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ABSTRACT

Wavelet-Based Image Compression using Mathematical
Morphology and Self Organizing Feature Map

©Abdul Adeel Mohammed 2005

Master of Applied Science
Department of Electrical and Computer Engineering
Ryerson University

Image compression using transform coding technique has been widely used in
practice. However, wavelet transform is the only method that provides both spatial
and frequency domain information. These properties of wavelet transform greatly
help in identification and selection of significant and non-significant coeflicients from
amongst the wavelet coefficients. Wavelet transform based image compression result
in an improved compression ratio as well as image quality and thus both the significant
coefficients and their positions within an image are encoded and transmitted. In this
thesis a wavelet based image compression system is presented that uses mathematical
morphology and self organizing feature map (MMSOFM). The significance map is
preprocessed using mathematical morphology operators to identify and create clusters
of significant coefficients. A self-organizing feature map (SOFM) is then used to
encode the significance map. Experimental results are shown and comparisons with

JPEG and JPEG 2000 are made to emphasize the results of this compression system.
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Chapter 1

Introduction

1.1 Need for image compression

HE advent of high speed computing devices and rapid development in the field
T of communication has created a tremendous opportunity for various computer
based image applications. The amount of data required to store a digital image is
continually increasing and overwhelming the storage devices. Another important is-
sue in addition to high storage requirements is the transmission of image through
high-bandwidth and low-bandwidth channels. A well designed data compression sys-
tem is required to alleviate these problems. Data compression is a key to the rapid
progress made in the field of information technology. It is highly impractical to put

uncompressed images, audio and video on websites.

Image compression is the representation of an image in digital form with as few
bits as possible while maintaining an acceptable level of image quality [2]. In digital
form images are represented as binary numbers with very large bytés of data sets.
For example, a small 4” x 4” color picture scanned at 300 dpi with 24bits/pixel of

true color will result in a file size of more than 4 mega bytes. This picture typically




requires a high storage space and a transmission time of more than a minute through
a typical ISDN channel. There are two ways to solve this problem in a distributed
environment i.e. to increase the channel bandwidth or to compress the image. High
costs associated with high bandwidth channels makes it less attractive when compared

to image compression.

1.2 Compression techniques

Over the last decade a variety of compression algorithms have been developed. A
compression algorithm has a corresponding decompression algorithm in order to re-
construct the original image. A compression algorithm takes an input image X to
generate an output image X, with fewer bits, and a reconstruction algorithm op-
erates on the compressed image X, to reconstruct Y. Based on the reconstruction
requirements of an image, the compression schemes can be divided into two broad

categories, namely lossless compression and lossy compression.

1.2.1 Lossless compression

A lossless compression technique is one in which the reconstructed image Y is identical
to input image X. When an image is compressed losslessly, the original image can
be completely recovered from the compressed one. Such a compression techniques
is employed in situations where any form of degradation in image quality is highly
undesirable (example Medical Images). However a lossless compression system can
achieve a limited amount of compression. Examples of lossless techniques are run-

length coding, huffman coding, Lempel-Ziv-Welch (LZW) algorithm and arithmetic

coding.



1.2.2 Lossy compression

A lossy compression technique as the name suggests is one in which there is a loss
of information and the reconstructed image is different from the original. For exam-
ple, there are several applications where it is acceptable for a reconstructed image
to be different from the original as long as the differences do not result in annoy-
ing artifacts. Most current image compression algorithms fall into one of the three
categories: Vector Quantization, Predictive Coding and Transform Coding [14], [15].
Vector quantization and predictive coding image compression techniques are not as
competitive as transform coding techniques used in modern transform based lossy
compressors, since they have inferior compression ratios.and low peak signal to noise

ratio (PSNR) [3].
Transform based compression

The simplest way of performing image compression is through the use of transform
coding techniques [4], [5], [6],[7], which has been an active area of research for over
a decade. Transform based coding techniques work by statistically decor-relating
the information contained in the image so that the redundant data can be discarded
[8]. Therefore a ”dense” signal is converted to a "sparse” signal and most of the
information is concentrated on a few significant coefficients. Transform based com-
pression techniques allow efficient transmission, storage and display of images that

would otherwise be impractical.

DCT (Discrete cosine transform)[10] based transform coding method was first
applied for image compression by Ahmed, Natarajan and Rao [50]. It is a popu-

lar transform used by JPEG (joint photographics expert group) image compression



standard for lossy compression of images. In JPEG compression image is divided
into series of blocks, converted from spatial domain to frequency domain using a 2-D
DCT, quantized and sent to a lossless entropy encoder . Due to the blocked nature
of input correlation across the block boundaries cannot be eliminated. This results

in noticeable and annoying ”blocking artifacts”, particularly at low bit rates.

More recently, the wavelet transform has emerged as a cutting edge technology,
within the field of image compression. Wavelet-based coding [6] provide substantial
improvement in picture quality at higher compression ratio. Over the past few years,
a variety of powerful and sophisticated wavelet-based schemes for image compression
have been developed and implemented. Wavelet based technique does not divide the
image into blocks, but analyzes the Whole image at a time. This prevents any blocking
artifact within the reconstructed image and it’s efficiency in terms of compression

ratio/PSNR is much better than standard JPEG.

1.3 Summary of contributions

In order to improve the quality of compressed image, a hybrid method that uses
wavelet transform, self organizing feature map and mathematical morphology is
proposed. The proposed method eliminates all forms of redundancies: inter-pixel,
psycho-visual and coding redundancy by using an improved decor-relating transform,

quantizing both the significance map and significant coefficients and by using huffman

coding respectively.

In the proposed compression algorithm wavelet transform was used to perform
decor-relation of the input image and was preferred over the discrete cosine trans-

form since it eliminates the inherent blocking effect produced by the discrete cosine

4



transform at high compression ratios. The wavelet filter used for performing the
wavelet transform is a smooth biorthogonal wavelet filter that possesses symmetry
so that the wavelet transform is implemented using mirror boundary conditions to
reduce boundary artifacts. In addition to its symmetry the wavelet filter used is

smooth so that the smoothness within an image is preserved.

Significance map is created by thresholding the wavelet coefficients using a hard
threshold. These coefficients are obtained by filtering the image using a pair of scaling
(low-pass filter) and wavelet (high-pass filter) functions. The significance map is pro-
cessed using mathematical morphology operators to perform a clustering operation.
Clustering is done to create clusters and to emphasize the significant coefficients from
amongst the wavelet coefficients. The clustered significance map helps in preserv-
ing the fine details within an image and improves the peak signal to noise ratio of

compressed image.

The clustered significance map is vector quantized using a self organizing feature
map (SOFM). A SOFM was preferred over a classical LBG algorithm [41] to perform
vector quantization due to its adaptability and its ability to preserve the input topol-
ogy. In addition to this a SOFM is computationally less complex and less sensitive
to initial codebook design than a LBG vector quantizer. The vector quantized signif-
icance map is used to extract the significant coefficients which are scalar quantized.
The significant coefficient vector as well as the significance map are huffman encoded

and the result is transmitted.

The proposed method is well suited for compressing medical images like CT images
and MRI images due to their textual similarity. This similarity could be exploited
since a self organizing feature map is used to perform vector quantization and thus

improved image quality and reduced processing time are achieved.

5



e Proposing a new wavelet based image compression algorithm by implementing

a Self Organizing feature map to perform vector quantization.

e Implementing a new biorthogonal spline wavelet filter to enrich the quality of

compressed image.

e Achieving promising Peak Signal to Noise Ratio (PSNR) at a specified com-

pression ratio.

1.4 Organization of thesis

'The remainder of this thesis consists of 4 chapters which are organized as follows:

Chapter 2: Literature Review, discusses some of the methods used for image com-

pression.

Chapter 3: Wauvelet and Neural Networks, covers the mathematical properties of
wavelets. Several types of wavelets are discussed, including Haar, Daubechies and
biorthogonal spline wavelets. It also discusses how wavelets are applied to image
compression and reviews how neural networks are used as tools for image compression

and more specifically the use of self organizing feature map in this work as a vector

quantizer.

Chapter 4: Proposed compression algorithm, details the proposed algorithm for

image compression,summarizes the results and discusses the advantages of using this

technique.

Chapter 5: Conclusions and Future Work, some considerations on how to enhance

the work in the future are included.



Chapter 2

Literature Review

MAGE compression has been a popular area of research for over two decades.
IDuring this period of time several image compression algorithms have been pro-
posed and implemented. Some of the popular and recently proposed methods are
reviewed in the following section. This chapter has been divided into three parts
based on the approach used for image compression. The first section reviews image
compression methods which are based on transform coding, second sections reviews
image compression methods based on wavelet transform and finally image compres-

sion algorithms based on neural network are reviewed.

2.1 Image Compression based on Transform Cod-
ing

Transform based image compression is one of the most widely used image compression
technique. The transformations operate on an image to produce a set of coefficients.
A small subset of these coefficients is chosen and is sufficient to reconstruct an image
with minimum distortion. In this section we will briefly review some of the important

transform based algorithms proposed for image compression.



