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Abstract 

We synthesize online scheduling algorithms to optimally assign a set of arriving 

heterogeneous tasks to heterogeneous speed-scalable processors under the single threaded  

computing architecture. By using dynamic speed-scaling, where each processor’s speed is 

able to dynamically change within hardware and software processing constraints, the goal 

of our algorithms is to minimize the total financial cost (in dollars) of response time and 

energy consumption (TCRTEC) of the tasks. In our work, the processors are 

heterogeneous in that they may differ in their hardware specifications with respect to 

maximum processing rate, power function parameters and energy sources. Tasks are 

heterogeneous in terms of computation volume, memory and minimum processing 

requirements. We also consider that the unit price of response time for each task is 

heterogeneous because the user may be willing to pay higher/lower unit prices for certain 

tasks, thereby increasing/decreasing their optimum processing rates. We model the 

overhead loading time incurred when a task is loaded by a given processor prior to its 

execution and assume it to be heterogeneous as well.  

 Under the single threaded, single buffered computing architecture, we synthesize 

the SBDPP algorithm and its two other versions. Its first two versions allow the user to 

specify the unit price of energy and response time for executing each arriving task. The 

algorithm's second version extends the functionality of the first by allowing the user or 

the OS of the computing device to further modify a task’s unit price of time or energy in 

order to achieve a linearly controlled operation point that lies somewhere in the economy-

performance mode continuum of a task’s execution. The algorithm's third version 

operates exclusively on the latter. We briefly extend the algorithm and its versions to 

consider migration, where an unfinished task is paused and resumed on another processor. 



 iv 

The SBDPP algorithm is qualitatively compared against its two other versions. The 

SBDPP' dispatcher is analytically shown to perform  better than the well known Round 

Robin dispatcher in terms of the TCRTEC performance metric. Through simulations we 

deduce a relationship between the arrival rate of tasks, number of processors and 

response time of tasks.  

 Under the Single threaded, multi-buffered computing architecture we have four 

contributions that constitute the SMBSPP algorithm. First, we propose a novel task 

dispatching strategy for assigning the tasks to the processors. Second, we propose a novel 

preemptive service discipline called Smallest remaining Computation Volume Per unit 

Price of response Time (SCVPPT) to schedule the tasks on the assigned processor.  Third, 

we propose a dynamic speed-scaling function that explicitly determines the optimum 

processing rate of each task. Most of the simulations consider both stochastic and 

deterministic traffic conditions. Our simulation results show that SCVPPT outperforms 

the two known service disciplines, Shortest Remaining Processing Time (SRPT) and  the 

First Come First Serve (FCFS), in terms of minimizing the TCRTEC performance metric. 

The results also show that the algorithm's dispatcher drastically outperforms the well 

known Round Robin dispatcher with cost savings exceeding 100% even when the 

processors are mildly heterogeneous. Finally, analytical and simulation results show that 

our speed scaling function performs better than a comparable speed scaling function in 

current literature. 

 Under  a fixed budget of energy, we synthesize the SMBAD algorithm which uses 

the micro-economic laws of Supply and Demand (LSD) to heuristically adjust the unit 

price of energy in order to  extend battery life and execute more than 50% of tasks on a 

single processor (under the single threaded, multi buffered computing architecture). By 

extending all our multiprocessor algorithms to factor independent (battery) energy 

sources that is associated with each processor, we analytically show that load balancing 

effects are induced on heterogeneous parallel processors. This happens when the unit 

price of energy is adjusted by the battery level of each processor in accordance with LSD. 

Furthermore, we show that a variation of this load balancing effect also occurs when the 

heterogeneous processors use a single battery as long as they operate at unconstrained 

processing rates. 
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Chapter 1: Introduction 

 

1.1   Motivation 

    Energy consumption is a major constraint in today’s computing devices. A principal 

engineer at Google alerts us that in the next few years, power costs could substantially 

exceed (server) hardware costs under the current trend of performance and power 

consumption [16]. Portable/mobile computing devices e.g. laptops and mobile phones are 

a special class of computing devices in that they rely on batteries for energy. In portable 

computing devices, battery energy is indeed a scarce and essential resource. Desirable 

user experience, measured by sufficiently fast execution of tasks is equally important. 

Portable battery life can be extended by higher capacity batteries or through remote 

execution [55]. On the go, it can also be extended by portable energy restoration devices 

such as solar panel chargers produced and sold by XTG Technology [67]. An online 

article suggests that in 2009, Nokia worked on a technology to recharge their cellular 

phone battery by extracting energy emitted from ambient radio waves [62]. In that same 

year, another online article reports that Samsung worked to develop a prototype of a solar 

powered cellular phone [66].  It is evident that energy in portable computing devices is of 

great concern and companies that design or manufacture portable computing devices 

invest in battery or energy technology to remain competitive.    

    From an algorithmic perspective, computing devices can use variable speed 

processors to regulate the energy consumption and completion time of executing 

jobs/tasks. Intel, IBM and AMD provide a selection of multiprocessors that are indeed 

capable of operating at variable speeds. The ability of a processor to operate at a variable 

speed is known as dynamic speed scaling. Dynamic Speed scaling has been used as a 

strategy to reduce energy consumption [2, 4, 6, 7, 33, 68].  It has been used to manage a 

processor’s temperature and energy consumption [12] as well as to mitigate processor 

heat failure [49]. Some speed scaling algorithms factor both time and energy 

consumption of tasks [1, 68].  

    Contemporary portable computing devices such as the recent versions of mobile 

phones, Tablets, iPads and gaming consoles (for example, the PSPVita [65]) utilize 
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multiple processors. Multiple parallel processors are mostly used to improve overall 

processing performance needed for multi-media applications. In the domain of 

scheduling, considerable attention has been given to single processor architecture [1, 11-

13, 15, 47, 56, 58, 68]. Fewer have considered multiprocessors [4, 7, 20, 42, 44]. 

Although current architectures mostly consist of homogenous collection of processors, 

several works suggest that future chip architectures would consist of heterogeneous 

processors e.g. [18, 53].  Gupta et al. [28] further suggest that scheduling heterogeneous 

processors is substantially more challenging than scheduling homogeneous processors. 

    This thesis primarily investigates how to (online) schedule arriving heterogeneous 

tasks to run on multiple, heterogeneous, speed-scalable processors with the goal of 

minimizing the financial cost of response time and energy consumption of tasks. The 

tasks are heterogeneous in terms of computation volume, memory and processing 

requirements. The processors are heterogeneous in terms of their hardware specifications 

with respect to maximum processing rate, power functions and energy sources. The user 

or OS is also allowed to dictate the unit price of response time per task so as to influence 

the priority of tasks. In a later chapter of this thesis, we also allow the unit price of energy 

for all tasks to be heuristically adjusted by the micro economic laws of demand and 

supply so as to conserve energy and improve load balancing on heterogeneous processors. 

 

1.2   Research Overview 

    The energy consumption of a processor is commonly assumed to grow in proportion  

to αs where s is the processor speed and α  is a constant > 1 e.g. [4, 7, 19, 25, 68]. This 

implies that a high processing speed leads to fast execution, but incurs a high energy 

consumption. One way to reduce energy consumption is to employ dynamic speed-

scaling (e.g. see [13, 69]), where the speed of the processors can be changed dynamically 

depending on the workload. The aim is to reduce processor speed at times of low 

workload. 

    Generally, the goal of any speed-scaled multiprocessor scheduling algorithm is: (i) to 

minimize the response time given energy as a budget, (e.g. [59]) or (ii) to minimize the 

energy consumption as long as the task deadlines are not violated [56, 58, 68], or (iii) to 

optimize a tradeoff between energy consumption and response time [6, 15]. The objective 
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of our work is to synthesize parallel scheduling algorithms that use dynamic speed 

scaling to minimize the total cost (in terms of dollars) of energy and response time 

(TCRTEC). In our work, the user or OS determines unit price of response time per task. 

This allows the user to influence the degree of a task’s execution in the economy-

performance continuum. The user or OS can set the unit price of energy for all tasks 

depending on the actual unit price of energy in a given geographical region and time of 

day. 

A brief summary of key assumptions made in this thesis are as follows. 

• Multiple heterogeneous processors: Few speed scaling algorithms factor multiple 

processors e.g. [2, 4, 7]. Our scheduling algorithms consider heterogeneous 

processors that may differ in all their hardware specifications with respect to 

maximum processing rate, power function parameters and energy sources. 

• Heterogeneous tasks: There are speed scaling algorithms that only consider 

homogenous tasks, e.g. [1, 11, 59]. We consider heterogeneous jobs/tasks that 

may differ in computation volume, memory and processing requirements.   

• Online: Some speed scaling algorithms operate offline e.g. YDS algorithm in  

[68]. Our algorithms run in real time to schedule incoming heterogeneous tasks to 

run on heterogeneous processors. 

• Constrained processing rates: We factor the maximum hardware processing rate 

of processors and the minimum software processing rate of tasks to regulate the 

execution of tasks as opposed to deadline based scheduling of tasks. Many speed 

scaling algorithms [2, 4, 7, 46, 68] utilize deadline based scheduling. Deadline 

based scheduling  is not  always practical in general because tasks that run in  

conventional operating systems such as Windows and Unix do not utilize it, but 

instead use minimum or recommended processing rates to regulate the smooth 

execution of a task or application. Although few speed scaling algorithms factor 

the maximum hardware processing rate e.g. [11, 71], our speed scaling algorithms 

are the only ones that explicitly factor both hardware and software processing 

constraints. 

• User or OS determines unit cost of energy and time of a task’s execution: Unlike 

any speed scaling algorithm, we explicitly factor the input of a user or OS with 
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respect to determining the unit price time for executing each task. This allows the 

user to influence the priority of tasks. The user or OS can set the unit price of 

energy for all tasks depending on the actual unit price of energy in a given 

geographical region and time of day. 

• Overhead access time of loading tasks: We have not seen any dynamic speed 

scaling algorithm explicitly factors the overhead access time of loading and 

accessing a task by a given processor prior to execution. 

• Multiple energy sources: Unlike any speed scaling algorithm, our algorithms 

allow each processor to have its independent energy source. In the future, each 

processor may have its own energy source to improve reliability and also to 

increase total energy of the mobile computing device. Our analysis effortlessly 

considers the single energy source as well. 

• Tasks' unit price of energy  adjusted by battery energy level: Unlike any speed 

scaling algorithm, we allow the unit price of energy for all tasks to be 

heuristically adjusted by the device’s remaining battery (or batteries) energy level 

in accordance with the micro-economic laws of supply and demand. This is done 

so as to conserve energy and additionally done to improve load balancing. 

 

1.3   Related Works 

In this section, we provide a concise summary of prior related work that is most 

relevant to this thesis. 

In the past, when energy was not a major concern, the objective of scheduling 

algorithms was to minimize the total response time (also called flow time) of all tasks 

where processors were running at fixed speeds (e.g. [10, 57]). The response time is the 

time elapsed since a task arrives until it is completed. 

The study of energy-efficient speed-scaled scheduling was initiated by Yao et al. in 

[68].  They considered deadline-based scheduling for a single processor where the jobs 

need to complete by their given deadlines. The goal was to minimize energy consumption. 

Assuming the processor’s power consumption ( )(sP ) is a convex function of processor 

speed (s), where 
αssP =)(  for 1>α , they considered scheduling a sequence of tasks 
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on a single variable speed processor. Each task has a required deadline, release time and 

processing volume (analogous to the number of CPU cycles required to execute a task). 

They allow pre-emption, where a task is allowed to resume on the same processor after 

being interrupted. They proposed an optimal offline algorithm (YDS) to solve the task 

scheduling problem in polynomial time. In the same work, they further introduced two 

online algorithms, namely, Optimum Available (OA) and Average Rate (AR). They 

proved that AR has an energy competitive ratio of ( ) 2/2
αα . Bansal, Kimbrel and Pruhs 

[12] worked on OA and proved it to have an energy competitive ratio of exactly αα . To 

solve for multiprocessor case, Angel et al. [7] considered the problem of scheduling a set 

of tasks with deadlines, release dates and processing requirements, on parallel (speed 

scalable) processors so as to minimize the total energy consumption. They considered 

migration where a task is allowed to resume its execution on a different processor. They 

also allowed pre-emption. They name their optimal scheduling algorithm BAL which has 

a time complexity of )log)(( UnnfO  where, n is the number of jobs, |)(|Vf
 
is the 

computational complexity of solving a maximum flow in a layered graph with 

|| VO vertices and U is the range of all processor speed values divided by the targeted 

accuracy. Independently, Albers et al. [2] considered the same multiprocessor speed 

scaling problem with migration, and obtained an optimal scheduling algorithm that is 

fully combinatorial and has a time complexity of ))(( 2 nfnO . Angel et al. [7] compared 

their BAL algorithm to the one of Albers et al. [2] and stated that when the target 

precision is sufficiently high, the algorithm of Albers et al. [2] is superior to BAL, 

otherwise if the target accuracy is relaxed, BAL’s algorithm is indeed superior.  

Among energy efficient scheduling algorithms, several studies have considered 

minimizing the response time of jobs given a set energy budget (e.g. [59]). In particular, 

Pruhs et al. [59] considered offline scheduling to minimize the average response time on 

a single processor, for a given amount of energy. They gave a polynomial time optimal 

algorithm for the special case when jobs are of unit size. 

To better understand the tradeoff between response time and energy, Albers and 

Fujiwara [1] proposed minimizing the sum of total response time and energy for a single 
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processor. They presented an online algorithm that is 8.3e

α










 +

2

53
 competitive for jobs 

of unit size. This result was improved by Bansal et al. [15] who showed that this 

algorithm is 4-competitive. Bansal et al. [15] also gave the first constant competitive 

algorithm for arbitrary size jobs. The multiprocessor case was first discussed by Bunde 

[20] that presented an offline approximation algorithm for unit size jobs. However, Lam 

et al. [44] presented the first constant competitive online algorithm for arbitrary job sizes. 

In [44], jobs are clustered and then round robin dispatched to the processors 

independently for each cluster. Then they apply the BPS online algorithm given by 

Bansal et al. [14-15] to each processor. 

In this thesis, we present online (dynamic speed scaling) scheduling algorithms that 

minimizes the financial cost of response time plus energy for the heterogeneous 

multiprocessor case.  

 

1.4   Thesis Contribution 

The contributions of the thesis are as follows: 

1. Propose a theoretical frame work to tackle the problem of dynamic speed scaling in a 

parallel heterogeneous processing environment. We do so by carrying out the following. 

a) Define and describe a task, its computation volume and minimum processing rate. 

b) Define and describe a user profile. 

c) Define and describe a processing stream  under different computing architectures 

and briefly describe parallel processing streams. 

d) Define  relevant mobile hardware resource parameters and describing how our 

framework handles single and multiple energy sources. 

e) Model the overhead access time and describing the theoretical processing rate and 

execution time of a task. 

f) Use formulas in current literature to deduce useful relationships pertaining to a 

task’s computation volume,  energy and power consumption. 

g) Analytically and graphically illustrate the effect of processing on a task's 

remaining computation volume as well as the energy and power consumed. 
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h) Describe the decision algorithm and summarizing relevant pre-processing 

constraints. 

i) Justify the constituents of our target performance metric and briefly critique other 

performance metrics used in current literature. 

j) Distinguish our model from other relevant models found in current literature and 

map our contributions in current literature. 

k) Define traffic conditions to systematically analyze and simulate our algorithms. 

 

2. Present the first, elaborate, analytical study on the use of dynamic speed scaling to 

schedule heterogeneous tasks on  single-buffered, heterogeneous, parallel processors with 

the objective of  reducing the total cost of response time and energy consumption. 

We accomplish this by carrying out the following. 

a) Use our theoretical framework to formulate the problem and to synthesize  the 

"Single-Buffer Decision & Parallel  Processing (SBDPP)" algorithm. 

b) Achieve a linear calibration of a task's operation mode as a function of the (user-

specified) unit prices of time and energy. 

c) Construct and present two other versions of the SBDPP algorithm, namely "Single 

Buffer Assisted Decision & Processing Algorithm (SBADPA)" and  "Fixed Power 

Decision & Processing Algorithm (FPDPA)".  

d) Briefly describe how the SBDPP algorithm handles migration.  

e) Qualitatively compare the three versions of the SBDPP algorithm to each other. 

f) Analytically  show that the  dispatcher  of the SBDPP algorithm outperforms the 

Round Robin dispatcher under minimal traffic conditions.  

g) Develop a MATLAB Graphical User Interface program to simulate the SBDPP, 

SBADPA and FPDPA algorithms and also validate the algorithms via discrete 

time based simulations written in Java. 

h) Use the simulations to deduce a relationship between the arrival rate of tasks, 

number of processors and response time of tasks under the (parallel) single 

buffered computing architecture. 

i) Provide insights on the limitations of the parallel single buffered computing 

architecture.  
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3. Study the use of dynamic speed scaling to schedule heterogeneous tasks on  multi-

buffered, heterogeneous, parallel processors with the objective of  reducing the total cost 

of response time and energy consumption (TCRTEC) of tasks. 

We achieve this by carrying out the following. 

a) Synthesize and present the  “Single-threading Multi-Buffer Scheduling & Parallel 

Processing (SMBSPP)” algorithm.  

b) Present  the (SMBSPP) algorithm's dispatcher which assigns heterogeneous tasks 

to a given heterogeneous processors. 

c) Present  the (SMBSPP) algorithm's dynamic speed-scaling function, which we 

name, "Optimum Single-Threading Speed Scaling Function" (OSTSSF). 

d) Present  the (SMBSPP) algorithm's service discipline which we name the 

"Smallest remaining Computation Volume Per unit Price of response Time 

(SCVPPT)".  

e) Use a variety of performance metrics to validate the functionality of the SMBSPP 

algorithm by conducting discrete time based simulations written in Java (as well 

as analytical techniques).  

f) Use simulations to show that our MMCVITPS dispatcher works well with 

heterogeneous processors and drastically outperforms the classic Round Robin 

dispatcher with cost savings exceeding 100% on average even when processors 

are mildly heterogeneous. This was done under various deterministic and 

stochastic traffic conditions. 

g)  Show that our SCVPPT scheduling discipline outperforms the two known service 

disciplines, Shortest Remaining Processing Time (SRPT) and the First Come First 

Serve (FCFS), in terms of minimizing the TCRTEC performance metric.  

h) Analytically compare our dynamic speed scaling function (OSTSSF)  to a 

comparable and most competitive speed scaling function found in current 

literature. 

i) Corroborate this analytical comparison with elaborate simulations (written in Java) 

to show that our OSTSSF out performs this competitive speed scaling function in 

terms of the TCRTEC performance metric.  
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j) Offer a recommendation to improve the most competitive speed scaling function 

found in current literature in terms of minimizing the TCRTEC performance 

metric. 

 

4. Use our theoretical framework and the Laws of Supply and Demand (LSD) to 

heuristically adjust the unit price of energy, extend battery life and improve load 

balancing in speed scalable processors of a mobile computing device. We do so by 

carrying out the following. 

a) Use LSD to heuristically adjust the unit price of energy of tasks via the remaining 

energy percentage parameter. 

b) Use the remaining energy percentage parameter and our theoretical framework to 

synthesize an online single processor (multi-buffered) speed-scaling algorithm 

(Single-Threading Multi Buffer Adjusted Dynamic speed scaling algorithm 

STMBAD). 

c) Use discrete time based simulations (written in Java) to show that when the 

STMBAD algorithm factors the remaining energy percentage parameter, it 

completes more than 50% more jobs for both homogenous and heterogeneous 

tasks and ultimately allows the mobile computing device to last longer on the go. 

d) Implement the remaining energy percentage parameter in the speed scaling 

functions of all algorithms presented in this thesis to analytically show that it is a 

heuristic controller that rations battery energy by slowing down the speed scaling 

functions of our algorithms (as the battery depletes). 

e) Integrate the remaining energy percentage parameter to the dispatchers of all 

algorithms presented in this thesis to analytically show that it is a  heuristic 

controller that induces load balancing when each heterogeneous processor has its 

independent energy source. 

f) Shed light on the difference between optimum and robust speed scaling 

algorithms (speed scaling functions and coupled dispatchers) in the context of 

scheduling and processing heterogeneous tasks by heterogeneous processors with 

the goal of reducing response time and adjusted energy consumption. 
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Preliminary components of this thesis were peer-reviewed and accepted for publication in 

[39-41].  

 

1.5   Thesis Outline 

Chapter 4

Chapter 2

Chapter 3

Chapter 6

Chapter 7

Chapter 5

Optional Flow

Recommended Flow

 

Fig. 1.1: Thesis outline 

 

Chapter 2 provides a background of  the relevant definitions, principles and models found 

in current literature that are pertinent to speed scaling. In chapter 3, we propose a 

theoretical frame work to tackle the problem of dynamic speed scaling in a parallel 

heterogeneous processing environment. This framework is used in all subsequent 

chapters of this thesis. In chapter 4, we present the first, elaborate, analytical study on the 

use of dynamic speed scaling to schedule heterogeneous tasks on  single-buffered, 

heterogeneous, parallel processors with the objective of  minimizing the total cost of 

response time and energy consumption. In Chapter 5 we study the use of dynamic speed 

scaling to schedule heterogeneous tasks on  multi-buffered, heterogeneous, parallel 

processors (under the single-threaded computing architecture) with the objective of  

minimizing the total cost of response time and energy consumption of tasks. In Chapter 6, 

we use our theoretical framework and the Laws of Supply and Demand  to heuristically 

adjust the unit price of energy, extend battery life and improve load balancing in speed 

scalable processors of a mobile computing device. Lastly, In chapter 7, we summarize the 

critical findings presented in this thesis, discuss the limitations of our findings, highlight 

interesting opportunities for future work and offer closing remarks. 
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2.   Background 

 

2.1  Introduction 

In this chapter we present a concise overview of speed scaling algorithms that relate to 

the work in this thesis. Survey papers by Albers, S. [3] and Irani et al. [35] provide 

elaborated studies of these algorithms. Like much of the work in existing literature, this 

thesis concentrates on the system and device level to formulate and solve problems 

through an algorithmic perspective. 

 

2.2 Speed Scaling  

In existing literature, there are two types of speed scaling,  Static and Dynamic speed 

scaling [6]. Static speed scaling can either involve two states or multiple states. A state is 

a discrete operation frequency or speed that a processor attains to consume some fixed 

power consumption.  Static speed scaling is used to solve problems of Power Down 

Mechanisms. Dynamic speed scaling allows the processor to manipulate the entire 

speed/frequency spectrum. From an algorithmic perspective, dynamic speed scaling is 

used to solve four main problems1. They are as follows. 

• Deadline Based Scheduling 

• Minimizing Temperature 

• Minimizing Flow Time 

• (Minimizing) Flow Time Plus Energy 

 

In subsequent sections we briefly go through the above-mentioned problems. 

                                                 
1 There is a problem known as Makespan Minimization that is related to deadline based  
scheduling problem. Although  we do not discuss it in this thesis, researchers such as [20] and 
[59] have solved the problem in single and multiprocessor environments. The makespan is the 

point in time where a schedule ends [3]. 
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Speed Scaling

Dynamic Speed Scaling

Deadline based
 Scheduling

Flow time Plus Energy
(FTPE)

Two states

Power Down Mechanisms

Multiple States

The thesis 
research area is 
closely related to 
this categorization

Minimizing 
Flow time

Minimizing 
Temperature

 Categorization of speed 
scaling problems

 

Fig. 2.1: Overview of speed scaling problems (an algorithmic perspective) 

 

2.3 PDM (Under Static Speed Scaling) For Single Processors 

Power Down Mechanisms (PDM) is an omni present strategy to manage energy in 

computing devices, for instance we see that laptops switch between off, sleep and awake 

states to conserve energy [3]. Also, desktops running operating systems such as Linux 

Ubuntu or Windows XP, 7 etc. deactivate their monitor and/or cut off power to some 

other external peripherals when the computer has been inactive for a while. The idea is to 

temporarily switch off the computing device through a sleep state when (computing) 

service is expected to resume in the near future or to shut down the device (off state) 

when service is not required any time soon and lastly, to maintain an active or awake 

state when the device is actively computing. In practice, computing devices consume 

some energy while in sleep state because they need to provide power to their Random-

access memory which stores the memory settings of an awake state prior to the sleep 

state [64]. These states are managed by the operating software of the computing device. 

The most essential parameter in PDM techniques is the idleness threshold, the overhead 
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time interval required for the computing device to switch from an active state to a sleep 

state [35]. 

Power down mechanisms still dominate industry products because they mitigate the 

(processor's) current leaks that stem from the dynamic switching of processing speed 2 

[52]. Power down mechanisms have been thoroughly studied by several researchers; from 

a stochastic perspective (e.g. [22]), an algorithmic perspective (e.g. [34]) as well as a  

learning-based perspective (e.g. [29]). Also, concentrated research from industry  e.g. 

Microsoft's Desktop PC Energy Savings for Enterprises [50] and Microsoft's Power 

Management and Driver Support through ACPI (Advanced Configuration and Power 

Interface Architecture) [51] thoroughly explore and implement PDM. We refer the reader 

to an elaborate survey by Irani et al. [35]. In this survey, the authors comprehensively 

examine PDM under various approaches.  

Next, we briefly mention PDM from an  algorithmic perspective for two and multiple 

states3.  

 

2.3.1 PDM Problem Scenario 

• The computing device can operate in more than one state e.g.  completely off, 

sleep, stand by, economy and performance states. 

• This is an online problem, implying that the computing device is not aware of 

future states. Also, for a given  idle period, the system has no information when 

the period ends. 

• Each state incurs a different power consumption. 

• Energy consumption during power up (moving from a state of low power 

consumption to a state of higher power consumption) is substantial. 

• Generally,  the energy consumption during a power down between any two states 

is assumed to be insignificant. 

• The goal is to minimize energy consumption. 

                                                 
2 We speculate that this may soon change because leakage power is on the rise [38]. 
3 In subsequent sections, we do not attempt to summarize all the algorithms pertaining to PDM 
because this thesis falls under Dynamic Speed Scaling and not PDM. [3, 34, 35, 37] go over PDM 
strategies in more scope and depth. 
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• The challenge is as we attempt to minimize energy consumption through 

sustaining residency in low states, the system is inactive, but the system needs to 

attain higher power state(s) to compute [3]. Furthermore, a power up will incur an 

energy penalty and we are also not aware of future states. It may sometimes not 

be justifiable to greedily reside in a low power state to save energy, just to be 

interrupted by a request that will lead to a penalty during a power up. 

 

2.3.2 Competitive Analysis (Relevant to PDM) 

• Competitive analysis is conducted to give a guarantee of worse case performance 

[3]. 

• In competitive analysis, a given algorithm ALG is compared to its optimal offline 

counterpart or adversary, OPT [60].  

• OPT knows all future events, so it has an advantage to minimize energy through 

computing an offline state transition schedule [3]. 

• ALG is considered c-competitive for any input (idle periods), ALG's energy 

consumption is c times that of OPT [3]. 

 

2.3.3 PDM for Two States 

Algorithm ALG-D is a 2 competitive deterministic algorithm that solves the PDM 

problem for two states [3]. Furthermore, [3] shows that no online deterministic algorithm 

achieves a competitive ratio lower than 2 for the two state PDM problem. 

Algorithm ALG-R is a stochastic algorithm that improves on Algorithm ALG-D by using a 

probability density function to transition to the sleep state from the awake state. It was 

presented by [37] and was shown to achieve a competitive ratio approaching 1.58. 

 

2.3.4 PDM for Multiple States 

Algorithm Lower-Envelope was proposed by Irani et al. [34]. This is a deterministic 

algorithm that solves the PDM problem for the multi state scenario. The authors assume 

that the energy incurred during a power up is additive (not arbitrary) and proved that their 
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algorithm is 2-competitive [3]. Furthermore, [3] asserts that no online deterministic 

algorithm achieves a competitive ratio lower than 2 for the multi state PDM problem.  

