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Abstract 

For years, DSP has been the dominant tool in implementing gate switching for 

power inverter. It is a powerful and reliable technology in carrying out complex 

switching schemes. DSP is still expensive due to its intensive use of resource in chip 

fabrication. There is no flexibility in making change on hardware once a DSP chip is 

selected. It is also time consuming in a design development because the learning curve of 

the DSP is stiff. Recently, a new approach to the problem has emerged. It is called 

embedded system design. Basically, it is a FPGA system combined with a RISC type 

microprocessor. This is a robust combination that allows users to pick and choose any 

functional peripheral devices only as needed. Once the complete hardware platform is 

decided upon, the circuit is configured and down loaded to a chip. Software codes are 

then written to run the application. The hardware system is reconfigurable. Designers can 

always go back to change the hardware with ease in order to improve the performance 

and to meet the target cost. 

This is an attempt to utilize the embedded system design also called System on 

Programmable Chip (SOPC) to perform Space Vector Modulation (SVM) gate switching 

strategy. The Altera Nios II IDE tool is selected for this task. 
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1.1 Objective 

Chapter I 

Introduction 

The focus ofthis report is on the implementation of space vector modulation for 

induction load or motor using System on Programmable Chip (SOPC) method. The 

advantages of the induction motor over the DC motor will mentioned, two main pulse 

width modulation schemes will be discussed, different ways to apply the scheme will be 

examined before heading to the proposal. 

1.2 Back Ground 

The fIrst induction motor was invented by Nicola Tesla in 1888. To this day, it 

still remains the most rugged, reliable, less expensive to build and the least maintenance 

required machine. In comparison with a DC motor, the DC one relies on built in 

permanent magnets for flux generation in order for the machine to run. The induction 

motor produces its flux through the supply voltages. Hence, the induction machine is 

lighter in term ofweigh and output power ratio. In addition, the rotor ofthe DC machine 

brings about a turning force as the current carrying conductor is placed inside the 

magnetic fIeld. This conductor is connected to the power source through some kind 

brushing mechanism. Over times, this connector gets corroded due to wear and tear that 

affects the performance of the motor. Therefore, periodic maintenance must be carried 

out to ensure its effIciency [1]. For induction motor, the supply voltages in the stator give 
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offa rotating field. This moving field induces voltage in the rotor. In the case of squirrel 

cage induction motor where the rotor windings are short circuited, the flowing current 

creates a rotor flux. Consequently, the rotor flux reacts with the stator flux to yield torque 

to the rotor. The whole process requires no external connection to the rotor. Therefore, 

the motor is rugged and needs no maintenance [2]. 

The advantages of the induction motor out weigh that of the DC motor. It was, 

however, not commonly used in the early days because the motor has a fixed speed which 

depends on the frequency of the voltage source. Recent advancement in power electronic 

has given the induction motor a face lift in its applications which can be found in 

robotics, machine tools and hybrid vehicles [3]. 

The general scheme for controlling the speed of the induction motor involves an 

AC to DC rectifying process and a DC to AC transformation procedure. A typical unit 

takes AC power source, rectifies it into a steady DC voltage, and then converts it back to 

a desired frequency AC waveform. This DC to AC sub unit is called an inverter, which is 

how the motor control inverter has its name. There are two main methodologies to 

convert DC to AC for induction motors. One method is called Sine Pulse Width 

Modulation (SPWM) or Voltage Frequency (VF) control. The other is Space Vector 

Modulation (SVM). 

The principal of the sinusoidal PWM scheme is that a control sine wave at the 

desired frequency is compared with the triangular wave at constant amplitude. The 

frequency ofthe triangular wave set the inverter switching frequency [4]. Traditionally, 

VF control was popular mainly due to its uncomplicated implementation and the least on 

chip computation requirement. This algorithm has some major drawbacks. First of all, it 
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is not able to fully utilize the supply DC voltage. Less than 90% of DC supply voltage is 

used. Secondly, it has substantial high Total Harmonic Distortion (THD) which results in 

heat generated in switching devices and larger heat sink is needed. The THD is 

worsening when the frequency modulation index defmed by the ratio of carrier and 

modulating frequency is not an integer. It brings about a so called non characteristic 

harmonics whose frequency is not a multiplication ofthe fundamental frequency. This 

poses a challenge in designing a proper filter to eliminate the unwanted frequency [5]. 

