

COST MINIMIZATION ALGORITHMS FOR SCHEDULING

PARALLEL, SINGLE-THREADED, HETEROGENEOUS,

SPEED-SCALABLE PROCESSORS

by

Rashid Khogali

B.A.Sc., University of Toronto, 2009

A thesis presented to Ryerson University in partial fulfillment of the

requirements for the degree of Master of Applied Science (M.A.Sc.)

in the Program of Electrical and Computer Engineering

Toronto, Ontario, Canada, 2013

© Copyright 2013 by Rashid Khogali

All Rights Reserved

 ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this thesis to other institutions or individuals for

the purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by

other means, in total or in part, at the request of other institutions or individuals for the

purpose of scholarly research.

I understand that my thesis may be made electronically available to the public.

Rashid Khogali

 iii

COST MINIMIZATION ALGORITHMS FOR SCHEDULING

PARALLEL, SINGLE-THREADED, HETEROGENEOUS,

SPEED-SCALABLE PROCESSORS

Rashid Khogali

Master of Applied Science

Electrical and Computer Engineering

Ryerson University, 2013

Abstract

We synthesize online scheduling algorithms to optimally assign a set of arriving

heterogeneous tasks to heterogeneous speed-scalable processors under the single threaded

computing architecture. By using dynamic speed-scaling, where each processor’s speed is

able to dynamically change within hardware and software processing constraints, the goal

of our algorithms is to minimize the total financial cost (in dollars) of response time and

energy consumption (TCRTEC) of the tasks. In our work, the processors are

heterogeneous in that they may differ in their hardware specifications with respect to

maximum processing rate, power function parameters and energy sources. Tasks are

heterogeneous in terms of computation volume, memory and minimum processing

requirements. We also consider that the unit price of response time for each task is

heterogeneous because the user may be willing to pay higher/lower unit prices for certain

tasks, thereby increasing/decreasing their optimum processing rates. We model the

overhead loading time incurred when a task is loaded by a given processor prior to its

execution and assume it to be heterogeneous as well.

 Under the single threaded, single buffered computing architecture, we synthesize

the SBDPP algorithm and its two other versions. Its first two versions allow the user to

specify the unit price of energy and response time for executing each arriving task. The

algorithm's second version extends the functionality of the first by allowing the user or

the OS of the computing device to further modify a task’s unit price of time or energy in

order to achieve a linearly controlled operation point that lies somewhere in the economy-

performance mode continuum of a task’s execution. The algorithm's third version

operates exclusively on the latter. We briefly extend the algorithm and its versions to

consider migration, where an unfinished task is paused and resumed on another processor.

 iv

The SBDPP algorithm is qualitatively compared against its two other versions. The

SBDPP' dispatcher is analytically shown to perform better than the well known Round

Robin dispatcher in terms of the TCRTEC performance metric. Through simulations we

deduce a relationship between the arrival rate of tasks, number of processors and

response time of tasks.

 Under the Single threaded, multi-buffered computing architecture we have four

contributions that constitute the SMBSPP algorithm. First, we propose a novel task

dispatching strategy for assigning the tasks to the processors. Second, we propose a novel

preemptive service discipline called Smallest remaining Computation Volume Per unit

Price of response Time (SCVPPT) to schedule the tasks on the assigned processor. Third,

we propose a dynamic speed-scaling function that explicitly determines the optimum

processing rate of each task. Most of the simulations consider both stochastic and

deterministic traffic conditions. Our simulation results show that SCVPPT outperforms

the two known service disciplines, Shortest Remaining Processing Time (SRPT) and the

First Come First Serve (FCFS), in terms of minimizing the TCRTEC performance metric.

The results also show that the algorithm's dispatcher drastically outperforms the well

known Round Robin dispatcher with cost savings exceeding 100% even when the

processors are mildly heterogeneous. Finally, analytical and simulation results show that

our speed scaling function performs better than a comparable speed scaling function in

current literature.

 Under a fixed budget of energy, we synthesize the SMBAD algorithm which uses

the micro-economic laws of Supply and Demand (LSD) to heuristically adjust the unit

price of energy in order to extend battery life and execute more than 50% of tasks on a

single processor (under the single threaded, multi buffered computing architecture). By

extending all our multiprocessor algorithms to factor independent (battery) energy

sources that is associated with each processor, we analytically show that load balancing

effects are induced on heterogeneous parallel processors. This happens when the unit

price of energy is adjusted by the battery level of each processor in accordance with LSD.

Furthermore, we show that a variation of this load balancing effect also occurs when the

heterogeneous processors use a single battery as long as they operate at unconstrained

processing rates.

 v

Acknowledgements

I graciously thank my supervisor, Dr. Olivia Das for her genuine support, guidance and

encouragement. I deeply appreciate her for granting me the opportunity to carry out

formal research under her supervision. I am quite fortunate to have been supervised by a

wise, easy going and perspicuous supervisor.

I am grateful to Prof. Venetsanopoulos, Prof. Anpalagan, Dr. Raahemifar, Dr. Yifeng and

Prof. Gu for effectively exposing me to valuable graduate courses that provided me with

sufficient background to carry out novel research projects. I greatly thank the members of

my thesis committee: Prof. Anpalagan, Dr. Yang, and Dr. Jaseemuddin for taking time to

review my thesis and for providing constructive feedback.

I thank Bruce Darwin for setting up and troubleshooting the laboratory workstations. I

appreciate Ryerson University for financially supporting my efforts through awards and

various teaching assistantship opportunities. I also acknowledge the Natural Sciences and

Engineering Research Council of Canada (NSERC) for financially supporting

publications stemming from this thesis.

I dedicate this thesis to my parents who have sacrificed so much for my siblings and I. To

my wonderful mother (Mama) who continues to battle a severe case of type II Diabetes,

yet she finds the strength to encourage, advice and assist my family in ways that are

immeasurable. Mama, my queen, you are the pulse of my heart. To my father (Baba), an

honorable man of great insight, work ethic and generosity. The effort invested in this

thesis is but a drop compared to their ocean of devotion.

Last but not least, I cherish my magnificent siblings and friends for always being there

and making life delightful.

 vi

Contents Pg

1 Introduction 1

 1.1 Motivation 1

 1.2 Research Overview 2

 1.3 Related works 4

 1.4 Thesis Contribution 6

 1.5 Thesis Outline 10

2. Background 11

 2.1 Introduction 11

 2.2 Speed Scaling 11

 2.3 PDM (Under Static Speed Scaling) For Single Processors 12

 2.3.1 PDM Problem Scenario 13

 2.3.2 Competitive Analysis (Relevant to PDM) 14

 2.3.3 PDM for Two States 14

 2.3.4 PDM for Multiple States 14

 2.4 Dynamic Speed Scaling (Single Processors) 15

 2.4.1 Competitive Analysis (Relevant to Dynamic Speed Scaling) 16

 2.5 Deadline Based Scheduling (Single Processor) 16

 2.5.1 Overview of Yao et al's Framework, Algorithms and Related

 Extensions for Single Processor Systems. 17

 2.5.2 Deadline Based Scheduling Constrained Speed (Single Processor) 18

 2.6 Minimizing Temperature (Single Processor) 18

 2.7 Minimizing Flow time (Single Processor) 19

 2.8 Flow Time Plus Energy (FTPE) For Single Processors 19

 2.8.1 FTPE - Unweighted 19

 2.8.2 FTPE - Fractionally Weighed 21

 2.8.3 FTPE - Weighed 22

 2.8.4 Multithreading (Processor sharing) Extension 22

 vii

 2.9 Dynamic Speed scaling Multiprocessor Algorithms 24

 2.9.1 Deadline Based Scheduling for Multiprocessors 24

 2.9.2 Flow Time Plus Energy (FTPE) For Multi Processors 25

 2.9.3 Flow Time Plus Energy (FTPE) For Heterogeneous Multi Processors 25

 2.10 Limitations of Speed Scaling 25

3.Theoretical Framework: Model and Notation 26

 3.1 A Task 27

 3.2 A User Profile 29

 3.3 A Processing Stream 30

 3.3.1 Stream Processor 31

 3.3.2 Memory Queue 32

 3.3.3 Parallel Processing Streams 32

 3.4 Mobile Hardware Resources 32

 3.4.1 Mobile Hardware Parameters 32

 3.4.2 Single or Multiple Energy Sources 33

 3.5 Task’s Processing Rate and Time Consumption 34

 3.5.1 Modeling Overhead Access Time 34

 3.5.2 Modeling Processing Rate and Execution Time 34

 3.6 A Task’s Energy & Power Consumption 35

 3.7 Description of a Task's Computation Volume upon Execution. 36

 3.8 The Decision Algorithm 39

 3.8.1 Memory, Processing Rate and Energy Constraints 39

 3.8.2 The Decision Algorithm 40

 3.9 Performance Metrics 41

 3.9.1 Measuring Response Time in a Sequential Process 41

 3.9.2 Criticisms of Performance Metrics Used in Current Literature 42

 3.9.3 TCRTEC Performance Metric 43

 viii

 3.9.4 Distinguishing our Model from Dynamic Speed Scaling

 Models Found in Current Literature (Major Differences) 43

 3.9.5 Mapping Our work in Current Literature 44

 3.10 Defining Traffic conditions 45

 3.11 Conclusions 46

4. Cost Minimization of Scheduling Single-buffered Processors 47

 4.1 Introduction 47

 4.2 Problem Formulation 49

 4.2.1 Processing Streams with Single Buffers 49

 4.2.1 A Processing Stream Cost Function ` 51

 4.2.3 Minimized Cost Function of the j-th processing stream 52

 4.2.4 Minimized Constrained Cost Function of the j-th processing stream 53

 4.3 Single-Buffer Decision & Parallel Processing Algorithm (SBDPP) 55

 4.4 Calibrating the Ratio of Time and Energy Prices 56

 4.4.1 Determining a Task’s Mode of Operation 58

 4.4.2 Minimized Constrained Cost Function Using The Power Sensitivity Factor 60

 4.5 Alternative Versions of the SBDPP Algorithm 62

 4.5.1 Single Buffer Assisted Decision & Processing Algorithm (SBADPA) 62

 4.5.2 Fixed Power Decision & Processing Algorithm (FPDPA) 64

 4.5.3 Extending the Algorithms to Allow Migration 64

 4.6 Analysis 65

 4.6.1 Qualitative Comparison of Algorithms 65

 4.6.2 Quantitative Comparison of Algorithm's Dispatcher to Round Robin 66

 4.6 Simulations 68

 4.6.1 MATLAB Simulations 68

 4.6.1 Java Simulations & Insights 70

 4.6 Conclusions 70

 ix

5. Cost Minimization of Single-threaded, Multi-buffered Processors 73

 5.1 Introduction 73

 5.2 Problem Formulation 75

 5.2.1 Processing Streams with Multiple Buffers 75

 5.2.2 The Cost Function of the j-th Processing Stream 76

 5.2.3. The Minimized Cost Function of the j-th Processing Stream 78

 5.2.4. The Minimized Constrained Cost Function of the j-th Processing Stream 81

 5.3 Algorithms Description 82

 5.3.1 SMBSPP Algorithm's Dispatcher (MMCVITPS) 82

 5.3.2 SMBSPP Algorithm's Service Discipline/Policy (SCVPPT) 82

 5.3.3 Single-threading Multi-buffer Scheduling & Processing Algorithm 83

 5.4 Analytical Demonstration 85

 5.4.1 A SMBSPP Robustness: Handles Dynamic Inclusion of Tasks 85

 5.5 Simulations 88

 5.5.1. Performance Metrics 88

 5.5.2 Simulation I: Sensitivity of SMBSPP Alg. To Inter-arrival Periods 88

 5.5.3 Simulation II: Comparing SMBSPP Algorithm's Dispatcher Versus Round

 Robin Dispatcher under FCFS, SRPT and SCVPPT Service Disciplines 91

 5.5.4 Simulation III: Evaluating SMBSPP Algorithm's Dispatcher

 (MMCVITPS) under FCFS, SRPT and SCVPPT Service Disciplines 94

 5.6 Comparing the SMBSPP Algorithm's Speed-Scaling Function

 to a Competitive Speed Scaling Function in Current Literature 95

 5.6.1 Analytically Comparing OSTSSF to a Competitive Speed Scaling

 Function in Current Literature 95

 5.6.2 Simulation IV: Comparing SMBSPP Algorithm's Speed-Scaling

 Function (OSTSSF) to () 1~ −
np β under the SRPT Service Discipline 98

 5.7 Conclusions 101

6. Using the Laws of Supply and Demand to Extend Battery Life and

 Improve Load Balancing 104

 6.1 Introduction 104

 x

 6.2 Synthesizing the STMBAD Algorithm 106

 6.2.1 Introduction 106

 6.2.2 Mobile Hardware Resources of A Single Processor 107

 6.2.3 Managing the Remaining Battery Energy Percentage 108

 6.2.4 Showing How Increased Supply Leads To Lower Price & Vise Versa 110

 6.2.5 Problem Formulation 111

 6.2.6 Cost Function 112

 6.2.6 Minimized Cost Function 113

 6.2.7 Minimized Constrained Cost Function 115

 6.3 The STMBAD Algorithm 115

 6.4 Simulating The STMBAD Algorithm 116

 6.4.1 Performance Metrics 116

 6.4.2 Simulation I: STMBAD Algorithm's EPARBEP Mode Versus UEP

 Mode While Processing N Homogenous Tasks 117

 6.4.3 Simulation II: STMBAD Algorithm's EPARBEP Mode Versus UEP

 mode for N Heterogeneous Tasks 122

 6.5 Multiple Energy Sources 124

 6.5.1 Mobile hardware Parameters of multiple energy sources. 124

 6.5.2 Single or Multiple Energy Sources 124

 6.5.3 Defining operation modes for multiple energy sources 125

 6.6 Extending The SBDPP Algorithm to Include EPARBEB Mode 125

 6.6.1 A Processing Stream Cost Function 125

 6.6.2 Minimized Constrained Cost Function of the jth processing stream 126

 6.6.3 SBDPP Algorithm Under EPARBEP and UEP modes 127

 6.7 Extending The SBADPA Algorithm to Include EPARBEB Mode 129

 6.8 Extending The SMBSPP Algorithm to Include EPARBEB Mode 131

 6.8.1 The Minimized Constrained Cost Function of the j-th Processing

 Stream under EPARBEP 131

 6.8.2 SMBSPP Algorithm Under EPARBEP and UEP Modes 132

 xi

 6.9 Effects of the EPARBEB and UEP Modes on the Speed Scaling

 Functions and Dispatchers of the Algorithms 134

 6.9.1 Effects of the EPARBEB and UEP Modes on the Speed Scaling

 Functions of the Algorithms 134

 6.9.2 Effects of the EPARBEB and UEP Modes on the Dispatchers of the

 Algorithms 136

 6.10 Conclusion 141

7. Conclusion 144

 7.1 Research Summary 144

 7.1.1 Theoretical Framework 145

 7.1.2 Single-buffered Processors 145

 7.1.3 Multi-buffered Processors 146

 7.1.4 Laws of Supply & Demand and Energy Sources 148

 7.2 Research Limitations 150

 7.2.1 Algorithmic Overhead 150

 7.2.2 Overhead Energy 151

 7.2.3 Scope of Analysis 151

 7.2.4 System Calibration 152

 7.3 Future Research 152

 7.4 Closing Remarks 153

Bibliography 154

Appendices 162

 Appendix I: Initial Modeling of A Task’s Energy & Power Consumption 162

 Appendix II: Calibrating the Ratio of Time and Energy Prices under

 EPARBEP Mode 163

 Appendix III: Determining a Task’s Mode of Operation with

 EPARBEP mode 166

 xii

List of Tables

Table 3.1: Other hardware parameters of the computing device 33

Table 3.2: Energy, power and execution time incurred (example scenario) 39

Table 4.1: Interpretation of power sensitivity factor 60

Table 4.2: Qualitative comparison of algorithms 65

Table 4.3: Dispatcher cost savings: SBDPP algorithm versus TEST 67

Table 5.1: Performance metrics 88

Table 5.2: Interpretation of inter-arrival periods 89

Table 6.1: Hardware parameters of a mobile device with a single processor 108

Table 6.2: Performance metrics 117

Table 6.3: Multiple energy sources 124

Table 6.4: Load balancing effect on dispatchers by EPARBEP modes 141

 xiii

List of Figures

Fig. 1.1: Thesis outline 10

Fig. 2.1: Overview of speed scaling problems (an algorithmic perspective) 12

Fig. 2.2: Single processor literature review and research gap 23

Fig. 3.1: Interpretation and possible implementation of a User Profile 30

Fig. 3.2: Processing Stream under (a) Single-threading and (b)

 Multithreading computing architectures 31

Fig. 3.3: An example describing the remaining computation volume of a task

 during execution over a finite number of intervals 38

Fig. 3.4: Memory, processing rate and energy constraints 40

Fig. 3.5: Placing our problem relative to the single processor problems

 in literature 44

Fig. 4.1: Illustrating the parallel single-buffer scenario 50

Fig. 4.2: A task’s operating mode and optimum processing rate as a function

 of user-defined unit prices 57

Fig. 4.3. Illustrating linear calibration of a task’s operation mode by utilizing

 the processor's power consumption during execution 59

Fig. 4.4: Dispatcher cost savings: SBDPP algorithm versus TEST 68

Fig. 4.5. MATLAB GUI simulation validating all three algorithms 69

Fig. 5.1: The parallel multi-buffer scenario 76

Fig. 5.2: Example demonstrating how SMBSPP robustly handles dynamic

 inclusion of tasks 86

Fig. 5.3: Time analysis of the processor as it executes each of the two tasks

 in the example 87

 xiv

Fig. 5.4: Average execution time for N homogeneous Tasks: effect

 of deterministic arrival periods (μ) 90

Fig. 5.5: Average cost of response time & energy consumption for N

 homogeneous tasks: Effect of deterministic arrival periods (μ) 90

Fig. 5.6: Average cost of response time & energy consumption versus

 average cost of system time & energy consumption for N

 homogenous tasks with Poisson arrivals (heavy traffic) 91

Fig. 5.7: MMCVITPS Versus Round Robin for N heterogeneous tasks with

 Poisson arrivals (heavy traffic) and Gaussian dist. CV; heterogeneous

 unit prices of response time under FCFS Service Discipline 92

Fig. 5.8: MMCVITPS Versus Round Robin for N heterogeneous tasks with

 Poisson arrivals (heavy traffic) and Gaussian dist. CV; heterogeneous

 unit prices of response time all under SRPT Service Discipline 93

Fig. 5.9: MMCVITPS Versus Round Robin for N heterogeneous tasks with

 Poisson arrivals (heavy traffic) and Gaussian dist. CV; heterogeneous

 unit prices of response time all under SCVPPT Service Discipline 93

Fig. 5.10: MMCVITPS Versus Round Robin for N homogeneous tasks under

 three main deterministic arrival periods with homogeneous unit

 prices of response time 94

Fig. 5.11: MMCVITPS Dispatcher performance under SCVPPT, SRPT and

 FCFS service disciplines for N heterogeneous tasks; Poisson arrivals;

 extreme traffic; Gaussian Distributed CV and response time pricing 95

Fig. 5.12: Constant Correction Factor between () 1~ −
np β and OSTSSF 98

Fig. 5.13: OSTSSF versus () 1~ −
np β for α = 1.01 99

Fig. 5.14: OSTSSF versus () 1~ −
np β for α = 1.25 99

Fig. 5.15: OSTSSF versus () 1~ −
np β for α = 1.5 99

 xv

Fig. 5.16: OSTSSF versus () 1~ −
np β for α = 1.75 99

Fig. 5.17: OSTSSF versus () 1~ −
np β for α = 2.25 100

Fig. 5.18: OSTSSF versus () 1~ −
np β for α = 2.5 100

Fig. 5.19: OSTSSF versus () 1~ −
np β for α = 2.75 100

Fig. 5.20: OSTSSF versus () 1~ −
np β for α = 3.0 100

Fig. 6.1:Remaining battery energy percentage of an iPhone 5 109

Fig. 6.2: Increased supply of a commodity leads to lower price 110

Fig. 6.3: Decreased supply of a commodity leads to higher price 111

Fig. 6.4: Remaining battery energy percentage
%ε after executing N tasks 118

Fig. 6.5: Average execution time of executing N homogeneous tasks 119

Fig. 6.6: Average response time for N homogeneous tasks 120

Fig. 6.7: Average energy consumption for executing N homogeneous tasks 121

Fig. 6.8: Average cost of response time and energy consumption for

 executing N homogeneous tasks 121

Fig. 6.9: Average cost of execution time and energy consumption for executing

 N homogeneous tasks 122

Fig. 6.10: Average cost of response time and energy consumption for executing

 N heterogeneous tasks (Gaussian distributed computation volumes) 123

Fig. 6.11: Average cost of execution time and energy consumption for executing

 N heterogeneous tasks (Gaussian distributed computation volumes) 123

Fig. 6.12: Attenuation factor induced by the EPARBEP mode on speed scaling

 functions 135

Fig. 6.13: Dilation factor induced by the EPARBEP mode on dispatchers under

 unconstrained processing rates 138

 xvi

Fig. 6.14: Contour diagram of Figure 6.13 with a superimposed example 139

Fig. 6.15: Dilation factor induced by the EPARBEP mode on dispatchers under

 constrained processing rates 140

Fig. A1: A task’s operating mode and optimum processing rate as a function of

 user-defined (time/energy) unit prices under EPARBEP mode 164

Fig. A.2: linear calibration of a task’s operation mode using the processor's

 power consumption during execution under EPARBEP mode 167

 xvii

List of Abbreviations

ACPI Advanced Configuration and Power Interface architecture

AMD Advanced Micro Devices: a technology company

AR Average Rate: an algorithm

BAL Bampis, Angel and Letios: an algorithm

BKP Bansal, Kimbrel and Pruhs: an algorithm

BPS Bansal, Pruhs and Stein: an algorithm

CMOS Complementary Metal Oxide Semiconductor

CPU Central Processing Unit

EDF Earliest Deadline First: a service discipline/policy

EPARBEP Energy Price Affected by Remaining Energy Percentage: a

 proposed operation mode in computing

FCFS First Come First Serve: a well known service discipline

FPDPA Fixed Power Decision & Processing Algorithm: a proposed

 algorithm

FTPE Flow Time Plus Energy: a dynamic speed scaling problem

GUI Graphical User Interface

HDF Highest Density First: a service discipline/policy

HMO Horizontal Migratory Operation: a proposed operation to tackle

 migration

IBM International Business Machines Corporation: a technology

 company

LSD Laws of Supply and Demand (micro-economic)

MATLAB MATtrix LABoratory: a numerical computing environment

MMCVITPS Minimum among Minimized Costs of Virtually Introducing the

 Task to each Processing Stream: a proposed dispatcher

OA Optimum Available: an algorithm

OS Operating Software

OSTSSF Optimum Single-Threading Speed Scaling Function: a proposed

 speed scaling function

PDM Power Down Mechanisms

PS Processor Sharing: a well known computing architecture

SBADPA Single-Buffer Assisted Decision & Processing Algorithm: a

 proposed algorithm

 xviii

SBDPP Single-Buffer Decision & Parallel Processing: a proposed

 algorithm

SCVPPT Smallest remaining Computation Volume Per unit Price of

 response Time: a proposed service discipline

SMBSPP Single-threading Multi-Buffer Scheduling & Parallel Processing: a

 proposed algorithm

SRPT Shortest Remaining Processing Time: a well known service

 discipline

ST System Time: a performance metric

STMBAD Single-Threading Multi Buffer Adjusted Dynamic speed-scaling

 algorithm: a proposed algorithm

TCRTEC Total Cost of Response Time and Energy Consumption in dollars:

 a proposed performance metric

TCRTEC/N Average Cost of Response Time and Energy Consumption for

 executing N tasks: a performance metric

TEC Total Energy Consumption: a performance metric

TEC/N Average Energy Consumption for executing N tasks: a

 performance metric

TET Total Execution Time: a performance metric

TET/N Average Execution Time of executing N tasks: a performance

 metric

TRT Total Response Time: a performance metric

TRT/N Average Response Time of N tasks: a performance metric

TSSC Total cost of System time and energy Consumption: a

 performance metric

TSSC/N Average cost of System time and energy Consumption for

 executing N tasks: a performance metric

UEP Unadjusted Energy Price: a proposed operation mode in

 computing

XTG XTG Technology: a consumer electronics manufacturer

YDS Yao, Demers, Shenker: an algorithm

 1

Chapter 1: Introduction

1.1 Motivation

 Energy consumption is a major constraint in today’s computing devices. A principal

engineer at Google alerts us that in the next few years, power costs could substantially

exceed (server) hardware costs under the current trend of performance and power

consumption [16]. Portable/mobile computing devices e.g. laptops and mobile phones are

a special class of computing devices in that they rely on batteries for energy. In portable

computing devices, battery energy is indeed a scarce and essential resource. Desirable

user experience, measured by sufficiently fast execution of tasks is equally important.

Portable battery life can be extended by higher capacity batteries or through remote

execution [55]. On the go, it can also be extended by portable energy restoration devices

such as solar panel chargers produced and sold by XTG Technology [67]. An online

article suggests that in 2009, Nokia worked on a technology to recharge their cellular

phone battery by extracting energy emitted from ambient radio waves [62]. In that same

year, another online article reports that Samsung worked to develop a prototype of a solar

powered cellular phone [66]. It is evident that energy in portable computing devices is of

great concern and companies that design or manufacture portable computing devices

invest in battery or energy technology to remain competitive.

 From an algorithmic perspective, computing devices can use variable speed

processors to regulate the energy consumption and completion time of executing

jobs/tasks. Intel, IBM and AMD provide a selection of multiprocessors that are indeed

capable of operating at variable speeds. The ability of a processor to operate at a variable

speed is known as dynamic speed scaling. Dynamic Speed scaling has been used as a

strategy to reduce energy consumption [2, 4, 6, 7, 33, 68]. It has been used to manage a

processor’s temperature and energy consumption [12] as well as to mitigate processor

heat failure [49]. Some speed scaling algorithms factor both time and energy

consumption of tasks [1, 68].

 Contemporary portable computing devices such as the recent versions of mobile

phones, Tablets, iPads and gaming consoles (for example, the PSPVita [65]) utilize

 2

multiple processors. Multiple parallel processors are mostly used to improve overall

processing performance needed for multi-media applications. In the domain of

scheduling, considerable attention has been given to single processor architecture [1, 11-

13, 15, 47, 56, 58, 68]. Fewer have considered multiprocessors [4, 7, 20, 42, 44].

Although current architectures mostly consist of homogenous collection of processors,

several works suggest that future chip architectures would consist of heterogeneous

processors e.g. [18, 53]. Gupta et al. [28] further suggest that scheduling heterogeneous

processors is substantially more challenging than scheduling homogeneous processors.

 This thesis primarily investigates how to (online) schedule arriving heterogeneous

tasks to run on multiple, heterogeneous, speed-scalable processors with the goal of

minimizing the financial cost of response time and energy consumption of tasks. The

tasks are heterogeneous in terms of computation volume, memory and processing

requirements. The processors are heterogeneous in terms of their hardware specifications

with respect to maximum processing rate, power functions and energy sources. The user

or OS is also allowed to dictate the unit price of response time per task so as to influence

the priority of tasks. In a later chapter of this thesis, we also allow the unit price of energy

for all tasks to be heuristically adjusted by the micro economic laws of demand and

supply so as to conserve energy and improve load balancing on heterogeneous processors.

1.2 Research Overview

 The energy consumption of a processor is commonly assumed to grow in proportion

to αs where s is the processor speed and α is a constant > 1 e.g. [4, 7, 19, 25, 68]. This

implies that a high processing speed leads to fast execution, but incurs a high energy

consumption. One way to reduce energy consumption is to employ dynamic speed-

scaling (e.g. see [13, 69]), where the speed of the processors can be changed dynamically

depending on the workload. The aim is to reduce processor speed at times of low

workload.

 Generally, the goal of any speed-scaled multiprocessor scheduling algorithm is: (i) to

minimize the response time given energy as a budget, (e.g. [59]) or (ii) to minimize the

energy consumption as long as the task deadlines are not violated [56, 58, 68], or (iii) to

optimize a tradeoff between energy consumption and response time [6, 15]. The objective

 3

of our work is to synthesize parallel scheduling algorithms that use dynamic speed

scaling to minimize the total cost (in terms of dollars) of energy and response time

(TCRTEC). In our work, the user or OS determines unit price of response time per task.

This allows the user to influence the degree of a task’s execution in the economy-

performance continuum. The user or OS can set the unit price of energy for all tasks

depending on the actual unit price of energy in a given geographical region and time of

day.

A brief summary of key assumptions made in this thesis are as follows.

• Multiple heterogeneous processors: Few speed scaling algorithms factor multiple

processors e.g. [2, 4, 7]. Our scheduling algorithms consider heterogeneous

processors that may differ in all their hardware specifications with respect to

maximum processing rate, power function parameters and energy sources.

• Heterogeneous tasks: There are speed scaling algorithms that only consider

homogenous tasks, e.g. [1, 11, 59]. We consider heterogeneous jobs/tasks that

may differ in computation volume, memory and processing requirements.

• Online: Some speed scaling algorithms operate offline e.g. YDS algorithm in

[68]. Our algorithms run in real time to schedule incoming heterogeneous tasks to

run on heterogeneous processors.

• Constrained processing rates: We factor the maximum hardware processing rate

of processors and the minimum software processing rate of tasks to regulate the

execution of tasks as opposed to deadline based scheduling of tasks. Many speed

scaling algorithms [2, 4, 7, 46, 68] utilize deadline based scheduling. Deadline

based scheduling is not always practical in general because tasks that run in

conventional operating systems such as Windows and Unix do not utilize it, but

instead use minimum or recommended processing rates to regulate the smooth

execution of a task or application. Although few speed scaling algorithms factor

the maximum hardware processing rate e.g. [11, 71], our speed scaling algorithms

are the only ones that explicitly factor both hardware and software processing

constraints.

• User or OS determines unit cost of energy and time of a task’s execution: Unlike

any speed scaling algorithm, we explicitly factor the input of a user or OS with

 4

respect to determining the unit price time for executing each task. This allows the

user to influence the priority of tasks. The user or OS can set the unit price of

energy for all tasks depending on the actual unit price of energy in a given

geographical region and time of day.

• Overhead access time of loading tasks: We have not seen any dynamic speed

scaling algorithm explicitly factors the overhead access time of loading and

accessing a task by a given processor prior to execution.

• Multiple energy sources: Unlike any speed scaling algorithm, our algorithms

allow each processor to have its independent energy source. In the future, each

processor may have its own energy source to improve reliability and also to

increase total energy of the mobile computing device. Our analysis effortlessly

considers the single energy source as well.

• Tasks' unit price of energy adjusted by battery energy level: Unlike any speed

scaling algorithm, we allow the unit price of energy for all tasks to be

heuristically adjusted by the device’s remaining battery (or batteries) energy level

in accordance with the micro-economic laws of supply and demand. This is done

so as to conserve energy and additionally done to improve load balancing.

1.3 Related Works

In this section, we provide a concise summary of prior related work that is most

relevant to this thesis.

In the past, when energy was not a major concern, the objective of scheduling

algorithms was to minimize the total response time (also called flow time) of all tasks

where processors were running at fixed speeds (e.g. [10, 57]). The response time is the

time elapsed since a task arrives until it is completed.

The study of energy-efficient speed-scaled scheduling was initiated by Yao et al. in

[68]. They considered deadline-based scheduling for a single processor where the jobs

need to complete by their given deadlines. The goal was to minimize energy consumption.

Assuming the processor’s power consumption ()(sP) is a convex function of processor

speed (s), where
αssP =)(for 1>α , they considered scheduling a sequence of tasks

 5

on a single variable speed processor. Each task has a required deadline, release time and

processing volume (analogous to the number of CPU cycles required to execute a task).

They allow pre-emption, where a task is allowed to resume on the same processor after

being interrupted. They proposed an optimal offline algorithm (YDS) to solve the task

scheduling problem in polynomial time. In the same work, they further introduced two

online algorithms, namely, Optimum Available (OA) and Average Rate (AR). They

proved that AR has an energy competitive ratio of () 2/2
αα . Bansal, Kimbrel and Pruhs

[12] worked on OA and proved it to have an energy competitive ratio of exactly αα . To

solve for multiprocessor case, Angel et al. [7] considered the problem of scheduling a set

of tasks with deadlines, release dates and processing requirements, on parallel (speed

scalable) processors so as to minimize the total energy consumption. They considered

migration where a task is allowed to resume its execution on a different processor. They

also allowed pre-emption. They name their optimal scheduling algorithm BAL which has

a time complexity of)log)((UnnfO where, n is the number of jobs, |)(|Vf

is the

computational complexity of solving a maximum flow in a layered graph with

|| VO vertices and U is the range of all processor speed values divided by the targeted

accuracy. Independently, Albers et al. [2] considered the same multiprocessor speed

scaling problem with migration, and obtained an optimal scheduling algorithm that is

fully combinatorial and has a time complexity of))((2 nfnO . Angel et al. [7] compared

their BAL algorithm to the one of Albers et al. [2] and stated that when the target

precision is sufficiently high, the algorithm of Albers et al. [2] is superior to BAL,

otherwise if the target accuracy is relaxed, BAL’s algorithm is indeed superior.

Among energy efficient scheduling algorithms, several studies have considered

minimizing the response time of jobs given a set energy budget (e.g. [59]). In particular,

Pruhs et al. [59] considered offline scheduling to minimize the average response time on

a single processor, for a given amount of energy. They gave a polynomial time optimal

algorithm for the special case when jobs are of unit size.

To better understand the tradeoff between response time and energy, Albers and

Fujiwara [1] proposed minimizing the sum of total response time and energy for a single

 6

processor. They presented an online algorithm that is 8.3e

α

 +

2

53
 competitive for jobs

of unit size. This result was improved by Bansal et al. [15] who showed that this

algorithm is 4-competitive. Bansal et al. [15] also gave the first constant competitive

algorithm for arbitrary size jobs. The multiprocessor case was first discussed by Bunde

[20] that presented an offline approximation algorithm for unit size jobs. However, Lam

et al. [44] presented the first constant competitive online algorithm for arbitrary job sizes.

In [44], jobs are clustered and then round robin dispatched to the processors

independently for each cluster. Then they apply the BPS online algorithm given by

Bansal et al. [14-15] to each processor.