 

2.4 Dynamic Speed Scaling (Single Processors) 

Dynamic speed scaling or dynamic voltage scaling is the ability of a processor to 

operate at a variable speed. This is a relatively recent technique to save energy and 

achieve decent service by manipulating the full spectrum a processor's frequency (speed) 

[3]. Examples of modern processors that support dynamic speed scaling are the Intel's 

SpeedStep processor [32], IBM's Power7 processor4  [31] and the AMD's PowerNow 

processor5  [5].  Dynamic Speed scaling has been used as a strategy to reduce energy 

consumption [2, 4, 6, 7, 33, 68].  It has been used to manage a processor’s temperature 

and energy consumption [12] as well as to mitigate processor heat failure [49]. Some 

speed scaling algorithms factor both time and energy consumption of tasks [1, 6, 11, 68]. 

Under dynamic speed scaling, the energy consumption of a processor is commonly 

assumed to grow in proportion to αs where s is the processor speed and α  is a constant > 

1 (e.g. [1, 4, 6, 7, 19, 25, 68]). This implies that a high processing speed leads to a fast 

execution, but unfortunately incurs a high energy consumption.  Note that the well known 

cube-root rule e.g., as suggested by [3, 43] is that 3=α  for a CMOS based processor6. 

The cube-root rule stems from the modeling of dynamic power in CMOS chips. 

According to [38], it is modeled as being proportional to fcv 2 , where c is the processor's 

capacitance, v  is the voltage supplied and f  is the frequency; but at high 

frequencies vf ∝ . Surprisingly, Wierman et al. [63] carried out experiments to show that 

in today's CMOS based computing devices α  is close to quadratic (i.e. they found out 

that a calibration of 8.1=α  is more accurate). We speculate that this discrepancy in  α  

is due to an improvement in technology. Anyhow, In the algorithmic literature pertaining 

                                                 
Abbreviations: 
4 IBM- International Business Machines Corporation.   
5 AMD - Advanced Micro Devices (Technology Company). 
6 CMOS - Complementary Metal Oxide Semiconductor. 
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to dynamic speed scaling, most researchers use a general ]3,1(∈α and some assume the 

cube-root rule ( 3=α ). 

Under the single processor scenario, dynamic speed scaling gives rise to a variety of 

challenging problems because the scheduler needs to decide on the job/task to execute as 

well as the speed of processing [3]. Generally, this is more complicated in the 

multiprocessor environment and is even more challenging when processors are 

heterogeneous [28]. Typically, from an algorithmic perspective, we have four main 

problem categorizations that fall under dynamic speed scaling, they are: Deadline Based 

Scheduling, Minimizing Temperature, Minimizing Flow Time and Minimizing Flow 

Time Plus Energy. We briefly cover these problems in subsequent sections, but first we 

briefly touch on competitive analysis in application to dynamic speed scaling. 

 

2.4.1 Competitive Analysis (Relevant to Dynamic Speed Scaling) 

From an algorithmic perspective, the offline setting is defined in literature as the scenario 

where we have advance knowledge of  jobs/tasks [3]. The online setting is when we have 

to make scheduling decisions in real time without any advance knowledge of jobs, i.e. we 

learn about jobs when as they arrive. Online strategies, just like in PDM, are assessed 

using competitive analysis [3]. An Online dynamic speed scaling  algorithm (ALG ) is 

considered c-competitive if for every input, ALG's objective function (usually energy, but 

could be both energy and response time or some other performance criteria) is c times 

that of the optimal offline solution/adversary [3].  

 

2.5 Deadline Based Scheduling (Single Processor) 

The study of energy-efficient speed-scaled scheduling was initiated in 1995 by Yao et al. 

[68].  They considered the deadline-based scheduling of a single processor where the jobs 

need to complete by their given deadlines. Using dynamic speed scaling, the goal was to 

construct a schedule that minimizes energy consumption. Yao et al.s' deadline based 

scheduling framework has been the most extensively studied framework in the context of 

dynamic speed scaling algorithms [3].  
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2.5.1 Overview of Yao et al's Framework, Algorithms and Related 

Extensions  for Single Processor Systems. 

Yao et al. [68] considered scheduling a sequence of tasks on a single variable speed 

processor (The processor is unbound in the sense that it has no maximum processing rate). 

Each task has a required deadline, release time and processing volume (analogous to the 

number of CPU cycles required to execute a task). They allow preemption, where a task 

is allowed to resume on the same processor after being interrupted7. They proposed an 

optimal offline algorithm8 (YDS) to solve the task scheduling problem in polynomial 

time via iterations. A direct implementation of the YDS algorithm has a computational 

complexity of )( 3nO , where n  is the number of jobs [3]. Li et al. [46] illustrate an 

alternative implementation of YDS with an  improved computational complexity of 

)log( 2 nnO  based on finding successive approximations of the optimal schedule. 

Furthermore, when the processor is assumed to have a d  number of discrete 

voltage/speed levels, Li and Yao [47] propose an algorithm that improves the 

computational complexity of the offline YDS algorithm to )log( ndnO .  

 In the same work, Yao et al. further introduced two online algorithms, namely, Optimum 

Available (OA) and Average Rate (AR). They proved that AR has an energy competitive 

ratio9  of ( ) 2/2
αα . Bansal, Kimbrel and Pruhs [12] worked on OA and proved it to have 

an energy competitive ratio of exactly αα . Bansal et al. [13] present an online algorithm10 

(BKP) which sort of approximates the speeds of YDS in real time [3]. In the same work, 

                                                 

7 The YDS algorithm makes use of a preemptive service discipline, Earliest Deadline First 
(EDF) service policy. Among the unfinished Jobs, this well-known service policy gives priority 
to jobs with the earliest deadline. 

8 YDS - Yao, Demers, Shenker. 
9 Recall that α  is the exponent of a processor's power function (

αs ), where s  is the processor's  

  speed and α  is a constant > 1. 
10 BKP- Bansal, Kimbrel and Pruhs. 
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Bansal et al. proved that their BKP algorithm achieves an energy competitive ratio that is 

better than Optimal Available for large α values11, i.e. for 5≥α . 

 

2.5.2 Deadline Based Scheduling Under Maximum Processing Rate 

Constraints (Single Processor) 

Under a constrained processing rate, a summary of the extended deadline based problem 

and results are as follows. 

• The processor is scalable between a speed of zero and some maximum speed T. 

• The constrained maximum processing rate of  T potentially compromises the 

ability  to find a feasible schedule.  

• The revised objective is to maximize throughput i.e., the  total processing volume 

of tasks that are successfully completed by their deadline. 

• [11] give an online algorithm that is constant competitive for the energy 

consumed and is 4-competitive for throughput.  

• [71] present an online constant competitive algorithm on both throughput and 

energy consumption12. 

What we have mentioned so far is not an exhaustive summary of all work related to 

deadline based scheduling in the context of dynamic speed scaling. For such work, see  a 

survey paper by Albers [3]. Next, we move over to other dynamic speed scaling problems. 

 2.6 Minimizing Temperature (Single Processor) 

Bansal et al. [13] initiate the study of using dynamic speed scaling to manage temperature, 

more specifically to simultaneously meet the objectives of maximizing temperature and 

minimizing energy consumption. These two objectives conflict because processors with 

high temperature incur high energy consumption. They assume the ambient environment 

temperature is fixed and the computing device cools according to Isaac Newton's law of 

                                                 
11 The practical significance of this result is questionable since in conventional processors, 

]3,1(∈α . 
12 [71] was the first to introduce the constrained speed model, where the speed is bounded from 
zero to T. 
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cooling [21]. They show that their BKP algorithm is O(1) competitive for all of the 

following: maximum speed, maximum temperature, maximum power, and total energy. 

Also, they interestingly show that algorithm OA (Optimal Available) does not achieve a 

temperature competitive ratio of O(1) even though it is known to have an energy 

competitive ratio of O(1). They also show that Algorithm YDS achieves a constant 

temperature competitive ratio even though it is not optimal with respect to minimizing 

the maximum temperature/energy consumption. 

 

2.7 Minimizing Flow time  (Single Processor)               

Flow time [1] or response time is the time elapsed since a task arrives until it is 

completed. Among energy efficient scheduling algorithms, several studies have 

considered minimizing the response time of jobs, given a set energy budget (e.g. [59]). In 

particular, Pruhs et al. [59] considered offline scheduling to minimize the average 

response time on a single processor, for a given amount of energy. They gave a 

polynomial time optimal algorithm for the special case when jobs are of unit size. 

 

2.8 Flow Time Plus Energy (FTPE) For Single Processors 

We concentrate more on this problem type because it is closely related to the theme of 

this thesis. All the FTPE problems are online in that tasks arrive in real time. 

 

2.8.1 FTPE - Unweighted  

Albers and Fujiwara [1] consider minimizing the combined objective function13 )(g  of  

both energy and flow time. In this objective function, the penalty or weight of each job's 

flow time is not only homogenous but is treated to have the same weight as that of a unit 

of energy. In other words they consider homogenously unweighted response time and 

energy consumption of jobs.  They assume the following. 

• They let g  be the objective function or target performance metric. 

• They let E  be the energy consumption of jobs in the schedule. 

                                                 
13 g is actually a function of s , the processor speed; i.e. )(sg . 
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• They consider a given schedule having n unit-sized jobs. 

• They let the thi  job  have a response time if . 

• They define ∑
=

n

i

if
1

 as the flow time or response time of jobs in the schedule. 

• Their target performance metric is ∑
=

+=
n

i

ifEg
1

 

They formulate an online algorithm called algorithm Phaseball that processes jobs in 

phases. A verbatim quote of their algorithm is as follows. 

 

"Algorithm. Phasebal 

If ( ) 10/16119 +<α  then 1:c −=α ; otherwise .1:c =  Let 1n be the number of jobs 

arriving at time 0=t  and set 1=i . While ,0n1 > execute the following to steps: (1) 

For 1n1,...,j = , process the j-th using  a speed of ( )α cj /1n1 +− . We refer to this entire 

time interval as Phase i . (2) Let 1in + be the number of jobs that arrive in Phase i and 

set 1: += ii ." 14 

In the same work, [1] showed that their Phaseball algorithm achieves a competitive ratio 

of 






















 +
α

2

53
O . They also propose another offline algorithm that uses dynamic 

programming [61] and runs in polynomial time to find schedules for unit sized jobs that 

have minimal average flow times for all energy levels. Bansal et al. [11] solve the 

problem of Albers and Fujiwara by presenting an online algorithm that was shown to be  

4-competitivein in terms of  minimizing the  total flow time plus energy for unweighted 

unit sized jobs. This was done15 under a more realistic constraint  where the maximum 

processing speed of the processor is bounded. 

                                                 
14Albers, S. and Fujiwara, H., ACM Transactions on Algorithms, Vol. 3, No. 4, Article 49, Pg.5, 
Publication date: November 2007. 

 
15 Bansal et al. [11] maintained the assumption of Albers and Fujiwara in [1] by assuming unit 
sized jobs. 
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Bansal et al. [70] improve algorithm Phaseball by presenting a 3-competitive speed 

scaling algorithm. They call this algorithm Algorithm A. Algorithm A uses a speed of 

α 1+n , where n  is the number of active jobs (of any arbitrary size). It also sets the speed 

of the processor to zero when there are no jobs. 

2.8.2 FTPE - Fractionally Weighed 

The objective function under this scenario is ∑
=

+=
n

i

ii fwEg
1

 

In this objective function, the 






∑
=

n

i

ii fw
1

 term is the  fractional flow time costs of a jobs. 

It weighs each job's response time ( if ) by some weight ( iw ). This weight is the 

remaining fraction of a job (the remaining work divided by the original work). 

[11] provide an online preemptive algorithm (BPS) that works with constrained 

maximum processing speed (T).  The algorithm operates at a  speed of 








Ttwa ,)(min
1

α  

where T is the maximum speed of the processor and )(twa  is the total remaining fraction 

of all the active jobs.  The remaining fraction of a job is the remaining work divided by 

the original work. The algorithm was shown to have a competitive ratio of 

( ) )ln(/)1(2 ααO+ . The algorithm uses the HDF (Highest density first) service policy. 

The HDF gives highest priority of jobs based on the highest weight to original size ratio 

[28]. It is an online preemptive service discipline that is optimal for fractional weighed 

time [11]. Bansal et al. [14] considers a similar algorithm except they relax the maximum 

processing speed constraint. Their algorithm runs at power equal to the fractional weight 

of unfinished jobs by using the HDF service discipline. Using amortized local 

competitiveness, they show that their algorithm is  ( ))log/( ααO  competitive with 

respect to the objective function (fractionally weighed flow time plus energy). Bansal et 

al. consider arbitrary weights and job sizes in [11, 14]. 
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2.8.3 FTPE - Weighed 

Under this scenario, the objective function is similar to the fractional weighted FTPE 

problem. The objective function )(g  is ∑
=

+=
n

i

ifEg
1

β . 

[63] explicitly defines β  to be the relative cost of delay. Andrew et al. [6] consider the 

weighed FTPE problem. They carry out analysis and assert that the online speed scaling 

function with minimal competitive ratio under the SRPT service discipline is 1)( −np β , 

where n  is the number of active jobs. The SRPT (Shortest Remaining Processing Time) 

service discipline schedules tasks according to their least remaining work. In the same 

work, Andrew et al. show that (dynamic) speed scaling magnifies unfairness under SRPT 

and also for non preemptive service disciplines. The idea stems from the fact that the 

1)( −np β  speed scaling function16 favors jobs that happen to be executed when the job 

occupancy ( n ) is large and is unfair to jobs that are processed when the occupancy is low. 

 

2.8.4 Multithreading (Processor sharing) Extension 

Andrew et al. [6] show that the 1)( −np β  speed  scaling function under Processor sharing 

(PS) is )1(O competitive. 

Wierman et al. [63]  stochastically analyze dynamic speed scaling functions under the 

processor sharing computing architecture. They show that for a system with Poisson 

arrivals [26] of tasks, which runs at optimal speed under PS achieves a constant 

competitive ratio. 

 

                                                 
16 Speed scaling function is simply the function that describes the speed of a given schedule. 
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Fig. 2.2: Single processor literature review and research gap 
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2.9 Dynamic Speed scaling Multiprocessor Algorithms 

The multiprocessor case was first discussed by Bunde [20]. Bunde presented an offline 

approximation algorithm for unit size jobs. Bunde solves a Makespan
17

 Minimization 

problem that is related to deadline based scheduling problem. From this point henceforth, 

for the multiprocessor scenario, we briefly go over two types of dynamic speed scaling 

problems: FTPE because it is mostly related to the thesis, and deadline based scheduling 

because it has been extensively studied. 

 

2.9.1 Deadline Based Scheduling for Multiprocessors 

To solve for multiprocessor case, Angel et al. [7] consider the problem of scheduling a 

set of tasks with deadlines, release dates and processing requirements, on parallel (speed 

scalable) processors so as to minimize the total energy consumption. They consider 

migration, where a task is allowed to resume its execution on a different processor. They 

also allowed pre-emption. They name their optimal scheduling algorithm BAL which has 

a time complexity of )log)(( UnnfO  where, n is the number of jobs, |)(| Vf
 
is the 

computational complexity of solving a maximum flow in a layered graph with 

|| VO vertices and U is the range of all processor speed values divided by the targeted 

accuracy. Independently, Albers et al. [2] considered the same multiprocessor speed 

scaling problem with migration, and obtained an optimal scheduling algorithm that is 

fully combinatorial and has a time complexity of ))(( 2 nfnO . Angel et al. [7] compared 

their BAL algorithm to the one of Albers et al. [2] and stated that when the target 

precision is sufficiently high, the algorithm of Albers et al. [2] is superior to BAL, 

otherwise if the target accuracy is relaxed, BAL’s algorithm is indeed superior.  

Lam et al. [45] solve the  deadline-based scheduling for dual processors. They 

realistically assume that the maximum speed of processors is bounded.  Their objective is 

to maximize throughput while using the least amount of energy. They meet their 

objective by obtaining a constant competitive solution.  

 

 

                                                 
17 The makespan is the point in time where a schedule ends [3]. 
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2.9.2 Flow Time Plus Energy (FTPE) For Multi Processors 

Lam et al. [44] presented the first constant competitive online algorithm for arbitrary 

job sizes. In [44], jobs are clustered and then Round Robin dispatched to the processors 

independently for each cluster. They then apply the BPS online algorithm18  given by 

Bansal et al. [11, 15]  

     

2.9.2 Flow Time Plus Energy (FTPE) For Heterogeneous Multi Processors 

All the multiprocessor problems we have discussed so far only deal with homogenous 

processors. In 2012, Gupta et al. [27] present the first provably scalable non-clairvoyant 

algorithm on heterogeneous multi processors. This algorithm constitutes a variation of the 

Late Arrival Processor sharing scheduling algorithm [23] that is coupled with a non-

obvious speed scaling function. This algorithm handles unweighted flow time plus energy 

and was shown to be scalable. Gupta et al. [27] formally define heterogeneous processors 

as those processors that have their own speed function with different power consumption. 

They also define non-clairvoyant schedulers as those that are unaware of job sizes and 

make decisions accordingly. Gupta et al. emphasize that scheduling heterogeneous 

multiprocessors is quite challenging. Furthermore, they believe the algorithms required 

for parallel heterogeneous processors should be different than those for homogenous 

multiprocessors. 

 

2.10 Limitations of Speed Scaling 

In the past, dynamic power dissipation that stems from the dynamic switching of 

processing speed has been dominant [52]. In recent technologies, current leaks that stem 

from gate leakage, sub-threshold leakage and other sources account for roughly 20% or 

more of power dissipation, and is on the rise [38]. Furthermore, [6] states that the 

polynomial power function that is used in dynamic speed scaling is not always 

appropriate because of the interference of additive white Gaussian noise over 

communication channels (they have exponential power functions). 

 

                                                 
18 See section 2.82. 



 26 

Chapter 3: Theoretical Framework: Model and 

Notation 

In this chapter, we propose a theoretical frame work to tackle the problem of dynamic 

speed scaling in a parallel processing environment. The study of relevant computing 

parameters, their relationships and underlying assumptions enable us to systematically 

synthesize useful dynamic speed scaling algorithms. These algorithms are presented in 

succeeding chapters. In the context of dynamic speed scaling, the framework attempts to 

respect the major characteristics and limitations of computing devices as well as to 

ergonomically integrate relevant parameters that are to be provided by the user. 

Subsequent chapters mainly take advantage of this framework, but will include their own 

extensions where appropriate. In this chapter, we: 

• Define and describe a task in section 3.1; 

• Define and describe a user profile in section 3.2; 

• Define and describe a processing stream  under different computing architectures 

and briefly describe parallel processing streams in section 3.3; 

• Define other relevant mobile hardware resource parameters and describe how our 

framework handles multiple energy sources in section 3.4; 

• Model overhead access time and describe the processing rate and execution time 

of a task in section 3.5; 

• Use formulas in current literature to deduce useful relationships pertaining to a 

task’s computation volume,  energy and power consumption in section 3.6; 

• Analytically and graphically illustrate the effect of processing on a task's 

computation volume as well as the energy and power consumed in section 3.7; 

• Describe the decision algorithm and summarize relevant constraints in section 3.8;  

• Justify the constituents of our target performance metric and offer a brief critique 

of other performance metrics used in current literature in section  3.9; in this 

section we also distinguish and map our work in current literature; and 

• Lastly define traffic conditions relevant for simulations in section 3.10. 
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3.1  A Task 

A task comprises of a set of base instructions, usually with processing and memory 

requirements that are enforced in advance by the programmer during software 

architectural planning. Mathematically, we model a task, TTk ∈  as a vector with the 

following three parameters. 

),,( , kkkk mpBT µ=  

• kB is the task’s remaining computation volume in base instructions (n).  

• kp ,µ  is the task’s minimum recommended processing rate in base instructions  per 

second (n.Hz). 

• km is the task’s memory requirement in bits. 

  

   kB  is the kT task's (expected) remaining computation volume or the amount of 

remaining (unprocessed) number of instructions measured in base instructions. kB  is 

measured in base instructions to consistently measure a task’s raw instructions or 

remaining computation volume. For example, multiplication and addition operations are 

not treated as commensurable instructions, but is each translated to some number of base 

operations or floating point operations. In this example, the number of base instructions 

required for a multiplication operation generally exceeds that of an addition operation. 

Depending on the resolution or granularity of a base instruction, it can take any arbitrary 

number of fixed clock cycle/s. We assume a base instruction requires 10 Kilo clock 

cycles in many of our experiments.19 

The main reason we use base instructions instead of regular clock cycles is because in a 

given application context, it may be more convenient to lump together common 

instruction types, and use them as a basis to measure other larger instruction types.  

Generally, the representation of a task's remaining computation in terms of a base 

instruction requires fewer number of digits to represent because a given base instruction 

could be comprised of a substantial number of clock cycles. This benefit is inherited in 

the measurement and representation of minimum, optimum and maximum processing 

                                                 
19 Once we establish the magnitude of a single base instruction in terms of clock cycles, it is fixed. 
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rates. An obvious drawback of making a single  base instruction too large is that it will 

lose its granularity to the extent where the representation of a tasks remaining 

computation volume may involve fractions or decimals, which is undesirable from a 

representation view point. Without any loss,  a single base instruction can represent a 

single clock cycle so long ass all the relevant parameters in our model are calibrated with 

this in mind. The unit of a base instruction is n. 

   kp ,µ , the kT  task’s  minimum recommended processing rate in base instructions  per 

second (n.Hz),  is a software constraint imposed by the software designer. It is fixed and 

optional, but crucial in identifying the minimum processing rate of executing the task by 

a given processor. An example is when a task or a set of tasks make up a game. The 

game's refresh rate is heavily influenced by kp ,µ  and if it is not satisfied, the game may 

be unplayable. We also enforce 0, >kpµ because we want to eliminate the trivial zero-

processing rate condition. The µ  sub-script symbol in kp ,µ  denotes minimum and has no 

relation to the inter-arrival period of arriving tasks20. 

  km , the kT  task’s memory requirement in bits, is a fixed requirement that needs to be 

satisfied by the hardware memory resources (disks, drives, flash) of a mobile device or 

workstation. If a base instruction consumes z bits, we can model uncompressed km  using 

the following equation. 

                pkrkkk mmBzm ,,. ++=                          (3.1)  

 

rkm ,  and pkm , are the raw and processed memory requirements of a task (respectively). 

For example, if a task comprises of encoding a segment of an audio file, kB  will be the 

number of base operations needed to accomplish the task of encoding rkm ,  raw bits into 

pkm ,  bits of processed data. The r and p subscripts in rkm , and pkm ,  denote raw and 

processed respectively, and are not indices. 

 

 

                                                 
20 The inter-arrival period of tasks as denoted byµ  and is introduced in chapter 5. 
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3.2  A User Profile 

A User Profile comprises of a set of unit cost sensitivity factors or unit prices that are 

specified by the user through a profile setting integrated in the operating software of the 

computing device. This profile setting could be an energy saving profile, a performance 

intensive profile or any other custom profile that is specified by the user. If the user 

chooses not to specify a custom profile setting, a default setting can be implemented by 

the programmer that is a balanced tradeoff between an energy saving profile and a 

performance intensive profile. 

Mathematically, we model a user profile vector UU k ∈ associated with a task TTk ∈  as 

),( ,ktk uuU ε= , where: 

εu  - Unit price of energy measured in $/Joule, where ∞<< εu0 . 

ktu ,  - Unit price of response time measured in $/Second, where ∞<< ktu ,0 . 

The ε and t subscripts in εu  and ktu ,  are purely symbolic to denote energy and time 

(respectively). 

One practical way to calibrate these unit cost sensitivity factors is to use the actual unit 

prices of energy and time in a given geographical region and time of day. For instance, in 

Ontario, Canada the regulated price of energy during peak hours is 12.4 ¢ / kWh [30] and 

the minimum wage of employment as of May 2013 in Ontario Canada is CD$10.25/hour 

[54]. This translates to 8104.3 −= xuε $/Joule and  3
, 102847.2 −= xu kt $/Second. This is 

merely a suggestion as we are not enforcing the notion that  the unit price of time for a 

specific individual should always be dictated by his/her hourly pay. Ideally a given user 

should set ktu ,  to any price he/she can afford or believes is the price of a second of his/her 

life.  

Figure 3.1 shows an interpretation of these unit cost sensitivity factors. As shown in the 

figure, they could  possibly be implemented through a graphical user interface integrated 

in the OS of  the computing device. 
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Fig. 3.1: Interpretation and possible implementation of a User Profile 

 

Note that the unit price of energy )( εu for all tasks need not be different (this explains the 

missing k subscript in comparison to ktu ,  ) and can be set by the OS, but the unit price of 

response time for each task may be different because we allow the user to influence the 

priority of a task's through various ways discussed in subsequent chapters. 

Furthermore, in a later chapter of this thesis, the unit price of energy is treated with more 

objectivity because it is adjusted by inversely relating it to the amount of battery life 

remaining in the computing device, while the unit price of response time ( ktu , ) is indeed 

more subjective as it essentially depends on how patient the user is with respect to the 

task’s completion time. 

 

3.3  A Processing Stream 

A processing stream as described in Fig. 3.2, consists of a (core) processor ( jsP ,

r
) and a 

corresponding memory Queue ( jsQ ,

r
).  A processing stream is distinguished among other 

parallel processing streams by the thj  index, where mj ≤≤1 . The vector notation 

in jsP ,

r
and jsQ ,

r
 is purely symbolic to denote hardware. Likewise, the s subscript denotes 

stream and is not an index. 
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(a)                                                                    (b) 

Fig. 3.2: Illustrating a Processing Stream under (a) Single-threading and (b) Multi-

threading computing architectures. 

 

3.3.1   Stream Processor     

Each processing stream’s processor ( jsP ,

r
) executes a given task at a processing rate of 

jsP ,  base instructions per second (n.Hz). We assume each and every stream processor can 

be dynamically speed-scaled. We have jMaxjsk PPp ,,, ≤≤µ  where jMaxP ,  is the maximum 

operating frequency in base instructions per second of the thj  processing stream’s 

processor; it is a constraint imposed by the hardware specification of the computing 

device (processor). For a given task TTk ∈ , its minimum processing rate, kp ,µ , is a 

software constraint imposed by the software designer and is generally lower than jMaxP ,  

for analytical and practical purposes. 
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3.3.2   Memory Queue      

A memory queue jsQ ,

r
 of the thj  processing stream stores jN  tasks at some instance in 

time. Therefore ∞<≤ jN0 . In other words, jN is the occupancy of the thj  processing 

stream's memory queue21.  

• 0=jN  : denotes that the memory queue of the thj  processing stream is empty.  

• Under single-threading, at any given time, the thj stream processor processes a 

task stored in the first index22 of the memory queue.  

• Under the multi-threaded computing architecture, at any given time, the thj stream 

processor sequentially processes each task stored in its memory queue for jδ  

(time slice) seconds. 

 

3.3.3    Parallel Processing Streams 

Parallel processing streams are a set of processing streams configured in parallel. When 

our work is applied to mobile computing devices, the processing streams may or may not 

share the same energy (battery) source. Our analysis holds for either one of the following 

scenarios: 

• All parallel processing streams share only one battery source. 

• Each processing stream has its independent battery source of equal capacity but 

not necessarily equal energy level.  

 

3.4  Mobile Hardware Resources 

  3.4.1 Mobile Hardware Parameters    

 Table 3.1 summarizes other hardware resource/parameters of the mobile device. We 

refer to Table 3.1 in subsequent sections. 

 

 

 

                                                 
21 In chapter 4 we enforce the constraint 1≤jN . We relax this constraint  in subsequent chapters. 
22 This first index corresponds to a system index of ( )j,1 . 
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Table 3.1: Other hardware parameters of the computing device 

Parameter Meaning SI Unit 

mM  Available memory of mobile device bits 

jmE ,  Battery energy  level of thj  processing stream Joules 

jE ,θ  Threshold energy level of thj  processing stream Joules 

( )
jjm EE ,, θ−  Usable battery energy of thj  processing stream Joules 

jcapE ,  
Maximum energy capacity of thj  processing stream 

(under full charge) 
Joules 

j%,ε  
Remaining battery energy percentage of thj  processing 

stream, ]1,0[%, ∈jε  

dimensionless 

 

jkt ,,θ  
Overhead access time of a task kT  to be accessed and 

loaded by processor jsP ,

r
from Memory Queue jsQ ,

r
 

Seconds 

 

3.4.2    Single or Multiple Energy Sources  

It is worth mentioning that the analysis done assumes each processing stream has its 

independent battery source of equal capacity, but not necessarily of equal energy level. In 

practice, a special case of this assumption is usually implemented where all parallel 

processing streams share only one battery source; an example is the iPhone 5 [8]. We can 

simply narrow the work to single energy sources by substituting each and every j%,ε  

for %ε , i.e., }...2,1{%%, , mjj ∈∀= εε . 

