45) 

    
 ( ̅     ̈   ̇ 

      
 

 
      ̇    

   ̈      *    

Now, it is assumed: 
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 (3-46) 

The according to Eq. (3-27), we have      and      . Then Eq. (3-45) can be rewritten 

as:  

 
  

   
    ‖  ‖

  ‖ ‖‖  ‖     ‖   ‖
  ‖ ‖‖   ‖  (3-47) 

Applying another inequality:  

        
  

 
 

 

 
    for     and     (3-48) 

we get: 
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  (3-49) 

Applying Eq. (3-49) to Eq. (3-47) we finally derive: 
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‖  

 ‖
   

 

  
 

 

   
  ‖ ‖  (3-50) 

Based on the Lyapunov theorem, we conclude that the robotic system controlled by the 

position domain synchronization control law is globally ultimately bounded. The bounded errors 

for the tracking error and the relative derivative of the tracking error can be obtained as follows: 
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‖  ‖   √
 

  
 
 

 

     

‖ ‖

‖   ‖   √
 

   
  

 

     

‖ ‖

  (3-51) 
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From Eq. (3-51), it can be seen that the tracking errors can be controlled in a very small 

boundary layer through proper selection of the proportional and derivative gains. It is shown that 

the two eigenvalues in Eq. (3-46), associated with the two control gains, have significant 

contributions in the control of tracking errors. From Eq. (3-46), one can see that a large gain     

will increase the value of   , while a large control gain     will increase the value of    . From 

Eq. (3-51), we conclude that the increase in both gains will reduce the tracking errors. Such a 

conclusion is very similar with the synchronization control in the time domain. 

3.5 Remarks 

In this section the position domain concept and the synchronization principle were 

explored. A new control law was introduced as a position domain alternative to the time domain 

PSC control law. The new control law is also based on the synchronization and coupling of the 

errors of the agent of the system and was proven to be stable in Section 3.4. However, the 

performance of this control law should be studied and compared to existing control schemes.  
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Chapter 4: Simulation & Results 

4.1 Simulation Setup 

A virtual robotic manipulator composed of a planar 3 revolute joints is used for the 

simulation. The manipulator is assumed to be composed of links of different sizes which are 

actuated with same type of actuators. This type of configuration was chosen because it was 

complex enough to show the capabilities of the proposed control law. A spatial or more complex 

planar configuration was not considered since it would not provide significant indications of the 

proposed controller’s efficiency. The structural parameters of the robotic manipulator are listed 

on Table 4-1. 

 

Figure 4-1: 3-DOF Planar Robotic Manipulator 

 

 

 

Table 4-1: Structural Parameters of a Serial Robotic Manipulator 

Link 
Mass 

 mi (kg) 

Length 

li (m) 

Center 

ri (m) 

Inertia 

Ii (kgm
2
) 

1 1.00 0.50 0.25 0.10 

2 1.00 0.50 0.25 0.10 

3 0.50 0.30 0.15 0.05 
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For the given manipulator, the control scheme is defined as follows: 

 ,
                ̇    

        
           

  
       

         (4-1) 

Clearly, the first axis motor is used as the master motion, which is controlled with a conventional 

PD type controller as described in Eq (2-1) (with     set to zero). The rest of the motors are 

considered the slave motions of the system for which the proposed controller is used as shown in 

Eq. (4-1). Also, the coupled and synchronization error of the slave motions were defined based 

on Eqs (3-21) and (3-22). 

A number of different contours will be simulated, both linear and nonlinear. For the linear 

contour types, zigzag and diamond contour motions will be simulated, and for the nonlinear 

types, the simulation will consist of a circular and epitrochoidal contour. For all the contours, 

PID and PSC controllers will be used both in the time and position domains in order to compare 

their performances. 

For the time domain controllers, a sampling frequency of           was used for the 

simulations. Due to the complicated kinematics of the robotic manipulator the trajectories of the 

master and slave motions are nonlinear. Therefore, even with an equidistantly sampled master 

motion, the speed of the master motion still varies nonlinearly; making it very hard for the 

sampling frequency of the slave motion’s to be constant. Hence, the position domain controllers 

use variable sampling frequencies based on the master motion’s position.  
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4.2 Trajectory Planning 

4.2.1 Fifth-Order Polynomial  

To guarantee smooth trajectories for all the joints of the manipulator, a fifth-order polynomial is 

used to define each contour’s position, velocity and acceleration (Dombre & Khalil, 2006). The 

fifth-order polynomial is defined with respect to time as: 

        (
 

 
*
 

   (
 

 
*
 

  (
 

 
*
 

 (4-2) 

where   is time and   is the total time duration of the motion. Then, the velocity and acceleration 

are given as: 

  ̇    
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-  (4-3) 

  ̈    
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*     (
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    (
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- (4-4) 

4.2.2 Linear Contours 

With Eqs (4-2)-(4-4), a linear contour on the end-effector level (task space coordinates) 

can be defined as follows: 

    (     )      (4-5) 

where   , is the desired contour expressed in Cartesian coordinates           , and    and    are 

final and initial points in the contour. 

Both zigzag and diamond contours are composed of four linear contours defined by 

equation (4-5). The transition from one segment to the other is a stop-and-go motion and not 

continuous as is usually the case for these types of contours.  
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The direction (   ) of the end effector is kept constant for each segment. The inverse 

kinematics equations of the robotic manipulator (found on the appendix) are used to calculate the 

joint position and velocity required to follow the defined contours. Figure 4-2 to Figure 4-4 show 

the zigzag contour along with the end-effector and joint level trajectories.  Figure 4-5 to Figure 

4-7 show the same information for the diamond contour. 

 Table 4-2 and  

 

 

 

 

 

 

 

 

 

Table 4-3 show the final and initial positions on the end-effector and joint space level 

respectively. Table 4-4 and Table 4-5 indicate the maximum velocities for each segment and 

once again for the end-effector and joint space respectively. One can see that the end-effector 

values are similar because the segments were set to be equal in distance and time duration. On 

the other hand, the joint space values are quite different due to the kinematics of the robotic 

manipulator. 

Table 4-2: Initial and Final End-Effector Positions for Linear Contours 

 Segment 1 Segment 2 Segment 3 Segment 4 

                         

Zigzag Contour        

                                                

                                                

                                                          

Diamond Contour       
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Table 4-3: Initial and Final Joint Position for Linear Contours 

 Segment 1 Segment 2 Segment 3 Segment 4 

                                                                         

Zigzag Contour        

                                                           
                                                   
                                                       

Diamond Contour       

                                                           
                                                   
                                                         

 

Table 4-4: Task Space Maximum Velocities  

 Segment 1 Segment 2 Segment 3 Segment 4 

Zigzag Contour     

 ̇                                   

 ̇                                   

 ̇                   

Diamond Contour    

 ̇                                   

 ̇                                   

 ̇                   

 

Table 4-5: Joint Space Maximum Velocity (in rad/sec) 

 Segment 1 Segment 2 Segment 3 Segment 4 

Zigzag Contour     

 ̇                            
 ̇                              
 ̇                            

Diamond Contour    

 ̇                          
 ̇                            
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 ̇                            
 

 

Figure 4-2: Zigzag Contour 
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Figure 4-3: Position and Velocity on Task Space (Zigzag Contour) 

 

Figure 4-4: Joint Position and Velocity (Zigzag Contour) 
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Figure 4-5: Diamond Contour 

 

Figure 4-6: Task Space Position and Velocity (Diamond Contour) 
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Figure 4-7:  Joint Position and Velocity (Diamond Contour) 

4.2.3 Nonlinear Contour  

To define nonlinear contour, an angular parameter has to be introduced: 

          (     ) (4-6) 

where   and    are the final and initial values for the parameter. This parameter is used to define 

the nonlinear contours which are expressed by different equations based on the contour.  