In this thesis, we present online (dynamic speed scaling) scheduling algorithms that

minimizes the financial cost of response time plus energy for the heterogeneous

multiprocessor case.

1.4 Thesis Contribution

The contributions of the thesis are as follows:

1. Propose a theoretical frame work to tackle the problem of dynamic speed scaling in a

parallel heterogeneous processing environment. We do so by carrying out the following.

a) Define and describe a task, its computation volume and minimum processing rate.

b) Define and describe a user profile.

c) Define and describe a processing stream under different computing architectures

and briefly describe parallel processing streams.

d) Define relevant mobile hardware resource parameters and describing how our

framework handles single and multiple energy sources.

e) Model the overhead access time and describing the theoretical processing rate and

execution time of a task.

f) Use formulas in current literature to deduce useful relationships pertaining to a

task’s computation volume, energy and power consumption.

g) Analytically and graphically illustrate the effect of processing on a task's

remaining computation volume as well as the energy and power consumed.

 7

h) Describe the decision algorithm and summarizing relevant pre-processing

constraints.

i) Justify the constituents of our target performance metric and briefly critique other

performance metrics used in current literature.

j) Distinguish our model from other relevant models found in current literature and

map our contributions in current literature.

k) Define traffic conditions to systematically analyze and simulate our algorithms.

2. Present the first, elaborate, analytical study on the use of dynamic speed scaling to

schedule heterogeneous tasks on single-buffered, heterogeneous, parallel processors with

the objective of reducing the total cost of response time and energy consumption.

We accomplish this by carrying out the following.

a) Use our theoretical framework to formulate the problem and to synthesize the

"Single-Buffer Decision & Parallel Processing (SBDPP)" algorithm.

b) Achieve a linear calibration of a task's operation mode as a function of the (user-

specified) unit prices of time and energy.

c) Construct and present two other versions of the SBDPP algorithm, namely "Single

Buffer Assisted Decision & Processing Algorithm (SBADPA)" and "Fixed Power

Decision & Processing Algorithm (FPDPA)".

d) Briefly describe how the SBDPP algorithm handles migration.

e) Qualitatively compare the three versions of the SBDPP algorithm to each other.

f) Analytically show that the dispatcher of the SBDPP algorithm outperforms the

Round Robin dispatcher under minimal traffic conditions.

g) Develop a MATLAB Graphical User Interface program to simulate the SBDPP,

SBADPA and FPDPA algorithms and also validate the algorithms via discrete

time based simulations written in Java.

h) Use the simulations to deduce a relationship between the arrival rate of tasks,

number of processors and response time of tasks under the (parallel) single

buffered computing architecture.

i) Provide insights on the limitations of the parallel single buffered computing

architecture.

 8

3. Study the use of dynamic speed scaling to schedule heterogeneous tasks on multi-

buffered, heterogeneous, parallel processors with the objective of reducing the total cost

of response time and energy consumption (TCRTEC) of tasks.

We achieve this by carrying out the following.

a) Synthesize and present the “Single-threading Multi-Buffer Scheduling & Parallel

Processing (SMBSPP)” algorithm.

b) Present the (SMBSPP) algorithm's dispatcher which assigns heterogeneous tasks

to a given heterogeneous processors.

c) Present the (SMBSPP) algorithm's dynamic speed-scaling function, which we

name, "Optimum Single-Threading Speed Scaling Function" (OSTSSF).

d) Present the (SMBSPP) algorithm's service discipline which we name the

"Smallest remaining Computation Volume Per unit Price of response Time

(SCVPPT)".

e) Use a variety of performance metrics to validate the functionality of the SMBSPP

algorithm by conducting discrete time based simulations written in Java (as well

as analytical techniques).

f) Use simulations to show that our MMCVITPS dispatcher works well with

heterogeneous processors and drastically outperforms the classic Round Robin

dispatcher with cost savings exceeding 100% on average even when processors

are mildly heterogeneous. This was done under various deterministic and

stochastic traffic conditions.

g) Show that our SCVPPT scheduling discipline outperforms the two known service

disciplines, Shortest Remaining Processing Time (SRPT) and the First Come First

Serve (FCFS), in terms of minimizing the TCRTEC performance metric.

h) Analytically compare our dynamic speed scaling function (OSTSSF) to a

comparable and most competitive speed scaling function found in current

literature.

i) Corroborate this analytical comparison with elaborate simulations (written in Java)

to show that our OSTSSF out performs this competitive speed scaling function in

terms of the TCRTEC performance metric.

 9

j) Offer a recommendation to improve the most competitive speed scaling function

found in current literature in terms of minimizing the TCRTEC performance

metric.

4. Use our theoretical framework and the Laws of Supply and Demand (LSD) to

heuristically adjust the unit price of energy, extend battery life and improve load

balancing in speed scalable processors of a mobile computing device. We do so by

carrying out the following.

a) Use LSD to heuristically adjust the unit price of energy of tasks via the remaining

energy percentage parameter.

b) Use the remaining energy percentage parameter and our theoretical framework to

synthesize an online single processor (multi-buffered) speed-scaling algorithm

(Single-Threading Multi Buffer Adjusted Dynamic speed scaling algorithm

STMBAD).

c) Use discrete time based simulations (written in Java) to show that when the

STMBAD algorithm factors the remaining energy percentage parameter, it

completes more than 50% more jobs for both homogenous and heterogeneous

tasks and ultimately allows the mobile computing device to last longer on the go.

d) Implement the remaining energy percentage parameter in the speed scaling

functions of all algorithms presented in this thesis to analytically show that it is a

heuristic controller that rations battery energy by slowing down the speed scaling

functions of our algorithms (as the battery depletes).

e) Integrate the remaining energy percentage parameter to the dispatchers of all

algorithms presented in this thesis to analytically show that it is a heuristic

controller that induces load balancing when each heterogeneous processor has its

independent energy source.

f) Shed light on the difference between optimum and robust speed scaling

algorithms (speed scaling functions and coupled dispatchers) in the context of

scheduling and processing heterogeneous tasks by heterogeneous processors with

the goal of reducing response time and adjusted energy consumption.

 10

Preliminary components of this thesis were peer-reviewed and accepted for publication in

[39-41].

1.5 Thesis Outline

Chapter 4

Chapter 2

Chapter 3

Chapter 6

Chapter 7

Chapter 5

Optional Flow

Recommended Flow

Fig. 1.1: Thesis outline

Chapter 2 provides a background of the relevant definitions, principles and models found

in current literature that are pertinent to speed scaling. In chapter 3, we propose a

theoretical frame work to tackle the problem of dynamic speed scaling in a parallel

heterogeneous processing environment. This framework is used in all subsequent

chapters of this thesis. In chapter 4, we present the first, elaborate, analytical study on the

use of dynamic speed scaling to schedule heterogeneous tasks on single-buffered,

heterogeneous, parallel processors with the objective of minimizing the total cost of

response time and energy consumption. In Chapter 5 we study the use of dynamic speed

scaling to schedule heterogeneous tasks on multi-buffered, heterogeneous, parallel

processors (under the single-threaded computing architecture) with the objective of

minimizing the total cost of response time and energy consumption of tasks. In Chapter 6,

we use our theoretical framework and the Laws of Supply and Demand to heuristically

adjust the unit price of energy, extend battery life and improve load balancing in speed

scalable processors of a mobile computing device. Lastly, In chapter 7, we summarize the

critical findings presented in this thesis, discuss the limitations of our findings, highlight

interesting opportunities for future work and offer closing remarks.

 11

2. Background

2.1 Introduction

In this chapter we present a concise overview of speed scaling algorithms that relate to

the work in this thesis. Survey papers by Albers, S. [3] and Irani et al. [35] provide

elaborated studies of these algorithms. Like much of the work in existing literature, this

thesis concentrates on the system and device level to formulate and solve problems

through an algorithmic perspective.

2.2 Speed Scaling

In existing literature, there are two types of speed scaling, Static and Dynamic speed

scaling [6]. Static speed scaling can either involve two states or multiple states. A state is

a discrete operation frequency or speed that a processor attains to consume some fixed

power consumption. Static speed scaling is used to solve problems of Power Down

Mechanisms. Dynamic speed scaling allows the processor to manipulate the entire

speed/frequency spectrum. From an algorithmic perspective, dynamic speed scaling is

used to solve four main problems1. They are as follows.

• Deadline Based Scheduling

• Minimizing Temperature

• Minimizing Flow Time

• (Minimizing) Flow Time Plus Energy

In subsequent sections we briefly go through the above-mentioned problems.

1 There is a problem known as Makespan Minimization that is related to deadline based
scheduling problem. Although we do not discuss it in this thesis, researchers such as [20] and
[59] have solved the problem in single and multiprocessor environments. The makespan is the

point in time where a schedule ends [3].

 12

Speed Scaling

Dynamic Speed Scaling

Deadline based
 Scheduling

Flow time Plus Energy
(FTPE)

Two states

Power Down Mechanisms

Multiple States

The thesis
research area is
closely related to
this categorization

Minimizing
Flow time

Minimizing
Temperature

 Categorization of speed
scaling problems

Fig. 2.1: Overview of speed scaling problems (an algorithmic perspective)

2.3 PDM (Under Static Speed Scaling) For Single Processors

Power Down Mechanisms (PDM) is an omni present strategy to manage energy in

computing devices, for instance we see that laptops switch between off, sleep and awake

states to conserve energy [3]. Also, desktops running operating systems such as Linux

Ubuntu or Windows XP, 7 etc. deactivate their monitor and/or cut off power to some

other external peripherals when the computer has been inactive for a while. The idea is to

temporarily switch off the computing device through a sleep state when (computing)

service is expected to resume in the near future or to shut down the device (off state)

when service is not required any time soon and lastly, to maintain an active or awake

state when the device is actively computing. In practice, computing devices consume

some energy while in sleep state because they need to provide power to their Random-

access memory which stores the memory settings of an awake state prior to the sleep

state [64]. These states are managed by the operating software of the computing device.

The most essential parameter in PDM techniques is the idleness threshold, the overhead

 13

time interval required for the computing device to switch from an active state to a sleep

state [35].

Power down mechanisms still dominate industry products because they mitigate the

(processor's) current leaks that stem from the dynamic switching of processing speed 2

[52]. Power down mechanisms have been thoroughly studied by several researchers; from

a stochastic perspective (e.g. [22]), an algorithmic perspective (e.g. [34]) as well as a

learning-based perspective (e.g. [29]). Also, concentrated research from industry e.g.

Microsoft's Desktop PC Energy Savings for Enterprises [50] and Microsoft's Power

Management and Driver Support through ACPI (Advanced Configuration and Power

Interface Architecture) [51] thoroughly explore and implement PDM. We refer the reader

to an elaborate survey by Irani et al. [35]. In this survey, the authors comprehensively

examine PDM under various approaches.

Next, we briefly mention PDM from an algorithmic perspective for two and multiple

states3.

2.3.1 PDM Problem Scenario

• The computing device can operate in more than one state e.g. completely off,

sleep, stand by, economy and performance states.

• This is an online problem, implying that the computing device is not aware of

future states. Also, for a given idle period, the system has no information when

the period ends.

• Each state incurs a different power consumption.

• Energy consumption during power up (moving from a state of low power

consumption to a state of higher power consumption) is substantial.

• Generally, the energy consumption during a power down between any two states

is assumed to be insignificant.

• The goal is to minimize energy consumption.

2 We speculate that this may soon change because leakage power is on the rise [38].
3 In subsequent sections, we do not attempt to summarize all the algorithms pertaining to PDM
because this thesis falls under Dynamic Speed Scaling and not PDM. [3, 34, 35, 37] go over PDM
strategies in more scope and depth.

 14

• The challenge is as we attempt to minimize energy consumption through

sustaining residency in low states, the system is inactive, but the system needs to

attain higher power state(s) to compute [3]. Furthermore, a power up will incur an

energy penalty and we are also not aware of future states. It may sometimes not

be justifiable to greedily reside in a low power state to save energy, just to be

interrupted by a request that will lead to a penalty during a power up.

2.3.2 Competitive Analysis (Relevant to PDM)

• Competitive analysis is conducted to give a guarantee of worse case performance

[3].

• In competitive analysis, a given algorithm ALG is compared to its optimal offline

counterpart or adversary, OPT [60].

• OPT knows all future events, so it has an advantage to minimize energy through

computing an offline state transition schedule [3].

• ALG is considered c-competitive for any input (idle periods), ALG's energy

consumption is c times that of OPT [3].

2.3.3 PDM for Two States

Algorithm ALG-D is a 2 competitive deterministic algorithm that solves the PDM

problem for two states [3]. Furthermore, [3] shows that no online deterministic algorithm

achieves a competitive ratio lower than 2 for the two state PDM problem.

Algorithm ALG-R is a stochastic algorithm that improves on Algorithm ALG-D by using a

probability density function to transition to the sleep state from the awake state. It was

presented by [37] and was shown to achieve a competitive ratio approaching 1.58.

2.3.4 PDM for Multiple States

Algorithm Lower-Envelope was proposed by Irani et al. [34]. This is a deterministic

algorithm that solves the PDM problem for the multi state scenario. The authors assume

that the energy incurred during a power up is additive (not arbitrary) and proved that their

 15

algorithm is 2-competitive [3]. Furthermore, [3] asserts that no online deterministic

algorithm achieves a competitive ratio lower than 2 for the multi state PDM problem.

2.4 Dynamic Speed Scaling (Single Processors)

Dynamic speed scaling or dynamic voltage scaling is the ability of a processor to

operate at a variable speed. This is a relatively recent technique to save energy and

achieve decent service by manipulating the full spectrum a processor's frequency (speed)

[3]. Examples of modern processors that support dynamic speed scaling are the Intel's

SpeedStep processor [32], IBM's Power7 processor4 [31] and the AMD's PowerNow

processor5 [5]. Dynamic Speed scaling has been used as a strategy to reduce energy

consumption [2, 4, 6, 7, 33, 68]. It has been used to manage a processor’s temperature

and energy consumption [12] as well as to mitigate processor heat failure [49]. Some

speed scaling algorithms factor both time and energy consumption of tasks [1, 6, 11, 68].

Under dynamic speed scaling, the energy consumption of a processor is commonly

assumed to grow in proportion to αs where s is the processor speed and α is a constant >

1 (e.g. [1, 4, 6, 7, 19, 25, 68]). This implies that a high processing speed leads to a fast

execution, but unfortunately incurs a high energy consumption. Note that the well known

cube-root rule e.g., as suggested by [3, 43] is that 3=α for a CMOS based processor6.

The cube-root rule stems from the modeling of dynamic power in CMOS chips.

According to [38], it is modeled as being proportional to fcv 2 , where c is the processor's

capacitance, v is the voltage supplied and f is the frequency; but at high

frequencies vf ∝ . Surprisingly, Wierman et al. [63] carried out experiments to show that

in today's CMOS based computing devices α is close to quadratic (i.e. they found out

that a calibration of 8.1=α is more accurate). We speculate that this discrepancy in α

is due to an improvement in technology. Anyhow, In the algorithmic literature pertaining

Abbreviations:
4 IBM- International Business Machines Corporation.
5 AMD - Advanced Micro Devices (Technology Company).
6 CMOS - Complementary Metal Oxide Semiconductor.

 16

to dynamic speed scaling, most researchers use a general]3,1(∈α and some assume the

cube-root rule (3=α).

Under the single processor scenario, dynamic speed scaling gives rise to a variety of

challenging problems because the scheduler needs to decide on the job/task to execute as

well as the speed of processing [3]. Generally, this is more complicated in the

multiprocessor environment and is even more challenging when processors are

heterogeneous [28]. Typically, from an algorithmic perspective, we have four main

problem categorizations that fall under dynamic speed scaling, they are: Deadline Based

Scheduling, Minimizing Temperature, Minimizing Flow Time and Minimizing Flow

Time Plus Energy. We briefly cover these problems in subsequent sections, but first we

briefly touch on competitive analysis in application to dynamic speed scaling.

2.4.1 Competitive Analysis (Relevant to Dynamic Speed Scaling)

From an algorithmic perspective, the offline setting is defined in literature as the scenario

where we have advance knowledge of jobs/tasks [3]. The online setting is when we have

to make scheduling decisions in real time without any advance knowledge of jobs, i.e. we

learn about jobs when as they arrive. Online strategies, just like in PDM, are assessed

using competitive analysis [3]. An Online dynamic speed scaling algorithm (ALG) is

considered c-competitive if for every input, ALG's objective function (usually energy, but

could be both energy and response time or some other performance criteria) is c times

that of the optimal offline solution/adversary [3].

2.5 Deadline Based Scheduling (Single Processor)

The study of energy-efficient speed-scaled scheduling was initiated in 1995 by Yao et al.

[68]. They considered the deadline-based scheduling of a single processor where the jobs

need to complete by their given deadlines. Using dynamic speed scaling, the goal was to

construct a schedule that minimizes energy consumption. Yao et al.s' deadline based

scheduling framework has been the most extensively studied framework in the context of

dynamic speed scaling algorithms [3].

 17

2.5.1 Overview of Yao et al's Framework, Algorithms and Related

Extensions for Single Processor Systems.

Yao et al. [68] considered scheduling a sequence of tasks on a single variable speed

processor (The processor is unbound in the sense that it has no maximum processing rate).

Each task has a required deadline, release time and processing volume (analogous to the

number of CPU cycles required to execute a task). They allow preemption, where a task

is allowed to resume on the same processor after being interrupted7. They proposed an

optimal offline algorithm8 (YDS) to solve the task scheduling problem in polynomial

time via iterations. A direct implementation of the YDS algorithm has a computational

complexity of)(3nO , where n is the number of jobs [3]. Li et al. [46] illustrate an

alternative implementation of YDS with an improved computational complexity of

)log(2 nnO based on finding successive approximations of the optimal schedule.

Furthermore, when the processor is assumed to have a d number of discrete

voltage/speed levels, Li and Yao [47] propose an algorithm that improves the

computational complexity of the offline YDS algorithm to)log(ndnO .

 In the same work, Yao et al. further introduced two online algorithms, namely, Optimum

Available (OA) and Average Rate (AR). They proved that AR has an energy competitive

ratio9 of () 2/2
αα . Bansal, Kimbrel and Pruhs [12] worked on OA and proved it to have

an energy competitive ratio of exactly αα . Bansal et al. [13] present an online algorithm10

(BKP) which sort of approximates the speeds of YDS in real time [3]. In the same work,

7 The YDS algorithm makes use of a preemptive service discipline, Earliest Deadline First
(EDF) service policy. Among the unfinished Jobs, this well-known service policy gives priority
to jobs with the earliest deadline.

8 YDS - Yao, Demers, Shenker.
9 Recall that α is the exponent of a processor's power function (

αs), where s is the processor's

 speed and α is a constant > 1.
10 BKP- Bansal, Kimbrel and Pruhs.

 18

Bansal et al. proved that their BKP algorithm achieves an energy competitive ratio that is

better than Optimal Available for large α values11, i.e. for 5≥α .

2.5.2 Deadline Based Scheduling Under Maximum Processing Rate

Constraints (Single Processor)

Under a constrained processing rate, a summary of the extended deadline based problem

and results are as follows.

• The processor is scalable between a speed of zero and some maximum speed T.

• The constrained maximum processing rate of T potentially compromises the

ability to find a feasible schedule.

• The revised objective is to maximize throughput i.e., the total processing volume

of tasks that are successfully completed by their deadline.

• [11] give an online algorithm that is constant competitive for the energy

consumed and is 4-competitive for throughput.

• [71] present an online constant competitive algorithm on both throughput and

energy consumption12.

What we have mentioned so far is not an exhaustive summary of all work related to

deadline based scheduling in the context of dynamic speed scaling. For such work, see a

survey paper by Albers [3]. Next, we move over to other dynamic speed scaling problems.

 2.6 Minimizing Temperature (Single Processor)

Bansal et al. [13] initiate the study of using dynamic speed scaling to manage temperature,

more specifically to simultaneously meet the objectives of maximizing temperature and

minimizing energy consumption. These two objectives conflict because processors with

high temperature incur high energy consumption. They assume the ambient environment

temperature is fixed and the computing device cools according to Isaac Newton's law of

11 The practical significance of this result is questionable since in conventional processors,

]3,1(∈α .
12 [71] was the first to introduce the constrained speed model, where the speed is bounded from
zero to T.

 19

cooling [21]. They show that their BKP algorithm is O(1) competitive for all of the

following: maximum speed, maximum temperature, maximum power, and total energy.

Also, they interestingly show that algorithm OA (Optimal Available) does not achieve a

temperature competitive ratio of O(1) even though it is known to have an energy

competitive ratio of O(1). They also show that Algorithm YDS achieves a constant

temperature competitive ratio even though it is not optimal with respect to minimizing

the maximum temperature/energy consumption.

2.7 Minimizing Flow time (Single Processor)

Flow time [1] or response time is the time elapsed since a task arrives until it is

completed. Among energy efficient scheduling algorithms, several studies have

considered minimizing the response time of jobs, given a set energy budget (e.g. [59]). In

particular, Pruhs et al. [59] considered offline scheduling to minimize the average

response time on a single processor, for a given amount of energy. They gave a

polynomial time optimal algorithm for the special case when jobs are of unit size.

2.8 Flow Time Plus Energy (FTPE) For Single Processors

We concentrate more on this problem type because it is closely related to the theme of

this thesis. All the FTPE problems are online in that tasks arrive in real time.

2.8.1 FTPE - Unweighted

Albers and Fujiwara [1] consider minimizing the combined objective function13)(g of

both energy and flow time. In this objective function, the penalty or weight of each job's

flow time is not only homogenous but is treated to have the same weight as that of a unit

of energy. In other words they consider homogenously unweighted response time and

energy consumption of jobs. They assume the following.

• They let g be the objective function or target performance metric.

• They let E be the energy consumption of jobs in the schedule.

13 g is actually a function of s , the processor speed; i.e.)(sg .

 20

• They consider a given schedule having n unit-sized jobs.

• They let the thi job have a response time if .

• They define ∑
=

n

i

if
1

 as the flow time or response time of jobs in the schedule.

• Their target performance metric is ∑
=

+=
n

i

ifEg
1

They formulate an online algorithm called algorithm Phaseball that processes jobs in

phases. A verbatim quote of their algorithm is as follows.

"Algorithm. Phasebal

If () 10/16119 +<α then 1:c −=α ; otherwise .1:c = Let 1n be the number of jobs

arriving at time 0=t and set 1=i . While ,0n1 > execute the following to steps: (1)

For 1n1,...,j = , process the j-th using a speed of ()α cj /1n1 +− . We refer to this entire

time interval as Phase i . (2) Let 1in + be the number of jobs that arrive in Phase i and

set 1: += ii ." 14

In the same work, [1] showed that their Phaseball algorithm achieves a competitive ratio

of

 +
α

2

53
O . They also propose another offline algorithm that uses dynamic

programming [61] and runs in polynomial time to find schedules for unit sized jobs that

have minimal average flow times for all energy levels. Bansal et al. [11] solve the

problem of Albers and Fujiwara by presenting an online algorithm that was shown to be

4-competitivein in terms of minimizing the total flow time plus energy for unweighted

unit sized jobs. This was done15 under a more realistic constraint where the maximum

processing speed of the processor is bounded.

14Albers, S. and Fujiwara, H., ACM Transactions on Algorithms, Vol. 3, No. 4, Article 49, Pg.5,
Publication date: November 2007.

15 Bansal et al. [11] maintained the assumption of Albers and Fujiwara in [1] by assuming unit
sized jobs.

 21

Bansal et al. [70] improve algorithm Phaseball by presenting a 3-competitive speed

scaling algorithm. They call this algorithm Algorithm A. Algorithm A uses a speed of

α 1+n , where n is the number of active jobs (of any arbitrary size). It also sets the speed

of the processor to zero when there are no jobs.

2.8.2 FTPE - Fractionally Weighed

The objective function under this scenario is ∑
=

+=
n

i

ii fwEg
1

In this objective function, the

∑
=

n

i

ii fw
1

 term is the fractional flow time costs of a jobs.

It weighs each job's response time (if) by some weight (iw). This weight is the

remaining fraction of a job (the remaining work divided by the original work).

[11] provide an online preemptive algorithm (BPS) that works with constrained

maximum processing speed (T). The algorithm operates at a speed of

Ttwa ,)(min
1

α

where T is the maximum speed of the processor and)(twa is the total remaining fraction

of all the active jobs. The remaining fraction of a job is the remaining work divided by

the original work. The algorithm was shown to have a competitive ratio of

())ln(/)1(2 ααO+ . The algorithm uses the HDF (Highest density first) service policy.

The HDF gives highest priority of jobs based on the highest weight to original size ratio

[28]. It is an online preemptive service discipline that is optimal for fractional weighed

time [11]. Bansal et al. [14] considers a similar algorithm except they relax the maximum

processing speed constraint. Their algorithm runs at power equal to the fractional weight

of unfinished jobs by using the HDF service discipline. Using amortized local

competitiveness, they show that their algorithm is ())log/(ααO competitive with

respect to the objective function (fractionally weighed flow time plus energy). Bansal et

al. consider arbitrary weights and job sizes in [11, 14].

 22

2.8.3 FTPE - Weighed

Under this scenario, the objective function is similar to the fractional weighted FTPE

problem. The objective function)(g is ∑
=

+=
n

i

ifEg
1

β .

[63] explicitly defines β to be the relative cost of delay. Andrew et al. [6] consider the

weighed FTPE problem. They carry out analysis and assert that the online speed scaling

function with minimal competitive ratio under the SRPT service discipline is 1)(−np β ,

where n is the number of active jobs. The SRPT (Shortest Remaining Processing Time)

service discipline schedules tasks according to their least remaining work. In the same

work, Andrew et al. show that (dynamic) speed scaling magnifies unfairness under SRPT

and also for non preemptive service disciplines. The idea stems from the fact that the

1)(−np β speed scaling function16 favors jobs that happen to be executed when the job

occupancy (n) is large and is unfair to jobs that are processed when the occupancy is low.

2.8.4 Multithreading (Processor sharing) Extension

Andrew et al. [6] show that the 1)(−np β speed scaling function under Processor sharing

(PS) is)1(O competitive.

Wierman et al. [63] stochastically analyze dynamic speed scaling functions under the

processor sharing computing architecture. They show that for a system with Poisson

arrivals [26] of tasks, which runs at optimal speed under PS achieves a constant

competitive ratio.

16 Speed scaling function is simply the function that describes the speed of a given schedule.

 23

Unweighted Flow Time
Weighted Flow Time

Unconstrained
 Processing rates

Homogenous
Job size

Job size non
Clairvoyant

Heterogeneous
Job size

Non-Preemptive Preemptive

Homogenous
Job size

Job size non
Clairvoyant

Non-Preemptive

Homogenous
Job size

Job size non
Clairvoyant

Heterogeneous
Job size

Non-Preemptive Preemptive

Unconstrained
 Processing rates

Constrained Maximum
Hardware

Processing rate

11

14

Explored in Literature

Possibly
Unexplored

(research Gap)

More Sophisticated

Less Sophisticated

key

Speed Scaling
(single Processor)

Dynamic Speed Scaling

Deadline based
Scheduling

Flow time Plus Energy
(FTPE)

Two states

Static
(Power Down Mechanisms)

Multiple States

Homogenous
Job size

Job size non
Clairvoyant

Heterogeneous
Job size

Non-Preemptive Preemptive

Homogenous
Job size

Job size non
Clairvoyant

Heterogeneous
Job size

Non-Preemptive Preemptive

Unconstrained
 Processing rates

Constrained Maximum
Hardware

Processing rate

3 4

5 6

7

1 2

8

9 10

12

13

15 16

17 18

19 20

21 22

Constrained Maximum
Hardware

Processing rate

Homogenous
Job size

Job size non
Clairvoyant

Heterogeneous
Job size

Non-Preemptive Preemptive

23 24

25 26

…
(other problems
 not included)

S
tr

a
te

g
y

P
ro

b
l e

m
 T

yp
e

S
tr

a
te

g
y

P
r o

b
le

m
 T

y p
e

Heterogeneous
Job size

Preemptive

Unconstrained
 Processing rates

1 [37] 10 [11, 47, 71] 20 [63]
2 [34] 11 [1, 70] 21 [6, 63]
3 [13, 68] 14 [14] 22 [6, 14]
6 [13, 68] 15 [11] 23 [11]
7 [11, 47, 71] 19 [6, 14] 26 [11]

Fig. 2.2: Single processor literature review and research gap

 24

2.9 Dynamic Speed scaling Multiprocessor Algorithms

The multiprocessor case was first discussed by Bunde [20]. Bunde presented an offline

approximation algorithm for unit size jobs. Bunde solves a Makespan
17

 Minimization

problem that is related to deadline based scheduling problem. From this point henceforth,

for the multiprocessor scenario, we briefly go over two types of dynamic speed scaling

problems: FTPE because it is mostly related to the thesis, and deadline based scheduling

because it has been extensively studied.

2.9.1 Deadline Based Scheduling for Multiprocessors

To solve for multiprocessor case, Angel et al. [7] consider the problem of scheduling a

set of tasks with deadlines, release dates and processing requirements, on parallel (speed

scalable) processors so as to minimize the total energy consumption. They consider

migration, where a task is allowed to resume its execution on a different processor. They

also allowed pre-emption. They name their optimal scheduling algorithm BAL which has

a time complexity of)log)((UnnfO where, n is the number of jobs, |)(| Vf

is the

computational complexity of solving a maximum flow in a layered graph with

|| VO vertices and U is the range of all processor speed values divided by the targeted

accuracy. Independently, Albers et al. [2] considered the same multiprocessor speed

scaling problem with migration, and obtained an optimal scheduling algorithm that is

fully combinatorial and has a time complexity of))((2 nfnO . Angel et al. [7] compared

their BAL algorithm to the one of Albers et al. [2] and stated that when the target

precision is sufficiently high, the algorithm of Albers et al. [2] is superior to BAL,

otherwise if the target accuracy is relaxed, BAL’s algorithm is indeed superior.

Lam et al. [45] solve the deadline-based scheduling for dual processors. They

realistically assume that the maximum speed of processors is bounded. Their objective is

to maximize throughput while using the least amount of energy. They meet their

objective by obtaining a constant competitive solution.

17 The makespan is the point in time where a schedule ends [3].

 25

2.9.2 Flow Time Plus Energy (FTPE) For Multi Processors

Lam et al. [44] presented the first constant competitive online algorithm for arbitrary

job sizes. In [44], jobs are clustered and then Round Robin dispatched to the processors

independently for each cluster. They then apply the BPS online algorithm18 given by

Bansal et al. [11, 15]

2.9.2 Flow Time Plus Energy (FTPE) For Heterogeneous Multi Processors

All the multiprocessor problems we have discussed so far only deal with homogenous

processors. In 2012, Gupta et al. [27] present the first provably scalable non-clairvoyant

algorithm on heterogeneous multi processors. This algorithm constitutes a variation of the

Late Arrival Processor sharing scheduling algorithm [23] that is coupled with a non-

obvious speed scaling function. This algorithm handles unweighted flow time plus energy

and was shown to be scalable. Gupta et al. [27] formally define heterogeneous processors

as those processors that have their own speed function with different power consumption.

They also define non-clairvoyant schedulers as those that are unaware of job sizes and

make decisions accordingly. Gupta et al. emphasize that scheduling heterogeneous

multiprocessors is quite challenging. Furthermore, they believe the algorithms required

for parallel heterogeneous processors should be different than those for homogenous

multiprocessors.

2.10 Limitations of Speed Scaling

In the past, dynamic power dissipation that stems from the dynamic switching of

processing speed has been dominant [52]. In recent technologies, current leaks that stem

from gate leakage, sub-threshold leakage and other sources account for roughly 20% or

more of power dissipation, and is on the rise [38]. Furthermore, [6] states that the

polynomial power function that is used in dynamic speed scaling is not always

appropriate because of the interference of additive white Gaussian noise over

communication channels (they have exponential power functions).

18 See section 2.82.

 26

Chapter 3: Theoretical Framework: Model and

Notation

In this chapter, we propose a theoretical frame work to tackle the problem of dynamic

speed scaling in a parallel processing environment. The study of relevant computing

parameters, their relationships and underlying assumptions enable us to systematically

synthesize useful dynamic speed scaling algorithms. These algorithms are presented in

succeeding chapters. In the context of dynamic speed scaling, the framework attempts to

respect the major characteristics and limitations of computing devices as well as to

ergonomically integrate relevant parameters that are to be provided by the user.

Subsequent chapters mainly take advantage of this framework, but will include their own

extensions where appropriate. In this chapter, we:

• Define and describe a task in section 3.1;

• Define and describe a user profile in section 3.2;

• Define and describe a processing stream under different computing architectures

and briefly describe parallel processing streams in section 3.3;

• Define other relevant mobile hardware resource parameters and describe how our

framework handles multiple energy sources in section 3.4;

• Model overhead access time and describe the processing rate and execution time

of a task in section 3.5;

• Use formulas in current literature to deduce useful relationships pertaining to a

task’s computation volume, energy and power consumption in section 3.6;

• Analytically and graphically illustrate the effect of processing on a task's

computation volume as well as the energy and power consumed in section 3.7;

• Describe the decision algorithm and summarize relevant constraints in section 3.8;

• Justify the constituents of our target performance metric and offer a brief critique

of other performance metrics used in current literature in section 3.9; in this

section we also distinguish and map our work in current literature; and

• Lastly define traffic conditions relevant for simulations in section 3.10.

 27

3.1 A Task

A task comprises of a set of base instructions, usually with processing and memory

requirements that are enforced in advance by the programmer during software

architectural planning. Mathematically, we model a task, TTk ∈ as a vector with the

following three parameters.

),,(, kkkk mpBT µ=

• kB is the task’s remaining computation volume in base instructions (n).

• kp ,µ is the task’s minimum recommended processing rate in base instructions per

second (n.Hz).

• km is the task’s memory requirement in bits.

 kB is the kT task's (expected) remaining computation volume or the amount of

remaining (unprocessed) number of instructions measured in base instructions. kB is

measured in base instructions to consistently measure a task’s raw instructions or

remaining computation volume. For example, multiplication and addition operations are

not treated as commensurable instructions, but is each translated to some number of base

operations or floating point operations. In this example, the number of base instructions

required for a multiplication operation generally exceeds that of an addition operation.

Depending on the resolution or granularity of a base instruction, it can take any arbitrary

number of fixed clock cycle/s. We assume a base instruction requires 10 Kilo clock

cycles in many of our experiments.19

The main reason we use base instructions instead of regular clock cycles is because in a

given application context, it may be more convenient to lump together common

instruction types, and use them as a basis to measure other larger instruction types.