2.1.1 Compression using hybrid DPCM/DCT and TCQ

This method of image compression for hyperspectral images was proposed by Abousle-
man [16]. The compression system implemented in this work for hyperspectral im-
agery compression utilized trellis coded quantization (T'CQ) [17]. In-order to decor-
relate the data and achieve compression, differential pulse code modulation(DPCM)
and discrete cosine transform (DCT) were used. Specifically, DPCM was used to
decor-relate the hyperspectral data and a two-dimensional DCT was used for spa-
tial decor-relation. Entropy constrained codebooks were designed using a modified

version of the generalized Llyod algorithm.

The coder achieved a compression ratio of 70:1 with an average peak signal to
noise ratio (PSNR) of 40.29 dB. The hybrid system proposed by Abousleman et.
al. is of moderate complexity with the majority of the computations being done to
evaluate the 2D DCT. In addition to improved average PSNR, the major advantage
of using this system is the requirement of small amount of memory for both encoding
and decoding process. The encoder requires only two bands to encode the entire

hyperspectral sequence. Therefore the hybrid coder is well suited for sensor based

applications.
2.1.2 Adaptive transform approach

Luc Vandendorpe, Benoit Maison and Fabrice Labeau [18] proposed an adaptive
transform coding approach for image compression. Unlike conventional coding algo-
rithms which require transmission of information regarding the nature of transform
and the shape of each region, this method requires no data overheads. The proposed

method continuously adapts the transform operator exclusively by means of data

available at both the encoder and the decoder.

8



The adaptive transform was successfully tested on several images and the trans-
form coefficients were encoded using uniform quantization, zig-zag scanning, run-
length coding and entropy coding. Application of the proposed method for image
compression resulted in a 20% improvement in bit-rate over conventional DCT. A
greater coding efficiency than classical fixed transform method and its ability to en-
code motion compensated prediction error images produced by a video compression

scheme are achieved.

2.1.3 Hybrid KLT-SVD coding

A hybrid image compression system based on Karhunen-Loeve transform (KLT') [19]
and singular value decompostion (SVD) [20],[21], [22], [23] was proposed by Patrick
Waldemar and Tor A. Ramstad [24]. This method proposes a transform adaptation
technique for transform coding of images in order to exploit the variation in local
statistics within an image. The method takes advantage of the relationship between
KLT and SVD and their energy compaction properties. Experimental results in-
dicated that this method outperformed regular KLT with better reconstruction of
compressed image. However, the cost of using the hybrid approach in terms of bits
was quite high when compared to KLT. Therefore a switching scheme between KLT
and hybrid KLT-SVD transform is implemented in order to enhance the performance

and reduce bit-rate.

2.1.4 Adaptive block-size transform coding

J.Bracamonte et. al. [25] proposed an adaptive block-size transform coding for image
compression based on sequential JPEG (jo_int photographic expert group) algorithm

with minimum information overhead. The proposed method is adaptive in the sense

9
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that the image is divided into blocks of different sizes: N x N and 2N x 2N. Input
image is divided into different blocks and each block is categorized based on its image
activity. Based on the block classification either an N point or a single 2N point 2D
DCT is applied on each block. The proposed algorithm takes advantage of the pres-
ence of large uniform regions within an image, which can be encoded as a single large

unit instead of 4 smaller units as is done in a traditional fixed block-size transform.

The proposed adaptive block-size algorithm showed a significant improvement in
compression ratio with respect to the non-adaptive transform. Blocks are classified
as either a 0 block or a 1 block depending on the image activity. Higher the number
of 0 blocks within an image, higher improvement in compression ratio is achieved
compared to non-adaptive scheme. This method results in minimum information
overhead, a significant reduction of the computational complexity and a coding effi-

ciency that largely outperforms its non-adaptive counterpart.

2.1.5 Adaptive DCT coding with edge based classification

Discrete cosine transform (DCT) based coding is an efficient means of image compres-
sion coding. A number of research has been dedicated in order to improve efficiency
of the DCT based coder. Itoh et. al. [26] proposed an adaptive DCT coding based
on edge classification. The scheme is designed to correctly exploit the correlation
between edge direction and distribution of DCT coefficients. The method works by
first extracting the edges from an image and later an optimal block-size and scanning
order are determined for each block based on the extracted edges. Therefor an adap-
tive DCT encoder which takes account of local variations within an image is achieved.
Experimental results have indicated that the proposed method clearly outperforms

other conventional methods [27] in terms of coding efficiency. Block diagram of the

10



proposed adaptive method is shown in Figure 2.1.

Input image

y

Edge Block size R Variab'le
Extraction Block size
DCT
Edge Data R Block —
Classification Quantization
R Adaptive
Scanning
Scan
A 4
Edge Data ".
Encoding Variable
Length Coding
Side information Coefficient data
v

Figure 2.1: Block diagram of adaptive DCT coder

2.1.6 Dequantization of DCT based transform coding

S.Moon-Ho Song and Gunho Lee [28] proposed a new dequantization scheme for
discrete cosine transform based encoding. The proposed algorithm is an improvement

over the work done by Prost et. al. [29] and Philips et. al. [30]. Prost proposed

11
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a dequantization scheme that modifies the quantization matrix used at the decoder
i.e. the encoder uses one dequantization matrix and it modifies and sends another
dequantization matrix at the decoder and Phillips later corrected the proposal. This
approach for dequantization deviates from using just a different quantization matrix.
The proposed dequantizer guarantees the mapping of quantized DCT coefﬁéients to
within k (quantizer spacing/2). This is achieved through a built-in non-linearity in

the proposed iterative algorithm.

The performance of the proposed regularized dequantizer was evaluated and com-
parison to the standard JPEG approach. The regularized approach consistently pro-
vides higher PSNR level for all values of quality factor (QF). Higher the quantization
step size, larger is the performance gain of the regularized dequantizer over the con-
ventional dequantizer. Although the improvement in the actual PSNR values are

typically in the range of 1dB but the improvement in visual quality is clearly evident.

2.1.7 Compression using spectral similarity in DCT

Medical images are compressed before transmission and storage due to bandwidth
and storage limitations. Compression reduces image fidelity especially at low bit
rate (high compression). Reconstructed images suffer from blocking artifacts and the
image quality will be severely degraded. Yung-Gi Wu and Shen-Chuan [31] proposed
a simple strategy to increase compression ratio with small computational overhead

and excellent decoded quality. Block diagram of the proposed algorithm is shown in

Figure 2.2.

Application of this method to a wide range of medical images demonstrate that

the proposed method achieves better performance when compared to other existing

12



Figure 2.2: Image compression system using spectral similarity in DCT

transform coding methods such as JPEG in terms of bit-rate and image quality.
Although all medical images showed an improvement in PSNR in comparison with

JPEG, angiogram image achieved a gain of about 13.5dB and PSNR gain for other

medical images was around 4-8dB.

2.2 Image Compression using Neural Network

Image compression using neural networks have been an active area of research for over
two decades. During this period of time numerous neural network based image com-

pression algorithms have been proposed. Important image compression algorithms

based on neural network will be reviewed in this section.

13

Onglnal S T lati S
» 8x8 DCT pectrum ranslation pectrum
Image * = (@ Function [ (v)
Significance Q_Data .
Selection - y <+—| Quantization | +—
Significant Find Best Match—|  Encode [ | Transmit
Bands » blocks & BM T
Information
*Encode BM info| |
l Entropy
Coding
Calculate Ad |—{Encode Ad



2.2.1 Predictive vector quantization

Robert Cierniak and Leszek Rutkowski [32] proposed a predictive vector quantization
(PVQ) algorithm based on competitive neural networks and optimal linear predic-
tors. The proposed algorithm is an improvement over their previous work [33]. In
this method a semi-closed loop PVQ is implemented using a combination of vector
quantization [14] and traditional differential pulse code modulation. This method
achieves better compression ratio and lower mean square error(MSE) values when

compared with an open-loop PVQ.
2.2.2 Compression by Self-Organized Kohonen Map

Compression scheme for digital still images using the Kohonen'’s neural network algo-
rithm [35] was proposed by C.Amerijckx et. al. [34]. Kohonen’s feature map is used
for vector quantization and to realize a mapping between input and output space that
preserves topology. After vectorization of the input image, discrete cosine transform
is applied on the resulting vectors and the result is low pass filtered and vector quan-
tized by kohonen’s map. Block diagram of the proposed system is shown in Figure

2.3.

Images compressed with this compression scheme (Kohonen) achieve better PSNR,
when compared to JPEG for compression rates over 30. Although the difference in
PSNR is not great but from a visual point of view images compressed with this

method are much better than that of JPEG compressed images.

14
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2.2.3 Compression using modular differential pulse code mod-

Figure 2.3: Block diagram of compression system using SOFM

ulation

S.A.Rizvi and N.M.Nasrabadit [37] proposed a new lossless image compression method

called modular differential pulse code modulation (MDPCM). The proposed method

consists of a vector quantizer classifier in conjunction with several neural network class

predictors. The classifier predicts the class of the current pixel by using information

regarding the class of four previously predicted pixels.