The circular contour is defined as follows: 

 ,
                (    ) 

                (    )
 (4-7) 

with         are the centre of the circle and   is radius.  

Table 4-6: Circular Contour Parameters 
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Figure 4-8: Epitrochoid Motion (Hsu, Yan, Liu, & Hsieh, 2008) 

On the other hand, the epitrochoidal contour is defined based on the epitrochoidal 

parametric function: 

 

{
 
 

 
                      (    )       (

     
  

    + 

                     (    )       (
     

  
    +

 (4-8) 

where         is the origin of symmetry,    is the radius of the large circle,    is the radius of the 

small circle and    is the distance of the trajectory’s points from the centre of the smaller circle 

as shown in Figure 4-8. The smaller circle moves around the larger circle, translating rod d in the 

process which creates the resulting contour. The parameters used to form the desired contour are 

listed in the following table.  

Table 4-7: Epitrochoidal Contour Parameters 
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Both nonlinear contours are performed on their whole and are not segments. For the 

circular contour, the direction (   ) of the end-effector was kept constant, but for the 

epitrochoidal contour Eq.(4-6) was used to define the end effector direction. As in the linear 

contour case, the joint trajectories are calculated based on the manipulators inverse kinematics 

equations which can be found in the appendix.  

 Figure 4-9 to Figure 4-14 display the contours and trajectories for both circular and 

epitrochoidal contour. Table 4-8 and Table 4-9 show the initial and final positions and the 

maximum velocity for each contour on the end-effector level and joint space level, respectively. 

Once more the two tables feature significantly different values due to the robotic manipulator’s 

kinematics. 

Table 4-8: End-Effector Trajectory for Nonlinear Contours 

 Initial Position Final Position  Max velocity 

Circular contour   

                                 ⁄   

                              ⁄   

                                   ⁄   

Epitrochoidal contour   

                              ⁄   

                                ⁄   

                                     ⁄   

 

Table 4-9: Joint Space Trajectory for Nonlinear Contours 

                   Max Velocity (rad/s) 

Circular contour   

                       

                       

                        
Epitrochoidal contour   
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Figure 4-9: Circular Contour 
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Figure 4-10: Task Space Position and Velocity (Circular Contour) 

 

Figure 4-11: Joint Position and Velocity (Circular Contour) 
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Figure 4-12: Epitrochoidal Contour 

 

Figure 4-13: Task Space Position and Velocity (Epitrochoidal Contour) 
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Figure 4-14: Joint Position and Velocity (Epitrochoidal Contour) 

4.3 Trajectory Transformation 

As mentioned in Section 3.3, in position domain control the slave motion has to be 

transformed from the time domain to position domain. This means that the desired trajectory of 

the slave axes has to be also transformed from functions of time to functions of the master axis 

position.  

For the purposes of the following simulations, lookup tables are used for the 

transformation of the desired axis trajectories. More specifically, the desired trajectory of each 

axis is initially defined as a function of time as explained in Section 4.2. Afterwards, the 

resulting trajectories are linearly interpolated with respect to the master axis’ real trajectory, as 
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axis real trajectory. This procedure was easily performed in the simulations by using the intep1 

in MATLAB. 

 
Figure 4-15: Lookup Table (interp1) (The MathWorks, Inc) 

The resulting contours derived from the above procedure can be seen in the following 

figures. Figure 4-16 to Figure 4-19 contain in sequence the resulting trajectories for the zigzag, 

diamond, circular and epitrochoidal contours respectively. 

 

Figure 4-16: Position Domain Slave Trajectories for Zigzag Contour 
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Figure 4-17: Position Domain Slave Trajectories for Diamond Contour 

 

Figure 4-18: Position Domain Slave Trajectories for Circular Contour 
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Figure 4-19: Position Domain Slave Trajectories for Epitrochoidal Contour 

4.4 Friction Model  

In an effort to make a realistic simulation and demonstrate the robustness of the new 

controller, the friction of the robotic manipulators joints is added to the simulated model.  The 

friction was modeled based on the following equation:  

    ̇    {           
 |

 ̇ 
  

|
 

}       ̇     ̇  (4-9) 

where    is the Coulomb friction force,    is the magnitude of the Stribeck friction,   is the 

viscous friction parameter,     is the static friction coefficient and   is an empirically determined 

parameter. 
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 The model of Eq (4-9) predicts the static, viscous and break-away friction values for the 

joint actuators of the robotic manipulators (Armstrong-Helouvry, Dupont, & Canudas De Wit, 

1994). Table 4-10 shows the friction parameters used for the simulations. Since the joint 

actuators are assumed to be of the same type, the same parameters are used for each joint. 

Table 4-10: Friction Parameters 

Parameter Value 

Coulomb friction (          
Stribeck  friction              

Static friction            
Viscous friction                ⁄   

    

4.5 Gain Effect  

As with every controller, the gains of the proposed control law in Eq (3-23) affect the 

behaviour of the system in different ways.  Simulations for a linear contour were performed with 

the values of the gains changing with each one. The gain matrices are diagonal and for simplicity 

all the non-zero entries have the same value for each gain. Three sets of simulations are 

performed with the value of only one gain varying on each set while the other ones remain the 

same. The mean of the absolute of each error is used to compare the performance of each gain 

value. The range of values of the gains can be seen in Table 4-11. 

Table 4-11: Gain Range 

Gain Min. Value Max Value Increment 

                   

                   

         

Figure 4-20 shows the effects of    on the systems performance. Increasing the 

proportional gain matrices value led to decrease in the contour error (    , a trend which is also 
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followed by the synchronization ( ) and the coupled error    . However, the tracking error of 

the second axis reached a minimum with         , while the tracking error for the third axis 

decreases only slightly. 

On the other hand, Figure 4-21 shows that an increase in the derivative gain    results in 

increasing contour, synchronization and coupled errors. Conversely, the second axis tracking 

error decreases as the derivative gain grows in value. 

An increasing    value leads to decreases in the value of the contour error but increases the 

synchronization and coupled errors. The tracking error of the second axis decreases with the first 

changes in the value of    but then it increases again while the third axis maintains a slight 

decrease. The high increase of the coupled error indicates that the value of    should be 

maintained low enough in order for the error to be maintained low in value as well. 