If the mobile device is currently being re-charged (battery inflow energy exceeds current 

use) and it is known in advance that the mobile device will not be disrupted from 

recharging its battery/batteries until completion, then during the recharging period we can 

prematurely set }...2,1{%, ,1 mjj ∈∀=ε since energy is temporarily not a scarce resource during 

foreseen battery recharge period. Also, all of the work presented in this thesis can be 

extended to non-mobile work stations or computing devices that have a reliable and 

unlimited power supply (but not free)by setting }...2,1{%, ,1 mjj ∈∀=ε . 
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3.5  Task’s Processing Rate and Time Consumption 

 

3.5.1    Modeling Overhead Access Time 

In Table I, we defined jkt ,,θ  as the overhead access time of a task kT  to be accessed and 

loaded by processor jsP ,

r
 from memory queue jsQ ,

r
. The θ  subscript in jkt ,,θ  is purely 

symbolic to denote loading and is not an index. The magnitude of jkt ,,θ  mainly stems 

from digital delays of both the memory queue and activation of the processor. Other 

delays from the OS or hardware architecture that delay the execution of the task after its 

scheduled processing are included as part of jkt ,,θ  with specific exception to waiting time 

for another task/s that is being executed ahead in line in the memory queue. It is 

important to include jkt ,,θ  in our model especially if the task’s computation volume ( kB ) 

is small enough such that it has an execution time ( kt ) that is of around comparable 

magnitude as jkt ,,θ . If kB  is substantial enough where it has an execution time, kt  such 

that: kt >> jkt ,,θ , then we can safely eliminate jkt ,,θ  from the model.  

 

3.5.2    Modeling Processing Rate and Execution Time 

kp  is a task’s ( TTk ∈ ) theoretical processing rate in base  instructions per second (n.Hz). 

kt  is the task’s expected execution time in seconds. We relate kP  to kt  in the next section. 

The overhead (processor) switching times during  processing are assumed to be 

negligible in comparison to  execution times of tasks. Furthermore, these switching times 

can not be deterministically modeled in the online scenario that considers a preemptive 

service discipline under the single threading computing architecture, e.g. SRPT, because  

the number of preemptions are unknown and rely on the properties of tasks arriving in 

real time. Under non-preemptive service disciplines, e.g. FCFS, these overhead switching 

times can be (deterministically) included as part of the overhead access times )( ,, jktθ . We 

also have not come across any work that explicitly factors these overhead access times in 

the context of dynamic speed scaling. 
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 3.6 A Task’s Energy & Power Consumption  

   For a task: TTk ∈ , let kPow  be the task's expected power function in Watts and let kε  

be the task’s expected energy function in Joules when processed by the thj  processor. Let 

us initially assume the task's (theoretical) processing rate ( )kP is time invariant or 

constant over its expected execution time ( )kt .  

 

            
j

kjk PPow
αλ )(=  (Watts)                      (3.2) 

 

Many researchers e.g. [4, 7, 19, 25, 68] use a variation of equation 3.2, but [6] presents an 

equation similar to it. See Appendix 1 for how we initially modeled the energy and power 

consumption of a task without the formal knowledge of dynamic speed scaling. 

We define jλ , measured in )..(
1 jj nSJ

αα −−
, as the energy inefficiency factor or the scaling 

factor of the thj  processor's power function23 and we assume 0>jλ  .                                    

jα is the exponent of the thj  processor's power function and it is assumed to be a constant. 

[6] suggests that 8.1=jα  is a good approximation for CMOS based processors and 

that ]3,1(∈jα  holds for most computer systems comprising of disks, processing chips 

and servers. 

 

 We know that power consumption is the rate of energy consumption; this implies the 

following.       

               kkj

t

kj

t

kk tPPdtPow j

k

j

k

αα λλε )()(
00

=== ∫∫         (Joules)       (3.3) 

     

                                                 
23We may choose to model jλ as a function increasing by temperature )( oK  because the hotter a 

processor gets, the more current leaks occur which lead to more power inefficiency [9]. We 

assume 
 

0))(( >o

j Kλ .  
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kB   relates kt  to kP , and happens to be the task’s remaining computation volume in base 

instructions (n). 

                    
k

k
k

P

B
t =  (Seconds)                                                (3.4) 

 

Using (3.2) and (3.3), we deduce: 

       
1

)(
−= j

kkjk PB
αλε      (Joules)                  (3.5) 

 

We exclude the overhead energy consumed when  processors switch speed and also 

assume the processors consume zero power when idle. 

 

3.7 Description of a Task's Computation Volume upon 

Execution 

Equations (3.3-3.5) are valid when a task is executed at a constant processing rate until 

completion24. These equations  can be adjusted to consider situations where a task is 

executed at constant processing rates that differ over a finite number of time intervals. 

Consider two situations as follows.  

First, let us consider a scenario where a task, TTk ∈ is executed by a processor jsP ,

r
. 

During execution25, the task's computation volume ( kB ) decreases at a constant rate  

(processing rate). When 0=kB , the task execution is complete. Also, the task’s execution 

will consume energy as dictated by the convexity of the power function (equation (3.2)). 

As mentioned in section 3.1, kB  is the remaining computation volume of a task kT . It is 

ultimately a non-increasing function of global time ( ))(tBk  and a decreasing function of 

execution time.  

                                                 
24 The use of these equations to model and formulate our  online algorithms are justified because 
we can not predict preemptions that are caused by the future arrival of tasks.  
 
25 Prior to execution, the task first incurs a loading time or overhead access time )( ,, jktθ . 
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To illustrate this, let the task kT  be executed at a constant processing rate ( )kP  over some 

finite time interval ),( ba . Using the fundamental theorem of calculus.      

           dt
tB

tBtB

b

a t

k
bkak ∫ 









∂
∂

−=−
)(

)()(                (3.6) 

 

Using 
t

k
k

tB
P

∂

∂
=

)(
, since 0≥kP  and 0)( ≥tBk , it implies  

 

t

k
k

tB
P

∂

∂
−=

)(
  and assuming constant processing rates in (3.6),  

      k

b

a

kbkak PabdtPtBtB )()()( −==− ∫                              (3.7) 

kakbk PabtBtB )()()( −−=⇒  

 

Equation (3.4) can be confirmed by (3.7) when abtk −= , 

 

kak BtB =)( and 0)( =bk tB  which gives 

 

kkkkk

b

a

kk tPBtPdtPB =⇒=+= ∫0  

 

 

Let us consider a second example described by the Fig. 3.3. 
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Fig. 3.3:An example  describing the remaining computation volume of a task during 

(constant processing rate) execution over a finite number of intervals 

 

Fig. 3.3 describes an example where a task’s execution is paused over the time 

interval ),0( c . Over the time intervals: ),( dc , ),( ed  and ),( fe , the task is executed at 

different constant processing rates of 1s , 2s  and 3s respectively. 

The table below summarizes the energy, power and execution time incurred during the 

execution of the task. 
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Table 3.2: Energy, power and execution time incurred (example scenario) 

Time Interval ),0( c  ),( dc  ),( ed  ),( fe  

Processing Rate 0 1s  2s  3s  

Energy Consumed 0 ( ) 1

1 )(|)(
−jstB c

dkj

αλ  ( ) 1

2 )(|)(
−jstB d

ekj

αλ  ( ) 1

3 )(|)(
−jstB e

fkj

αλ  

Execution time 0 

)( cd −  

= ( ) 1/|)( stB c

dk  

)( de −  

( ) 2/|)( stB d

ek=  

)( ef −  

( ) 3/|)( stB e

fk=  

Power Consumed 0 jsj

αλ )( 1  jsj

αλ )( 2  jsj

αλ )( 3  

*power consumption at the exact time instances: c, d and e are undefined due to 

instantaneous speed changes. 

 

Note that the ongoing depletion of a tasks remaining computation volume during 

execution is purely a property of how the processor operates (see equation 3.7). 

 

 

3.8  The Decision Algorithm 

3.8.1 Memory, Processing Rate and Energy Constraints 

   Fig. 3.4 is a Venn diagram that illustrates how a task has to simultaneously satisfy 

memory, processing rate and energy requirements with respect to a processing stream for 

it to be potentially executed along that processing stream. Generally, if the task's 

(remaining) computation volume ( )kB  is substantial, it becomes difficult to 

simultaneously satisfy all three constraints. 
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Memory requirement satisfied: 

Processing requirement satisfied:

Energy requirement  satisfied: 

All requirements satisfied: 

 
mk

MM ≤

 )( ,, jjmk EE θε −≤

 )}({}{}{
,,,,, jjmkkjkjMaxmk

EEpPPMM θµ ε −≤≥≥≤ II

 
kjkjM a x pPP ,,, µ≥≥

 

Fig. 3.4: Memory, processing rate and energy constraints 

 

3.8.2 The Decision Algorithm 

Once we have a task or a set of tasks that satisfy the preliminary memory, processing and 

energy constraints for m number of processing streams, we generally have three major 

questions that need to be addressed by the decision algorithm. 

The decision algorithm performs three main functions as follows: 

   1)  Dispatcher: Addresses which processing stream among the m processing streams 

should process a given task. 

   2)  Service discipline / policy: Specifies the order or discipline in which tasks should be 

serviced. 

   3) Speed-scaling function: Explicitly determines the optimum processing rate of 

executing a task/s. 
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The service discipline only applies to the multi-buffer, single-threading computing 

architecture. Under (single buffer) single threading and classical processor sharing (or 

multi-threading) computing architectures, the service disciplines do not matter. 

 

3.9 Performance Metrics 

3.9.1 Measuring Response Time in a Sequential Process 

The response time (also known as flow time [1]) is the time elapsed since a task arrives 

until it is completed. Measuring response time is a bit of a convoluted procedure when 

delays are involved. Under the single threaded computing architecture, when we have a 

pre-existing “traffic build-up” of tasks, total execution time (time between execution of 

the first task and completion of last task) tends to under-represent the response time of a 

set of tasks. This happens because any common delay occurs simultaneously and can 

only be observed or measured once on a global timescale, while in reality, any delay 

should be multiplied by some integer z, where z is the number of tasks affected. The 

response time correctly factors time delays. To demonstrate this, consider the following 

analogical example. Assume we have a car B waiting behind a car A in traffic. Upon a 

launch of a green light, car A stalls for t seconds.  If we examine this scenario by 

considering the response time perspective, the total time wasted is 2t; t seconds for car A 

and t seconds for car B because car B’s path is blocked by car A. If we examine this 

example using an execution time perspective, the total time incurred of car A stalling for t 

seconds is simply t seconds since this t seconds is evolving simultaneously for both cars. 

Now, let us pose a question with some options. If we had to delay one of the two cars for 

t seconds upon the launch of a green light, which car should we delay? The response time 

perspective suggests that car B should be delayed for t seconds rather than car A, because 

car A will remain unaffected, and the total time wasted will be t seconds instead of 2t. In 

this scenario, the execution time perspective suggests that the time wasted is t seconds 

irrespective of the options posed. A mild extension is to observe that response time 

coincides with the execution time when there are no delays. 

The response time perspective can be used to derive greedy time sensitive algorithms that 

are efficient in identifying and penalizing bottlenecks in sequential processes. Response 

time unlike execution time augments the time cost function of a sequential process (e.g. 
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single threading computing architecture) by appropriately factoring delay/waiting and 

execution times of each task and it can be used to strategically mitigate bottlenecks at the 

expense of energy by using dynamic speed-scaling. Execution time does not sufficiently 

capture the waiting time dependencies in a sequential process. This is why we chose to 

consider response time instead of execution time as part of our target performance metric. 

We formally present the conditions in which response time should be considered. 

• There exist delays. 

• We are to democratically treat each task as an independent entity. 

• The execution of tasks is a sequential process e.g. single-threading computing 

architecture. 

 

3.9.2 Criticisms of Performance Metrics Used in Current Literature 

We briefly mention a few criticisms we have with existing models that address dynamic 

speed scaling problems from an algorithmic perspective.  

Researchers such as Wierman et al. [63]  provide a better way than [1] and [11] to  

integrate energy and flow time because they explicitly define a translator parameter β  

that converts energy to response time through relative pricing.  

All the problems related with minimizing energy and flow times from an algorithmic 

perspective do not provide SI units. This has made it difficult to discern what quantities 

are actually being optimized, moreover what parameters are implicit or explicit.  

Also, most of the dynamic speed scaling algorithms that we have come across model 

dynamic power as αs  where s  is the speed of the processor and α  is some positive 

constant. We know that dynamic power grows in proportional to αs  e.g. in CMOS 

processors it  is modeled by [38] as being proportional to fcv 2 , where ,c ,v  and f  are 

the processor's capacitance, voltage and frequency/speed respectively. We are aware of 

this practical consideration so we model it as αλs  by explicitly factoring a slack 

parameter ( )λ  that accounts for other variables or phenomena, e.g. capacitance, 

temperature etc. 
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3.9.3 TCRTEC Performance Metric 

We propose a (financial) performance metric called TCRTEC (Total Cost of Response 

Time and energy Consumption).  

We defined in previous sections, each task kT  has an associated user profile 

),( ,ktk uuU ε=  and consumes energy  kε . 

Let us assume each task kT incurs a response time kR . Also  let the vector ),( kkk RV ε=  

If we let a schedule Q  have some tasks  TTk ∈ , Using dot product operations, we 

explicitly define TCRTEC for the schedule as  TCRTEC = ∑ ∈
•

QT kk
k

VU )( .
 

The TCRTEC performance metric stems from the amalgamation of the user profiles of 

tasks with the resource consumption (energy and response time) of schedules. This 

performance metric is convenient in the sense that it translates the energy and response 

time components of a schedule into dollars through the user (or OS)-specified pricing  of 

energy and response time. It allows the unit price of response time for each task (in a 

schedule) to be different because the user is allowed to influence the priority of tasks. It is 

also an appropriate metric because it does not violate a fundamental law of physics 

pertaining to the addition of different SI units, namely a Joule and a Second. 

 

3.9.4 Distinguishing our Model from Dynamic Speed Scaling Models Found 

in Current Literature (Major differences) 

• We assume general power functions of the form αλs , λ  accounts for capacitance, 

temperature etc. Existing literature uses αs . 

• We explicitly model overhead loading times. 

• We use the remaining computation volume to model energy consumption. 

• We augment the processing requirement of tasks to include minimum software 

requirements in addition to hardware processing rates. 

• We model energy sources (single and multiple). 

• We incorporate the preferences of the user or OS through customized pricing 

(energy  pricing and heterogeneous response time pricing). 
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• We use the proposed TCRTEC performance metric to formulate and evaluate our 

algorithms. 

• We define all our parameters in standard SI units. 

 

3.9.5 Mapping Our work in Current Literature 

Subscripts of  C:  F - speed scaling function, S - service discipline 
*in C, we also explicitly factor the overhead loading time of tasks 
(This is NOT done in existing literature with respect to FTPE)
Note that our work also applies to Homogenous Flow time Weights 
and Unweighted Flow time, as well as  Homogenous job sizes.
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Fig. 3.5: Placing our problem  relative to the single processor problems in literature 
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Fig. 3.5 shows the relevant research gap and also illustrates the complexity of our 

assumptions with respect to the single processor scenario. The problems that we solve are 

significantly more challenging than what is shown. We consider the scheduling of 

heterogeneous parallel processors in unison to what is shown in Fig. 3.5. 

 

3.10  Defining Traffic conditions 

In assessing the performance of our algorithms, the arrival rate of tasks is indeed a crucial 

consideration. High arrival rates generally stress the performance of the algorithms 

potentially leading to the build up of task traffic congestion. Low arrival rates of tasks, 

especially in the multiprocessor environment is also not ideal because there is poor 

utilization of resources. The arrival of tasks is generally modeled as Poisson process [26]. 

For the sake of simplicity, let us first consider different classifications of deterministic 

arrival rates and define them based on some standard. They are as follows: 

• Minimal traffic - we have an  arrival rate of tasks such that at any given time, only 

one processor is actively processing a single and lone task in the system. This 

leads to minimum congestion, but poor system utilization. 

• Ideal traffic - we have an arrival rate of tasks such that for the majority of the time, 

each processor is actively processing a task, but no arriving task awaits for service. 

This situation maximizes utilization as well as minimizes traffic congestion but is 

difficult to enforce in practice, especially in the online scenario. 

• Heavy traffic - we have an arrival rate of tasks that falls in between ideal and 

extreme traffic. The occupancy of each processor exceeds 1 most of the time. 

• Extreme traffic - tasks arrive as a batch. This maximizes stress on algorithmic 

performance.   

 

We can extend these definitions to consider stochastic arrival rates (exponentially 

distributed) by using the deterministic arrival rates as input parameters in the exponential 

probability distributions that model the arrival rate of tasks. Doing so, will generally lead 

to higher traffic congestion as compared to that of their deterministic counterparts. This 

happens because the system requires time to recover from some randomly generated 

arrival rates that are higher than those defined by their deterministic counterparts. 
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We use these classifications of traffic conditions as a standard to evaluate the 

performance of our algorithms when carrying out analysis and simulations. 

 

3.11  Conclusions 

The theoretical frame work presented in this chapter is used in subsequent chapters to 

address the problem of dynamic speed scaling in a parallel processing environment.  

Subsequent chapters mainly take advantage of this framework, but will include their own 

extensions where appropriate. 
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Chapter 4: Cost Minimization For Scheduling 

Single-buffered Processors 

 

4.1   Introduction 

This chapter synthesizes a scheduling and parallel processing algorithm named "Single-

Buffer Decision & Parallel  Processing algorithm (SBDPP)". It operates in real time to 

optimally assigns an incoming stream of heterogeneous tasks to run on multiple (single-

buffered) heterogeneous processors in a mobile computing device or an energy aware 

work station. By using dynamic speed-scaling, where each processor’s speed is able to 

change within hardware and software processing constraints, the algorithm also explicitly 

determines the optimum processing rate of executing each task residing in the single 

buffer of each processor. Tasks are heterogeneous in terms of computation volume, 

processing and memory requirements. The time and energy dimensions of executing an 

arriving task is modeled in a cost function that is each associated with a processing 

stream. The algorithm's dispatching strategy is to minimize this expected cost by using 

dynamic speed scaling and to select the least expensive processing stream. The algorithm 

has three versions. Its first two versions allow the user to specify the unit price of energy 

and response time for executing each arriving task. The algorithm's second version 

extends the functionality of the first by allowing the user or the OS of the computing 

device to further modify a task’s unit price of time or energy in order to achieve a linearly 

controlled operation point that lies somewhere in the economy-performance mode 

continuum of a task’s execution. The algorithm's third version operates exclusively on the 

latter. We initially focus on single buffer, single-threading where a single task is allocated 

to a given processor and is processed until its completion. We extend the algorithm and 

its versions to consider migration, where an unfinished task is paused and resumed on 

another processor. For diverse application, we also assume that the processors/cores are 

heterogeneous in that they may differ in their hardware specifications with respect to 

maximum processing rate and general power function parameters. 
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The SBDPP algorithm is qualitatively compared against its versions. The algorithm's 

dispatcher is analytically shown to perform  better than the well known Round Robin 

dispatcher in terms of reducing the total cost of response time and energy consumption 

when traffic is minimal. Through simulations we deduce a relationship between the 

arrival rate of tasks, number of processors and response time of tasks under the (parallel) 

single buffered computing architecture. Although the dynamic speed scaling problem on 

multi-buffered (single) processors has been previously attempted (e.g. by [6]), this 

chapter presents the first elaborate, analytical study on the use of dynamic speed scaling 

to schedule heterogeneous tasks on single-buffered, heterogeneous, parallel processors 

with the objective of  reducing the financial total cost of response time and energy 

consumption (of tasks). 

 

The single-buffered computing architecture warrants a deep analysis because it 

encompasses the following characteristics.  

1. When a task's overhead loading time is excluded, a tasks response time equals its 

execution time. 

2. Traffic congestion is minimal as a result of constrained single buffers.  

3. The service disciplines within processing streams do not apply due to single 

buffers. 

4. It potentially leads to serious bottlenecks, i.e. if the rate of task arrival exceeds 

that of completion, the single buffers get clogged up. This condition is undesirable 

because it ultimately forces arriving tasks to be rejected. 

 

In the scope of parallel scheduling of single buffered processors, the ideal scenario is that 

each of the single-buffers (associated with its corresponding processor) is fully occupied 

all the time but no task is rejected upon arrival. This maximizes system utilization, 

minimizes traffic congestion (in comparison to multi-buffered processors), but for this to 

be practically feasible, it unfortunately requires some control over the properties and rate 

of arriving tasks. Since such a control is unavailable in the online case, we can sacrifice 

consistently maximum system utilization for a lower probability of  rejecting  arriving 

tasks by enforcing any of the following:  
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• Increasing  the lower bound on the arrival periods of tasks26. 

• Increasing the number of processors. 

• Decreasing the response time of tasks. 

 

These claims are corroborated by conducting simulations based on our model. 

The major theme in this chapter is how to schedule arriving heterogeneous tasks on to 

heterogeneous single-buffered processors by utilizing dynamic speed-scaling. This 

chapter is organized as follows. Section 4.2 formulates the problem and provides 

sufficient background to construct the SBDPP algorithm. Section 4.3 describes the 

default version of the SBDPP algorithm. Section 4.4 focuses on how to achieve a linear 

calibration of a task's operation mode as a function of the (user-specified) unit prices of 

time and energy, and it also provides preliminary  background for the next section.  

Section 4.5 uses the background presented in the previous section to construct the two 

other versions of the SBDPP algorithm, namely SBADPA and FPDPA. In this section we 

also briefly describe how the SBDPP algorithm can deal with migration. In section 4.6, 

we qualitatively compare the three versions of the algorithm to each other and 

quantitatively compare the  dispatcher  of the SBDPP algorithm to the Round Robin 

dispatcher. Section 4.7 provides a brief report of simulations conduced and lastly 

provides some insights that were extracted from simulating the  algorithm(s). 

 

4.2 Problem Formulation 

4.2.1   Processing Streams with Single Buffers 

  Fig. 1 illustrates the single buffer scenario: each processing stream has a memory queue 

with a limited capacity of accommodating only one task at a time.  

We are essentially trying to achieve two goals. For a given task, one goal is to find the 

optimized dispatcher that dictates which of the processing streams should process/execute 

the task at hand. The other goal is to determine the optimized processing rate of executing 

the task. The problem’s major constraint is the single buffer scenario that is described as: 

                                                 
26 This is equivalent to decreasing the upper bound on the arrival rate of tasks. 
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mj1j 1,N ≤≤∀≤ , where jN  is the occupancy of the jth processing stream at some point in 

time. 
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Fig. 4.1: Illustrating the parallel single buffer scenario 
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4.2.1   A  Processing Stream Cost Function     

   Let jC  = ),,,,( ,,, kjkkktj ttuuC εθε be the cost function that aggregates the cost of 

processing a task kT  in the jth processing stream. Each memory queue of each processing 

stream is assumed to be initially empty and has the capacity to hold only a single task. 

Formally, we have: [ ]mj1j ,0N ≤≤∀= .  

 We are primarily trying to penalize the energy and response time requirements of a task. 

One reasonable definition of jC  is as follows. 

     )( ,,, jkkktkj ttuuC θεε ++=                                     (4.1) 

 

Substituting (3.4) and (3.5) into the cost function gives: 

 

         
444 3444 21

48476

44 344 21

48476

($)cost   timeresponse sTask'

(s)  timeresponse sTask' 

,,,

($)cost energy  sTask' 

 (J)energy  sTask'

1
)()( jk

k

k
ktkkjj t

P

B
uPBuC j

θ
α

ε λ ++= −

   ($)                (4.2) 

 

4.2.2   Optimizing the task's processing rate    

   In (4.2), the only dynamic parameter within our control is kP  

In order to optimize kP , we suggest the following: 
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We confirm that this critical point is indeed a minima as follows. 
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Which confirms that this critical point is indeed a minima for ]3,1(∈jα . 

 

4.2.3   Minimized Cost Function of the j
th

 processing stream 

   We previously concluded that
j
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−
= minimizes our cost function 

( jC ). It could easily be implemented in the OS of the mobile device whenever a task is to 

be processed along the thj  processing stream. An interesting observation is that the task's 

computation volume and loading time does not affect its optimum processing rate. Let 

min* jC be the optimized (minimized) unconstrained cost function of processing a task in 

the thj processing stream.  
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We use this result (4.4) in the synthesis of the algorithm, but we first have to incorporate 

the minimum and maximum processing constraints mentioned in the previous chapter 

(Chapter 3, Section 3.3.1) 

 

4.2.4   Minimized Constrained Cost Function of the j
th
 processing stream 

   Let us factor the task’s and processor’s processing constraints mentioned earlier. We 

enforce kkjMax pPP ,, µ≥≥  where, kp ,µ is the task’s minimum recommended execution rate 

in base instructions  per second (n.Hz.) and jMaxP ,  is the maximum processing rate of the 

j
th processing stream. For a task TTk ∈ , the minimum constrained cost function that 

factors the processing constraints is as follows. 
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If we assume loading times of all tasks are negligible ( 0,, ≈jktθ ) the cost function 

reduces to: 
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This reduction above is not an equivalency reduction, but is rather a classification 

reduction because we use this function as a discriminant or for minimum comparison, 

and not for absolute value. 

Observe that when a task's loading time is negligible, its computation volume does not 

influence its assignment to a given processor. We now have sufficient information to 

describe the SBDPP algorithm. 
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4.3  Single-Buffer Decision & Parallel  Processing Algorithm 

(SBDPP)  

1. User or OS specifies εu  for all tasks and may specify different ktu , for each 

TTk ∈ . 

2. For an arriving task TTk ∈  we evaluate and compare the minimum processing 

cost ( )minjC ) of processing the task in each of the available processing streams. A 

task TTk ∈  should follow a stream j* such that { }0|min min,
1

min*, ==
≤≤

jj
mj

j NCC  

thereby it acquires the label *, jkT  and is processed by the *, jsP
r

 processor at the 

optimum processing rate. 

  If  all the tasks' loading times are insignificant use min
)2(

jC  instead of minjC .  If 

 all processors are homogenous and loading times are homogenous, ignore step 2 

 and utilize Round Robin dispatching. 

3. Task *, jkT is executed by *, jsP
r

at the optimum processing rate:  
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4.      If  *, jkT  is to be cancelled/deleted or when it is completed, set 0*, =jsP and 

0* =jN . 

 

The algorithm's dispatcher is described in steps 2.  Step 3 is the algorithm's speed scaling 

function. 
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4.4  Calibrating the Ratio of Time and Energy Prices 

   Let us calibrate the ratio of unit prices ( εuu kt /, ) that happen to correlate with the 

optimum processing rate and power consumption of a given task kT  . Generally, for a 

given ),( ,ktk uuU ε= , associated with the task kT ,  we want a one to one correspondence 

with kP *  or jsP , which introduces the issue of calibration. 
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The relation (4.5) is consistent with minimum and maximum processing constraints. 

 

Fig. 4.2 illustrates the optimum processing rate of a task as a function of the ratio of time 

and energy prices. For a given task, if a user wants the task’s mode of operation to escape 

the economy region, he/she should be willing to spend more on time (increase ktu , ) or 

spend less on energy27 (decrease εu ) or rather accept a higher time cost relative to energy  

(increase εuu kt /, ). 