This method also imply an inefficient way to use the memory since three 120 degree 

phase shifted sine tables have to be stored in the chip memory in order to generate the 

necessary sine waves [6]. 

The SVM algorithm is based on the fact that for a balanced three phase system, 

the sum of vectors representing 3-phase line to neutral AC power supply sine waves is 

zero. Hence, these vectors can be expressed as a single space reference vector in a and ~ 

plane [7]. By controlling the amplitude and the rotating speed ofthis vector, the motor's 

torque and speed can be regulated. The SVM is an advanced and computation intensive 

technique which gives 15% more voltage output compared to the SPWM method [8]. It 

generates less THD. Nowaday, this technique is widely adopted in motor speed 

regulation. 

The main challenge ofthe SVM approach lays in the calculation of the angle 

between two vectors. The trigonometric function such as sine and cosine to defme angle 

can be solved conventionally by interpolating from a detailed table ofthe known values. 

The end result may lack ofthe resolution needed for some applications. Modem day 

computers resolve that problem mainly by Taylor series with very high precision. That 
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requires large amount of hardware resources and long computing time on the computers 

part [9]. How fast the angles are worked out determines how well the performance of 

SVM. In fact, estimating the angles becomes the bottle neck ofthe entire process. 

1.3 Methodologies 

Over the years, with the progress of microelectronics and its cost reduction have 

made the SVM feasible in real time. There are many ways to carry out the scheme of 

which in general can be categorized into two three main streams: software, hardware and 

the combination of both. With many choices available, today designers have to juggle 

between the performance, cost effective and the ease of implementation in adopting the 

best method for their application. 

Until recently, software stream has been realized by high speed microprocessor 

such as RISC machines and DSP. This approach is very flexible and able to accomplish 

complex algorithms, but the disadvantages are long development time, poor portability of 

programming codes and more CPU resources. DSP still is comparatively expensive. 

RISC stands for Reduced Instruction Set Computer. The idea behind the creation 

ofRISC processor is based on the observation that only a small percentage ofa 

processor's basic instructions are used in majority of cases. Therefore, it is better to build 

processors where those instructions are handled efficiently on simplified and faster 

hardware [10]. The instructions ofRISC engine are simple and fixed in size so that the 

implementation for this faster hardware called pipe lined machines can be made easy. The 

concept the pipeline is borrowed from assembly line in manufacturing process. Instead of 

putting all the time and resource into processing one computer code, the entire operation 
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can be divided into smaller different stages where codes are managed continuously. The 

end result is that, after the initial delay, commands are completed in every cycle. 

DSP are designed for extensive enumeration purposes. It is also a RISC machine 

with Harvard architecture. This architecture utilizes segregated, independent program and 

data memories with different buses so that the two memories can be accessed at the same 

time. It allows an instruction and an operand to be fetched from memory in one clock 

cycle [11]. In order to make quick calculation, all DSP processors equip with at least one 

fast hardware multiplier. This fast multiplier is able to bear result in a single clock cycle. 

Some advance DSP employ parallel execution technique called parallelism where second 

or more multipliers are needed. Floating point data formats are generally used in DSP 

algorithms and hence complex hardware are developed for this format. Since much 

hardware circuits are used in its construction, DSP remains the most expensive 

computation machine. Also, dedicated hardware requires specialized instruction set, 

programmers can only optimize codes in assembly level instead of high level languages 

as C and C++. This may prolong system development time [12]. 

