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as my committee members and for their valuable comments and suggestions.

Furthermore, I would also like to acknowledge Dr. Na Yu for being the

chairperson of this committee.

Lastly and most importantly, I would like to thank my husband and my

children for their support and understanding throughout my graduate studies.

I dedicate this thesis to my parents, Amir Hussain and Jamila Akhtar. They

raised me, supported me, taught me, and loved me. I could not be successful

without their prayers.

iii



Accurate Stochastic Simulation Methods for Homogeneous Biochemical

Networks

Master of Science, 2019

Farida Ansari

Applied Mathematics

Ryerson University

Abstract

Stochastic models of intracellular processes are subject of intense research

today. For homogeneous systems, these models are based on the Chemical

Master Equation, which is a discrete stochastic model. The Chemical Master

Equation is often solved numerically using Gillespie’s exact stochastic simula-

tion algorithm. This thesis studies the performance of another exact stochas-

tic simulation strategy, which is based on the Random Time Change represen-

tation, and is more efficient for sensitivity analysis, compared to Gillespie’s

algorithm. This method is tested on several models of biological interest,

including an epidermal growth factor receptor model.
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Chapter 1

Introduction

One of the most important disciplines of Biology is Genomics, which focuses

on the arrangements, performance, development, mapping and rearranging

of genomes. We can define genomes as an absolute set of DNA relating to

an organism, including all of its genes. Handling the huge data of Genomics

after the rapid progress in Genetics and Molecular Biology became a key chal-

lenge. For example, in a mammalian cell, more than 10,000 protein coding

genes are controlling its physiological activity and cell differentiation [1]. The

large amount of data can only be processed and investigated using computer

simulations. Without computers, it is not possible to study the interactions

of genes and proteins, as required for both modelling and data interpretation.

To meet this challenge, a significant amount of work is dedicated to the com-

plexity and refinement of simulation algorithms that could possibly compete

with the complexity of living cells.

Computational Biology aims to create refined computer simulations with
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which biological phenomena could be compared. But so far, no such advanced

techniques are available that can accomplish these tasks, especially, for the

complex biochemical reactions and the gene networks in the cells.

Around 150 years ago, Robert Brown discovered the existence of random

fluctuation. He was a botanist and was studying microscopic living phe-

nomena [2]. In 1850, Ludwig Wilhelmy used first order ordinary differential

equations to describe the conversion of sucrose into glucose and fructose [3].

These ODEs laid a foundation for modelling chemical kinetics. But ODEs

only model a continuous-deterministic time evolution for the concentration of

species.

For many years, the deterministic rate has proved itself successful in mod-

elling chemical reactions, in both chemistry and biochemistry [4, 5]. The

law of mass action was the base of the deterministic modelling approach,

which gives a connection between the reaction rates and the concentration

of molecular elements. This law is useful for predicting the species concen-

tration at all future time states, if the initial molecular concentrations are

given. Moreover, the law of mass action is based on the assumption that the

chemical reactions should be macroscopic, continuous and deterministic [6].

Nevertheless, the chemical reactions are the result of discrete random colli-

sions between independent molecules. Hence, the accuracy of a continuous

approach in modelling reactions in a small-scale system, with low molecular

amounts, is lost. In this case, the stochastic models are more reliable and

2



accurate than deterministic ones.

In 1940, Max Delbruck made an attempt to model the discrete-stochastic

behaviour of a chemically reacting system [7]. Then in the 1970s, some tools

were developed for these systems with the help of large computers. But there

were controversies over the correct approaches for modelling and simulations

of stochastic chemical kinetics. So, for two decades, there was no certainty

regarding the study of molecular discreteness and randomness in biochemical

reaction systems. Arkin and McAdams [8, 9] showed that discreteness and

stochasticity could be important in those living cells where reactant species

are in low numbers.

There are three main approaches of implementing stochastic models:

(i) considering the discrete nature of the molecular count of each species

and their random character of occurrence,

(ii) following the theories of thermodynamic and stochastic processes,

(iii) describing the small systems and their unpredictability.

As Fedroff and Fontana remarked [1], “Stochasticity is evident in all bi-

ological processes”. For example, there are very low numbers of molecules

of certain species, including DNA and regulatory molecules in living cells.

Large variations are observed experimentally in the isogenic populations of

these living cells, which are given by stochastic effects in gene expression
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[10, 11]. Also, MacAdams and Arkins analyzed the interactions controlling

the expression of a single prokaryotic gene [8]. They studied the time interval

between the activation of one gene and the regulatory action of its product on

a different gene. This time interval is influenced by the stochastic nature of

the transcription initiation intervals and the number of protein molecules pro-

duced per transcript. Furthermore, they built the repressilator, an oscillating

network in Escherichia Coli, which helped study a particular function carried

by biomolecules which interact in a living cell. This network behaves as an

electrical oscillator system with fixed time period. But this artificial clock

shows a noisy behaviour, which may be caused by the stochastic fluctuations

of its components.

Hence, we study below three different modelling approaches for analyzing

biochemical processes in a single cell:

• stochastic and discrete,

• stochastic and continuous,

• deterministic and continuous.

Chemical Master Equation (CME)[22], is a stochastic and discrete model

for homogeneous biochemical systems, which gives the time-evolution equa-

tions for the probability of the system to be in all possible states. However,

this model is very challenging to solve either analytically or numerically, even
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for the simplest systems. Alternatively, one can generate numerical real-

izations or sample trajectories in the state space of the stochastic process.

These trajectories may be computed using a Monte Carlo method, called the

stochastic simulation algorithm (SSA) developed by Gillespie [12, 13]. The

SSA provides exact realizations of the CME, meaning that their probabil-

ity distribution is in exact agreement with that obtained from the Chemical

Master Equation. Nonetheless, the SSA may be expensive on some models

of biochemical systems, the SSA simulates every reaction event. Thus it be-

comes very slow on systems that involve a large number of such events. Many

real biochemical systems involve a significant number of reactions.

A strategy to deal with the large computational cost of the SSA for systems

with many reactions is to employ an approximate Monte Carlo method, which

trades some numerical accuracy to gain computational efficiency. One of such

stochastic acceleration algorithm is the tau-leaping method of Gillespie [14].

In this method, the system does not advance on the basis to the time of the

next reaction event, but by a pre-selected time step τ . This time interval en-

closes more than one reaction event. The tau-leaping strategy utilizes Poisson

random variables to approximate the number of times each reaction happens

during the step of length τ . Under certain conditions, the tau-leaping scheme

may be approximated using normal distributions, leading to the so called

Langevin tau-leaping technique. This technique may be viewed as a numer-

ical approximation of a stochastic differential equation called the Chemical
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Langerin Equation (CLE) [15].

In order to use the tau-leaping simulation technique accurately, the τ is

selected in accordance with the leap condition. The leap condition requires

that no propensity function changes during that τ [19, 20]. Sometimes the

CLE can be approximated by the reaction rate equation (RRE), which is a

deterministic and continuous model. In other words, RRE model is consid-

ered as emerging from the CLE, after removing the stochastic term and the

reaction rate accordingly. The modelling in terms of concentration and in-

stantaneous rates of change of the RRE is only applicable when very large

number of molecules are present in the system. Under the thermodynamic

limit, the deterministic term in the CLE expands like the system size, but the

stochastic term expands like the square root of the system size. That makes

the ODE part dominant. This implies that the RRE may be derived form

the CLE model under certain simplifying assumptions [15].

While the stochastic simulation algorithm is easy to implement and it was

extensively used for computing the numerical solution of the Chemical Master

Equation, it is not as useful as a tool for other important studies of stochastic

models of biochemical networks, such as sensitivity analysis [18]. For esti-

mating parametric sensitivities, another exact Monte Carlo strategy proved

to be more accurate and efficient than the SSA. This strategy, the Random

Time Change (RTC) algorithm [18] is based on the RTC representation of the

stochastic system state of the biochemical networks due to Kurtz [17, 25].
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This thesis studies the numerical properties of the RTC algorithm and com-

pares it with other simulation methods for the Chemical Master Equation.

ln Chapter 2, we discuss the stochastic models of well-stirred biochemical

systems in detail along with some of their stochastic simulation methods, in-

cluding Gillespie’s Stocahstic Simulation Algorithm, the tau-leaping method,

the Euler-Maruyama scheme for the Chemical Langevin Equation. Chapter

3 introduces the Random Time Change representation of the Markov process

modelled by the CME and the RTC algorithm. In Chapter 4, we test these

algorithms on three models of well-stirred biochemical systems including a

complex model of epidermal growth factor receptor.
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Chapter 2

Background

This chapter provides an introduction to stochastic modelling approaches and

simulation methods for homogeneous biochemical networks. Standard mod-

elling of chemically reacting systems employs ordinary differential equations

to describe the evolution of the system. However, it was observed exper-

imentally that many biochemical systems are inherently noisy [8, 9, 23],

it was observed experimentally that cells are intrinsically noisy biochemical

networks. In a cell low numbers of reactant lead to statistical fluctuations in

molecule numbers and reaction rate. Thus stochastic models are necessary

to capture the variability observed experimentally. The stochastic models of

homogeneous biochemical systems considered in this thesis are the Chemical

Master Equation and the Chemical Langevin Equation.
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2.1 Homogeneous Biochemical Systems

Let’s start with a process that involves N different types of molecules, or

chemical species, denoted by {S1, . . . SN}. These molecules are subject to M

types of chemical reactions, {R1, . . . RM}. In general, we consider a system

in which the velocity and position of every molecules are known and let the

system evolve while keeping track of the future positions and velocities of

each molecule. But keeping the record of this molecular dynamics is very

expensive. Whenever possible, it is preferred to only consider the evolution

of the number of molecules of each species as a function of time. This applies

when the system is well-stirred, where molecules of each type are laid out

evenly throughout the domain. We also assume that this system is in thermal

equilibrium and the volume is constant.