Generally, the representation of a task's remaining computation in terms of a base

instruction requires fewer number of digits to represent because a given base instruction

could be comprised of a substantial number of clock cycles. This benefit is inherited in

the measurement and representation of minimum, optimum and maximum processing

19 Once we establish the magnitude of a single base instruction in terms of clock cycles, it is fixed.

 28

rates. An obvious drawback of making a single base instruction too large is that it will

lose its granularity to the extent where the representation of a tasks remaining

computation volume may involve fractions or decimals, which is undesirable from a

representation view point. Without any loss, a single base instruction can represent a

single clock cycle so long ass all the relevant parameters in our model are calibrated with

this in mind. The unit of a base instruction is n.

 kp ,µ , the kT task’s minimum recommended processing rate in base instructions per

second (n.Hz), is a software constraint imposed by the software designer. It is fixed and

optional, but crucial in identifying the minimum processing rate of executing the task by

a given processor. An example is when a task or a set of tasks make up a game. The

game's refresh rate is heavily influenced by kp ,µ and if it is not satisfied, the game may

be unplayable. We also enforce 0, >kpµ because we want to eliminate the trivial zero-

processing rate condition. The µ sub-script symbol in kp ,µ denotes minimum and has no

relation to the inter-arrival period of arriving tasks20.

 km , the kT task’s memory requirement in bits, is a fixed requirement that needs to be

satisfied by the hardware memory resources (disks, drives, flash) of a mobile device or

workstation. If a base instruction consumes z bits, we can model uncompressed km using

the following equation.

 pkrkkk mmBzm ,,. ++= (3.1)

rkm , and pkm , are the raw and processed memory requirements of a task (respectively).

For example, if a task comprises of encoding a segment of an audio file, kB will be the

number of base operations needed to accomplish the task of encoding rkm , raw bits into

pkm , bits of processed data. The r and p subscripts in rkm , and pkm , denote raw and

processed respectively, and are not indices.

20 The inter-arrival period of tasks as denoted byµ and is introduced in chapter 5.

 29

3.2 A User Profile

A User Profile comprises of a set of unit cost sensitivity factors or unit prices that are

specified by the user through a profile setting integrated in the operating software of the

computing device. This profile setting could be an energy saving profile, a performance

intensive profile or any other custom profile that is specified by the user. If the user

chooses not to specify a custom profile setting, a default setting can be implemented by

the programmer that is a balanced tradeoff between an energy saving profile and a

performance intensive profile.

Mathematically, we model a user profile vector UU k ∈ associated with a task TTk ∈ as

),(,ktk uuU ε= , where:

εu - Unit price of energy measured in $/Joule, where ∞<< εu0 .

ktu , - Unit price of response time measured in $/Second, where ∞<< ktu ,0 .

The ε and t subscripts in εu and ktu , are purely symbolic to denote energy and time

(respectively).

One practical way to calibrate these unit cost sensitivity factors is to use the actual unit

prices of energy and time in a given geographical region and time of day. For instance, in

Ontario, Canada the regulated price of energy during peak hours is 12.4 ¢ / kWh [30] and

the minimum wage of employment as of May 2013 in Ontario Canada is CD$10.25/hour

[54]. This translates to 8104.3 −= xuε $/Joule and 3
, 102847.2 −= xu kt $/Second. This is

merely a suggestion as we are not enforcing the notion that the unit price of time for a

specific individual should always be dictated by his/her hourly pay. Ideally a given user

should set ktu , to any price he/she can afford or believes is the price of a second of his/her

life.

Figure 3.1 shows an interpretation of these unit cost sensitivity factors. As shown in the

figure, they could possibly be implemented through a graphical user interface integrated

in the OS of the computing device.

 30

sensitive

Some threshold

in
cr

ea
si

n
g
 s

en
si

ti
v

it
y

0

ktu ,

∞<< ktu ,0

εu

∞<< εu0

($/Sec)($/Joule)

OS decidesOS decides

Fig. 3.1: Interpretation and possible implementation of a User Profile

Note that the unit price of energy)(εu for all tasks need not be different (this explains the

missing k subscript in comparison to ktu ,) and can be set by the OS, but the unit price of

response time for each task may be different because we allow the user to influence the

priority of a task's through various ways discussed in subsequent chapters.

Furthermore, in a later chapter of this thesis, the unit price of energy is treated with more

objectivity because it is adjusted by inversely relating it to the amount of battery life

remaining in the computing device, while the unit price of response time (ktu ,) is indeed

more subjective as it essentially depends on how patient the user is with respect to the

task’s completion time.

3.3 A Processing Stream

A processing stream as described in Fig. 3.2, consists of a (core) processor (jsP ,

r
) and a

corresponding memory Queue (jsQ ,

r
). A processing stream is distinguished among other

parallel processing streams by the thj index, where mj ≤≤1 . The vector notation

in jsP ,

r
and jsQ ,

r
 is purely symbolic to denote hardware. Likewise, the s subscript denotes

stream and is not an index.

 31

Processor

Memory Queue
(Buffer)

Incoming Tasks

Processed Tasks

Processes task stored
at first index of Memory

Queue

Task exits when its
 or when deleted

jkT ,

jsP ,

r

jsQ ,

r

 0=kB

...

...

jT ,1

jkT ,

jN j
T ,

jT ,2

Processor

Memory Queue
(Buffer)

Incoming Tasks

Processed Tasks

Sequentially processes
 each task for
 seconds

Task exits when its
 or when deleted 0=kB

jT ,1

jT ,2

...

...

jiT ,

...

...

jkT ,

jkT ,

jδ

jsP ,

r

jsQ ,

r

jN j
T ,

(a) (b)

Fig. 3.2: Illustrating a Processing Stream under (a) Single-threading and (b) Multi-

threading computing architectures.

3.3.1 Stream Processor

Each processing stream’s processor (jsP ,

r
) executes a given task at a processing rate of

jsP , base instructions per second (n.Hz). We assume each and every stream processor can

be dynamically speed-scaled. We have jMaxjsk PPp ,,, ≤≤µ where jMaxP , is the maximum

operating frequency in base instructions per second of the thj processing stream’s

processor; it is a constraint imposed by the hardware specification of the computing

device (processor). For a given task TTk ∈ , its minimum processing rate, kp ,µ , is a

software constraint imposed by the software designer and is generally lower than jMaxP ,

for analytical and practical purposes.

 32

3.3.2 Memory Queue

A memory queue jsQ ,

r
 of the thj processing stream stores jN tasks at some instance in

time. Therefore ∞<≤ jN0 . In other words, jN is the occupancy of the thj processing

stream's memory queue21.

• 0=jN : denotes that the memory queue of the thj processing stream is empty.

• Under single-threading, at any given time, the thj stream processor processes a

task stored in the first index22 of the memory queue.

• Under the multi-threaded computing architecture, at any given time, the thj stream

processor sequentially processes each task stored in its memory queue for jδ

(time slice) seconds.

3.3.3 Parallel Processing Streams

Parallel processing streams are a set of processing streams configured in parallel. When

our work is applied to mobile computing devices, the processing streams may or may not

share the same energy (battery) source. Our analysis holds for either one of the following

scenarios:

• All parallel processing streams share only one battery source.

• Each processing stream has its independent battery source of equal capacity but

not necessarily equal energy level.

3.4 Mobile Hardware Resources

 3.4.1 Mobile Hardware Parameters

 Table 3.1 summarizes other hardware resource/parameters of the mobile device. We

refer to Table 3.1 in subsequent sections.

21 In chapter 4 we enforce the constraint 1≤jN . We relax this constraint in subsequent chapters.
22 This first index corresponds to a system index of ()j,1 .

 33

Table 3.1: Other hardware parameters of the computing device

Parameter Meaning SI Unit

mM Available memory of mobile device bits

jmE , Battery energy level of thj processing stream Joules

jE ,θ Threshold energy level of thj processing stream Joules

()
jjm EE ,, θ− Usable battery energy of thj processing stream Joules

jcapE ,
Maximum energy capacity of thj processing stream

(under full charge)
Joules

j%,ε
Remaining battery energy percentage of thj processing

stream,]1,0[%, ∈jε

dimensionless

jkt ,,θ
Overhead access time of a task kT to be accessed and

loaded by processor jsP ,

r
from Memory Queue jsQ ,

r

Seconds

3.4.2 Single or Multiple Energy Sources

It is worth mentioning that the analysis done assumes each processing stream has its

independent battery source of equal capacity, but not necessarily of equal energy level. In

practice, a special case of this assumption is usually implemented where all parallel

processing streams share only one battery source; an example is the iPhone 5 [8]. We can

simply narrow the work to single energy sources by substituting each and every j%,ε

for %ε , i.e., }...2,1{%%, , mjj ∈∀= εε .

If the mobile device is currently being re-charged (battery inflow energy exceeds current

use) and it is known in advance that the mobile device will not be disrupted from

recharging its battery/batteries until completion, then during the recharging period we can

prematurely set }...2,1{%, ,1 mjj ∈∀=ε since energy is temporarily not a scarce resource during

foreseen battery recharge period. Also, all of the work presented in this thesis can be

extended to non-mobile work stations or computing devices that have a reliable and

unlimited power supply (but not free)by setting }...2,1{%, ,1 mjj ∈∀=ε .

 34

3.5 Task’s Processing Rate and Time Consumption

3.5.1 Modeling Overhead Access Time

In Table I, we defined jkt ,,θ as the overhead access time of a task kT to be accessed and

loaded by processor jsP ,

r
 from memory queue jsQ ,

r
. The θ subscript in jkt ,,θ is purely

symbolic to denote loading and is not an index. The magnitude of jkt ,,θ mainly stems

from digital delays of both the memory queue and activation of the processor. Other

delays from the OS or hardware architecture that delay the execution of the task after its

scheduled processing are included as part of jkt ,,θ with specific exception to waiting time

for another task/s that is being executed ahead in line in the memory queue. It is

important to include jkt ,,θ in our model especially if the task’s computation volume (kB)

is small enough such that it has an execution time (kt) that is of around comparable

magnitude as jkt ,,θ . If kB is substantial enough where it has an execution time, kt such

that: kt >> jkt ,,θ , then we can safely eliminate jkt ,,θ from the model.

3.5.2 Modeling Processing Rate and Execution Time

kp is a task’s (TTk ∈) theoretical processing rate in base instructions per second (n.Hz).

kt is the task’s expected execution time in seconds. We relate kP to kt in the next section.

The overhead (processor) switching times during processing are assumed to be

negligible in comparison to execution times of tasks. Furthermore, these switching times

can not be deterministically modeled in the online scenario that considers a preemptive

service discipline under the single threading computing architecture, e.g. SRPT, because

the number of preemptions are unknown and rely on the properties of tasks arriving in

real time. Under non-preemptive service disciplines, e.g. FCFS, these overhead switching

times can be (deterministically) included as part of the overhead access times)(,, jktθ . We

also have not come across any work that explicitly factors these overhead access times in

the context of dynamic speed scaling.

 35

 3.6 A Task’s Energy & Power Consumption

 For a task: TTk ∈ , let kPow be the task's expected power function in Watts and let kε

be the task’s expected energy function in Joules when processed by the thj processor. Let

us initially assume the task's (theoretical) processing rate ()kP is time invariant or

constant over its expected execution time ()kt .

j

kjk PPow
αλ)(= (Watts) (3.2)

Many researchers e.g. [4, 7, 19, 25, 68] use a variation of equation 3.2, but [6] presents an

equation similar to it. See Appendix 1 for how we initially modeled the energy and power

consumption of a task without the formal knowledge of dynamic speed scaling.

We define jλ , measured in)..(
1 jj nSJ

αα −−
, as the energy inefficiency factor or the scaling

factor of the thj processor's power function23 and we assume 0>jλ .

jα is the exponent of the thj processor's power function and it is assumed to be a constant.

[6] suggests that 8.1=jα is a good approximation for CMOS based processors and

that]3,1(∈jα holds for most computer systems comprising of disks, processing chips

and servers.

 We know that power consumption is the rate of energy consumption; this implies the

following.

 kkj

t

kj

t

kk tPPdtPow j

k

j

k

αα λλε)()(
00

=== ∫∫ (Joules) (3.3)

23We may choose to model jλ as a function increasing by temperature)(oK because the hotter a

processor gets, the more current leaks occur which lead to more power inefficiency [9]. We

assume

0))((>o

j Kλ .

 36

kB relates kt to kP , and happens to be the task’s remaining computation volume in base

instructions (n).

k

k
k

P

B
t = (Seconds) (3.4)

Using (3.2) and (3.3), we deduce:

1

)(
−= j

kkjk PB
αλε (Joules) (3.5)

We exclude the overhead energy consumed when processors switch speed and also

assume the processors consume zero power when idle.

3.7 Description of a Task's Computation Volume upon

Execution

Equations (3.3-3.5) are valid when a task is executed at a constant processing rate until

completion24. These equations can be adjusted to consider situations where a task is

executed at constant processing rates that differ over a finite number of time intervals.

Consider two situations as follows.

First, let us consider a scenario where a task, TTk ∈ is executed by a processor jsP ,

r
.

During execution25, the task's computation volume (kB) decreases at a constant rate

(processing rate). When 0=kB , the task execution is complete. Also, the task’s execution

will consume energy as dictated by the convexity of the power function (equation (3.2)).

As mentioned in section 3.1, kB is the remaining computation volume of a task kT . It is

ultimately a non-increasing function of global time ())(tBk and a decreasing function of

execution time.

24 The use of these equations to model and formulate our online algorithms are justified because
we can not predict preemptions that are caused by the future arrival of tasks.

25 Prior to execution, the task first incurs a loading time or overhead access time)(,, jktθ .

 37

To illustrate this, let the task kT be executed at a constant processing rate ()kP over some

finite time interval),(ba . Using the fundamental theorem of calculus.

 dt
tB

tBtB

b

a t

k
bkak ∫

∂
∂

−=−
)(

)()((3.6)

Using
t

k
k

tB
P

∂

∂
=

)(
, since 0≥kP and 0)(≥tBk , it implies

t

k
k

tB
P

∂

∂
−=

)(
 and assuming constant processing rates in (3.6),

 k

b

a

kbkak PabdtPtBtB)()()(−==− ∫ (3.7)

kakbk PabtBtB)()()(−−=⇒

Equation (3.4) can be confirmed by (3.7) when abtk −= ,

kak BtB =)(and 0)(=bk tB which gives

kkkkk

b

a

kk tPBtPdtPB =⇒=+= ∫0

Let us consider a second example described by the Fig. 3.3.

 38

kB

Time (s)

 (n)

0 c d e f

0
)0(=→c

kP
)0()(c

k

dc

k PP
→→ >

)()(dc

k

ed

k PP
→→ >

)()(ed

k

fe

k PP
→→ >

Time (s)

 (n.Hz)

0 c d e f

0
)0(=→c

kP

jsP ,

1

)(
sP

dc

k =→

2

)(
sP

ed

k =→

3

)(
sP

fe

k =→

Fig. 3.3:An example describing the remaining computation volume of a task during

(constant processing rate) execution over a finite number of intervals

Fig. 3.3 describes an example where a task’s execution is paused over the time

interval),0(c . Over the time intervals:),(dc ,),(ed and),(fe , the task is executed at

different constant processing rates of 1s , 2s and 3s respectively.

The table below summarizes the energy, power and execution time incurred during the

execution of the task.

 39

Table 3.2: Energy, power and execution time incurred (example scenario)

Time Interval),0(c),(dc),(ed),(fe

Processing Rate 0 1s 2s 3s

Energy Consumed 0 () 1

1)(|)(
−jstB c

dkj

αλ () 1

2)(|)(
−jstB d

ekj

αλ () 1

3)(|)(
−jstB e

fkj

αλ

Execution time 0

)(cd −

= () 1/|)(stB c

dk

)(de −

() 2/|)(stB d

ek=

)(ef −

() 3/|)(stB e

fk=

Power Consumed 0 jsj

αλ)(1 jsj

αλ)(2 jsj

αλ)(3

*power consumption at the exact time instances: c, d and e are undefined due to

instantaneous speed changes.

Note that the ongoing depletion of a tasks remaining computation volume during

execution is purely a property of how the processor operates (see equation 3.7).

3.8 The Decision Algorithm

3.8.1 Memory, Processing Rate and Energy Constraints

 Fig. 3.4 is a Venn diagram that illustrates how a task has to simultaneously satisfy

memory, processing rate and energy requirements with respect to a processing stream for

it to be potentially executed along that processing stream. Generally, if the task's

(remaining) computation volume ()kB is substantial, it becomes difficult to

simultaneously satisfy all three constraints.

 40

Memory requirement satisfied:

Processing requirement satisfied:

Energy requirement satisfied:

All requirements satisfied:

mk

MM ≤

)(,, jjmk EE θε −≤

)}({}{}{
,,,,, jjmkkjkjMaxmk

EEpPPMM θµ ε −≤≥≥≤ II

kjkjM a x pPP ,,, µ≥≥

Fig. 3.4: Memory, processing rate and energy constraints

3.8.2 The Decision Algorithm

Once we have a task or a set of tasks that satisfy the preliminary memory, processing and

energy constraints for m number of processing streams, we generally have three major

questions that need to be addressed by the decision algorithm.

The decision algorithm performs three main functions as follows:

 1) Dispatcher: Addresses which processing stream among the m processing streams

should process a given task.

 2) Service discipline / policy: Specifies the order or discipline in which tasks should be

serviced.

 3) Speed-scaling function: Explicitly determines the optimum processing rate of

executing a task/s.

 41

The service discipline only applies to the multi-buffer, single-threading computing

architecture. Under (single buffer) single threading and classical processor sharing (or

multi-threading) computing architectures, the service disciplines do not matter.

3.9 Performance Metrics

3.9.1 Measuring Response Time in a Sequential Process

The response time (also known as flow time [1]) is the time elapsed since a task arrives

until it is completed. Measuring response time is a bit of a convoluted procedure when

delays are involved. Under the single threaded computing architecture, when we have a

pre-existing “traffic build-up” of tasks, total execution time (time between execution of

the first task and completion of last task) tends to under-represent the response time of a

set of tasks. This happens because any common delay occurs simultaneously and can

only be observed or measured once on a global timescale, while in reality, any delay

should be multiplied by some integer z, where z is the number of tasks affected. The

response time correctly factors time delays. To demonstrate this, consider the following

analogical example. Assume we have a car B waiting behind a car A in traffic. Upon a

launch of a green light, car A stalls for t seconds. If we examine this scenario by

considering the response time perspective, the total time wasted is 2t; t seconds for car A

and t seconds for car B because car B’s path is blocked by car A. If we examine this

example using an execution time perspective, the total time incurred of car A stalling for t

seconds is simply t seconds since this t seconds is evolving simultaneously for both cars.

Now, let us pose a question with some options. If we had to delay one of the two cars for

t seconds upon the launch of a green light, which car should we delay? The response time

perspective suggests that car B should be delayed for t seconds rather than car A, because

car A will remain unaffected, and the total time wasted will be t seconds instead of 2t. In

this scenario, the execution time perspective suggests that the time wasted is t seconds

irrespective of the options posed. A mild extension is to observe that response time

coincides with the execution time when there are no delays.

The response time perspective can be used to derive greedy time sensitive algorithms that

are efficient in identifying and penalizing bottlenecks in sequential processes. Response

time unlike execution time augments the time cost function of a sequential process (e.g.

 42

single threading computing architecture) by appropriately factoring delay/waiting and

execution times of each task and it can be used to strategically mitigate bottlenecks at the

expense of energy by using dynamic speed-scaling. Execution time does not sufficiently

capture the waiting time dependencies in a sequential process. This is why we chose to

consider response time instead of execution time as part of our target performance metric.

We formally present the conditions in which response time should be considered.

• There exist delays.

• We are to democratically treat each task as an independent entity.

• The execution of tasks is a sequential process e.g. single-threading computing

architecture.

3.9.2 Criticisms of Performance Metrics Used in Current Literature

We briefly mention a few criticisms we have with existing models that address dynamic

speed scaling problems from an algorithmic perspective.

Researchers such as Wierman et al. [63] provide a better way than [1] and [11] to

integrate energy and flow time because they explicitly define a translator parameter β

that converts energy to response time through relative pricing.

All the problems related with minimizing energy and flow times from an algorithmic

perspective do not provide SI units. This has made it difficult to discern what quantities

are actually being optimized, moreover what parameters are implicit or explicit.

Also, most of the dynamic speed scaling algorithms that we have come across model

dynamic power as αs where s is the speed of the processor and α is some positive

constant. We know that dynamic power grows in proportional to αs e.g. in CMOS

processors it is modeled by [38] as being proportional to fcv 2 , where ,c ,v and f are

the processor's capacitance, voltage and frequency/speed respectively. We are aware of

this practical consideration so we model it as αλs by explicitly factoring a slack

parameter ()λ that accounts for other variables or phenomena, e.g. capacitance,

temperature etc.

 43

3.9.3 TCRTEC Performance Metric

We propose a (financial) performance metric called TCRTEC (Total Cost of Response

Time and energy Consumption).

We defined in previous sections, each task kT has an associated user profile

),(,ktk uuU ε= and consumes energy kε .

Let us assume each task kT incurs a response time kR . Also let the vector),(kkk RV ε=

If we let a schedule Q have some tasks TTk ∈ , Using dot product operations, we

explicitly define TCRTEC for the schedule as TCRTEC = ∑ ∈
•

QT kk
k

VU)(.

The TCRTEC performance metric stems from the amalgamation of the user profiles of

tasks with the resource consumption (energy and response time) of schedules. This

performance metric is convenient in the sense that it translates the energy and response

time components of a schedule into dollars through the user (or OS)-specified pricing of

energy and response time. It allows the unit price of response time for each task (in a

schedule) to be different because the user is allowed to influence the priority of tasks. It is

also an appropriate metric because it does not violate a fundamental law of physics

pertaining to the addition of different SI units, namely a Joule and a Second.

3.9.4 Distinguishing our Model from Dynamic Speed Scaling Models Found

in Current Literature (Major differences)

• We assume general power functions of the form αλs , λ accounts for capacitance,

temperature etc. Existing literature uses αs .

• We explicitly model overhead loading times.

• We use the remaining computation volume to model energy consumption.

• We augment the processing requirement of tasks to include minimum software

requirements in addition to hardware processing rates.

• We model energy sources (single and multiple).

• We incorporate the preferences of the user or OS through customized pricing

(energy pricing and heterogeneous response time pricing).

 44

• We use the proposed TCRTEC performance metric to formulate and evaluate our

algorithms.

• We define all our parameters in standard SI units.

3.9.5 Mapping Our work in Current Literature

Subscripts of C: F - speed scaling function, S - service discipline
*in C, we also explicitly factor the overhead loading time of tasks
(This is NOT done in existing literature with respect to FTPE)
Note that our work also applies to Homogenous Flow time Weights
and Unweighted Flow time, as well as Homogenous job sizes.

Dynamic Speed Scaling

Flow time Plus Energy
(FTPE)

Unweighted Flow Time
Weighted Flow Time

Heterogeneous
Flow Time Weights

Constrained Maximum
Hardware

Processing rateUnconstrained
 Processing rates

Constrained Maximum
Hardware

Processing rate

Unconstrained
 Processing rates

Constrained Software
Processing rate

Unconstrained
Software

Processing rate

Does Not Factor Battery
Energy Level

Factors Battery
Energy Level

Homogenous
Job size

Job size non
Clairvoyant

Heterogeneous
Job size

Non-Preemptive Preemptive

Homogenous
Job size

Job size non
Clairvoyant

Heterogeneous
Job size

Non-Preemptive Preemptive

Homogenous
Job size

Job size non
Clairvoyant

Heterogeneous
Job size

Non-Preemptive Preemptive

Homogenous
Job size

Job size non
Clairvoyant

Heterogeneous
Job size

Non-Preemptive Preemptive

1

3

2

4

5

Exists in
Literature

Possibly
Unexplored

(research Gap)

More
Sophisticated

Less
Sophisticated

key

C Covered in
thesis

C
S

C
s

C
s

C
s

C
F

C
F

TCRTEC minimization

Weakly related to thesis!
Homogenous

Flow Time Weights

*S
ome are

comparable

S
tr

a
te

g
y

P
ro

b
l e

m
 T

yp
e

S
tr

a
te

g
y

P
ro

b
le

m
 T

y p
e

6

Introduced
Problems

1 [6, 14] 2 [63] 3 [6, 63] 4 [6, 14] 5 [11] 6 [11]

Fig. 3.5: Placing our problem relative to the single processor problems in literature

 45

Fig. 3.5 shows the relevant research gap and also illustrates the complexity of our

assumptions with respect to the single processor scenario. The problems that we solve are

significantly more challenging than what is shown. We consider the scheduling of

heterogeneous parallel processors in unison to what is shown in Fig. 3.5.

3.10 Defining Traffic conditions

In assessing the performance of our algorithms, the arrival rate of tasks is indeed a crucial

consideration. High arrival rates generally stress the performance of the algorithms

potentially leading to the build up of task traffic congestion. Low arrival rates of tasks,

especially in the multiprocessor environment is also not ideal because there is poor

utilization of resources. The arrival of tasks is generally modeled as Poisson process [26].

For the sake of simplicity, let us first consider different classifications of deterministic

arrival rates and define them based on some standard. They are as follows:

• Minimal traffic - we have an arrival rate of tasks such that at any given time, only

one processor is actively processing a single and lone task in the system. This

leads to minimum congestion, but poor system utilization.

• Ideal traffic - we have an arrival rate of tasks such that for the majority of the time,

each processor is actively processing a task, but no arriving task awaits for service.

This situation maximizes utilization as well as minimizes traffic congestion but is

difficult to enforce in practice, especially in the online scenario.

• Heavy traffic - we have an arrival rate of tasks that falls in between ideal and

extreme traffic. The occupancy of each processor exceeds 1 most of the time.

• Extreme traffic - tasks arrive as a batch. This maximizes stress on algorithmic

performance.

We can extend these definitions to consider stochastic arrival rates (exponentially

distributed) by using the deterministic arrival rates as input parameters in the exponential

probability distributions that model the arrival rate of tasks. Doing so, will generally lead

to higher traffic congestion as compared to that of their deterministic counterparts. This

happens because the system requires time to recover from some randomly generated

arrival rates that are higher than those defined by their deterministic counterparts.

 46

We use these classifications of traffic conditions as a standard to evaluate the

performance of our algorithms when carrying out analysis and simulations.

3.11 Conclusions

The theoretical frame work presented in this chapter is used in subsequent chapters to

address the problem of dynamic speed scaling in a parallel processing environment.

Subsequent chapters mainly take advantage of this framework, but will include their own

extensions where appropriate.

 47

Chapter 4: Cost Minimization For Scheduling

Single-buffered Processors

4.1 Introduction

This chapter synthesizes a scheduling and parallel processing algorithm named "Single-

Buffer Decision & Parallel Processing algorithm (SBDPP)". It operates in real time to

optimally assigns an incoming stream of heterogeneous tasks to run on multiple (single-

buffered) heterogeneous processors in a mobile computing device or an energy aware

work station. By using dynamic speed-scaling, where each processor’s speed is able to

change within hardware and software processing constraints, the algorithm also explicitly

determines the optimum processing rate of executing each task residing in the single

buffer of each processor. Tasks are heterogeneous in terms of computation volume,

processing and memory requirements. The time and energy dimensions of executing an

arriving task is modeled in a cost function that is each associated with a processing

stream. The algorithm's dispatching strategy is to minimize this expected cost by using

dynamic speed scaling and to select the least expensive processing stream. The algorithm

has three versions. Its first two versions allow the user to specify the unit price of energy

and response time for executing each arriving task. The algorithm's second version

extends the functionality of the first by allowing the user or the OS of the computing

device to further modify a task’s unit price of time or energy in order to achieve a linearly

controlled operation point that lies somewhere in the economy-performance mode

continuum of a task’s execution. The algorithm's third version operates exclusively on the

latter. We initially focus on single buffer, single-threading where a single task is allocated

to a given processor and is processed until its completion. We extend the algorithm and

its versions to consider migration, where an unfinished task is paused and resumed on

another processor. For diverse application, we also assume that the processors/cores are

heterogeneous in that they may differ in their hardware specifications with respect to

maximum processing rate and general power function parameters.

 48

The SBDPP algorithm is qualitatively compared against its versions. The algorithm's

dispatcher is analytically shown to perform better than the well known Round Robin

dispatcher in terms of reducing the total cost of response time and energy consumption

when traffic is minimal. Through simulations we deduce a relationship between the

arrival rate of tasks, number of processors and response time of tasks under the (parallel)

single buffered computing architecture. Although the dynamic speed scaling problem on

multi-buffered (single) processors has been previously attempted (e.g. by [6]), this

chapter presents the first elaborate, analytical study on the use of dynamic speed scaling

to schedule heterogeneous tasks on single-buffered, heterogeneous, parallel processors

with the objective of reducing the financial total cost of response time and energy

consumption (of tasks).

The single-buffered computing architecture warrants a deep analysis because it

encompasses the following characteristics.

1. When a task's overhead loading time is excluded, a tasks response time equals its

execution time.

2. Traffic congestion is minimal as a result of constrained single buffers.

3. The service disciplines within processing streams do not apply due to single

buffers.

4. It potentially leads to serious bottlenecks, i.e. if the rate of task arrival exceeds

that of completion, the single buffers get clogged up. This condition is undesirable

because it ultimately forces arriving tasks to be rejected.

In the scope of parallel scheduling of single buffered processors, the ideal scenario is that

each of the single-buffers (associated with its corresponding processor) is fully occupied

all the time but no task is rejected upon arrival. This maximizes system utilization,

minimizes traffic congestion (in comparison to multi-buffered processors), but for this to

be practically feasible, it unfortunately requires some control over the properties and rate

of arriving tasks. Since such a control is unavailable in the online case, we can sacrifice

consistently maximum system utilization for a lower probability of rejecting arriving

tasks by enforcing any of the following:

 49

• Increasing the lower bound on the arrival periods of tasks26.

• Increasing the number of processors.

• Decreasing the response time of tasks.

These claims are corroborated by conducting simulations based on our model.

The major theme in this chapter is how to schedule arriving heterogeneous tasks on to

heterogeneous single-buffered processors by utilizing dynamic speed-scaling. This

chapter is organized as follows. Section 4.2 formulates the problem and provides

sufficient background to construct the SBDPP algorithm. Section 4.3 describes the

default version of the SBDPP algorithm. Section 4.4 focuses on how to achieve a linear

calibration of a task's operation mode as a function of the (user-specified) unit prices of

time and energy, and it also provides preliminary background for the next section.

Section 4.5 uses the background presented in the previous section to construct the two

other versions of the SBDPP algorithm, namely SBADPA and FPDPA. In this section we

also briefly describe how the SBDPP algorithm can deal with migration. In section 4.6,

we qualitatively compare the three versions of the algorithm to each other and

quantitatively compare the dispatcher of the SBDPP algorithm to the Round Robin

dispatcher. Section 4.7 provides a brief report of simulations conduced and lastly

provides some insights that were extracted from simulating the algorithm(s).

4.2 Problem Formulation

4.2.1 Processing Streams with Single Buffers

 Fig. 1 illustrates the single buffer scenario: each processing stream has a memory queue

with a limited capacity of accommodating only one task at a time.

We are essentially trying to achieve two goals. For a given task, one goal is to find the

optimized dispatcher that dictates which of the processing streams should process/execute

the task at hand. The other goal is to determine the optimized processing rate of executing

the task. The problem’s major constraint is the single buffer scenario that is described as:

26 This is equivalent to decreasing the upper bound on the arrival rate of tasks.

 50

mj1j 1,N ≤≤∀≤ , where jN is the occupancy of the jth processing stream at some point in

time.

Decision Algorithm

. . .

Processor

Key

Memory
Queue TTk ∈

jT ,1

1,1T

jT ,1

1,sP
r

2,sP
r

jsP ,

r

msP ,

r

jsP ,

r

11 =N 02 =N 1=jN 0=mN

Tasks

Initially not
 Considering Processing
Streams whose Memory

Queues are full

Fig. 4.1: Illustrating the parallel single buffer scenario

 51

4.2.1 A Processing Stream Cost Function

 Let jC =),,,,(,,, kjkkktj ttuuC εθε be the cost function that aggregates the cost of

processing a task kT in the jth processing stream. Each memory queue of each processing

stream is assumed to be initially empty and has the capacity to hold only a single task.

Formally, we have: []mj1j ,0N ≤≤∀= .

 We are primarily trying to penalize the energy and response time requirements of a task.

One reasonable definition of jC is as follows.

)(,,, jkkktkj ttuuC θεε ++= (4.1)

Substituting (3.4) and (3.5) into the cost function gives:

444 3444 21

48476

44 344 21

48476

($)cost timeresponse sTask'

(s) timeresponse sTask'

,,,

($)cost energy sTask'

 (J)energy sTask'

1
)()(jk

k

k
ktkkjj t

P

B
uPBuC j

θ
α

ε λ ++= −

 ($) (4.2)

4.2.2 Optimizing the task's processing rate

 In (4.2), the only dynamic parameter within our control is kP

In order to optimize kP , we suggest the following:

0)()1(
2

,2 =−−=
∂

∂ −

k

kkt

kkjj

k

j

P

Bu
PBu

P

C
jα

ελα

 Solving for a critical point we get:

j

jj

kt

k
u

u
P

α

ελα

1

,

)1(
*

−
=

(n.Hz) (4.3)

 52

We confirm that this critical point is indeed a minima as follows.

k

j

k Pk

kkt

kkjjj

P
k

j

P

Bu
PBu

P

C

*

3

,3

*

2

2

2)()2)(1(

+−−=

∂

∂ −α
ελαα

()

k

j

P

kktkkjjj

k

BuPBu
P

*

,3
2)()2)(1(

1

+−−= α

ελαα

+

−
−−

 −
= kkt

jj

kt

kjjj

kt

jj
Bu

u

u
Bu

u

u
j

,

,

3/

,

2
)1(

)2)(1(
)1(

λα
λαα

λα

ε
ε

α

ε

()

kktkktj

kt

jj
BuBu

u

u
j

,,

3/

,

2)2(
)1(

+−

 −
= α

λα
α

ε

() 0

)1(
3/

,

, >

 −
=

j

kt

jj

kktj
u

u
Bu

α

ελα
α

Which confirms that this critical point is indeed a minima for]3,1(∈jα .