Performance of the compression algorithm varies with the number of predictors

used. The modular predictors is implemented using one, two, three and four predictors
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respectively. The performance of the MDPCM improves with an increase in the
number of predictor from one to two. However adding more predictors has negligible

effect on the performance of the modular predictor.

The proposed modular differential pulse code modulation outperforms conven-
tional JPEG and achieves a bit-rate savings of almost 10% percent. Table 2.1 com-

pares the results obtained with this method and JPEG.

Modular DPCM | Lossless JPEG

Lena 4.32 bpp 4.69 bpp
Boats 4.33 bpp 4.90 bpp
Goldhill 4.78 bpp 5.13 bpp
Average 4.48 bpp 4.98 bpp

Table 2.1: Performance comparison of MDPCM and JPEG

2.2.4 Edge preserving image compression using neural net-
works

An edge preserving image compression technique based on unsupervised compete-
tive neural network is proposed by Dong-Chul Park and Young-June Woo [37]. The
proposed technique named weighted centroid neural network (WCNN) utilizes the
characteristics of image blocks in and around the edges. Mean/residual vector quan-
tization is used as the framework for the proposed technique. Block diagram of a

mean/residual vector quantizer is as shown in the following Figure 2.4.

Edge strength of an image block is used as a tool to allocate code-vectors in the
proposed WCNN. The proposed WCNN allocates more code-vectors to the image

regions that contain edges and less code-vectors to those image regions that do not
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Figure 2.4: Block diagram of mean/residual vector quantizer

contain edges. This adaptability in the allocation of code-vectors to different image
regions results in a reconstructed image with improved edge characteristics than those

obtained with a self organizing feature map and adaptive self organizing feature map.

2.2.5 Variable-rate residual vector quantizer for image com-
pression

Venkatraman et. al. [38] proposed a variable rate residual vector qunatizer to encode
background information. The proposed algorithm is simple and elegant and is specifi-
cally designed to encode images with rich content i.e. synthetic aperture radar (SAR)
image. Experimental results indicated that the variable-block-size vector quantizer
preserves the texture and proves extremely useful for encoding background informa-
tion that is necessary to establish context for target areas. The proposed encoding
technique has numerical performance similar to Said and Pearlman wavelet-based

encoder [39] and good qualitative performance. This technique also offers a logi-
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cal ordering of the objects and very low decoder complexity. PSNR of the image
compressed with this method is similar to that achieved using Said and Pearlman
wavelet based coder but the variable vector quantizer based encoder represents the

background texture with higher fidelity.

2.2.6 Image compression by hierarchical self organizing fea-
ture map

Dynamic hierarchical self organizing feature map (DHSOM) was proposed by D.Neto
et. al. [40]. This algorithm is used for code-book design in vector quantization and
used for image compression. The tree structured approach for code-book design is

used for reducing high computational efforts in training and coding phase.

Application of the proposed DHSOM method for image compression have resulted
in significant savings in training times when compared to other traditional algorithms
based on Linde-Buzo-Gray [41] and self organizing feature map [35]. Although there
is a small loss of quality in the compressed image when compared to other methods
but the savings in processing time compensates for this loss. Table 2.2 compares the

training time and PSNR values for different methods.

Method Used PSNR: Lena PSNR: Zelda |

LBG 207.57 27.5 208.49 29.76
Unidimensional SOM | 255.68 27.53 260.40 29.69
DHSOM 57.49 26.7 58.82 29.06

Table 2.2: Comparison of training times and PSNR for different methods
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2.3 Image compression using wavelets

Limitations in the application of Discrete cosine transform (DCT) for image com-
pression have caused an inclination towards the use of Discrete Wavelet Transform
(DWT). DWT can be efficiently used in image coding applications because of its data
reduction capability. DWT have some important properties whch makes it a better
choice for image compression than DCT. In a DWT based compression system the
entire image is transformed and compressed as a single data object rather than on a
block by block (as in DCT based system) basis. DWT have higher decorrelation and
energy compression efficiency and thus it provides better image quality at higher com-
pression ratios. In this section we will briefly discuss some of the recently proposed

wavelet based image compression algorithms.
2.3.1 Compression using shift-invariant wavelet

A new method of wavelet based image compression using shift-invariant dyadic wavelet
filter was proposed by Y. Hui et. al. [42]. It has been shown in [43], [44] that shift-
invariant(SI) DWT provides better energy compaction, a property extremely impor-
tant for image coding applications. Several methods based on the best-basis-selection
approach have been proposed to provide SI DWT. These methods are signal depen-
dent and obtain shift-invariant wavelet transform for image compression by finding
a decomposition path that minimizes shift-variance. The proposed shift-invariant
wavelet transform method for image compression is independent of the input im-
age and has better shift-invariant property compared with the conventional dyadic
wavelet transform. Experimental results have indicated that the application of pro-

posed method for image compression improved both the objective and subjective

19




quality of compressed image compared to the conventional wavelet transform based

coding.

2.3.2 Line-based wavelet image compression

A reduced memory line-based wavelet image compression algorithm was proposed by
Christos Chrysafis and Antonio Ortega [45]. This approach is ”line-based” in in the
sense that the images are read on a line by line basis and only the minimum required
number of lines are kept in memory. This in effect reduces the memory requirements
of the system with significant loss in performance. In this method a context-based
encoder which does not need to be synchronized with the decoder and requires no
global information is proposed and implemented. It stores only a local set of wavelet

coefficients and uses it to encode the image.

Experimental results have indicated that this entropy coding algorithm works well
with very low memory in combination with line-based transform. It also shows that
its performance can be compared to the state of the art image coders at a fraction
of their memory utilization. PSNR obtained with this method is similar to that
achieved using Said and Pearlman’s set partitioning in hierarchical tree (SPIHT)
with a 10 fold memory savings. Line-based transforms implemented in this work

have been incorporated into the JPEG 2000 verification model.

2.3.3 Image compression using quatree approach

Adrian Munteanu et. al. [46] proposed a new wavelet-based embedded compres-
sion algorithm. This algorithm supports lossy/lossless coding, quality scalability

and region-of-interest coding. It also exploits the intra-band dependency and uses
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a quadtree-based approach to encode the significance map. This technique is well
suited for tele-medicine applications that require fast interactive handling of large

image sets over networks with limited bandwidth.

Experimental results indicated that the proposed method outperformed SPIHT
and lossless JPEG in terms of PSNR for practically all medical images and outper-
formed SPIHT and EZW (embedded zero wavelet coder) for natural images (Lena,
Barbara). Although the PSNR gain is only 1dB but the proposed method offers region

of interest (ROI) based encoding which is important for coding medical images.
2.3.4 Image compression using simplified stack-run coding

Wavelet based image compression scheme that possesses the simplicity of the stack-
run coding (SR) scheme while achieving efficiency of the SPIHT algorithm was pro-
posed by Yu Tian-Hu et. al. [47]. This method employs a multi-level dyadic wavelet
decomposition, linear quantization with a proper dead zone, 1-D addressing complex-
ity by raster scanning within sub-bands, variable length block coding, small alphabet

representation of 1-D integer sequences and adaptive arithmetic entropy coding.

Simulation results have shown that the proposed wavelet based image compression
scheme is computationally and as well as conceptually similar to SR. In addition to
this, the coding efficiency of the proposed algorithm is competitive with that of SPTHT

wavelet coder.

2.3.5 Image compression using projection based adaptive in-
teger wavelet transform

A projection-based reversible integer wavelet transform to reduce first-order entropy

of transform coefficients and improve lossless compression is proposed by A. T. Deever
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and S. S. Hemami [48]. JPEG 2000 lossless coding standard is based on reversible
integer wavelet transform. This technique predicts the wavelet transform coefficients
as a linear combination of other wavelet transform coefficients. It also yields opti-
mal fixed prediction steps for lifting-based wavelet transforms and uses an adaptive
prediction scheme that varies the final prediction step of the lifting-based transform.
Block diagram of a lifting based integer forward and reverse wavelet transform is

shown in Figure 2.5 and Figure 2.6 respectively.
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Figure 2.5: Block diagram of lifting based integer forward wavelet transform

Simulation results show that the use of fixed projection prediction for the S trans-
form yielded slightly improved compression performance compared to the S+P trans-
form. Compression using S-+Projection (S+Proj.) transform had a PSNR gain of 0.1
to 0.2 dB relative to compression with the S+P transform. Addition of projection

step to (4,4) transform had minimal effect on lossy compression performance, typ-
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Figure 2.6: Block diagram of lifting based integer reverse wavelet transform

ically less than 0.05 dB for a variety of bit-rates. However application of adaptive
projection to (2,2) transform under-performed when compared to the non-adaptive

(2,2).