 

Figure 4-20: Variable Kp 
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Figure 4-21: Variable Kd 

 

Figure 4-22: Variable   
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the controller. The algorithm is composed of the following steps: 

1. Set    , making the PDSC controller similar to a proportional-derivative controller. 
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3. Increase the value of   until desired performance due to synchronization is achieved. 

4. Further adjust     and     if needed. 
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The above algorithm is quite similar to the one used by (Sun, 2011) to tune the PSC 

controller, an algorithm which was also used to determine the    gain. The gain used for the 

simulations in the later sections can be seen in Table 4-12. 

Table 4-12: Simulation Control Gains 

Controller Type Linear Contour Nonlinear Contour 

Time Domain 

PD Controller 

       {                } 

       {                } 

       {                } 

       {                } 

Position 

Synchronization 

Controller 

       {                } 

       {                } 

       {             } 

      {             } 

       {                } 

       {                } 

       {             } 

      {                } 

Position Domain 

PD Controller 

       {                } 

       {                } 

       {                } 

       {                } 

Position Domain 

Synchronization 

Controller 

       {                } 

       {                } 

      {             } 

       {                } 

       {                } 

      {                } 

4.7 Linear Contour Tracking Results 

4.7.1 Zigzag Contour 

All the simulated control schemes, TD-PD, PDSC, PD-PD and PDSC achieved good axial 

tracking performance for a zigzag motion with the control gains of Section 4.6. As seen in Table 

4-13 the position domain controllers were able to produce less tracking error than the time 

domain controllers with the PDSC controller being approximately      more exact that then 

PD-PD controller. All the tracking errors are also displayed in Figure 4-23. Concerning 

synchronization and coupled errors, PDSC outperformed the PSC controller by achieving 
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      (axis 2) and    (axis 3) lower synchronization error with equally lower standard 

deviations. Similar results were produced for the coupled error, where the PSC exhibited higher 

that the PDSC values by     (axis 2) and     (axis 3), as seen also in Table 15, Figure 4-24 

and Figure 4-25. 

It should be noted that for the position domain controllers (PD-PD and PDSC), the first 

axis is the master axis and its position acts as the reference for the motion of the rest axis. Hence 

the first axis yields zero tracking, synchronization and coupled error in the case of the position 

domain controllers. 

Table 4-13: Mean and Standard Deviation for the Tracking Error for Zigzag Motion 

 Axis 1 Axis 2 Axis 3 

 Mean (rad) S.D. (rad) Mean (rad) S.D. (rad) Mean (rad) S.D. (rad) 

TD-PD                                                    

PSC                                         0.00013 

PD-PD N/A N/A                               0.00013 

PDSC N/A N/A                                          

 

 

Table 4-14: Mean and Standard Deviation of the Synchronization and Coupled Errors for Zigzag Motion 

 Axis 1 Axis 2 Axis 3 

 Mean (rad) S.D. (rad) Mean (rad) S.D. (rad) Mean (rad) S.D. (rad) 

Synchronization Error ( )     

PSC 0.00030 0.00030 0.00032 0.00039 0.00058 0.00040 

PDSC N/A N/A 0.00028            0.00029            

Coupled Error (  )     

PSC 0.00217 0.00208 0.00232 0.00206 0.00519 0.00362 

PDSC N/A N/A 0.00184 0.00062 0.00272 0.00088 
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Figure 4-23: Zigzag Motion Tracking Error for TD-PD, PSC, PD-PD and PDSC 
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Figure 4-24: Zigzag Motion Synchronization Error for PSC and PDSC 

 

Figure 4-25: Zigzag Motion Coupled Error for PSC and PDSC 

0 2 4
-15

-10

-5

0

5
x 10

-4

Time (s)

 1
 (

ra
d
)

0 2 4
-1

-0.5

0

0.5

1
x 10

-3

Time (s)

 2
 (

ra
d
)

PSC

0 2 4
-2

-1

0

1

2
x 10

-3

Time (s)

 3
 (

ra
d
)

-1.5 -1
-1

-0.5

0

0.5

1

q
1
 (rad)

 1
 (

ra
d
)

-1.5 -1

-10

-5

0

x 10
-4

q
1
 (rad)

 2
 (

ra
d
)

PDSC

-1.5 -1

-2

0

2

4

x 10
-4

q
1
 (rad)

 3
 (

ra
d
)

0 2 4
-10

-5

0

5
x 10

-3

Time (s)

e
* 1
 (

ra
d
)

0 2 4
-5

0

5

10
x 10

-3

Time (s)

e
* 2
 (

ra
d
)

PSC

0 2 4
-0.02

-0.01

0

0.01

0.02

Time (s)

e
* 3
 (

ra
d
)

-1.5 -1
-1

-0.5

0

0.5

1

q
1
 (rad)

e
* 1
 (

ra
d
)

-1.5 -1
-8

-6

-4

-2

0

2

x 10
-3

q
1
 (rad)

e
* 2
 (

ra
d
)

PDSC

-1.5 -1

-2

0

2

4

x 10
-3

q
1
 (rad)

e
* 3
 (

ra
d
)



71 

 

Regarding contour tacking accuracy, the position domain controllers were able to perform 

better than the time domain controllers, as previous research had also demonstrated (Ouyang, 

Dam, Huang, & Zhang, 2012).  The PD-PD controller produced     and      lower contour 

error than the TD-PD and PSC controllers, respectively, but the PDSC controller outperformed 

the PD-PD by       as seen in Table 4-15. Hence, it is clear that the PDSC controller achieved 

the best contour performance with the least deviation from the desired path, something also 

supported evident by Figure 4-26.   

 

Figure 4-26: Zigzag Motion Contour Tracking Performance for TD-PD, PSC, PD-PD and PDSC 
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Table 4-15: Mean and Standard Deviation of Contour Tracking for Zigzag Motion
1
 

 Mean (m) S.D. (m) 

TD-PD                 
PSC                 

PD-PD                 
PDSC                       

As shown in Table 4-16, the position domain controllers produced higher maximum values 

for the second axis while the maximum torque for the third axis remained essentially the same. 

This was expected as the trajectories on the position domain are rather different than the time 

domain ones and create different values in the required torques. The torques produced by the 

PDSC controller can be seen in Figure 4-27. 

Table 4-16: Maximum Torque for Zigzag Contour (in Nm) 

 
         

TD-PD                     
PSC                     

PD-PD                     
PDSC                     

 

 

Figure 4-27: Zigzag Contour Torques for PDSC Controller 
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4.7.2 Diamond Contour 

Similar to the zigzag motion, the diamond contour simulations produced good axial 

tracking results for all the controllers. Still, the PDSC controller yielded better results than the 

rest of the controllers as it can be seen in Figure 4-29.  More specifically, Table 4-17 shows that 

the PDSC controller produced approximately     less error than the PSC controller and 

approximately      error from the PD-PD controller. The standard deviation of the mean error 

followed in the same trend, with the standard deviation of the PDSC controller being an order of 

magnitude lower than the rest of the controllers. 