Suppose that we know the number of molecules of each species present at

time t = 0, and we wish to track the number of these molecules with respect

to time. Let us consider a state vector, denoted by X(t) = (X1(t), . . . XN(t)),

where Xp(t) is the number of molecules of species Sp in the system at the time

t. The state vector X(t) is a Markov process. A Markov process is a stochastic

(random) process in which future behaviour is independent of the past, if the

current state of the system is given. In other words, the information about

the past behaviour of the system is of no help, if the current system state is

provided that will be helpful in predicting the evolution of the process which is

time dependent. Moreover, this process is accommodating both a theoretical
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and a computational analysis. Also, it can adequately model the dynamic

behaviour of well-stirred biochemical network.

Whenever, one of the M reactions happens, the state vector will change.

For any reaction Rr (1 6 r 6 M), there is a corresponding state-change

vector, vr ∈ RN . The p-th component of vr is showing the change in the

number of molecules of Sp after the Rr reaction happens. Hence the state

vector will change from X(t) to X(t) + vr after reaction Rr occurs.

Every reaction Rr is associated with a propensity function αr(X(t)), which

depends on the molecular amounts of the reactant species. The propensity

of reaction Rr is defined as αr(X(t))dt is the probability of this reaction to

occur in an infinitesimal time interval [t, t+ dt).

The propensity functions are computed as follows:

First Order: Sp
cr−→ products has a propensity of the form

αr(X(t)) = crXp(t).

Second Order: Sp + Sq
cr−→ products , with p 6= q, has a propensity

expressed as

αr(X(t)) = crXp(t)Xq(t).

Dimerization: Sp + Sp
cr−→ products , has a propensity given by

αr(X(t)) = cr
1
2Xp(t)(Xp(t)− 1).
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The existence of constant cr is implied by the kinetic theory. For example,

assuming that the system is in state x, then

S1
c1−→ S2

has propensity α1(x) = c1x1 and state change vector v1 = (−1, 1, 0, . . . , 0)T ,

while

S1 + S2
c2−→ 2S1

has propensity α2(x) = c2x1x2 and state change vector v2 = (+1,−1, 0, . . . , 0)T .

Also,

2S1
c3−→ S1 + S2

has propensity α3(x) = c3x1(x1 − 1)/2 and state change vector

v3 = (−1,+1, 0, . . . , 0)T . Here x1(x1 − 1)/2 represent the numbers of times

one can choose two out of x1 existing molecules the species S1.

2.2 Stochastic Models of Biochemical Systems

To study the behaviour of a biochemical system, it is required to build a

mathematical model which considers the components of the system, their

state and interactions with other elements. These models are expected to

include all the essential features of the system, that can be analyzed using
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computer simulation or theoretical tools. When modelling the dynamics of a

biochemical system, the first issue we come across is to decide which features

should be included in the model that are related to the requirements of that

model.

The purpose of modelling plays an important role in establishing the fea-

tures of the model. In many cases, the primary purpose of the modelling is to

specify the model’s components and the interaction between them. This will

help us understand the present state of the specific system. To test that our

representation of a system is accurate, we verify whether the theoretical or

numerical solution of our model is consistent with the observed experimental

data. Another purpose of modelling may be to integrate several models or

mechanisms into a bigger model. That will help us investigate how the com-

ponents of the model interact with each other and what their effects are on

the behaviour of the system. Lastly, models may be very useful for designing

complex biological experiments and analyzing the results of their experiments.

At first, deterministic approaches were considered for the modelling of bio-

logical systems at the level of single cell. Nonetheless, many cellular processes

involve species with low molecular counts, which have a non negligible level of

randomness. Often, we are not able to model and simulate biological systems

of realistic size, in spite of the rapid development in the field of computing

technology. And we are still not capturing the complexity of the systems to

the full extent from the perspective of molecular dynamics. Sometimes we
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can exclude many features of the system state, such as position, alignment

and momentum of every single molecule of the biochemical system under

examination. So, at this level, the dynamics of the biochemical systems are

naturally considered stochastic rather than deterministic. Subsequent subsec-

tions introduce some stochastic models of well-stirred biochemically reacting

systems.

2.2.1 Chemical Master Equation

The state vector X(t) changes whenever a reaction Rr (1 6 r 6 M) takes

place. Since we are not taking into account the spatial information, we only

consider the probability of a reaction taking place. This probability is based

on the molecular amounts of the reactant species, for the current state of the

system. Thus, we are interested in the probability of the system being in a

specific state at time t. The evolution of these probabilities will direct us to

the Chemical Master Equation (CME). This is a set of ordinary differential

equations (ODEs), where each ODE models the evolution of the probability of

the system to be in a given state at time t. Most importantly, the dimension

of the ODE is based on the number of all possible states of the system and

not on the number of species N, as in the case for deterministic models of

chemical reactions.

Let’s start with the quantity P (x, t), which is defined as the probability

that the state vector X(t) is in state x at time t, that is X(t) = x, given that
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X(0) is known. Suppose that we know the probability of the system to be in

any possible state at time t and we wish to determine the probability of the

system to be in any state x at time t+dt. One more assumption is made here,

that dt is so small that at most one reaction can take place over [t, t+ dt).

If the system is in state x at time t + dt, then there are only two basic

scenarios for time t.

Table 2.1: Two basics scenarios for time t.

. . .
Scenario State at t Reaction taken place over [t, t+ dt) State at t+ dt

1 x 0 x
2 x− vr Rr (1 ≤ r ≤M) x

Table 2.1 shows that in the first scenario, the system was in state x at time

t and no reaction happend during [t, t + dt). Consequently, the system state

at t + dt remains x. In the second scenario, the system was in state x − vr

and one reaction Rr occurred in [t, t + dt), therefore bringing the system to

state x− vr + vr = x at time t+ dt.

Let us apply now the Law of total probability.

Law of total probability : Suppose that {A1, A2, ..., An} is a partition of a

sample space, S. If E is an event, then

P(E) =
n∑
i=1

P(E | Ai)P(Ai)

where P(E | Ai) is the conditional probabilities that the event E happens if

14



Ai occurred.

Now, suppose that I is the event of interest and J0, J1, J2, ..., JM , JM+1 are

disjoint and exhaustive events. Then, according to the law of total probability,

P(I) =
M+1∑
r=0

P(I | Jr)P(Jr). (2.1)

Consider the following notation:

I : the event that the system is in state x at time t+ dt,

J0 : the event that the system is in state x at time t,

Jr : the event that the system is in state x− vr at time t, for 1 ≤ r ≤M ,

JM+1 : the event that the system is in any other state at time t,

P(I | Jr) : the probability of the reaction Rr firing over [t, t+ dt).

According to the definition of propensity functions,

P(I | Jr) = αr(x− vr)dt, (2.2)

where αr is the propensity of the reaction Rr. Also,
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P(I | J0) = 1−
M∑
r=1

αr(x)dt, (2.3)

where P(I | J0) is the probability, that no reaction took place over the interval

[t, t + dt), Then P(I | J0) must be equal to 1 minus the probability of any

reaction firing in [t, t+ dt).

Lastly,

P(I | JM+1) = 0, (2.4)

where JM+1 contains all the states that are more than one reaction away from

x, since during [t, t+ dt) at most one reaction may occur. Substituting (2.2),

(2.3) and (2.4) in (2.1) as per the definition of P (x, t), we get

P (x, t+ dt) =

(
1−

M∑
r=1

αr(x)dt

)
P (x, t) +

M∑
r=1

αr(x− vr)dtP (x− vr, t)

The above equation may be written as

P (x, t+ dt)− P (x, t) =
M∑
r=1

[
αr(x− vr)P (x− vr, t)− αr(x)P (x, t)

]
dt

Dividing by dt, we derive

P (x, t+ dt)− P (x, t)

dt
=

M∑
r=1

[
αr(x− vr)P (x− vr, t)− αr(x)P (x, t)

]
Letting dt−→ 0, we obtain the following system of ordinary differential
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equations

dP (x, t)

dt
=

M∑
r=1

[
αr(x− vr)P (x− vr, t)− αr(x)P (x, t)

]
(2.5)

Equation (2.5) represents the Chemical Master Equation model for well-

stirred biochemical reactions. This is an ODE system with one ODE for each

possible system state x. The entries of the state x may only take discrete

values.