2.3.6 Low bitrate progressive image compression

A progressive image compression algorithm that focuses on preserving edge informa-
tion was proposed by D. Schilling and P. C. Cosman [49]. In low-bandwidth applica-
tions images are sent or received at low bit rates and at these rates they suffer from
significant distortion and artifacts making it difficult for viewers to understand. The
proposed method aims to preserve important image features and edge information
at high compression ration of 80 and above. The algorithm uses either a modified
wavelet transform to "remove” edges and encodes the remaining texture information

using SPIHT or transmits a standard SPTHT bit stream, and at the decoder applies

23

:
§




a nonlinear edge-enhancement procedure to improve the clarity of the encoded edges.
Block diagrams of an edge enhancing image coder and feature preserving image coder

are shown in Figure 2.7 and Figure 2.8 respectively.

| SPIHT
Decoding

x (i) [ SPIHT
Encoding

edges edges

Edge °k,| Edge
Detection Encoding

| Edge k| Edge Enhanced |_,
Decoding Reconstruction

Figure 2.7: Block diagram of edge enhancing image coder

Experimental results indicate that the images compressed using both edge enhanc-
ing image coder (EEIC) and feature preserving image coder (FPIC) at low bit rates
have clearer edges than that with traditional wavelet-based image coders (SPIHT).
Although for some images PSNR value of the compressed image using the proposed

method is less than the PSNR achieved using SPIHT but the edge information is

more pronounced.

As evident from the above review of previous works, the area of image compression
is a very active research area. Nearly all aspects of image compression system i.e.

complexity, memory requirements, PSNR gain, visual quality improvement etc. are
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Figure 2.8: Block diagram of feature preserving image coder

being investigated and efforts are being made to improve upon them. In the subse-
quent chapter a hybrid image compression system using wavelets, neural network and
mathematical morphology is proposed to improve both the PSNR and visual quality

of compressed image.
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Chapter 3

Wavelets and Neural Networks

OURIER transform has been used as a principle tool for signal analysis since
F early 19th century. It was developed by French mathematician, J. Fourier,
who showed that any periodic function can be expressed as a sum of periodic com-
plex exponential function. Later this idea was generalized to non-periodic functions,
periodic and non-periodic discrete time signals. In frequency domain Fourier trans-
form constructs a sinusoidal basis to describe energy distribution of a signal. However
Fourier transform is not well suited to describe local changes in frequency since the
frequency component has infinite time support i.e. time (spatial) information is lost
and it is impossible to specify when a particular phenomenon took place. Most of the
practical signals and images contain non-stationary signal components and capturing

them is a crucial step in classification.

To alleviate the limitations of Fourier transform, the windowed Fourier transform
(Short Time Fourier Transform) was proposed. STFT works by dividing the signal
into small segments where each segment is assumed to be stationary. STFT has
several problems i.e. if we use an infinite length window; we get Fourier transform
with perfect frequency resolution but no time information. On the other hand, to
obtain a stationary sample we use a small enough window in which the signal is

stationary. The narrower the window, the better is the time resolution and assumption
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of stationarity, but poorer the frequency resolution [11]. Therefore to strike a balance
between the time resolution and frequency resolution we turn our focus to wavelet

transform, which is based on multiresolution analysis.

3.1 Wavelet Transform

Wavelet transform is the most recent solution to overcome the shortcomings of the
Fourier transform and STFT. In wavelet analysis the fully scalable wavelet solves
the problem of time and frequency resolution. The flexible window is moved along
the signal and for every position the spectrum is calculated. The process is repeated
several times with a variable window size and the collection of time-frequency repre-
sentation of the signal is obtained. In this manner big wavelets give an approximate
image of the signal, while the smaller wavelets zoom in on the details. Therefore,
wavelets adapt automatically to both the high-frequency and low-frequency compo-
nents of a signal by varying the window size. The wavelet transform is well suited
for non-stationary signals, brief signals and signals with interesting components at
different scales [1]. Wavelets are dilated and translated versions of a single function

W, which is called mother wavelet.

Uz = | a |%‘xp(ﬁ;—b) (3.1)

where ¥ satisfies the condition
+00
/ T(t)dt = 0 (3:2)
—
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The basic idea of the wavelet transform is to represent any arbitrary function f as

a decomposition of wavelet basis or write f as an integral over a and b.
where a is the scale parameter and b is the position parameter.

When dealing with sampled data that is discrete in time we need to have a discrete
representation of time and frequency, which is called discrete wavelet transform. We
will briefly discuss the concept of multiresolution analysis before we discuss about the

discrete wavelet transform.

3.2 Multiresolution Analysis

A signal/image can be viewed as combination of a smooth background and fluctua-
tions(fine details). The distinction between the smooth part and the detail part of
a signal is determined by the resolution. Image detail at one resolution will act as a
smooth background at higher resolution. At a given resolution, a signal is approx-
imated by ignoring all fluctuations below that scale. We can progressively increase
the resolution; at each stage of the increase in resolution finer details are added to the

coarser description, thus providing a successively better approximation of the signal.

A function f(t) at a resolution level j is denoted by f;(¢) and the details are

denoted by d;(t). At the next higher resolution level j + 1 the new approximation to
fj(t) is
firr(8) = f3(2) + d;(t) (3:3)

The original function is recovered as the resolution approaches to infinity.
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0 = £+ di(t) (3.4)

k=j

Multiresolution analysis involves decomposition of the function space into a se-
quence of subspaces V;. The subspace V; is contained in all the higher subspaces.
If the approximation of f.(t) at a level j is denoted by f;(t) then f;(¢) € V;. Since
information at resolution level j is a part of information at a higher resolution level

j + 1, mathematically V; € V;41(¢) for all j.

We can therefore decompose our subspaces accordingly as

Vin=V;®W; (3.5)

where W; is the detail space at a resolution level j and V; is the approximation

at resolution level j. The space V is decomposed in order to obtain

Vit = W;@V; = W;0W; 1@V = = W;@W;.1 0 Wj2 @ @ Wod Vo (3.6)
3.3 Discrete Wavelet Transform

Wavelet analysis is also based on a decomposition of a signal using an orthonormal
family of basis functions. A wavelet has its energy concentrated in time and is well

suited for the analysis of transient, time-varying signals.

A wavelet expansion is defined by a two-parameter family of functions
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f(t)= Z ; a;x¥;k(t) (3.7)

where j and k are integers and the function ;. (t) is the wavelet expansion func-
tion which form an orthogonal basis. The two parameter coefficients a;x(t) are the
discrete wavelet transform (DWT) coefficients. The DWT coefficients a;(t) are ob-

tained using the following formula

ajn= [ FOvut)dt (3.8)

The wavelet basis functions are a two-parameter family of functions that are re-

lated to the function (¢), the mother wavelet by

Wi x(t) = 29/ %2p(2t — k) (3.9)

where 'k’ is the translation and '’ is the dilation parameter. Therefore wavelet
basis functions are obtained from a single wavelet by dilating and translating the

single mother wavelet ¥ (2).

The concept of dilation and translation allows the wavelet transform to be localized
in both time and frequency (scale) domain. Wavelet analysis is capable of revealing
aspects of data that other transform techniques miss, like trends, breakdown points
and discontinuities. By analyzing the sine wave and wavelets depicted in Figure 3.1
and Figure 3.2 respectively, we can clearly state that signals with sharp changes and

peaks will be better analyzed with an irregularly shaped wavelet rather than with a

smooth sinusoid.
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Figure 3.1: Sinewave

Figure 3.2: Wavelet

DWT is implemented using the Mallat algorithm [12] known as two-channel sub-

band coder to obtain the discrete wavelet transform coefficients. A pair of FIR quadra-
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ture mirror filters known as scaling filter and wavelet filter are used. The scaling filter

is a low-pass filter ”2” and the wavelet filter is a high-pass filter ”g”.

Where ”h” is the low-pass reconstruction filter and ” g” is the high-pass recon-

struction filter. Both ”¢” and ”h” are related by the following equation.

gn = (_1)nhN—1—n) —n= 0) 112a """ N-1 (3'10)

Filter implementation of DWT using a two channel subband coder is shown in
Figure 3.3. For image processing applications the subband coder of Figure 3.3 is

generalized as shown in Figure 3.5.

Down sampling
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Figure 3.3: 1D DWT implementation using subband coding

In wavelet analysis, a 1-Dimensional signal is split into approximation and detail

components. The approximation component is recursively decomposed into second
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level approximation and detail coefficients and this process is repeated for n levels of
decomposition(if required) as shown in Figure 3.4. Therefore for n level of decompo-

sition there exists n + 1 possible ways to decompose or encode a signal.