On the other hand, the PSC controller outperformed the PDSC controller on the 

synchronization error of the second axis by       and produced only     higher error than the 

PDSC on the third axis with the standard deviation following the same trend. Likewise, PSC 

produced by     less coupled error for the second axis but    greater error for the third axis as 

shown in Table 4-18.  The standard deviations of the error had similar terms with the PDSC 

standard deviations being      higher for the second axis but         lower than the PSC 

standard deviation for the third axis. 

Table 4-17: Mean and Standard Deviation of Axial Tracking Error for Diamond Motion 

 Axis 1 Axis 2 Axis 3 

 Mean (rad) S.D. (rad) Mean (rad) S.D. (rad) Mean (rad) S.D. (rad) 

TD-PD                                                 

PSC                                                 
PD-PD N/A N/A                                 
PDSC N/A N/A                                             
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Table 4-18: Mean and Standard Deviation for Synchronization and Coupled Error for Diamond Motion 

 Axis 1 Axis 2 Axis 3 

 Mean (rad) S.D. (rad) Mean (rad) S.D. (rad) Mean (rad) S.D. (rad) 

Synchronization Error ( )     

PSC                                                 
PDSC N/A N/A                                 

Coupled Error (  )     

PSC                                                 
PDSC N/A N/A                                 

 

Figure 4-28: Diamond Motion Axial Tracking Error for TD-PD, PSC, PD-PD, PDSC 
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Figure 4-29: Diamond Motion Synchronization Error for PSC and PDSC 

 

Figure 4-30: Diamond Motion Coupled Error for PSC and PDSC 
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Once again the position domain controllers performed better than their time domain 

counterparts, featuring mean errors and standard deviations an order of magnitude lower than the 

time domain as shown in Figure 4-31. Furthermore,  the PDSC controller produced        

lower mean error than the PD-PD controller with the standard deviation being also lower by 

      as it is indicated in Table 4-19. The contour error results of the position domain 

controllers can be seen more clearly in Figure 4-32. 

 

Figure 4-31: Diamond Motion Contour Tracking Performance for TD-PD, PSC, PD-PD and PDSC 
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Table 4-19: Mean and Standard Deviation for Diamond Contour
2
 

 Mean (m) S.D. (m) 

TD-PD                 
PSC                 

PD-PD                       
PDSC                       

 

 

Figure 4-32: Contour Tracking Error for PD-PD and PDSC 

As exhibited in Table 4-20, the torques of the position domain controllers were once again 

different than the ones of the time domain. This time the position domain controllers produced 

lower torque from the time domain by approximately     for the second axis while the 

difference between the third axis torques is approximately    . 

Table 4-20: Maximum Torque for Diamond Contour (in Nm) 
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Figure 4-33: Diamond Contour Torques for PDSC Controller 

4.8 Circular Contour Tracking Control  

4.8.1 Circular Contour  
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PSC had the lowest error with PDSC coming second. Similar comments can be made for the 
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4-21 and Figure 4-36 where the mean error and standard deviation of PDSC for the third axis is 

lower than the ones of the PSC controller by       but for the second axis the PSC controller 

featured    less error deviation. 

Table 4-21: Mean and Standard Deviation of Axial Tracking Error for Circular Contour 

 Axis 1 Axis 2 Axis 3 

 Mean (rad) S.D. (rad) Mean (rad) S.D. (rad) Mean (rad) S.D. (rad) 

TD-PD                                                       

PSC                                                       
PD-PD N/A N/A                                 
PDSC N/A N/A                                 

 

 

Table 4-22: Mean and Standard Deviation of Synchronization and Coupled Error for Circular contour 

 Axis 1 Axis 2 Axis 3 

 Mean (rad) S.D. (rad) Mean (rad) S.D. (rad) Mean (rad) S.D. (rad) 

Synchronization Error ( )     

PSC                                                 
PDSC N/A N/A                                 

Coupled Error (  )     

PSC                                                 
PDSC N/A N/A                                 
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Figure 4-34: Axial Tracking Error of Circular Contour for TD-PD, PSC, PD-PD, PDSC 
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Figure 4-35: Circular Contour Synchronization Error for PSC and and PDSC 

 

Figure 4-36: Circular Contour Coupled Error for PSC and PDSC 
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As presented in Figure 4-37, the PSC and PDSC controllers generated lower mean contour 

error than the rest of the controllers. Nonetheless, PDSC yielded     lower mean contour error 

than PSC while having a       difference from the mean error of PD-PD which was the lowest 

performer. Additionally, the standard deviation of the error was equally small for all the 

controllers as shown in Table 4-23, but the PDSC controller yielded       lower deviation than 

the TD-TD controller which was the second best in that category. 

 

Figure 4-37: Circular Motion Contour Tracking Performance for TD-PD, PSC, PD-PD and PDSC 
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Table 4-23: Mean and Standard Deviation of Contour Tracking Error or Circular Contour
3
 

 Mean (m) S.D. (m) 

TD-PD                    
PSC                      

PD-PD                    
PDSC                       

As with the other cases, the torques of the slave motions on the position domain were 

different from the ones in the time domain. As presented in Table 4-24 this time the PD-PD and 

PDSC controllers produced       and     lower torques in the second axis than the time 

domain controllers while the differences in the third axis torque are negligible. 

Table 4-24:  Maximum Torque for Circular Contour (in Nm) 

 
         

TD-PD                    
PSC                    

PD-PD                    
PDSC                    

 

Figure 4-38: Circular Contour Torques for PDSC Controller 

                                                 
3
 Contour error calculated with Eq (2-15) 

-1 0 1 2 3 4

-10

-5

0

5

10

q
1
 (s)

T
o
rq

u
e
 (

N
m

)

 

 


1


2


3



84 

 

4.8.2 Epitrochoidal Contour  

Interestingly, the time domain controllers, TD-PD and PSC, performed better than the 

position domain controllers. Particularly, the TD-PD controller featured     lower tracking 

error than the PDSC for the second axis, and the PSC controller achieved     lower error than 

the PDSC for the third axis. Similarly, the standard deviation of TD-PD for the second axis was 

    lower than the standard deviation of PDSC with the equivalent standard deviation for the 

PSC being     lower. The rest of the tracking performance can be seen in Table 4-25 and 

Figure 4-39. 

 In terms of the synchronization and coupled errors, the PDSC controller outperformed the 

PSC controller. For the second axis, the mean synchronization and coupled error were 

approximately     lower for the PDSC than the PSC controllers. Similarly, the third axis 

synchronization and coupled error for PDSC were approximately     lower than the errors of 

the PSC. As presented in Table 4-26, the standard deviations of the errors followed the same 

trend, with the PDSC providing a more stable error performance in synchronization. As an 

indication, the standard deviation of the synchronization error for the third axis was     lower 

for the PDSC controller than the PSC.  