Recent arising of the field programmable gate array or FPGA technology, has 

given designers a new arsenal in tackling comprehensive enumerating challenge. This is 

the hardware approach for SVPWM. FPGA is an array of many logic blocks that are 

linked by horizontal and vertical wiring channels. A logic block consists of many logic 

elements which embodies look up tables (LUT), a programmable flip-flop with a 

synchronous enable, a carry chain, and a cascade chain. The FPGA chip is configured by 

a specific programming code called hardware description language (HDL). A HDL 

programmer can ''write'' a hardware and down load it onto a FPGA chip which performs 
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as a complex combinational function or even like an application specific integrated 

circuit (ASIC). The hardware is reconfigurable and therefore complicated circuits can be 

realized and tested in very short time. In addition, instead of executing instructions 

sequentially as in software approach, FPGA is able to carry out different tasks 

simultaneously [13]. There is no need for external wiring; the system is reliable. As a 

result, sine and cosine function modules, PWM output waveform module [14] and even 

an entire SVPWM core [15] are developed. This has greatly enhanced the SVPWM 

performance where the sampling rate can reach as high as 40 KHz [16]. There are a few 

disadvantages; a new programmable language is to be learned; proficiency in fmite state 

machine (FSM) design and handshaking protocol is a must in order to have all these 

hardware modules working together in correct timely manner. 

1.4 Proposal 

The quest for faster sampling time is propelled by Field Oriented Control (FOC) 

in servo motors. This is because in the heart ofFOC, sit the SVPWM. To achieve 

dynamic performance, FOC demands high sampling rate. However, not all SVPWM 

applications have to be high speed. In the case of high power medium voltage (MY) 

drive, the switching frequency of the inverter is usually below 1 KHz [17]. The reason is 

that the switching devices can't handle over that frequency range. This gives rise to the 

proposal ofthis report as high sampling rate is not required. A hardware and software 

combined method called embedded system design is introduced. 

An embedded system is a digital system with at least one processor that 

implements a hardware function which is part of an over all system. The Embedded 
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processors are typically rusc machines which are used the same way as 

microcontrollers. The main difference is that embedded system allows more flexibility 

and design customization due to its reconfigurable capability [18]. Designers are able to 

choose the hardware functions and merge together with microprocessors then down load 

the system into a FPGA chip. Assembler or high level language such as C and C++ is 

written to program the processor. The entire process necessitates a software tool called 

System on a Programmable chip or SOPC. This tool provides graphic user interface 

(GUI) for system components selection and generates interconnect logic automatically. 

SOPC outputs HDL files that defme all modules of the system and HDL design file that 

connects all modules together for the purpose of FPGA configuration. Besides that, it 

offers features to write software codes and to do simulation for the prototype. 

The SOPC used to realize SVPWM in this report belongs to Altera's Quatus 

software package. The sampling rate of this SVPWM method depends on how 

sophisticate the hardware components are selected or created. A process will be shown 

later that this method is easy to implement. 

This paper is organized as the following. The next chapter demonstrates the 

principle of vector modulation technique. Chapter III simulates SVPWM using Mathlab 

and its results are served as benchmark in comparing with the real implementing results. 

Chapter IV executes SVPWM by SOPC mean. Chapter V concludes the report. 
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Chapter II 

Principle of Space Vector Pulse Width Modulation 

The theory presented here is base on the text book; High power converter and A C 

drive by Professor Bin Wu [19]. 

Voltage source inverter (VSI) is the unit that converts a DC voltage to a three-

phase AC voltage with varying amplitude and frequency. The inverter is made up of six 

group of active switches, S 1 - S6 . Each switch has a free-wheeling diode coupled in 

parallel. A simplified schematic for a voltage source converter for a typical high power 

medium voltage is shown in Fig.2-1. Base on the DC operating voltage ofthe inverter, 

each switching group may composes two or more IGBT or GCT connected in series. 

o--~------~------~~------~ 

Figure 2-1 Simplified schematic of an inverter 
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2.1 Switching state 

Before introducing the SVPWM theory, some of the terminologies are 

familiarized in order to have a better understanding. The operating status of the switches 

in each inverter branch is represented by switching states. P is denoted as upper switch 

being turned on and its inverter terminal carrying positive voltage (Vd). 0 stands for the 

lower switch being turned off and its inverter terminal having zero voltage. Figure 2.1-1 

provides the defmition of the switching state. 