4.2.3 Minimized Cost Function of the j
th

 processing stream

 We previously concluded that
j

jj

kt

k
u

u
P

α

ελα

1

,

)1(
*

−
= minimizes our cost function

(jC). It could easily be implemented in the OS of the mobile device whenever a task is to

be processed along the thj processing stream. An interesting observation is that the task's

computation volume and loading time does not affect its optimum processing rate. Let

min* jC be the optimized (minimized) unconstrained cost function of processing a task in

the thj processing stream.

 53

kPjj CC

min =

++= −

jk

k

k
ktkkj t

P

B
uPBu j

,,,

1

*
)*(θ
α

ελ

 jkkt

jj

kt

kkt

jj

ktj
tu

u

u
Bu

u

uu j

,,,

1

,

,

,

)1()1(
θ

α

εε

ε

λαλα

λ
+

−

+

−
=

−

 jkkt

jj

kt

kkt

j

kt
tu

u

u
Bu

u j

,,,

1

,

,

,

)1()1(
θ

α

ελαα
+

−

+

−
=

−

 jkkt

jj

kt

k

j

ktj
tu

u

u
B

u j

,,,

1

,,

)1()1(
θ

α

ελαα

α
+

−

−
=

−

()

jkkt

j

kt

jkj tu
u

uB
j

j

j

,,,

1

,

)1(

1

θ

α

α

ε α
λα

α

+

−
=

−

 (4.4)

We use this result (4.4) in the synthesis of the algorithm, but we first have to incorporate

the minimum and maximum processing constraints mentioned in the previous chapter

(Chapter 3, Section 3.3.1)

4.2.4 Minimized Constrained Cost Function of the j
th
 processing stream

 Let us factor the task’s and processor’s processing constraints mentioned earlier. We

enforce kkjMax pPP ,, µ≥≥ where, kp ,µ is the task’s minimum recommended execution rate

in base instructions per second (n.Hz.) and jMaxP , is the maximum processing rate of the

j
th processing stream. For a task TTk ∈ , the minimum constrained cost function that

factors the processing constraints is as follows.

 54

()

>

−
++

<

−
++

≥

−
≥+

−

=

−

−

−

jMax

jj

kt

jk

jMax

k
ktjMaxkj

k

jj

kt

jk

k

k
ktkkj

k

jj

kt

jMaxjkkt

j

kt

jkj

j

P
u

u
t

P

B
uPBu

p
u

u
t

p

B
upBu

p
u

u
tu

u
uB

C

j

j

j

j

jj

j

j

,

1

,

,,

,

,

1

,

,

1

,

,,

,

,

1

,

,

1

,

,,,,

1

,

min,

)1(
 if),()(

)1(
 if),()(

)1(
P if ,

)1(

1

α

ε
θ

α
ε

µ

α

ε
θ

µ

α
µε

µ

α

ε
θ

α

α

ε

λα
λ

λα
λ

λαα
λα

α

for]3,1(∈jα .

If we assume loading times of all tasks are negligible (0,, ≈jktθ) the cost function

reduces to:

()

>

−
+

<

−
+

≥

−
≥

−

=

−

−

−

jMax

jj

kt

jMax

kt

jMaxj

k

jj

kt

k

kt

kj

k

jj

kt

jMax

j

kt

jj

j

P
u

u

P

u
Pu

p
u

u

p

u
pu

p
u

uu
u

C

j

j

j

j

jj

j

j

,

1

,

,

,1

,

,

1

,

,

,1

,

,

1

,

,

1

,

min,
)2(

)1(
 if ,)(

)1(
 if ,)(

)1(
P if ,

)1(

1

α

ε

α
ε

µ

α

εµ

α
µε

µ

α

ε

α

α

ε

λα
λ

λα
λ

λαα
λα

α

This reduction above is not an equivalency reduction, but is rather a classification

reduction because we use this function as a discriminant or for minimum comparison,

and not for absolute value.

Observe that when a task's loading time is negligible, its computation volume does not

influence its assignment to a given processor. We now have sufficient information to

describe the SBDPP algorithm.

 55

4.3 Single-Buffer Decision & Parallel Processing Algorithm

(SBDPP)

1. User or OS specifies εu for all tasks and may specify different ktu , for each

TTk ∈ .

2. For an arriving task TTk ∈ we evaluate and compare the minimum processing

cost ()minjC) of processing the task in each of the available processing streams. A

task TTk ∈ should follow a stream j* such that { }0|min min,
1

min*, ==
≤≤

jj
mj

j NCC

thereby it acquires the label *, jkT and is processed by the *, jsP
r

 processor at the

optimum processing rate.

 If all the tasks' loading times are insignificant use min
)2(

jC instead of minjC . If

 all processors are homogenous and loading times are homogenous, ignore step 2

 and utilize Round Robin dispatching.

3. Task *, jkT is executed by *, jsP
r

at the optimum processing rate:

>

−

<

−

≥

−
=≥

=

*,

1

**

,

*,

,

1

**

,

,

,

1

**

,

*,

*,

*

*

*

)1(
 if ,

)1(
 if ,

)1(
* if ,*

jMax

jj

kt

jMax

k

jj

kt

k

k

jj

kt

kjMaxk

js

P
u

u
P

p
u

u
p

p
u

u
PPP

P

j

j

j

α

ε

µ

α

ε
µ

µ

α

ε

λα

λα

λα

4. If *, jkT is to be cancelled/deleted or when it is completed, set 0*, =jsP and

0* =jN .

The algorithm's dispatcher is described in steps 2. Step 3 is the algorithm's speed scaling

function.

 56

4.4 Calibrating the Ratio of Time and Energy Prices

 Let us calibrate the ratio of unit prices (εuu kt /,) that happen to correlate with the

optimum processing rate and power consumption of a given task kT . Generally, for a

given),(,ktk uuU ε= , associated with the task kT , we want a one to one correspondence

with kP * or jsP , which introduces the issue of calibration.

k

jj

kt

kjsjMax p
u

u
PPP

j

,

1

,

,,
)1(

 * µ

α

ελα
≥

−
==≥

 () ()

≥
−

≥⇒ jj

k

jj

kt

jMax p
u

u
P

α
µ

ε

α

λα ,

,

,
)1(

 () ()

−≥≥−⇒ jj

kjj

kt

jMaxjj p
u

u
P

α
µ

ε

α λαλα ,

,

,)1()1((4.5)

The relation (4.5) is consistent with minimum and maximum processing constraints.

Fig. 4.2 illustrates the optimum processing rate of a task as a function of the ratio of time

and energy prices. For a given task, if a user wants the task’s mode of operation to escape

the economy region, he/she should be willing to spend more on time (increase ktu ,) or

spend less on energy27 (decrease εu) or rather accept a higher time cost relative to energy

(increase εuu kt /,).

27 If the price of energy is determined by the OS based on time of day, a decrease in energy price
 can result from a transition between peak hours and off-peak hours.

 57

Performance
Mode region

 Economy
Mode region

(Joules/Second)

(Base Instructions
per Second)

Balanced Mode
point/boundary

calibration focuses on

this dynamic region

jsP ,

kp ,µ

jMaxP ,

() j

jMaxjj P
αλα ,)1(−() j

kjj p
α

µλα ,)1(−

() () j
jj

jMaxk Pp ααα
µ

1

,,

2

 +

() ()

 +
−

2
)1(

,,
jj

jMaxk

jj

Pp
αα

µλα

εu

u kt ,

Fig. 4.2: A task’s operating mode and optimum processing rate as a function of

user-defined (time/energy) unit prices

Likewise, if a user wants the task’s mode of operation to escape the performance region,

he/she should be willing to spend less on time (decrease ktu ,) or spend more on energy

(increase εu) or rather accept a lower time cost relative to energy (decrease εuu kt /,). If

an advanced user has a deep understanding of ktu , or εu , he or she would specify it, and

allow the SBDPP algorithm to operate on the appropriate mode. Alternatively, a user may

want to know the actual extent of a task’s mode of operation, and may want to make a

decision based on that rather than just the actual values of ktu , or εu . To do so in a

consistent fashion, we need to use a metric that is a linear function of ()εuu kt /, . Referring

 58

to Fig. 4.2, in order to achieve a linear calibration of the task’s processing rate as a

function of ()εuu kt /, , we first identify each constant range (flat line portions of the

economy and performance mode regions) in the graph and map each of these regions to a

point value. We also need to linearize the curved portion of the figure (calibration region)

via a non-linear transformation.

4.4.1 Determining a Task’s Mode of Operation

 In order to consistently determine a task’s mode of operation we linearly calibrate the

ratio of the user defined prices ()εuu kt /, by non-linearly transforming the task’s

processing rate. We achieve this by using the task’s power consumption instead of the

task’s processing rate.

()εuu kt /, is defined as the ratio of unit time price ($/Second) and unit energy price

($/Joule). It is convenient that the resulting dimension of ()εuu kt /, is indeed

Joule/Second or Watt. According to equation (3.2), we see that ()εuu kt /, is the power

consumption of a task multiplied by a constant factor of)1(−jα .

 Let () () ()()[]jkjMaxkjj

kt
SpPp

u

u
jjj α

µ
αα

µ
ε

λα ,,,

,
)1(−+−= (4.6)

where]1,0[∈jS .

In Fig. 4.2, we see that a task’s optimum processing rate as a function of ()εuu kt /, does

not linearly determine the operation mode of a task. In Fig. 4.3, a task’s power

consumption as a function of ()εuu kt /, does indeed linearly determine the operation

mode of a task.

This works because a task’s power consumption is a non-linear transformation of its

processing rate. In extension, observe that in Figs. 4.2 and 4.3, the balanced mode of a

task’s execution is identified by average of its minimum and maximum power

consumption and not the average of its minimum and maximum processing rate.

 59

Performance
Mode region

Economy
Mode region

Balanced Mode
boundary

Achieved linear

calibration

εu

u kt ,

() j

kjj p
α

µλα ,)1(− () j

jMaxjj P
αλα ,)1(−

() ()[]jj

jMaxk

j
Pp

αα
µ

λ
,,

2
+

() j

jsj P
αλ ,

Processor's
Power

Consumption
(Watts)

() ()

 +
−

2
)1(

,,
jj

jMaxk

jj

Pp
αα

µλα

0=jS 5.0=jS
1=jS

(Joules/Second)

() j

jMaxj P
αλ ,

() j

kj p
α

µλ ,

Fig. 4.3. Illustrating linear calibration of a task’s operation mode by utilizing the

processor's power consumption during execution

In equation (4.6) and in Fig. 4.3, we define the auxiliary parameter jS as the (user

specified) power sensitivity factor. In Fig. 4.3, jS is used to linearly parameterize a task’s

power consumption over the calibration region (spanned by (εuu kt /,)). jS informs us on

the actual extent of power consumption while executing a task under software and

hardware processing constraints, and it also linearly determines a task’s mode of

operation. Table 4.1 illustrates this.

 60

Table 4.1: Interpretation of power sensitivity factor

jS Interpretation

0 Extreme Economy mode

0.25
75% Economy mode & 25% Performance mode

(classified as Economy mode)

0.5 Balanced mode

0.75
25% Economy mode & 75% Performance mode

(classified as Performance mode)

1 Extreme Performance mode

Using (4.6), it is quite convenient that the optimum processing rate that factors

processing constraints reduces elegantly to:

() () ()()[] j
jjj

j

jkjMaxk

jj

kt

js SpPp
u

u
P αα

µ
αα

µ

α

ελα

1

,,,

1

,

,
)1(

−+=

−
= , for]1,0[∈jS .

When]1,0[∈jS , we get k

jj

kt

jsjMax p
u

u
PP

j

,

1

,

,,
)1(

µ

α

ελα
≥

−
=≥ (as desired).

4.4.2 Minimized Constrained Cost Function Using The Power Sensitivity

Factor

Recall the unconstrained cost function is as follows.

kPjj CC
min = ()

jkkt

j

kt

jkj tu
u

uB
j

j

j

,,,

1

,

)1(

1

θ

α

α

ε α
λα

α

+

−
=

−

Using a variation of (4.6) we have

 () () ()()[] 1

,,,

,

)1(

−
−+

−
= jkjMaxk

jj

kt
SpPp

u
u jjj α

µ
αα

µε λα (4.7)

 61

Substituting (4.7) into min* jC gives

() () ()()[] j

jj

jjj

j

kt

jkjMaxk

jj

kt

jkj

u
SpPp

u
B

α

α

α
µ

αα
µ αλα

λα

α 1

,1

,,,

,

)1()1(

1

−

−

−

−+

−

jkkt tu ,,, θ+

() () ()()[] jkkt

j

kt

jkjMaxkkj tu
u

SpPpB
jj

j

j
jjj

,,,

11

,
1

,,,
)1(

θ

αα

α

αα
µ

αα
µ α

α +

−

−+=

+
−

−

() () ()()[] jkktjkjMaxk

j

kt

kj tuSpPp
u

B j
jjj

,,,

1

,,,

,

)1(
θ

αα
µ

αα
µα

α +

−+

−
=

−

() () ()()[]

+

−+

−
=

−

jkjkjMaxk

j

kj

kt tSpPp
B

u j
jjj

,,

1

,,,,
)1(

θ
αα

µ
αα

µα

α
 (4.8)

In terms of classification accuracy, we can drop the ktu , term in (4.8) because it is a

common multiplicative factor when comparing all processing streams. Again, this

reduction is not an equivalency reduction with respect to value, but is equivalent in terms

of classification ability (finding the comparative minimum).

Therefore the (reduced) constrained cost function,)ˆ(minjC that factors the power

sensitivity factor is follows.

() () ()()[] jkjkjMaxk

j

kj

j tSpPp
B

C j
jjj

,,

1

,,,min
)1(

ˆ
θ

αα
µ

αα
µα

α
+

−+

−
=

−

for]1,0[∈jS

 62

Notice that the unit prices of energy and response time are explicitly absent from this

expression above, further more, if all loading times of all tasks are negligible we can

reduce min
ˆ

jC to min
)2(ˆ

jC by eliminating both the jkt ,,θ and kB terms.

() () ()()[]

−+

−
=

−
j

jjj

jkjMaxk

j

j
j SpPpC αα

µ
αα

µα

α 1

,,,min
)2(

)1(
ˆ

for]1,0[∈jS

We now have sufficient background to synthesize the two other versions of the SBDPP

algorithm.

4.5 Alternative Versions of the SBDPP Algorithm

Using jS , we present the “Single Buffer Assisted Decision & Processing Algorithm

(SBADPA)” that extends the functionality of SBDPP by allowing the user or the OS of

the mobile device/work station to further modify a task’s unit cost of time/energy in order

to achieve a desired (linearly controlled) mode of operation i.e., (economy/performance

mode).

4.5.1 Single Buffer Assisted Decision & Processing Algorithm (SBADPA)

1. User or OS specifies εu for all tasks and may specify different ktu , for each

TTk ∈ .

2. For an arriving task TTk ∈ , solve

 () ()() ()

−

−−
= j

jj
k

jj

kt

kjMax

j p
u

u

pP
S

α
µ

ε
α

µ
α λα ,

,

,,
)1(

1
, mj1 ≤≤∀ .

 For each processing stream, If 0<jS , set jS = 0 and If 1>jS , set jS = 1

 (satisfying processing constraints).

 63

3. User or OS of mobile device can eliminate considering streams whose jS values

are undesirable (optional).

4. For the given tasks TTk ∈ , we evaluate and compare the minimum modified cost

function of processing a task ((.)ˆ
minjC) in each of the available processing

streams, where:

 () () ()()[] jkjkjMaxk

j

kj

j tSpPp
B

C j
jjj

,,

1

,,,min,
)1(

ˆ
θ

αα
µ

αα
µα

α
+

−+

−
=

−

 If all task loading times are negligible use

() () ()()[]

−+

−
=

−
j

jjj

jkjMaxk

j

j

j SpPpC αα
µ

αα
µα

α 1

,,,min,
)1(

ˆ

5. A task TTk ∈ should follow a stream j* such that { }0|ˆminˆ
min,

1
min, ==

≤≤
jj

mj
j NCC

thereby it acquires the label *, jkT and is processed by the *, jsP
r

 processor at the

optimum processing rate.

6. The optimum processing rate of the *, jsP
r

 processor is

() () ()()[] j
jjj

jkjMaxkjs SpPpP αα
µ

αα
µ

1

,,,*, −+= .

7. If *, jkT is to be cancelled/deleted or when it is completed, set 0*, =jsP and

0* =jN .

If all processors are homogenous and loading times are homogenous, ignore step 4 and 5

and instead use Round Robin dispatching.

The algorithm's dispatcher is comprised of steps (4 & 5). Step 6 is the algorithm's speed

scaling function.

 64

4.5.2 Fixed Power Decision & Processing Algorithm (FPDPA)

 We may want to consistently process a task based on the user specified power

sensitivity factor (jS) without explicitly requiring the user to provide a task’s unit prices

of time and energy. jS Shows the degree of power consumption of executing each task

and also linearly dictates the operation mode of a task’s execution. This may be desirable

because it reduces the burden of assigning the unit prices of time and energy of

processing each task/s where only one parameter is assigned ()
jS . On the other hand, it

can be viewed as less flexible for advanced users because it does not explicitly factor

each processor’s power function parameters. In accordance with the abovementioned

assumptions, we describe the Single Buffer Fixed Power Decision & Processing

Algorithm (FPDPA) as follows.

• For each incoming task TTk ∈ ,]1,0[∈jS is specified by the user or

through the computing device' OS (power setting).

• Carry out steps 3 through 7 of the SBADPA algorithm.

• If all processors are homogenous and loading times are homogenous,

ignore step 4 and 5, and instead use Round Robin dispatching.

4.5.3 Extending the Algorithms to Allow Migration

Let as define a Horizontal Migratory Operation (HMO) as follows:

Among the tasks residing in the single buffers of each processing stream, re-arrange and

migrate tasks to processing streams such that the tasks with the least remaining

computation volumes are executed by processing streams with the lowest minimum

(constrained) cost functions respectively. If processors are homogenous, there is no need

to carry out HMOs.

If we assume a fixed or constant number of parallel processors, an HMO operation has a

constant computational complexity. Moreover, we suggest that these horizontal migratory

operations be conducted whenever a single buffer becomes vacant, or when all buffers

are occupied for a sustained period of time. Investigation on other instances, or how

frequently we should conduct HMOs deserves further attention but is not pursued as it

falls beyond the scope of this thesis.

 65

4.6 Analysis

4.6.1 Qualitative Comparison of Algorithms

The table below qualitatively compares the three versions of the SBDPP Algorithm by

summarizing their relative strengths and weaknesses.

Table 4.2: Qualitative comparison of algorithms

Algorithm Pros Cons

SBDPP

(Default)

-Low computational requirements.

-Explicitly factors Processor's parameters.

-Allows advanced users to specify unit

prices of energy and response time.

-Cannot explicitly determine

operation mode (power,

balanced or economy) of

tasks.

SBADPA

-Explicitly determines operation mode

(power, balanced or economy) of tasks.

-Explicitly factors Processor's parameters.

-Allows advanced users to specify unit

prices of energy and response time.

-Slightly more

computationally expensive

than SBDPP and FPDPA.

FPDPA

-Least Computationally expensive.

-Allows user to determine operation mode

(power, balanced or economy) of tasks.

-Simplest to use.

-Does not explicitly allow

the user to specify unit

prices of time and energy.

-User can not easily estimate

amount of energy and

response time consumed

when tasks and processors

are heterogeneous.

-Unfair for fast processors.

 66

4.6.2 Quantitative Comparison of Algorithm's Dispatcher to Round Robin

We would like to compare the performance of the algorithms to a comparable speed-

scaling algorithm that at least considers most of the critical assumptions and preliminary

modeling in which the algorithms are based on, but unfortunately to the best of our

knowledge, no such algorithm exists. Let us instead assume there are N homogenous

tasks that are to be processed (using single-buffered, single-threading) by two

heterogeneous processors. We choose two processors, but the analysis can be extended

to factor more processors. Assuming there exist an algorithm, let as call it TEST, that

determines the optimum processing rate of a task by minimizing both the energy and time

consumption, but uniformly distributes or assigns tasks to processors. In other words, it

uses the Round Robin dispatcher and the SBDPP algorithm's speed scaling function. We

would like to assess the dispatching performance of the SBDPP algorithm with respect to

cost savings of both energy and response time that result from the intelligent assignment

of tasks to heterogeneous processors. For simplicity, we also assume the following:

• Homogeneous tasks with equal computation volumes (BBk =).

• A homogenous unit price of time and energy for all tasks.

• Negligible loading times of tasks(0,, =jktθ).

• Unconstrained processing rates, i.e the optimum processing rates fall within the

maximum hardware processing rates and the minimum software processing rates.

• Minimal traffic conditions .

• The first processor's power function parameters are 8.1=α and 1=λ .

• The second processor's function parameters are 22 =α and 12 =λ .

• Both the SBDPP and TEST algorithms use equally optimum speed scaling

functions.

Following the above mentioned assumptions and using equations (3.4) and (3.5) as well

as the algorithms dispatcher, Table 4.2 illustrates the cost savings.

 67

Table 4.3: Dispatcher cost savings: SBDPP algorithm versus TEST

 SBDPP TEST

Energy

Consumption

(Joules)

1

1,1
1)(−αλ sPNB

1

1,1
1)(5.0 −αλ sPNB

1

2,2
2)(5.0 −+ αλ sPNB

Energy Cost

($)

1

1,1
1)(−α

ε λ sPNBu

1

1,1
1)(5.0 −α

ε λ sPNBu

1

2,2
2)(5.0 −+ α

ε λ sPNBu

Execution time

(Seconds)

1)(1,

α−
sPNB

1)(5.0 1,

α−
sPNB

2)(5.0 2,

α−+ sPNB

Execution Cost

($)

1)(1,

α−
st PNBu

1)(5.0 1,

α−
st PNBu

2)(5.0 2,

α−+ st PNBu

Total Cost Savings

(Energy & Time)

($)

()1

1,1

1

2,2
12)()(5.0 −− − αα

ε λλ ss PPNBu

()12)()(5.0 1,2,

αα −− −+ sst PPNBu

Total Cost Savings

Under Optimum

Processing Rates

($)

() ()

−
−

−

−−

1

1

1

1

2

2

2

1
1

1

11

1

2

22
)1()1(

5.0
α
α

ε

α
α

ε α
λα

α
λα

αα
tt u

u
u

uNB

() ()

−=
8.1/8.0

5.0

8.0
9.0.

8.1

1

t
t

u
uuuNB εε

The total cost savings (under optimal processing rates) is graphically illustrated in Fig.

4.4. According to equation (4.3), the ratio of energy price to time price dictates the

optimum processing rate of a given task. Contrast this with the implication of Fig. 4.4; it

shows us that optimum dispatching leads to cost savings that are dictated by the absolute

values of both energy and time (prices) and not there ratio.

 68

εu
tu

6100.1 −x

1.0

)0,0,0(($/Joule)
($/Second)

($/NB)

4107.1 −x

Fig. 4.4: Dispatcher cost savings: SBDPP algorithm versus TEST

This analytical comparison can be extended to factor more processing streams,

complicated traffic conditions, and heterogeneous tasks that differ in computation

volumes, time pricing and processing constraints. We emphasize that in this analysis, the

TEST algorithm assigns half of the N tasks to each processor while our algorithms assign

all the N tasks to the least expensive processor, and that traffic conditions are minimal.

Also, for a fair comparison, both SBDPP and TEST algorithms utilize equally optimal

speed-scaling functions.

4.6 Simulations

4.6.1 MATLAB Simulations

We initially simulated the algorithms in a program that was written using MATLAB

(GUI). The algorithms were validated using a common graphical interface where we

were able to numerically confirm the behavior of all the formulas used in context of all

the assumptions made. For the sake of brevity, we initially simulated a simple case of two

processing streams where a user has the ability (in real time) to launch one hypothetical

 69

task at a time. We factored all relevant processing and energy parameters. These

parameters could be modified in real time.

Fig. 4.5. MATLAB GUI simulation validating all three algorithms

In accordance with the rules of the algorithms, the user is allowed to specify the unit cost

of energy and time of each hypothetical task prior to launch. The minimum processing

rate of each task and the maximum processing rate of each processor are modifiable as

well. The user is also allowed to either randomize the computation volume of task or to

specify one. We realized that if initially two tasks are consecutively launched, and if a

 70

third task is launched before any of the first two tasks has been processed, both

algorithms are forced to reject the third task. This limitation inspired us to consider the

multi-buffer scenario where the memory queues of each processing stream have the

capacity to queue up a finite arbitrary number of tasks.

4.6.1 Java Simulations & Insights

 We extended this simulation to include more processors by conducting a discrete time

based simulation written in Java and we gathered some insights (reported below).

Let R be the response time of the average task (with average properties) be executed

by the average single-buffered processor with (average hardware parameters).

Through simulation findings, it turns out that if we have m parallel processors, the

ideal deterministic arrival period (in the long run) that maximizes system utilization is

roughly mR / for heterogeneous processors/tasks and is exactly mR / for

homogenous processors and tasks.

In other words, Rm / is the maximum deterministic arrival rate that prevents rejections

for homogenous tasks running in the long run on homogenous, single-buffered

processors. We call mR / the ideal (deterministic) inter-arrival period. We use this

finding as benchmark or criterion to evaluate findings on the multi-buffered scenario

presented in the next chapter.

4.6 Conclusions

 We have synthesized and simulated the SBDPP algorithm and its variations. They can

be used for optimized local parallel heterogeneous computing of mobile devices or

energy aware work stations. We focused on single buffer, single threading where no

processor executes more than a single task at any given time. We also assumed the

constraint of imposing a maximum limit of one task in each memory queue for each

corresponding processor (single buffer case). The algorithm and its variations run in real

time to optimally dictate which processor among a multiple set of parallel processors

 71

should process an incoming task, and they also explicitly determine the optimum

processing rate of executing each tasks residing in each processor's single-buffer. The

three versions of the algorithm are conceptually similar, but differ on their application

and they each have dispatchers and dynamic speed-scaling functions of constant

computational complexity.

 The algorithms provide some insights. They all inform us that a task’s computation

volume (kB) does influence its processing cost when the loading times of tasks are not

negligible, which in turn influences the actual processing stream that will process the task.

But counter-intuitively, the optimum processing rate of a task is neither a function of its

computation volume nor is it a function of its loading time. Moreover, when the loading

times tasks are negligible, a tasks computation volume does not influence the actual

processing stream that will process the task.

The algorithms and their variations were extended to allow migration. This was

suggested through carrying out migration operations (HMO) of constant computational

complexities (assuming a constant number of parallel processors) but a deep analysis on

this front was not pursued.

 The optimum processing rate of a task under the single buffer scenario was found to be

a function of the unit price of time divided by that of energy as well as the processors

power function parameters. Further more, through a simple analytical example, it was

shown that our algorithm's dispatcher can outperform the Round Robin dispatcher with

cost savings correlated with the absolute values of both the energy and time prices.

 Through simulations we observed and constructed a relationship between the average

response time of a given task and the ideal deterministic inter-arrival period that

maximizes system utilization; i.e. if we let R be the response time of the average task

(with average properties) be executed by the average single-buffered processor with

(average hardware parameters). It turns out that if we have m parallel processors, the

ideal deterministic arrival period that maximizes system utilization is approximately

mR / for heterogeneous processors/tasks and is exactly mR / for homogenous

processors and tasks. In extension, let inγ be the rate at which tasks enter the decision

algorithm. Also, let outγ be the aggregate rate at which processed tasks exit the parallel

 72

streams. When outγ ≥ inγ , the algorithm and its variations work well28. In practice, this

will likely not be the case because if the rate of incoming tasks grows unpredictably, all

parallel streams will quickly get clogged up (due to limited memory queue capacity -

single buffers), and soon we will have to either reject incoming tasks or we will have to

queue them up before the decision stage. Either way, this leads to undesired queuing

delays that compromise the functionality and optimality of the algorithms29. One way to

mitigate this problem is to reduce the response time of arriving tasks by limiting their

computation volumes, but this strategy falls beyond the scope of this thesis. A second

way is to reduce the response time of tasks by increasing their optimum processing rate,

but that would imply that the user should be willing to accept a higher price of response

time relative to that of energy30. The practical way to mitigate the problem is to arbitrarily

increase the memory queue capacity for each processing stream (multi-buffered

processors). This reduces the number of task rejections and will additionally provide

more time for a decision algorithm to appropriately allocate arriving tasks to processors.

In the next chapter we consider the multi buffered scenario where the memory queues of

each processor have the capacity to store an arbitrary number of tasks: mjjN ≤≤∀≥ 1,1

(multi- buffer case).

28Simulations suggest that if we are to prevent rejections, the maximum value of inγ is Rm / (in

the long run) for a system with homogenous tasks and single buffered processors.

29Theoretically, increasing the number of processing streams also resolves the problem but is
generally not feasible. Once the hardware of a mobile device or work station is built or fabricated,
increasing the number of processing cores (or processing streams) is generally impractical if not
substantially expensive.

30The power function parameters of the processors are assumed to be given and fixed. From a
design perspective, utilizing processors with modest power consumption functions (generally,

small values of jα and jλ) will lead to increased optimum processing rates that reduce execution

and response times of tasks during processing (see the speed scaling function of the SBDPP
algorithm).

 73

Chapter 5: Cost Minimization of Single-threaded,

Multi-buffered Processors

5.1 Introduction

This chapter introduces a multiprocessor speed-scaled scheduling algorithm named

“Single-threading Multi-Buffer Scheduling & Parallel Processing Algorithm (SMBSPP)”.

The goal of this algorithm is to minimize the performance metric, the total cost of

response time and energy consumption of tasks (TCRTEC). By utilizing the single-

threaded (multi-buffered) computing architecture, the SMBSPP algorithm makes three

key contributions:

• A novel task dispatcher which assigns a task to a given processor based on the

Minimum among Minimized Costs of Virtually Introducing the Task to each

Processing Stream (MMCVITPS). It dictates which of the heterogeneous processors

should process each arriving task/s based on classifying a set of minimized potential

aggregate cost functions that is each associated with a processing stream.

• A novel dynamic speed-scaling function, which we name, "Optimum Single-

Threading Speed Scaling Function" (OSTSSF) that explicitly determines the

optimum processing rate of a given processor as a function of the following:

o The parameters of the processors power function.

o The unit price of energy.

o The sum of the unit prices of response time of all tasks residing in the

processor’s buffer.

• A novel preemptive service discipline called Smallest remaining Computation

Volume Per unit Price of response Time (SCVPPT) to schedule the tasks on the

assigned processor. This discipline minimizes the TCRTEC performance metric and

also conveniently allows the user to dynamically upgrade or degrade the priority of

tasks.

 74

The first two contributions are achieved through solving a set of multidimensional

convex optimization problems.

In this work, we focus on multi-buffer, single-threading where a set of tasks is

allocated to a given processor, but only one task is processed at a time until completion

unless preemption is dictated by the service discipline. In order to practically find the

optimal speed of a processor, the maximum allowable rate of the processor and the

minimum recommended rate of execution for a task are considered as constraints.

 We validated the performance of the SMBSPP algorithm by conducting discrete time

based simulations (as well as analytical techniques). In this front, we briefly report on

three major findings. Firstly, our simulation results show that our MMCVITPS dispatcher

works well with heterogeneous processors and drastically outperforms the classic Round

Robin dispatcher with cost savings exceeding 100% on average even when processors are

mildly heterogeneous 31 . Secondly, simulation results also show that our SCVPPT

scheduling discipline outperforms the two known service disciplines, Shortest Remaining

Processing Time (SRPT) and the First Come First Serve (FCFS), in terms of minimizing

the TCRTEC performance metric. SRPT policy always selects for service the task that

has the least remaining service time and it is a preemptive policy. FCFS, on the other

hand, is a non-preemptive policy that selects the tasks for service in order of their arrivals.

Lastly, we analytically compare our dynamic speed scaling function (OSTSSF) to a

comparable and competitive speed scaling function found in current literature (() 1~ −
np β).

We corroborated this analytical comparison with elaborate simulations to show that our

OSTSSF out performs this competitive speed scaling function32 in terms of the TCRTEC

performance metric. Furthermore, we offer a recommendation to improve this speed

scaling function (() 1~ −
np β).

This chapter is organized as follows. Section 5.2 utilizes expressions found in section

3.6 (chapter 3) to formally state the problem and synthesize the SMBSPP algorithm.

31 Power function parameters were conservatively chosen to differ from the mean by at most 8%
 from average.
32 There is a special condition in which OSTSSF and () 1~ −

np β achieve equal results. See Section

 5.6.2.

 75

Section 5.3 describes the SMBSPP algorithm in detail. Section 5.4 provides a simple

example that analytically demonstrates the ability of the algorithm to robustly handle the

dynamic inclusion of tasks. Section 5.5 provides simulation results that evaluate the

overall performance of the algorithm using a variety of performance metrics. Also in this

section, we demonstrate the performance of the algorithm's dispatcher in comparison to

the Round Robin dispatcher under three service disciplines and various traffic conditions.

In section 5.6, we use analysis and simulations to show that our speed scaling function

(OSTSSF) achieves better results than a comparable speed scaling function found in

current literature, and further more, we offer a recommendation of improvement.

5.2 Problem Formulation

5.2.1 Processing Streams with Multiple Buffers

Fig. 5.1 illustrates the parallel multi-buffer scenario: each processing stream has a

memory queue that has a capacity to store a arbitrary finite number of tasks. For a set of

arriving tasks, we are essentially trying to find the optimum dispatcher, speed scaling

function and service discipline that minimizes the total cost of response time and energy

consumption (TCRTEC) of executing these tasks where the unit price of response time

is heterogeneous. The unit price of response time for each task may be different because

we allow the user to dynamically influence the priority of a task's execution through the

following ways:

• If a user is willing to pay more for a task's response time, the algorithm's speed

scaling function (OSTSCF) increases hence executing the task at a faster rate

at the expense of energy and vice versa.

• Under our proposed service discipline, SCVPPT (which is a generalized

version of SRPT) will prioritize the task accordingly to the smallest remaining

computation volume per unit price of response time. Therefore a user can

maintain or even improve the priority of a large task by accepting higher unit

price of response time or even degrade the priority of a small non-urgent task

by setting a sufficiently small unit price of response time.

 76

.

Decision Algorithm

 TTk ∈

Arriving
Tasks

1,sP
r

...

...

1,1T

1,2T

1,1NT

1,kT

1,sQ
r

2,sP
r

...

...

2,1T

2,2T

2,kT

2,2NT

2,sQ
r

msP ,

r

...