CA] CDI S=CA1+CD1

cA, cD, =cA,+cD,+cA,

CA; cD;

Figure 3.4: Multilevel Decomposition of 1D signal

Wavelet packet analysis is an extension of wavelet transform as both the approx-
imation and detail coefficients are recursively decomposed at each level of decompo-
sition. This results in an increased range of possibilities for signal analysis. Wavelet

packet decomposition tree is as shown in Figure 3.6.
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Figure 3.5: 2D DWT implementation using subband coding

3.4 Wavelet Filter

Wavelet bases are constructed with certain desired properties and quite a bit of free-
dom is exercised in choosing the wavelet function to generate a a particular wavelet
basis. Specific choice and method of construction of wavelet basis entirely depends on
the requirements and motivation for its construction. There are two important classes
of compactly supported wavelet bases, namely the compactly supported orthogonal
and the biorthogonal wavelet bases. These wavelet bases give rise to FIR linear phase
and FIR subband filtering schemes. Common examples of compactly supported or-
thogonal basis wavelets are the Haar wavelet basis and the Daubechies wavelet basis.
In this section we will briefly discuss about the Biorthogonal spline wavelets and fi-

nally compare the wavelet properties of Haar, Daubechies and Biorthogonal spline
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Figure 3.6: Wavelet Packet Transform: Generalization of Wavelet Transform

wavelets.
3.4.1 Biorthogonal Spline Filter

Most of the images are smooth and when dealing with images it is required that a
wavelet filter should not deteriorate the smoothness of the image. Biorthogonal spline
wavelets are a class of wavelet filters that use a smooth mother wavelet for image anal-
ysis. In addition to a smooth mother wavelet it is also required that mother wavelet is
symmetric so that the corresponding wavelet transform could be implemented using
mirror boundary conditions that reduce boundary artifacts. Except for the trivial

case of Haar wavelets none of the wavelet filters are both symmetric and orthogonal.

Therefore to achieve symmetric property we relax the orthogonality constraint
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and construct a biorthogonal basis. Decomposition of an image is obtained using the

following equation.

Cmn(f) = Zg2n—kam—1,k(f) (3.11)

k

amn(f) = z hon—kam—1(f) (3.12)
k

where g, = (—1)'h_iy1 and h, = 22 [ oh(z — n)yh(2)dz.

The image is reconstructed using the equation below

am—l,f(f) = Z[BQn—lam,n(f) + §2n—lcm,n (f)] (313)

h, § are different from h and g and the relationship between them is given by the

following equation

Gn = (~1)"h_n+1,gn = (—1)nil—n+landz = hniln+2k = 6k,0 (3'14)
Define
$(z) =D had(z — 2n) (3.15)
$(z) =Y hnd(z — 2n) (3.16)
k
P(z) =) gath(z — 2n) (3.17)
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1&(1’) = zl;gn(g(x — 2n)

Therefore we can rewrite am(f) and cma(f) as:

ama(£) = 2" [ $mn(2)f(2)de

ema(£) =272 [ (@) (w)de

and the reconstruction equation thus becomes

f = Z)'n’ < "l’m,n,f > i/jm,n

(3.18)

(3.19)

(3.20)

(3.21)

Figure 3.7 gives a relationship between filter structure and wavelet functions:

A

H (n) H (n)

A

G (n) G (n)

Figure 3.7: Filter structure and associating wavelets

For symmetric filters, the condition of exact reconstruction on h and h can be

written as
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HE+HE)+HE+m) +HE+m) =1 (3.22)

where

H(E) =223 hye ™ (3.23)

and

H(&) =2712% hyein¢ (3.24)

3.4.2 Comparison of filter properties

A comparative study of wavelet filter properties of Haar wavelet, Daubechies wavelet

and Biorthogonal spline wavelet is as shown in Table 3.1.

| Property I Haar | Daubechies | Biorthogonal Spline |

Explicit Function Yes No Yes
Orthogonal Yes Yes No
Symmetric Yes No Yes
Continuous No Yes Yes

Compact support Yes Yes Yes

Maximum regularity(order L) No No Yes
Shortest scaling function(order L) | Yes No Yes

Table 3.1: Property comparison of different wavelet filters

Amongst the three wavelets discussed above only Haar wavelet and Daubechies

wavelet possess orthogonality, which have some advantages:
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1. Scaling and Wavelet functions are same for both forward and inverse transform.

2. Correlation in the signal between different subspaces is removed.

Haar wavelet is the simplest and the most fastest wavelet to implement but the
major disadvantage of haar wavelet is its discontinuity, which makes it difficult to
simulate a continuous signal. Daubechies invented the first continuous orthogonal
compact support wavelet but this family of wavelet is non-symmetric. The advan-
tage of the wavelet possessing symmetric property is that the wavelet transform can
be implemented using mirror boundary conditions that reduce boundary artifacts.
Therefore Biorthogonal spline wavelet filters are the best available wavelets for im-
age compression. The B-spline wavelets are smooth and since splines are piecewise

polynomial they are easy to manipulate.

3.5 Neural Network as a tool for Image Compres-
sion

Neural networks are being used as signal processing tools for image compression for
over a decade [13]. They are well suited for the task of image compression due
to their massively parallel and distributed architecture. Physical characteristics of
neural network are similar to that of a human visual system, which allows us to
process visual information with ease [13]. For example, multilayer perceptions can
be used as predictors in differential pulse code modulation system (DPCM). Such
non-linear predictors outperform the linear predictors in terms of predictive gain.
Another important area is the application of Hebbian learning algorithm to the ex-
traction of principal components, which are the basis vectors for optimal Karhunen

- Loeve Transform (KLT). The learning algorithms have computational advantages
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over standard eigen decomposition techniques and are adaptive to changes in input.
A clustering algorithm proposed by Kohonen is used to design code books for vector
quantization of images. The neural network clustering algorithm, better known as
Kohonen self organizing feature map (SOFM) is a two dimensional extensively inter-
connected unit of processors. The resulting code books are less sensitive to initial
conditions than Linde-Buzo-Gray (LBG) algorithm since the topological ordering of
the entries is exploited to further increase coding efficiency and reduce computational

complexity.

In the Human Visual System (HVS) information is processed by massively parallel
interconnected networks of processing units. This parallelism is evident right from
the retina to the higher order structures in the visual cortex and the human brain [13].
The superiority of the parallel network over a serial structure is emphasized by the
efficiency with which humans process images over speech. Characteristics of natural
networks have been the source of inspiration for many artificial networks and many
such natural systems have been successfully modeled by artificial systems. There are
several application which the brain performs very well and one such application is
image processing. Therefore for an artificial system to emulate this, the architectural

properties of the artificial system should closely reflect the natural characteristics of

the human system.

A neural network is defined as a "massively parallel distributed processor that
has a natural propensity‘for storing experimental knowledge and making it available
for use” [13]. An artificial neural network is an information processing paradigm,
inspired by the biological nervous system such as the brain in order to process in-
formation. Physically it is a combination of a large number of simple computational

units known as neurons which work in unison to solve specific problems. Due to its
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parallel structure neural networks break down some of the computational bottlenecks
which limit the performance of serial machines. The architecture of a simple neuron

is as shown in the Figure 3.8.

A

Nonlinear Function

Summer

Inputs

Figure 3.8: Model of a Basic Neuron

In this chapter I will briefly discuss about some of the other major approaches
to image compression in addition to vector quantization. These approaches include
predictive coding: use neural network as non-linear predictors and transform coding:

neural network based principal component analysis (PCA) using hebbian learning.
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3.6 Predictive Coding

Virtually all images exhibit a high degree of correlation among neighboring pixels
and this implies a high degree redundancy of data within the image. In an image
compression system we take advantage of such redundancy and try to eliminate it
by decorrelating the data. Thus by decorrelating the data a more efficient and hence
compressed coding of image is possible. This decorrelation is accomplished through
the use of linear/nonlinear predictive coders. I will briefly discuss about the linear
coders and then focus on the nonlinear coders which are implemented using neural

networks.

3.6.1 Linear Predictive Coding

A differential pulse code modulation(DPCM) system is the most common type of

linear predictor used. The block diagram of such a predictor (DPCM) is as shown in

Figure 3.9.

The DPCM predictor uses the neighboring pixels to calculate the estimate §(n)
of the current sample. The difference between the true value y(n) and the estimated
value §j(n) namely the error e(n) is used for storage and transmission. As the accuracy

of the predictor increases the variance of the difference decreases resulting in a better

predictive gain and improved compression ratio.

To design a predictor a statistical model of the data is used to derive a function
that relates the value of the current pixel to the neighboring ones in an optimal

manner. One such statistical model that has been successfully applied to images is
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Figure 3.9: Block Diagram of a DPCM System

the autoregressive model or the AR model. An AR model depends on the previous p

outputs to determine the current output y(n).

y(n) = Xi: wy(n — J) + € (3.25)

where w; is the set of autoregressive coeflicients and €, is a set of zero mean
independent and identically distributed random variables. The predicted value is a
linear sum of neighboring samples and forms the basis of linear predictive coding as

shown below.

o= D wy(n ) (3.26)
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In order to minimize the mean squared error E[(§ — y)?, the following relationship

must hold true.

Rw=d (3.27)

where R is the autocorrelation matrix and d is the cross covariance vector. Using

R and d the unknown AR coefficient vector set W can be easily evaluated.

3.6.2 Non-Linear Predictive Coding Using Neural Networks

As discussed above predictors based on a linear weighted sum of neighboring pixels
are relatively easy to design using the statistics of the image. However if the situation
demands a nonlinear predictor the use of a linear predictor will result in suboptimal
solution. The design of a nonlinear predictor is not as mathematically tractable as
their counterpart. Therefore we take advantage of some of the useful properties of a
neural network to optimally design a nonlinear predictor. There are several nonlinear
predictors designed using neural networks however we will limit our discussion to the

multilayer perceptron.