Generally, the CME is a model of very high dimension, so it can not be

handled analytically or computationally. One way of computing the solution

of the CME indirectly is by using the Stochastic Simulation Algorithm (SSA)

also known as Gillespie’s algorithm [12, 13]. The SSA generates numeri-

cal realizations of the stochastic process X(t) governed by the CME. These

realizations are sample trajectories in the state space.

While the SSA is an algorithm that produces exact realizations of the

CME, it is often very expensive to simulate numerically on realistic models of

biochemically reacting systems. Indeed, the SSA becomes very slow when it

simulates every reaction event of a system that has a large numbers of such

events, as many reacting systems do. One can attempt to improve its com-

putational time by combining reactions and only updating the state vector

after many reactions have taken place. In this case, we are searching for an

algorithm that gives up the exactness of the SSA, for the sake of higher simula-

tion speed. Tau-leaping method is one of approximate accelerated algorithms
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[15], for the Chemical Master Equation.

2.2.2 Chemical Langevin Equation

Gillespie [15], introduced a scheme called tau-leaping scheme to improve the

computational cost of SSA. As we shall see later, in the SSA, at each itera-

tion, we have to draw a random variable to compute the reaction time and

one to evaluate the reaction index and then, accordingly, we update the state

vector and the propensity functions. In case there are large numbers of some

molecules or some very fast reactions, then a large amount of random number

generations are required as well as extra effort is needed to keep their records.

It is desirable to design an approximate algorithm which trades some accuracy

for a significant gain in efficiency. The basic idea of the tau-leaping method

is to know that how many times each reaction channel fires in an interval of

predefined length, τ . Let us define ωr(τ ;x, t) to be the number of times the

reaction channel Rr fires in the time interval [t, t + τ), for each 1 6 r 6 M ,

given that X(t) = x. Assume that the following Leap Condition is satisfied.

Leaping Condition: Require τ to be small enough such that no propensity

function will suffer an appreciable change in its value during [t, t+ τ) .

Then, ωr(τ ;x, t) is may be approximated by a Poisson random variable,

Pr(αr(X(t))τ), with mean and variance αr(X(t))τ . Assume that we find
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τ > 0 such that for t 6 s 6 t+ τ ,

αr(X(s)) w αr(X(t)),

then,

∫ t+τ

t

αr(X(t))ds = αr(X(t))

∫ t+τ

t

ds

= αr(X(t))τ,

where αr(X(t)) is assumed constant with respect to s. Hence,

Pr
(∫ t+τ

t

αr(X(s))ds
)
w Pr(αr(X(t))τ).

We approximated the number of reactions Rr during [t, t+ τ) by

ωr(τ ;x, t) w Pr(αr(X(t))τ). (2.6)

The system state may be updated as

X(t+ τ) = X(t) +
M∑
r=1

ωrvr. (2.7)
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Substituting (2.6) into (2.7), we derive the tau-leaping method:

X(t+ τ) = X(t) +
M∑
r=1

vrPr(αr(X(t))τ), (2.8)

which holds when τ satisfies the leap condition. In addition to (2.8), where we

choose τ small enough to satisfy the leap condition so that the approximation

(2.6) is accurate, we assume that τ is large enough that

αr(X(t))τ � 1, (2.9)

for all r = 1, ...,M. Since αr(X(t))τ is the mean of the Poisson random

variable Pr(αr(X(t))τ), the condition (2.9) requires that in the next τ , each

reaction channel will be fired, on average, many times. The conditions that τ

satisfies the leap condition as well as (2.9), are simultaneously satisfied if the

population of each reactant species is large.

When these two conditions hold, the tau-leaping formula (2.8) can be ap-

proximated using a standard result from probability theory, that a Poisson

random variable with large mean may be approximated by a normal random

variable with the same mean and variance. Therefore, if every reaction fires

many times over [t, t + τ), then we may replace the Poisson distribution by

the normal distributions in the tau-leaping method. Hence, estimating each

Poisson variable with mean and variance αr(X(t))τ , by a normal distribution
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having the same mean and variance αrX(t))τ gives

Pr(αr(X(t)τ) ' Nr(αr(X(t))τ, αr(X(t))τ)

= αr(X(t))τ +
√
αr(X(t))τNr(0, 1), (2.10)

where Nr(0, 1) are statistically independent, normal random variables, with

mean 0 and variance 1, for 1 ≤ r ≤M . The above step follows from the fact

that

N(µ, σ2) ∼ µ+ σN(0, 1).

Substituting (2.10) into (2.8) gives

X(t+ τ) = X(t) +
M∑
r=1

vr

[
αr(X(t))τ +

√
αr(X(t))τNr(0, 1)

]
and thus

X(t+ τ) = X(t) +
M∑
r=1

vrαr(X(t))τ +
M∑
r=1

vr
√
αr(X(t))

√
τNr(0, 1) (2.11)

Equation (2.11) is called the Langevin Leaping formula. It clearly indicates

the increment in the state, that is X(t+ τ)−X(t), as the sum of two terms:

M∑
r=1

vrαr(X(t))τ : a deterministic drift term proportional to τ

21



M∑
r=1

vr
√
αr(X(t))Nr(0, 1)

√
τ : a stochastic diffusion term proportional to

√
τ .

Equation (2.11) may be viewed as an approximation, which is based on two

conditions:

• τ is small enough such that it satisfies the leap condition (no propensity

function changes its value remarkably during τ).

• τ is large enough that every reaction occurs much more than once during

that interval.

The approximate nature of equation (2.11) shows that X(t) has changed

from a discrete (integer-value) random variable to a continuous (real-value)

random variable. The discreteness has been lost when the integer-valued Pois-

son random variable was estimated by a real-valued normal random variable.

The Langevin leaping formula (2.11) gives faster simulations than the tau-

leaping formula (2.8), for the following reasons:

(a) condition (2.9), that suggests that many reactions are fired over each

step,

(b) normal random numbers required by (2.11) are computationally faster

to generate than the Poisson random numbers in (2.8).

By subtracting X(t) from both sides of (2.11), we get
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X(t+ τ)−X(t) =
M∑
r=1

vrαr(X(t))dt+
M∑
r=1

vr
√
αr(X(t))

√
dtNr(0, 1)

Taking τ −→ dt and dt −→ 0, we derive

dX(t) =
M∑
r=1

vrαr(X(t))dt+
M∑
r=1

vr
√
αr(X(t))dWr(t). (2.12)

Here Wr(t) is an independent scalar Brownian Motion for each 1 ≤ r ≤M ,

and

dWr(t) = Wr(t+ dt)−Wr(t) '
√
dt Nr(0, 1)

Definition :A scalar standard Brownian motion, or standard Wiener pro-

cess over [0, T ] is a random variable W (t) that depends continuously on t ∈

[0, T ] and satisfies the following three conditions.

1. W (0) = 0 with probability 1,

2. for 0 ≤ s < t ≤ T , the random variable W (t) − W (s) is normally

distributed with mean zero and variance (t − s); equivalently, W (t) −

W (s) ∼
√
t− sN(0, 1), where N(0, 1) denotes a normally distributed

random variable with zero mean and unit variance,

3. for 0 ≤ s < t < u < v ≤ T the increments W (t)−W (s) and W (u)−W (v)

are independent.

Equation (2.12) is called the Chemical Langevin Equation (CLE). The CLE
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is a system of stochastic differential equations in the system state X(t). The

dimension of the CLE is N, the number of reacting species. The CLE model

applies when condition (1) and (2) above apply, that is, when all species have

large molecular numbers. Further, we use the formula (2.11) to solve (2.12)

numerically.

Next, we will derive the reaction rate equations (RRE) as a series of limiting

approximations.

2.2.3 Reaction Rate Equation

Stochastic differential equations emerge in many fields of physics, but nor-

mally we obtain them when we start with a drift term and some form for the

diffusion term. The CLE has the drift term ,

M∑
r=1

vrαr(X(t))dτ,

and diffusion term,

M∑
r=1

vr
√
αr(X(t))dWr(t).

Below, we assume that the biochemical system is in the thermodynamic limit,

when the model becomes macroscopic.

Thermodynamic limit: The system volume Ω and the molecular counts Xi,
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all approach ∞, in such a way that the species concentrations Xi/Ω remain

constant.

Now, we need to determine the behaviour of the propensity functions in the

thermodynamic limit. As the system approaches the thermodynamic limit,

all propensity functions grow linearly with the system size. The behaviour of

a unimolecular propensity function of the form crXp is easy to see, as cr is

independent of the system size. For a bimolecular propensity function of the

form of crXpXq, for which cr’s are inversely proportional to Ω, it can also be

shown that it is proportional to the system size.