...

mT ,1

mT ,2

mkT ,

mN m
T ,

msQ ,

r

jsP ,

r

...

...

jT ,1

jT ,2

jkT ,

jN j
T ,

jsQ ,

rT
h

e
jth

 p
ro

ce
ss

in
g

 s
tr

ea
m

Processor

Key

Memory
 Queue

jsP ,

r

jsQ ,

r

Fig. 5.1: The parallel multi-buffer scenario

5.2.2 The Cost Function of the thj Processing Stream

 Let us assume that the thj processing stream has jN

tasks already queued up in its

corresponding memory queue)(, jsQ
r

. Let us also assume that the aggregate cost function

of the thj processing stream be jC . This cost function aggregates the total cost of

response time and energy consumption of these jN

tasks. Also let jkC , be the cost of

 77

response time and energy consumption of the task stored at the thk index of the

jsQ ,

r
memory queue/multi-buffer.

Using vector notation and dot product operations, we have:

∑ ∑∑
= ==

+•==

jj N

1 1

,,

N

1

,)(,
k

k

r

jrrkk

k

jkj ttUCC θε

More explicitly, using (3.4) and (3.5) from chapter 3 (section 3.6) we have:

44 844 76

43421
44 344 21

48476
($)cost timeresponse 1Task

(S) timeresponse 1Task

,1,

1

1
1,

($)cost energy 1Task

(J)energy 1Task

1

11

N

1

,)(
j

++== −

=
∑ jtj

k

jkj t
P

B
uPBuCC j

θ
α

ε λ

444444 8444444 76

44444 344444 21

434214434421
44 344 21

4484476

($)cost timeresponse 2Task

(S) timeresponse 2Task

(S) time2Task

,1,

1

1

(S) time1Task

,2,

2

2
2,

($)cost energy 2Task

(J)energy 2Task

1

22)(

++

+++ −

jjtj t
P

B
t

P

B
uPBu j

θθ
α

ε λ

+++++++ −

jjjtj ttt
P

B

P

B

p

B
uPBu j

,1,,2,,3,

1

1

2

2

3

3
3,

1

33)(θθθ
α

ελ

 . . .+

 78

+

+++ ∑∑

−

==

−
1N

1

N

1

,,

N

N

N,

1

NN

jj

j

j

jjj
)(

r r

r

r

jrtj
P

B
t

P

B
uPBu j

θ
α

ελ

∑ ∑
= =

−

++=

j

j

N

1 1

,,,

1

N)(
l

l

ll

r

jr

r

r
tj t

P

B
uPBu j

θ
α

ελ

(5.1)

Rearranging the terms of (5.1), we have:

+

++== ∑∑

=

−

=

jj N

2

,

1

1
,1,

1

1
1,

1

11

N

1

,)(
r

rtjtj

k

jkj u
P

B
t

P

B
uPBuCC j

θ
α

ελ

 +

+

+++ ∑

=

−
j

3

,

2

2
,1,,2,

2

2
2,

1

22)(
N

r

rtjjtj u
P

B
tt

P

B
uPBu j

θθ
α

ελ

 + …

 +

++ ∑

=

−
jN

1

,,,

1
)(

r

jr

N

N

NtNNj t
P

B
uPBu

j

j

j

j

jj θ
α

ελ

 ∑ ∑∑
= ==

−

+

+=

j jN

1 1

,,,

N

,

1
)(

k

k

r

jrkt

kr

rt

k

k
kkj tuu

P

B
PBu j

θ
α

ελ

(5.2)

5.2.3. The Minimized Cost Function of the thj Processing Stream

For each thj stream, we have an “ jN ” dimensional optimization problem. The adjustable

parameters are the theoretical processing rates (kP) of the tasks: }...2,1{| jk NkTT ∈∈ as

well as their service sequence in the thj processing stream. We optimize jC as defined by

(7) as follows.

 79

0)()1(
jN

,2

2 =−−=
∂

∂
∑
=

−

kr

rt

k

k
kkjj

k

j
u

P

B
PBu

P

C
jα

ελα for }...2,1{ jNk ∈ .

The solution of our optimization problem is:

j

kr

rt

jj

kk u
u

PP
α

ελα

1

N

,

j

)1(

1
'

−
== ∑

=
for }...2,1{ jNk∈ and]3,1(∈jα

kk

j

kk PP
kr

rt

k

k
kkjjj

PPk

j
u

P

B
PBu

P

C

'

N

,3

3

'

2

2 j

2)()1)(2(

=
=

−

=

+−−=
∂

∂
∑α

ελαα

kk

j

PP
kr

rtkjjj

k

k uPu
P

B

'

N

,3

j

2)()1)(2(

=
=

+−−= ∑α

ελαα

0

)1(

3

N

,

N

,
j

j

>

−

=

∑
∑

=

=

j

kr

rt

jj

kr

rtkj

u

u
uB

α

ε λα
α

 for }...2,1{ jNk ∈

and]3,1(∈jα

In order to confirm a global minima of jC , we generate and examine the Hessian (H)

matrix [24].

 Let
1

1
P

C
f

j

∂

∂
= ,

2
2

P

C
f

j

∂

∂
= …

j

j

N

j

N
P

C
f

∂

∂
=

=

∂

∂

=

0

11 '1 PP

j

P

C

,

=

∂

∂

=

0

22 '2 PP

j

P

C

…

=

∂

∂

=

0

'
jNjN

j PP
N

j

P

C

 80

The Hessian (H) is defined as:

)',...','(),...,(
21

2

2

2

1

2

1

2

1

1

1

2121

...

............

...

...

jNjN
j

j

j

PPPPPP
N

iii

N

N

P

f

P

f

P

f

P

f

P

f

P

f

P

f

P

f

P

f

H

=

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

Implementing the definition above, we obtain the following.

 −

−

−

=

∑
∑

∑
∑

=

=

=

=

j

j

j

t

jj

tj

r

rt

jj

r

rtj

r

rt

jj

r

rtj

u

u
uB

u

u
uB

u

u
uB

H

α
ε

α

ε

α

ε

λα
α

λα
α

λα
α

3

N,

N,N

3

N

2

,

N

2

,2

3

N

1

,

N

1

,1

j

jj

j

j

j

j

)1(
000

0...00

00
)1(

0

000
)1(

Since the main diagonal of H has all non-negative entries i.e.:

0
)1(

3

N

,

N

,
j

j

>

−

∑
∑

=

=

j

kr

rt

jj

kr

rtkj

u

u
uB

α

ελα
α for }...2,1{ jNk ∈ and all the off-diagonal entries are all

 81

zero, we conclude that kP =

j

kr

rt

jj

u
u

α

ελα

1

N

,

j

)1(

1

− ∑
=

for }...2,1{ jNk∈ and]3,1(∈jα

globally minimizes jC .

5.2.4. The Minimized Constrained Cost Function of the thj Processing

Stream

 TTk ∈∀ jsk QT ,|
r

∈ , let us factor in the task and processor stream processing constraints

mentioned earlier (Chapter 3, Section 3.3.1).

We enforce kkjMax pPP ,, µ≥≥ where, kp ,µ is the task’s minimum recommended execution

rate in base instructions per second (n.Hz.). The minimum constrained cost function that

factors the processing constraints is:

∑ ∑∑
= ==

−

+

+=

j jN

1 1

,,,

N

,

1

min *
)*()(

k

k

r

jrkt

kr

rt

k

k
kkjjj tuu

P

B
PBuNC j

θ
α

ελ $ (5.3)

and

>

−

<

−

≥

−
≥

−

=

∑

∑

∑∑

=

=

==

jMax

kr

rt

jj

jMax

k

kr

rt

jj

k

k

kr

rt

jj

jMax

kr

rt

jj

k

Pu
u

P

pu
u

p

pu
u

u
u

P

j

j

jj

,

1

N

,,

,

1

N

,,

,

1

N

,,

1

N

,

j

j

jj

)1(

1
 if ,

)1(

1
 if ,

)1(

1
P if ,

)1(

1

*

α

ε

µ

α

ε
µ

µ

α

ε

α

ε

λα

λα

λαλα

n.Hz (5.4)

for }...2,1{ jNk ∈ &]3,1(∈jα

kP* is the optimum constrained processing rate of potentially executing the task stored in

the thk index of the jsQ ,

r
memory queue.

 82

5.3 Algorithms Description

This section describes the SMBSPP algorithm. First we describe our MMCVITPS

dispatcher and our SCVPPT scheduling policy. Then we present our algorithm.

5.3.1 SMBSPP Algorithm's Dispatcher (MMCVITPS)

Before presenting the complete algorithm description (V.C), let us describe in words how

its dispatcher (MMCVITPS) works. For an arriving task, MMCVITPS hypothetically or

virtually assumes the potential aggregate cost of virtually introducing the task (according

to a service discipline) to each of the processing streams. It then virtually minimizes the

aggregate cost function of each processing stream by again virtually re-adjusting the

processing rates of all tasks in the queues (of each processing stream) including the task

in question. It then finally decides on the processing stream with the lowest potential

(minimized) aggregate cost. This decision will likely dynamically affect the speed

function of the chosen processing stream's processor. We mathematically describe the

speed scaling function in section 5.3.3.

5.3.2 SMBSPP Algorithm's Service Discipline/Policy (SCVPPT)

In this service discipline, arriving tasks are sorted in each processing stream's memory

queue or multi-buffer from the lowest index (highest priority) according to their smallest

remaining computation volume per unit price of response time ()ktk uB ,/ .

 83

5.3.3 Single-threading Multi-buffer Scheduling & Processing Algorithm

(SMBSPP)

1. User or OS specifies εu for all tasks and may specify different ktu , for each

TTk ∈ .

2. For an arriving task, TTk ∈ , we evaluate and compare the minimum potential

processing cost,)1(min +jj NC of virtually introducing and processing the

arriving task in each of the available processing streams)j(1 m≤≤ . The task

virtually acquires a position index according to ktk uB ,/ (SCVPPT) in each of

the processing streams.

3. Using equations (5.3) and (5.4), the task should follow a stream j* such that

{ })1(min)1(min
1

min +=+
≤≤

jj
mj

jj NCNC

thereby it acquires the position index

according to ()ktk uB ,/ (SCVPPT) and will be processed by the *, jsP
r

 processor at

some adjusted optimum processing rate.

4. Update *jN .

5. The task stored at system index ()*,1 j i.e., the task *,1 jT , is executed by the *, jsP
r

processor at the optimum adjusted processing rate defined below: (e)

>

−

<

−

≥

−
≥

−

=

∑

∑

∑∑

=

=

==

*,

1

N

1

,

**

*,

1,

1

N

1

,

**

1,

1,

1

N

1

,

**

*,

1

N

1

,

**

*,

**j

**j

jj

)1(

1
 if ,

)1(

1
 if ,

)1(

1
P if ,

)1(

1

jMax

r

rt

jj

jMax

r

rt

jj

r

rt

jj

jMax

r

rt

jj

js

Pu
u

P

pu
u

p

pu
u

u
u

P

j

j

jj

α

ε

µ

α

ε
µ

µ

α

ε

α

ε

λα

λα

λαλα

6. Repeat steps 4 & 5 whenever a task/s is either dynamically introduced or deleted

in *, jsQ
r

.(b)

 84

7. Once the execution of the task *,1 jT is complete or terminated, the indices of all

tasks in memory queue *, jsQ
r

 are shifted down by one creating room for another

task.(a), (b)

8. If any task or tasks in *, jsQ
r

 are deleted/cancelled, each alive task in *, jsQ
r

is shifted

to the minimum available slot starting from the first index to preserve task priority.

(a), (b)

9. If we are to enforce FCFS queuing service policy or we are not allowed to

exercise preemption, whenever a task enters the queue of a processing stream it

acquires the Smallest Empty Index (SEI), also in step 2, while calculating the

virtual cost of introducing the task to each processing stream, the arriving task

virtually acquires the SEI. (c)

10. Ignore steps 2 & 3 when processors are homogeneous and instead utilize Round

Robin dispatching. (d)

Steps 2 & 3 summarize the SMBSPP algorithm's default dispatcher (MMCVITPS) under

the SCVPPT service discipline.

Step 5 describes the speed scaling function (OSTSSF).

Notes pertaining to algorithm's description:

(a) Steps 7 and 8 are maintenance operations that facilitate the long-run functionality of

the algorithm.

(b) Steps 3, 4, 7 and 8 can be implemented by adjuster modules that dynamically make

changes and keep track of the memory queue environment of each processing stream.

(c) Step 9 may degrade the performance of the algorithm.

(d) Step 10 improves the algorithm's computational complexity when processors are

homogeneous, but should not be conducted when processors substantially differ in terms

of their energy/power consumption or maximum processing rates.

(e)
 In Step 5, if the processor speed can only be set to integer values, set the optimum

processing speed to its floor or ceiling, or better yet, alternate between the two.

 85

Furthermore, if the theoretical optimum speed is un achievable, set the processors

speed to a speed that is closest to it.

5.4 Analytical Demonstration

5.4.1 A Simple Example Demonstrating the Robustness of the SMBSPP

Algorithm: Handles Dynamic Inclusion of Tasks

 We analytically present the SMBSPP algorithm’s ability to robustly handle the

dynamic inclusion of an incoming task into a processing stream by making optimum

adjustments to the execution rate of the currently processed task. Let us consider a

simple scenario described as follows. Let us assume two tasks have been optimally

dispatched by the SMBSPP algorithm to the thj processing stream. A task 2 is

introduced into a given (thj) processing stream after a task 1 is already being

processed. In general, the currently processed task 1 is no longer being executed at the

optimum rate because the inclusion of task 2 augments the aggregate cost function of

the thj processing stream, thereby changing the optimization problem. In order to

rectify (optimize) task 1’s processing rate, we follow the direction of the SMBSPP

algorithm by carrying out its step 6. Step 6 of the algorithm explicitly dictates an

optimal change in processing rate of the currently processed task whenever one or

more tasks are introduced or deleted from the same processing stream. The figure 5.2

illustrates this scenario by demonstrating the robustness of the SMBSPP Algorithm

with respect to handling the dynamic Inclusion of task 2 prior to the full completion of

task 1.

 86

After

Aj

jsP ,

Task is will be processed at the rate:jT ,2

jT ,2

jT ,1

jT ,2

Before

Aj

jsP ,

jT ,1

jT ,1Task is being processed at:

Task is now being optimally processed at the rate:j
T

,1

>

<

≥

≥

=

jMax

j

t

jMax

j

t

j

t

jMax

j

t

js

P
u

u
P

p
u

u
p

p
u

u

u

u

P

,

3

1

1,

1,

,

1,

3

1

1,

1,

1,

1,

3

1

1,

1,

,

3

1

1,

1,

,

2
 if ,

2
 if ,

2
 P if ,

2

λ

λ

λλ

ε

µ
ε

µ

µ
εε

>

<

≥

≥

=

jMax

j

t
jMax

j

t

j

t
jMax

j

t

js

P
u

u
P

p
u

u
p

p
u

u

u

u

P

,

3

1

2,

2,
,

2,

3

1

2,

2,
2,

2,

3

1

2,

2,
,

3

1

2,

2,

,

2
 if ,

2
 if ,

2
 P if ,

2

λ

λ

λλ

ε

µ
ε

µ

µ
εε

>

<

≥

≥

=

∑

∑

∑∑

=

=

==

jMax
r

rt

j

jMax

r
rt

j

r
rt

j

jMax
r

rt

j

js

Pu
u

P

pu
u

p

pu
u

u
u

P

,

3

1

2

1
,

1,

,

1,

3

1

2

1
,

1,

1,

1,

3

1

2

1
,

1,

,

3

1

2

1
,

1,

,

2

1
 if ,

2

1
 if ,

2

1
 P if ,

2

1

λ

λ

λλ

ε

µ
ε

µ

µ
εε

Aj

Adjuster

Module

Fig. 5.2: Example demonstrating how SMBSPP robustly handles dynamic inclusion of tasks

Fig. 5.3 is a time analysis of the jsP ,

r
 processor’s activity as it executes each of the two

tasks. The analysis begins at time st as shown. The tasks are executed at constant

optimum processing rates as shown in Fig 5.3. An assumption we are making is each of

the tasks are processed at optimum processing rates that are not constrained i.e. they are

not being processed at the maximum or minimum processing rates. Note that the

presented analysis changes if a third task is included into the jth processing stream before

either task 1 or task 2 has been fully processed. From an engineering design perspective,

Adjuster modules comprised of ad hoc digital circuitry may be used to dynamically keep

track of the memory queue environment (sequencing, inclusion and deletion of tasks) of

each processing stream and to compute as well as to update the optimum execution rates

of tasks accordingly.

 87

 Task 1 scheduled
for processing.

Task 1 execution begins.

Task 2 introduced to
 processing stream.

Task 1 execution complete.
Task 2 scheduled for processing.

Task 2 execution begins.

Task 2 execution
 complete.

 Time (s)

jsP ,

).(Hzn

st

jt ,1,θ
jt ,2,θbt ,1,∆

a
t ,1,∆ 2,∆t

jMaxP ,

1,µp
2µp

bP ,1

aP ,1

2P

a

bb

a
P

PtB
t

,1

,1,1,1

,1,

.∆
∆

−
=

2

2

2,
P

B
t =∆

•

•

For simplicity, we are assuming each task is executed at
optimum processing rates that are unconstrained.

Drawing not to scale: usually { } { })(,, ,1,,1,2,,2,,1, abjj ttttt ∆∆∆ +<<θθ

•

•

Note the following:

The subscripts “b” and “a”
denote “before” and “after”
respectively.

3
1

1,

1,
,1 2

=

j

t
b u

u
P

λε

3

1

2

1
,

1,
,1

2

1

= ∑

=r
rt

j
a u

u
P

λε

3

1

2,

2,
2 2

=

j

t

u

u
P

λε

1B

2B

)(n

)(n

0t

0t

Fig. 5.3: Time analysis of the jsP ,

r
processor as it executes each of the two tasks in the example.

In this example, we assumed 3=jα

and FCFS service discipline for simplicity.

 88

5.5 Simulations

5.5.1. Performance Metrics

Table I provides a list (with abbreviations and standard units) of some performance

metrics.

Table 5.1: Performance metrics

METRIC DEFINITION UNITS

TET Total execution time of executing N tasks ms

TET/N Average execution time of executing N tasks ms/task

TCRTEC

Total cost of response time and energy consumption for

executing N tasks
CDN$

TCRTEC/N

Average cost of response time and energy consumption

for executing N tasks
CDN$/task

ST

System time of executing N tasks: amount of time that at

least one processor is active
ms

TSSC

Total cost of system time and energy consumption for

executing N tasks
CDN$

TSSC/N

Average cost of system time and energy consumption for

executing N tasks
CDN$/task

In Table 5.1, the metrics in bold are used to evaluate the algorithm.

5.5.2 Simulation I: Sensitivity of SMBSPP Algorithm To Inter-arrival

Periods

The preliminary simulation assumptions are as follows:

• We have an N number of homogenous tasks each with a computation volume of

100 base instructions.

• We have three processors with the following processor power inefficiency

coefficients:

11 ..1.08 1

1

ααλ −−= nSJ ,

22 ..1.0 1

2

ααλ −−= nSJ and

33 ..0.92 1

3

ααλ −−= nSJ

 89

• These three processor have the following corresponding power constants:

8.1321 === ααα

• In this simulation, the computation volumes, loading times and unit price of

response times for all tasks are homogenous so as to eliminate the effect of

service disciplines, i.e. FCFS, SRPT and SCVPPT all behave in the same way.

• The unit price of energy is 8104.3 −= xuε $/Joule and the unit price of response

time is 3102847.2 −= xut $/Second (see Chapter 2, section ? for details).

• The task loading time (jkt ,,θ) is fixed to 9104.3 −x seconds for all tasks.

• A tasks base instruction is assumed to be comprised of 10,000 clock cycles.

• For each simulation iteration, we utilize the TET/N, TCRTEC/N and TSSC/N

performance metrics to evaluate the effect of deterministic and stochastic arrival

periods.

• All this was repeated for growing values of N (simulation iterations).

• Results were confirmed using discrete-time based simulations written in Java.

Following these assumptions, the figures below summarize the simulation results.

Table 5.2: Interpretation of inter-arrival periods

INTER-ARIVAL PERIOD INTERPRETATION

µ = 0ms Extreme (batch arrivals)

µ = 26.1ms Heavy

µ = 50ms Almost ideal

µ ≥ 156.4ms Minimal (no traffic)

Fig. 5.4 exhibits how the SMBSPP algorithm utilizes dynamic speed-scaling to adapt to

various traffic conditions. The reason why the average execution time of a task falls

under high traffic in comparison to low traffic conditions is because as a processing

stream gets clogged up, the algorithm's speed scaling function increases therefore

executing the tasks at a high rate.

 90

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100

N - Number of Tasks

T
E

T
/N

 (
M

il
li
s

e
c

o
n

d
s

 /
 T

a
s

k
)

µ = 0 ms

µ = 26.1ms

µ = 50ms

µ ≥156.4ms

Fig. 5.4: Average Execution Time for N Homogeneous Tasks: Showing Effect of

Deterministic Arrival Periods (µ).

0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

2.50E-03

3.00E-03

3.50E-03

4.00E-03

0 20 40 60 80 100

N - Number of Tasks

T
C

R
T

E
C

/N
 (

C
A

D
$

 /
 T

a
s

k
)

µ = 0 ms

µ = 26.1ms

µ = 50ms

µ ≥156.4ms

Fig. 5.5: Average Cost of Response Time & Energy Consumption for N Homogeneous

Tasks: Showing Effect of Deterministic Arrival Periods (µ).

In Fig. 5.6, the TSSC/N performance metric is a convenient metric in the sense that it is

actually the amount in dollars per task that it costs to lease out computation services. The

reason why the TSSC/N curve falls way below the TCRTEC/N metric is due to multiple

processors working in parallel; where the TSSC/N metric charges the global timescale as

can be experienced by a user while TCRTEC/N factors response times of each task

 91

leading to multiple aggregation of delays. The fact that the algorithm has a fairly constant

TSSC/N curve under heavy stochastic traffic conditions reveals its robustness.

0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

2.50E-03

0 100 200 300 400 500

N - Number of Tasks

C
A

D
$
 /
 T

a
s
k

TCRTEC/N

TSSC/N

Fig. 5.6: Average Cost of Response Time & Energy Consumption Versus Average Cost of

System Time & Energy Consumption for N Homogeneous Tasks under Exponentially Distributed

Arrival Periods with a Mean of 1/µ (µ =26ms: heavy traffic) (The results for deterministic arrival

periods is interpolated by continuous curves).

5.5.3 Simulation II: Comparing SMBSPP Algorithm's Dispatcher

(MMCVITPS) Versus Round Robin Dispatcher under FCFS, SRPT and

SCVPPT Service Disciplines

The preliminary simulation assumptions are as follows:

• We have an N number of heterogeneous tasks whose computation volumes is

Gaussian distributed with a mean of 100 base instructions and a standard

deviation of 20% mean.

• We have three processors with the following processor inefficiency coefficients:

11 ..1.08 1

1

ααλ −−= nSJ ,

22 ..1.0 1

2

ααλ −−= nSJ and

33 ..0.92 1

3

ααλ −−= nSJ

These three processor have the following corresponding power constants:

1.9441 =α ,

8.12 =α and

656.13 =α . According to [6], power constants equal to around 1.8 is a

 92

good approximation for CMOS based processors. The power function parameters

were conservatively chosen to differ from the mean by at most 8%. Presumably, this

8% deviation can be attributed to the manufacturing error of fabricating

homogeneous processors, failing to achieve equal temperature environments for all

processors or the intentional fabrication of heterogeneous processors due to design

budget constraints.

• The unit price of energy is
8104.3 −= xuε $/Joule and the unit price of response

time is Gaussian distributed with a mean of 3102847.2 −= xut $/Second and a

standard deviation of 25 % of the mean.

• For each simulation iteration, the SMBSPP Algorithm runs using its default

Dispatcher (MMCVITPS) and independently runs using the Round Robin

Dispatcher using the same input data for various service disciplines.

• All this is repeated for growing values of N (simulation iterations).

• We assume heavy traffic conditions with exponentially distributed arrival periods.

0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

2.50E-03

3.00E-03

5 50 95 140 185 230 275

N - Number of Tasks

T
C

R
T

E
C

/N
 (

C
A

D
$
 /

 T
a
s
k
)

MMCVITPS_FCFS

ROUND ROBIN_FCFS

Fig. 5.7: MMCVITPS Versus Round Robin for N Heterogeneous Tasks under Exponentially

Distributed Arrival Periods (heavy traffic) with Heterogeneous Unit Prices of Response Time

under FCFS.

 93

0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

2.50E-03

3.00E-03

5 50 95 140 185 230 275

N - Number of Tasks

T
C

R
T

E
C

/N
 (

C
A

D
$
 /

 T
a
s
k
)

MMCVITPS_SRPT

ROUND ROBIN_SRPT

Fig. 5.8: MMCVITPS Versus Round Robin for N Heterogeneous Tasks under Exponentially

Distributed Arrival Periods (heavy traffic) with Heterogeneous Unit Prices of Response Time

under SRPT Service Discipline.

0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

2.50E-03

3.00E-03

5 50 95 140 185 230 275

N - Number of Tasks

T
C

R
T

E
C

/N
 (

C
A

D
$
 /

 T
a
s
k
)

MMCVITPS_SCVPPT

ROUND ROBIN_SCVPPT

Fig. 5.9: MMCVITPS Versus Round Robin for N Heterogeneous Tasks under Exponentially

Distributed Arrival Periods (heavy traffic) with Heterogeneous Unit Prices of Response Time

under SCVPPT Service Discipline.

 94

0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

2.50E-03

3.00E-03

0 50 100 150 200 250 300
N - Number of Tasks

T
C

R
T

E
C

/N
 (

C
A

D
$
 /
 T

a
s
k
)

M M CVITPS_Heavy Traffic

ROUND ROBIN_Heavy Traffic

M M CVITPS_Ideal Traffic

ROUND ROBIN_Ideal Traffic

M M CVITPS_M inimal Traffic

ROUND ROBIN_M inimal Traffic

Fig. 5.10: MMCVITPS Versus Round Robin for N Homogeneous Tasks under Three Main

Deterministic Arrival Periods with Homogeneous Unit Prices of Response Time. (The three

service disciplines are equivalent and have no effect in this scenario).

In Figs. 5.7-5.9 we show that the algorithms dispatcher (MMCVITPS) out performs the

Round Robin dispatcher under the FCFS, SRPT and SCVPPT service disciplines under

heavy stochastic traffic conditions (with heterogeneous computation volumes of tasks and

heterogeneous unit prices of response time).

 Fig. 5.10 shows that the MMCVITPS dispatcher outperforms the Round Robin

dispatcher under three main deterministic arrival periods that correspond to very heavy,

ideal and minimal traffic conditions. If we had further assumed that heterogeneity of the

processors was more substantial, the MMCVITPS dispatcher would drastically

outperform the Round Robin dispatcher.

5.5.4 Simulation III: Evaluating SMBSPP Algorithm's Dispatcher

(MMCVITPS) under FCFS, SRPT and SCVPPT Service Disciplines.

Using the assumptions of Simulation II, we compare the MMCVITPS dispatcher under

the three service disciplines.

 95

Fig. 5.11 shows that the SCVPPT service discipline minimizes TCRTEC making it the

most ideal for the SMBSPP algorithm with its default dispatcher. We recommend that the

SCVPPT service discipline be implemented in any online speed-scaling algorithm that

aims to minimize TCRTEC and considers tasks with heterogeneous unit prices of

response time.

0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

2.50E-03

3.00E-03

3.50E-03

4.00E-03

4.50E-03

0 50 100 150 200 250 300

N - Number of Tasks

T
C

R
T

E
C

/N
 (

C
A

D
$
 /

 T
a

s
k

)

MMCVITPS_SCVPPT

MMCVITPS_SRPT

MMCVITPS_FCFS

Fig. 5.11: MMCVITPS Dispatcher Performance under SCVPPT, SRPT and FCFS Service

Disciplines for N Heterogeneous Tasks that have Exponentially Distributed Arrival Periods with

a Mean of 1/µ (almost extreme traffic of µ = 2ms) with Heterogeneous Unit Prices of Response

Time (Gaussian distributed).

5.6 Comparing the SMBSPP Algorithm's Speed-Scaling

Function (OSTSSF) to a Competitive Speed Scaling Function

Found in Current Literature

5.6.1 Analytically Comparing OSTSSF to a Competitive Speed Scaling

Function in Current Literature

In this section, we analytically compare the (OSTSSF) to a comparable and competitive

speed scaling function found in current literature (1)(~ −np β). In the next section we

 96

validate this comparison via simulations and complete the analysis. We also offer a

recommendation to rectify the optimality of the 1)(~ −np β speed scaling function.

Recall that our speed scaling function (OSTSSF) of the thj processor is:

>

−

<

−

≥

−
≥

−

=

∑

∑

∑∑

=

=

==

jMax

r

rt

jj

jMax

r

rt

jj

r

rt

jj

jMax

r

rt

jj

js

Pu
u

P

pu
u

p

pu
u

u
u

P

j

j

jj

,

1

N

1

,,

1,

1

N

1

,1,

1,

1

N

1

,,

1

N

1

,

,

j

j

jj

)1(

1
 if ,

)1(

1
 if ,

)1(

1
P if ,

)1(

1

α

ε

µ

α

ε
µ

µ

α

ε

α

ε

λα

λα

λαλα

and if we assume non-constrained processing rates, our speed scaling function (OSTSSF)

reduces to:
α

ελα

1

N

1

,,

j

)1(

1

−
= ∑

=r
rt

jj

js u
u

P

If we further assume a homogeneous unit price of response time for all tasks

({ }jNktkt uu ...2,1, ∈∀=), OSTSSF reduces to:

j

jj

t

js
u

u
P

α

ελα

1

j

,
)1(

N

−
= (5.5)

Since we are only dealing with a single processor, we drop the j
th index in all relevant

parameters of (5.5) and we have the following.

α

ελα

1

)1(

N

−
=

u

u
P t

s (5.6)

 97

In current literature, [6] states that the online speed scaling function with minimal

competitive ratio under the SRPT service discipline is33 1)(~ −np β . Where 1(.)~ −p denotes

the inverse of)(~ sp .

[6] mentions that αssp =)(~ is the power function i.e., the power needed to run at

processing speed (s) in a system with a single processor and]3,1(∈α holds for most

computer systems.

In the above-mentioned statement, n (not to be confused for the unit symbol of a base

instruction) is the occupancy of jobs. Under our notation, the occupancy is jN in (5.5)

and N in (5.6)). Let us generalize the result provided by [6] to include the energy

inefficiency coefficient. We have αλssp =)(~ . In [6], the 1)(~ −np β speed scaling function

considers a homogenous unit price of response time that is equal for all tasks. We

translate this speed scaling function under our notation and deduce:

α

ε

α

λλ
ββ

11

1 N
)(~

=

=−

u

uN
np t (5.7)

Through inspection34, εβ uut /= where tu and εu are the constant (and homogenous)

unit prices of response time and energy, respectively. We assert that these two speed

scaling functions; (5.6) and (5.7), differ by a Constant Correction Factor (CCF) of

α

α

1

)1(

1

−
=CCF and are equivalent when 2=α .

33 The actual notation used in [6] is

1)(−np β instead of
1)(~ −np β , but we do not want to confuse

 the reader since p looks similar to a task's theoretical processing rate under our notation.
34 In [63], β was defined to be the relative cost of delay.

 98

α

α

1

)1(

1

−
=CCF

α

Fig. 5.12: Constant Correction Factor between
1)(~ −np β and OSTSSF

In Fig. 5.12, we see that as we closely approach 1=α from the right, the disparity

between 1)(~ −np β and OSTSSF grows enormously.

5.6.2 Simulation IV: Comparing SMBSPP Algorithm's Speed-Scaling

Function (OSTSSF) to 1)(~ −np β under the SRPT Service Discipline.

We now compare the performance of OSTSSF versus 1)(~ −np β via simulation. Since we

are dealing with a single processor, we simulate as a function of occupancy (N) which

coincides with the number of arrived tasks as we are assuming no inter-arrival periods

between tasks, where they arrive as a batch. The preliminary simulation assumptions are

as follows:

• We have an occupancy of N number of homogenous tasks each with a

computation volume of 100 base instructions.

• We have a single processor with a power inefficiency coefficient

of
ααλ −−= nSJ ..1.0 1

 and a corresponding power constant of

α .

 99

• In this simulation, the computation volumes of all tasks are homogenous so as to

eliminate the effect of service disciplines, i.e. FCFS and SRPT coincide.

• The unit price of energy is 8104.3 −= xuε $/Joule and the unit price of response time

is 3102847.2 −= xut $/Second for all tasks in order to conduct a fair comparison

because 1)(~ −np β considers homogenous unit prices of response time and energy

consumption.

• For each simulation iteration, we utilize the TCRTEC/N performance metric to

evaluate both the speed scaling functions.

• All this was repeated for growing values of (occupancy) N (simulation iterations)

and different values of]3,1(∈α).