The main objective of designing a nonlinear predictor is to find an optimal pa-

rameter set W, for a given nonlinear function based on the previous p inputs.

g(n) = fly(n —1),y(n —2),......,y(n — p), W) (3.28)
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The above equation is used to evaluate the optimal parameter set such that the

mean squared value of prediction error

E[(§ — y)?), is minimized. Multilayer perceptron is one such predictor that is used
to compute such class of nonlinear functions. Architecture of a multilayer perceptron

is as shown in Figure 3.10.
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Figure 3.10: Architecture of Multilayer Perceptron

The basic computational unit in a multilayer perceptron is the referred to as a
"neuron”. It consists of a set of ”synaptic” weights, one for each input to the neuron,
plus a bias weight and a nonlinear function as shown in Figure 3.8. The nonlinear
function is also known as the activation function. Each neuron computes the weighted

sum of inputs and the bias and passes it through the activation function to calculate

the input.
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Y= f(Z wjiT; + 05) (3.29)

The activation function f(.) maps the infinite range weighted sum to a finite range
output. The most common nonlinear activation function used is a sigmoid function,

shown in Figure 3.11 and defined by the logistic function
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Figure 3.11: Sigmoid Function

In a multilayer configuration such as the multilayer perceptron the output of a

previous layer forms an input to the next layer. Thus the inputs to the first layer
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are considered as network inputs and the outputs of the final layer are considered
as the network outputs. The weights of the network are randomly selected initially'
and are usually computed using a backpropagation algorithm. The backpropagation
algorithm is a supervised learning algorithm which perform a gradient descent opti-
mization on a squared error energy surface to reach a minimum. Due to the nonlinear
nature of the network, the variance of the prediction error of a neural network is less

than that of a linear predictor which results in an increased predictive gain.

Predictive coding algorithms are primarily used to exploit correlation between
adjacent pixels. They predict the value of a given pixel based on the value of sur-
rounding pixels. Since correlation exists among adjacent pixels in an image, the use of
predictor significantly reduces the amount of information bits to represent an image.
However such a lossy image compression technique is not as competitive as transform
based technique since predictive techniques have inferior image compression ratios

and worse image quality than that of transform based coding [3].

3.7 Transform Coding Using Neural Networks

Another important approach to image compression is the use of transformations that
operate on an image to produce a set of coefficients. A subset of these coefficients
that is adequate to reconstruct an image with a minimum of discernible distortion is

chosen for storage and transmission.

Block transform coding is a simple and powerful transform coding technique
wherein an image is divided into non-overlapping blocks of n x n pixels. This can

be considered as an N- dimensional vector £ with N =n X n. A linear transforma-
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tion is applied on each block with M rows of W , w; being the basis vectors of the

transformation. The resulting M dimensional coefficient vector is evaluated as

y=Wz (3.31)

If the basis vectors are orthonormal, the reconstructed vector is calculated by the

transpose of the forward transformation matrix as shown

&=WTy (3.32)

The linear transformation with respect to minimizing the mean squared error is
the Karhunen - Loeve Transform (KLT). The basis vectors of the transformation
matrix W correspond to the M largest eigenvalues of the sample autocovariance
matrix. Estimation of covariance of an image and the calculation of eigenvalues and
eigenvectors is computationally intensive. A solution to the problems associated in
the calculation of basis vectors through eigendecomposition of the covariance matrix

is the use of iterative techniques based on neural network models.

3.8 Vector Quantization Using Neural Networks

Quantization is a process that maps a signal z(n) into a finite series of K discrete
messages. For every Kth message, there exists a pair of thresholds ¢; and tx,; and
output value g such that ;. < g < tx4+1. Concept of scalar or one-dimensional quan-

tization is extended to vector data of any arbitrary dimension. Instead of output
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levels, vector quantization employs a set of representation vectors and matrices for
one-dimensional and two-dimensional data respectively. The set of representation
vector is often referred to as a codebook and the entries within the codebook are
known as codewords. The thresholds are replaced by a decision surface defined by
a distance metric such as euclidean distance. In vector quantization high degree
of co-relation between neighboring pixels is exploited and the coding of vector can

theoretically improve performance.

During coding the image is divided into blocks of fixed size n x n pixels. For each
block of input the codeword that results in a minimum euclidean distance is found
and transmitted. On reconstruction, the same codebook is used and a simple look-up

operation is performed and the image is reconstructed.

The classical method for codebook construction is by use of Linde, Buzo and Gray
(LBG) algorithm [41]. According to this method K codebook entries are initially
set to random values and on each iteration, each input space is classified based on
euclidean distance. Each codebook is replaced by the mean of its resulting class and

the iterations are continued until a minimum acceptable error is achieved.

LBG algorithm results in a local minima but the global minima is not guaranteed.
The algorithm is highly sensitive to initial codebook and is very slow since it requires
an exhaustive search through the codebook for each iteration. These limitations of
LBG has caused an inclination towards the use of neural networks for vector quan-
tization. One such neural network based method used for vector quantization is the
self organizing feature map (SOFM) which will be discussed below. In addition to
reduced computational complexity, the self organizing feature map is an unsupervised

learning which preserves the network topology.
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3.8.1 Self Organizing Feature Map

Kohonen’s self organizing feature map has formed the basis for a great deal of research
into the application of neural network for codebook design in vector quantization.
The SOFM network performs a mapping from a continuous input space to a discrete
output space. In many clustering algorithms such as k-means clustering algorithm
each input vector z is classified and only the winning class is updated during each
iteration, whereas in a Kohonen’s SOFM the winning class as well as its neighboring
class is updated. This property of a SOFM helps in preserving the input topology
i.e. points close to one another in input space are mapped to similar or neighboring
processing elements in the output space. Therefore there exists a soft competition

among processing elements (classes or neurons) in the output space.

Kohonen’s self organizing feature map is a fully interconnected linear input layer
with the output processing elements arranged in either one or two dimensional space.
One dimensional neighborhood organizes the processing elements (PEs) in the form
of a string so that each element has only two neighbors as shown in Figure 3.12.
When the SOFM adapts to an input of higher dimensions, it stretches and curls itself
to cover the entire input space. Whereas, a two dimensional neighborhood results
in more neighbors and it creates more flexible mappings. Therefore when we choose
a two-dimensional neighborhood in a two-dimensional space, we find that the PEs

spread towards the data samples more rapidly.

The learning algorithm in a self organizing feature map is based on the idea of soft
competition. Unlike in hard competition where there is only one winner i.e. one PE is
active and all others are inactive, soft competition allows not only the winner PE but

also its neighbors to be active. Soft competition creates a "bubble” of activity in the
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Figure 3.12: Self Organizing Feature Map Network

neighborhood of the winning PE or the output neuron. Processing elements which are
close to the winner are more active than those who are distant. The lateral weights
vary with the distance from the PE, thus PEs that are close excite one another and
those that are distant inhibit one another. Since more one PE is active for each input
vector, therefore the winner as well as its neighbors have their weights updated for

each input.

During learning the weights that connect the input to the output perform asso-
ciation between the weights and the inputs. The processing element whose weight is
closest to the present input vector wins the competition. The winner as well as its

neighbors have their weights updated according to the competitive rule as shown.
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Where i is the winning PE, W(n) is the weight vector, W (n + 1) is the updated
weight vector and « is the learning rate that varies between 0 and 1. During training

the learning parameter o shrinks to a small value for the algorithm to converge.

To simplify the computation, the lateral inhibition network is assumed to produce
a Gaussian distribution centered at the winning processing element. Thus instead of
computing the activity of the winner and the neighborhood for each input vector, we
simply evaluate the activity of the winner and assume that the other PEs have an
activity proportional to the Gaussian function at each PE’s distance from the winner.
Thus the competitive rule for a SOFM is updated to incorporate the neighborhood

function as shown below.

Wi(n + 1) = W;(n) + A; i (n)a(z(n) — Wi(n)) (3.34)

Where i is the winning element and A; ;. is a neighborhood function centered at
the winning PE. Typically the neighborhood function A is Gaussian and it decreases
with the iteration number (since variance decreases with iteration) and #* is the

winning element.

_&2
2070 (3.35)

Aiin(n) = exp(

The Gaussian function starts by covering the full map and progressively gets

reduced to a neighborhood of zero i.e. only the winning PE gets updated. As the size
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of the neighborhood shrinks, the network shifts itself from a very soft competition to

a hard competition.

SOFM creates a output space where topological relationships within the input-
space neighborhoods are preserved i.e. distribution of data samples in the input space
is approximately preserved. This property of a SOFM makes it suitable for density
approximation. Some of the important properties of a SOFM which makes it suitable

for use as a vector quantizer are:

e Feature vectors are good approximation to the original input space.

e Feature vectors are topologically ordered in a feature map such the correlation

amongst them increases with reduced distance and vice-versa.

e Density of a feature map corresponds to the input density distribution so that
regions with higher probability density have better resolution than regions with

lower density.
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Chapter 4
MMSOFM Compression Algorithm

MAGE compression using the state of the art wavelet technology has been an
Iactive area of research for over a decade. During this period of time hundreds
of wavelet based image compression algorithm have been proposed and implemented
in order to improve the image characteristics. Some of the recently proposed image
compression methods have already been discussed in Chapter 2. In this Chapter a
hybrid image compression algorithm is proposed and discussed. The compression
algorithm is hybrid in the sense that it is based on wavelets, neural networks and
mathematical morphology (MMSOFM). It utilizes all the inherent properties of the

mentioned methods and creates a reconstructed image with improved PSNR and

subjective quality.