Hence, near the thermodynamic limit, the deterministic drift term in (2.11)

grows like the size of the system, while the fluctuating diffusion term grows

like the square root of the size of the system.

In the full thermodynamic limit, the size of the diffusion term of (2.12)

will normally become insignificantly small compared to the size of drift term.

In that case the Chemical Langevin Equation (2.12) reduces to the reaction

rate equations(RRE):

dX(t)

dt
=

M∑
r=1

vrαr(X(t)). (2.13)

Thus, the RRE was derived as a series of limiting approximations of the

Chemical Master Equation. The RRE was obtained under the assumption

that the system is in thermodynamic limit, therefore this model is valid
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when all molecular amounts are very large. The tau-leaping method (2.8)

and Langevin leaping formula (2.11) clearly yield a connection between the

stochastic chemical kinetics and the traditional deterministic chemical kinet-

ics, that is between the CME/SSA and the RRE.

Consider the state vector X(t) in the stochastic approach of the chemical

kinetics and xp(t), the non negative real number representing the concen-

tration of species Sp at time t. Usually, concentrations are measured in M

(moles per litre) and the number of molecules in a mole is given by Avogardo’s

constant, nA ≈ 6.023×1023. So xp(t)nAvol moles of a species Sp is the concen-

tration xp(t)M of that species in a fixed volume Ω. The law of mass action,

is used to derive the RRE.

Law of mass action: The rate of any chemical reaction is proportional

to the product of the concentrations of the reacting substances, with each con-

centration raised to power equal to the coefficient that occurs in the chemical

equation.

In a more accurate way, we can say that the instantaneous rate of change of

a reaction is proportional to the product of the concentrations of the reacting

species.

The RRE can be formulated in terms of the concentration vector

x(t) = (x1(t), . . . , xN(t))T as follows:
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dx(t)

dt
=

M∑
r=1

vrαr(x(t)). (2.14)

Consequently, the elementary reactions have the following propensities:

First Order: Sp
kr−→ products, has a propensity of the form, krxp(t)

Second Order: Sp + Sq
kr−→ products, has a reaction propensity given by,

krxp(t)xq(t), where with p 6= q.

Dimerization: Sp+Sp
kr−→ products, has the following propensity function

krxp(t)
2.

Remark that the RRE representation (2.13) may be obtained from the

CLE, after omitting the diffusion term and applying the transformation from

the number of molecules Xp(t) to the concentration xp(t) of each species Sp.

Indeed, let us compare the term of each reaction, while keeping in mind the

conversion between concentration and molecule counts as follows:

First Order: Sp −→ products, in this case the deterministic rate krxp(t)

gives a molecular rate of krXp(t). So

cr = kr. (2.15)

Second Order: Sp+Sq −→ products , with p 6= q, Here the concentration-
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based rate of change is krxpxqMs−1, with Xp = xpnAvol and Xq = xqnAvol

indicating the number of molecules of Sp and Sq. Equating this rate with the

propensity function value, we get

crXpXq(t) =
krXpXq(t)

nAvol

⇒ cr =
kr

nAvol
(2.16)

Dimerization: Sp+Sp −→ products, The concentration-based rate krxp(t)
2

corresponds to a molecular rate of 2× krXp(t)
2/(nAvol). Equating this with

the propensity function, we derive

2× crXp(Xp − 1)

2
≈ 2× krXp(t)

2

nAvol

⇒ cr ≈
2kr
nAvol

(2.17)

Consequently, the traditional RRE model of chemical kinetics is considered

as a simplification of the CLE , after removing the stochastic terms and the

reaction constants are transformed according to (2.15) - (2.17). Also, in the

case of dimerization-type reaction, Xp(t)(Xp(t)−1) is approximated to Xp(t)
2

because of large molecular number Xp(t).
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2.3 Stochastic Simulation Methods for Homogeneous

Biochemical Systems

Below, we present several stochastic simulation algorithms for well-stirred

biochemical systems, ranging from exact simulation methods for the Chemical

Master Equation, to approximate strategies for the solution of the Chemical

Langevin Equation and the simplified model of the reaction rate equation.

Stochastic models of biochemically reacting systems are solved numerically

using Monte Carlo simulation strategies. These strategies generate stochastic

trajectories, in accordance with the probability given by the CME or CLE,

respectively.

2.3.1 Stochastic Simulation Algorithm

Since the CME model is generally very high dimensional, it is hard to solve

it directly, either numerically or analytically, so we need another approach

to solve it, and that is to construct numerical realizations of X(t), which are

simulated trajectories of the Markov process X(t) with respect to t. The

algorithm below computes a single realization of the state vector, instead of

an entire probability distribution.

Let us begin by introducing the quantity g(x, τ), where the system state

at time t is X(t) = x, defined as the probability that no reaction takes place

in the time interval [t, t+ τ). Let consider the time interval [t, t+ τ +dτ) and
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suppose that what happens over [t, t+ τ) and over [t+ τ, t+ τ + dτ) are not

dependent on each other. Then, the probability that no reaction happens in

the interval [t, t+ τ + dτ) can be computed as the product of the probability

that no reaction happens in the interval [t, t+ τ) and the probability that no

reaction happens in the interval [t+ τ, t+ τ + dτ). Hence,

g(x, τ + dτ) = g(x, τ)×(
1− sum of prob. of each Rr firing in [t+ τ, t+ τ + dτ)

)
We can write this as after using the definition of the propensity function,

g(x, τ + dτ) = g(x, τ)
(

1−
M∑
k=1

αk(x)dτ
)
,

that is,

g(x, τ + dτ)− g(x, τ)

dτ
= −

M∑
k=1

αk(x)g(x, τ).

Denote

αsum(x) =
M∑
k=1

αk(x).

Consider now the limit dτ −→ 0 in the above equation. It will give a linear

scalar ODE, with the initial condition of g(x, 0) = 1. Solving this ODE leads

to

g(x, τ) = e−αsum(x)τ . (2.18)

Now, we define an important quantity for the SSA, p(r|x, τ), as follows.
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Given that, X(t) = x, p(r|x, τ)dτ is the probability that the next reaction:

(A) will be the reaction Rr, and

(B) it will fire in the time interval [t+ τ, t+ τ + dτ)

Then, we have that

Prob. of (A) and (B) = Prob. no reaction took place over [t, t+ τ)

×Prob. Rr reaction took place over [t+ τ, t+ τ + dτ)

We assume here that dτ is so small that no more than one reaction can

take place over that length of time. Using the definitions of g and αr, we

derive that

p(r|x, τ)dτ = g(x, τ)αr(x)dτ

Substituting (2.18) in the equation above, we obtain

p(r|x, τ) = e−αsum(x)ταr(x),

which can be written as

p(r|x, τ) =
[ αr(x)

αsum(x)

][
αsum(x)e−αsum(x)τ

]
(2.19)

Here, p(r|x, τ) may be viewed as a joint density function of two random

variables. The two random variables involved are:
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• r-density function: it is a random variable that provides the index

r of next reaction. The discrete random variable
[

αr(x)
αsum(x)

]
, finds the index

r of the next reaction according to the rule that the chance of choosing the

reaction Rr is proportional to the propensity αr(x).

• τ-density function: this continuous random variable gives the time τ

until next reaction. Note that asum(x)e−asum(x)τ is the density function of an

exponential distribution with parameter asum(x) .

Often, exponential random variables are used in representing the time

elapsed between uncertain events.

To justify the above statements, we give below some propositions and a

lemma [16].

Proposition 1 [16]: Consider that Xi are independent exponentially dis-

tributed random variables with parameters αi, for all i = 1, 2, . . . ,M , then

X0 = min
ı
{Xi} v Exp(α0)

where α0 =
∑M

i=1 αi.

Proof. To prove this proposition, we recall that for an exponential distri-

bution X with parameter α, X ∼ Exp(α), the probability P (X > x) = e−αx.
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Therefore,

P (X0 > x) = P (min
i
Xi > x)

= P ([X1 > x] ∩ [X2 > x] ∩ · · · ∩ [XM > x]).

Since the distributions Xi are independent, we get

P (X0 > x) = ΠM
i=1P (Xi > x)

= ΠM
i=1e

−αix

= e−xΣM
i=1αi

= e−α0x.

In conclusion, P (x0 ≤ x) = 1 − e−α0x, which shows that X0 is exponentially

distributed with parameter α0, X0 ∼ Exp(α0).

We shall need the next lemma for the Preposition 2.

Lemma [16]: Assume that X ∼ Exp(α) and Y ∼ Exp(β) are independent

random variables which are exponentially distributed, then

P (X < Y ) =
α

α + β
.

.
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Proof. Consider the probability

P (X < Y ) =

∫ ∞
0

P (X < Y |Y = y)f(y)dy

=

∫ ∞
0

P (X < y)f(y)dy.

Since X and Y are exponentially distributions, then

P (X < Y ) =

∫ ∞
0

(1− e−αy)βe−βydy

=
α

α + β
.

This lemma will be used in the proof of following Proposition.