Table 4-25: Mean and Standard Deviation of Axial Tracking Error for Epitrochoidal Contour 

 Axis 1 Axis 2 Axis 3 

 Mean (rad) S.D. (rad) Mean (rad) S.D. (rad) Mean (rad) S.D. (rad) 

TD-PD                                                     

PSC                                                
PD-PD N/A N/A                                 
PDSC N/A N/A                                 
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Table 4-26: Mean and Standard Deviation of Synchronization and Coupled Error for Epitrochoidal contour 

 Axis 1 Axis 2 Axis 3 

 Mean (rad) S.D. (rad) Mean (rad) S.D. (rad) Mean (rad) S.D. (rad) 

Synchronization Error ( )     

PSC                                                 
PDSC N/A N/A                                 

Coupled Error (  )     

PSC                                                 
PDSC N/A N/A                                 

 

Figure 4-39: Axial Tracking Error of Epitrochoidal Contour for TD-PD, PSC, PD-PD, PDSC 
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Figure 4-40: Epitrochoidal Contour Synchronization Error for PSC and and PDSC 

 

Figure 4-41: Epitrochoidal Contour Coupled Error for PSC and PDSC 
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Despite the PDSC controller being overtaken by the other controllers on the tracking error, 

Figure 4-42 shows that it still ouperformed the other controllers in terms of contour tracking. In 

particular the contour error of PDSC was       lower than the error of the second best 

controller, PSC. Comparing it with the lower contour error performer, the PDSC produced 

      lower mean error than the PD controller. The standard deviation follows idential trends as 

it can be seen in Table 4-27. The contour error results of the position domain controllers more 

clearly presented in Figure 4-43. 

 

Figure 4-42: Epitrochoidal Motion Contour Tracking Performance for TD-PD, PSC, PD-PD and PDSC 
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Table 4-27: Mean and Standard Deviation of Contour Tracking Error of Epitrochoidal Contour
4
 

 Mean (m) S.D. (m) 

TD-PD                 
PSC                 

PD-PD                 
PDSC                       

 

Figure 4-43: Contour Tracking Error for PD-PD and PDSC 

In this case, the position domain trajectories led to similar second axis for all the 

controllers simulated. Still, Table 4-28 shows that the third axis maximum torque was increased 

by     for the position domain. 

Table 4-28: Maximum Torque for Epitrochoidal Contour (in Nm) 
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PSC                     
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4
 Contour Calculated with method explained in Section 2.4.3 
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Figure 4-44: Epitrochoidal Contour Torques (in Nm) 

4.9 Remarks 

The simulations results demonstrate a general improvement of performance for the 

tracking and contour tracking error of the proposed PDSC control law. For linear contours, the 

position domain controllers yielded     to     lower mean contour error when compared to 

the time domain controllers. For the same contours the standard deviation of the error was 

improved by the position domain control in an amount ranging from     to    .  Figure 4-45 

indicates also that the PDSC controller produced       and       lower mean error than the 

PD-PD controller for the zigzag and diamond contours, respectively. The standard deviation was 

also improved by approximately the same percentages. The lower contour performance of the 

controller in the zigzag contour, when compared with the diamond motion, can be attributed to 

the lower time allowed for the motion to be performed, which led to higher trajectories and 

therefore higher required torque (also see Table 4-16 and Table 4-20). 
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Figure 4-45: Contour Tracking Performance Summary 

 

For the circular contours, the controllers employing the synchronization principle achieved 

higher contour tracking performance than the independent PD controllers. With synchronization 

the contour error was improved by     to     with the standard deviation following similar 

improvement. The superior performance of the synchronization controllers can be explained by 

considering the nonlinearity of the contours and the robotic manipulator which also led to 

varying sampling distance for the position domain controllers. The innate coordination of the 

agents that is achieved with the synchronization controllers compensates the nonlinearity of the 

motion in a way which the independent controllers cannot do. Between the two synchronization 

controllers, PDSC yielded       and       lower mean contour error than the PSC for the 

circular and epitrochoidal contours with the standard deviation being improved by       and 

      correspondingly. 
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Figure 4-46: SPDC Maximum Torque 

Figure 4-46 presents the maximum torque values of the robotic manipulators axes, as 

produced by the PDSC controller for all the simulated contours.  Since the maximum torques of 

the slave axes (   and   ) does not exceed the maximum values of    it can be easily deduced 

that the proposed controller comes with the similar power requirements as conventional time 

domain controllers. 
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Chapter 5: Conclusions and Future Work 

5.1 General Review 

Robotic manipulators have many applications from electrical and electronics production to 

surgical procedures and space explorations. An important research area for robotics is the 

development of advanced control systems for the purpose of improving tracking or contour 

performance, and that is the main goal of this research presented in this thesis. 

In this thesis, a new model-free position domain synchronization control law was proposed 

for the control of multi-DOF robotic manipulators. The new control law uses the principles of the 

position domain and synchronization to improve the contour tracking performance in the end-

effector level.  In position domain, the dynamics of the system are transformed from time 

domain to position domain via a one–to-one mapping and one the system’s axis is used as the 

reference instead of time for the slave axes. The addition of the synchronization principles 

incorporates the synchronization of each slave axis’ error in order to further coordinate the 

motion of the whole system. The stability of the proposed controller was established with the 

Lyapunov method where the error was proven to be bounded. 

The new controller was used for a planar RRR robotic manipulator and tested via linear 

and nonlinear contour simulations. The new controller’s performance was also compared with 

the performances of time domain PD, time domain PSC, and position domain PD controllers. In 

terms of tracking error, the newly introduced controller was shown to be on par with the other 

controllers and in the case of linear contours it produced mean errors and standard deviation of 

one magnitude lower. Similarly, the mean and standard deviation of the synchronization and 
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coupled errors of the new controller were frequently lower than the ones of its time domain 

counterpart.  

Regardless of the tracking error results, the contour tracking performance of the new 

control law was consistently superior to the other controllers with the mean contour error and 

standard deviation of the PDSC controller steadily an order of magnitude lower than the contour 

errors of the rest of the controllers for all the contour cases. 

5.2 Main Contributions 

A number of the contributions are made in this thesis: 

o Position domain was introduced as a control alternative for nonlinear robotic systems  

o The principle of synchronization was introduced to position domain controllers allowing 

for better coordination of the slave systems. 

o A new and simple control law for nonlinear system was introduced which is able to 

provide high contour tracking performance. The new control is not limited to robotic 

manipulators or CNC machines but can also be used for robotic swarms, multi-agent 

systems and any other configuration that required high coordination. 

o Better contour tracking performance can be obtained by using the developed position 

domain synchronization control. 