The proposed compression algorithm uses wavelets, mathematical morphology
operators and neural network in order to enhance image characteristics. Wavelet
transform was used to perform decor-relation of the input image and was preferred
over the discrete cosine transform since it eliminates the inherent blocking effect
produced by the discrete cosine transform at high compression ratios. The wavelet
filter used for performing the wavelet transform is a smooth biorthogonal wavelet filter
that possesses symmetry so that the wavelet transform is implemented using mirror

boundary conditions to reduce boundary artifacts. In addition to its symmetry the
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wavelet filter used is smooth so that smoothness within an image is preserved.

Significance map is created by thresholding the wavelet coefficients using a hard
threshold. These coefficients are obtained by filtering the image using a pair of scaling
(low-pass filter) and wavelet (high-pass filter) functions. The significance map is pro-
cessed using mathematical morphology operators to perform a clustering operation. -
Clustering operation is done to create clusters and to emphasize the significant coef-
ficients from amongst the wavelet coefficients. The clustered significance map helps
in preserving the fine details within an image and improves the peak signal to noise

ratio of compressed image.

The clustered significance map is vector quantized using a self organizing feature
map (SOFM). A SOFM was preferred over a classical LBG algorithm to perform vec-
tor quantization due to its adaptability and its ability to preserve the input topology.
In addition to this a SOFM is computationally less complex and less sensitive to ini-
tial codebook design than a LBG vector quantizer. The vector quantized significance
map is used to extract the significant coefficients which are scalar quantized. The
significant coefficient vector as well as the significance map are huffman encoded and

the result is transmitted.

Discrete wavelet transform is applied on the original image to create wavelet coef-
ficients. The coefficients are categorized as either significant or non-significant by an-
alyzing the significance map. Significance map is created using a threshold operation
and pre-processed using mathematical morphology in order to create clusters of signif-
icant coefficients and improve the quality of reconstructed image. A Self Organizing
feature map then performs the vector quantization of the significance map. The re-

sulting modified significance map is used to identify the significant and non-significant
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Figure 4.1: Flow diagram of the MMSOFM

coefficients. The non-significant coefficients are ecliminated and the resulting signifi-
cant coefficient vector along with their positions within an image (significance map)
is entropy encoded in order to ensure proper decoding of the significant vector bit
stream. The proposed method includes the following three steps: (The system block

diagram is shown in Figure 4.1).

a) Extraction of wavelet coeflicients.
b) Identification and clustering of significant coefficients

c) Vector quantization using self organizing feature map.
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In the following subsections the aforementioned steps are discussed in more details.

4.1 Extraction of wavelet coefficients

Discrete wavelet transform (DWT) is implemented through a pair of high-pass and
low-pass filters followed by down sampling (up sampling during reconstruction). The
detail coefficients (high pass filtered image) are retained where as the approximation
cocfficients (low pass image) are further decomposed using the same pair of filter.
Using a quadrature mirror filter the original n x n Image is decomposed into wavelet
coefficients. First the wavelet filters are applied along the rows of the image producing
two sub-images of dimension n/2 x n and then along the columns of the sub images
to produce four sub-images of size n/2 x n/2 each i.e. low-low, high-low, low-high
and high-high sub-bands. The coarser low-low (approximation coefficient) sub-band

is again decomposed and the process continues.

Figure 4.2 illustrates three levels of wavelet decomposition wherein HL1, LH1
and HH1 represent the finest/detail coefficient of the original image, HL2, LH2 and
HH2 represent the finest/detail coefficient of sub-band LL1 and HL3, LH3 and HH3
represent the finest/detail coefficient of sub-band LL2. LL3 is the lowest frequency

term which represents all the coarser levels.

A biorthogonal spline wavelet filter is used to perform the wavelet decomposition
since it is a finite impulse response (FIR) filter with perfect reconstruction and reg-
ularity. In addition to this the biorthogonal spline wavelet filter is a smooth wavelet
and possess linear phase, a property that helps in preserving edges in an image. Two
wavelet filters, one for decomposition and one for reconstruction are used as shown

in Figure 4.3 and Figure 4.4 respectively.
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Figure 4.2: Three scale wavelet decomposition

Discrete wavelet transform is applied on the original image in order to reduce the
amount of inter pixel redundancy. As a result of the decomposition many coefficients
with in the high frequency (low scale) region are either zero or very close to zero,
therefore these coefficients can be thresholded without appreciable loss of information
(Image quality). A high percentage of wavelet coefficients are thresholded using a
global threshold in order to create a significance map (location of significant coefficient

in space) and eventually identify the significant coefficients.
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Figure 4.3: Biorthogonal wavelet decomposition filter

4.2 Identification and clustering of significant co-
efficients

After the application of wavelet transform to an image the most important factor is to
correctly identify and cluster the significant coefficients. Prior to the identification of
significant coefficients a significance map (identifies the positional information of each
coefficient) is created since individual encoding of the coefficients along with a large
number of zeros is highly inefficient. Thus only the significant coefficients and their
positional information is encoded and transmitted to achieve compression. Wavelet
coeflicients are scanned from left to right and those that are lower than a pre-defined

threshold signify the presence of a non-significant coefficient and a 0 is placed at the
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Figure 4.4: Biorthogonal wavelet reconstruction filter

corresponding spatial location in the significance map, whereas coefficients which are
above threshold are considered as significant coefficients and a 1 is inserted in the
significance map. Therefore a significance map is a binary map of ones and zeros,
wherein a 0 indicates the presence of a non-significant coefficient and a 1 indicates
the presence of significant coefficient. Hard threshold is the most common type of

threshold function used and is defined by the following cqﬁations.

Y=1-X>|T]| (4.1)

Y=0—X<|T| (4.2)
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Where X is the coefficient value, Y is the output and T is the threshold value. Fig-
ure 4.5 shows the significance map obtained by thresholding the wavelet coefficients.
The significance map obtained is pre-processed using mathematical morphology op-
erators to create clusters of significant coefficients, emphasize the edge information

and eventually improve the PSNR of compressed image.

Figure 4.5: Initial significance map
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4.2.1 Mathematical Morphology Operators

Mathematical morphology is the analysis of signals/images in terms of their shape. It
is used in image processing applications so as to preserve edge information and create
clusters of significant coefficients [51). The basic building blocks of mathematical

morphology are dilations and erosions.

The basic effect of dilation on a binary image is to gradually enlarge the boundaries
of regions of foreground pixels (i.e. white pixels, typically). Thus arcas of foreground
pixels grow in size while holes within those regions become smaller. Dilation of a
binary input image is computed by superimposing the structuring clement on top
of the input image so that the origin of the structuring element coincides with the
input pixel position. If at least one pixel in the structuring element coincides with
a foreground pixel (white pixel i.e. 1) in the image underneath, then the input
pixel is set to the foreground value. If all the corresponding pixels in the image
are background (black pixel i.e. 0), the input pixel is left at the background value.
Erosion is the dual of dilation i.e. eroding foreground pixels is equivalent to dilating
the background pixels. Effect of dilation and erosion on a binary image using a

3 x 3 square structuring element (Figure 4.6) is shown in Figure 4.7 and Figure 4.8

respectively.

In order to create clusters of significant coefficients using mathematical morphol-
ogy in this work the significance map was dilated twice and then eroded once using
a 3 X 3 circular structuring element. In this sequence of operation [9] the first di-
lation clusters the significant coefficient whereas the next dilation and erosion (also
known as a closing operation) merely fills in small holes. The effect of mathematical

morphology on initial significance map of Figure 4.5 is shown in Figure 4.9.
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Figure 4.7
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Figure 4.8: Erosion of binary map using a square structuring element

4.3 Vector quantization of significance map

The clustered significance map obtained after mathematical morphology provides spa-
tial location of the significant coefficients within the wavelet coefficient matrix. Prior
to the selection of these significant coefficients for quantization and encoding, the
significance map is vector quantized using a self organizing feature map. Theoretical
details about the self organizing feature map are explained in chapter 3. The mod-

ified significance map obtained after the vector quantization is used to extract the

significant coefficients.

Steps involved in the quantization of the significance map are as follows:

e The significance map is divided into blocks of size m x m and all the blocks
except those which contain all zeros or all ones are part of the training process.

This is done to reduce the training time.
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Figure 4.9: Significance map after mathematical morphology

e The synaptic weights are randomly chosen, the blocks are randomized and a

neural network with only n — 2 neurons is selected.

e Training of the network is carried out according to the learning rule described

above and weights are updated according to Equation 3.34.

o After the training is done two neurons one with weights containing all zero and
one with weights containing all ones are appended so as to represent blocks

which contain all zeros and all ones respectively.

Result of the vector quantization of the significance map performed with blocks
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of size 4 x 4 and using 32 codewords is shown in Figure 4.10.