0.00E+00

1.00E-06

2.00E-06

3.00E-06

4.00E-06

5.00E-06

6.00E-06

7.00E-06

8.00E-06

9.00E-06

0 50 100 150 200 250 300

N - Number of Tasks (Occupancy)

T
C

R
T

E
C

(C
D

N
$

/T
a

s
k

)

OSTSCF_α=1.01

INV(P(βn))_α=1.01

0.00E+00

2.00E-05

4.00E-05

6.00E-05

8.00E-05

1.00E-04

1.20E-04

1.40E-04

1.60E-04

1.80E-04

2.00E-04

0 50 100 150 200 250 300
N - Number of Tasks (Occupancy)

T
C

R
T

E
C

/N
 (

C
A

D
$

 /
 T

a
s

k
)

OSTSCF_α=1.25

INV(P(βn))_α=1.25

Fig. 5.13: OSTSSF versus
1)(~ −np β for 01.1=α Fig. 5.14: OSTSSF versus

1)(~ −np β for 25.1=α

0.00E+00

2.00E-04

4.00E-04

6.00E-04

8.00E-04

1.00E-03

1.20E-03

1.40E-03

1.60E-03

0 50 100 150 200 250 300

N - Number of Tasks (Occupancy)

T
C

R
T

E
C

/N
 (

C
A

D
$

 /
 T

a
s

k
)

OSTSCF_α=1.5

INV(P(βn))_α=1.5

0.00E+00

1.00E-03

2.00E-03

3.00E-03

4.00E-03

5.00E-03

6.00E-03

7.00E-03

8.00E-03

0 50 100 150 200 250 300
N - Number of Tasks (Occupancy)

T
C

R
T

E
C

/N
 (

C
A

D
$

 /
 T

a
s

k
)

OSTSCF_α=1.75

INV(P(βn))_α=1.75

Fig. 5.15: OSTSSF versus
1)(~ −np β for 5.1=α Fig. 5.16: OSTSSF versus

1)(~ −np β for 75.1=α

 100

0

0.01

0.02

0.03

0.04

0.05

0.06

0 50 100 150 200 250 300

N - Number of Tasks (Occupancy)

T
C

R
T

E
C

/N
 (

C
A

D
$

 /
 T

a
s

k
)

OSTSCF_α=2.25

INV(P(βn))_α=2.25

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 50 100 150 200 250 300
N - Number of Tasks (Occupancy)

T
C

R
T

E
C

/N
 (

C
A

D
$

 /
 T

a
s

k
)

OSTSCF_α=2.5

INV(P(βn))_α=2.5

Fig. 5.17: OSTSSF versus
1)(~ −np β for 25.2=α Fig. 5.18: OSTSSF versus

1)(~ −np β for 5.2=α

0

0.05

0.1

0.15

0.2

0.25

0 50 100 150 200 250 300

N - Number of Tasks (Occupancy)

T
C

R
T

E
C

/N
 (

C
A

D
$

 /
 T

a
s

k
)

OSTSCF_α=2.75

INV(P(βn))_α=2.75

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 50 100 150 200 250 300
N - Number of Tasks (Occupancy)

T
C

R
T

E
C

/N
 (

C
A

D
$

 /
 T

a
s

k
)

OSTSCF_α=3.0

INV(P(βn))_α=3.0

Fig. 5.19: OSTSSF versus
1)(~ −np β for 75.2=α Fig. 5.20: OSTSSF versus

1)(~ −np β for 0.3=α

In figures: 5.13-5.20, we see that for 2≠α the OSTSSF speed scaling function achieves

better results than () 1−
np β in terms of the TCRTEC/N performance metric and the

disparity is more prominent the further away α is from the value of 2. When 2=α both

speed scaling functions achieve equivalent performance.

 By using a notation that is almost identical to that in current literature, we conclude

that when the unit price of response time is homogeneous, the optimum speed scaling

function under the SRPT service discipline is actually:

1

1

~
−

−α
βn

p , where εβ uut /= or 1)(~ −np β , where
j

u

ut
α

ε α
β

1

)1(

1

−
=

 101

In the latter, we are correcting or better yet, improving the resolution ofβ . Without this

correction, 1)(~ −np β is suboptimal on the performance side for 2>α , it is suboptimal on

the economy side for 2<α , and it is optimal when 2=α .

Observe that our speed scaling function encompasses this correct result and is valid for

the general case where the unit price of response time is heterogeneous in that it could

vary per task. Unlike 1)(~ −np β , our speed-scaling function also considers the appropriate

hardware and software processing constraints which is more realistic when implemented

on actual hardware.

All of the simulation results presented in this chapter are consistently scalable in terms

of considering tasks with substantially larger computation volumes, but the simulation

run times will take longer and will require a calibration of the inter-arrival periods (and

their categorizations i.e. extreme, heavy, ideal and minimal traffic conditions).

5.7 Conclusions

We have synthesized and simulated an online multiprocessor scheduling algorithm

(SMBSPP) for optimum parallel computing of portable devices or energy-aware

workstations. We focused on single threading where no processor executes more than a

single task at any given time until completion unless preemption is dictated by the service

discipline e.g. SCVPPT. In the near future, we aim to relax this assumption by

considering multithreading. The SMBSPP algorithm provides some insights. It tells us

that the optimum processing rate of a task is not a function of the task’s computation

volume and neither is it a function of the tasks loading time (jkt ,,θ). It also tells us once a

task is dynamically included into a given memory queue of a processing stream, the

optimum processing rate of the currently processed task (stored at the first index of the

queue) is likely to change. The processing rate changes because the aggregate cost

function of all tasks in the queue has changed and there exists a time dependency among

tasks in the processing stream's memory queue due to single-threading. The algorithm

explicitly finds a globally optimum solution for each aggregate cost function associated

with each processing stream. This globally optimum solution minimizes the total cost of

 102

both energy consumption and response time of tasks in each processing stream. The

solution explicitly obtains the optimum processing rates of each task in all memory

queues. We believe this robustness of the algorithm being able to handle dynamic

inclusion of heterogeneous tasks at run-time makes it appealing among hardware

architectural planers and software programmers of portable computing devices.

Assuming each processing stream has roughly n tasks queued up, the algorithm's

default dispatcher (MMCVITPS) has a worse case computational complexity of O(n2
)

with heterogeneous response time pricing and O(n) with homogenous response time

pricing, and when it uses the Round Robin dispatcher, it has a worse case computational

complexity of O(1). In terms of the TCRTEC/N metric, we demonstrated that the

algorithms default dispatcher (MMCVITPS) significantly out performs the Round Robin

dispatcher under the FCFS, SRPT and SCVPPT service disciplines for various stochastic

and deterministic traffic conditions where the degree of processor heterogeneity was mild

(power function parameters were conservatively chosen to differ from the mean by at

most 8%) yet the MMCVITPS dispatcher drastically outperformed the Round Robin

dispatcher with cost savings exceeding 100% on average. In terms of the TCRTEC/N

metric, we demonstrated that the algorithms default dispatcher (MMCVITPS)

significantly out performs the Round Robin dispatcher under the FCFS, SRPT and

SCVPPT service disciplines for various stochastic and deterministic traffic conditions. In

fact, we do not recommend the use of the Round Robin dispatcher in systems that utilize

heterogeneous processors. If the SMBSPP algorithm is to be implemented in devices with

homogeneous processors, the Round Robin dispatcher would be more ideal to use

because it would produce results equal to MMCVITPS, but with a lower worse case

computational complexity as mentioned previously.

 Through simulation, we demonstrated that the SMBSPP algorithm with its default

dispatcher (MMCVITPS), service discipline (SCVPPT) and speed-scaling function

(OSTSSF) has a fairly constant TSSC/N curve under heavy stochastic traffic conditions;

this reveals the algorithm’s robustness. It makes it suitable to be implemented in energy

aware work stations or green computational devices that utilize parallel processors and

want to maintain a fairly stable (constant) operation cost under unpredictable heavy

traffic conditions.

 103

The proposed SCVPPT service discipline always matches or outperforms the FCFS

and SRPT service disciplines as evaluated by the TCRTEC performance metric. When

implemented in the algorithm, the SCVPPT and SRPT service disciplines each have

computational complexities of O(log Nj). where Nj is the occupancy of a given processor.

SCVPPT behaves exactly like SRPT when the unit price of response time is fixed and

equivalent for all tasks; thereby it minimizes total response time. SCVPPT is sort of a

generalized version of SRPT but is flexible. It allows a user to maintain or even improve

the priority of a large task by accepting to set/pay a higher unit price of response time or

even degrade the priority of a small non-urgent task by setting a sufficiently small unit

price of response time. This is a dynamic feature that is absent in both FCFS and SRPT

service disciplines. We recommend that the SCVPPT service discipline be implemented

in any online speed-scaling algorithm that aims to minimize TCRTEC and considers

tasks with heterogeneous unit prices of response time.

 Finally, for 2≠α , simulation results show that our speed scaling function (OSTSSF)

performs better than the (){ }SRPTnp ,~ 1−β speed scaling function. We suggest improving

this speed scaling function to

−

−

SRPT
n

p
j

,
1

~
1

α
β

 in order to achieve better results as

dictated by the TCRTEC/N performance metric. When the unit price of response time

and energy is fixed for all tasks, both of these speed scaling functions have a worse case

computational complexity of O(1). Unlike (){ }SRPTnp ,~ 1−β , OSTSSF is valid for the

general case where the unit price of response time is heterogeneous in that it could vary

per task (this was done to influence the priority of task execution as mentioned

previously). Also, OSTSSF unlike (){ }SRPTnp ,~ 1−β , considers the appropriate hardware

and software processing constraints, making it more appealing in an application context.

 104

Chapter 6: Using the Laws of Supply and Demand to

Extend Battery Life and Improve Load Balancing

6.1 Introduction

 So far in this thesis we have studied algorithms that use dynamic speed scaling to

reduce the total cost of response time and energy consumption when heterogeneous tasks

are executed by heterogeneous processors under the single-threading computing

architecture. These algorithms can be used for computing devices that have an unlimited

(but not free) supply of energy. A special class of computing devices that are portable

and have their own battery source (a.k.a. mobile computing devices) complicate the

analysis because the total available energy becomes a budget. Up to this point, the

undesired consequence of using dynamic speed scaling in mobile computing devices

(under the single threading computing architecture) is that it does not explicitly factor the

remaining battery energy level of the mobile computing device. This means that if we

had a mobile computing device with low battery level and one with a fully charged

battery, the optimum processing rate is the same. This is not robust because it violates

intuition as well as the natural law pertaining to the scarcity of a resource (energy). It can

be resolved using the micro-economic laws of demand and supply. In extension, if we

had a mobile device with multiple independent energy sources (batteries) that is each

associated with a processing stream, the dispatcher should also be affected by the

remaining battery energy level of each processing stream.

 In this chapter we use the laws of supply and demand to heuristically adjust the unit

price of energy of tasks by using the remaining energy percentage. The remaining energy

percentage is a dimensionless parameter available in most mobile computing devices. It

gives an indication of the amount of remaining energy in the device. We use it as a

heuristic controller to ration or preserve the resource of scarce energy in two ways

• It attenuates speed scaling functions (slows down processor speed) as the battery

depletes.

 105

• Under independent energy sources associated with each processing steam, it

behaves like a load balancer.

 To address the first point, we introduce the Single-Threading Multi Buffer Adjusted

Dynamic (STMBAD) speed scaling algorithm. This online speed-scaling algorithm is

used to determine either the optimum or robust processing rate of executing a set of N

jobs by a single processor of a mobile computing device under the single-threading

(multi-buffered) computing architecture. We consider heterogeneous tasks that could

differ in computation volume and processing requirements. For simplicity, we assume the

unit price of energy and response time is fixed for all tasks and the overhead loading

times of tasks prior to their execution are negligible. By using speed-scaling, where the

processor's speed is able to dynamically change within hardware and software processing

constraints, the algorithm explicitly determines the robust processing rate of executing

each task. This robust35 processing rate was found to be a function of task occupancy, the

remaining battery energy percentage, the processor's power function parameters, the unit

price of response time and lastly, the unit price of energy. The algorithm allows the user

or OS to specify the unit cost of energy and response time for executing all tasks. The

algorithm has an operation mode where all tasks' unit cost of energy is also heuristically

affected by the device' remaining battery energy percentage in accordance with the

micro-economic laws of demand and supply. We synthesize the algorithm by analytically

minimizing the total cost of response time and total adjusted cost of energy consumption

of tasks. We also consider other conventional performance metrics to evaluate the

algorithm. Using numerical simulations, we show that when the remaining battery energy

percentage is factored (EPARBEP
36 mode), the algorithm: performs slightly slower37

(mildly more slower when the battery is almost drained out), but consumes far less

energy (in many cases more than 30%), can complete significantly more jobs i.e., more

than 50% more jobs for both homogenous and heterogeneous tasks (Gaussian distributed

computation volumes) and ultimately allows the mobile computing device to last longer

on the go.

35 Robust becomes optimum when the energy percentage is fixed to a value of one.
36 EPARBEP stands for Energy Price Affected by Remaining Energy Percentage.
37 it performs slower than UEP mode; UEP stands for Unadjusted Energy Price.

 106

To address the second point, we extend the analysis that was conducted in synthesizing

the STMBAD algorithm to all the parallel processing algorithms that were previously

presented in this thesis. We do this to analytically show that the remaining energy

percentage not only affects the speed scaling functions of our algorithms, but affects the

dispatchers in such a way that it leads to load balancing when each processor has its

independent energy supply (that is scarce).

 The analysis in this chapter also sheds light on the difference between optimum and

robust speed scaling algorithms (speed scaling functions and coupled dispatchers) in the

context of scheduling and processing heterogeneous tasks by heterogeneous processors

with the goal of reducing response time and energy consumption.

 This chapter is organized as follows. In Section 6.2, we use the remaining energy

percentage and the microeconomic laws of demand and supply to synthesize the

STMBAD algorithm under the EPARBEB and UEP modes. We presents the STMBAD

algorithm in section 6.3. We simulate the STMBAD algorithm under various

performance metrics in section 6.4. In section 6.5, we introduce multiple energy sources

and extend the definition of the EPARBEP mode under multiple energy sources. In

sections 6.6, 6.7 and 6.8, we extend the SBDPP, SBADPA and SMBSPP algorithms to

include EPARBEB and UEP modes (respectively). In section 6.9, we use the EPARBEP

and UEP mode extensions of our algorithms to describe the effect of the remaining

energy percentage on dynamic speed scaling functions as well as on dispatchers. We

conclude the chapter in section 6.10.

6.2 Synthesizing the STMBAD Algorithm

6.2.1 Introduction

 Let us consider a scenario where we have a mobile device with a single processor and a

memory queue (multi-buffer) that stores an arbitrary finite number of N tasks (in other

words N is the potential occupancy of the single processor). We focus on single threading

where the processor executes no more than a single task at any given time (until

completion). These N tasks may be heterogeneous in terms of the minimum software

processing rate and computation volume. For simplicity, we assume the overhead loading

time of tasks prior to processing is negligible.

 107

 The energy and response time dimensional costs of processing these N tasks by the

single processor is aggregated in a cost function. In this cost function the user or OS

defines the unit price of energy and response time for all tasks. The unit price of energy

for processing all these N tasks is adjusted by the remaining battery energy percentage in

accordance with the micro-economic laws of demand and supply. The cost function also

factors the hardware/software processing constraints and the power function parameter of

the processor. Using dynamic speed scaling, we focus on controlling/optimizing the

processing rate of the processor to minimize the total cost of both response time and

(adjusted) energy consumption of N tasks.

In this section of the chapter, we synthesize the Threading Multi Buffer Adjusted

Dynamic speed Scaling Algorithm (STMBAD) that achieves two objectives.

• It explicitly determines the processing rate of executing each of these N tasks.

• It operates in two modes: EPARBEP and UEP.

The first objective is achieved through solving an N multidimensional convex

optimization problem.

The second objective is achieved by utilizing the micro-economic laws of supply and

demand to allow or disallows the battery energy percentage (a common parameter found

in most modern mobile computing devices) to heuristically influence the price of energy

while executing these N tasks. EPARBEP stands for Energy Price Adjusted by

Remaining Battery Energy Percentage and UEP stands for Unadjusted Energy Price - i.e.,

the battery energy percentage does not affect the price of energy.

6.2.2 Mobile Hardware Resources of A Single Processor

 Table 6.1 summarizes all the hardware resource/parameters of the mobile computing

device with a single processor. We refer to the contents of Table 6.1 in subsequent

sections.

 108

Table 6.1: Hardware parameters of a mobile device with a single processor

Parameter Meaning SI Unit

mE Battery energy level of mobile device Joules

θE Threshold energy level of mobile device Joules

()θEEm − Usable battery energy of mobile device Joules

capE
Maximum energy capacity of level of mobile device

(under full charge)
Joules

%ε
Remaining battery energy percentage of mobile device

]1,0[% ∈ε

dimensionless

mP
r

Single processor of mobile device dimensionless

mP

Operating processing rate of processor nHz

MaxP

Maximum operating processing rate of processor nHz

mQ
r

Multi-buffer of processor. dimensionless

6.2.3 Managing the Remaining Battery Energy Percentage.

 In Table 6.1, we defined %ε as the remaining battery energy percentage. This

parameter is conventionally found in most modern mobile computing devices. An

example can be seen at the top right corner of Fig. 6.1.

 109

Fig. 6.1:Remaining battery energy percentage of an iPhone 5 (circled in red)

The fact that %ε is visible to the user through a graphical interface suggests that it should

be accessible by the OS of the mobile computing device. If the mobile computing device

is currently being re-charged (inflow energy meets or exceeds current use) and it is

known in advance that the mobile device will not be disrupted from recharging its battery

until completion, then during the recharging period we can ignore this value from the OS

and prematurely set our 1% =ε in our cost function (section 6.26). This is done because

energy is temporarily not a scarce resource during foreseen battery-recharge period. Also

all of the work presented in this chapter can be extended to non-mobile work stations or

computing devices that have a reliable and unlimited power supply by setting 1% =ε as

well.

 110

6.2.4 Showing how increased supply of a commodity leads to lower price

and vise versa using demand and supply curves

Price

Quantity
Q0

P0

Q1

P1

S1 S2D1

D2

P2

Fig. 6.2: Increased supply of a commodity leads to lower price

Let us assume the commodity of interest is the remaining energy in a battery of a mobile

computing device. Consider the Fig. 6.2. Let us start at the equilibrium point where the

supply curve 1 and demand curve 1 intersect ()00 , PQ . Let the commodity’s supply

increase (battery recharge), this leads to a right shift of the supply curve 1 to supply curve

2. Our new equilibrium point is ()11 , PQ . We already see a price drop (from 0P to 1P) that

suffices for arguments sake. Furthermore, the price drop is much more significant

because the new equilibrium point has more quantity than was originally demanded

(task’s energy consumption) and we need to get back to our original equilibrium quantity.

So the market forces prevail and the demand reduces to make this adjustment by left-

shifting the demand curve 1 to demand curve 2. Now we are at operation point ()20 , PQ .

The aggregate price drop is now from (0P to 2P), which shows the effect of increased

 111

supply. In other words, when the battery of a mobile device is recharging, its price of

energy should be decreasing.

.

Price

Quantity
Q0

P2

Q1

P1

S2 S1D2

D1

P0

Fig. 6.3: Decreased supply of a commodity leads to higher price

The same argument in reverse is applied to Fig. 6.3. It shows that a decreased supply of a

commodity leads to an increased price/value. This implies that when the battery energy of

a mobile device is depleting (e.g. under use), its price of energy should be increasing.

Supply and Demand are well established topics in micro-economics. Refer to [17, 36] for

further elaboration.

6.2.5 Problem Formulation

Assume the mobile computing device has a memory queue buffer, mQ
r

 that has the

capacity to store a finite arbitrary number of (N) tasks. We are essentially trying to

minimize a cost metric. This cost metric is the total cost of response time and total

adjusted cost of energy consumption of N tasks where the remaining battery energy

percentage heuristically adjusts the unit price of energy of all tasks in accordance with the

micro-economic laws of supply and demand. We minimize this cost metric by using

 112

dynamic speed scaling, where we explicitly find the robust or optimum processing rates

of all tasks in closed form.

6.2.6 Cost Function

 Let us assume that the mobile computing device' memory queue buffer currently holds

N tasks. Let
SC denote the total cost of response time and total adjusted cost of energy

consumption of processing these N tasks by a single processor.

Using vector notation and dot product operations, we have:

∑ ∑
= =

•=
N

1 1%

),(
k

k

r

r
k

js tUC
ε
ε

More explicitly using equations (3.4) and (3.5) from chapter 3 we have the following38.

{

48476

44 344 21

48476
($)cost time1Task

(S) time1Task

1

1

($)cost energy (Adjusted) 1Task

(J)energy 1Task

1

1

1

%

)(

+= −

P

B
uBP

u
C tj

αε λ
ε

{

4444 84444 76

32144 344 21

48476

($)cost time2Task

(S) time2Task

1

1

(S) time1Task

2

2

($)cost energy (Adjusted) 2Task

(J)energy 2Task

2

1

2

%

)(

+

++ −

P

B

P

B
uBP

u
t

αε λ
ε

 ...+

∑
=

−

++
N

1%

N

1

N)(

r r

r
t

P

B
u

BPu

ε
λ α

ε

38 We drop the jth

 index in those equations because we are dealing with a single processor.

 113

∑
=

−

−++=

N

1 %

1

)1(
)(

k k

k
t

kk

P

B
kNu

BPu

ε
λ α

ε
 ($) (6.1)

In equation (6.1), %ε
heuristically adjusts the cost of our energy terms. It exists due to

the micro-economic principles of demand and supply; these micro-economic laws

confirm natural laws of resources which correlate the scarcity of a commodity with its

value (monetary or otherwise). As the battery depletes, %ε reduces which in turn inflates

the price of our energy terms in our cost function as desired. This was discussed in more

detail in section 6.2.4.

6.2.6 Minimized Cost Function

We have an N dimensional optimization problem. Using speed scaling, the adjustable

parameters are the theoretical processing rates (kP) of the tasks: }...2,1{| NkTTk ∈∈

Let us optimize jC .

0)1(
)()1(

2

%

2

=−+−
−

=
∂
∂ −

k

k
t

kk

k

s

P

B
kNu

BPu

P

C

ε
λα α

ε
 for }...2,1{ Nk ∈ .

Note that we have made a critical assumption that needs to be justified; we assumed %ε

does not significantly vary or is more or less a constant function of kP which is valid

under a specific condition as explained next.

Let us explicitly denote the time dependency of %ε as)(% tε

We have

cap

m

E

EtE
t θε

−
=

)(
)(% . When the processor is executing a task kT , we have

 114

0

000%

% ,
)()()()(

)(tttfor
E

ttttPEt
t k

cap

SBLkcap >≥
−−−−

=
ελε

ε
α

)(0ttSBL −ε is the battery energy stand-by loss39 over the time interval 0tt − .

cap

k

cap

k

cap

k

cap

kk

cap

k

k EEEE

tP

E

ttP

P

t εεαεαλαλε
αα 33)()()()(0

1

% ==
−

≤
−

≤
−−

=
∂
∂ −

The assumption is valid as long as the condition: <<kε capE is satisfied i.e. the energy

consumption of a single task is insignificant compared to the energy capacity of the

battery.

Getting back to optimizing our cost function, we solve (6.1) and get:

α

ελα
ε

1

%
,

)1(

)1(

−
+−

=
u

kNu
P t

critk for }...2,1{ Nk ∈ .and]3,1(∈α

Using a Hessian matrix [24], it can be shown that this set of critical processing rates

minimizes jC .

39 Initially in this thesis, we assumed the processor incurs a zero stand by energy loss when idle,

we suspend this assumption in this particular context because we are trying to analytically model

the behavior of a battery under practical use. As an aside, energy of batteries in mobile devices

decay with time even during sleep mode and [49] shows that a battery’s stand by current drain

can be mitigated by a DC-DC converter.

 115

6.2.7 Minimized Constrained Cost Function

 TTk ∈∀ mk QT
r

∈| , let us include the processing constraints mentioned earlier in this

thesis (Chapter 3, Section 3.3.1)

We enforce Maxmk PPp ≤≤,µ where, kp ,µ is the task’s minimum recommended execution

rate in base instructions per second (n.Hz.). Assuming capk E<<ε , the (theoretical)

constrained (robust) processing rates of the tasks { } TTTTT Nk ∈......, 21 is:

>

−

+−

<

−

+−

≥

−

+−
≥

−

+−

=

Max
t

Max

k
t

k

k
t

Max
t

k

u

kNu

p
u

kNu
p

p
u

kNu

u

kNu

P

P
)1(

)1(
 if ,P

)1(

)1(
 if ,

)1(

)1(
P if ,

)1(

)1(

1

%

,

1

%
,

,

1

%

1

%

α

ε

µ

α

ε
µ

µ

α

ε

α

ε

λα
ε

λα
ε

λα
ε

λα
ε

for

}...2,1{ Nk ∈ .

We have sufficient information to describe the STMBAD Algorithm.

6.3 The STMBAD Algorithm

1. User or OS specifies εu and tu for all tasks TTk ∈ .

2. Fix 1% =ε when energy is not a scarce resource (UEP mode) otherwise acquire %ε from

OS (EPARBEP mode40) .

3. Before processing the task stored at the first index (1T), update N (number of 'alive' tasks)

4. The task 1T is executed by the mobile computing device' processor, mP
r

 at the optimum

processing rate defined below:

40 Use EPARBEP mode when capk E<<ε .

 116

>

−

<

−

≥

−
≥

−

=

Max
t

Max

k
t

k

k
t

Max
t

m

P
u

Nu
P

p
u

Nu
p

p
u

Nu

u

Nu

P

α

ε

µ

α

ε
µ

µ

α

ε

α

ε

λα
ε

λα
ε

λα
ε

λα
ε

1

%

,

1

%
,

,

1

%

1

%

)1(
 if ,

)1(
 if ,

)1(
P if ,

)1(

5. Whenever a task joins or leaves the memory queue buffer, update N and repeat step 4.

6. If we are allowed to violate FCFS service policy and permit preemption, rearrange

tasks from the lowest index according to smallest remaining computation volume

(equivalent to SRPT).

7. Repeat steps: 2-6 until N = 0 (No tasks left), in which case 0=mP .

By default, the STMBAD algorithm operates on a mode where the price of energy is

heuristically influenced by the remaining battery energy percentage in accordance with

the micro-economic laws of demand and supply; we abbreviate this operation mode as

EPARBEP (Energy Price Adjusted by Remaining Battery Energy Percentage). The

algorithm can also operate on a mode where the remaining battery energy percentage

does not influence the price of energy by permanently setting 1% =ε ; we abbreviate this

mode as UEP (Unadjusted Energy Price).

6.4 Simulating The STMBAD Algorithm

6.4.1 Performance Metrics

Table 6.2 provides a list (with abbreviations and standard units) of some performance

metrics. In this table, the metrics in bold are used to evaluate the STMBAD algorithm.

 117

Table 6.2: Performance metrics

METRIC DEFINITION UNITS

TET Total execution time of executing N tasks ms

TET/N Average execution time of executing N tasks ms/task

TRT
Total response time of executing N tasks

 (factors delays and execution time for each ask)
ms

TRT/N Average response time of N tasks ms/task

TEC Total Energy consumption for executing N tasks Joules

TEC/N Average Energy consumption for executing N tasks Joules/task

TCRTEC
Total cost of response time and energy consumption for

executing N tasks
CDN$

TCRTEC/N
Average cost of response time and energy

consumption for executing N tasks
CDN$/task

TCETEC
Total cost of execution time and energy consumption for

executing N tasks
CDN$

TCETEC/N
Average cost of execution time and energy

consumption for executing N tasks
CDN$/task

6.4.2 Simulation I: STMBAD Algorithm's EPARBEP Mode Versus UEP

Mode While Processing N Homogenous Tasks

The preliminary simulation assumptions are as follows:

• We have an N number of homogenous tasks each with a computation volume of

500 base instructions.

• The processor's power function parameters are 3=α and)/.(100.1 329 nSJx −=λ .

• The unit price of energy is 8104.3 −= xuε $/Joule and the unit price of response

time is 3102847.2 −= xut
$/Second (see Chapter 3 section 3.2 for details).

• We have a 900 Kilo Joule battery with 5% energy capacity reserved for OS

maintenance. (1%5 % ≤≤ ε).

 118

• Prior to an iteration of the simulation, for each different value of N, it is assumed

that the battery is fully charged and the simulation iteration terminates when the

processing of all N tasks is complete.

• For each simulation iteration, the two modes of the STMBAD algorithm are

independently simulated using the same input data.

• Simulation data is rejected when the mobile device runs out of energy before

completing all these N tasks. This is done to draw an objective comparison

between the two modes of the algorithm since a partial execution of N tasks

complicates and skews the comparison.

• The service discipline employed is FCFS for practical reasons (clairvoyance) .

• All this was repeated for growing values of N (simulation iterations).

• Simulation results were confirmed using a discrete-time based simulation written

in Java.

Following these assumptions, the graphs below summarize the simulation results.

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250

N - Number of arrived tasks (Occupancy)

ε %
 (

d
im

e
n

ti
o

n
le

s
s
)

UEP Mode

EPARBEP Mode

Fig. 6.4: Remaining battery energy percentage ()%ε after executing N tasks

In Fig. 6.4, when more 50 tasks (or about 70 tasks) are executed, we clearly see that the

laws of demand and supply are countering the effect of optimum dynamic speed scaling

as a function of occupancy. This is explained as follows. Under both modes, as the

 119

occupancy (N) of the processor increases, the dynamic speed scaling function tends to

increase as well to reduce energy and response time costs41

Also, the battery energy depletes at a high rate with increased N because of more tasks

and increased processing rates (that are dictated by the speed scaling function).

 The UEP mode operates in the absence or knowledge of scarce energy where it finds the

optimum speed scaling function that minimizes response time and unadjusted energy

costs. As N increases, the battery depletes, and the EPARBEP mode slows down the

processor's speed (attenuates it by a factor of () αε /1

% in comparison to the optimum)

because energy becomes more scarce, thereby it minimizes response time and adjusted42

energy cost. Under the EPARBEP mode, this adjusted processing rate (that is attenuated

by a factor of () αε /1

% in comparison to the optimum processing rate) is defined to be

robust.

As illustrated in Fig. 6.4, for a fixed amount of energy, The EPARBEP mode executes

significantly more tasks than the UEP mode because the EPARBEP mode has been

aware of the scarcity of energy whilst the battery has been depleting, and therefore has

made a robust adjustment to the speed scaling function of the processor by reducing it

accordingly.

0

1

2

3

4

5

6

7

8

0 50 100 150 200 250

N - Number of arrived tasks (Occupancy)

T
E

T
/N

 (
m

il
li
s

e
c

o
n

d
s

/t
a

s
k

)

UEP Mode

EPARBEP Mode

Fig. 6.5: Average execution time of executing N homogeneous tasks

41 Refer to the speed scaling function of the STMBAD algorithm.

42 Adjusted energy means that the unit price of energy is adjusted by the laws of demand
and supply through the remaining energy percentage parameter.

 120

In Fig. 6.5, initially as the occupancy of the processor increases, the speed scaling

function increases under both modes (when occupancy is less than 168 tasks). This

explains why the execution time decreases with increased occupancy. Under the

EPARBEP mode, as the battery depletes, the processor's speed scaling function is

dominantly countered or reduced by the remaining energy percentage parameter in

accordance with the laws of demand and supply, therefore it executes tasks at slower

(suboptimal43 but robust) processing rates that lead to an increase in execution time as

can be seen in Fig. 6.5.

0

50

100

150

200

250

300

0 50 100 150 200 250

N - Number of arrived tasks (Occupancy)

T
R

T
/N

 (
m

il
li
s

e
c

o
n

d
s
/t

a
s
k

)

UEP Mode

EPARBEP Mode

Fig. 6.6: Average response time for N homogeneous tasks

In Fig. 6.6, under both modes the response time increases with occupancy because of the

simultaneous service time delays of tasks under the single-threading computing

architecture. The reason why the EPABEP mode has a further increase in response time

in comparison to the UEP mode is because the speed scaling function is countered or

reduced by the remaining energy percentage parameter in accordance with the laws of

demand and supply, therefore it executes tasks at slower (suboptimal) processing rates.

Since higher processing rates incur a higher energy consumption as dictated by the

convexity of power functions, the same argument is used to explain Fig. 6.7.

43 The EPARBEP mode leads to robust but suboptimal processing rates in terms of the TCRTEC
performance metric. If we evaluate the algorithms based on the TRTEC metric where the price of

energy was hyperbolically reduced by a factor %ε , then the EPARBEP mode would lead to

optimum processing rates. We do not pursue this line of reasoning in order to avoid confusion.

 121

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250

N - Number of arrived tasks (Occupancy)

T
E

C
/N

 (
J

o
u

le
s

/t
a

s
k

)

UEP Mode

EPARBEP Mode

Fig. 6.7: Average energy consumption for executing N homogeneous tasks

0

0.005

0.01

0.015

0.02

0.025

0 50 100 150 200 250

N - Number of arrived tasks (Occupancy)

T
C

R
T

E
C

/N
 (

C
D

N
$
/t

a
s
k
)

UEP Mode

EPARBEP Mode

Fig. 6.8: Average cost of response time and energy consumption for executing N

homogeneous tasks

In Fig.6.8, the TCRTEC is the appropriate performance metric that was used to

synthesize and evaluate the algorithm because it factors response time and energy

consumption. Notice how the EPARBEP mode is suboptimal compared to the UEP mode

because it incurs a higher TCRTEC cost, but it is more robust because it budgets energy

better and there by executes more tasks.

 122

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0.002

7 57 107 157 207 257

N - Number of arrived tasks (Occupancy)

T
C

E
T

E
C

/N
 (

C
D

N
$

/t
a

s
k

) UEP Mode

EPARBEP Mode

Fig. 6.9: Average cost of execution time and energy consumption for executing N

homogeneous tasks

In Fig 6.9, the TCTEC performance metric uses execution time instead of response time

making it advantageous in leasing out computational resources because execution time

(unlike response time) for all tasks, can be conveniently measured by a global time scale.

The TCETEC and TCRTEC performance metrics both confirm that the EPARBEP mode

is suboptimal but more robust in comparison to the UEP mode.

Figures 6.4 - 6.9 show that the UEP mode prematurely drains the battery by only

competing a maximum of (all) 168 tasks under a full battery energy budget, while the

EPARBEP mode completes 255 tasks (approximately 52% more tasks).

6.4.3 Simulation II: STMBAD Algorithm's EPARBEP Mode Versus UEP

mode for N Heterogeneous Tasks

We repeat Simulation I, but now consider tasks with heterogeneous computation volumes.

We assume the computation volume of tasks is Gaussian distributed with a mean of 500

base instructions and a standard deviation of 100 base instructions (20%). Following

these assumptions Fig. 6.10 and Fig. 6.11 summarize the results.

 123

0.00E+00

2.00E-03

4.00E-03

6.00E-03

8.00E-03

1.00E-02

1.20E-02

4 54 104 154 204 254

N - Number of arrived tasks (Occupancy)

T
C

R
T

E
C

 (
C

D
N

$
/t

a
s

k
)

UEP Mode

EPARBEP Mode

Fig. 6.10: Average cost of response time and energy consumption for executing N

heterogeneous tasks (Gaussian distributed computation volumes)

0.00E+00

3.00E-04

6.00E-04

9.00E-04

1.20E-03

10 35 60 85 110 135 160 185 210 235

N - Number of arrived tasks (Occupancy)

T
C

E
T

E
C

 (
C

D
N

$
/t

a
s

k
)

UEP Mode

EPARBEP Mode

Fig. 6.11: Average cost of execution time and energy consumption for executing N

heterogeneous tasks (Gaussian distributed computation volumes)

 Figs. 6.10 and 6.11 both illustrate that the UEP mode prematurely drains the battery by

only fully completing a maximum of 168 tasks under a full battery charge while the

EPARBEP mode completes 252 tasks (50% more).