                                                 
27 If the price of energy is determined by the OS based on time of day, a decrease in energy price  
    can result from a transition between peak hours and off-peak hours. 
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Fig. 4.2: A task’s operating mode and optimum processing rate as a function of  

user-defined (time/energy) unit prices 

 

Likewise, if a user wants the task’s mode of operation to escape the performance  region, 

he/she should be willing to spend less on time (decrease ktu , ) or spend more on energy  

(increase εu ) or rather accept a lower time cost relative to energy (decrease εuu kt /, ). If 

an advanced user has a deep understanding of ktu , or εu , he or she would specify it, and 

allow the SBDPP algorithm to operate on the appropriate mode. Alternatively, a user may 

want to know the actual extent of a task’s  mode of operation, and may want  to make a 

decision based on that rather than just the actual values of ktu ,  or εu . To do so in a 

consistent fashion, we need to use a metric that is a linear function of ( )εuu kt /, . Referring 
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to Fig. 4.2, in order to achieve a linear calibration of the task’s processing rate as a 

function of ( )εuu kt /, , we first identify each constant range (flat line portions of the 

economy and performance mode regions) in the graph and map each of these regions to a 

point value. We also need to linearize the curved portion of the figure (calibration region) 

via a non-linear transformation. 

 

4.4.1   Determining a Task’s Mode of Operation   

   In order to consistently determine a task’s mode of operation we linearly calibrate the 

ratio of the user defined prices ( )εuu kt /,  by non-linearly transforming the task’s 

processing rate. We achieve this by using the task’s power consumption instead of the 

task’s processing rate. 

( )εuu kt /,  is defined as the ratio of  unit time price ($/Second) and unit energy price 

($/Joule). It is convenient that the resulting dimension of ( )εuu kt /,  is indeed 

Joule/Second or Watt. According to equation (3.2), we see that ( )εuu kt /,  is the power 

consumption of a task multiplied by a constant factor of )1( −jα . 

 

       Let  ( ) ( ) ( )( )[ ]jkjMaxkjj

kt
SpPp

u

u
jjj α

µ
αα

µ
ε

λα ,,,

,
)1( −+−=            (4.6) 

where ]1,0[∈jS . 

 

In Fig. 4.2, we see that a task’s optimum processing rate as a function of ( )εuu kt /,  does 

not linearly determine the operation mode of a task. In Fig. 4.3, a task’s power 

consumption as a function of ( )εuu kt /,  does indeed linearly determine the operation 

mode of a task. 

This works because a task’s power consumption is a non-linear transformation of its 

processing rate. In extension, observe that in  Figs. 4.2 and  4.3, the balanced mode of a 

task’s execution is identified by average of its minimum and maximum power 

consumption and not the average of its minimum and maximum processing rate. 
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Fig. 4.3. Illustrating linear calibration of a task’s operation mode by utilizing the 

processor's power consumption during execution 

 

In equation (4.6) and in Fig. 4.3, we define the auxiliary parameter jS  as the (user 

specified) power sensitivity factor. In Fig. 4.3, jS  is used to linearly parameterize a task’s 

power consumption over the calibration region (spanned by ( εuu kt /, )). jS  informs us on 

the actual extent of power consumption while executing a task under software and 

hardware processing constraints, and it also  linearly determines a task’s mode of 

operation. Table 4.1 illustrates this. 
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Table 4.1: Interpretation of power sensitivity factor 

jS  Interpretation 

0 Extreme Economy mode 

0.25 
75% Economy mode & 25% Performance mode 

(classified as Economy mode) 

0.5 Balanced mode 

0.75 
25% Economy mode & 75% Performance mode 

(classified as Performance mode) 

1 Extreme Performance mode 

 

Using (4.6), it is quite convenient that the optimum processing rate that factors 

processing constraints reduces elegantly to: 
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4.4.2   Minimized Constrained Cost Function Using The Power Sensitivity 

Factor  

Recall the unconstrained cost function is as follows. 
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Using  a variation of (4.6) we have 
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Substituting (4.7) into min* jC  gives 
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In terms of classification accuracy, we can drop the ktu ,  term in  (4.8)  because it is a 

common multiplicative factor when comparing all processing streams. Again, this 

reduction is not an equivalency reduction with respect to value, but is equivalent in terms 

of classification ability (finding the comparative minimum). 

 

Therefore the (reduced) constrained cost function, )ˆ( minjC   that factors the power 

sensitivity factor is follows. 
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Notice that the unit prices of  energy and response time are explicitly absent from this 

expression above, further more, if all  loading times of all tasks are negligible we can 

reduce min
ˆ

jC  to min
)2(ˆ

jC  by eliminating both the jkt ,,θ  and kB terms.  
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for ]1,0[∈jS  

 

We now have sufficient background to synthesize the two other versions of the SBDPP 

algorithm. 

 

4.5  Alternative Versions of the SBDPP Algorithm  

Using jS , we present the “Single Buffer Assisted Decision & Processing Algorithm 

(SBADPA)” that extends the functionality of SBDPP by allowing the user or the OS of 

the mobile device/work station to further modify a task’s unit cost of time/energy in order 

to achieve a desired (linearly controlled) mode of operation i.e., (economy/performance 

mode). 

 

 

4.5.1   Single Buffer Assisted Decision & Processing Algorithm (SBADPA)  

1. User or OS specifies εu  for all tasks and may specify different ktu , for each 

TTk ∈ . 

2. For an arriving task TTk ∈ , solve 
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 For each processing stream, If 0<jS , set jS = 0 and If 1>jS , set jS = 1  

 (satisfying processing constraints). 
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3. User or OS of mobile device can eliminate considering streams whose jS  values 

are undesirable (optional). 

4. For the given tasks TTk ∈ , we evaluate and compare the minimum modified cost 

function of processing a task ( (.)ˆ
minjC ) in each of the available processing 

streams, where: 
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 If all task loading times are negligible use 
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5. A task TTk ∈  should follow a stream j* such that  { }0|ˆminˆ
min,

1
min, ==

≤≤
jj

mj
j NCC  

thereby it acquires the label *, jkT  and is processed by the *, jsP
r

 processor at the 

optimum processing rate. 

 

6. The optimum processing  rate  of  the *, jsP
r

 processor is  

( ) ( ) ( )( )[ ] j
jjj

jkjMaxkjs SpPpP αα
µ

αα
µ

1

*,*,,*, −+= . 

 

7.  If  *, jkT  is to be cancelled/deleted or when it is completed, set 0*, =jsP and 

0* =jN . 

 

If all processors are homogenous and loading times are homogenous, ignore step 4 and 5 

and instead use Round Robin dispatching. 

The algorithm's dispatcher is comprised of steps (4 & 5). Step 6 is the algorithm's speed 

scaling function. 
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4.5.2  Fixed Power Decision & Processing Algorithm (FPDPA)  

   We may want to consistently process a task based on the user specified power 

sensitivity factor ( jS ) without explicitly requiring the user to provide a task’s unit prices 

of time and energy. jS  Shows the degree of power consumption of executing each task 

and also linearly dictates the operation mode of a task’s execution. This may be desirable 

because it reduces the burden of assigning the unit prices of time and energy of 

processing each task/s where only one parameter is assigned ( )
jS . On the other hand, it 

can be viewed as less flexible for advanced users because it does not explicitly factor 

each processor’s power function parameters. In accordance with the abovementioned 

assumptions, we describe the Single Buffer Fixed Power Decision & Processing 

Algorithm ( FPDPA) as follows. 

• For each incoming task TTk ∈ , ]1,0[∈jS  is specified by the user or 

through the computing device' OS (power setting). 

• Carry out steps 3 through 7 of the SBADPA algorithm. 

• If all processors are homogenous and loading times are homogenous, 

ignore step 4 and 5,  and instead use Round Robin dispatching. 

 

4.5.3  Extending the Algorithms to Allow Migration  

Let as define a Horizontal Migratory Operation (HMO) as follows: 

Among the tasks residing in the single buffers of each processing stream, re-arrange and 

migrate tasks to processing streams such that the tasks with the least remaining 

computation volumes are executed by processing streams with the lowest minimum 

(constrained) cost functions respectively. If processors are homogenous, there is no need 

to carry out HMOs. 

If we assume a fixed or constant number of parallel processors, an HMO operation has a 

constant computational complexity. Moreover, we suggest that these horizontal migratory 

operations be conducted whenever a single buffer becomes vacant, or when all buffers 

are occupied for a sustained period of time. Investigation on  other instances, or how 

frequently we should conduct HMOs deserves further attention but is not pursued as it 

falls beyond the scope of this thesis. 
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4.6  Analysis 

4.6.1  Qualitative Comparison of Algorithms  

The table below qualitatively compares the three versions of the SBDPP Algorithm by 

summarizing their relative strengths and weaknesses. 

 

Table 4.2: Qualitative comparison of algorithms 

Algorithm Pros Cons 

 

 

SBDPP 

(Default) 

-Low computational requirements. 

-Explicitly factors Processor's parameters. 

-Allows advanced users to specify unit 

prices of energy and response time. 

 

-Cannot explicitly determine 

operation mode (power, 

balanced or economy) of 

tasks. 

 

 

 

SBADPA 

-Explicitly determines operation mode 

(power, balanced or economy) of tasks. 

-Explicitly factors Processor's parameters. 

-Allows advanced users to specify unit 

prices of energy and response time. 

-Slightly more 

computationally expensive 

than  SBDPP and FPDPA. 

 

 

 

FPDPA 

 

-Least Computationally expensive. 

-Allows user to determine operation mode 

(power, balanced or economy) of tasks. 

-Simplest to use. 

-Does not explicitly allow 

the user to specify unit 

prices of time and energy. 

-User can not easily estimate 

amount of energy and 

response time consumed 

when tasks and processors 

are heterogeneous. 

-Unfair for fast processors. 
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4.6.2  Quantitative Comparison of Algorithm's Dispatcher to Round Robin  

We would like to compare the performance of the algorithms to a comparable speed-

scaling algorithm that at least considers most of the critical assumptions and preliminary 

modeling in which the algorithms are based on, but unfortunately to the best of our 

knowledge, no such algorithm exists. Let us instead assume there are N homogenous 

tasks that are to be processed (using single-buffered, single-threading) by two 

heterogeneous processors.  We choose two processors, but the analysis can be extended 

to factor more processors. Assuming there exist an algorithm, let as call it TEST, that 

determines the optimum processing rate of a task by minimizing both the energy and time 

consumption, but uniformly distributes or assigns tasks to processors. In other words, it 

uses the Round Robin dispatcher and the SBDPP algorithm's speed scaling function. We 

would like to assess the dispatching performance of the SBDPP algorithm with respect to 

cost savings of both energy and response time that result from the intelligent assignment 

of  tasks to heterogeneous processors. For simplicity, we also assume the following: 

• Homogeneous tasks with equal computation volumes ( BBk = ). 

• A homogenous unit price of time  and energy for all tasks. 

• Negligible loading times of tasks( 0,, =jktθ ). 

• Unconstrained processing rates, i.e the optimum processing rates fall within the 

maximum hardware processing rates and the minimum software processing rates. 

• Minimal traffic conditions . 

• The first processor's power function parameters are 8.1=α  and 1=λ . 

• The second processor's function parameters  are 22 =α and 12 =λ . 

• Both the SBDPP and TEST algorithms use equally optimum speed scaling 

functions. 

 

Following the above mentioned assumptions and using equations (3.4) and (3.5) as well 

as the algorithms dispatcher, Table 4.2 illustrates the cost savings. 
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Table 4.3: Dispatcher cost savings: SBDPP algorithm versus TEST 

 SBDPP TEST 

Energy 

Consumption 

(Joules) 

 

1

1,1
1)( −αλ sPNB  

1

1,1
1)(5.0 −αλ sPNB

1

2,2
2)(5.0 −+ αλ sPNB  

 

Energy Cost 

($) 

 

1

1,1
1)( −α

ε λ sPNBu  

1

1,1
1)(5.0 −α

ε λ sPNBu

1

2,2
2)(5.0 −+ α

ε λ sPNBu  

 

Execution time 

(Seconds) 

 

1)( 1,

α−
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1)(5.0 1,

α−
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2)(5.0 2,
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Execution Cost 

($) 

 

1)( 1,

α−
st PNBu  

1)(5.0 1,

α−
st PNBu

2)(5.0 2,

α−+ st PNBu  

Total Cost Savings 

(Energy & Time) 

($) 

( )1

1,1

1

2,2
12 )()(5.0 −− − αα

ε λλ ss PPNBu  
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The total cost savings (under optimal processing rates) is graphically illustrated in Fig. 

4.4. According to equation (4.3),  the ratio of energy price to time price dictates the 

optimum processing rate of a given task. Contrast this with the implication of Fig. 4.4; it 

shows us that optimum dispatching leads to cost savings that are dictated by the absolute 

values of both energy and time (prices) and not there ratio.  
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Fig. 4.4: Dispatcher cost savings: SBDPP algorithm versus TEST 

 

This analytical comparison can be extended to factor more processing streams, 

complicated traffic conditions, and heterogeneous tasks that differ in  computation 

volumes, time pricing and  processing constraints. We emphasize that in this analysis, the 

TEST algorithm assigns half of the N tasks to each processor while our algorithms assign 

all the N tasks to the least expensive  processor, and  that traffic conditions are minimal. 

Also, for a fair comparison, both SBDPP and TEST algorithms utilize equally optimal 

speed-scaling functions. 

 

4.6  Simulations 

4.6.1  MATLAB Simulations  

We initially simulated the algorithms in a program that was written using MATLAB 

(GUI). The algorithms were validated using a common graphical interface where we 

were able to numerically confirm the behavior of all the formulas used in context of all 

the assumptions made. For the sake of brevity, we initially simulated a simple case of two 

processing streams where a user has the ability (in real time) to launch one hypothetical 



 69 

task at a time. We factored all relevant processing and energy parameters. These 

parameters could be modified in real time.  

 

 

Fig. 4.5. MATLAB GUI simulation validating all three algorithms 

 

In accordance with the rules of the algorithms, the user is allowed to specify the unit cost 

of energy and time of each hypothetical task prior to launch. The minimum processing 

rate of each task and the maximum processing rate of each processor are modifiable as 

well. The user is also allowed to either randomize the computation volume of task or to 

specify one. We realized that if initially two tasks are consecutively launched, and if a 
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third task is launched before any of the first two tasks has been processed, both 

algorithms are forced to reject the third task. This limitation inspired us to consider the 

multi-buffer scenario where the memory queues of each processing stream have the 

capacity to queue up a finite arbitrary number of tasks. 

 

4.6.1  Java Simulations & Insights  

 We extended this simulation to include more processors by conducting a discrete time 

based simulation written in Java and we gathered some insights (reported below). 

 

Let R  be the response time of the average task (with average properties) be executed 

by the average single-buffered processor with (average hardware parameters). 

Through simulation findings, it turns out that if we have m parallel processors, the 

ideal deterministic arrival period (in the long run) that maximizes system utilization is 

roughly mR /  for heterogeneous processors/tasks and is  exactly mR /  for 

homogenous processors and tasks.  

 

In other words, Rm /  is the maximum deterministic arrival rate that prevents rejections 

for homogenous tasks running in the long run on homogenous, single-buffered 

processors. We call  mR /  the ideal (deterministic) inter-arrival period. We use this 

finding as benchmark or criterion to evaluate findings on the multi-buffered scenario 

presented in the next chapter.  

 

4.6  Conclusions 

   We have synthesized and simulated the  SBDPP algorithm and its variations. They can 

be used for optimized local parallel heterogeneous computing of mobile devices or 

energy aware work stations. We focused on single buffer, single threading where no 

processor executes more than a single  task at any given time. We also assumed the 

constraint of imposing a maximum limit of one task in each memory queue for each 

corresponding processor (single buffer case). The algorithm and its variations run in real 

time to optimally dictate which processor among a multiple set of parallel processors 
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should process an incoming task, and they also explicitly determine the optimum 

processing rate of executing each tasks residing in each processor's single-buffer. The 

three versions of the algorithm are conceptually similar, but differ on their application 

and they each have dispatchers and dynamic speed-scaling functions of constant 

computational complexity.  

    The algorithms provide some insights. They all inform us that a task’s computation 

volume ( kB ) does influence its processing cost when the loading times of tasks are not 

negligible, which in turn influences the actual processing stream that will process the task. 

But counter-intuitively, the optimum processing rate of a task is neither a function of its 

computation volume nor is it a function of its loading time. Moreover, when the loading 

times tasks are negligible, a tasks computation volume does not influence the actual 

processing stream that will process the task.  

The algorithms and their variations were extended to allow migration. This was 

suggested through carrying out migration operations (HMO) of constant computational 

complexities (assuming a constant number of parallel processors) but a deep analysis on 

this front was not pursued. 

    The optimum processing rate of a task under the single buffer scenario was found to be 

a function of  the unit price of time divided by that of energy as well as the processors 

power function parameters. Further more, through a simple analytical example, it was 

shown that our algorithm's dispatcher can outperform the Round Robin dispatcher with 

cost savings correlated with the absolute values of both the energy and time prices. 

     Through simulations we observed and constructed a relationship between the average 

response time of a given task and the ideal deterministic inter-arrival period that 

maximizes  system utilization; i.e. if we let R  be the response time of the average task 

(with average properties) be executed by the average single-buffered processor with 

(average hardware parameters). It turns out that if we have m parallel processors, the 

ideal deterministic arrival period that maximizes system utilization is approximately 

mR /  for heterogeneous processors/tasks and is exactly mR /  for homogenous 

processors and tasks. In extension, let inγ be the rate at which tasks enter the decision 

algorithm. Also, let outγ be the aggregate rate at which processed tasks exit the parallel 
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streams.  When outγ ≥ inγ , the algorithm and its variations work well28. In practice, this 

will likely not be the case because if the rate of incoming tasks grows unpredictably, all 

parallel streams will quickly get clogged up (due to limited memory queue capacity - 

single buffers), and soon we will have to either reject incoming tasks or we will have to 

queue them up before the decision stage. Either way, this leads to undesired queuing 

delays that compromise the functionality and optimality of the algorithms29. One way to 

mitigate this problem is to reduce the response time of arriving tasks by limiting their 

computation volumes, but this strategy falls beyond the scope of this thesis. A second 

way is to reduce the response time of tasks by increasing their optimum processing rate, 

but that would imply that the user should be willing to accept a higher price of response 

time relative to that of energy30. The practical way to mitigate the problem is to arbitrarily 

increase the memory queue capacity for each processing stream (multi-buffered 

processors). This reduces the number of task rejections and will additionally provide 

more time for a decision algorithm to appropriately allocate arriving tasks to processors.  

In the next chapter we consider the multi buffered scenario where the memory queues of 

each processor have the capacity to store an arbitrary number of tasks: mjjN ≤≤∀≥ 1,1  

(multi- buffer case).  

 

 

                                                 
28Simulations suggest that if we are to prevent rejections, the maximum value of inγ  is Rm /  (in 

the long run) for a system with homogenous tasks and single buffered processors. 
 
29Theoretically, increasing the number of processing streams also resolves the problem but is 
generally not feasible. Once the hardware of a mobile device or work station is built or fabricated, 
increasing the number of processing cores (or processing streams) is generally impractical if not 
substantially expensive. 
 
30The power function parameters of the processors are assumed to be given and fixed. From a 
design perspective, utilizing processors with modest power consumption functions (generally, 

small values of jα and jλ ) will lead to increased optimum processing rates that reduce execution 

and response times of tasks during processing (see the speed scaling function of the SBDPP 
algorithm). 
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Chapter 5: Cost Minimization of Single-threaded, 

Multi-buffered Processors 

 

5.1   Introduction 

This chapter introduces a multiprocessor speed-scaled scheduling algorithm named 

“Single-threading Multi-Buffer Scheduling & Parallel Processing Algorithm (SMBSPP)”. 

The goal of this algorithm is to minimize the performance metric, the total cost of 

response time and energy consumption of tasks (TCRTEC). By utilizing the single-

threaded (multi-buffered) computing architecture, the SMBSPP algorithm makes three 

key contributions:  

• A novel task dispatcher which assigns a task to a given processor based on the 

Minimum among Minimized Costs of Virtually Introducing the Task to each 

Processing Stream (MMCVITPS). It dictates which of the heterogeneous processors 

should process each arriving task/s based on classifying a set of minimized potential 

aggregate cost functions that is each associated with a processing stream.  

• A novel dynamic speed-scaling function, which we name, "Optimum Single-

Threading Speed Scaling Function" (OSTSSF) that explicitly determines the 

optimum processing rate of a given processor as a function of the following: 

o The parameters of the processors power function. 

o The unit price of energy. 

o The sum of the unit prices of response time of all tasks residing in the 

processor’s buffer.  

• A novel preemptive service discipline called Smallest remaining Computation 

Volume Per unit Price of response Time (SCVPPT) to schedule the tasks on the 

assigned processor. This discipline minimizes the TCRTEC performance metric and 

also conveniently allows the user to dynamically upgrade or degrade the priority of 

tasks. 
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The first two contributions are achieved through solving a set of multidimensional 

convex optimization problems. 

In this work, we focus on multi-buffer, single-threading where a set of tasks is 

allocated to a given processor, but only one task is processed at a time until completion 

unless preemption is dictated by the service discipline. In order to practically find the 

optimal speed of a processor, the maximum allowable rate of the processor and the 

minimum recommended rate of execution for a task are considered as constraints.  

     We validated the performance of the SMBSPP algorithm by conducting discrete time 

based simulations (as well as analytical techniques). In this front,  we briefly report on 

three major findings. Firstly, our simulation results show that our MMCVITPS dispatcher 

works well with heterogeneous processors and drastically outperforms the classic Round 

Robin dispatcher with cost savings exceeding 100% on average even when processors are 

mildly heterogeneous 31 . Secondly, simulation results also show that our SCVPPT 

scheduling discipline outperforms the two known service disciplines, Shortest Remaining 

Processing Time (SRPT) and the First Come First Serve (FCFS), in terms of minimizing 

the TCRTEC performance metric. SRPT policy always selects for service the task that 

has the least remaining service time and it is a preemptive policy. FCFS, on the other 

hand, is a non-preemptive policy that selects the tasks for service in order of their arrivals. 

Lastly, we analytically compare our dynamic speed scaling function (OSTSSF)  to a 

comparable and competitive speed scaling function found in current literature ( ( ) 1~ −
np β ). 

We corroborated this analytical comparison with elaborate simulations to show that our 

OSTSSF out performs this competitive speed scaling function32 in terms of the TCRTEC 

performance metric. Furthermore, we offer a recommendation to improve this speed 

scaling function ( ( ) 1~ −
np β ). 

 

This chapter is organized as follows. Section 5.2 utilizes expressions found in section 

3.6 (chapter 3) to formally state the problem and synthesize the SMBSPP algorithm. 

                                                 
31 Power function parameters were conservatively chosen to differ from the mean by at most 8%        
    from average. 
32 There is a special condition in which  OSTSSF and ( ) 1~ −

np β  achieve equal results. See Section   

    5.6.2. 
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Section 5.3 describes the SMBSPP algorithm in detail. Section 5.4 provides a simple 

example that analytically demonstrates the ability of the algorithm to robustly handle the 

dynamic inclusion of tasks. Section 5.5 provides simulation results that evaluate the 

overall performance of the algorithm using a variety of performance metrics. Also in this 

section, we demonstrate the performance of the algorithm's dispatcher in comparison to 

the Round Robin dispatcher under three service disciplines and various traffic conditions. 

In section 5.6, we use analysis and simulations to show that our speed scaling function 

(OSTSSF) achieves better results than a comparable speed scaling function found in 

current literature, and further more, we offer a recommendation of improvement. 

 

5.2 Problem Formulation 

5.2.1   Processing Streams with Multiple Buffers 

Fig. 5.1 illustrates the parallel multi-buffer scenario: each processing stream has a 

memory queue that has a capacity to store a arbitrary finite number of tasks. For a set of 

arriving tasks, we are essentially trying to find the optimum dispatcher, speed scaling 

function and service discipline that minimizes the total cost of response time and energy 

consumption (TCRTEC) of executing these tasks where the unit price of response time 

is heterogeneous. The unit price of response time for each task may be different because 

we allow the user to dynamically influence the priority of a task's execution through the 

following ways: 

• If a user is willing to pay more for a task's response time, the algorithm's speed 

scaling function (OSTSCF) increases hence executing the task at a faster rate 

at the expense of energy and vice versa. 

• Under our proposed service discipline, SCVPPT (which is a generalized 

version of SRPT) will prioritize the task accordingly to the smallest remaining 

computation volume per unit price of response time. Therefore a user can 

maintain or even improve the priority of a large task by accepting higher unit 

price of response time or even degrade the priority of a small non-urgent task 

by setting a sufficiently small unit price of response time. 
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Fig. 5.1: The parallel multi-buffer scenario 

 

5.2.2  The Cost Function of the thj Processing Stream 

  Let us assume that the thj processing stream has jN
 
tasks already queued up in its 

corresponding memory queue )( , jsQ
r

.  Let us also assume that the aggregate cost function 

of the thj processing stream be jC . This cost function aggregates the total cost of 

response time and energy consumption of these jN
 
tasks. Also let jkC ,  be the cost of 
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response time and energy consumption of the task stored at the thk index of the 

jsQ ,

r
memory queue/multi-buffer. 

 

Using vector notation and dot product operations, we have: 
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More explicitly, using (3.4) and (3.5) from chapter 3 (section 3.6) we have: 
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5.2.3.   The Minimized Cost Function of the thj  Processing Stream 

For each thj  stream, we have an “ jN ” dimensional optimization problem. The adjustable 

parameters are the theoretical processing rates ( kP ) of the tasks: }...2,1{| jk NkTT ∈∈  as 

well as their service sequence in the thj processing stream. We optimize jC as defined by 

(7) as follows. 
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In order to confirm a global minima of jC , we generate and examine the Hessian ( H ) 

matrix [24].     
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The Hessian (H) is defined as: 
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Implementing the definition above, we obtain the following. 
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zero, we conclude that kP =
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globally minimizes jC . 

 

5.2.4.   The Minimized Constrained Cost Function of the thj  Processing 

Stream 

   TTk ∈∀ jsk QT ,|
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∈ , let us factor in the task and processor stream processing constraints 

mentioned earlier (Chapter 3, Section 3.3.1).  

We enforce kkjMax pPP ,, µ≥≥ where, kp ,µ is the task’s minimum recommended execution 

rate in base instructions per second (n.Hz.). The minimum constrained cost function that 

factors the processing constraints is:   
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for }...2,1{ jNk ∈  & ]3,1(∈jα
    

 

 

kP*  is the optimum constrained processing rate of potentially executing the task stored in 

the thk index of the jsQ ,

r
memory queue. 
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5.3   Algorithms Description 

This section describes the SMBSPP algorithm. First we describe our MMCVITPS 

dispatcher and our SCVPPT scheduling policy. Then we present our algorithm. 

 

5.3.1    SMBSPP Algorithm's Dispatcher (MMCVITPS) 

Before presenting the complete algorithm description (V.C), let us describe in words how 

its dispatcher (MMCVITPS) works. For an arriving task, MMCVITPS hypothetically or 

virtually assumes the potential aggregate cost of virtually introducing the task (according 

to a service discipline) to each of the processing streams. It then virtually minimizes the 

aggregate cost function of each processing stream by again virtually re-adjusting the 

processing rates of all tasks in the queues (of each processing stream) including the task 

in question. It then finally decides on the processing stream with the lowest potential 

(minimized) aggregate cost. This decision will likely dynamically affect the speed 

function of the chosen processing stream's processor. We mathematically describe the 

speed scaling function in section 5.3.3. 

 

5.3.2    SMBSPP Algorithm's Service Discipline/Policy (SCVPPT) 

In this service discipline, arriving tasks are sorted in each processing stream's memory 

queue or multi-buffer from the lowest index (highest priority) according to their smallest 

remaining computation volume per unit price of response time ( )ktk uB ,/ . 
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5.3.3    Single-threading Multi-buffer Scheduling & Processing Algorithm 

(SMBSPP) 

1. User or OS specifies εu  for all tasks and may specify different ktu , for each 

TTk ∈ . 

2. For an arriving task, TTk ∈ , we evaluate and compare the minimum potential 

processing cost, )1(min +jj NC  of virtually introducing and processing the 

arriving task in each of the available processing streams )j(1 m≤≤ . The task 

virtually acquires a position index according to ktk uB ,/  (SCVPPT) in each of 

the processing streams.  