Switching LEG A LEGB LEGe 
State SI S4 UAN S3 S6 UBN S5 S2 U eN 

P ON OFF Vd ON OFF Vd ON OFF Vd 

0 OFF ON 0 OFF ON 0 OFF ON 0 

Figure 2.1-1 Switching State Definition 

There are eight combinations of the switching states for the inverter. For instants, 

combination [P 0 0] corresponds to the conduction of SI, S6, and S2 in legs A, B, C 

accordingly. Within the eight switching states, [P P P] and [0 0 0] are the zero states, 

the rest are active states. Figure 2.1-2 lists the definition of all combinations. 
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Space Vector 
Switching On-state Vector Definition 

State Switch 

VO [PPP1 Sh S3, S5 V. -0 
Zero Vector 

0-

rOOOI S4, S6, S2 

- 2 '0 

~ [POO] Sh S6, S2 
V; =-Vde} 

3 

Active Vector 
- 2 j~ 

Vl 
[PPO] S., S3, S2 Vz = -Vde 3 

3 

- 2 
,211' 

V3 [OPO] S4, S), S2 V3 =-Vde 
3 

2 ,311' - }-

V4 
[OPP] S4, S3, S5 V4 =-Vde 3 

3 

_ 2 /tr 
Vs lOOP] S4, S6, S5 Vs =-Vde 3 

3 

2 ,5tr - ]-

V6 [POP1 Sh S6, S5 V6 =-Vde 3 
3 

Figure 2.1-2 All Switching State Combination 

2.2 Space Vector PWM 

This theory is better demonstrated in graphical way. The active and zero 

switching states can be represented as active and zero state vectors. A space vector 

diagram is shown in figure 2.2-1. 
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The six vectors V 1 to V 6 form a regular hexagon with six equal sectors (I to VI). 

The zero state vector, V o.lies in the centre of the hexagon. The reference vo ltage vector 

V ref rotates within the hexagon at a certain speed. 

jP. 
!oI[CiORU 

I 
-,:~;;-.m~7'""~"-" 

I 

V 
....,.--------1~-....;.;.---.. I..... ..• a 

poo 

St:(:U'RIV St:C-'1'OR VI 

P. 
SECTOR V 

Figure 2.2-1 Space Vector Diagram 

The relationship between the space vector and the switching states can be derived 

as the following. From the inverter shown in figure 2-1, with the assumption that the 

inverter having three-phase balanced load, this expression is valid, 

V,w (t) + VBO (t) + VCO (t) := 0 (2.2-1) 

The state of Vco (t) is redundant, since it can be defmed by V,w (t) and Vso (t) . 

Also, it is convenient to transform the three-phase variable to two-phase variable. 
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(2.2-2) 

Therefore, the space vector can be expressed in a - ~ plane two-phase voltages. 

Vet) = Va (t) + jVp (t) (2.2-3) 

Substituting (2.2-1) to (2.2-3), 

(2.2-4) 

where e jx = cos(x) + j sine x) and x = 0, 2It!3 and 41t13. 

Considering the Active switching state [P 0 0] for example, the generated 

inverter phase vo ltages are 

Vo 
V,w(t) = 2- , Vao(t) = 

3 3 

-V 
, Vco(t) = __ 0 

3 
(2.2-5) 

---The corresponding space vector, V; can be found by placing (2.2-5) to (2.2-4) 

- 2 '0 Vi =-V e1 

3 d 

In general, all six space vectors can be represented as 

- 2 j(k-I)~ 
Vt=-Vde 3 wherek=1,2,3 ... 6 

3 

(2.2-6) 

The zero-space vector Vo has two switching states. These two states are redundant 

to each other. The redundant state is used to minimize the switching frequency and 

eliminate the even harmonics. The zero and active space vectors are stationary in space 

and hence they are called stationary vectors. 
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--The reference vector V ref, in figure circulates in space with an angular velocity at 

0) = 2ift (2.2-8) 

It is the fundamental frequency of the inverter output voltage. The angle between 

.... 
V ref and a- axis in the a-p plane is obtained by 

t 

B(t) = f OJ(t)dt + B(O) (2.2-9) 
o 

-V ref can be approximated by the three stationary vectors for any given length and 

position. These stationary vectors in turn determine the switching states ofthe inverter. 