5.3 Future Work 

Although this thesis has successfully introduced the notion of position domain 

synchronization control, more work can be done the further improve and expand the new control 
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concept. First of all, experiments should be performed to validate the simulations and study any 

unforeseen difficulties. The controller should also be used in different robot configurations 

(parallel, spatial, etc) as well as robot swarms and coordinated robotic groups. Lastly, position 

domain controllers use different trajectories than their time domain counterparts. Therefore, a 

path planning optimization technique should be developed in order to define position domain 

trajectories that would yield the best performances for the position domain controller. 
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Appendix 

3R Dynamics and Kinematics 

Forward Kinematics 
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Inverse Kinematics 

Position: 

 
                      (4)  

 
                     

(5)  

           
  

    
    

    
 

     
 (6)  

          √              (7)  

Then, 

 
                           

(8)  

 
                                               

(9)  

 
             

(10)  



101 

 

Velocity: 
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Dynamics 

Inertia Matrix 
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Coriolis-Centrifugal Forces 
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Define, 
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Gravity Vector 
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      {                                               } 
(30)  

                        
(31)  

MATLAB Functions 

Master File 

This is the Master controlling the secondary functions and defining the variables of the system. 

In this case a linear contour is executed. 

Declaration of variables 

global mass I l r tspan dt 

global Pi Pf tf  Pd dPd ddQd dQd Qd 

global Kp Kd Ki 

global kp kd ks beta  N 

global dp pq vq aq rvq raq 

global alpha b fc fs ft delta dxs 

global eta deta star dstar peta pdeta pstar pdstar 

Friction Parameters 

b =1.5; 

fc = 3; 

fs =5; 

ft =100; 

delta = 2; 

Gain Definition 

kp = [9.088240799499298;     8.304024394997082;   6.717464827016674]*1e3; 

kd = [9.871988565005141;     7.900803640707129;   7.476418888180112]*1e3; 

ks = [0.009597076721277;     0.004867545399102;   0.001182615747053]*1e3; 

beta = [0.006550083466772;     0.006691256417746;   0.008477182028822]*1e3; 

 

% TD-PD and PD-PD gains 

Kp = kp; 

Kd = kd; 
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Ki = [0;0;0]; 

 

% PDSC and PSC gains 

kp = diag(kp); kd = diag(kd);ks = diag(ks);beta=diag(beta); 

 

% Robotic Manipulator Parameters 

mass = [1 1 0.5]; 

l = [0.5 0.5 0.3]; 

r = l/2; 

I = [0.1 0.1 0.05]; 

Trajectory Planning  

% Sampling and time definition 

N =1500; 

tf = 1.5; 

dt = tf/(N-1); 

tspan = 0:dt:tf; 

 

%Definition of trajectory function 

tr   = 10*(tspan/tf).^3-15*(tspan/tf).^4+6*(tspan/tf).^5; 

dtr  = (30*(tspan/tf).^2-60*(tspan/tf).^3+30*(tspan/tf).^4)/tf; 

ddtr = (60*(tspan/tf)-180*(tspan/tf).^2+120*(tspan/tf).^3)/tf^2; 

 

% Definition of end-effector trajectory 

Pi = [0.5;0.5;pi/3]; Pf = [0.7;0.7;pi/3]; 

th = atan2(Pf(2)-Pi(2),Pf(1)-Pi(1)); 

Pd  = bsxfun(@plus,bsxfun(@times,(Pf-Pi),tr),Pi)'; 

dPd = bsxfun(@times,(Pf-Pi),dtr)'; 

 

% Inverse kinematics for the joint trajectory 

[Qd,dQd] = inverse_3dof_matrix(Pd,dPd); 

ddQd = [ 0 0 0; diff(dQd)/dt]; 

TD-PID Controller  

p0 = [Qd(1,1) dQd(1,1) Qd(1,2) dQd(1,2) Qd(1,3) dQd(1,3)]; 

opts = odeset('RelTol',1e-5,'AbsTol', 1e-5*ones(6,1)); 

[t,x] = ode15s('system_time_PID',tspan,p0,opts); 

error = [Qd(:,1) dQd(:,1) Qd(:,2) dQd(:,2) Qd(:,3) dQd(:,3)] - x; 

TD-PSC Controller 

p0 = [Qd(1,1) dQd(1,1) Qd(1,2) dQd(1,2) Qd(1,3) dQd(1,3)]; 

opts = odeset('RelTol',1e-5,'AbsTol', 1e-5*ones(6,1)); 

[ts,xs] = ode15s('system_time_synchro2',tspan,p0,opts); 

errors = [Qd(:,1) dQd(:,1) Qd(:,2) dQd(:,2) Qd(:,3) dQd(:,3)] - xs; 
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Position Domain Trajectory definition 

pq = zeros(N,3);vq = zeros(N,3); aq = zeros(N,3); 

dp = (x(end,1)-x(1,1))/(N-1); 

pq(1,:) = Qd(1,:); vq(1,:) = dQd(1,:); 

accel = [0 0 0; diff(x(:,2)) diff(x(:,4)) diff(x(:,6))]/dt; 

 

% Trajectory transformation from time to position domain 

% as a function of master motion 

pq(:,1) = x(1,1):dp:(x(end,1)); 

pq(:,2) = interp1(Qd(:,1),Qd(:,2),pq(:,1)); 

pq(:,3) = interp1(Qd(:,1),Qd(:,3),pq(:,1)); 

 

vq(:,1) = interp1(Qd(:,1),x(:,2),pq(:,1)); 

vq(:,2) = interp1(Qd(:,1),dQd(:,2),pq(:,1)); 

vq(:,3) = interp1(Qd(:,1),dQd(:,3),pq(:,1)); 

 

aq(:,1) = interp1(Qd(:,1),accel(:,1),pq(:,1)); 

aq(:,2) = interp1(Qd(:,1),accel(:,2),pq(:,1)); 

aq(:,3) = interp1(Qd(:,1),accel(:,3),pq(:,1)); 

 

 

pq = [smooth(pq(:,1)) smooth(pq(:,2)) smooth(pq(:,3))]; 

vq = [smooth(vq(:,1)) smooth(vq(:,2)) smooth(vq(:,3))]; 

aq = [smooth(aq(:,1)) smooth(aq(:,2)) smooth(aq(:,3))]; 

rvq = [ 0 0;  bsxfun(@rdivide,diff(pq(:,2:3)),diff(pq(:,1)))]; 

rvq(1,:) = rvq(2,:); 

raq = bsxfun(@rdivide,bsxfun(@minus,aq(:,2:3),bsxfun(@times,aq(:,1),rvq)),rvq(:,1).^2); 

Pdq = forward_3dof(pq); 

vq(end,:) = [ 0 0 0]; 

PD-PID Controller 

pp0 = [pq(1,2) rvq(1,1) pq(1,3) rvq(1,2)]; 

popts = odeset('RelTol',1e-5,'AbsTol', 1e-5*ones(4,1)); 

[px, xp] = ode15s('system_position_PID',pq(:,1),pp0,popts); 

errorp = [pq(:,2) rvq(:,1) pq(:,3) rvq(:,2)]-xp; 

PD-PDSC Controller 

pp0 = [pq(1,2) rvq(1,1) pq(1,3) rvq(1,2)]; 

popts = odeset('RelTol',1e-5,'AbsTol', 1e-5*ones(4,1)); 