3. Using equations (5.3) and (5.4), the task should follow a stream j* such that 

{ })1(min)1( min
1

*min* +=+
≤≤

jj
mj

jj NCNC
 
thereby it acquires the position index 

according to ( )ktk uB ,/  (SCVPPT) and will be processed by the *, jsP
r

 processor at 

some adjusted optimum processing rate. 

4. Update *jN  . 

5. The task stored at system index ( )*,1 j i.e., the task *,1 jT , is executed by the *, jsP
r

 

processor at the optimum adjusted processing  rate defined below: (e) 
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6. Repeat steps 4 & 5 whenever a task/s is either dynamically introduced or deleted 

in *, jsQ
r

.(b) 
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7. Once the execution of the task *,1 jT  is complete or terminated, the indices of all 

tasks in memory queue *, jsQ
r

 are shifted down by one creating room for another 

task.(a), (b) 

8. If any task or tasks in *, jsQ
r

 are deleted/cancelled, each alive task in *, jsQ
r

is shifted 

to the minimum available slot starting from the first index to preserve task priority. 

(a), (b) 

9. If we are to enforce FCFS queuing service policy or we are not allowed to 

exercise preemption, whenever a task enters the queue of a processing stream it 

acquires the Smallest Empty Index (SEI), also in step 2, while calculating the 

virtual cost of introducing the task to each processing stream, the arriving task 

virtually acquires the SEI. (c) 

10. Ignore steps 2 & 3 when processors are homogeneous and instead utilize Round 

Robin dispatching. (d) 

 

Steps 2 & 3 summarize the SMBSPP algorithm's default dispatcher (MMCVITPS) under 

the SCVPPT service discipline. 

Step 5 describes the speed scaling function (OSTSSF). 

 

 

Notes pertaining to algorithm's description: 

(a) Steps 7 and 8 are maintenance operations that facilitate the long-run functionality of 

the algorithm.  

(b) Steps 3, 4, 7 and 8 can be implemented by adjuster modules that dynamically make 

changes and keep track of the memory queue environment of each processing stream. 

(c)  Step 9 may degrade the performance of the algorithm. 

(d) Step 10 improves the algorithm's computational complexity when processors are 

homogeneous, but should not be conducted when processors substantially differ in terms 

of their energy/power consumption or maximum processing rates. 

(e)
 In Step 5, if the processor speed can only be set to integer values, set the optimum 

processing speed to its floor or ceiling, or better yet, alternate between the two.  
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Furthermore, if the theoretical optimum speed is un achievable, set the processors 

speed to a speed that is closest to it. 

 

  

5.4    Analytical Demonstration 

5.4.1   A Simple Example Demonstrating the Robustness of the SMBSPP 

Algorithm: Handles Dynamic Inclusion of Tasks 

       We analytically present the SMBSPP algorithm’s ability to robustly handle the 

dynamic inclusion of an incoming task into a processing stream by making optimum 

adjustments to the execution rate of the currently processed task.  Let us consider a 

simple scenario described as follows. Let us assume two tasks have been optimally 

dispatched by the SMBSPP algorithm to the thj  processing stream. A task 2 is 

introduced into a given ( thj ) processing stream after a task 1 is already being 

processed. In general, the currently processed task 1 is no longer being executed at the 

optimum rate because the inclusion of task 2 augments the aggregate cost function of 

the thj  processing stream, thereby changing the optimization problem. In order to 

rectify (optimize) task 1’s processing rate, we follow the direction of the SMBSPP 

algorithm by carrying out its step 6. Step 6 of the algorithm explicitly dictates an 

optimal change in processing rate of the currently processed task whenever one or 

more tasks are introduced  or deleted from the same processing stream. The figure 5.2 

illustrates this scenario by demonstrating the robustness of the SMBSPP Algorithm 

with respect to handling the dynamic Inclusion of task 2 prior to the full completion of 

task 1. 
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Fig. 5.2: Example demonstrating how SMBSPP robustly handles dynamic inclusion of tasks 

 

Fig. 5.3 is a time analysis of the jsP ,

r
  processor’s activity as it executes each of the two 

tasks. The analysis begins at time st as shown. The tasks are executed at constant 

optimum processing rates as shown in Fig 5.3. An assumption we are making is each of 

the tasks are processed at optimum processing rates that are not constrained i.e. they are 

not being processed at the maximum or minimum processing rates. Note that the 

presented analysis changes if a third task is included into the jth processing stream before 

either task 1 or task 2 has been fully processed. From an engineering design perspective, 

Adjuster modules comprised of ad hoc digital circuitry may be used to dynamically keep 

track of the memory queue environment (sequencing, inclusion and deletion of tasks) of 

each processing stream and to compute as well as to update the optimum execution rates 

of tasks accordingly.  
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Fig. 5.3: Time analysis of the jsP ,

r
processor as it executes each of the two tasks in the example. 

 

In this example, we assumed 3=jα
 
and FCFS service discipline for simplicity.  
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5.5    Simulations 

5.5.1. Performance Metrics  

Table I provides a list (with abbreviations and standard units) of some performance 

metrics. 

 

Table 5.1: Performance metrics 

METRIC DEFINITION UNITS 

TET Total execution time of executing N tasks ms 

TET/N Average execution time of executing N tasks ms/task 

 

TCRTEC 

Total cost of response time and energy consumption for 

executing N tasks 
CDN$ 

 

TCRTEC/N 

Average cost of response time and energy consumption 

for executing N tasks 
CDN$/task 

 

ST 

System time of executing N tasks: amount of time that at 

least one processor is active 
ms 

 

TSSC 

Total cost of system time and energy consumption for 

executing N tasks 
CDN$ 

 

TSSC/N 

Average cost of system time and energy consumption for 

executing N tasks 
CDN$/task 

 

In Table 5.1, the metrics in bold are used to evaluate the algorithm. 

 

5.5.2   Simulation I: Sensitivity of SMBSPP Algorithm To Inter-arrival 

Periods 

The preliminary simulation assumptions are as follows: 

• We have an N number of homogenous tasks each with a computation volume of 

100 base instructions. 

• We have three processors with the following processor power inefficiency 

coefficients: 

11 ..1.08 1

1

ααλ −−= nSJ ,
 

22 ..1.0 1

2

ααλ −−= nSJ  and
 

33 ..0.92 1

3

ααλ −−= nSJ
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• These three processor have the following corresponding power constants:
 

8.1321 === ααα  

• In this simulation, the computation volumes, loading times and unit price of 

response times for all tasks are homogenous so as to eliminate the effect of 

service disciplines, i.e. FCFS, SRPT and SCVPPT all behave in the same way.  

• The unit price of energy is 8104.3 −= xuε $/Joule and the unit price of response 

time is 3102847.2 −= xut $/Second (see Chapter 2, section ? for details).  

• The task loading time ( jkt ,,θ ) is fixed to 9104.3 −x seconds for all tasks. 

• A tasks base instruction is assumed to be comprised of 10,000 clock cycles. 

• For each simulation iteration, we utilize the TET/N, TCRTEC/N and TSSC/N 

performance metrics to evaluate the effect of deterministic and stochastic arrival 

periods. 

• All this was repeated for growing values of N (simulation iterations). 

• Results were confirmed using discrete-time based simulations written in Java.  

 

Following these assumptions, the figures below summarize the simulation results. 

 

Table 5.2: Interpretation of inter-arrival periods 

INTER-ARIVAL PERIOD INTERPRETATION 

µ = 0ms Extreme (batch arrivals) 

µ = 26.1ms Heavy 

µ = 50ms Almost ideal 

µ ≥ 156.4ms Minimal (no traffic) 

 

 

Fig. 5.4 exhibits how the SMBSPP algorithm utilizes dynamic speed-scaling to adapt to 

various traffic conditions. The reason why the average execution time of a task falls 

under high traffic in comparison to low traffic conditions is because as a processing 

stream gets clogged up, the algorithm's speed scaling function increases therefore 

executing the tasks at a high rate. 
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Fig. 5.4: Average Execution Time for N Homogeneous Tasks: Showing Effect of 

Deterministic Arrival Periods (µ). 
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Fig. 5.5: Average Cost of Response Time & Energy Consumption for N Homogeneous 

Tasks: Showing Effect of Deterministic Arrival Periods (µ). 

 

In Fig. 5.6, the TSSC/N performance metric is a convenient metric in the sense that it is 

actually the amount in dollars per task that it costs to lease out computation services. The 

reason why the TSSC/N curve falls way below the TCRTEC/N metric is due to multiple 

processors working in parallel; where the TSSC/N metric charges the global timescale as 

can be experienced by a user while TCRTEC/N factors response times of each task 
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leading to multiple aggregation of delays. The fact that the algorithm has a fairly constant 

TSSC/N curve under heavy stochastic traffic conditions reveals its robustness. 
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Fig. 5.6: Average Cost of Response Time & Energy Consumption Versus Average Cost of 

System Time & Energy Consumption for N Homogeneous Tasks under Exponentially Distributed 

Arrival Periods with a Mean of 1/µ (µ =26ms: heavy traffic) (The results for deterministic arrival 

periods is interpolated by continuous curves). 

 

 

5.5.3   Simulation II: Comparing SMBSPP Algorithm's Dispatcher 

(MMCVITPS) Versus Round Robin Dispatcher under FCFS, SRPT and 

SCVPPT Service Disciplines  

The preliminary simulation assumptions are as follows: 

• We have an N number of heterogeneous tasks whose computation volumes is 

Gaussian distributed with a mean of 100 base instructions and a standard 

deviation of 20% mean. 

• We have three processors with the following processor inefficiency coefficients: 

11 ..1.08 1

1

ααλ −−= nSJ ,
 

22 ..1.0 1

2

ααλ −−= nSJ  and
 

33 ..0.92 1

3

ααλ −−= nSJ
 

These three processor have the following corresponding power  constants:
 

1.9441 =α ,
 

8.12 =α  and
 

656.13 =α . According to [6], power constants equal to around 1.8 is a 
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good approximation for CMOS based processors. The power function parameters 

were conservatively chosen to differ from the mean by at most 8%. Presumably, this 

8% deviation can be attributed to the manufacturing error of fabricating 

homogeneous processors, failing to achieve equal temperature environments for all 

processors or the intentional fabrication of heterogeneous processors due to design 

budget constraints.
 

• The unit price of energy is 
8104.3 −= xuε $/Joule and the unit price of response 

time is Gaussian distributed with a mean of  3102847.2 −= xut $/Second and a 

standard deviation of  25 % of the mean. 

• For each simulation iteration, the SMBSPP Algorithm runs using its default 

Dispatcher (MMCVITPS) and independently runs using the Round Robin 

Dispatcher using the same input data for various service disciplines. 

• All this is repeated for growing values of N (simulation iterations). 

• We assume heavy traffic conditions with exponentially distributed arrival periods. 
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Fig. 5.7: MMCVITPS Versus Round Robin for N Heterogeneous Tasks under Exponentially 

Distributed Arrival Periods (heavy traffic) with Heterogeneous Unit Prices of Response Time 

under FCFS. 
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Fig. 5.8: MMCVITPS Versus Round Robin for N Heterogeneous Tasks under Exponentially 

Distributed Arrival Periods (heavy traffic) with Heterogeneous Unit Prices of Response Time 

under SRPT Service Discipline. 
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Fig. 5.9: MMCVITPS Versus Round Robin for N Heterogeneous Tasks under Exponentially 

Distributed Arrival Periods (heavy traffic) with Heterogeneous Unit Prices of Response Time 

under SCVPPT Service Discipline. 
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Fig. 5.10: MMCVITPS Versus Round Robin for N Homogeneous Tasks under Three Main 

Deterministic Arrival Periods with Homogeneous Unit Prices of Response Time. (The three  

service disciplines are equivalent and have no effect in this scenario). 

 

 

In Figs. 5.7-5.9 we show that the algorithms dispatcher (MMCVITPS) out performs the 

Round Robin dispatcher under the FCFS, SRPT and SCVPPT service disciplines under 

heavy stochastic traffic conditions (with heterogeneous computation volumes of tasks and 

heterogeneous unit prices of response time).  

 Fig. 5.10 shows that the MMCVITPS dispatcher outperforms the Round Robin 

dispatcher under three main deterministic arrival periods that correspond to very heavy, 

ideal and minimal traffic conditions. If we had further assumed that heterogeneity of the 

processors was more substantial, the MMCVITPS dispatcher would drastically 

outperform the Round Robin dispatcher. 

 

5.5.4   Simulation III: Evaluating SMBSPP Algorithm's Dispatcher 

(MMCVITPS) under FCFS, SRPT and SCVPPT Service Disciplines.  

Using the assumptions of  Simulation II, we compare the MMCVITPS dispatcher under 

the three service disciplines. 
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Fig. 5.11 shows that the SCVPPT service discipline minimizes TCRTEC making it the 

most ideal for the SMBSPP algorithm with its default dispatcher. We recommend that the 

SCVPPT service discipline be implemented in any online speed-scaling algorithm that 

aims to minimize TCRTEC and considers tasks with heterogeneous unit prices of 

response time. 
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Fig. 5.11: MMCVITPS Dispatcher Performance under SCVPPT, SRPT and FCFS Service 

Disciplines for N Heterogeneous Tasks that have Exponentially Distributed Arrival Periods with 

a Mean of 1/µ  (almost extreme traffic of µ = 2ms) with Heterogeneous Unit Prices of Response 

Time (Gaussian distributed). 

 

5.6  Comparing the SMBSPP Algorithm's Speed-Scaling 

Function  (OSTSSF) to  a Competitive Speed Scaling Function 

Found in Current Literature 

 

5.6.1 Analytically Comparing OSTSSF to a Competitive Speed Scaling 

Function  in Current Literature  

In this section, we analytically compare the (OSTSSF) to a comparable and competitive 

speed scaling function found in current literature ( 1)(~ −np β ). In the next section we 
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validate this comparison via simulations and complete the analysis. We also offer a 

recommendation to rectify the optimality of the 1)(~ −np β  speed scaling function. 

Recall that our speed scaling function (OSTSSF) of the thj processor is: 
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and if we assume non-constrained processing rates, our speed scaling function (OSTSSF) 

reduces to: 
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If we further assume a homogeneous unit price of response time for all tasks 

( { }jNktkt uu ...2,1, ∈∀= ), OSTSSF reduces to: 
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Since we are only dealing with a single processor, we drop the j
th index in all relevant 

parameters of (5.5) and we have the following. 
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In current literature, [6] states that the online speed scaling function with minimal 

competitive ratio under the SRPT service discipline is33 1)(~ −np β . Where 1(.)~ −p denotes 

the inverse of )(~ sp . 

[6] mentions that αssp =)(~  is the power function i.e., the power needed to run at 

processing speed (s)  in a system with a single processor and ]3,1(∈α  holds for most 

computer systems. 

In the above-mentioned statement, n (not to be confused for the unit symbol of a base 

instruction) is the occupancy of jobs. Under our notation, the occupancy is jN  in (5.5) 

and N in (5.6)). Let us generalize the result provided by [6] to include the energy 

inefficiency coefficient. We have αλssp =)(~ . In [6], the 1)(~ −np β  speed scaling function 

considers a homogenous unit price of response time that is equal for all tasks. We 

translate this speed scaling function under our notation and deduce: 

 

                 
α

ε

α

λλ
ββ

11

1 N
)(~









=







=−

u

uN
np t                 (5.7) 

Through inspection34, εβ uut /=  where tu  and εu are the constant (and homogenous) 

unit prices of response time and energy, respectively. We assert that these two speed 

scaling functions; (5.6) and (5.7), differ by a Constant Correction Factor (CCF) of 

α

α

1

)1(

1









−
=CCF and are equivalent when 2=α . 

                                                 
33 The actual notation used in [6] is 

1)( −np β  instead of 
1)(~ −np β , but we do not want to confuse  

    the reader since p  looks similar to a task's  theoretical processing rate under our notation. 
34 In [63], β  was defined to be the relative cost of delay. 
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Fig.  5.12: Constant Correction Factor between 
1)(~ −np β  and OSTSSF 

 

In Fig. 5.12, we see that as we closely approach 1=α  from the right, the disparity 

between 1)(~ −np β  and OSTSSF grows enormously.  

 

5.6.2   Simulation IV: Comparing SMBSPP Algorithm's Speed-Scaling 

Function  (OSTSSF) to 1)(~ −np β  under the SRPT Service Discipline.  

We now compare the performance of  OSTSSF versus 1)(~ −np β via simulation. Since we 

are dealing with a single processor, we simulate as a function of occupancy ( N ) which 

coincides with the number of arrived tasks as we are assuming no inter-arrival periods 

between tasks, where they arrive as a batch. The preliminary simulation assumptions are 

as follows: 

• We have an occupancy of N  number of homogenous tasks each with a 

computation volume of 100 base instructions. 

• We have a single processor with a power inefficiency coefficient 

of
ααλ −−= nSJ ..1.0 1

 and a corresponding power constant of
 
α . 



 99 

• In this simulation, the computation volumes of all tasks are homogenous so as to 

eliminate the effect of service disciplines, i.e. FCFS and SRPT coincide.  

• The unit price of energy is 8104.3 −= xuε $/Joule and the unit price of response time 

is 3102847.2 −= xut $/Second for all tasks in order to conduct a fair comparison 

because 1)(~ −np β  considers homogenous unit prices of response time and energy 

consumption. 

• For each simulation iteration, we utilize the TCRTEC/N performance metric to 

evaluate both the speed scaling functions. 

• All this was repeated for growing values of (occupancy) N  (simulation iterations) 

and different values of ]3,1(∈α ). 
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Fig. 5.13: OSTSSF versus 
1)(~ −np β  for 01.1=α      Fig. 5.14: OSTSSF versus 

1)(~ −np β  for 25.1=α  
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Fig. 5.15: OSTSSF versus 
1)(~ −np β for 5.1=α     Fig. 5.16: OSTSSF versus 

1)(~ −np β for 75.1=α  
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Fig. 5.17: OSTSSF versus 
1)(~ −np β for 25.2=α     Fig. 5.18: OSTSSF versus 

1)(~ −np β  for 5.2=α  
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Fig. 5.19: OSTSSF versus 
1)(~ −np β  for 75.2=α        Fig. 5.20: OSTSSF versus 

1)(~ −np β for 0.3=α  

 

In figures: 5.13-5.20, we see that for 2≠α  the OSTSSF speed scaling function achieves 

better results than ( ) 1−
np β  in terms of the TCRTEC/N performance metric and the 

disparity is more prominent  the further away α  is  from the value of 2. When  2=α  both 

speed scaling functions  achieve equivalent performance. 

    By using a notation that is almost identical to that in current literature, we conclude 

that when the unit price of response time is homogeneous, the optimum speed scaling 

function under the SRPT service discipline is actually: 
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In the latter, we are correcting or better yet, improving the resolution ofβ . Without this 

correction, 1)(~ −np β  is suboptimal on the performance side for 2>α  , it is suboptimal on 

the economy side for  2<α , and it is optimal when 2=α . 

Observe that our speed scaling function encompasses this correct result and is valid for 

the general case where the unit price of response time is heterogeneous in that it could 

vary per task. Unlike 1)(~ −np β , our speed-scaling function also considers the appropriate 

hardware and software processing constraints which is more realistic when implemented 

on actual hardware. 

 

All of the simulation results presented in this chapter are consistently scalable in terms 

of considering tasks with substantially larger computation volumes, but the simulation 

run times will take longer and will require a calibration of the inter-arrival periods (and 

their categorizations i.e. extreme, heavy, ideal and minimal traffic conditions). 

 

5.7   Conclusions 

We have synthesized and simulated an online multiprocessor scheduling algorithm 

(SMBSPP) for optimum parallel computing of portable devices or energy-aware 

workstations. We focused on single threading where no processor executes more than a 

single task at any given time until completion unless preemption is dictated by the service 

discipline e.g. SCVPPT. In the near future, we aim to relax this assumption by 

considering multithreading. The SMBSPP algorithm provides some insights. It tells us 

that the optimum processing rate of a task is not a function of the task’s computation 

volume and neither is it a function of the tasks loading time ( jkt ,,θ ). It also tells us once a 

task is dynamically included into a given memory queue of a processing stream, the 

optimum processing rate of the currently processed task (stored at the first index of the 

queue) is likely to change. The processing rate changes because the aggregate cost 

function of all tasks in the queue has changed and there exists a time dependency among 

tasks in the processing stream's memory queue due to single-threading. The algorithm 

explicitly finds a globally optimum solution for each aggregate cost function associated 

with each processing stream. This globally optimum solution minimizes the total cost of 
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both energy consumption and response time of tasks in each processing stream. The 

solution explicitly obtains the optimum processing rates of each task in all memory 

queues. We believe this robustness of the algorithm being able to handle dynamic 

inclusion of heterogeneous tasks at run-time makes it appealing among hardware 

architectural planers and software programmers of portable computing devices.  

Assuming each processing stream has roughly n tasks queued up, the algorithm's 

default dispatcher (MMCVITPS) has a worse case computational complexity of O(n2
) 

with heterogeneous response time pricing and O(n) with homogenous response time 

pricing, and when it uses the Round Robin dispatcher, it has a worse case computational 

complexity of O(1). In terms of the TCRTEC/N metric, we demonstrated that the 

algorithms default dispatcher (MMCVITPS) significantly out performs the Round Robin 

dispatcher under the FCFS, SRPT and SCVPPT service disciplines for various stochastic 

and deterministic traffic conditions where the degree of processor heterogeneity was mild 

(power function parameters were conservatively chosen to differ from the mean by at 

most 8%) yet the MMCVITPS dispatcher drastically outperformed the Round Robin 

dispatcher with cost savings exceeding 100% on average. In terms of the TCRTEC/N 

metric, we demonstrated that the algorithms default dispatcher (MMCVITPS) 

significantly out performs the Round Robin dispatcher under the FCFS, SRPT and 

SCVPPT service disciplines for various stochastic and deterministic traffic conditions. In 

fact, we do not recommend the use of the Round Robin dispatcher in systems that utilize 

heterogeneous processors. If the SMBSPP algorithm is to be implemented in devices with 

homogeneous processors, the Round Robin dispatcher would be more ideal to use 

because it would produce results equal to MMCVITPS, but with a lower worse case 

computational complexity as mentioned previously. 

    Through simulation, we demonstrated that the SMBSPP algorithm with its default 

dispatcher (MMCVITPS), service discipline (SCVPPT) and speed-scaling function 

(OSTSSF) has a fairly constant TSSC/N curve under heavy stochastic traffic conditions; 

this reveals the algorithm’s robustness. It makes it suitable to be implemented in energy 

aware work stations or green computational devices that utilize parallel processors and 

want to maintain a fairly stable (constant) operation cost under unpredictable heavy 

traffic conditions. 



 103 

The proposed SCVPPT service discipline always matches or outperforms the FCFS 

and SRPT service disciplines as evaluated by the TCRTEC performance metric. When 

implemented in the algorithm, the SCVPPT and SRPT service disciplines each have 

computational complexities of O(log Nj). where Nj is the occupancy of a given processor. 

SCVPPT behaves exactly like SRPT when the unit price of response time is fixed and 

equivalent for all tasks; thereby it minimizes total response time. SCVPPT is sort of a 

generalized version of SRPT but is flexible. It allows a user to maintain or even improve 

the priority of a large task by accepting to set/pay a higher unit price of response time or 

even degrade the priority of a small non-urgent task by setting a sufficiently small unit 

price of response time. This is a dynamic feature that is absent in both FCFS and SRPT 

service disciplines. We recommend that the SCVPPT service discipline be implemented 

in any online speed-scaling algorithm that aims to minimize TCRTEC and considers 

tasks with heterogeneous unit prices of response time. 

        Finally, for 2≠α , simulation results show that our speed scaling function (OSTSSF) 

performs better than the ( ){ }SRPTnp ,~ 1−β  speed scaling function. We suggest improving 

this speed scaling function to 
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 in order to achieve better results as 

dictated by the TCRTEC/N performance metric. When the unit price of response time 

and energy is fixed for all tasks, both of these speed scaling functions have a worse case 

computational complexity of O(1). Unlike ( ){ }SRPTnp ,~ 1−β , OSTSSF is valid for the 

general case where the unit price of response time is heterogeneous in that it could vary 

per task (this was done to influence the priority of task execution as mentioned 

previously). Also, OSTSSF unlike ( ){ }SRPTnp ,~ 1−β , considers the appropriate hardware 

and software processing constraints, making it more appealing in an application context. 
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Chapter 6: Using the Laws of Supply and Demand to 

Extend Battery Life and Improve Load Balancing  

 

6.1   Introduction 

     So far in this thesis we have studied algorithms that use dynamic speed scaling to 

reduce the total cost of response time and energy consumption when heterogeneous tasks 

are executed by heterogeneous processors under the single-threading computing 

architecture. These algorithms can be used for computing devices that have an unlimited 

(but not free) supply  of energy. A special class of computing devices that are portable 

and have their own battery source (a.k.a. mobile computing devices) complicate the 

analysis because the total available energy becomes a budget. Up to this point, the 

undesired consequence of using dynamic speed scaling in mobile computing devices 

(under the single threading computing architecture) is that it does not explicitly factor the 

remaining battery energy level of the mobile computing device. This means that if we 

had a mobile computing device with low battery level and one with a fully charged 

battery, the optimum processing rate is the same. This is not robust because it violates  

intuition as well as the natural law pertaining to the scarcity of a resource (energy). It can 

be  resolved using the micro-economic laws of demand and supply. In extension, if we 

had a mobile device with multiple independent energy sources (batteries) that is each 

associated with a processing stream, the dispatcher should also be affected by the 

remaining battery energy level of each processing stream. 

     In this chapter we  use the laws of supply and demand to heuristically adjust the unit 

price of energy of tasks by using the remaining energy percentage. The remaining energy 

percentage is a dimensionless parameter available in most mobile computing devices. It  

gives an indication of the amount of remaining energy in the device. We use it as a 

heuristic controller to ration or preserve the resource of scarce energy in two ways 

• It attenuates speed scaling functions (slows down processor speed) as the battery 

depletes. 
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• Under independent energy sources associated with each processing steam, it 

behaves like a load balancer.  

 

 To address the first point, we introduce the Single-Threading Multi Buffer Adjusted 

Dynamic (STMBAD) speed scaling algorithm. This online speed-scaling algorithm is 

used to determine either the optimum or robust processing rate of executing a set of N 

jobs by a single processor of a mobile computing device under the single-threading 

(multi-buffered) computing architecture. We consider heterogeneous tasks that could 

differ in computation volume and processing requirements. For simplicity, we assume the 

unit price of energy and response time is fixed for all tasks and the overhead loading 

times of tasks prior to their execution are negligible.  By using speed-scaling, where the 

processor's speed is able to dynamically change within hardware and software processing 

constraints, the algorithm explicitly determines the robust processing rate of executing 

each task. This robust35 processing rate was found to be a function of task occupancy, the 

remaining battery energy percentage, the processor's power function parameters, the unit 

price of response time and lastly, the unit price of energy. The algorithm allows the user 

or OS to specify the unit cost of energy and response time for executing all tasks. The 

algorithm has an operation mode where all tasks' unit cost of energy is also heuristically 

affected by the device' remaining battery energy percentage in accordance with the 

micro-economic laws of demand and supply. We synthesize the algorithm by analytically 

minimizing the total  cost of response time and  total adjusted cost of energy consumption 

of tasks. We also consider other conventional performance metrics to evaluate the 

algorithm. Using numerical simulations, we show that when the remaining battery energy 

percentage is factored (EPARBEP
36 mode),  the algorithm: performs slightly slower37 

(mildly more slower when the battery is almost drained out), but consumes far less 

energy (in many cases more than 30%), can complete significantly more jobs i.e., more 

than 50% more jobs for both homogenous and heterogeneous tasks (Gaussian distributed 

computation volumes) and ultimately allows the mobile computing device to last longer 

on the go. 

                                                 
35 Robust becomes optimum when the energy percentage is fixed to a value of one. 
36 EPARBEP stands for Energy Price Affected by Remaining Energy Percentage. 
37 it performs slower than UEP mode; UEP stands for Unadjusted Energy Price. 
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To address the second point, we extend the analysis that was conducted in synthesizing 

the STMBAD algorithm to all the parallel processing algorithms that were previously 

presented in this thesis. We do this to analytically show that the remaining energy 

percentage not only affects the speed scaling functions of our algorithms, but affects the 

dispatchers in such a way that it leads to load balancing when each processor has its 

independent energy supply (that is scarce).  