Proposition 2 [16]: If Xi v Exp(αi), i = 1, 2, . . . ,M are independent

exponentially distributed random variables and j represents the index of the

smallest value of the Xi, then the probability mass function of the discrete

random variable j is

πi =
αi
α0

with i = 1, 2, . . . ,M , where α0 =
∑M

i=1 αi.
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Proof: Consider the following probability

πj = P (Xj < min
i6=j
{Xi})

= P (Xj < Y )

where Y = min i6=j {Xi}. Then, according to Proposition 1, Y ∼ Exp(αj∗) ,

where αj∗ = Σi 6=jαi.

Now, from the lemma above,

=
αj

αj + αj∗

=
αj∗

α0
.

Proposition 2 helps us determine the index j of the reaction that fires next,

given that X(t) = x.

Numerically, to compute the time τ to the next reaction and the index r

of the next reaction, we proceed as follows. We draw two random numbers

d1 and d2 from the uniform distribution in the unit-interval (0, 1). we select

τ and r according to the following rules:

τ =
1

αsum(x)
ln
( 1

d1

)
(2.20)
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r = the smallest integer satisfying
r∑

k=1

αr(x) > d2αsum(x) (2.21)

This constitutes the basis for the Stochastic Simulation Algorithm.

Stochastic Simulation Algorithm

1. Initialize the time t = t0 and the state of the system , X(0) = x0.

2. Evaluate all the propensities, αr(X(t)), and their sum , αsum(X(t)).

3. Generate values of τ and r according to equations (2.20) and (2.21).

4. Update X(t+ τ) = X(t) + vr and t to t+ dt.

5. Go back to step 2 or stop.

Practically, a termination condition is also included in step 5, for example,

(i) the simulation will be stopped when t passes a given value,

(ii) when some molecular population number reaches a given upper or

lower bound, or

(iii) when the number of iterations reaches to a given number.

2.3.2 Tau-leaping Method

The SSA is rather simple to implement and also logically equivalent to CME.

Even when the CME is intractable, the SSA is easy to apply. However,

on many models of biochemical reactions arising in applications, the SSA is

prohibitively slow and the origin of this high computational cost is related to
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the factor 1
αsum(X(t)) in the equation (2.20), as αsum(X(t)) could be very large

if the population of one or more reactant species is significant.

To implement the SSA , some modifications may be made that will increase

the efficiency of its computation [30]. Still, any strategy that simulates every

reaction event, one event at a time, will be slow on such models. To accelerate

the stochastic simulation of well-stirred biochemical systems which involve

some fast reactions, Gillespie [14], proposed the tau-leaping method. This

method advances the system by a pre-selected time τ which step overs several

reactions. The tau-leaping scheme requires that the τ be chosen in such a

way that it satisfies the “leap condition”, that is during that time-interval,

the propensity functions will not change their value by a notable amount.

The number of events that will happen in the time τ may be represented

by a Poisson random variable P(α(X(t)τ) where α(X(t))dt is the probability

that an event will happen in a very small interval of time of length dt. Here

α(X(t)) is considered as positive scalar. If τ is chosen small enough to satisfy

the leap condition, then the number of times Rr fires during [t, t + τ) is

approximately Pr(αr(X(t))τ).

Thus, we can leap by a time τ simply by taking

X(t+ τ) = X(t) +
M∑
r=1

vrPr(ar(X(t))τ) (2.22)

which requires generatingM Poisson random numbers for each leap. Equation

(2.22) is the tau-leaping method. It is faster than the SSA if the total number
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of reactions fired over [t, t+ τ),
∑M

r=1 vrPr(αr(X(t))τ), is larger than M.

Clearly, we need a way to estimate in an effective way the largest value

of τ that obeys the leap condition. One possible choice for such a τ is to

estimate the largest value of τ for which the increment in each propensity over

[t, t + τ) is bounded above by εαsum(X(t)) for a small ε. During that τ , no

propensity function will change its value significantly. Here ε (0 < ε << 1) is

an accuracy control parameter. The explicit tau-leaping simulation procedure

will be executed in the following way, regardless of the τ -selection strategy.

[19, 20, 21].

Tau-leaping Algorithm

1. Initiate t = t0, and X(t0) = x0.

2. Select a τ that fulfils the leap condition.

3. For each r=1,2,...,M, generate the number ωr of times the Rr fires during

[t, t+ τ) as a sample of a Poisson random variable ωr = P(αr(X(t))τ).

4. Update t+ τ ←− t and X(t+ τ)←− X(t) +
∑M

r=1 ωrvr.

5. Return to step 2.

Practically, the leap time τ is chosen adaptively, according to current state

vector and the values of the propensity functions, and the accuracy control

parameter ε.
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2.3.3 Euler-Maruyama Method for the Chemical Langevin Equa-

tion

The tau-leaping method is inefficient in the limit τ −→ 0. In that case, it is

mathematically equivalent to the SSA because all the ωr’s will also approach

zero. In such a small time step, no reaction is fired. Moreover, the tau-

leaping scheme becomes ineffective when the largest value of τ , that satisfies

the leap condition is less than a small multiple of 1
αsumX(t)

, the expected time

to the next reaction. The tau-leaping strategy may be faster than the SSA,

but being an approximate scheme, it may lead to errors. For example, a large

step may result in negative population numbers of some species. And stiffness

is also common in biochemical systems due to the different scale reactions.

Stiffness arises when the dynamical modes in the system have different time

scales, and the fastest of these time-scales are stable. It may cause instability

in simulations for large values of τ .

Since the Poisson random variable P(αr(X(t))τ) has mean αr(X(t))τ , this

is also the expected number of times for the reaction Rr fires over [t, t + τ).

The variance of P(αr(X(t))τ) is also αr(X(t))τ . Now assume that τ is chosen,

such that the value of the mean of the Poisson random variable P(αr(X(t))τ)

is large for 1 ≤ j ≤M . In this case, each Poisson random variable approaches

a normal random variables with the same mean and variance.

After substituting P(αr(X(t))τ) in (2.8) by αr(X(t))τ +
√

r(X(t))τNr,
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where Nr are independent normal (0,1) random variables, we get

X(t+ τ) = X(t) +
M∑
r=1

vrαr(X(t))τ +
M∑
r=1

vr
√
αr(X(t))

√
τNr (2.23)

Equation (2.23) is known as the Euler-Maruyama discretization of the Chemi-

cal Langevin equation. For the Chemical Langevin Equation the discrete time

recurrence (2.9) converges to a continuous time process (2.13), by taking the

limit τ → 0.

Euler-Maruyama Algorithm for the CLE

1. Initiate t = t0, X(t0) = x0

2. Draw independent samples {nr} from a normal (0,1) distribution where

1 ≤ r ≤M .

3. Update t←− t+ τ and

X(t+ τ) = X(t) +
∑M

r=1 vrαr(X(t))τ +
∑M

r=1 vr
√
αr(X(t))τnr

4. Return to step 2.

Hence we replaced integer-valued Poisson random variables to real-valued

normal random variables. Then, real numbers will be used for counting the

amount of molecules of each species present in the system. Even though

continuous in the state variable, the recurrence (2.23) runs over a discrete se-

quence of times. A sequence of random variables {X(0), X(τ), X(2τ), . . . } is

generated that corresponds to the state vector at discrete times {0, τ, 2τ, . . . }.
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2.3.4 Approximate Methods for the Reaction Rate Equation

As explained before, in the thermodynamic limit, the Chemical Langevin

Equation may be reduced to the reaction rate equations, which is a continuous

deterministic model. Hence, the RRE model is a limiting approximation of

the CLE.

Stiffness is an important challenge in the numerical solution of ODEs and

SDEs. A problem becomes stiff when its solution varies slowly, but there

are some solutions that are close to this solution that vary rapidly, so small

time steps should be taken by the numerical solution to maintain stability.

Efficiency of the numerical solution will be affected by small steps, as the

computational time of the algorithm depends on the number of time-steps,

and will increase when the stepsize is reduced. We give below a summary of

the MATLAB ODE solvers, which may be used for simulating the solution of

the RRE.

The MATLAB solvers ode45, ode23 and ode113 are used for nonstiff prob-

lems, while the solvers ode15s, ode23s, ode23t and ode23tb may be applied to

stiff models of biochemical systems represented using the reaction rate equa-

tions. Since for biochemical systems, the number of molecules for each species

are positive or zero, the MATLAB solvers should be utilized with the option

‘NonNegative’, or whenever applicable.
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Chapter 3

RTC for Discrete Stochastic Processes

In biological networks at the cellular level, intrinsic noise may play an impor-

tant role. Stochastic effects due to low molecular numbers of some reacting

species may be significant in biochemical networks arising in applications.

The most popular stochastic model of well-stirred biochemical systems is

the Chemical Master Equation [22], while the SSA is an easy to implement

simulation method for the Chemical Master Equation, it is not always the

exact Monte Carlo strategy of choice when analyzing the CME model. One

important tool for analyzing biochemical systems is sensitivity analysis. Al-

though sensitivity analysis is easy to apply to the deterministic continuous

model of the reaction rate equations, for the stochastic discrete model of the

Chemical Master Equation such an analysis is much more challenging to per-

form.