[pxs, xps] = ode15s('system_position_synchro2',pq(:,1),pp0,popts); 

errorps = [pq(:,2) rvq(:,1) pq(:,3) rvq(:,2)]-xps; 
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Sum and calculations Error 

% Resulting trjectories 

c = forward_3dof([x(:,1) x(:,3) x(:,5)]); 

cs = forward_3dof([xs(:,1) xs(:,3) xs(:,5)]); 

cp = forward_3dof([pq(:,1) xp(:,1) xp(:,3)]); 

cps = forward_3dof([pq(:,1) xps(:,1) xps(:,3)]); 

 

% Resulting contour error 

ER = Pd-c; ERp = Pdq-cp;ERs = Pd-cs; ERps = Pdq-cps; 

E = -ER(:,1)*sin(th)+ER(:,2)*cos(th); 

Es = -ERs(:,1)*sin(th)+ERs(:,2)*cos(th); 

Ep = -ERp(:,1)*sin(th)+ERp(:,2)*cos(th); 

Eps = -ERps(:,1)*sin(th)+ERps(:,2)*cos(th); 

 

% Synchronization and coupled errors 

synchro_error=eta;synchro_derror=deta;coupled_error=star;coupled_derror=dstar; 

synchro_perror=peta;synchro_pderror=pdeta;coupled_perror=pstar;coupled_pderror=pdstar; 

time = tspan;pos = sort(px); 

Published with MATLAB® R2012b 

Secondary Functions 

System Dynamics and PDSC Controller 

This MATLAB function calculates the system's dynamics and control input. Then it calculates 

the state derivative  

Input: x - vector of state variables        t – time 

Output: xdot – derivative of vector of state variables 

%Output: xdot - derivative of state variable 

 

function xdot = system_position_synchro2(t,x) 

Declaration of variables 

global mass I l r 

global kp kd ks beta T ksii2 

global pq vq aq rvq raq 

global b fc fs ft friction 

http://www.mathworks.com/products/matlab
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global peta pdeta pstar pdstar 

 

 

m1=mass(1); m2=mass(2); m3=mass(3);         % Masses for each link 

r1=r(1);  r2=r(2); r3=r(3);                 % Centres of gravity 

I1=I(1); I2=I(2); I3=I(3);                  % Inertia of each link 

l1 = l(1); l2=l(2); l3=l(3);                % Length of each link 

Identification of  desired and actual state 

dd = abs(bsxfun(@minus,pq(:,1),t)); 

j = find(dd == min(dd)); 

 

qd = pq(j,:)';                              % Desired position 

dqd = [vq(j,1) rvq(j,:)]';                  % Desired velocity 

ddqd = aq(j,:)';                            % Desired acceleration 

dqp = rvq(j,:)';                            % Desired position relative 

                                            % velocity 

ddqp = raq(j,:)';                           % Desired position relative 

                                            % acceleration 

 

q  = [pq(j,1); x(1); x(3)];                 % Actual position 

dq = vq(j,1)*[1; x(2); x(4)];               % Actual velocity 

Cosines & Sines 

c1=cos(q(1)); s1=sin(q(1)); 

c2=cos(q(2)); s2=sin(q(2)); 

c3=cos(q(3)); s3=sin(q(3)); 

 

c12=cos(q(1)+q(2)); 

c123=cos(q(1)+q(2)+q(3)); 

 

c23=cos(q(2)+q(3)); s23=sin(q(2)+q(3)); 

Matrix M 

M(1,1)=I1+I2+I3+m1*r1^2+m2*(l1^2+r2^2+2*l1*r2*c2); 

M(1,1)=M(1,1)+m3*(l1^2+l2^2+r3^2+2*l1*l2*c2+2*l2*r3*c3+2*l1*r3*c23); 

 

M(1,2)=I2+I3+m2*(r2^2+l1*r2*c2)+m3*(l2^2+r3^2+l1*l2*c2+2*l2*r3*c3+l1*r3*c23); 

M(2,1)=M(1,2); 

 

M(1,3)=I3+m3*(r3^2+l2*r3*c3+2*l1*r3*c23); 

M(3,1)=M(1,3); 

 

M(2,2)=I2+I3+m2*r2^2+m3*(l2^2+r3^2+2*l2*r3*c3); 

M(2,3)=I3+m3*(r3^2+l2*r3*c3); 

M(3,2)=M(2,3); 
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M(3,3)=I3+m3*r3^2; 

Matrix C 

t11(1)=0; t11(2)=-m2*l1*r2*s2-m3*(l1*l2*s2+l1*r3*s23);t12(1)=t11(2); 

 

t11(3)=-m3*(l2*r3*s3+l1*r3*s23);t13(1)=t11(3); 

 

t12(2)=-m2*l1*r2*s2-m3*(l1*l2*s2+l1*r3*s23);t12(3)=-m3*(l2*r3*s3+l1*r3*s23); 

 

t13(2)=t12(3);t13(3)=-m3*(l2*r3*s3+l1*r3*s23); 

 

t21(1)=m3*(l1*r2*s2+l1*r3*s23)+m2*l1*r2*s2;t21(2)=0;t22(1)=0;t21(3)=-m3*l2*r3*s3; 

 

t23(1)=t21(3);t22(2)=0;t22(3)=-m3*l2*r3*s3;t23(2)=t22(3);t23(3)=t23(2); 

 

t31(1)=m3*(l2*r3*s3+l1*r3*s23);t31(2)=m3*l2*r3*s3;t32(1)=t31(2);t31(3)=0; 

 

t33(1)=0;t32(2)=m3*l2*r3*s3;t32(3)=0;t33(2)=0;t33(3)=0; 

C(1,1)=t11*dq;C(1,2)=t12*dq;C(1,3)=t13*dq; 

C(2,1)=t21*dq;C(2,2)=t22*dq;C(2,3)=t23*dq;C(3,1)=t31*dq;C(3,2)=t32*dq;C(3,3)=t33*dq; 

Matrix G 

G(1,1)=9.8*(m1*r1*c1+m2*(l1*c1+r2*c12)+m3*(l1*c1+l2*c12+r3*c123)); 

G(2,1)=9.8*(m2*r2*c12+m3*(l2*c12+r3*c123)); 

G(3,1)=9.8*m3*r3*c123; 

Friction Matrix F 

f = -(fc+(fs-fc)*exp(-(dq/ft).^2)).*sign(dq)+b*dq; 

 

Matrices for PDC 

A = [ M(2,2) M(2,3); M(3,2), M(3,3)]; 

B = [M(2,2)*ddqd(1)+C(2,2)*dq(1), M(2,3)*ddqd(1)+C(2,3)*dq(1);M(3,2)*ddqd(1)+C(3,2)*dq(1), 

M(3,3)*ddqd(1)+C(3,3)*dq(1)]; 

D = [M(2,1) C(2,1); M(3,1) C(3,1)]*[ddqd(1); dq(1)]; 

E = [G(2); G(3)]; 