-As V ref rotates one revolution in space, the inverter completes one cycle over time. The 

generated output voltage frequency is proportional to the angular velocity of V ref and the 

-output voltage magnitude is corresponding to the magnitude of V ref. 

2.3 Dwell Time Calculation 

- . 
Since the spinning V ref can be composed by three stationary vectors, the length of 

these stationary vectors depends on the length of time assigned to them during the 

sampling period Ts . It is called the dwell time and is used to defme a moving vector 

position at that time instant. The dwell time calculation applies the 'voltage second 

balancing' principle. The principle states that the product ofthe reference voltage 

V ref and the sampling period r: equal to the sum of the voltage multiplied by time 

interval ofthe selected space vectors. The sampling period Ts is always set small enough 

.... 
such that the reference vector is almost constant during Ts interval. Taking V ref inside 

the sector I for example, the voltage balancing equation is 
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(2.3-1) 

Ta, Tb and To are the dwell times for iT I. iT 2 and iT 0 correspondingly. 

The space vector in 2.3-1 can be shown as 

(2.3-2) 

Substituting 2.3-2 to 2.3-1 and then separate the resulting equation into real and 

imaginary components in the a-~ plane, 

Re: 

1m: (2.3-3) 

\ 
\ 

\ 
_ \ Sectorl 

Vr<:r / ....... " ..... " ................ + ............. -

\\ 
~--~~~~--------~v. 

T,'V 
T I .. 

Figure 2.3-1 Dwell Time and Voltage Vectors 

Solving 2.3-3 with Ts = Ta + Tb + To yields 
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r:; Vref 7r 
T = ",3T -sin(--B) 

a If Vd 3 

(2.3-4) 

for 

Figure 2.3-1 illustrates the relation between dwell time and voltage vectors. 

The equations in 2.3-4 are derived when Vref falls in sector I. For other sectors, 

-V ref can be located by this general angle expression 

• 7r 
B = B-(k-l)-

3 
for 

7r 
O~B<-

3 

where k=l, 2, 3, ... ,6 corresponding to sectors I, n, ... ,VI 

2.4 Modulation Index 

Modulation index dictates the magnitude of the inverter's output. Equation 2.3-4 

can be used to express the modulation indexma. 

where 

r:; Vref • (7r B) T = ",3T -sm --
a 8 V 3 

d 

T=T-T-T. o 1I a b 

15 
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(2.4-1) 



The maximum amplitude of the reference vector Vref•max lies on the vertices of the 

hexagon outside the circle as shown in figure 2.2-1. 

V =2V. J3 _Vd 
ref.max 3 d 2 - J3 

Substituting Vref,max into ma in 2.4-1 gives 

m =1 a 

Therefore, the modulation is within the range of 

O:5:m:5:1 

and the peak fundamental voltage produced by SMV is 

2.5 Switching Sequence 

A Vd 
V max,SMV = V ref,max = J3 

-

(2.4-2) 

(2.4-3) 

(2.4-4) 

The switching sequence for any V'ef should follow these two guide lines in order 

to minimize the switching frequency. 

1- Only one branch of the inverter switches change states, one being switched on and 

other being switched off, when one switching segment alters from one to the next. 

2- As V ref travels from one sector to the next, none or minimum number of switches 

change states. The figure 2.5-1 is an example of the switching sequence utilizing the 

above guide lines. The figure shows a seven segment sequence and inverter output 

voltage for Vref in sector I. It is observed that 
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- Sum of the different dwell times equals to the sampling time. 