Sensitivity analysis of the CME is not the focus of this thesis. Nonetheless,
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it is one of the key applications of the exact Monte Carlo simulation techniques

discussed in this thesis. Biochemical reaction models have kinetic parameters

which are often difficult to measure experimentally or are unknown. Small

changes in these parameters may have a significant impact on the system’s

dynamics. It is therefore important to know the influence of the model’s

parameters on the behaviour of the system, that is, it is crucial to study

the parametric sensitivity of biochemical kinetic models. Sensitivity analysis,

or parametric sensitivity, measures how the evolution of a given biochemical

network depends on the system’s parameters. If a small perturbation of a

parameter leads to a significant variation in the behaviour of the system, we

say that the model is sensitive with respect to that parameter. Otherwise, the

system is robust with respect to the given parameter. Sensitivity analysis is a

powerful tool for studying properties of the system, in model design and model

reduction. For example, in large biological networks, sensitivity analysis can

guide us in drug targeting [8, 23].

For stochastic discrete models of biochemical systems, one cannot directly

apply the sensitivity analysis methods developed for ODEs or SDEs. However,

the parametric sensitivities for the Chemical Master Equation, for example,

may be estimated using the exact or approximation Monte Carlo algorithms

for numerically solving the model. Indeed, one may employ finite difference

approximations of the sensitivity of E(X(t, p)) evaluated for the given pa-

rameter of interest p, by evaluating E(X(t, p)) and E(X(t, p+ ε)) for a small
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perturbation p+ ε. If the streams of random numbers used to generate sam-

ples of E(X(t, p)) and E(X(t, p + ε)) are independent, then the statistical

estimator of the sensitivity will have a large variance, giving thus large errors

for a low number of sample paths [31]. To overcome this problem, a large

number of trajectories are required to improve the accuracy of the estimator,

which results in increased computational efforts. The efficiency of computing

are estimation of the parametric sensitivities, can be increased by using com-

mon random numbers, which will give an estimator with low variance, that

requires fewer sample path for a good accuracy.

One of the most accurate sensitivity estimation methods for the CME is

the common reaction path (CRP) developed by Rathinam, et al [18]. This

method employs an exact stochastic simulation algorithm for the Chemical

Master Equation, based on the Random Time Change representation (RTC)

of the Markov process governed by the CME model [18]. This exact stochastic

simulation algorithm known as the RTC is studied in detail in this thesis.

3.1 Stochastic Chemical Kinetics

Consider a biochemical reaction system with N chemical species. The sample

space Ψ is a set of sample trajectories and ψ, representing the randomness,

is an element of Ψ. As before, there are M reaction channels in the system.

The propensity function αr(X(t), c), for r = 1, . . . ,M , corresponding to the

reaction Rr depends on the system state X(t) and c, which represents one
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or more kinetic parameters. The probability of the reaction Rr to occur in a

very small time interval [t, t+ δt) is given by αr(X(t), c)δt.

The evolution of the Markov process X(t) is governed by the Chemical

Master Equation. Exact Monte Carlo simulation methods for the CME in-

clude the direct and first reaction methods proposed by Gillespie [12, 13],

or the next reaction method introduced by Gibson and Bruck [24], and the

Random Time Change strategy. The Random Time Change representation

and algorithm are presented in this chapter.

3.2 Random Time Change Representation

We give below the Random Time Change description of the Markov process

X(t) of a biochemical system modelled by the CME. This representation was

proposed by Either and Kurtz in [25]. This description shows that each

reaction channel is carrying its own internal clock. These internal clocks

have the rate given by the propensity function of the corresponding reaction

channel. These internal times, denoted by, Sr(t, ψ, c), are defined by

Sr(t, ψ, c) =

∫ t

0

αr(X(s, ψ), c)ds (3.1)

for the reaction channel Sr, with r = 1, . . . ,M . The Sr are dimensionless

quantities. The reaction Rr’s clock is modelled as a unit rate Poisson process.

The system state is updated according to the following equation:
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X(t, ψ, c) = X(0, ψ, c) +
M∑
r=1

vrYr(Sr(t, ψ, c), ψ) (3.2)

known as the Random Time Change representation [18, 25]. Here Y1, . . . , YM

represent unit rate Poisson processes for the reactions R1, . . . , RM , respec-

tively. Equation (3.2) holds pathwise, that is for each realization ψ, here c is

a system parameter, it could be an initial condition or reaction rate constant.

The state change vectors vr are independent of the parameters but the

propensity functions αr are dependent on these parameters. Let us mention

again that Yr are Poisson random variables with unit rate in their frames of

internal time and are independent of c explicitly. We assume that the initial

condition is independent of c and also deterministic. For instance, c may

represent some of the reaction rate parameters. Equation(3.2) allows to find

two processes, X(., ., c1) and X(., ., c2), corresponding to different values of

parameters c1 and c2, respectively. Hence, they represent functions of the

same sample space and thus we can compare them directly.

3.3 Pathwise Computations Using on the Random Time

Change Representation

Assume that Y1(., ψ), . . . , YM(., ψ) are realizations of the noise. Let us solve

X(., ψ, c), using the RTC representation (3.2). The approach described below
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follows that from Rrathinam, et al [18]. The random internal jump times of

the Poisson processes are denoted by Iri , where r = 1, . . . ,M and i = 1, 2, . . . ,

such that

Ir1 < Ir2 < Ir3 . . .

for each r.

Let us take Sr(t, ψ, c) = Iri (ψ), where the value of t is the physical time.

Then Iri means the i-th firing of the reaction Rr happens at time t. Denote

this physical time by T ri (ψ, c). According to the definition :

Sr(T
r
i (ψ, c), ψ, c) = Iri (ψ).

In what follows, we denote by Ti(ψ, c), the random time of occurrence of

the i-th reacting event of any type and by Ji(ψ, c) the ( random) type of the

i-th reaction event, for i = 1, 2, . . . . Therefore Ji is an integer 1 6 i 6 M .

For i = 1, 2, . . . and r = 1, 2, . . . ,M , from the point of view of the information

stored, keeping track of the collection (Ti, Ji) is equivalent to recording the

collection T ri . Either the sequence (Ti, Ji) or T ri for i = 1, 2, . . . , and 1 6

r 6 M , will determine a unique path X(., ψ, c). Moreover, Sr(t, ψ, c) is a

piecewise linear function in time t, for Ti ≤ t < Ti+1, given by
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Sr(t, ψ, c)←− Sr(t, ψ, c) + αr(X(s, ψ, c), c)(t− Ti),

for 1 6 r 6M and Ti 6 t 6 Ti+1.

For 1 6 r 6M , we denote by Ir+(t, ψ, c) , the following minimum

Ir+(t, ψ, c) = min{Irl (ψ) | Sr(t, ψ, c) < Irl , l = 0, 1, 2, . . . , },

for r = 1, . . . ,M . Here Ir+(t) represents the internal time of the next

occurrence of reaction channel Rr at real (physical) time t. If T1, . . . , Ti and

J1, . . . , Ji are computed for a given i, then we can also compute Ir+ for 1 6

r 6M and X(Ti). We evaluate Ti+1 as

Ti+1 = Ti +min

{
Ir+(Ti)− Sr(Ti)
αr(X(Ti))

| r = 1. . . . ,M

}
.

Remark that:

(i) the internal times of the stochastic processes are Sr(Ti), when the phys-

ical time is equal to Ti.

(ii) for Ti 6 t 6 Ti+1, Sr(t) and 1 6 r 6 M grows at the constant rate,

αr(X(Ti)),

(iii) Ir+(Ti) are the next internal times of firing of the reactions.
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Consequently, the minimum over all r = 1, 2, . . . ,M of
Ir+(Ti)−Sr(Ti)

αr(X(Ti))
is the

increment in physical time ( Ti+1 − Ti), before the next firing of a reaction.

Moreover, Ji+1 is the index for which the minimum is obtained. Hence,

Ti+1(ψ, c) = I
Ji+1(ψ,c)
i+1

. We can now find the first jump time T1 as follows:

T1(ψ, c) = min

{
Ir1

αr(x0, c)
| r = 1, . . . ,M

}

and J1(ψ, c) as the index of the minimum. Consequently, T1(ψ, c) = I
J1(ψ,c)
1 .

3.4 Random Time Change Algorithm for Stochastic

Biochemical Systems

The Random Time Change formulation [17], is a mathematical representa-

tion of the stochastic process X(t) which has a direct connection to the sample

paths, so it is may be more useful than the Chemical Master Equation. In

addition, it is useful for the analysis and derivation of the Monte Carlo al-

gorithm for simulating realizations of the stochastic process, that could be

exact or approximate. It is also helpful for the justification of Gillespie’s di-

rect method and in understanding some asymptotic properties, scaling limit
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and approximations. Moreover, this representation may be employed as a

component of hybrid stochastic simulation algorithms.