     The analysis in this chapter also sheds light on the difference between optimum and 

robust speed scaling algorithms (speed scaling functions and coupled dispatchers) in the 

context of scheduling and processing heterogeneous tasks by heterogeneous processors 

with the goal of reducing response time and energy consumption. 

   This chapter is organized as follows. In Section 6.2, we use the remaining energy 

percentage and the microeconomic laws of demand and supply to synthesize the 

STMBAD algorithm under the EPARBEB and UEP modes. We presents the STMBAD 

algorithm in section 6.3. We simulate the STMBAD algorithm under various 

performance metrics in section 6.4. In section 6.5, we introduce multiple energy sources  

and extend the definition of the EPARBEP mode under multiple energy sources.  In 

sections 6.6, 6.7 and 6.8, we extend the SBDPP, SBADPA and SMBSPP algorithms to 

include EPARBEB and UEP modes (respectively). In section 6.9, we use the EPARBEP 

and UEP mode extensions of our algorithms to describe the  effect of the remaining 

energy percentage on dynamic speed scaling functions as well as on dispatchers. We 

conclude the chapter in section 6.10. 

 

6.2   Synthesizing the STMBAD Algorithm 

6.2.1   Introduction 

   Let us consider a scenario where we have a mobile device with a single processor and a 

memory queue (multi-buffer) that stores an arbitrary finite number of N tasks (in other 

words N is the potential occupancy of the single processor). We focus on single threading 

where the processor executes no more than a single task at any given time (until 

completion). These N  tasks may be heterogeneous in terms of the minimum software 

processing rate and computation volume. For simplicity, we assume the overhead loading 

time of tasks prior to processing is negligible. 
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   The energy and response time dimensional costs of processing these N tasks by the 

single processor is aggregated in a cost function. In this cost function the user or OS 

defines the unit price of energy and response time for all tasks. The unit price of energy 

for  processing all these N tasks is adjusted by the remaining battery energy percentage in 

accordance with the micro-economic laws of demand and supply. The cost function also 

factors the hardware/software processing constraints and the power function parameter of 

the processor. Using dynamic speed scaling, we focus on controlling/optimizing the 

processing rate of the processor to minimize the total cost of both response time and 

(adjusted) energy consumption of N tasks.  

 

In this section of the chapter, we synthesize the Threading Multi Buffer Adjusted 

Dynamic speed Scaling Algorithm (STMBAD) that achieves two objectives. 

• It explicitly determines the processing rate of executing each of these N tasks. 

• It operates in two modes: EPARBEP and UEP. 

 

The first objective is achieved through solving an N multidimensional convex 

optimization problem. 

The second objective is achieved by utilizing the micro-economic laws of supply and 

demand to allow or disallows the battery energy percentage (a common parameter found 

in most modern mobile computing devices) to heuristically influence the price of energy 

while executing these N tasks. EPARBEP stands for Energy Price Adjusted by 

Remaining Battery Energy Percentage and UEP stands for Unadjusted Energy Price - i.e., 

the battery energy percentage does not affect the price of energy. 

 

6.2.2   Mobile Hardware Resources of A Single Processor  

   Table 6.1 summarizes all the hardware resource/parameters of the mobile computing 

device with a single processor. We refer to the contents of Table 6.1 in subsequent 

sections.  
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Table 6.1: Hardware parameters of a mobile device with a  single processor 

Parameter Meaning SI Unit 

mE  Battery energy level of mobile device Joules 

θE  Threshold energy level of mobile device Joules 

( )θEEm −  Usable battery energy of  mobile device Joules 

capE  
Maximum energy capacity of level of mobile device 

(under full charge) 
Joules 

%ε  
Remaining battery energy percentage  of mobile device 

]1,0[% ∈ε  

dimensionless 

 

mP
r

 
Single processor of mobile device dimensionless 

mP
 

Operating processing rate of processor nHz 

MaxP
 

Maximum operating processing rate of processor nHz 

mQ
r

 
Multi-buffer of processor. dimensionless 

 

 

6.2.3   Managing the Remaining Battery Energy Percentage.    

     In Table 6.1, we defined %ε  as the remaining battery energy percentage. This 

parameter is conventionally found in most modern mobile computing devices. An 

example can be seen at the top right corner of Fig. 6.1.  
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Fig. 6.1:Remaining battery energy percentage of an iPhone 5 (circled in red) 

 

The fact that %ε  is visible to the user through a graphical interface suggests that it should 

be accessible by the OS of the mobile computing device. If the mobile computing device 

is currently being re-charged (inflow energy meets or exceeds current use) and it is 

known in advance that the mobile device will not be disrupted from recharging its battery 

until completion, then during the recharging period we can ignore this value from the OS 

and prematurely set our 1% =ε  in our cost function (section 6.26). This is done because 

energy is temporarily not a scarce resource during foreseen battery-recharge period. Also 

all of the work presented in this chapter can be extended to non-mobile work stations or 

computing devices that have a reliable and unlimited power supply by setting 1% =ε as 

well. 
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6.2.4   Showing how increased supply of a commodity leads to lower price 

and vise versa using demand and supply curves 

 

Price

Quantity
Q0

P0

Q1

P1

S1 S2D1

D2

P2

 

Fig. 6.2: Increased supply of a commodity leads to lower price 

 

Let us assume the commodity of interest is the remaining energy in a battery of a mobile 

computing device. Consider the Fig. 6.2. Let us start at the equilibrium point where the 

supply curve 1 and demand curve 1 intersect ( )00 , PQ . Let the commodity’s supply 

increase (battery recharge), this leads to a right shift of the supply curve 1 to supply curve 

2. Our new equilibrium point is ( )11 , PQ . We already see a price drop (from 0P  to 1P ) that 

suffices for arguments sake. Furthermore, the price drop is much more significant 

because the new equilibrium point has more quantity than was originally demanded 

(task’s energy consumption) and we need to get back to our original equilibrium quantity. 

So the market forces prevail and the demand reduces to make this adjustment by left-

shifting the demand curve 1 to demand curve 2. Now we are at operation point ( )20 , PQ . 

The aggregate price drop is now from ( 0P to 2P ), which shows the effect of increased 



 111 

supply.  In other words, when the battery of a mobile device is recharging, its price of 

energy should be decreasing.  

 

. 

Price

Quantity
Q0

P2

Q1

P1

S2 S1D2

D1

P0

 

Fig. 6.3: Decreased supply of a commodity leads to higher price 

 

The same argument in reverse is applied to Fig. 6.3. It shows that a decreased supply of a 

commodity leads to an increased price/value. This implies that when the battery energy of 

a mobile device is depleting (e.g. under use), its price of energy should be increasing. 

Supply and Demand are well established topics in  micro-economics. Refer to [17, 36] for 

further elaboration.  

 

6.2.5   Problem Formulation    

Assume the mobile computing device has a memory queue buffer, mQ
r

 that has the 

capacity to store a finite arbitrary number of (N) tasks. We are essentially trying to 

minimize a cost metric. This cost metric is the total cost of response time and total 

adjusted cost of energy consumption of N tasks where the remaining battery energy 

percentage heuristically adjusts the unit price of energy of all tasks in accordance with the 

micro-economic laws of supply and demand. We minimize this cost metric by using  
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dynamic speed scaling, where we explicitly find the robust or optimum processing rates 

of all tasks in closed form. 

 

6.2.6   Cost Function   

   Let us assume that the mobile computing device' memory queue buffer currently holds 

N tasks. Let 
SC  denote the total cost of response time and total adjusted cost of energy 

consumption of processing these N tasks by a single processor. 

Using vector notation and dot product operations, we have: 
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More explicitly using equations (3.4) and (3.5) from chapter 3 we have the following38. 
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38 We drop the jth

 index in those equations because we are dealing with a single processor. 
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In equation (6.1), %ε  
heuristically adjusts the cost of our energy terms. It exists due to 

the micro-economic principles of demand and supply; these micro-economic laws 

confirm natural laws of resources which correlate the scarcity of a commodity with its 

value (monetary or otherwise). As the battery depletes, %ε reduces which in turn inflates 

the price of our energy terms in our cost function as desired. This was discussed in more 

detail in section 6.2.4. 

 

6.2.6   Minimized Cost Function    

We have an N dimensional optimization problem. Using speed scaling, the adjustable 

parameters are the theoretical processing rates ( kP ) of the tasks: }...2,1{| NkTTk ∈∈  

Let us optimize jC . 
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Note that we have made a critical assumption that needs to be justified; we assumed %ε  

does not significantly vary or is more or less a constant function of kP which is valid 

under a specific condition as explained next. 

 

Let us explicitly denote the time dependency of %ε  as )(% tε  

We have 
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)(% .   When the processor is executing a task kT , we have 
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)( 0ttSBL −ε  is the battery energy stand-by loss39 over the time interval 0tt − .  
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The assumption is valid as long as the condition: <<kε capE is satisfied i.e. the energy 

consumption of a single task is insignificant compared to the energy capacity of the 

battery. 

 

Getting back to optimizing our cost function, we solve (6.1) and get:  
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Using a Hessian matrix [24], it can be shown that  this set of critical processing rates 

minimizes jC . 

 

                                                 
39 Initially in this thesis, we assumed the processor incurs a zero stand by energy loss when idle, 

we suspend this assumption in this particular context because we are trying to analytically model 

the behavior of a battery under practical use. As an aside, energy of batteries in mobile devices 

decay with time even during sleep mode and [49] shows that a battery’s stand by current drain 

can be mitigated by a DC-DC converter. 
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6.2.7   Minimized Constrained Cost Function    

   TTk ∈∀ mk QT
r

∈| , let us include the processing constraints mentioned earlier in this 

thesis (Chapter 3, Section 3.3.1) 

We enforce Maxmk PPp ≤≤,µ where, kp ,µ is the task’s minimum recommended execution 

rate in base instructions per second (n.Hz.). Assuming capk E<<ε , the (theoretical)  

constrained (robust) processing rates of the tasks { } TTTTT Nk ∈......, 21  is:  
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We have sufficient information to describe the STMBAD Algorithm. 

 

6.3   The STMBAD Algorithm 

1. User or OS specifies εu  and tu for all tasks  TTk ∈ . 

2. Fix 1% =ε  when energy is not a scarce resource (UEP mode) otherwise acquire %ε  from 

OS (EPARBEP mode40) .  

3. Before processing the task stored at the first index ( 1T ), update N (number of 'alive' tasks) 

4. The task 1T  is executed by the mobile computing device' processor, mP
r

 at the optimum 

processing  rate defined below: 

                                                 
40 Use EPARBEP mode when capk E<<ε . 
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5. Whenever a task joins or leaves the memory queue buffer, update N and repeat step 4. 

6. If we are allowed to violate FCFS service policy and permit preemption, rearrange 

tasks from the lowest index according to smallest  remaining computation volume 

(equivalent to SRPT). 

7. Repeat steps: 2-6 until N = 0 (No tasks left), in which case 0=mP . 

 

By default, the STMBAD algorithm operates on a mode where the price of energy is 

heuristically influenced by the remaining battery energy percentage in accordance with 

the micro-economic laws of demand and supply; we abbreviate this operation mode as 

EPARBEP (Energy Price Adjusted by Remaining Battery Energy Percentage). The 

algorithm can also operate on a mode where the remaining battery energy percentage 

does not influence the price of energy by permanently setting 1% =ε ; we abbreviate this 

mode as UEP (Unadjusted Energy Price). 

 

6.4   Simulating The STMBAD Algorithm 

6.4.1   Performance Metrics     

Table 6.2 provides a list (with abbreviations and standard units) of some performance 

metrics. In this table, the metrics in bold are used to evaluate the STMBAD algorithm. 

 

 



 117 

Table 6.2: Performance metrics 

METRIC DEFINITION UNITS 

TET Total execution time of executing N tasks ms 

TET/N Average execution time of executing N tasks ms/task 

TRT 
Total response time of executing  N tasks 

 (factors delays and execution time for each ask) 
ms 

TRT/N Average response time of N tasks ms/task 

TEC Total Energy consumption for executing N tasks Joules 

TEC/N Average Energy consumption for executing N tasks Joules/task 

TCRTEC 
Total cost of response time and energy consumption for 

executing N tasks 
CDN$ 

TCRTEC/N 
Average cost of response time and energy 

consumption for executing N tasks 
CDN$/task 

TCETEC 
Total cost of execution time and energy consumption for 

executing N tasks 
CDN$ 

TCETEC/N 
Average cost of execution time and energy 

consumption for executing N tasks 
CDN$/task 

 

 

6.4.2   Simulation I: STMBAD Algorithm's EPARBEP Mode Versus UEP 

Mode While Processing N Homogenous Tasks 

The preliminary simulation assumptions are as follows: 

• We have an N number of homogenous tasks each with a computation volume of 

500 base instructions. 

• The processor's power function parameters are 3=α  and )/.(100.1 329 nSJx −=λ . 

• The unit price of energy is 8104.3 −= xuε $/Joule and  the unit price of response 

time is 3102847.2 −= xut
$/Second (see Chapter 3 section 3.2 for details). 

• We have a 900 Kilo Joule battery with 5% energy capacity reserved for OS 

maintenance. ( 1%5 % ≤≤ ε ). 
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• Prior to an iteration of the simulation, for each different value of N, it is assumed 

that the battery is fully charged and the simulation iteration terminates when the 

processing of all N tasks is complete. 

• For each simulation iteration, the two modes of the STMBAD algorithm are 

independently simulated using the same input data. 

• Simulation data is rejected when the mobile device runs out of energy before 

completing all these N tasks. This is done to draw an objective comparison 

between the two modes of the algorithm since a partial execution of N tasks 

complicates and skews the comparison. 

• The service discipline employed is FCFS for practical reasons (clairvoyance) . 

• All this was repeated for growing values of N (simulation iterations). 

• Simulation results were confirmed using a discrete-time based simulation written 

in Java. 

 

Following these assumptions, the graphs below summarize the simulation results.  
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Fig. 6.4: Remaining battery energy percentage ( )%ε after executing N tasks 

 

In Fig. 6.4,  when more 50 tasks (or about 70 tasks) are executed, we clearly see that the 

laws of demand and supply are countering the effect of optimum dynamic speed scaling 

as a function of occupancy. This is explained as follows. Under both modes, as the 
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occupancy (N) of the processor increases, the dynamic speed scaling function tends to 

increase as well to reduce energy and response time costs41 

Also, the battery energy depletes at a high rate with increased N because of more tasks 

and increased processing rates (that are dictated by the speed scaling function).  

 The UEP mode operates in the absence or knowledge of scarce energy where it finds the 

optimum speed scaling function that minimizes response time and unadjusted energy 

costs. As N increases, the battery depletes, and the EPARBEP mode slows down  the 

processor's speed (attenuates it by a factor of ( ) αε /1

%  in comparison to the optimum) 

because energy becomes more scarce, thereby it minimizes response time and adjusted42 

energy cost. Under the EPARBEP mode, this adjusted processing rate (that is attenuated 

by a factor of ( ) αε /1

%  in comparison to the optimum processing rate) is defined to be 

robust. 

As illustrated in Fig. 6.4, for a fixed amount of energy, The EPARBEP mode executes 

significantly more tasks than the UEP mode because the EPARBEP mode has been 

aware of the scarcity of energy whilst the battery has been depleting, and therefore has 

made a robust adjustment to the speed scaling function of the processor by reducing it 

accordingly.  
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Fig. 6.5: Average execution time of executing N homogeneous tasks 

                                                 
41 Refer to the speed scaling function of the STMBAD algorithm. 

 
42 Adjusted energy means that the unit price of energy is adjusted by the laws of demand 
and supply through the remaining energy percentage parameter. 
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In Fig. 6.5, initially as the occupancy of the processor increases, the speed scaling 

function increases under both modes (when occupancy is less than 168 tasks). This 

explains why the execution time decreases with increased occupancy. Under the 

EPARBEP mode, as the battery depletes, the processor's speed scaling function is 

dominantly countered or reduced by the remaining energy percentage parameter in 

accordance with the laws of demand and supply, therefore it executes tasks at slower 

(suboptimal43 but robust) processing rates that lead to an increase in execution time as 

can be seen in Fig. 6.5. 
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Fig. 6.6: Average response time for N homogeneous tasks 

 

In Fig. 6.6, under both modes the response time increases with occupancy  because of the 

simultaneous service time delays of tasks under the single-threading computing 

architecture. The reason why the EPABEP mode has a further  increase in response time 

in comparison to the UEP mode is because the speed scaling function is countered or 

reduced by the remaining energy percentage parameter in accordance with the laws of 

demand and supply, therefore it executes tasks at slower (suboptimal) processing rates. 

Since higher processing rates incur a higher energy consumption as dictated by the 

convexity of power functions, the same argument is used to explain Fig. 6.7. 

                                                 
43 The EPARBEP mode leads to robust but suboptimal processing rates in terms of the TCRTEC 
performance metric. If we evaluate the algorithms based on the TRTEC metric where the price of 

energy was hyperbolically reduced by a factor %ε , then the EPARBEP mode would lead to 

optimum processing rates. We do not pursue this line of reasoning in order to avoid confusion. 



 121 

 

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250

N - Number of arrived tasks (Occupancy)

T
E

C
/N

 (
J

o
u

le
s

/t
a

s
k

)

UEP Mode

EPARBEP Mode

 

Fig. 6.7: Average energy consumption for executing N homogeneous tasks 
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Fig. 6.8: Average cost of response time and energy consumption for executing N 

homogeneous tasks 

 

In Fig.6.8, the TCRTEC is the appropriate performance metric that was used to 

synthesize and evaluate the algorithm because it factors response time and energy 

consumption. Notice how the EPARBEP mode is suboptimal compared to the UEP mode 

because it incurs a higher TCRTEC cost, but it is more robust because it budgets energy 

better and there by executes more tasks. 
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Fig. 6.9: Average cost of execution time and energy consumption for executing N 

homogeneous tasks 

 

In Fig 6.9, the TCTEC performance metric uses execution time instead of response time 

making it advantageous in leasing out computational resources because execution time  

(unlike response time) for all tasks, can be conveniently measured by a global time scale. 

The TCETEC and TCRTEC performance metrics both confirm that the  EPARBEP mode 

is suboptimal but more robust in comparison to the UEP mode. 

 

Figures 6.4 - 6.9 show that the UEP mode prematurely drains the battery by only 

competing a maximum of (all) 168 tasks under a full battery energy budget, while the 

EPARBEP mode completes 255 tasks (approximately 52% more tasks). 

 

6.4.3   Simulation II: STMBAD Algorithm's EPARBEP Mode Versus UEP 

mode for N Heterogeneous Tasks 

We repeat Simulation I, but now consider tasks with heterogeneous computation volumes. 

We assume the computation volume of tasks is Gaussian distributed with a mean of 500 

base instructions and a standard deviation of 100 base instructions (20%). Following 

these assumptions Fig. 6.10 and Fig. 6.11 summarize the results.   
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Fig. 6.10: Average cost of response time and energy consumption for executing N 

heterogeneous tasks (Gaussian distributed computation volumes) 
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Fig. 6.11: Average cost of execution time and energy consumption for executing N 

heterogeneous tasks (Gaussian distributed computation volumes) 

 

 Figs. 6.10 and 6.11 both illustrate that the UEP mode prematurely drains the battery by 

only fully completing a maximum of 168 tasks under a full battery charge while the 

EPARBEP mode completes 252 tasks (50% more). 
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6.5   Multiple Energy Sources  

Let as assume the mobile computing device has m multiple processors  In addition, let us 

initially assume each processor has its independent energy source.  

 

6.5.1 Mobile Hardware Parameters For Multiple Energy Sources. 

 Table 6.3 summarizes other hardware resource/parameters of the mobile device. The jth 

index is from one to m. These parameters corresponds with each processing stream's 

power source. 

Table 6.3: Multiple Energy Sources 

Parameter Meaning SI Unit 

jmE ,  Battery energy  level of thj  processing stream Joules 

jE ,θ  Threshold energy level of thj  processing stream Joules 

( )
jjm EE ,, θ−  Usable battery energy of thj  processing stream Joules 

jcapE ,  
Maximum energy capacity of thj  processing stream 

(under full charge) 
Joules 

j%,ε  
Remaining battery energy percentage of thj  processing 

stream, ]1,0[%, ∈jε  

dimensionless 

 

 

6.5.2    Single or Multiple Energy Sources  

It is worth mentioning that the analysis done assumes each processing stream has its 

independent battery source of equal capacity, but not necessarily of equal energy level. In 

practice, a special case of this assumption is usually implemented where all parallel 

processing streams share only one battery source; an example is the iPhone 5. We can 

simply narrow the work to single energy sources by substituting each and every j%,ε  

for %ε , i.e., }...2,1{%%, , mjj ∈∀= εε . We call this operation mode homogenous EPARBEP 

mode. As mentioned previously, if the mobile device is currently being re-charged 

(battery inflow energy exceeds current use) and it is known in advance that the mobile 

device will not be disrupted from recharging its battery/batteries until completion, then 
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during the recharging period we can prematurely set }...2,1{%, ,1 mjj ∈∀=ε since energy is 

temporarily not a scarce resource during foreseen battery recharge period. Also, all of the 

work presented in this thesis can be extended to non-mobile work stations or computing 

devices that have a reliable and unlimited power supply (but not free) by 

setting }...2,1{%, ,1 mjj ∈∀=ε .We define this operation mode as UEP mode.  

 

6.5.3    Defining operation modes for multiple energy sources  

Homogenous EPARBEP mode set }...2,1{%%, ), (: mjj OSfrom ∈∀= εε - this means that the 

mobile computing device has multiple processors that utilize a single energy source.  

Heterogeneous EPARBEP mode set }...2,1{%,%, ), (: mjjj OSfrom ∈∀= εε  - this means that 

the mobile computing device has an independent energy source associated with each 

processor44. 

UEP mode }...2,1{%, ,1 mjj ∈∀=ε - this implies that energy is not a budget. It is useful when 

the mobile device, with multiple (or single) energy sources is currently being recharged 

or is applicable to work stations that have a steady (but not free) supply of energy.  

So far, All the algorithms presented in this thesis operate under UEP mode. We would 

like to extend them to operate under homogenous and heterogeneous EPARBEP modes. 

We do so in the next few sections in order to draw some insights on the effects of the 

UEP and EPARBEP modes. 

 

6.6   Extending The SBDPP Algorithm to Include EPARBEB 

Mode  

6.6.1   A  Processing Stream Cost Function     

Recall that the SBDPP is the Single Buffer Decision and Parallel Processing algorithm 

that was synthesized in Chapter IV. 

Its modified cost function that includes the remaining energy percentage is as follows. 

                                                 
44 We assume each battery (that is associated with each processor) has equal energy capacity. 
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6.6.2   Minimized Constrained Cost Function of the j
th
 processing stream 

For a task TTk ∈ , the minimum constrained cost function that factors the processing 

constraints and the remaining energy percentage is as follows. 
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for ]3,1(∈jα . 

 

If we assume loading times of all tasks are negligible ( 0,, ≈jktθ ) the cost function 

reduces to: 
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for ]3,1(∈jα . 

We now have sufficient information to describe the SBDPP algorithm under EPARBEB 

and UEP modes. 

 

 

6.6.3   Single-Buffer Decision & Parallel  Processing Algorithm (SBDPP) 

Under EPARBEP and UEP modes. 

1. User or OS specifies εu  for all tasks and may specify different ktu , for each 

TTk ∈ . 

2. For an arriving task TTk ∈  we evaluate and compare the minimum processing 

cost ( )minjC ) of processing the task in each of the available processing streams. A 

task TTk ∈  should follow a stream j* such that { }0|min min,
1

min*, ==
≤≤

jj
mj

j NCC  

thereby it acquires the label *, jkT  and is processed by the *, jsP
r

 processor at the 

optimum processing rate. 

3. Task *, jkT is executed by *, jsP
r

at the optimum processing rate:  
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4.      If  *, jkT  is to be cancelled/deleted or when it is completed, set 0*, =jsP and 

0* =jN . 

In Step 2, If  all the  task loading times are insignificant use min
)2(

jC  instead of minjC .  If all 

processors are homogenous and loading times are homogenous, ignore step 2 and utilize 

Round Robin dispatching. 

 

Algorithm Notes 

• For Homogenous EPARBEP mode, acquire %,ε from the one and only battery 

source and then set }...2,1{%,%, ,: mjj ∈∀= εε . (use EPARBEP mode when capk E<<ε ). 

• For Heterogeneous EPARBEP mode acquire j%,ε from each  processing stream's 

battery (respectively). (use EPARBEP mode when capk E<<ε .) 

• For UEP mode set }...2,1{%, ,1: mjj ∈∀=ε  

• The algorithm's dispatcher is described in steps 2.  

• Step 3 specifies the algorithm's speed scaling function. 

 

Recall in Chapter 4 (section 4.41), we defined jS  to be the (user specified) power 

sensitivity factor.  

The modified definition of ,jS  under EPARBEP mode is defined as follows. 
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Using this modified jS , we present the Single Buffer Assisted Decision & Processing 

Algorithm (SBADPA) under the EPARBEP mode that extends the functionality of the 

SBDPP algorithm (under EPARBEP mode) by allowing the user or the OS of the mobile 

device to further modify a task’s unit cost of time/energy in order to achieve a desired 

(linearly controlled) mode of operation (economy/performance mode). 

See Appendix II for the calibration of the ratio of time and energy prices under 

EPARBEP Mode. Also refer to Appendix III for determining a task’s mode of operation 

(economy/performance) with this modified definition of jS . 

 

6.7   Extending The SBADPA Algorithm to Include EPARBEB 

Mode  

1. User or OS specifies εu  for all tasks and may specify different ktu , for each 

TTk ∈ . 

2. For an arriving task TTk ∈ , solve  

( ) ( )( ) ( )
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       for each processing stream. If 0<jS , set jS = 0 and If 1>jS , set jS = 1  

      (satisfying processing constraints). 

3. User or OS of mobile device can eliminate considering streams whose jS  values 

are undesirable (optional). 

4. For the given tasks TTk ∈ , we evaluate and compare the minimum modified cost 

function of processing a task ( (.)ˆ
minjC ) in each of the available processing 

streams, where: 
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5. A task TTk ∈  should follow a stream j* such that  { }0|ˆminˆ
min,

1
min, ==

≤≤
jj

mj
j NCC  

thereby it acquires the label *, jkT  and is processed by the *, jsP
r

 processor at the 

optimum processing rate. 

6. The optimum processing  rate  of  the *, jsP
r

 processor is  

( ) ( ) ( )( )[ ] j
jjj

jkjMaxkjs SpPpP αα
µ

αα
µ

1

*,*,,*, −+= . 

7.  If  *, jkT  is to be cancelled/deleted or when it is completed, set 0*, =jsP and 

0* =jN . 

 

Algorithm Notes 

a. Use EPARBEP mode when capk E<<ε . 

b. For Homogenous EPARBEP mode, acquire %,ε from the one and only 

battery source and then set }...2,1{%,%, ,: mjj ∈∀= εε .  

c. For Heterogeneous EPARBEP mode acquire j%,ε from each  processing 

stream's battery (respectively). 

d. For UEP mode set }...2,1{%, ,1: mjj ∈∀=ε . 

e. If all processors are homogenous and loading times are homogenous, 

ignore step 4 and 5 and instead use Round Robin dispatching. 

f. The algorithm's dispatcher is comprised of steps (4 & 5).  

g. Step 6 is the algorithm's speed scaling function. 
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In the next section, we extend the Single-threading Multi-buffer Scheduling & Processing 

algorithm (SMBSPP ) to include  the EPARBEP mode. 

 

6.8   Extending The SMBSPP Algorithm to Include EPARBEB 

Mode  

6.8.1   The Minimized Constrained Cost Function of the thj  Processing 

Stream under EPARBEP 

   The minimum constrained cost function that that includes homogenous and 

heterogeneous EPARBEP modes is as follows:   
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(6.3)

 

 

for }...2,1{ jNk ∈  & ]3,1(∈jα
    

 

 

kP*  is the optimum constrained processing rate of potentially executing the task stored in 

the thk index of the jsQ ,

r
memory queue. 
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6.8.2    Single-threading Multi-buffer Scheduling & Processing Algorithm 

(SMBSPP) under EPARBEP and UEP modes 

1. User or OS specifies εu  for all tasks and may specify different ktu , for each 

TTk ∈ . 