 124

6.5 Multiple Energy Sources

Let as assume the mobile computing device has m multiple processors In addition, let us

initially assume each processor has its independent energy source.

6.5.1 Mobile Hardware Parameters For Multiple Energy Sources.

 Table 6.3 summarizes other hardware resource/parameters of the mobile device. The jth

index is from one to m. These parameters corresponds with each processing stream's

power source.

Table 6.3: Multiple Energy Sources

Parameter Meaning SI Unit

jmE , Battery energy level of thj processing stream Joules

jE ,θ Threshold energy level of thj processing stream Joules

()
jjm EE ,, θ− Usable battery energy of thj processing stream Joules

jcapE ,
Maximum energy capacity of thj processing stream

(under full charge)
Joules

j%,ε
Remaining battery energy percentage of thj processing

stream,]1,0[%, ∈jε

dimensionless

6.5.2 Single or Multiple Energy Sources

It is worth mentioning that the analysis done assumes each processing stream has its

independent battery source of equal capacity, but not necessarily of equal energy level. In

practice, a special case of this assumption is usually implemented where all parallel

processing streams share only one battery source; an example is the iPhone 5. We can

simply narrow the work to single energy sources by substituting each and every j%,ε

for %ε , i.e., }...2,1{%%, , mjj ∈∀= εε . We call this operation mode homogenous EPARBEP

mode. As mentioned previously, if the mobile device is currently being re-charged

(battery inflow energy exceeds current use) and it is known in advance that the mobile

device will not be disrupted from recharging its battery/batteries until completion, then

 125

during the recharging period we can prematurely set }...2,1{%, ,1 mjj ∈∀=ε since energy is

temporarily not a scarce resource during foreseen battery recharge period. Also, all of the

work presented in this thesis can be extended to non-mobile work stations or computing

devices that have a reliable and unlimited power supply (but not free) by

setting }...2,1{%, ,1 mjj ∈∀=ε .We define this operation mode as UEP mode.

6.5.3 Defining operation modes for multiple energy sources

Homogenous EPARBEP mode set }...2,1{%%,), (: mjj OSfrom ∈∀= εε - this means that the

mobile computing device has multiple processors that utilize a single energy source.

Heterogeneous EPARBEP mode set }...2,1{%,%,), (: mjjj OSfrom ∈∀= εε - this means that

the mobile computing device has an independent energy source associated with each

processor44.

UEP mode }...2,1{%, ,1 mjj ∈∀=ε - this implies that energy is not a budget. It is useful when

the mobile device, with multiple (or single) energy sources is currently being recharged

or is applicable to work stations that have a steady (but not free) supply of energy.

So far, All the algorithms presented in this thesis operate under UEP mode. We would

like to extend them to operate under homogenous and heterogeneous EPARBEP modes.

We do so in the next few sections in order to draw some insights on the effects of the

UEP and EPARBEP modes.

6.6 Extending The SBDPP Algorithm to Include EPARBEB

Mode

6.6.1 A Processing Stream Cost Function

Recall that the SBDPP is the Single Buffer Decision and Parallel Processing algorithm

that was synthesized in Chapter IV.

Its modified cost function that includes the remaining energy percentage is as follows.

44 We assume each battery (that is associated with each processor) has equal energy capacity.

 126

444 3444 21

48476

44 344 21

48476

($)cost timeresponse sTask'

(s) timeresponse sTask'

,,,

($)cost energy (Adjusted) sTask'

 (J)energy sTask'

1

%,

)()(jk

k

k
ktkkj

j

j t
P

B
uPB

u
C j

θ
αε λ

ε
++= −

 ($)

6.6.2 Minimized Constrained Cost Function of the j
th
 processing stream

For a task TTk ∈ , the minimum constrained cost function that factors the processing

constraints and the remaining energy percentage is as follows.

>

−
++

<

−
++

≥

−
≥+

−

=

−

−

−

jMax

jj

ktj

jk

jMax

k
ktjMaxkj

j

k

jj

ktj

jk

k

k
ktkkj

j

k

jj

ktj

jMaxjkkt

j

kt

j

j

kj

j

P
u

u
t

P

B
uPB

u

p
u

u
t

p

B
upB

u

p
u

u
tu

uu
B

C

j
j

j

j

jj

jj

,

1

,%,

,,

,

,

1

,

%,

,

1

,%,

,,

,

,

1

,

%,

,

1

,%,

,,,,

1

,

%,

min,

)1(
 if),()(

)1(
 if),()(

)1(
P if ,

)1(

1

α

ε
θ

αε

µ

α

ε
θ

µ

α
µ

ε

µ

α

ε
θ

α

α

ε

λα

ε
λ

ε

λα

ε
λ

ε

λα

ε

α
λ

ε
α

α

for]3,1(∈jα .

If we assume loading times of all tasks are negligible (0,, ≈jktθ) the cost function

reduces to:

 127

>

−
+

<

−
+

≥

−
≥

−

=

−

−

−

jMax

jj

ktj

jMax

kt

jMaxj

j

k

jj

ktj

k

kt

kj

j

k

jj

ktj

jMax

j

kt

j

j

j

j

P
u

u

P

u
P

u

p
u

u

p

u
p

u

p
u

uuu

C

j

j

j

j

jj

jj

,

1

,%,

,

,1

,

%,

,

1

,%,

,

,1

,

%,

,

1

,%,

,

1

,

%,

min,
)2(

)1(
 if ,)(

)1(
 if ,)(

)1(
P if ,

)1(

1

α

ε

αε

µ

α

εµ

α
µ

ε

µ

α

ε

α

α

ε

λα

ε
λ

ε

λα

ε
λ

ε

λα

ε

α
λ

ε
α

α

for]3,1(∈jα .

We now have sufficient information to describe the SBDPP algorithm under EPARBEB

and UEP modes.

6.6.3 Single-Buffer Decision & Parallel Processing Algorithm (SBDPP)

Under EPARBEP and UEP modes.

1. User or OS specifies εu for all tasks and may specify different ktu , for each

TTk ∈ .

2. For an arriving task TTk ∈ we evaluate and compare the minimum processing

cost ()minjC) of processing the task in each of the available processing streams. A

task TTk ∈ should follow a stream j* such that { }0|min min,
1

min*, ==
≤≤

jj
mj

j NCC

thereby it acquires the label *, jkT and is processed by the *, jsP
r

 processor at the

optimum processing rate.

3. Task *, jkT is executed by *, jsP
r

at the optimum processing rate:

 128

>

−

<

−

≥

−
=≥

=

*,

1

**

,%,

*,

,

1

**

,%,

,

,

1

**

,%,

*,

*,

*

*

*

)1(
 if ,

)1(
 if ,

)1(
* if ,*

jMax

jj

ktj

jMax

k

jj

ktj

k

k

jj

ktj

kjMaxk

js

P
u

u
P

p
u

u
p

p
u

u
PPP

P

j

j

j

α

ε

µ

α

ε
µ

µ

α

ε

λα

ε

λα

ε

λα

ε

4. If *, jkT is to be cancelled/deleted or when it is completed, set 0*, =jsP and

0* =jN .

In Step 2, If all the task loading times are insignificant use min
)2(

jC instead of minjC . If all

processors are homogenous and loading times are homogenous, ignore step 2 and utilize

Round Robin dispatching.

Algorithm Notes

• For Homogenous EPARBEP mode, acquire %,ε from the one and only battery

source and then set }...2,1{%,%, ,: mjj ∈∀= εε . (use EPARBEP mode when capk E<<ε).

• For Heterogeneous EPARBEP mode acquire j%,ε from each processing stream's

battery (respectively). (use EPARBEP mode when capk E<<ε .)

• For UEP mode set }...2,1{%, ,1: mjj ∈∀=ε

• The algorithm's dispatcher is described in steps 2.

• Step 3 specifies the algorithm's speed scaling function.

Recall in Chapter 4 (section 4.41), we defined jS to be the (user specified) power

sensitivity factor.

The modified definition of ,jS under EPARBEP mode is defined as follows.

 129

() () ()()[]jkjMaxkj

j

jkt
SpPp

u

u
jjj α

µ
αα

µ
ε

λ
ε

α
,,,

%,

,
)1(

−+
−

= where]1,0[∈jS .

Using this modified jS , we present the Single Buffer Assisted Decision & Processing

Algorithm (SBADPA) under the EPARBEP mode that extends the functionality of the

SBDPP algorithm (under EPARBEP mode) by allowing the user or the OS of the mobile

device to further modify a task’s unit cost of time/energy in order to achieve a desired

(linearly controlled) mode of operation (economy/performance mode).

See Appendix II for the calibration of the ratio of time and energy prices under

EPARBEP Mode. Also refer to Appendix III for determining a task’s mode of operation

(economy/performance) with this modified definition of jS .

6.7 Extending The SBADPA Algorithm to Include EPARBEB

Mode

1. User or OS specifies εu for all tasks and may specify different ktu , for each

TTk ∈ .

2. For an arriving task TTk ∈ , solve

() ()() ()

−

−−
= j

jj
k

jj

ktj

kjMax

j p
u

u

pP
S

α
µ

ε
α

µ
α λα

ε
,

,%,

,,
)1(

1
, mj1 ≤≤∀

 for each processing stream. If 0<jS , set jS = 0 and If 1>jS , set jS = 1

 (satisfying processing constraints).

3. User or OS of mobile device can eliminate considering streams whose jS values

are undesirable (optional).

4. For the given tasks TTk ∈ , we evaluate and compare the minimum modified cost

function of processing a task ((.)ˆ
minjC) in each of the available processing

streams, where:

 130

 () () ()()[] jkjkjMaxk

j

kj

j tSpPp
B

C j
jjj

,,

1

,,,min,
)1(

ˆ
θ

αα
µ

αα
µα

α
+

−+

−
=

−

 If all task loading times are negligible use

() () ()()[]

−+

−
=

−
j

jjj

jkjMaxk

j

j

j SpPpC αα
µ

αα
µα

α 1

,,,min,
)1(

ˆ

5. A task TTk ∈ should follow a stream j* such that { }0|ˆminˆ
min,

1
min, ==

≤≤
jj

mj
j NCC

thereby it acquires the label *, jkT and is processed by the *, jsP
r

 processor at the

optimum processing rate.

6. The optimum processing rate of the *, jsP
r

 processor is

() () ()()[] j
jjj

jkjMaxkjs SpPpP αα
µ

αα
µ

1

,,,*, −+= .

7. If *, jkT is to be cancelled/deleted or when it is completed, set 0*, =jsP and

0* =jN .

Algorithm Notes

a. Use EPARBEP mode when capk E<<ε .

b. For Homogenous EPARBEP mode, acquire %,ε from the one and only

battery source and then set }...2,1{%,%, ,: mjj ∈∀= εε .

c. For Heterogeneous EPARBEP mode acquire j%,ε from each processing

stream's battery (respectively).

d. For UEP mode set }...2,1{%, ,1: mjj ∈∀=ε .

e. If all processors are homogenous and loading times are homogenous,

ignore step 4 and 5 and instead use Round Robin dispatching.

f. The algorithm's dispatcher is comprised of steps (4 & 5).

g. Step 6 is the algorithm's speed scaling function.

 131

In the next section, we extend the Single-threading Multi-buffer Scheduling & Processing

algorithm (SMBSPP) to include the EPARBEP mode.

6.8 Extending The SMBSPP Algorithm to Include EPARBEB

Mode

6.8.1 The Minimized Constrained Cost Function of the thj Processing

Stream under EPARBEP

 The minimum constrained cost function that that includes homogenous and

heterogeneous EPARBEP modes is as follows:

∑ ∑∑
= ==

−

+

+=

j jN

1 1

,,,

N

,

1

%,
min *

)*()(
k

k

r

jrkt

kr

rt

k

k

kkj

j

jj tuu
P

B
PB

u
NC j

θ
αε λ

ε (6.2)

and

>

−

<

−

≥

−
≥

−

=

∑

∑

∑∑

=

=

==

jMax

kr

rt

jj

j

jMax

k

kr

rt

jj

j

k

k

kr

rt

jj

j

jMax

kr

rt

jj

j

k

Pu
u

P

pu
u

p

pu
u

u
u

P

j

j

jj

,

1

N

,

%,

,

,

1

N

,

%,

,

,

1

N

,

%,

,

1

N

,

%,

j

j

jj

)1(
 if ,

)1(
 if ,

)1(

P if ,
)1(

*

α

ε

µ

α

ε
µ

µ

α

ε

α

ε

λα

ε

λα

ε

λα

ε

λα

ε

(6.3)

for }...2,1{ jNk ∈ &]3,1(∈jα

kP* is the optimum constrained processing rate of potentially executing the task stored in

the thk index of the jsQ ,

r
memory queue.

 132

6.8.2 Single-threading Multi-buffer Scheduling & Processing Algorithm

(SMBSPP) under EPARBEP and UEP modes

1. User or OS specifies εu for all tasks and may specify different ktu , for each

TTk ∈ .

2. For an arriving task, TTk ∈ , we evaluate and compare the minimum potential

processing cost,)1(min +jj NC of virtually introducing and processing the

arriving task in each of the available processing streams)j(1 m≤≤ . The task

virtually acquires a position index according to ktk uB ,/ (SCVPPT) in each

of the processing streams.

3. Using equations (6.2) and (6.3), the task should follow a stream j* such that

{ })1(min)1(min
1

min +=+
≤≤

jj
mj

jj NCNC

thereby it acquires the position

index according to ()ktk uB ,/ (SCVPPT) and will be processed by the *, jsP
r

processor at some adjusted optimum processing rate.

4. Update *jN .

5. The task stored at system index ()*,1 j i.e., the task *,1 jT , is executed by the

*, jsP
r

processor at the optimum adjusted processing rate defined below:

>

−

<

−

≥

−
≥

−

=

∑

∑

∑∑

=

=

==

*,

1

N

1

,

**

%,

*,

1,

1

N

1

,

**

%,

1,

1,

1

N

1

,

**

%,

*,

1

N

1

,

**

%,

*,

**j

**j

jj

)1(
 if ,

)1(
 if ,

)1(

P if ,
)1(

jMax

r

rt

jj

j

jMax

r

rt

jj

j

r

rt

jj

j

jMax

r

rt

jj

j

js

Pu
u

P

pu
u

p

pu
u

u
u

P

j

j

jj

α

ε

µ

α

ε
µ

µ

α

ε

α

ε

λα

ε

λα

ε

λα

ε

λα

ε

 133

6. Repeat steps 4 & 5 whenever a task/s is either dynamically introduced or

deleted in *, jsQ
r

.

7. Once the execution of the task *,1 jT is complete or terminated, the indices of

all tasks in memory queue *, jsQ
r

 are shifted down by one creating room for

another task.

8. If any task or tasks in *, jsQ
r

 are deleted/cancelled, each alive task in *, jsQ
r

is

shifted to the minimum available slot starting from the first index to preserve

task priority.

9. If we are to enforce FCFS queuing service policy or we are not allowed to

exercise preemption, whenever a task enters the queue of a processing stream

it acquires the Smallest Empty Index (SEI), also in step 2, while calculating

the virtual cost of introducing the task to each processing stream, the arriving

task virtually acquires the SEI.

10. Ignore steps 2 & 3 when processors are homogeneous and instead utilize

Round Robin dispatching.

Notes pertaining to algorithm's description

a. Steps 2 & 3 summarize the SMBSPP algorithm's default dispatcher

(MMCVITPS) under the SCVPPT service discipline.

b. Step 5 describes the speed scaling function (OSTSSF).

c. Use (homogenous/heterogeneous) EPARBEP mode when capk E<<ε .

d. For Homogenous EPARBEP mode, acquire %,ε from the one and only

battery source and then set }...2,1{%,%, ,: mjj ∈∀= εε

e. For Heterogeneous EPARBEP mode acquire j%,ε from each processing

stream's battery (respectively).

f. For UEP mode set }...2,1{%, ,1: mjj ∈∀=ε

 134

6.9 Effects of the EPARBEB and UEP Modes on the Speed

Scaling functions and Dispatchers of the Algorithms

6.9.1 Effects of the EPARBEB and UEP Modes on the Speed Scaling

functions of the Algorithms

Through inspection, the unconstrained speed scaling function of each and every

algorithm can be written in this form.

() jjjjs fP αε

1

%,, .=
 (6.4)

Where jf is the optimum speed of the j-th processor under the UEP mode. Upon closer

examination, jf depends on many other parameters such as the current occupancy of the

processing stream, the j-th processors power function parameters, and the user profile

parameters of the active task/s.

We clearly see that under the heterogeneous EPARBEP mode, equation (6.4) suggests

that each processor's speed scaling function is attenuated by a dynamic factor of () jj
αε
1

%,

relative to that of the optimum 45 . This is an attenuation and not a dilation

since 10 %, ≤< jε , and for CMOS based processors, 31 ≤< jα , hence implying

() 10
1

%, ≤< jj
αε .

 Let us define () jj
αε
1

%, as the attenuation factor. j%,ε , the remaining energy percentage

of the j-th processor actually varies with time. It decreases in the long run when the j-th

battery is under use and it increases when the j-th battery is recharging. Fig. 6.12

illustrates this.

45 The optimum here considers only unconstrained processing rates, which is the dominating
condition most of the time.

 135

jα
j%,ε
RechargeLong run use

 (depletion)

() jj
αε
1

%,

Attenuation
 Factor

Fig. 6.12: Attenuation factor induced by the EPARBEP mode on speed scaling functions

Figure 6.12 clearly shows that a processor with a small α value is more susceptible to

this attenuation (lower values of the attenuation factor). It also illustrates that low battery

energy level/s substantially attenuate the speed scaling functions of the processor/s

compared to that of the optimum (UEP mode).

Under the homogenous EPARBEP mode, we have }...2,1{%,%, ,: mjj ∈∀= εε . The attenuation

effect is not homogenous among the speed scaling functions of processors because

although all processors share the one and only battery source (same %,ε), the attenuation

factor is still affected by the exponent of each processor's power function (jα). Moreover,

equation (6.4) reduces to () jjjs fP αε
1

%, .= and the attenuation factor reduces to () jαε
1

%,

in this mode.

To complete the argument, we acknowledge that the speed scaling functions of the

algorithms can also operate at minimum or maximum constrained processing rates.

 136

During these rare special cases, the EPARBEP mode coincides with that of the optimum

UEP mode. In other words, the remaining energy percentage of each 46 of the j-th

processor ()
j%,ε has no effect on the speed scaling functions. See the speed scaling

functions for verification.

Let us sum up the finding of this section. The remaining energy percentage parameter/s

attenuate the optimum (unconstrained) speed scaling functions of processors, i.e. they

slow down the speed of each processor. In previous sections, this slowed down speed was

defined to be robust. As the battery/batteries energy level/s decrease under use, the

processors achieve robust processing rates that are slower compared to the optimum. This

allows the computing device to save more critical energy especially when the

battery/batteries are almost drained out. Finally, when the processors operate at

constrained processing rates, the remaining energy percentage parameter/s have no effect

on the processing rates of processors.

6.9.2 Effects of the EPARBEB and UEP Modes on the Dispatchers of the

Algorithms

Referring to step 2 of the SBDPP and SBADPA algorithms as well as step 3 of the

SMBSPP algorithm, It is quite clear that when each processing stream has its

independent energy source47, the dispatchers are dynamically affected by j%,ε . The j-th

processing stream becomes more expensive the more j%,ε depletes and vise versa.

 Let us first provide some contextual details. Through inspection and after carrying out a

mild algebraic manipulation, we see that when the processing rates are unconstrained, the

optimum energy cost component (lets call it jC
(

) of the j-th processing stream for each of

our algorithms can be expressed by equation (6.5).

46 Or for all under homogenous EPARBEP.
47 Energy source of equal capacity but not necessarily of equal energy level.

 137

 () jj

j

j

g
C

αε
1

%,

=
(

 (6.5)

Where jg is the optimum energy cost component of the j-th processing stream (under

UEP mode)

Likewise, when the processing rates are constrained, equation (6.5) transforms to

equation (6.6). This assertion is easily verified by inspecting the dispatchers of the

algorithms.

 ()j

j

j

g
C

%,ε
=

(

 (6.6)

Let us first consider the heterogeneous EPARBEP mode.

jg , the optimum energy cost component of the j-th processing stream under the UEP

mode is multiplied by some dynamic factor. We define this dynamic factor a dilation

factor because it is always greater or equal to one.

When the processing rates are unconstrained and under the heterogeneous EPARBEP

mode, the dilation factor according to (6.6) is a function of each processing stream's

remaining energy percentage as well as the exponent of each processor's power function.

When the processing rates are constrained and under heterogeneous EPARBEP mode, the

dilation factor according to (6.6) is only a function of each processing stream's remaining

energy percentage. Figures 6.13 and 6.14 illustrate this.

 138

jα

Recharge
Long run use

 (depletion)

j%,ε

() jj
αε
1

%,

1
Dilation Factor

Fig 6.13: Dilation factor induced by the EPARBEP mode on dispatchers under

unconstrained processing rates

Fig. 6.13 informs us that when processing rates are unconstrained, the processors with

small exponents of their power functions incur a large dilation factor under the

EPARBEP mode.

 To demonstrate the effect of load balancing, let as examine the contour diagram, Fig.

6.13, and superimpose in it a simple example. In this example, let us have a processor 1

with a power function exponent of 5.11 =α and a processor 2 with a power function

exponent of 22 =α . Under the UEP mode and considering all other conditions being

equal (e.g. occupancy, user profile parameters, etc) as well as having unconstrained

processing rates, the dispatchers will select processor 1 over processor 2 because it is

cheaper. In other words the UEP mode is inherently biased because it always attempts to

optimally process task/s along the cheapest processing stream (see the dispatchers of the

algorithms under the UEP mode).

 139

jα

j%,ε

Processor 2
with

Processor 1
with

22 =α

5.11 =α

Fig. 6.14: Contour diagram of Fig. 6.13 with a superimposed example

Fig. 6.14 is interesting. It informs us that under the EPARBEP mode, the processors that

are efficient (have small values of jα and are always favored by the UEP mode, e.g.

processor 1) actually incur large dilation factors of their energy cost terms. This means

that the EPARBEP induces a load balancing effect when the processor are heterogeneous

interims of the exponents of their power functions. This load balancing effect is further

accentuated by independent energy sources because as the UEP mode selects processor 1

for processing, the remaining energy percentage of processor 1)(1%,ε decreases in the

long run, making it more expensive under the EPARBEP mode to further execute tasks

by processor 1.

 In the rare case that we operate at minimum or maximum constrained processing rates,

the load balancing effect still occurs as long as we have independent energy sources

(heterogeneous EPARBEP mode). This is corroborated by equation (6.6) and Fig. 6.15.

 140

j%,ε

Dilation

Factor

j%,

1

ε

Fig. 6.15: Dilation factor induced by the EPARBEP mode on dispatchers under

constrained processing rates

Fig. 6.15 demonstrates that when processors operate at minimum or maximum

constrained processing rates, the energy component of the algorithm's cost functions are

hyperbolically inflated by each processing stream's battery energy level (heterogeneous

EPARBEP mode). Under the UEP mode, the dispatchers are not affected by the battery

energy levels. This suggests that the efficient processing streams that are favored by the

UEP mode become more expensive under the EPARBEP mode once their corresponding

(and independent) battery energy levels decrease due to disproportionate use. Hence the

load balancing effect is induced by the (independent) remaining battery energy level of

each processor.

Under the homogenous EPARBEP mode, equation (6.5) reduces to equation (6.7) and

equation (6.6) reduces to equation (6.8)

 () j

j

j

g
C

αε
1

%

=
(

 (6.7)

 ()%ε
j

j

g
C =
(

 (6.8)

 141

We clearly see that when processing rates are unconstrained, load balancing effect is still

induced by the homogenous EPAREP mode, but this type of load balancing is only

influenced by the heterogeneity in the exponents of the processors' power functions

When the processors operate at the minimum or maximum processing constraints under

the homogenous EPARBEP mode, equation (6.8) suggests that each processing stream's

energy cost terms are dilated by the same dynamic parameter. This dynamic parameter is

simply the reciprocal of the one and only battery energy level. Therefore, we can not

speculate on any existence of load balancing under this scenario.

Table 6.4 summarizes the findings of this section.

Table 6.4: Load balancing effect on dispatchers by EPARBEP modes

 Unconstrained Processing Rates Constrained Processing Rates

Homogeneous

EPARBEP

Mode

Load balancing effect induced by

the heterogeneous exponent of each

processor's power function

Inconclusive

Heterogeneous

EPARBEP

Mode

Load balancing effect induced by

each processor's independent battery

energy level as well as the

heterogeneous exponent of each

processor's power function

Load balancing effect induced

by each processor's independent

battery energy level

6.10 Conclusion

 The STMBAD algorithm provides some insights. It tells us that the optimum

processing rate of a task is not a function of its computation volume (kB). It also tells us

once a task is dynamically included into the computing device' memory buffer, the

optimum processing rate of the currently processed task increases. This processing rate

increases because the aggregate cost function (that factors response time and energy

consumption of all tasks in the multi-buffer) has increased and there exists a response

 142

time dependency among tasks due to single-threading. The algorithm has an operation

mode where all tasks' unit cost of energy is heuristically affected by the device'

remaining battery energy percentage in accordance with the micro-economic laws of

demand and supply.

 Using numerical simulations, we showed that when the remaining battery energy

percentage is factored (EPARBEP mode), the algorithm: performs slightly slower

(mildly more slower when the battery is almost drained out), but consumes far less

energy (in many cases more than 30%), can complete significantly more jobs (about 52%

more jobs for homogenous deterministic tasks and more than 50% more jobs for

heterogeneous tasks with Gaussian distributed computation volumes) and ultimately

allows the mobile computing device to last longer on the go. The algorithm explicitly

finds a globally optimum (minimum) solution for the cost of response time and energy

consumption of all active tasks in the device' buffer. We believe this robustness of the

algorithm being able to handle dynamic inclusion of heterogeneous tasks in real time and

it being able to take advantage of the remaining battery energy percentage also at run-

time makes it appealing among hardware architectural planers and software programmers

of mobile computing devices. The STMBAD algorithm can also be implemented in non-

mobile work stations or computing devices that have a reliable and unlimited (but not

free) supply of power by permanently setting the battery energy percentage parameter to

one. Assuming we have N tasks queued up for processing, the algorithm has worse case

computational complexities of O(1) and O(log(N)) under FCFS and SRPT service

policies (respectively).

 We extended all the previously constructed algorithms of this thesis to include the

EPARBEP mode and analytically showed that when processors have their independent

energy sources, the EPARBEP mode induces a load balancing effect by dilating the

energy cost terms (of a given schedule). The EPAREP mode strategically slows down

speed scaling functions as long as the processing rates are unconstrained. This slowdown

or attenuation in processing rate is inversely correlated with the amount of remaining

energy. Therefore the EPAREP mode strategically saves the critical energy needed for a

computing device to last longer on the go. The UEP mode always leads to optimum

 143

speed scaling functions and dispatchers but is not always robust in the context of energy

preservation.

 In regard to the dispatching of tasks on to processors, the UEP mode inevitably leads

to a biased selection of efficient processors over inefficient processors in order to

optimally minimize both energy and response time costs. Comparatively, the EPARBEP

mode is suboptimal, but when each processing stream has its own independent energy

supply, the EPARBEP mode induces a load balancing effect on dispatchers that counters

the selection bias of the UEP mode. Furthermore, under the EPARBEP mode, this load

balancing effect was also shown to be induced by the heterogeneous exponent of each

processor's power function even if the processors shared a single energy source as long as

they operated under unconstrained processing rates. A limitation that should not be

overlooked is that the EPARBEP mode is valid when the energy consumption of tasks is

negligible compared to the energy capacity of the battery.

 144

Chapter 7: Conclusion

7.1 Research Summary

In this thesis we synthesized, analyzed and simulated online scheduling algorithms to

optimally assign a set of arriving heterogeneous tasks to heterogeneous speed-scalable

processors under the single threaded computing architecture. We used dynamic speed-

scaling (where each processor’s speed is able to dynamically change within hardware and

software processing constraints) to minimize the total cost of response time and energy

consumption (TCRTEC) of the tasks. In our work, the processors were assumed to be

heterogeneous in that they may have differed in their hardware specifications with

respect to maximum processing rate, power function parameters and energy sources.

Tasks were heterogeneously modeled in terms of computation volume, memory and

minimum processing requirements. We also considered that the unit price of response

time for each task is heterogeneous because the user may be willing to pay higher/lower

unit prices for certain tasks, thereby increasing/decreasing their optimum processing rates.

We modeled the overhead loading time incurred when a task is loaded by a given

processor prior to its execution and assumed it to be heterogeneous as well. We

constructed a theoretical model that was used to synthesize the parallel processing

algorithms for the single buffered and multi buffered processors. We also used the micro-

economic Laws of Supply and Demand (LSD) to heuristically adjust the unit price of

energy in order to extend battery life through a proposed multi buffered, single processor

algorithm. Further more, we extended all the multi processor algorithms to include single

or multiple independent energy sources associated with each processor, where we

analytically showed that load balancing is induced in heterogeneous processors when the

unit price of energy is adjusted by the battery level of each processor in accordance with

LSD. All the algorithms provide a common insight. They all inform us that the optimum

processing rate of a given task is neither a function of its computation volume nor is it a

function of its loading time. All the algorithms in this thesis could be used for optimized

local parallel (heterogeneous) computing of mobile devices or energy aware work

stations.

 145

 7.1.1 Theoretical Framework

We constructed a theoretical framework to mainly model heterogeneous tasks and

processors. In this framework, we: defined some relevant mobile parameters including

multiple energy source parameters; proposed user profiles to incorporate the preference

of the user with respect to energy and response time pricing; discussed multiprocessor

computing scenarios based on the potential maximum occupancy; and used formulas in

current literature to deduce useful relationships pertaining to a task’s computation volume,

energy and power consumption. These relationships were corroborated with a detailed

example. In this framework we also proposed and justified a financial performance

metric, namely the cost of response time and energy consumption (TCRTEC) in dollars.

This performance metric stems from the integration of the user (pricing) profiles of tasks

with the resource consumption of schedules. The framework also described the relevant

pre-processing constraints and defined traffic conditions as a benchmark to systematically

simulate all the parallel processing algorithms in this thesis.

7.1.2 Single buffered Processors

 We presented the first, elaborate, analytical study on the use of dynamic speed scaling to

schedule heterogeneous tasks on single-buffered, heterogeneous, parallel processors with

the objective of reducing the total cost of response time and energy consumption.

We synthesized and simulated the SBDPP algorithm and its variations (SBADPA and

FPDPA). The algorithm and its variations run in real time to optimally dictate which

processor among a multiple set of (single-buffered) parallel processors should process an

incoming task, and they also explicitly determine the optimum processing rate of

executing each tasks residing in each processor's single-buffer. The three versions of the

algorithm are conceptually similar, but differ on their application and they each have

dispatchers and dynamic speed-scaling functions of constant computational complexity.

These algorithms informed us that a task’s computation volume influences its processing

cost when the loading times of tasks are not negligible, which in turn influences the

actual processing stream that will process the task. Moreover, when the loading times

tasks are negligible, a tasks computation volume does not influence the actual processing

stream that will process the task.

 146

The algorithms were extended to allow migration. This was suggested through carrying

out migration operations (HMO) of constant computational complexities (assuming a

constant number of parallel processors) but a deep analysis on this front was not pursued.

The optimum processing rate of a task under the single buffer scenario was found to be a

function of the unit price of time over that of energy as well as the processors power

function parameters. Further more, through a simple analytical example, it was shown

that our algorithm's dispatcher outperformed the Round Robin dispatcher with cost

savings correlated with the absolute values of both the energy and time prices.

 Through simulations, we observed and constructed a very useful relationship between

the average response time of a given task and the ideal deterministic inter-arrival period

that maximizes system utilization for systems with parallel, single buffered processors.

7.1.3 Multi buffered Processors

We synthesized and simulated a novel online multiprocessor scheduling algorithm

(SMBSPP) that schedules arriving heterogeneous tasks on to multi-buffered,

heterogeneous, parallel processors. This algorithm constitutes a dispatcher (MMCVITPS),

a service discipline (MMCVITPS) and a speed scaling function (SCVPPT). We assumed

the single threading computing architecture where no processor executes more than a

single task at any given time until completion unless preemption is dictated by the service

discipline The SMBSPP algorithm informed us that once a task is dynamically included

into a given memory queue of a processing stream, the optimum processing rate of the

currently processed task (stored at the first index of the queue) is likely to change. The

processing rate changes because the aggregate cost function of all tasks in the queue has

changed and there exists a time dependency among tasks in the processing stream's

memory queue due to single-threading. The algorithm explicitly finds a globally optimum

solution for each aggregate cost function associated with each processing stream. This

globally optimum solution minimizes the total cost of both energy consumption and

response time of tasks in each processing stream. The solution explicitly obtains the

optimum processing rates of each task in all memory queues of all processors.

Assuming each processing stream has roughly n tasks queued up, the algorithm's

default dispatcher (MMCVITPS) was found to have a worse case computational

 147

complexity of O(n2
) with heterogeneous response time pricing and O(n) with

homogenous response time pricing, and when it used the Round Robin dispatcher, it had

a worse case computational complexity of O(1). In terms of the TCRTEC/N metric, we

demonstrated that the algorithms default dispatcher (MMCVITPS) significantly out

performs the Round Robin dispatcher under the FCFS, SRPT and SCVPPT service

disciplines for various stochastic and deterministic traffic conditions where the degree of

processor heterogeneity was mild (power function parameters were conservatively

chosen to differ from the mean by at most 8%) yet the MMCVITPS dispatcher drastically

outperformed the Round Robin dispatcher with cost savings exceeding 100% on average.

In terms of the TCRTEC/N metric, we demonstrated that the algorithms default

dispatcher (MMCVITPS) significantly out performed the Round Robin dispatcher under

the FCFS, SRPT and SCVPPT service disciplines for various stochastic and deterministic

traffic conditions. In fact, we did not recommend the use of the Round Robin dispatcher

in systems that utilize heterogeneous processors.