Figure 4.10: Significance map after vector quantization

The vector quantized significance map is used to extract the significant coefficients
from the wavelet coefficients by scanning the significance map. The significance map
is scanned form left to right and top to bottom and for each significant position
found within the significance map (presence of 1), the wavelet coefficient at the corre-
sponding row and column is selected as significant coefficient. At the end of scanning

process a vector with all the significant coefficients is created which is quantized and

encoded.
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The significant coefficient vector and the significance map are coded using Huffman
encoder [52]. It is a variable length encoding scheme which allocates bits depending
on the occurrence frequency of each symbol: less frequent symbols are assigned longer

bit strings and more frequent symbols are assigned smaller bit strings.

The described method reduces all forms of redundancies present in an image: inter-
pixel redundancy (neighboring pixels have similar values) through a de-correlating
transform, psycho visual redundancy (some color differences are imperceptible) through
quantization of both the significance map and significant coefficients and finally cod-
ing redundancy (some pixel values are more common than others) by using Huffman

encoding.

In order to reconstruct the compressed image first the significant coefficient vector
is dequantized and then the significance map is scanned form left to right and top to
bottom. For each significant position found within the significance map, a significant
coefficient is selected from the coefficient vector in series starting from top. Eventually
all the significant coefficients are placed in their original position and inverse wavelet

transform is applied and the compressed image is obtained.

4.4 Experimental results

In this thesis variety of natural still images were compressed using the proposed
method and comparable results with JPEG 2000 and superior results over standard
JPEG are obtained. Subjective measure of image quality was made in terms of Peak

Signal to Noise Ratio (PSNR). Mean squared error (MSE) and PSNR are calculated

using the following equations:
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1 X

MSE= =% Z[,\ (3,5) — X (4, 5)]? (4.3)
i=1 j=1
255

Where X is the original image and X is the compressed image respectively. N
represents the number of rows and columns in the original image (images which have

similar number of rows and columns are selected for compression).

Large number of natural as well as CT-scan images were compressed using the
proposed method and good peak signal to noise ratio and improved picture quality
was achieved. A comparison of the PSNR values obtained with the proposed method,
JPEG and JPEG 2000 for Lena image, Barbara image and CT image are shown in
Table 4.1, Table 4.2 and Table 4.3 respectively. The image compressed using the
proposed method is visually much better when compared to JPEG. In the JPEG
compressed image blocking artifacts, ringing artifacts and other visible differences
are much more pronounced when compared with the results obtained using proposed
method. Though the PSNR achieved using MMSOFM is less when compared with
JPEG 2000, but there is not much difference in the visual image quality of the com-
pressed image obtained using JPEG 2000 and MMSOFM. Original Lena image, Lena
image compressed using JPEG, Lena image compressed using JPEG 2000 and Lena
image compressed using the proposed method at a compression ratio of 25 are shown
in Figure 4.11. Whereas Barbara image, Barbara image compressed using JPEG, Bar-
bara compressed using JPEG 2000 and Barbara image compressed using the proposed

method at a compression ratio of 20 are shown in Figure 4.12 and finally CT-scan
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image and its compressed version (compression ratio of 25) using JPEG, JPEG 2000

and proposed method is shown in Figure 4.13.

Mothod Used PSNR
10 20.1
JPEG 15 20.0
20 19.8
25 19.5
10 38.9
JPEG 2000 15 37.1
20 35.8
25 34.7
10 36.8
MMSOFM 15 33.7
20 31.5
25 29.8

Table 4.1: PSNR and compression ratio for lena image using JPEG, JPEG 2000 and
MMSOFM
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Method Used | Compression Ratio I PSNR |

10 19.9

JPEG 15 19.5
20 19.0

25 18.5

10 | 36.5

JPEG 2000 15 33.1
20 31.3

25 29.5

10 30.6

MMSOFM 15 26.5
20 25.1

25 24.6

Table 4.2: PSNR and compression ratio for Barbara image using JPEG, JPEG 2000 and
MMSOFM

Method Used | Compression Ratio | PSNR l

15 41.8

JPEG 20 34.9
25 32.0

30 26.2

15 42.1

JPEG 2000 20 39.8
25 38.2

30 37.1

15 38.6

MMSOFM 20 36.5
25 34.9

30 32.5

Table 4.3: PSNR and compression ratio for CT-scan image using JPEG, JPEG 2000 and
MMSOFM
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Figure 4.11: Original Lena image (a) and Lena compressed with JPEG (b), JPEG 2000
(c) and MMSOFM (d)
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Figure 4.12: Original Barbara image (a) and Barbara compressed with JPEG (b), JPEG
2000 (c) and MMSOFM (d)
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Figure 4.13: Original CT-scan image (a) and CT image compressed with JPEG (b),
JPEG 2000 (c) and MMSOFM (d)
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Chapter 5

Conclusion and future work

IN this thesis we have proposed an Image compression system utilizing wavelet
and neural networks along with mathematical morphology operators. In Chapter
1, image compression was introduced, using the concept of transform coding at its
root. Chapter 2 provided a literature review of the most recently proposed image
compression algorithms based on transform coding, neural methods and wavelets.
Then in Chapter 3, the theoretical details of wavelets and neural networks with their
application to image compression were dicussed. In Chapter 4, we proposed and im-
plemented an algorithm to extract wavelet coefficients, cluster the significance map
and finally to perform vector quantization of the significance map to identify signifi-
cant coefficients. Experimental results with the proposed method and a comparison
of different image compression algorithms is also done in Chapter 4. In Chapter 5

results of the overall system are summarized and some recommendation for future

enhancement of the system are included.
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5.1 Application of smooth wavelet filter to improve
quality of compressed image

In this thesis we have used a smooth biorthogonal wavelet filter so as to preserve
important edge regions within an image. In addition to its smoothness the filter used
for obtaining wavelet coefficients is an FIR filter with linear phase property. The
selected wavelet filter is also symmetric so that the corresponding wavelet transform
could be implemented using mirror boundary conditions that reduce boundary arti-
facts. Therefore the use a smooth wavelet filter resulted in a compressed image with

improved PSNR and visual quality.

5.2 Clustering using mathematical morphology

Mathematical morphology is an ideal tool for analyzing images based on their shape.
It was used in the compression system to emphasize the edges within an image and

to improve the overall image quality.

The biggest advantage in the application of morphology operators, i.e. dilation
and erosion was the clustering of coefficients with in the significance map and eventu-
ally the identification of significant coefficients. The significant coefficients are slightly

altered due to the vector quantization but the discrepancy in not huge.

In the proposed algorithm application of mathematical morphology achieved a
PSNR gain in the compressed image. In addition to the PSNR gain, the subjective
quality of compressed image i.e. both the texture information and edge information

were well preserved.
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5.3 Vector quantization

Self organizing feature map algorithm is an ideal learning machine for unsupervised
learning approach. This technique was specifically used in the proposed algorithm

since it preserves the input topology and performs better than a competitive network.

The test data i.e. blocks of significance map for training the feature map was
divided into three categories namely: blocks that contain both 0 and 1, block that
contain only 1 and finally blocks that contain only 0. Only blocks containing both 1
and O were selected for training whereas blocks that contain only 1 and only O were

left out so as to improve the time performance of the vector quantizer.

5.4 Summary of Thesis contribution

In this work we have proposed an image compression system that consisted of three
main components: First is the extraction of wavelet coefficients, which deal with the
selection of a smooth biorthogonal wavelet filter. Second was the clustering of sig-
nificant coefficients using mathematical morphology. The third component was the
application of self organizing feature map to perform vector quantization of signifi-

cance map and eventually identification of significant coefficients.

The proposed compression algorithm was successfully applied to broad classes of
image and resulted in satisfactory PSNR. The proposed image coder is a general cod-
ing scheme and considerably improves the time performance. Image compressed using
the proposed method was much better when compared to JPEG in terms of PSNR
and visual quality. At lower compression ratios the performance of the proposed com-

pression system is slightly lower than that of embedded zero wavelet (EZW), however
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at higher compression ratio this method clearly under performs when compared with
EZW. Unlike EZW the proposed method is independent of the parent-chid relation-
ship within the different subbands and will still be applicable even in the presence of
a perfectly decorrelating wavelet transform. Performance of proposed MMSOFM is
similar to JPEG 2000 in terms of visual image quality but the PSNR achieved using
MMSOFM is lower than that obtained using JPEG 2000. However the proposed al-
gorithm is simple and computationally less complex than JPEG 2000 which is based
on lifting based integer wavelet transform and embedded block coding with optimal

truncation.

5.5 Future work

More research is needed to improve the efficiency of the algorithm and to make it

more competitive to the class of available wavelet coders.

Incorporating a lifting based integer wavelet transform with a smoother wavelet
and the use of a hierarchical self organizing feature map could reduce the complexity

and significantly improve the coding ability of the proposed algorithm.

The proposed method could be effectively employed for compressing medical im-
ages i.e. CT-scan and MRI images where there is a lot of textual similarity. The
similarity amongst these images could be exploited for achieving better compression

and image quality.
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