 

2. For an arriving task, TTk ∈ , we evaluate and compare the minimum potential 

processing cost, )1(min +jj NC  of virtually introducing and processing the 

arriving task in each of the available processing streams )j(1 m≤≤ . The task 

virtually acquires a position index according to ktk uB ,/  (SCVPPT) in each 

of the processing streams.  

 

3. Using equations (6.2) and (6.3), the task should follow a stream j* such that 

{ })1(min)1( min
1

*min* +=+
≤≤

jj
mj

jj NCNC
 
thereby it acquires the position 

index according to ( )ktk uB ,/  (SCVPPT) and will be processed by the *, jsP
r

 

processor at some adjusted optimum processing rate. 

 

4. Update *jN  . 

 

5. The task stored at system index ( )*,1 j i.e., the task *,1 jT , is executed by the 

*, jsP
r

 
processor at the optimum adjusted processing  rate defined below: 
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6. Repeat steps 4 & 5 whenever a task/s is either dynamically introduced or 

deleted in *, jsQ
r

. 

7. Once the execution of the task *,1 jT  is complete or terminated, the indices of 

all tasks in memory queue *, jsQ
r

 are shifted down by one creating room for 

another task. 

8. If any task or tasks in *, jsQ
r

 are deleted/cancelled, each alive task in *, jsQ
r

is 

shifted to the minimum available slot starting from the first index to preserve 

task priority. 

9. If we are to enforce FCFS queuing service policy or we are not allowed to 

exercise preemption, whenever a task enters the queue of a processing stream 

it acquires the Smallest Empty Index (SEI), also in step 2, while calculating 

the virtual cost of introducing the task to each processing stream, the arriving 

task virtually acquires the SEI. 

10. Ignore steps 2 & 3 when processors are homogeneous and instead utilize 

Round Robin dispatching. 

 

Notes pertaining to algorithm's description 

a. Steps 2 & 3 summarize the SMBSPP algorithm's default dispatcher 

(MMCVITPS) under the SCVPPT service discipline. 

b. Step 5 describes the speed scaling function (OSTSSF). 

c. Use (homogenous/heterogeneous) EPARBEP mode when capk E<<ε . 

d. For Homogenous EPARBEP mode, acquire %,ε from the one and only 

battery source and then set }...2,1{%,%, ,: mjj ∈∀= εε   

e. For Heterogeneous EPARBEP mode acquire j%,ε from each  processing 

stream's battery (respectively). 

f. For UEP mode set }...2,1{%, ,1: mjj ∈∀=ε  
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6.9   Effects of  the EPARBEB and UEP Modes on the Speed 

Scaling functions and Dispatchers of the Algorithms 

 

6.9.1 Effects of  the EPARBEB and UEP Modes on the Speed Scaling 

functions of the Algorithms 

 

Through inspection, the unconstrained speed scaling function of each and every 

algorithm can be written in this form. 

    
( ) jjjjs fP αε

1

%,, .=
     (6.4)

 

 

Where jf is the optimum speed of the j-th processor under the UEP mode. Upon closer 

examination, jf  depends on many other parameters such as the current occupancy of the 

processing stream, the j-th processors power function parameters, and the user profile 

parameters of the active task/s.  

We clearly see that under the heterogeneous EPARBEP mode, equation (6.4) suggests 

that each processor's speed scaling function is attenuated by a dynamic factor of ( ) jj
αε
1

%,  

relative to that of the optimum 45 .  This is an attenuation  and not a dilation 

since 10 %, ≤< jε , and for CMOS based processors, 31 ≤< jα , hence implying 

( ) 10
1

%, ≤< jj
αε . 

 Let us define ( ) jj
αε
1

%,  as the attenuation factor.  j%,ε , the remaining energy percentage  

of the j-th processor actually varies with time. It decreases in the long run when the j-th 

battery is under use and it increases when the j-th battery is recharging. Fig. 6.12 

illustrates this. 

 

                                                 
45 The optimum here considers only unconstrained processing rates, which is the dominating 
condition most of the time.  
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Fig. 6.12: Attenuation factor induced by the EPARBEP mode on speed scaling functions 

 

Figure 6.12 clearly shows that a processor  with a small α  value is more susceptible to 

this attenuation (lower values of the attenuation factor). It also illustrates that low battery 

energy level/s substantially attenuate the speed scaling functions of the processor/s 

compared to that of the optimum (UEP mode). 

Under the homogenous EPARBEP mode, we have  }...2,1{%,%, ,: mjj ∈∀= εε . The attenuation 

effect is not homogenous among the speed scaling functions of  processors because 

although all processors share the one and only battery source (same %,ε ), the attenuation 

factor is still affected by the exponent of each processor's power function ( jα ). Moreover, 

equation (6.4) reduces to ( ) jjjs fP αε
1

%, .=  and the attenuation factor reduces to ( ) jαε
1

%,  

in this mode.  

To complete the argument, we acknowledge that the speed scaling functions of the 

algorithms can also operate at minimum or maximum constrained processing rates.  
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During these rare special cases, the EPARBEP mode coincides with that of the optimum 

UEP mode. In other words, the remaining energy percentage of each 46  of the j-th 

processor ( )
j%,ε  has no effect on the speed scaling functions. See the speed scaling 

functions for verification.  

 

Let us sum up the finding of this section. The remaining energy percentage parameter/s 

attenuate the optimum (unconstrained) speed scaling functions of processors, i.e. they 

slow down the speed of each processor. In previous sections, this slowed down speed was 

defined to be robust. As the battery/batteries energy level/s decrease under use, the 

processors achieve robust processing rates that are slower compared to the optimum. This 

allows the computing device to save more critical energy especially when the 

battery/batteries are almost drained out. Finally, when the processors operate at 

constrained processing rates, the remaining energy percentage parameter/s have no effect 

on the processing rates of processors. 

 

6.9.2 Effects of  the EPARBEB and UEP Modes on the Dispatchers of the 

Algorithms 

Referring to step 2 of the SBDPP and SBADPA algorithms as well as step 3 of the 

SMBSPP algorithm, It is quite clear that when each processing stream has its 

independent energy source47, the dispatchers are dynamically affected by j%,ε . The j-th 

processing stream becomes more expensive the more j%,ε  depletes and vise versa. 

 Let us first provide some contextual details. Through inspection and after carrying out a 

mild algebraic manipulation, we see that when the processing rates are unconstrained, the 

optimum energy cost component (lets call it jC
(

) of the j-th processing stream for each of 

our algorithms can be expressed by equation (6.5). 

 

                                                 
46 Or for all under homogenous EPARBEP. 
47 Energy source of equal capacity but not necessarily of equal energy level. 
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    ( ) jj

j

j

g
C

αε
1

%,

=
(

     (6.5)
 

Where jg  is the optimum energy cost component of the j-th processing stream (under 

UEP mode)
 

Likewise, when the processing rates are constrained,  equation (6.5) transforms to 

equation (6.6). This assertion is easily verified by inspecting the dispatchers of the 

algorithms. 

        ( )j

j

j

g
C

%,ε
=

(

                   (6.6) 

 

Let us first consider the heterogeneous EPARBEP mode. 

jg , the optimum energy cost component of the j-th processing stream under the UEP 

mode is multiplied by some dynamic factor. We define this dynamic factor a dilation 

factor because it is always greater or equal to one. 

 

When the processing rates are unconstrained and under the heterogeneous EPARBEP 

mode, the dilation factor according to (6.6) is a function of each processing stream's 

remaining energy percentage as well as the exponent of each processor's power function. 

When the processing rates are constrained and under heterogeneous EPARBEP mode, the 

dilation factor according to (6.6) is only a function of each processing stream's remaining 

energy percentage. Figures 6.13 and 6.14 illustrate this.
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Fig 6.13: Dilation factor induced by the EPARBEP mode on dispatchers under  

unconstrained processing rates 

 

Fig. 6.13 informs us that when processing rates are unconstrained, the processors with 

small exponents of their power functions incur a large dilation factor under the 

EPARBEP mode. 

 To demonstrate the effect of load balancing, let as examine the contour diagram, Fig. 

6.13, and superimpose in it a simple example. In this example, let us have a processor 1 

with a power function exponent of 5.11 =α  and a processor 2 with a power function 

exponent of 22 =α . Under the UEP mode and considering all other conditions being 

equal (e.g. occupancy, user profile parameters, etc) as well as having unconstrained 

processing rates, the dispatchers will select processor 1 over processor 2 because it is 

cheaper. In other words the UEP mode is inherently biased because it always attempts to 

optimally process task/s along the cheapest processing stream (see the dispatchers of the 

algorithms under the UEP mode). 
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Fig. 6.14: Contour diagram of Fig. 6.13 with a superimposed  example 

 

 

Fig. 6.14 is interesting. It informs us that under the EPARBEP mode, the processors that 

are efficient (have small values of jα  and are always favored by the UEP mode, e.g. 

processor 1) actually incur large dilation factors of their energy cost terms. This means 

that the EPARBEP induces a load balancing effect when the processor are heterogeneous 

interims of the exponents of their power functions. This load balancing effect is further 

accentuated by independent energy sources because as the UEP mode selects processor 1 

for processing, the remaining energy percentage of processor 1 )( 1%,ε  decreases in the 

long run, making it more expensive under the EPARBEP mode to further execute tasks 

by processor 1. 

 In the rare case that we operate at minimum or maximum constrained processing rates, 

the load balancing effect still occurs as long as we have independent energy sources 

(heterogeneous EPARBEP mode). This is corroborated by equation ( 6.6) and Fig. 6.15. 
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Fig. 6.15: Dilation factor induced by the EPARBEP mode on dispatchers under  

constrained processing rates 

 

Fig. 6.15 demonstrates that when processors operate at minimum or maximum 

constrained processing rates,  the energy component of the algorithm's cost functions are 

hyperbolically inflated by each processing stream's battery energy level (heterogeneous 

EPARBEP mode). Under the UEP mode, the dispatchers are not affected by the battery 

energy levels.  This suggests that the efficient processing streams that are favored by the 

UEP mode become more expensive under the EPARBEP mode once their corresponding 

(and independent ) battery energy levels decrease due to disproportionate use. Hence the 

load balancing effect is induced by the (independent) remaining battery energy level of 

each processor.  

Under the homogenous EPARBEP mode, equation (6.5 ) reduces to equation (6.7) and 

equation (6.6) reduces to equation (6.8) 

    ( ) j

j

j

g
C

αε
1

%

=
(

          (6.7) 

                          ( )%ε
j

j

g
C =
(

                      (6.8)
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We clearly see that when processing rates are unconstrained,  load balancing effect is still 

induced by the homogenous EPAREP mode, but this type of load balancing is only 

influenced by the heterogeneity in  the exponents of the processors' power functions 

When the processors operate at the minimum or maximum processing constraints under 

the homogenous EPARBEP mode, equation (6.8) suggests that each processing stream's 

energy cost terms are dilated by the same dynamic parameter. This dynamic parameter is 

simply the reciprocal of the one and only battery energy level. Therefore, we can not 

speculate on any existence of load balancing under this scenario.  

Table 6.4 summarizes the findings of this section.  

 

Table 6.4: Load balancing effect on dispatchers by EPARBEP modes 

 Unconstrained Processing Rates Constrained Processing Rates 

Homogeneous 

EPARBEP 

Mode 

Load balancing effect induced by 

the heterogeneous exponent of each 

processor's power function 

Inconclusive 

Heterogeneous 

EPARBEP 

Mode 

Load balancing effect induced by 

each processor's independent battery 

energy level as well as the 

heterogeneous exponent of each 

processor's power function 

Load balancing effect induced 

by each processor's independent 

battery energy level 

 

 

6.10 Conclusion  

     The STMBAD algorithm provides some insights. It tells us that the optimum 

processing rate of a task is not a function of its computation volume ( kB ). It also tells us 

once a task is dynamically included into the computing device' memory buffer,  the 

optimum processing rate of the currently processed task increases. This processing rate 

increases because the aggregate cost function (that factors response time and energy 

consumption of all tasks in the multi-buffer) has increased and there exists a response 
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time dependency among tasks due to single-threading. The algorithm has an operation 

mode where all tasks' unit cost of energy is heuristically affected by the device' 

remaining battery energy percentage in accordance with the micro-economic laws of 

demand and supply. 

     Using numerical simulations, we showed that when the remaining battery energy 

percentage is factored (EPARBEP mode),  the algorithm: performs slightly slower 

(mildly more slower when the battery is almost drained out), but consumes far less 

energy (in many cases more than 30%), can complete significantly more jobs (about 52% 

more jobs for homogenous deterministic tasks and more than 50% more jobs for 

heterogeneous tasks with Gaussian distributed computation volumes) and ultimately 

allows the mobile computing device to last longer on the go. The algorithm explicitly 

finds a globally optimum (minimum) solution for the cost of response time and energy 

consumption of all active tasks in the device' buffer. We believe this robustness of the 

algorithm being able to handle dynamic inclusion of heterogeneous tasks in real time and 

it being able to take advantage of the remaining battery energy percentage also at run-

time makes it appealing among hardware architectural planers and software programmers 

of mobile computing devices. The STMBAD algorithm can also be implemented in non-

mobile work stations or computing devices that have a reliable and unlimited (but not 

free) supply of power by permanently setting the battery energy percentage parameter to 

one. Assuming we have N tasks queued up for processing, the algorithm has worse case 

computational complexities of O(1) and  O(log(N)) under FCFS and SRPT service 

policies (respectively). 

     We extended all the previously constructed  algorithms of this thesis to include the 

EPARBEP mode and analytically showed that when processors have their independent 

energy sources, the EPARBEP mode induces a  load balancing effect by dilating the 

energy cost terms (of a given schedule). The EPAREP mode strategically slows down 

speed scaling functions as long as the processing rates are unconstrained. This slowdown 

or attenuation in processing rate  is  inversely correlated with the amount of remaining 

energy.  Therefore the EPAREP mode strategically saves the critical energy needed for a 

computing device to last longer on the go. The UEP mode always leads to optimum 
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speed scaling functions and dispatchers but is not always robust in the context of energy 

preservation. 

      In regard to the dispatching of tasks on to processors, the UEP mode inevitably leads 

to a biased selection of efficient processors over inefficient processors in order to 

optimally minimize both energy and response time costs. Comparatively, the EPARBEP 

mode is suboptimal, but when each processing stream has its own independent energy 

supply, the EPARBEP mode induces a load balancing effect on dispatchers that counters 

the selection bias of the UEP mode. Furthermore, under the EPARBEP mode, this load 

balancing effect was also shown to be induced by the heterogeneous exponent of each 

processor's power function even if the processors shared a single energy source as long as 

they operated under unconstrained processing rates. A limitation that should not be 

overlooked is that  the EPARBEP mode is valid when the energy consumption of tasks is 

negligible compared to the energy capacity of the battery. 
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Chapter 7: Conclusion 

7.1  Research Summary 

In this thesis we synthesized, analyzed and simulated online scheduling algorithms to 

optimally assign a set of arriving heterogeneous tasks to heterogeneous speed-scalable 

processors under the single threaded  computing architecture. We used dynamic speed-

scaling (where each processor’s speed is able to dynamically change within hardware and 

software processing constraints) to minimize the total cost of response time and energy 

consumption (TCRTEC) of the tasks. In our work, the processors were assumed to be 

heterogeneous in that they may have differed in their hardware specifications with 

respect to maximum processing rate, power function parameters and energy sources. 

Tasks were heterogeneously modeled in terms of computation volume, memory and 

minimum processing requirements. We also considered that the unit price of response 

time for each task is heterogeneous because the user may be willing to pay higher/lower 

unit prices for certain tasks, thereby increasing/decreasing their optimum processing rates. 

We modeled the overhead loading time incurred when a task is loaded by a given 

processor prior to its execution and assumed it to be heterogeneous as well. We 

constructed a theoretical model that was used to synthesize the parallel processing 

algorithms for the single buffered and multi buffered processors. We also used the micro-

economic Laws of Supply and Demand (LSD) to heuristically adjust the unit price of 

energy in order to extend battery life through a proposed multi buffered, single processor 

algorithm. Further more, we extended all the multi processor algorithms to include single 

or multiple independent energy sources associated with each processor, where we 

analytically showed  that load balancing is induced in heterogeneous processors when the 

unit price of energy is adjusted by the battery level of each processor in accordance with 

LSD. All the algorithms provide a common insight. They all inform us that the optimum 

processing rate of a given task is neither a function of its computation volume nor is it a 

function of its loading time. All the algorithms in this thesis could be used for optimized 

local parallel (heterogeneous) computing of mobile devices or energy aware work 

stations. 
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 7.1.1 Theoretical Framework 

We constructed a theoretical framework to mainly model heterogeneous tasks and 

processors. In this framework, we: defined some relevant mobile parameters including 

multiple energy source parameters; proposed user profiles to incorporate the preference 

of the user with respect to energy and response time pricing; discussed multiprocessor 

computing scenarios based on the potential maximum occupancy; and used formulas in 

current literature to deduce useful relationships pertaining to a task’s computation volume,  

energy and power consumption. These relationships were corroborated with a detailed 

example. In this framework we also proposed and justified a financial performance 

metric, namely the cost of  response time and energy consumption (TCRTEC) in dollars. 

This performance metric stems from the integration of the user (pricing) profiles of tasks 

with the resource consumption of schedules. The framework also described the relevant 

pre-processing constraints and defined traffic conditions as a benchmark to systematically 

simulate all the parallel processing algorithms in this thesis. 

 

7.1.2  Single buffered Processors 

  We presented the first, elaborate, analytical study on the use of dynamic speed scaling to 

schedule heterogeneous tasks on  single-buffered, heterogeneous, parallel processors with 

the objective of  reducing the total cost of response time and energy consumption. 

We synthesized and simulated the  SBDPP algorithm and its variations (SBADPA and 

FPDPA). The algorithm and its variations run in real time to optimally dictate which 

processor among a multiple set of (single-buffered) parallel processors should process an 

incoming task, and they also explicitly determine the optimum processing rate of 

executing each tasks residing in each processor's single-buffer. The three versions of the 

algorithm are conceptually similar, but differ on their application and they each have 

dispatchers and dynamic speed-scaling functions of constant computational complexity.  

These algorithms informed us that a task’s computation volume influences its processing 

cost when the loading times of tasks are not negligible, which in turn influences the 

actual processing stream that will process the task. Moreover, when the loading times 

tasks are negligible, a tasks computation volume does not influence the actual processing 

stream that will process the task.  
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The algorithms were extended to allow migration. This was suggested through carrying 

out migration operations (HMO) of constant computational complexities (assuming a 

constant number of parallel processors) but a deep analysis on this front was not pursued. 

The optimum processing rate of a task under the single buffer scenario was found to be a 

function of  the unit price of time over that of energy as well as the processors power 

function parameters. Further more, through a simple analytical example, it was shown 

that our algorithm's dispatcher outperformed the Round Robin dispatcher with cost 

savings correlated with the absolute values of both the energy and time prices. 

 Through simulations, we observed and constructed a very useful relationship between 

the average response time of a given task and the ideal deterministic inter-arrival period 

that maximizes  system utilization for systems with  parallel, single buffered processors. 

 

7.1.3  Multi buffered Processors 

We synthesized and simulated a novel online multiprocessor scheduling algorithm 

(SMBSPP) that schedules arriving heterogeneous tasks on to multi-buffered, 

heterogeneous, parallel processors. This algorithm constitutes a dispatcher (MMCVITPS), 

a service discipline (MMCVITPS) and a speed scaling function (SCVPPT).  We assumed 

the single threading computing architecture where no processor executes more than a 

single task at any given time until completion unless preemption is dictated by the service 

discipline The SMBSPP algorithm informed us that once a task is dynamically included 

into a given memory queue of a processing stream, the optimum processing rate of the 

currently processed task (stored at the first index of the queue) is likely to change. The 

processing rate changes because the aggregate cost function of all tasks in the queue has 

changed and there exists a time dependency among tasks in the processing stream's 

memory queue due to single-threading. The algorithm explicitly finds a globally optimum 

solution for each aggregate cost function associated with each processing stream. This 

globally optimum solution minimizes the total cost of both energy consumption and 

response time of tasks in each processing stream. The solution explicitly obtains the 

optimum processing rates of each task in all memory queues of all processors.  

Assuming each processing stream has roughly n tasks queued up, the algorithm's 

default dispatcher (MMCVITPS) was found to have a worse case computational 
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complexity of O(n2
) with heterogeneous response time pricing and O(n) with 

homogenous response time pricing, and when it used the Round Robin dispatcher, it had 

a worse case computational complexity of O(1). In terms of the TCRTEC/N metric, we 

demonstrated that the algorithms default dispatcher (MMCVITPS) significantly out 

performs the Round Robin dispatcher under the FCFS, SRPT and SCVPPT service 

disciplines for various stochastic and deterministic traffic conditions where the degree of 

processor heterogeneity was mild (power function parameters were conservatively 

chosen to differ from the mean by at most 8%) yet the MMCVITPS dispatcher drastically 

outperformed the Round Robin dispatcher with cost savings exceeding 100% on average. 

In terms of the TCRTEC/N metric, we demonstrated that the algorithms default 

dispatcher (MMCVITPS) significantly out performed the Round Robin dispatcher under 

the FCFS, SRPT and SCVPPT service disciplines for various stochastic and deterministic 

traffic conditions. In fact, we did not recommend the use of the Round Robin dispatcher 

in systems that utilize heterogeneous processors.  

    Through simulation, we demonstrated that the SMBSPP algorithm with its default 

dispatcher (MMCVITPS), service discipline (SCVPPT) and speed-scaling function 

(OSTSSF) had a fairly constant TSSC/N curve under heavy stochastic traffic conditions; 

this revealed the algorithm’s robustness. It made it suitable to be implemented in energy 

aware work stations or green computational devices that utilize parallel processors and 

want to maintain a fairly stable (constant) operation cost under unpredictable heavy 

traffic conditions. 

The proposed SCVPPT service discipline always matched or outperformed the FCFS 

and SRPT service disciplines as evaluated by the TCRTEC performance metric. When 

implemented in the algorithm, the SCVPPT and SRPT service disciplines each have 

computational complexities of O(log Nj). where Nj is the occupancy of a given processor. 

SCVPPT was found to behave exactly like SRPT when the unit price of response time is 

fixed and equivalent for all tasks; thereby it minimized the total response time of tasks. 

SCVPPT is sort of a generalized version of SRPT but is flexible. It allows a user to 

maintain or even improve the priority of a large task by accepting to set/pay a higher unit 

price of response time or even degrade the priority of a small non-urgent task by setting a 

sufficiently small unit price of response time. This is a dynamic feature that is absent in 
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both FCFS and SRPT service disciplines. We recommended that the SCVPPT service 

discipline be implemented in any online speed-scaling algorithm that aims to minimize 

TCRTEC and considers tasks with heterogeneous unit prices of response time. 

        Finally, for 2≠α , simulation results showed that our speed scaling function 

(OSTSSF) outperformed the ( ){ }SRPTnp ,~ 1−β  speed scaling function. We suggested 

improving this speed scaling function to 
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results as dictated by the TCRTEC/N performance metric. When the unit price of 

response time and energy is fixed for all tasks, both of these speed scaling functions have 

a worse case computational complexity of O(1). Unlike ( ){ }SRPTnp ,~ 1−β , OSTSSF is valid 

for the general case where the unit price of response time is heterogeneous in that it could 

vary per task (we did this to influence the priority of task execution as mentioned 

previously). Also, OSTSSF unlike ( ){ }SRPTnp ,~ 1−β , considers the appropriate hardware 

and software processing constraints, making it more appealing in an application context. 

 

7.1.4  Laws Of Supply & Demand and Energy Sources 

We used  the micro-economic laws of Supply and Demand to heuristically adjust the unit 

price of energy in order to extend battery life and also to induce load balancing effects. 

We achieved the first objective by synthesizing and simulating a single processor, multi-

buffered algorithm (STMBAD). This algorithm has  an operation mode where all tasks' 

unit cost of energy is heuristically affected by the device' remaining battery energy 

percentage in accordance with the micro-economic laws of demand and supply 

(EPARBEP mode). 

     Using numerical simulations, we showed that when the remaining battery energy 

percentage is factored (EPARBEP mode),  the algorithm: performs slightly slower 

(mildly more slower when the battery is almost drained out), but consumes far less 

energy (in many cases more than 30%), can complete significantly more jobs (about 52% 

more jobs for homogenous deterministic tasks and more than 50% more jobs for 

heterogeneous tasks with Gaussian distributed computation volumes) and ultimately 

allowed the mobile computing device to last longer. The algorithm explicitly finds a 
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globally optimum (minimum) solution for the cost of response time and energy 

consumption of all active tasks in the device' buffer. Like all the previously synthesized 

algorithms, the STMBAD algorithm handles the dynamic inclusion of heterogeneous 

tasks in real time. We suggested that the STMBAD algorithm be implemented in non-

mobile work stations or computing devices that have a reliable and unlimited (but not 

free) supply of power by permanently setting the battery energy percentage parameter to 

one (UEP mode). Assuming we have N tasks queued up for processing, the algorithm has 

worse case computational complexities of O(1) and  O(log(N)) under FCFS and SRPT 

service policies (respectively). 

     We extended all the previously constructed  algorithms of this thesis to factor single or 

multiple energy sources through the (homogenous or heterogeneous) EPARBEP mode. 

This mode was defined to be the scenario when the energy price of a given schedule is 

heuristically adjusted by the remaining batter energy level/s in accordance with the laws 

of demand and supply. In contrast, we also maintained the UEP mode, which is the 

scenario where  the price of energy is un adjusted. 

We analytically showed that when processors have their independent energy sources, the 

EPARBEP mode induces a  load balancing effect by dilating the energy cost terms (of a 

given schedule). The EPAREP mode strategically slows down speed scaling functions as 

long as the processing rates are unconstrained. This slowdown or attenuation in 

processing rate  is  inversely correlated with the amount of remaining battery energy.  

Therefore the EPAREP mode strategically saves the critical energy needed for a 

computing device to last longer on the go. The UEP mode always leads to optimum 

speed scaling functions and dispatchers but was found to not always be robust in the 

context of energy preservation. In regard to the dispatching of tasks on to processors, the 

UEP mode inevitably leads to a biased selection of efficient processors over inefficient 

processors in order to optimally minimize both energy and response time costs. 

Comparatively, the EPARBEP mode was analyzed to be suboptimal, but when each 

processing stream has its own independent energy supply, the EPARBEP mode was 

shown to induce a load balancing effect on dispatchers that counters the selection bias of 

the UEP mode. Furthermore, under the EPARBEP mode, this load balancing effect was 

also shown to be induced by the heterogeneous exponent of each processor's power 
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function even if the processors shared a single energy source as long as they operated 

under unconstrained processing rates. A limitation that should not be overlooked is that  

the EPARBEP mode is valid when the energy consumption of tasks is negligible 

compared to the energy capacity of the battery. 

 

7.2  Research Limitations 

The following are the research limitations of this thesis. 

 

7.2.1   Algorithmic  Overhead 

Generally, the algorithms make decisions on three major fronts. These decisions are 

fundamentally categorical. They are as follows. 

• a dispatcher to assign tasks on to processors.  

• a service discipline to dictate the order of servicing tasks within each processor.  

• a speed scaling functions to specify the speed of each processor.  

Each of these decisions incurs a computational penalty both in time and energy. We 

classify this type of computational overhead as the algorithmic overhead. All the single 

buffered (multiprocessor) algorithms do not have an algorithmic overhead with respect to 

service discipline due to single buffers.  They also have mild algorithmic overheads for 

both their  speed scaling functions and their dispatchers because those decisions were 

shown to be of constant computational complexity.  