 Through simulation, we demonstrated that the SMBSPP algorithm with its default

dispatcher (MMCVITPS), service discipline (SCVPPT) and speed-scaling function

(OSTSSF) had a fairly constant TSSC/N curve under heavy stochastic traffic conditions;

this revealed the algorithm’s robustness. It made it suitable to be implemented in energy

aware work stations or green computational devices that utilize parallel processors and

want to maintain a fairly stable (constant) operation cost under unpredictable heavy

traffic conditions.

The proposed SCVPPT service discipline always matched or outperformed the FCFS

and SRPT service disciplines as evaluated by the TCRTEC performance metric. When

implemented in the algorithm, the SCVPPT and SRPT service disciplines each have

computational complexities of O(log Nj). where Nj is the occupancy of a given processor.

SCVPPT was found to behave exactly like SRPT when the unit price of response time is

fixed and equivalent for all tasks; thereby it minimized the total response time of tasks.

SCVPPT is sort of a generalized version of SRPT but is flexible. It allows a user to

maintain or even improve the priority of a large task by accepting to set/pay a higher unit

price of response time or even degrade the priority of a small non-urgent task by setting a

sufficiently small unit price of response time. This is a dynamic feature that is absent in

 148

both FCFS and SRPT service disciplines. We recommended that the SCVPPT service

discipline be implemented in any online speed-scaling algorithm that aims to minimize

TCRTEC and considers tasks with heterogeneous unit prices of response time.

 Finally, for 2≠α , simulation results showed that our speed scaling function

(OSTSSF) outperformed the (){ }SRPTnp ,~ 1−β speed scaling function. We suggested

improving this speed scaling function to

−

−

SRPT
n

p
j

,
1

~
1

α
β

 in order to achieve better

results as dictated by the TCRTEC/N performance metric. When the unit price of

response time and energy is fixed for all tasks, both of these speed scaling functions have

a worse case computational complexity of O(1). Unlike (){ }SRPTnp ,~ 1−β , OSTSSF is valid

for the general case where the unit price of response time is heterogeneous in that it could

vary per task (we did this to influence the priority of task execution as mentioned

previously). Also, OSTSSF unlike (){ }SRPTnp ,~ 1−β , considers the appropriate hardware

and software processing constraints, making it more appealing in an application context.

7.1.4 Laws Of Supply & Demand and Energy Sources

We used the micro-economic laws of Supply and Demand to heuristically adjust the unit

price of energy in order to extend battery life and also to induce load balancing effects.

We achieved the first objective by synthesizing and simulating a single processor, multi-

buffered algorithm (STMBAD). This algorithm has an operation mode where all tasks'

unit cost of energy is heuristically affected by the device' remaining battery energy

percentage in accordance with the micro-economic laws of demand and supply

(EPARBEP mode).

 Using numerical simulations, we showed that when the remaining battery energy

percentage is factored (EPARBEP mode), the algorithm: performs slightly slower

(mildly more slower when the battery is almost drained out), but consumes far less

energy (in many cases more than 30%), can complete significantly more jobs (about 52%

more jobs for homogenous deterministic tasks and more than 50% more jobs for

heterogeneous tasks with Gaussian distributed computation volumes) and ultimately

allowed the mobile computing device to last longer. The algorithm explicitly finds a

 149

globally optimum (minimum) solution for the cost of response time and energy

consumption of all active tasks in the device' buffer. Like all the previously synthesized

algorithms, the STMBAD algorithm handles the dynamic inclusion of heterogeneous

tasks in real time. We suggested that the STMBAD algorithm be implemented in non-

mobile work stations or computing devices that have a reliable and unlimited (but not

free) supply of power by permanently setting the battery energy percentage parameter to

one (UEP mode). Assuming we have N tasks queued up for processing, the algorithm has

worse case computational complexities of O(1) and O(log(N)) under FCFS and SRPT

service policies (respectively).

 We extended all the previously constructed algorithms of this thesis to factor single or

multiple energy sources through the (homogenous or heterogeneous) EPARBEP mode.

This mode was defined to be the scenario when the energy price of a given schedule is

heuristically adjusted by the remaining batter energy level/s in accordance with the laws

of demand and supply. In contrast, we also maintained the UEP mode, which is the

scenario where the price of energy is un adjusted.

We analytically showed that when processors have their independent energy sources, the

EPARBEP mode induces a load balancing effect by dilating the energy cost terms (of a

given schedule). The EPAREP mode strategically slows down speed scaling functions as

long as the processing rates are unconstrained. This slowdown or attenuation in

processing rate is inversely correlated with the amount of remaining battery energy.

Therefore the EPAREP mode strategically saves the critical energy needed for a

computing device to last longer on the go. The UEP mode always leads to optimum

speed scaling functions and dispatchers but was found to not always be robust in the

context of energy preservation. In regard to the dispatching of tasks on to processors, the

UEP mode inevitably leads to a biased selection of efficient processors over inefficient

processors in order to optimally minimize both energy and response time costs.

Comparatively, the EPARBEP mode was analyzed to be suboptimal, but when each

processing stream has its own independent energy supply, the EPARBEP mode was

shown to induce a load balancing effect on dispatchers that counters the selection bias of

the UEP mode. Furthermore, under the EPARBEP mode, this load balancing effect was

also shown to be induced by the heterogeneous exponent of each processor's power

 150

function even if the processors shared a single energy source as long as they operated

under unconstrained processing rates. A limitation that should not be overlooked is that

the EPARBEP mode is valid when the energy consumption of tasks is negligible

compared to the energy capacity of the battery.

7.2 Research Limitations

The following are the research limitations of this thesis.

7.2.1 Algorithmic Overhead

Generally, the algorithms make decisions on three major fronts. These decisions are

fundamentally categorical. They are as follows.

• a dispatcher to assign tasks on to processors.

• a service discipline to dictate the order of servicing tasks within each processor.

• a speed scaling functions to specify the speed of each processor.

Each of these decisions incurs a computational penalty both in time and energy. We

classify this type of computational overhead as the algorithmic overhead. All the single

buffered (multiprocessor) algorithms do not have an algorithmic overhead with respect to

service discipline due to single buffers. They also have mild algorithmic overheads for

both their speed scaling functions and their dispatchers because those decisions were

shown to be of constant computational complexity.

In the (multiprocessor) multi-buffer scenario, the computational complexity of the

MMCVITPS dispatcher is indeed substantial. It was shown to have a worse case

computational complexity of O(n2
), where n is the number of tasks in each processor's

multi-buffer. In the same scenario, the proposed service discipline (SCVPPT) and speed

scaling function (OSTSSF) have worse case computational complexities of O(log n) and

O(n) respectively. The computational complexity of the service discipline can

substantially be mitigated by using a non-preemptive service discipline such as First

Come First Serve, but doing so was shown to achieve sub-optimal TCRTEC performance.

The OSTSSF speed scaling function can be reduced to a constant computational

complexity as long as the unit price of response time is homogenous. The drawback of

 151

doing so only impacts the flexibility of the user. We lightly suggested the implementation

of the MMCVITPS dispatcher in ad-hoc hardware to guarantee performance, but the

actual algorithmic overhead cost of doing so warrants further investigation. However, we

are currently working on enhancing its computational complexity as a means to reduce its

algorithmic overhead.

7.2.2 Overhead Energy

Like all of the closely related work in existing literature48, the energy consumption during

loading times (overhead energy) was assumed to be negligible. This was justified since

the unit price of response time generally exceeds that of energy. In addition, these loading

times can be mitigated by an improvement in technology, i.e. faster digital switching

technologies. In practice, this can also be overcome by processing tasks with computation

volumes that incur response times that are sufficiently larger than their loading times.

Arguably, It is possible that the relative price of energy could increase in the future.

Nevertheless, factoring the overhead energy in the analysis will only affect the

dispatchers of our algorithms because this overhead does not influence the computation

of optimum processing speeds. In short, the speed scaling functions of our algorithms

will not change, but the dispatchers will be slightly different. Consequently, this may

open up the possibility of finding a more optimum service discipline (better than our

proposed SCVPPT service discipline) if indeed the overhead loading times are not only

heterogeneous but are also comparable to the response times of tasks.

7.2.3 Scope of Analysis

While constructing our algorithms, the boundary of analysis begins when tasks arrive,

over the time interval in which the tasks are dispatched to processors, and terminates

when all the tasks are fully processed. Beyond this boundary of analysis is to consider

and stochastically model the arrival of tasks as a Poisson process [26]. Although we

48 Related work in existing literature do not explicitly factor overhead loading times nor do they

explicitly factor overhead energy. We factored overhead loading times but not their energy
counterparts (overhead energy).

 152

considered this stochastic model while simulating the relevant algorithms, we did not

consider it in the formulation and derivation of the algorithms. Extending the boundary of

analysis to encompass this stochastic dimension will not affect the single buffered

scenario as long as no task rejections are observed, but in the (multiprocessor) multi-

buffer scenario, this consideration may prove to be a suitable avenue to derive more

efficient algorithms.

7.2.4 System Calibration

The performance of all the algorithms heavily depend on the calibration of two key

parameters. These parameters (
jα and

jλ) are the power function parameters of each

processor's power function. Before implementing the algorithms on actual hardware, we

suggest running preliminary experiments to extract sufficiently accurate values of these

parameters. We suggest more effort be invested in identifying a higher resolution of
jα

over
jλ because in general,

jα influences the performance of the algorithms to a greater

extent. With respect to the polynomial modeling of the power functions of processors, [6]

states that this model is not always appropriate because of the interference of additive

white Gaussian noise over communication channels that induce exponential power

functions. We alleviate this effect in most of our algorithms by conservatively

(infrequently) updating the speed of processors.

7.3 Future Research

We outline examples of research work that is centered around the use of dynamic speed

scaling to minimize the cost of response time and energy consumption. Considering that

{tasks, loading times, processors and unit price of response time} are all heterogeneous,

some examples of future research are as follows.

• Consider migration in the single threaded, multi-buffered computing architecture.

Migration has been solved for the deadline based scheduling problem [2, 7] but it

is an open problem in the context of the energy and flow time cost minimization

problem. This open problem is quite challenging given the assumptions of our

model where almost all the parameters are heterogeneous. Although we briefly

 153

discussed how migration can be addressed in the single buffer computing

architecture, a detailed analysis on this front could help extract a solution for the

multi-buffered case.

• Study the multithreading or processor sharing computer architecture under our

model and furthermore, to consider migration as well.

• Possibly use the Lloyd Max algorithm [48] to address the following question.

How are we to implement dynamic speed scaling algorithms in those

conventional processors that do not support dynamic speed scaling?

• Analyze task synthesizers which break tasks by assigning or distributing their

computation volumes. It would be interesting to investigate how tasks should be

distributed as a function of arrival times, occupancy of processing streams,

number of processors, power function parameters of processors, traffic conditions,

etc. with the goal of minimizing the total cost of response time and energy

consumption.

• Address some or all of the research limitations that were previously discussed.

7.4 Closing Remarks

In this thesis we have synthesized, analyzed and simulated various parallel processing

algorithms. These algorithms use dynamic speed scaling to schedule heterogeneous tasks

onto heterogeneous processors in real time. The algorithms are compatible with

homogenous processors as well as homogenous tasks. They are also compatible with

none, single or multiple battery energy sources. These versatilities make the algorithms

appealing for both mobile and stationary computing environments. The common

objective among all the algorithms is to minimize the financial cost of response time and

energy consumption. Attaching this financial cost to computing services is quite

convenient for those that lease these services. Furthermore, the algorithms may prove to

be valuable in the near future because experts in the computer architecture field have

speculated on the advent of conventional heterogeneous computing.

 154

Bibliography

[1] Albers, S. and Fujiwara, H., “Energy-efficient algorithms for flow time minimization”,

Proc. 23rd Annual Symposium on Theoretical Aspects of Computer Science

(STACS), Springer LNCS 3884, pp. 622–633, 2006.

[2] Albers, S., Antoniadis, A. and Greiner, G., “On Multi-Processor Speed Scaling with

Migration”, SPAA, pp. 279–288, 2011.

[3] Albers, S., “Energy-Efficient Algorithms”, Communications of the ACM, Vol. 53 No.

5, Pages 86-96, May, 2010.

[4] Albers, S., Muller, F. and Schmelzer, S., “Speed Scaling on Parallel Processors”,

SPAA, pp. 289-298, 2007.

[5] AMD. (2013) “AMD PowerNow™ Technology” [Online]. Available:

http://www.amd.com/us/products/technologies/amd-powernow-

technology/Pages/amd-powernow-technology.aspx.

[6] Andrew, L.L.H., Lin, M., Wierman, A., “Optimality, fairness, and robustness in

speed scaling designs”, SIGMETRICS '10 Proceedings of the ACM SIGMETRICS

international conference on Measurement and modeling of computer systems, Pages

37-48, 2010.

[7] Angel, E., Bampis, E., Kacem, F. and Letsios, D., “Speed Scaling on Parallel

Processors with Migration*”, Euro-Par, pp.128-140, 2012.

[8] Apple. (2013) “iPhone” [Online].

 Available: http://www.apple.com/asia/iphone/specs.html.

 155

[9] Asanović, K., et al., “The Landscape of Parallel Computing Research: A View from

Berkeley", EECS Department, University of California, Berkeley, pp.22, Tech. Rep.

UCB/EECS-2006-183, December 2006.

[10] Avrahami, N. and Azar, Y., “Minimizing total flow time and total completion time

with immediate dispatching”, SPAA, pp. 11–18, 2003.

[11] Bansal, N., Chan, H.-L., Lam, T.-W., Lee, K.-L., “Scheduling for speed bounded

processors”, In Proceedings of the 35th International Colloquium on Automata,

Languages and Programming, Springer LNCS 5125, 409–420, 2008.

[12] Bansal, N., Kimbrel, T. and Pruhs, K., “Dynamic speed scaling to manage energy

and temperature”, Proc. 45th Annual IEEE Symposium on Foundations of

Computer Science, pp. 520–529, 2004.

[13] Bansal, N., Kimbrel, T. and Pruhs, K., “Speed scaling to manage energy and

temperature”, J. ACM 54 (1) , pp. 1–39, 2007.

[14] Bansal, N., Pruhs, K., Stein, C., “Speed scaling for weighted flow time”, In SIAM

Journal on Computing 1294-1308, 2009.

[15] Bansal, N., Pruhs, K., Stein, C., “Speed scaling for weighted flow time”, In: Proc. of

18th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA’07), pp. 805–813,

2007.

[16] Barroso, L.A., “The price of performance”, ACM Queue 3 (2005).

[17] Baumol, W., Microeconomics: principles and policy, 1st Canadia Edition, Toronto,

Nelson Education, 2009.

[18] Bower, F.A., Sorin, D.J. and Cox, L.P., “The impact of dynamically heterogeneous

multicore processors on thread scheduling”, Micro, IEEE, 28(3), pp. 17 –25, 2008.

 156

[19] Brooks, D.M., Bose, P., Schuster, S.E., Jacobson, H., Kudva, P.N., Buyuktosunoglu,

A., Wellman, J.-D., Zyuban, V., Gupta, M., Cook, P.W.,“Power-aware

microarchitecture: design and modeling challenges for next-generation

microprocessors”, IEEE MICRO 20(6), pp. 26–44, 2000.

 [20] Bunde, D.P., “Power-aware scheduling for makespan and flow”, SPAA, pp. 190–

196, 2006.

[21] Das, S. Fundamentals of heat and mass transfer, Oxford, U.K. : Alpha Science

International, 2010.

[22] Dautovic, S., Malbasa, V., “Dynamic Power Management of a System With a Two-

Priority Request Queue Using Probabilistic-Model Checking”, In Computer-Aided

Design of Integrated Circuits and Systems, IEEE Transactions on Feb 2008.

[23] Edmonds, J. Pruhs, K., “Scalably scheduling processes with arbitrary speedup

curves”, In ACM-SIAM Symposiumon Discrete Algorithms, pages 685–692, 2009.

[24] Gradshteyn, I. S. and Ryzhik, I. M., Hessian Determinants, §14.314 in Tables of

Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, pp. 1069,

2000.

[25] Greiner, G. , Nonner, T. and Souza, A., “The bell is ringing in speed-scaled

multiprocessor scheduling”, SPAA, pp. 11-18, 2009.

[26] Grimmett, G. and Stirzaker, D., Probability and Random Processes, 3rd ed. Oxford

University Press, Jul 2010.

[27] Gupta, A., Im, S., Krishnaswamy, R., Moseley, B. and Pruhs, K., "Scheduling

heterogeneous processors isn't as easy as you think”, Association for Computing

Machinery. Proceeding of the ACM-SIAM Symposium on Discrete Algorithms:

1242-1253. Philadelphia: Society for Industrial and Applied Mathematics. (2012).

 157

[28] Gupta, A., Im, S., Krishnaswamy, R., Moseley, B. and Pruhs, K., "Scheduling

heterogeneous processors isn't as easy as you think”, Proc. of the Twenty-Third

Annual ACM-SIAM Symp. on Discrete Algorithms pp. 1242-1253. 2011.

[29] Hwang, C. H., Wu, H., "A predictive system shutdown method for energy saving of

event-driven computation”, in ACM Transactions on Design Automation of

Electronic Systems (TODAES) , Volume 5 Issue 2, Pages 226 - 241, April 2000.

[30] Hydro One. (2013, May). “BUILDING YOUR BILL: prices & rates”

[Online].Available:http://www.hydroone.com/RegulatoryAffairs/RatesPrices/Pages/

Default.aspx Access on 2013, June 19.

[31] IBM. (2013) “Power Systems Energy Management” [Online]. Available:

http://www-03.ibm.com/systems/power/software/energy/about.html.

[32] Intel. (2013) “Enhanced Intel SpeedStep® Tech. - How To Document” [Online].

 Available:http://www.intel.com/cd/channel/reseller/asmo-na/eng/203838.htm.

[33] Irani, S., Shukla, S. and Gupta, R., “Algorithms for power savings”, Proc. 14th

Annual ACM-SIAM Symposium on Discrete Algorithms, pp.37–46, 2003.

[34] Irani, S., Shukla, S.K., Gupta, R.K., “Online strategies for dynamic power

management in systems with multiple power-saving states”, ACM Trans. Embedded

Comput. Syst. 2 325–346, 2003.

[35] Irani, S., Singh, G., Shukla, S.K., Gupta, R.K., “An overview of the competitive and

adversarial approaches to designing dynamic power management strategies”, IEEE

Trans. VLSI Syst. 13 (2005), 1349–1361.

[36] Jain, T.R. Microeconomics and Basic Mathematics. New Delhi: VK Publications. pp.

24, 2006–07.

 158

[37] Karlin, A.R., Manasse, M.S., McGeoch, L.A, Owicki, S.S., “Competitive

randomized algorithms for nonuniform problems”, Algorithmica 11, 542–571, 1994.

[38] Kaxiras, S. and Martonosi, M., Computer Architecture Techniques for Power-

Efficiency, Morgan and Claypool, 2008.

[39] Khogali, R. and Das, O., "Cost Minimization for Scheduling Parallel, Single-threaded,

Heterogeneous, Speed-scalable Processors", The 19th IEEE International Conference on

Parallel and Distributed Systems (ICPADS "13), Seoul, Korea, Pg. 265-274, Dec 18, 2013.

[40] Khogali, R. and Das, O., “Extending Battery Life of a Multi-buffered, Single-threaded

Processor in a Mobile Computing Device", The Ninth IEEE Xplore International

Workshop on Scheduling and Resource Management for Parallel and Distributed Systems

(SRMPDS '13) in conjunction with the 42nd IEEE International Conference on Parallel

Processing (ICPP '13), Lyon, France, Oct 1, 2013, (In press).

[41] Khogali, R., Das, O., and Raahemifar, K., “Mobile Parallel Computing Algorithms for

Single-Buffered, Speed-Scalable Processors", 12th IEEE International Conference on Trust,

Security and Privacy in Computing and Communications (TRUSTCOM), Melbourne,

Australia, Pg.1832 - 1839, 16-18 July 2013.

[42] Koufaty et al., “Bias scheduling in heterogeneous multi-core architectures”,

EuroSys 2010.

[43] Kumar, K. and Lu,Y. “Cloud Computing For Mobile Users: Can Offloading

Computation Save Energy?”, in IEEE Xplore, pp.52, 2010.

[44] Lam, T.W., Lee, L.-K., To, I.K.-K., Wong, P.W.H., “Competitive non-migratory

scheduling for flow time and energy”, In: Proc. of the 20th Annual ACM

Symposium on Parallel Algorithms and Architectures (SPAA’08), 256–264, 2008.

[45] Lam, T.-W., Lee, L.-K., To, I.K.-K., Wong, P.W.H., “Energy efficient deadline

scheduling in two processor systems”, In Proceedings of the 18th International

Symposium on Algorithms and Computation, Springer LNCS 4835, 476–487, 2007.

 159

[46] Li, M., Yao, A.C., Yao, F.F., “Discrete and continuous min-energy schedules for

variable voltage processors”, In Proceedings of the National Academy of Sciences

USA 103 3983–3987, 2006.

[47] Li, M., Yao, F.F., “An efficient algorithm for computing optimal discrete voltage

schedules”, SIAM J. Comput. 35, 658–671, 2005.

[48] Lloyd, S., “Least squares quantization in PCM”, unpublished memo., Bell Lab.,

1957, Information Theory, IEEE Transactions on (Volume:28 , Issue: 2), pp. 129-

137, March, 1982.

[49] Merchant, A., et al., “Analysis of a Control Mechanism for a Variable Speed

Processor” in IEEE Transactions. Comput. , pp.793-801, 1996.

[50] Microsoft. (2013) “Desktop PC Energy Savings for Enterprises” [Online]. Available:

http://www.microsoft.com/environment/our-commitment/our-research.aspx.

[51] Microsoft. (2013) “Power Management and ACPI - Architecture and Driver

Support” [Online]. Available: http://msdn.microsoft.com/en-

us/windows/hardware/gg463220.aspx.

[52] Min, R., et al ., “Energy-centric enabling technologies for wireless sensor networks”,

IEEE Trans. Wireless Commun., vol. 9, no. 4, pp. 28–39, Aug. 2002.

[53] Morad, T.Y., Weiser U.C., Kolodny,A., Valero, M., Ayguadé., E.,“Performance,

power efficiency and scalability of asymmetric cluster chip multiprocessors”, IEEE

Comput. Archit, Jan 2006.

[54] Ontario Ministry of Labour. (2013, May), “Minimum Wage” [Online].

Available:http://www.labour.gov.on.ca/english/es/pubs/guide/minwage.php. Access

on 2013, June 19.

 160

[55] Parkkila, J. and Porras, J., “Improving Battery Life and Performance of Mobile

Devices with Cyber Foraging”, in IEEE, pp.91-95, 2011.

[56] Pruhs, K., Uthaisombut, P. and Woeginger, G. “Getting the best response for your

erg” Proc. 9th Scandinavian Workshop on Algorithm Theory (SWAT), Springer

LNCS 3111, pp.15–25, 2004.

[57] Pruhs, K., Sgall, J. and Torng, E., “Online scheduling”, In J. Leung, editor,

Handbook of Scheduling: Algorithms, Models and Performance Analysis, pp. 15-

1–15-41. CRC Press, 2004.

[58] Pruhs, K., Uthaisombut, P., Woeginger, G.J., “Getting the best response for your

erg”, ACM Trans. Algorithms 4, 2008.

[59] Pruhs, K., van Stee, R. and Uthaisombut, P., “Speed scaling of tasks with precedence

constraints”, Theory Comput. Syst. 43 (1), pp. 67–80, 2008.

[60] Sleator, D.D., Tarjan, R.E., “Amortized efficiency of list update and paging rules”,

Comm. ACM 28, 202–208, 1985.

[61] Sniedovich, M., Dynamic Programming Foundations and Principles, Second

Edition, CRC Press, 2010.

[62] Vaknin,S. (2009, June 18). “Nokia powering up self-charging cell phone”, CNET

[Online]. Available: http://news.cnet.com/8301-17938_105-10267006-1.html.

[63] Wierman, A., Andrew, L. L. H., and Tang, A., “Power-aware speed scaling in

processor sharing systems: Optimality and robustness” Performance Evaluation, 69

(12), pg. 601-622, 2012.

[64] Wikipidea. (2013) “Sleep mode” [Online]. Available:

http://en.wikipedia.org/wiki/Sleep_mode.

 161

[65] Wikipidea. (2013, Feb 1). “PlayStation Vita” [Online]. Available:

http://en.wikipedia.org/wiki/PlayStation_Vita. Access on 2013, Mar 10.

[66] Williams, M. (2009, Feb 12), LG, “Samsung Develop Solar-powered Cell Phones

PCWorld” [Online]. Available: http://www.pcworld.com/article/159507/article.html.

[67] XTG Technology. (2013, Feb 1). “xtgtechnology Products” [Online]. Available:

http://www.xtgtechnology.com/Products_c_11-2-0.html.

[68] Yao, F., Demers, A. and Shenker, S., “A scheduling model for reduced CPU energy”,

Proc. 36th Annual Symposium on Foundations of Computer Science, pp.374–382,

1995.

[69] Yuan, L., and Qu, G.,“Analysis of energy reduction on dynamic voltage scaling-

enabled systems”, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 24 (12),

pp. 1827–1837, 2005.

[70] Bansal, N., Chan, H.-L., Pruhs, K. “Speed scaling with an arbitrary power function"

In Proceedings of the 20th ACM-SIAM Symposium on Discrete Algorithm, 2009.

[71] Chan, H., et al., “Optimizing Throughput and Energy in Online Deadline

Scheduling”, ACM Transactions on Algorithms, Vol. 6, No. 1, Article 10, Dec 2009.

 162

Appendices

Appendix I is relevant to Chapter 3 (Section 3.6) of the thesis.

Appendices II and III are relevant to Chapter 6 (Sections 6.6 and 6.7) of the thesis.

Appendix I: Initial Modeling of A Task’s Energy & Power

Consumption

Initially, we were not formally aware of dynamic speed scaling, but we were still able to

reasonably model the energy and power consumption of a task. This was done using a

statement from a paper in the Cloud Computing literature. We were able to deduce 3=α

(α being the exponent of a CMOS processor's power function). This deduction is

consistent with the assumptions made in current literature pertaining to the Dynamic

Speed Scaling field. We show the deduction as follows.

For a task: TTk ∈ , let kε be the task’s expected energy consumption in Joules. According

to Kumar and Lu [43], we are to: “Execute programs slowly. When a processor’s clock

speed doubles, the power consumption nearly octuples. If the clock speed is reduced by

half, the execution time doubles, but only one quarter of the energy is consumed.”

 We assert that the energy consumption of a task is directly proportional to the

processing rate to a non-negative degree and is directly proportional to the execution time.

Let ∝ denote the relationship of direct proportionality.

kε ∝ α)(kP where +ℜ∈α , kε ∝ kt and kt ∝
kP

1

 Using the abovementioned statement of [43] we deduce 3=α and derive the following

equations.

 kkjk tP 3)(λε = (A.1)

k

k
k

P

B
t = (A.2)

kB relates kt to kP , and is actually the task’s remaining computation volume in base

instructions (n).

 163

We define jλ , measured in)/.(32 nSJ , to be the processor energy inefficiency coefficient.

We know that power consumption is the rate of energy consumption. Let us define the

expected power consumption of a task as kPow .

3)(/ kjkkk PtPow λε == (Watts) (A.3)

It is straight forward to verify the assertions of (A.1), (A.2) and (A.3) using the above

mentioned statement of [43]. Using (A.1) and (A.2), we further deduce:

2)(kkjk PBλε = (Joules) (A.4)

After further studying dynamic speed scaling, we generalized]3,1(∈α . Furthermore we

classified it as a heterogenic parameter of a given jth processor (jα),where]3,1(∈jα .

Appendix II: Calibrating the Ratio of Time and Energy Prices under

EPARBEP Mode

 Let us calibrate the ratio of unit prices (εuu kt /,) that happen to correlate with

processing rate and power consumption of a given task kT . Recall in Chapter 4, for a

given),(,ktk uuU ε= , associated with the task kT , we want a one to one correspondence

with kP * or jsP , which introduces the issue of calibration.

k

jj

ktj

kjsjMax p
u

u
PPP

j

,

1

,%,

,,
)1(

 * µ

α

ελα

ε
≥

−
==≥

 () ()

≥
−

≥⇒ jj

k

jj

ktj

jMax p
u

u
P

α
µ

ε

α

λα

ε
,

,%,

,
)1(

 () ()

 −

≥≥
−

⇒ jj

kj

j

jkt

jMaxj

j

j
p

u

u
P

α
µ

ε

α λ
ε

α
λ

ε

α
,

%,

,

,

%,

)1()1(
 (A.5)

Relation (A.5) is consistent with minimum and maximum processing constraints.

 164

As battery 49 energy depletes (decreasing j%,ε), the calibration region in Fig. A1

uniformly shifts to the right increasing the economy region (or decreasing the economy

region), and if the battery recharges (increasing j%,ε), the calibration region uniformly

shifts to the left decreasing the economy region (or increasing the performance region).

Performance
Mode region

 Economy
Mode region

(Joules/Second)

(Base Instructions
per Second)

Balanced Mode
point/boundary

calibration focuses on

this dynamic region

jsP ,

kp ,µ

jMaxP ,() () j
jj

jMaxk Pp ααα
µ

1

,,

2

 +

εu

u kt ,
() ()

 +−

2

)1(,,

%,

jj

jMaxk

j

j

j Pp
αα

µλ
ε

α

() j

jMaxj

j

j
P

αλ
ε

α
,

%,

)1(−() j

kj

j

j
p

α
µλ

ε

α
,

%,

)1(−

Fig. A1: A task’s operating mode and optimum processing rate as a function of user-

defined (time/energy) unit prices under EPARBEP mode

49 jth processing stream's battery.

 165

Fig. A.1 illustrates the robust processing rate of a task as a function of the ratio of time

and energy prices. For a given task, if a user wants the task’s mode of operation to escape

the economy region, he/she should do any or all of the following.

• Recharge battery/batteries (thereby increasing the remaining energy percentage/s).

• Be willing to spend more on time (increase ktu ,).

• Be willing to spend less on energy50 (decrease εu).

• Accept a higher time cost relative to energy (increase εuu kt /,).

Likewise, if a user wants the task’s mode of operation to escape the performance region,

he/she should use more depleted batteries, be willing to spend less on time (decrease ktu ,)

or spend more on energy (increase εu) or rather accept a lower time cost relative to

energy (decrease εuu kt /,). If an advanced user has a deep understanding of ktu , or εu , he

or she would specify it, and allow the SBDPP algorithm to operate on the appropriate

mode. Alternatively, a user may want to know the actual extent of a task’s mode of

operation, and may want to make a decision based on that rather than just the actual

values of ktu , or εu . To do so in a consistent fashion, we need to use a metric that is a

linear function of ()εuu kt /, . Referring to Fig. A.1, in order to achieve a linear calibration

of the task’s processing rate as a function of ()εuu kt /, , we first identify each constant

range (flat line portions of the economy and performance mode regions) in the graph and

map each of these regions to a point value. We also need to linearize the curved portion

of the figure (calibration region) via a non-linear transformation.

50 If the price of energy is determined by the OS based on time of day, a decrease in energy price
 can result from a transition between peak hours and off-peak hours.

 166

Appendix III: Determining a Task’s Mode of Operation with

EPARBEP mode

 As mentioned in Chapter 4, in order to consistently determine a task’s mode of

operation we linearly calibrate the ratio of the user defined prices ()εuu kt /, by non-

linearly transforming the task’s processing rate. We achieve this by using the task’s

power consumption instead of the task’s processing rate.

()εuu kt /, is defined as the ratio of unit time price ($/Second) and unit energy price

($/Joule). It is convenient that the resulting dimension of ()εuu kt /, is indeed

Joule/Second or Watt. According to equation (3.2), we see that ()εuu kt /, is the power

consumption of a task multiplied by a factor of
j

j

%,

)1(

ε
α −

.

The modified definition of the (user specified) power sensitivity factor)(jS under

EPABEP mode is as follows.

 Let () () ()()[]jkjMaxkj

j

jkt
SpPp

u

u
jjj α

µ
αα

µ
ε

λ
ε

α
,,,

%,

,
)1(

−+
−

= (A.6)

where]1,0[∈jS .

 167

Economy
Mode region

Performance
Mode regionBalanced Mode

boundary

Achieved linear

calibration

() ()[]jj

jMaxk

j
Pp

αα
µ

λ
,,

2
+

() j

jsj P
αλ ,

Processor's
Power

Consumption
(Watts)

0=jS 5.0=jS
1=jS

εu

u kt ,
(Joules/Second) () ()

 +−

2

)1(,,

%,

jj

jMaxk

j

j

j Pp
αα

µλ
ε

α

() j

kj

j

j
p

α
µλ

ε

α
,

%,

)1(− () j

jMaxj

j

j
P

αλ
ε

α
,

%,

)1(−

() j

kj p
α

µλ ,

() j

jMaxj P
αλ ,

Fig. A.2: Illustrating the linear calibration of a task’s operation mode by utilizing the

processor's power consumption during execution under EPARBEP mode

In Fig. A.1, we see that a task’s robust processing rate as a function of ()εuu kt /, does not

linearly determine the operation mode of a task. In Fig. A.2, a task’s power consumption

as a function of ()εuu kt /, does indeed linearly determine the operation mode of a task.

This works because a task’s power consumption is a non-linear transformation of its

processing rate. In extension, observe that in Figs. A.1 and A.2, the balanced mode of a

task’s execution is identified by average of its minimum and maximum power

consumption and not the mean of its minimum and maximum processing rate.

 168

As mentioned in Chapter 4, jS is used to linearly parameterize a task’s power

consumption over the calibration region51 (spanned by (εuu kt /,)). jS informs us on the

actual extent of power consumption while executing a task under software and hardware

processing constraints, and it also linearly determines a task’s mode of operation.

Using (A.2), it is quite convenient that the robust52 processing rate that factors processing

constraints reduces elegantly to:

() () ()()[] j
jjj

j

jkjMaxk

jj

ktj

js SpPp
u

u
P αα

µ
αα

µ

α

ελα

ε 1

,,,

1

,%,

,
)1(

−+=

−
= , for]1,0[∈jS .

When]1,0[∈jS , we get k

jj

ktj

jsjMax p
u

u
PP

j

,

1

,%,

,,
)1(

µ

α

ελα

ε
≥

−
=≥ (as desired).

51 In equation (A.6) and Fig. A.1 and A.2, we redefined jS , the user specified power sensitivity

 factor under EPAREP mode.
52 The processing rate becomes optimum when the remaining energy percentage is equal to one,

 i.e. 1%, =jε .