F = [f(2);f(3)]; 

Controller 

% Gains 

pkp = kp(2:3,2:3); 
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pkd= kd(2:3,2:3); 

pks= ks(2:3,2:3); 

 

% Tracking Error 

e = qd-q;                                   % Position error 

de = [0 ;dqp-[x(2);x(4)]];                  % Derivative of position error 

 

% Sychronization Error 

Tau = [1 -1 0; 0 1 -1; -1 0 1];             % Synchronization Matrix 

epsilon = Tau*e;                            % Synchronization error 

depsilon = Tau*de;                          % Derivative of synchronization 

                                            % error 

peta(j,:) = epsilon(2:3)'; 

pdeta(j,:) = depsilon(2:3)'; 

ksii2(:,j) =Tau'*epsilon; 

 

% Coupled position error 

es = e+beta*epsilon;                        % Coupled error 

des = de+beta*depsilon;                     % Derivative coupled error 

pstar(j,:) = es(2:3)'; 

pdstar(j,:) = des(2:3)'; 

Control Input 

if vq(j,1) ~=0                              % A logic function to signify 

    s = sign(vq(j,1));                      % direction 

elseif vq(j,1)==0 

    s = 1; 

end 

 

tau = pkp*es(2:3)+pkd*s*des(2:3);           % PDSC controller 

Derivative of State 

xx = [0;0]; 

if vq(j,1)~=0 

xx = A\(tau-B*[x(2);x(4)]-D-E-F)/vq(j,1)^2; 

end 

 

T(j,2:3) = vq(j,1)^2 *A*xx+B*[x(2);x(4)]+D+E+F; 

 

xdot = [x(2);xx(1);x(4);xx(2)]; 

end 

Published with MATLAB® R2012b 

http://www.mathworks.com/products/matlab
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Inverse Kinematics of Robotic Manipulator 

This MATLAB function calculates the joint angular position and velocities based on the end 

effector task space coordinates and velocities  

Inputs: pos - End-effector task space position          

vel - End-effector task space velocity  

Outputs: angle- Joint angular position         

  dangle - Joing angular velocity 

function [angle,dangle]=inverse_3dof_matrix(pos,vel) 

Variable declaration and definition 

global l N                                              % Apprehending link lengths and 

population size from master file 

 

x = pos(:,1);y=pos(:,2); q = pos(:,3); 

dx = vel(:,1); dy=vel(:,2); dq = vel(:,3); 

 

l1=l(1); l2=l(2);l3=l(3);                               % Renaming length links for use on this 

function 

Angular position calculations 

x2=x-l3*cos(q); 

y2=y-l3*sin(q); 

 

cq2=(x2.^2+y2.^2-l1^2-l2^2)/(2*l1*l2); 

sq2=sqrt(1-cq2.^2); 

 

angle(:,2)=atan2(sq2,cq2); 

angle(:,1)=atan2(y2,x2)-atan2(l2*sq2,l1+l2*cq2); 

angle(:,3)=q-angle(:,1)-angle(:,2); 

 

% Small logic algorithm for eliminating trajectory discontinuities 

A = diff(angle); 

if max(abs(diff(angle(:,1))))>=pi 

    k = find(abs(A(:,1))==max(abs(A(:,1))))+1; 

    nk = round(max(abs(A))/pi).*( A(k,:)./abs(A(k,:))); 

    angle(k:end,:) = angle(k:end,:) + [ones(N-k+1,1)*nk(1)*pi ones(N-k+1,1)*nk(2)*pi ones(N-

k+1,1)*nk(3)*pi]; 

end 
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Calculating joint velocities 

q1=angle(:,1); q2=angle(:,2); q3=angle(:,3); 

 

s1=sin(q1); s2 = sin(q2); s3 =cos(q3);s12=sin(q1+q2); s123=sin(q1+q2+q3); s23 = sin(q2+q3); 

c1=cos(q1); c2 = cos(q2); c3 = cos(q3);c12=cos(q1+q2); c123=cos(q1+q2+q3); c23 = cos(q2+q3); 

 

dangle(:,1) = (c12./(l1*s2)).*dx+(s12./(l1*s2)).*dy + ((l3*s3)./(l1*s2)).*dq; 

dangle(:,2) = (-(l2*c12 + l1*c1)./(l1*l2*s2)).*dx + (-(l2*s12 + l1*s1)./(l1*l2*s2)).*dy + (-

(l3*(l1*s23 + l2*s3))./(l1*l2*s2)).*dq; 

dangle(:,3) = (c1./(l2*s2)).*dx+(s1./(l2*s2)).*dy+((l3*s23)./(l2*s2) + ones(N,1)).*dq; 

end 

Published with MATLAB® R2012b 

Forward Kinematics of Robotic Manipulator 

This MATLAB function calculates the end-effector task space position based on the joint 

angular positions  

Inputs: q - Joint angular position 

Outputs: pos - End-effector task space position 

function pos=forward_3dof(q) 

Variable declaration and definition 

global l N                       % Apprehending link lengths and population size from master file 

 

l1=l(1); l2=l(2);l3=l(3);        % Renaming length links for use on this function 

End-effector position calculations 

pos(:,1)=l1*cos(q(:,1))+l2*cos(q(:,1)+q(:,2))+l3*cos(q(:,1)+q(:,2)+q(:,3)); 

pos(:,2)=l1*sin(q(:,1))+l2*sin(q(:,1)+q(:,2))+l3*sin(q(:,1)+q(:,2)+q(:,3)); 

pos(:,3)=q(:,1)+q(:,2)+q(:,3); 

Published with MATLAB® R2012b 

http://www.mathworks.com/products/matlab
http://www.mathworks.com/products/matlab


112 

 

Nonlinear Contour Error Estimation 

This function calculates the error for nonlinear contours  

Inputs: C - desired contour          

C2 - actual contour           

t-time  

Output: Contour error 

function Ec = contour_error(t,C,C2) 

 

C = C(:,1:2); C2 = C2(:,1:2); t=t(:); 

V = [0 0;bsxfun(@rdivide,diff(C(:,1:2)),diff(t))]; 

V2 = [0 0;bsxfun(@rdivide,diff(C2(:,1:2)),diff(t))]; 

E = C-C2; 

dC = [0 0 ;diff(C)]; 

dC2 = [ 0 0;diff(C2)]; 

 

ds1 = sum(dC.^2,2); 

ds2 = sum(dC2.^2,2); 

 

L = (dC2(:,1)./ds2).*E(:,1)+(dC2(:,2)./ds2).*E(:,2); 

dT = L./sum(V.^2,2); 

 

Cr = C - bsxfun(@times,0.5*(V+V2),dT); 

phi = atan((Cr(:,2)-C(:,2))./(Cr(:,1)-C(:,1))); 

j = find(isnan(phi)); 

 

phi(j) = pi/2; 

Ec = E(:,1).*sin(phi)-E(:,2).*cos(phi); 

end 

Published with MATLAB® R2012b 

http://www.mathworks.com/products/matlab
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