In the (multiprocessor) multi-buffer scenario, the computational complexity of the 

MMCVITPS dispatcher is indeed substantial. It was shown to have a worse case 

computational complexity of O(n2
), where n is the number of tasks in each processor's 

multi-buffer. In the same scenario, the proposed service discipline (SCVPPT) and speed 

scaling function (OSTSSF) have worse case computational complexities of  O(log n) and 

O(n) respectively. The computational complexity of the service discipline can 

substantially be mitigated by using a non-preemptive service discipline such as First 

Come First Serve, but doing so was shown to achieve sub-optimal TCRTEC performance. 

The OSTSSF speed scaling function can be reduced to a constant computational 

complexity as long as the unit price of response time is homogenous. The drawback of 
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doing so only impacts the flexibility of the user. We lightly suggested the implementation 

of the MMCVITPS dispatcher in ad-hoc hardware to guarantee performance, but the 

actual algorithmic overhead cost of doing so warrants further investigation. However, we 

are currently working on enhancing its computational complexity as a means to reduce its 

algorithmic overhead. 

 

7.2.2   Overhead Energy 

Like all of the closely related work in existing literature48, the energy consumption during 

loading times (overhead energy) was assumed to be negligible. This was justified since 

the unit price of response time generally exceeds that of energy. In addition, these loading 

times can be mitigated by an improvement in technology, i.e. faster digital switching 

technologies. In practice, this can also be overcome by processing tasks with computation 

volumes that incur response times that are sufficiently larger than their loading times.  

Arguably, It is possible that the relative price of energy could increase in the future. 

Nevertheless, factoring the overhead energy in the analysis will only affect the 

dispatchers of our algorithms because this overhead does not influence the computation 

of optimum processing speeds.  In short,  the speed scaling functions of our algorithms 

will not change, but the dispatchers will be slightly different. Consequently, this may 

open up the possibility of finding a more optimum service discipline (better than our 

proposed SCVPPT service discipline) if indeed the overhead loading times are not only 

heterogeneous but are also comparable to the response times of tasks. 

 

7.2.3   Scope of Analysis  

While constructing our algorithms, the boundary of analysis begins when tasks arrive, 

over the time interval in which the tasks are dispatched to processors, and terminates 

when all the tasks are fully processed. Beyond this boundary of analysis is to consider 

and stochastically model the arrival of tasks as a Poisson process [26]. Although we 

                                                 
48 Related work in existing literature do not explicitly factor overhead loading times nor do they 

explicitly factor overhead energy. We factored overhead loading times but not their energy 
counterparts (overhead energy). 
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considered this stochastic model while simulating the relevant algorithms, we did not 

consider it in the formulation and derivation of the algorithms. Extending the boundary of 

analysis to encompass this stochastic dimension will not affect the single buffered 

scenario as long as no task rejections are observed, but in the (multiprocessor) multi-

buffer scenario, this consideration may prove to be a suitable avenue to derive more 

efficient algorithms.  

 

7.2.4   System Calibration 

The performance of all the algorithms heavily depend on the calibration of two key 

parameters. These parameters (
jα  and

jλ ) are the power function parameters of each 

processor's power function. Before implementing the algorithms on actual hardware, we 

suggest running preliminary experiments to extract sufficiently accurate values of these 

parameters. We suggest more effort be invested in identifying a higher resolution of 
jα  

over 
jλ  because in general, 

jα  influences the performance of the algorithms to a  greater 

extent. With respect to the polynomial modeling of the power functions of processors, [6] 

states that this model is not always appropriate because of the  interference of additive 

white Gaussian noise over communication channels that induce exponential power 

functions. We alleviate this effect in most of our algorithms by conservatively 

(infrequently) updating the speed of processors. 

 

7.3  Future Research 

We outline examples of  research work that is centered around the use of dynamic speed 

scaling to minimize the cost of response time and energy consumption. Considering that 

{tasks, loading times, processors and unit price of response time} are all heterogeneous, 

some examples of future research are as follows. 

• Consider migration in the single threaded, multi-buffered computing architecture. 

Migration has been solved for the deadline based scheduling problem [2, 7] but it 

is an open problem in the context of the energy and flow time cost minimization 

problem. This open problem is quite challenging given the assumptions of our 

model where almost all the parameters are heterogeneous. Although we briefly 
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discussed how migration can be addressed in the single buffer computing 

architecture, a detailed analysis on this front could help extract a solution for the 

multi-buffered case. 

• Study the multithreading or processor sharing computer architecture under our 

model and furthermore, to consider migration as well. 

• Possibly use the Lloyd Max algorithm [48] to address the following question. 

How are we to implement dynamic speed scaling algorithms in those 

conventional processors that do not support dynamic speed scaling? 

• Analyze task synthesizers which break tasks by assigning or distributing their 

computation volumes. It would be interesting to investigate how tasks should be 

distributed as a function of arrival times, occupancy of processing streams,  

number of processors, power function parameters of processors, traffic conditions, 

etc. with the goal of minimizing the total cost of response time and energy 

consumption. 

• Address some or all of the research limitations that were previously discussed. 

 

7.4  Closing Remarks 

In this thesis we have synthesized, analyzed and simulated various parallel processing 

algorithms. These algorithms use dynamic speed scaling  to schedule heterogeneous tasks 

onto heterogeneous processors in real time. The algorithms are compatible with 

homogenous processors as well as homogenous tasks. They are also compatible with 

none, single or multiple battery energy sources. These versatilities make the algorithms 

appealing for both mobile and stationary computing environments. The common 

objective among all the algorithms is to minimize the financial cost of response time and 

energy consumption. Attaching this financial cost to computing services is quite 

convenient for those that lease these services.  Furthermore, the algorithms may prove to 

be valuable in the near future because experts in the computer architecture field have 

speculated on the advent of conventional heterogeneous computing. 

 

 



 154 

Bibliography 

[1] Albers, S. and Fujiwara, H., “Energy-efficient algorithms for flow time minimization”, 

Proc. 23rd Annual Symposium on Theoretical Aspects of Computer Science 

(STACS), Springer LNCS 3884, pp. 622–633, 2006.  

 

[2] Albers, S., Antoniadis, A. and Greiner, G., “On Multi-Processor Speed Scaling with  

Migration”, SPAA, pp. 279–288, 2011.  

[3] Albers, S., “Energy-Efficient Algorithms”, Communications of the ACM, Vol. 53 No. 

5, Pages 86-96, May, 2010.  

[4] Albers, S., Muller, F. and Schmelzer, S., “Speed Scaling on Parallel Processors”, 

SPAA, pp. 289-298, 2007.  

[5] AMD. (2013) “AMD PowerNow™ Technology” [Online]. Available: 

http://www.amd.com/us/products/technologies/amd-powernow-

technology/Pages/amd-powernow-technology.aspx.  

[6] Andrew, L.L.H., Lin, M., Wierman, A., “Optimality, fairness, and robustness in 

speed scaling designs”, SIGMETRICS '10 Proceedings of the ACM SIGMETRICS 

international conference on Measurement and modeling of computer systems, Pages 

37-48, 2010.  

 

[7] Angel, E., Bampis, E., Kacem, F. and Letsios, D., “Speed Scaling on Parallel 

Processors with Migration*”, Euro-Par, pp.128-140, 2012.  

 

[8] Apple. (2013) “iPhone” [Online].  

      Available: http://www.apple.com/asia/iphone/specs.html.  

 



 155 

[9] Asanović, K., et al., “The Landscape of Parallel Computing Research: A View from 

Berkeley", EECS Department, University of California, Berkeley, pp.22, Tech. Rep. 

UCB/EECS-2006-183, December 2006.  

 

[10] Avrahami, N.  and Azar, Y., “Minimizing total flow time and total completion time 

with immediate dispatching”, SPAA, pp. 11–18, 2003.  

[11] Bansal, N., Chan, H.-L., Lam, T.-W., Lee, K.-L., “Scheduling for speed bounded 

processors”, In Proceedings of the 35th International Colloquium on Automata, 

Languages and Programming, Springer LNCS 5125,  409–420, 2008.  

[12] Bansal, N., Kimbrel, T. and  Pruhs, K., “Dynamic speed scaling to manage energy 

and temperature”, Proc. 45th Annual IEEE Symposium on Foundations of 

Computer Science, pp. 520–529, 2004.  

 

[13] Bansal, N., Kimbrel, T. and Pruhs, K., “Speed scaling to manage energy and 

temperature”, J. ACM 54 (1) , pp. 1–39, 2007.  

[14] Bansal, N., Pruhs, K., Stein, C., “Speed scaling for weighted flow time”, In SIAM 

Journal on Computing 1294-1308, 2009.  

[15] Bansal, N., Pruhs, K., Stein, C., “Speed scaling for weighted flow time”, In: Proc. of 

18th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA’07), pp. 805–813, 

2007.  

[16] Barroso, L.A., “The price of performance”, ACM Queue 3 (2005).  

[17] Baumol, W., Microeconomics: principles and policy, 1st Canadia Edition, Toronto, 

Nelson Education, 2009.  

 

[18] Bower, F.A., Sorin, D.J. and Cox, L.P., “The impact of dynamically heterogeneous 

multicore processors on thread scheduling”, Micro, IEEE, 28(3), pp. 17 –25, 2008.  

 



 156 

[19] Brooks, D.M., Bose, P., Schuster, S.E., Jacobson, H., Kudva, P.N., Buyuktosunoglu, 

A., Wellman, J.-D., Zyuban, V., Gupta, M., Cook, P.W.,“Power-aware 

microarchitecture: design and modeling challenges for next-generation 

microprocessors”, IEEE MICRO 20(6), pp. 26–44, 2000.  

 

 [20] Bunde, D.P., “Power-aware scheduling for makespan and flow”, SPAA, pp. 190–

196, 2006.  

[21] Das, S. Fundamentals of heat and mass transfer, Oxford, U.K. : Alpha Science 

International, 2010.  

[22] Dautovic, S., Malbasa, V., “Dynamic Power Management of a System With a Two-

Priority Request Queue Using Probabilistic-Model Checking”, In Computer-Aided 

Design of Integrated Circuits and Systems, IEEE Transactions on  Feb 2008.  

[23] Edmonds, J. Pruhs, K., “Scalably scheduling processes with arbitrary speedup 

curves”, In ACM-SIAM Symposiumon Discrete Algorithms, pages 685–692, 2009.  

[24] Gradshteyn, I. S. and Ryzhik, I. M., Hessian Determinants, §14.314 in Tables of 

Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, pp. 1069, 

2000.  

 

[25] Greiner, G. , Nonner, T. and Souza, A., “The bell is ringing in speed-scaled 

multiprocessor scheduling”, SPAA, pp. 11-18, 2009.  

[26] Grimmett, G.  and Stirzaker, D., Probability and Random Processes, 3rd ed. Oxford 

University Press, Jul 2010.  

[27] Gupta, A., Im, S., Krishnaswamy, R., Moseley, B.  and Pruhs, K., "Scheduling 

heterogeneous processors isn't as easy as you think”, Association for Computing 

Machinery. Proceeding of the ACM-SIAM Symposium on Discrete Algorithms: 

1242-1253. Philadelphia: Society for Industrial and Applied Mathematics. (2012).  

 



 157 

[28] Gupta, A., Im, S., Krishnaswamy, R., Moseley, B.  and Pruhs, K., "Scheduling 

heterogeneous processors isn't as easy as you think”, Proc. of the Twenty-Third 

Annual ACM-SIAM Symp. on Discrete Algorithms pp. 1242-1253. 2011.  

 

[29] Hwang, C. H.,  Wu, H., "A predictive system shutdown method for energy saving of 

event-driven computation”, in ACM Transactions on Design Automation of 

Electronic Systems (TODAES) , Volume 5 Issue 2, Pages 226 - 241, April 2000.  

 

[30] Hydro One. (2013, May). “BUILDING YOUR BILL: prices & rates” 

[Online].Available:http://www.hydroone.com/RegulatoryAffairs/RatesPrices/Pages/

Default.aspx Access on 2013, June 19.  

 

[31] IBM. (2013) “Power Systems Energy Management” [Online]. Available: 

http://www-03.ibm.com/systems/power/software/energy/about.html.  

 

[32] Intel. (2013) “Enhanced Intel SpeedStep® Tech. - How To Document” [Online]. 

        Available:http://www.intel.com/cd/channel/reseller/asmo-na/eng/203838.htm.  

 

[33] Irani, S., Shukla, S. and Gupta, R., “Algorithms for power savings”, Proc. 14th 

Annual ACM-SIAM Symposium on Discrete Algorithms, pp.37–46, 2003.  

 

[34] Irani, S., Shukla, S.K., Gupta, R.K., “Online strategies for dynamic power 

management in systems with multiple power-saving states”, ACM Trans. Embedded 

Comput. Syst. 2 325–346, 2003.  

[35] Irani, S., Singh, G., Shukla, S.K., Gupta, R.K., “An overview of the competitive and 

adversarial approaches to designing dynamic power management strategies”, IEEE 

Trans. VLSI Syst. 13 (2005), 1349–1361.  

[36] Jain, T.R. Microeconomics and Basic Mathematics. New Delhi: VK Publications. pp. 

24, 2006–07.  

 



 158 

[37] Karlin, A.R., Manasse, M.S., McGeoch, L.A,  Owicki, S.S., “Competitive 

randomized algorithms for nonuniform problems”, Algorithmica 11, 542–571, 1994.  

 

[38] Kaxiras, S. and Martonosi, M., Computer Architecture Techniques for Power-

Efficiency, Morgan and Claypool, 2008.  

[39] Khogali, R. and Das, O., "Cost Minimization for Scheduling Parallel, Single-threaded, 

Heterogeneous, Speed-scalable Processors", The 19th IEEE International Conference on 

Parallel and Distributed Systems (ICPADS "13),  Seoul, Korea, Pg. 265-274, Dec 18, 2013. 

[40] Khogali, R. and Das, O., “Extending Battery Life of a Multi-buffered, Single-threaded 

Processor in a Mobile Computing Device", The Ninth IEEE Xplore International 

Workshop on Scheduling and Resource Management for Parallel and Distributed Systems 

(SRMPDS '13) in conjunction with the 42nd IEEE International Conference on Parallel 

Processing (ICPP '13), Lyon, France, Oct 1, 2013,  (In press).  

[41] Khogali, R., Das, O., and Raahemifar, K., “Mobile Parallel Computing Algorithms for 

Single-Buffered, Speed-Scalable Processors", 12th IEEE International Conference on Trust, 

Security and Privacy in Computing and Communications (TRUSTCOM), Melbourne, 

Australia, Pg.1832 - 1839, 16-18 July 2013. 

[42] Koufaty et al., “Bias scheduling in heterogeneous multi-core architectures”, 

EuroSys 2010.  

 

[43] Kumar, K. and Lu,Y. “Cloud Computing For Mobile Users: Can Offloading 

Computation Save Energy?”, in IEEE Xplore, pp.52, 2010.  

 

[44] Lam, T.W., Lee, L.-K., To, I.K.-K., Wong, P.W.H., “Competitive non-migratory 

scheduling for flow time and energy”,  In: Proc. of the 20th Annual ACM 

Symposium on Parallel Algorithms and Architectures (SPAA’08), 256–264, 2008.  

[45] Lam, T.-W., Lee, L.-K., To, I.K.-K., Wong, P.W.H., “Energy efficient deadline 

scheduling in two processor systems”, In Proceedings of the 18th International 

Symposium on Algorithms and Computation, Springer LNCS 4835, 476–487, 2007.  



 159 

[46] Li, M., Yao, A.C., Yao, F.F., “Discrete and continuous min-energy schedules for 

variable voltage processors”, In Proceedings of the National Academy of Sciences 

USA 103  3983–3987, 2006.  

[47] Li, M., Yao, F.F., “An efficient algorithm for computing optimal discrete voltage 

schedules”, SIAM J. Comput. 35, 658–671, 2005.  

[48] Lloyd, S., “Least squares quantization in PCM”, unpublished memo., Bell Lab., 

1957, Information Theory, IEEE Transactions on  (Volume:28 ,  Issue: 2), pp. 129-

137, March, 1982.  

[49] Merchant, A., et al., “Analysis of a Control Mechanism for a Variable Speed 

Processor” in IEEE Transactions. Comput. , pp.793-801, 1996.  

 

[50]  Microsoft. (2013) “Desktop PC Energy Savings for Enterprises” [Online]. Available: 

http://www.microsoft.com/environment/our-commitment/our-research.aspx.  

 

[51] Microsoft. (2013) “Power Management and ACPI - Architecture and Driver 

Support” [Online]. Available: http://msdn.microsoft.com/en-

us/windows/hardware/gg463220.aspx.  

 

[52] Min, R., et al ., “Energy-centric enabling technologies for wireless sensor networks”, 

IEEE Trans. Wireless Commun., vol. 9, no. 4, pp. 28–39, Aug. 2002.  

 

[53] Morad, T.Y., Weiser U.C., Kolodny,A., Valero, M., Ayguadé., E.,“Performance, 

power efficiency and scalability of asymmetric cluster chip multiprocessors”, IEEE 

Comput. Archit, Jan 2006.  

 

[54]  Ontario Ministry of Labour. (2013, May), “Minimum Wage” [Online]. 

Available:http://www.labour.gov.on.ca/english/es/pubs/guide/minwage.php. Access 

on 2013, June 19.  

 



 160 

[55] Parkkila, J. and Porras, J., “Improving Battery Life and Performance of Mobile 

Devices with Cyber Foraging”, in IEEE, pp.91-95, 2011.  

 

[56] Pruhs, K.,  Uthaisombut, P. and  Woeginger, G. “Getting the best response for your 

erg” Proc. 9th Scandinavian Workshop on Algorithm Theory (SWAT), Springer 

LNCS 3111, pp.15–25, 2004.  

 

[57] Pruhs, K., Sgall, J. and Torng, E., “Online scheduling”, In J. Leung, editor, 

Handbook of Scheduling: Algorithms, Models and Performance Analysis, pp.  15-

1–15-41. CRC Press, 2004. 

[58] Pruhs, K., Uthaisombut, P., Woeginger, G.J., “Getting the best response for your 

erg”, ACM Trans. Algorithms 4, 2008.  

[59] Pruhs, K., van Stee, R. and Uthaisombut, P., “Speed scaling of tasks with precedence 

constraints”, Theory Comput. Syst. 43 (1), pp. 67–80, 2008. 

 

[60] Sleator, D.D., Tarjan, R.E., “Amortized efficiency of list update and paging rules”, 

Comm. ACM 28, 202–208, 1985.  

 

[61] Sniedovich, M., Dynamic Programming Foundations and Principles, Second 

Edition, CRC Press, 2010.  

 

[62] Vaknin,S. (2009, June 18). “Nokia powering up self-charging cell phone”, CNET 

[Online]. Available: http://news.cnet.com/8301-17938_105-10267006-1.html.  

 

[63] Wierman, A.,  Andrew, L. L. H., and  Tang, A., “Power-aware speed scaling in 

processor sharing systems: Optimality and robustness” Performance Evaluation, 69 

(12), pg. 601-622, 2012.  

[64] Wikipidea. (2013) “Sleep mode” [Online]. Available:   

http://en.wikipedia.org/wiki/Sleep_mode.  



 161 

[65] Wikipidea. (2013, Feb 1). “PlayStation Vita” [Online].  Available: 

http://en.wikipedia.org/wiki/PlayStation_Vita. Access on 2013, Mar 10. 

 

[66] Williams, M. (2009, Feb 12), LG, “Samsung Develop Solar-powered Cell Phones 

PCWorld” [Online]. Available: http://www.pcworld.com/article/159507/article.html.  

 

[67] XTG Technology. (2013, Feb 1). “xtgtechnology Products” [Online].  Available: 

http://www.xtgtechnology.com/Products_c_11-2-0.html.  

 

[68] Yao, F., Demers, A. and Shenker, S., “A scheduling model for reduced CPU energy”, 

Proc. 36th Annual Symposium on Foundations of Computer Science, pp.374–382, 

1995.  

 

[69] Yuan, L., and Qu, G.,“Analysis of energy reduction on dynamic voltage scaling-

enabled systems”, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 24 (12), 

pp. 1827–1837, 2005. 

 

[70] Bansal, N., Chan, H.-L., Pruhs, K. “Speed scaling with an arbitrary power function" 

In Proceedings of the 20th ACM-SIAM Symposium on Discrete Algorithm, 2009.  

 

[71] Chan, H., et al., “Optimizing Throughput and Energy in Online Deadline 

Scheduling”, ACM Transactions on Algorithms, Vol. 6, No. 1, Article 10, Dec 2009.  
 

 

 

 

 

 

 



 162 

Appendices 

 

Appendix I is relevant to Chapter 3 (Section 3.6) of the thesis. 

Appendices II and III are relevant to Chapter 6 (Sections 6.6 and 6.7) of the thesis. 

 

Appendix I: Initial Modeling of A Task’s Energy & Power 

Consumption    

Initially, we were not formally aware of dynamic speed scaling, but we were still able to 

reasonably model the energy and power consumption of a task. This was done using a 

statement from a paper in the Cloud Computing literature. We were able to deduce 3=α  

( α being the exponent of a CMOS processor's power function). This deduction is 

consistent with the assumptions made in current literature pertaining to the Dynamic 

Speed Scaling field. We show the deduction as follows. 

For a task: TTk ∈ , let kε  be the task’s expected energy consumption in Joules. According 

to Kumar and Lu [43], we are to: “Execute programs slowly. When a processor’s clock 

speed doubles, the power consumption nearly octuples. If the clock speed is reduced by 

half, the execution time doubles, but only one quarter of the energy is consumed.” 

   We assert that the energy consumption of a task is directly proportional to the 

processing rate to a non-negative degree and is directly proportional to the execution time. 

Let ∝  denote the relationship of direct proportionality. 

kε ∝ α)( kP  where +ℜ∈α , kε ∝ kt  and kt ∝
kP

1
 

 Using  the abovementioned statement of [43] we deduce 3=α  and derive the following 

equations. 

                                          kkjk tP 3)(λε =                                                         (A.1) 

                                           
k

k
k

P

B
t =                                            (A.2) 

 

kB  relates kt  to kP , and is actually the task’s remaining computation volume in base 

instructions (n). 
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We define jλ , measured in )/.( 32 nSJ , to be the processor energy inefficiency coefficient. 

We know that power consumption is the rate of energy consumption. Let us define the 

expected power consumption of a task as kPow .  

                    
3)(/ kjkkk PtPow λε ==  (Watts)                            (A.3) 

 

It is straight forward to verify the assertions of (A.1), (A.2) and (A.3) using the above 

mentioned statement of [43]. Using (A.1) and (A.2), we further deduce: 

        
2)( kkjk PBλε =  (Joules)                       (A.4) 

 

After further studying dynamic speed scaling, we generalized ]3,1(∈α . Furthermore we  

classified it as a heterogenic parameter of a given jth processor ( jα ),where ]3,1(∈jα . 

 

Appendix II: Calibrating the Ratio of Time and Energy Prices under 

EPARBEP Mode 

      Let us calibrate the ratio of unit prices ( εuu kt /, ) that happen to correlate with 

processing rate and power consumption of a given task kT  . Recall in Chapter 4, for a 

given ),( ,ktk uuU ε= , associated with the task kT ,  we want a one to one correspondence 

with kP *  or jsP , which introduces the issue of calibration. 
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Relation (A.5) is consistent with minimum and maximum processing constraints. 
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As battery 49  energy depletes (decreasing j%,ε ), the calibration region in Fig. A1  

uniformly shifts to the right increasing the economy region (or decreasing the economy 

region), and if the battery recharges (increasing j%,ε ), the calibration region uniformly 

shifts to the left decreasing the economy region (or increasing the performance region).  
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Fig. A1: A task’s operating mode and optimum processing rate as a function of user-

defined (time/energy) unit prices under EPARBEP mode 

 

                                                 
49 jth processing stream's battery. 
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Fig. A.1 illustrates the robust processing rate of a task as a function of the ratio of time 

and energy prices. For a given task, if a user wants the task’s mode of operation to escape 

the economy region, he/she should do any or all of the following. 

• Recharge battery/batteries (thereby increasing the remaining energy percentage/s). 

• Be willing to spend more on time (increase ktu , ). 

• Be willing to spend less on energy50  (decrease εu ).  

• Accept a higher time cost relative to energy  (increase εuu kt /, ).  

 

Likewise, if a user wants the task’s mode of operation to escape the performance  region, 

he/she should use more depleted batteries, be willing to spend less on time (decrease ktu , ) 

or spend more on energy  (increase εu ) or rather accept a lower time cost relative to 

energy (decrease εuu kt /, ). If an advanced user has a deep understanding of ktu , or εu , he 

or she would specify it, and allow the SBDPP algorithm to operate on the appropriate 

mode. Alternatively, a user may want to know the actual extent of a task’s  mode of 

operation, and may want  to make a decision based on that rather than just the actual 

values of ktu ,  or εu . To do so in a consistent fashion, we need to use a metric that is a 

linear function of ( )εuu kt /, . Referring to Fig. A.1, in order to achieve a linear calibration 

of the task’s processing rate as a function of ( )εuu kt /, , we first identify each constant 

range (flat line portions of the economy and performance mode regions) in the graph and 

map each of these regions to a point value. We also need to linearize the curved portion 

of the figure (calibration region) via a non-linear transformation. 

 

 

 

 

                                                 
50 If the price of energy is determined by the OS based on time of day, a decrease in energy price   
    can result from a transition between peak hours and off-peak hours. 
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Appendix III:  Determining a Task’s Mode of Operation with 

EPARBEP mode   

 

   As mentioned in Chapter 4, in order to consistently determine a task’s mode of 

operation we linearly calibrate the ratio of the user defined prices ( )εuu kt /,  by non-

linearly transforming the task’s processing rate. We achieve this by using the task’s 

power consumption instead of the task’s processing rate. 

( )εuu kt /,  is defined as the ratio of  unit time price ($/Second) and unit energy price 

($/Joule). It is convenient that the resulting dimension of ( )εuu kt /,  is indeed 

Joule/Second or Watt. According to equation (3.2), we see that ( )εuu kt /,  is the power 

consumption of a task multiplied by a factor of 
j

j

%,

)1(

ε
α −

. 

 

The modified definition of the (user specified) power sensitivity factor )( jS  under 

EPABEP mode is as follows. 

 

         Let  ( ) ( ) ( )( )[ ]jkjMaxkj

j

jkt
SpPp

u

u
jjj α

µ
αα

µ
ε

λ
ε

α
,,,

%,

,
)1(

−+
−

=                  (A.6) 

where ]1,0[∈jS . 
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Fig. A.2: Illustrating the linear calibration of a task’s operation mode  by utilizing the 

processor's power consumption during execution under EPARBEP mode 

 

In Fig. A.1, we see that a task’s robust processing rate as a function of ( )εuu kt /,  does not 

linearly determine the operation mode of a task. In Fig. A.2, a task’s power consumption 

as a function of ( )εuu kt /,  does indeed linearly determine the operation mode of a task. 

This works because a task’s power consumption is a non-linear transformation of its 

processing rate. In extension, observe that in  Figs. A.1 and  A.2, the balanced mode of a 

task’s execution is identified by average of its minimum and maximum power 

consumption and not the mean of its minimum and maximum processing rate. 



 168 

As mentioned in Chapter 4, jS  is used to linearly parameterize a task’s power 

consumption over the calibration region51 (spanned by ( εuu kt /, )). jS  informs us on the 

actual extent of power consumption while executing a task under software and hardware 

processing constraints, and it also  linearly determines a task’s mode of operation.  

 

Using (A.2), it is quite convenient that the robust52 processing rate that factors processing 

constraints reduces elegantly to: 

( ) ( ) ( )( )[ ] j
jjj

j

jkjMaxk

jj

ktj

js SpPp
u

u
P αα
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αα
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α
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ε 1
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1

,%,

,
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−+=










−
= , for ]1,0[∈jS . 

When ]1,0[∈jS , we get k

jj

ktj

jsjMax p
u
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PP
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,

1

,%,

,,
)1(

µ

α

ελα

ε
≥











−
=≥  (as desired). 

 

 

                                                 
51 In equation (A.6) and Fig. A.1 and A.2, we redefined jS , the user specified power sensitivity 

    factor under EPAREP mode. 
52 The processing rate becomes optimum when the remaining energy percentage is equal to one,  

    i.e. 1%, =jε . 