The RTC representation of X(t), due to Kurtz [17], constitutes the theo-

retical basis of the RTC algorithm for the CME, which is an exact simulation

method developed bt Rathinam et al [18] . The following variables are used,

Sr, I
r
+ and kr, denoting

kr: index showing the r-th stream of exponential numbers

Sr: current internal time of reaction Rr

Ir+: internal time of reaction channel Rr occurring in the next firing

Consider M arrays of entries Er
i , representing unit exponential random

variable where r = 1, . . . M and i = 1, 2, . . . . These exponential random

numbers will be used to select the internal times between successive firing

of the unit rate Poisson processes and are also related to the internal firing

times, Iri . Indeed, Iri+1−Iri = Er
i , independent, unit rate, exponential random

variables may be computed using independent uniform random numbers in

[0, 1).

Below, we shall describe the random time change algorithm which can be

derive from the RTC representation [18]. This algorithm computes a single
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trajectory X(., ψ, c). It is an exact Monte Carlo simulation method for the

CME.

RTC Algorithm

1. Initialize i = 0, T = 0, X(T ) = x0, Sr = 0, kr = 1 and Ir+ = Er
i for

r = 1, . . . M

2. Exit if terminal condition is reached, otherwise continue.

3. Calculate propensity functions αr(X(Ti)), 1 6 r 6M

4. Compute Ti+1 = Ti +min{ Ir+−Sr

αr(X(Ti))
},

5. Set X(Ti+1) = X(Ti) + vr∗, where r∗ is the index of the min in the above

equation.

6. Set Sr ←− Sr + αr(X(Ti))(Ti+1 − Ti)

7. Increment kr∗.

8. Set Ir∗+ ←− Ir
∗

+ + Er∗

kr∗
.

9. Increment i and return to step 2.
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Chapter 4

Numerical Results

In this chapter, we study the performance of the stochastic simulation algo-

rithms presented in the previous chapters, by testing them on a rich set of

models of well-stirred biochemical systems of practical interest. The focus

is on the accuracy and efficiency of the (exact) Random Time Change algo-

rithm, [18], by comparing it with Gillespie’s stochastic simulation algorithm

or SSA, which is an exact Monte Carlo method for the Chemical Master

Equation. In addition, we study the accuracy of an approximate strategy

of the CME, the explicit tau-leaping method as well as that of a numerical

technique for the Chemical langevin Equation model. Each of the RTC, SSA,

tau-leaping method and Euler-Maruyama Scheme for the CLE is applied to

generate 10,000 trajectories for the biochemical model under consideration.

The histograms obtained for the RTC, tau-leaping and Euler- Maruyama al-

gorithms are compared to those generated by the exact SSA, to establish the

accuracy of the methods above[26].
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The biochemical models used for testing have some interesting features,

much as a degree of stiffness. Moreover, the third model represents a complex

model, that of the epidermal growth factor system which involves 23 species

subject to 47 reactions.

4.1 Simple Stiff Model

Let us consider the following system of well-stirred biochemical reaction [27]:

S1
c1−→ S2

S2
c2−→ S1

S2
c3−→ S3

The first two, reversible reactions are fast and the third reaction chan-

nel is slow. In this model, three species are subject to three reactions. Its

stochiometric matrix is

V =


−1 1 0

1 −1 −1

0 0 1


The properties of the reactions are α1(X) = c1X1, α2(X) = c2X2, and

α3(X) = c3X2. The reaction rate parameters are c(1) = 1, c(2) = 1, and
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c(3) = 50, while the initial conditions are:

X(0) =

 1000

100


The system is studied on the time interval [0, 1]. This biochemical system is

stiff as it has both fast and slow reactions. A sample path computed with the

SSA is plotted in Figure 4.1, representing the time-evolution of the numbers

of S1 molecules and in Figure 4.2, showing the time-dependence of the number

of S2 molecules.
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Figure 4.1: Simple stiff model: Evolution in time of the amount of S1 molecules, on the time
interval [0,1], using the SSA
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Figure 4.2: Simple stiff model: Evolution in time of the amount of S2 molecules, on the time
interval [0,1], using the SSA.

The histograms for 10,000 trajectories simulated using the SSA, RTC, the

tau-leaping method and the Euler-Maruyama (EM) method for the CLE are

shown in Figure 4.3, for the molecular amounts of S1 molecules, and in Figure

4.4, the molecular amounts of S2 molecules.

We observe the excellent accuracy of the RTC , the tau-leaping and the EM

method compared to the exact SSA. In particular, the RTC strategy provides

a high accuracy. The tau-leaping and the Eulear-Maruyama techniques were
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applied for a stepsize τ = 2× 10−4.

Figure 4.3: Simple stiff model: The histograms of the number of S1 molecules at time t = 1,
using the SSA, RTC, tau-leaping and EM schemes
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Figure 4.4: Simple stiff model: The histograms of the number of S2 molecules at time t = 1,
using the SSA, RTC, tau-leaping and EM schemes

4.2 Stiff Decay-dimerization Model

Consider the decay dimerization model, which was proposed by Gillespie[12,

13, 14]. The biochemical system consists of three species which are interact-
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ing through four reactions:

S1
c1−→ 0

S1 + S1
c2−→ S2

S2
c3−→ S1 + S1

S2
c4−→ S3

The reactions rate constants are c(1) = 0.01, c(2) = 10, c(3) = 30 and

c(4) = 0.1 where as the initial conditions are given by X(0) = [100, 10000, 0]T .

The stochiometric matrix for this reaction system is:

V =


−1 −2 2 0

0 1 −1 −1

0 0 0 1


and the propensities are given by α1(X) = c1X1, α2(X) = c1X1(X1 − 1)/2,

α3(X) = c3X2 and α4(X) = c4X2. The model is integrated on the time

interval [0, 1]. As with the previous example, this model exhibits stiffness,

as both fast and slow time-scales are present in this system. Stiffness is a

challenge for solving numerically this problem.

The decay-dimerization model with the parameters given above is sim-

ulated numerically using an ensemble of 10,000 paths generated with SSA,

RTC, tau-leaping method and the EM scheme for the CLE, respectively. The
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approximate methods utilized a fixed stepsize τ = 1
3 × 10−4. A sample trajec-

tory of the evolution in time of the number of S1 molecules, generated using

the SSA is given in Figure 4.5. Figure 4.6 depicts the time-dependence of the

number of S2, computed using a single SSA run.

Figure 4.5: Decay-dimerization model: Evolution in time of the amount of S1 molecules on
the time interval [0,1], using the SSA
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Figure 4.6: Decay-dimerization model: Evolution in time of the amount of S2 molecules on
the time interval [0,1], using the SSA

The histograms of the same three species at time t = 1, which are com-

puted using 10,000 trajectories obtained with the SSA, the RTC, the tau-

leaping method and the EM scheme for the CLE, are shown in Figures 4.7,

4.8 and 4.9 for the numbers of S1, S2 and S3 molecules, respectively. These

histograms show the very good accuracy of the RTC, tau-leaping and EM

schemes, the highest accuracy being given by the RTC algorithm and the

least accuracy being obtained using EM scheme . The step τ = 1
3 × 10−4 was

chosen very small to improve the accuracy of the tau-leaping and EM tech-

nique and maintained numerical stability of these explicit strategies applied
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to a stiff model.

Figure 4.7: Decay-dimerization model: The histograms of the number of S1 molecules at
time t = 1 using the SSA, RTC, tau-leaping and EM schemes.
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Figure 4.8: Decay-dimerization model: The histograms of the number of S2 molecules at
time t = 1, using the SSA, RTC, tau-leaping and EM schemes
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Figure 4.9: Decay-dimerization model: The histograms of the number of S3 molecules at
time t = 1, using the SSA, RTC, tau-leaping and EM schemes

4.3 Epidermal Growth Factor Receptor Model

A transmembrane protein called epidermal growth factor receptor (EGFR),

is a receptor for members of the epidermal growth factor family. It is involved
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in cell proliferation and differentiation [28, 29]. A shortage in signalling of

EGFR in humans may lead to diseases such as Alzheimer and over-expression

to the development of a wide variety of tumors. The EGFR signalling pathway

model involves 23 species and 47 reactions. The reactions and their rate

constants are listed in Table 4.1 with rate constants:

Table 4.1: EGFR signalling pathway reactions and rate constants

Rid Reaction Rate Constant

1 EGF +R −→ Ra 3× 10−3

2 Ra −→ EGF +R 6× 10−2

3 Ra+Ra −→ R2 2× 10−2

4 R2 −→ Ra+Ra 1× 10−1

5 R2 −→ RP 1

6 RP −→ R2 1× 10−2

7 RP −→ R2[MM ] 4.5× 102, 5× 101

8 RP + PLCg −→ R-PL 6× 10−2

9 R-PL −→ RP + PLCg 2× 10−2

10 R-PL −→ R-PLP 1

11 R-PLP −→ R-PL 5× 10−2

12 R-PLP −→ RP + PLCgP 3× 10−1

13 RP + PLCgP −→ R-PLP 6× 10−2

14 PLCgP −→ PLCg[MM ] 1, 1× 102

15 RP +Grb −→ R-G 3× 10−3
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Rid Reaction Rate Constant

16 R-G −→ RP +Grb 5× 10−2

17 R-G+ SOS −→ R-G-S 10−2

18 R-G-S −→ R-G+ SOS 6× 10−2

19 R-G-S −→ RP +G-S 3× 10−2

20 RP +G-S −→ R-G-S 4.5× 10−3

21 G-S −→ Grb+ SOS 1.5× 10−3

22 Grb+ SOS −→ G-S 1× 10−4

23 RP + Shc −→ R-Sh 9× 10−2

24 R-Sh −→ RP + Shc 6× 10−1

25 R-Sh −→ R-ShP 6

26 R-ShP −→ R-Sh 6× 10−2

27 R-ShP −→ RP + ShP 3× 10−1

28 RP + ShP −→ R-ShP 9× 10−4

29 ShP −→ Shc[MM ] 1.7, 3.4× 102

30 R-ShP +Grb −→ R-Sh-G 3× 10−3

31 R-Sh-G −→ R-ShP +Grb 1× 10−1

32 R-Sh-G −→ RP + Sh-G 3× 10−1

33 RP + Sh-G −→ R-Sh-G 9× 10−4

34 R-Sh-G+ SOS −→ R-Sh-G-S 10−2

35 R-Sh-G-S −→ R-Sh-G+ SOS 2.14× 10−2

36 R-Sh-G-S −→ RP + Sh-G-S 1.2× 10−1
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Rid Reaction Rate Constant

37 RP + Sh-G-S −→ R-Sh-G-S 2.4× 10−4

38 ShP +Grb −→ Sh-G 3× 10−3

39 Sh-G −→ ShP +Grb 1× 10−1

40 Sh-G+ SOS −→ Sh-G-S 3× 10−2

41 Sh-G-S −→ Sh-G+ SOS 6× 10−2

42 Sh-G-S −→ G-S + ShP 1× 10−1

43 G-S + ShP −→ Sh-G-S 2.1× 10−2

44 R-ShP +G-S −→ R-Sh-G-S 9× 10−3

45 R-Sh-G-S −→ R-ShP + SG-S 4.29× 10−2

46 PLCgP −→ PLCg-I 1

47 PLCg-I −→ PLCgP 3× 10−2

Note that first and second order reaction rate constants have units in s−1

and nM−1s−1, respectively. The cell volume is 3 × 10−12 liters, such that

1nM concentration is equal to 1800 molecules per cell. For Michaelis-Menten

kinetics, denoted in Table 4.1 as [MM ], the rates are,
Vm[Si]

Km + [Si]
where [Si] is

the concentrations of reactant species. The Michaelis-Menten type reaction

constants are expressed as Vm[1/s] and Km[nM ]. The Michaelis-Menten type

reactions are R7, R14 and R29.

The species together with their initial values of are given in Table 4.2:
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Table 4.2: EGFR signalling pathway species and their initial values

Sid Species N

1 EGF 23 040 183

2 R 335

3 Ra 11 774

4 R2 9 514

5 RP 1 360

6 R-PL 59

7 R-PLP 91

8 R-G 947

9 R-G-S 300

10 R-Sh 23

11 R-ShP 618

12 R-Sh-G 195

13 R-Sh-G-S 124

14 G-S 1 776

15 ShP 152 296

16 Sh-G 56 545

17 PLCg 1 195

18 PLCgP 2 160

19 PLCg-I 185 357
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Sid Species N

20 Grb 32 547

21 Shc 2 634

22 SOS 4 689

23 Sh-G-S 52 301

The model is simulated over the time-interval [0, 100], using 10,000 runs of

the SSA, RTC, the tau-leaping scheme and the Euler-Maruyama for he CLE,

respectively. Individual trajectories representing the graphs of the molecular

amounts of some key species as functions as time are plotted in Figure 4.10

for species EGR, Figure 4.11 for species R, Figure 4.12 for R-G, Figure 4.13

for PLCg-I and Figure 4.14 for Sh-G-S.

Figure 4.10: EGFR model: Evolution of the number of EGF molecules on the time interval
[0,100] using SSA.
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Figure 4.11: EGFR model: Evolution of the number of R molecules on the time interval
[0,100] using SSA.

Figure 4.12: EGFR model: Evolution of the number of R-G molecules on the time interval
[0,100] using SSA.
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Figure 4.13: EGFR model: Evolution of the number of PLCg-I molecules on the time interval
[0,100] using SSA.

Figure 4.14: EGFR model: Evolution of the number of Sh-G-S molecules on the time interval
[0,100] using SSA.
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Finally, we compare the histograms computed over 10,000 trajectories at

time t = 1 for the number of molecules of EGF in Figure 4.15, of R in Figure

4.16, of R-G in Figure 4.17, of PLCg-I in Figure 4.18 and of Sh-G-S in figure

?? . The accuracy of RTC, the tau-leaping algorithm and the EM scheme for

the CLE are computed, considering the exact SSA as reference. All methods

have excellent accuracy. The approximate tau-leaping method and the Euler-

Maruyama scheme employed a very small stepsize, τ = 10−4, thus the high

accuracy of these methods.The RTC produces the histogram closest to that

generated utiliting the SSA.
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Figure 4.15: EGFR model: The histograms of the number of EGF molecules at time t = 1,
using the SSA, RTC, tau-leaping and EM scheme
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Figure 4.16: EGFR model: The histograms of the number of R molecules at time t = 1,
using the SSA, RTC, tau-leaping and EM scheme
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Figure 4.17: EGFR model: The histograms of the number of R-G molecules at time t = 1,
using the SSA, RTC, tau-leaping and EM scheme
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Figure 4.18: EGFR model: The histograms of the number of PLCg-I molecules at time t = 1,
using the SSA, RTC, tau-leaping and EM scheme
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Figure 4.19: EGFR model: The histograms of the number of Sh-G-S molecules at time t = 1,
using the SSA, RTC, tau-leaping and EM scheme
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Chapter 5

Conclusions

Stochastic models are necessary to accurately represent the dynamics of bio-

chemical networks that exhibit randomness. This randomness is often due

to the low number of molecules of some reacting species, as is the case for

species such as DNA or RNA. One of the most popular stochastic models of

well-stirred biochemical networks is the Chemical Master Equation. This is a

discrete stochastic model which is often of very high dimension and therefore

quite challenging to solve directly. Under certain conditions, the Chemical

Master Equation may be reduced to a stochastic continuous model of much

lower dimension, namely the Chemical Langevin Equation. In the regime of

very large molecular population numbers, the Chemical Langevin Equation

reduces to the well-known model of chemical kinetics, that of the (determin-

istic) reaction rate equations.

The focus of this thesis was on the numerical solution of the stochastic

models of homogeneous biochemical networks. Gillespie’s algorithm or the
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Stochastic Simulation Algorithm is an exact Monte Carlo method for com-

puting the solution of the Chemical Master Equation. This algorithm is

widely used for solving numerically stochastic discrete models of well-stirred

biochemical kinetics.

However, Gillespie’s algorithm is not the best tool for studies, such as sen-

sitivity analysis of the Chemical Master Equation. In this case, the sensitivity

estimator based on finite difference approximations using the SSA may give

inaccurate results. An exact Monte Carlo method for the Chemical Master

Equation that performs better than the SSA, when sensitivity analysis is of

interest, is based on the Random Time Change representation of the Markov

process modelled by the CME. This representation, due to Kurtz, constitutes

the theoretical basis of the exact Random Time Change algorithm.

This thesis studied the Random Time Change algorithm, or the RTC which

while less analyzed in the literature than the SSA, provides a powerful tool for

sensitivity analysis of stochastic models of biochemical kinetics, when finite-

difference approximations are employed. The sensitivity estimator based on

the RTC is much more accurate than that based on the SSA.

We studied the advantages of the RTC by comparing its performance with

that of SSA and the (approximate) tau-leaping method for the Chemical

Master Equation. The algorithms were tested on three biologically relevant

models, including a quite complex model of the epidermal growth factor re-

ceptor (EGFR) pathway. The RTC was shown to be as accurate as the SSA,
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and more accurate than the approximate algorithms such as the tau-leaping

method or the Euler-Maruyama scheme for the Chemical Langevin Equation.

The efficiency of the RTC is also studied.

In conclusion, the RTC algorithm is a promising alternative to the popular

stochastic simulation algorithm due to Gillespie. It is particularly useful as

an underlying method, for sensitivity analysis, and as a consequence, for

identifiability analysis for this model.

In our future work, we plan to study other applications of the RTC repre-

sentation and algorithm, such as to model reduction of well-stirred biochem-

ical networks.
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