- The transition from [0 0 0] to [P 0 0] involves only two switches which are 

SI (ON) and Sz (OFF). The requirement 1 is satisfied. 

- The redundant switching states of Vo are used to minimize the number of 

switching. 

- Each switch in the inverter is turned on and off once in one sampling period Ts 

Hence, the switching frequency law is the same as the sampling frequency Isp • 

Figure 2.5-1 graphs the essence ofthe switching sequence rule above in sector L 

Jl-' V 
il I 

i 000 POO 

V.iN U ~~,_'" .... _.~~"~ ...... ~I~~ . 
, 
i Vd . ,--...... : 

I 
, 
I vJ 

.. , ...... ... , ... 
T, 1;1 
2 :2 

, Ts 

j; 
2 

pro 

r~ 
I 

POO 

......... ~ .. ~I __ 

2 

Figure 2.5-1 Switching Sequence in Sector I 
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-Figure 2.5-2 summarizes the seven segment switching sequences of V ref in all six. 

sectors. 

Sector uence 

I 
Yo ~ Y2 Yo Y2 ~ Yo 

000 00 PPO PPP PPO POO 000 

II 
Yo Y3 Y2 Yo Y2 Y3 Yo 

000 OPO PPO PPP PO OPO 000 

III 
Yo Y3 Yo Y4 Y] Yo 

000 OPO OPP PPP OPP OPO 000 

IV 
Yo Y4 Yo 

000 OPP 000 

V 
Yo Ys V;; Yo 

000 OOP POP P 000 

Yo ~ Y6 Yo Y6 ~ Yo 
VI 000 POO POP PPP POP POO 000 

Figure 2.5-2 Switching Sequence in All Six Sectors 
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Chapter III 

SVPWM Matlab Simulation 

It is always a good practice to simulate a design before actually carrying it out. 

This allows designers to see the feasibilities and the performances of their would-be 

products preventing costly later alternation and time delay. The software package used 

for this project is Matlab Simmulink. 

The design specification is coming from an actual project. 

3.1 Specifications 

• Inverter configuration: Three phase two-level inverter 

• Rated inverter output voltage: 4160V (rms fundamentalline-to-line 

voltage) 

• Rated inverter output power: IMVA (three phase) 

• DC link vol~age: constant, ripple free 

• Inverter load: Three-phase balanced RL load with a lagging power factor 

of 0.9 

The inverter base parameters 

• VB =:; VR 13 = 41601 J3;;;; 2401.8V 

• IB =SRI3VB =(1*106 )/(3*2401.8) = 138.8A 

• ZB =VBIIB =2401.8/138.8=17.3.0 
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• (j)B = 2trJ;. = 377.0rad I s 

• Load: R = 17.3cos(8) = 15.60 

.: o:L = 17.3sin( 8) = 7.54 :. L = 20mH 

Vd can be defined by modulation index when ma = 1 . 

VABI =0.612 
Vd 

:. V = VABI = 4160 = 6797.4V 
d 0.012 0.612 

3.2 Simulating scheme 

According to the theory of SVPWM, the position of the moving space vector at a 

time instant is determined by an angle fonned between the vector itself and horizontal 

axis. The dwell time is calculated based on the angle found at the moment. The switching 

pattern is decided upon by the sector where the V ref is located. For strategy wise, it is 

easier to fmd the sector right after the angle becomes known. The flow of the simulation 

logic is outlined in the figure 3.2-1. 

Angle Locating 

/' 

t===:::;-"'~ Sector Locating v 

/ 

/ 

i', Dwell Time 
f==-:::::::::::':v)1 Calculation 

Figure 3.2-1 Simulation Logic Flow 

3.3 Result 

v 

/ 

The result of the simulation is categorized by two types of graphs: one is the 

Switching 
Pattern 

graphs of voltages and current waveforms; the other is the graph of harmonic spectrum 
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Figure 3.3-1, -2, -3, -4 and -5 show simulations for the following cases A, B, C, D 

and E respectively. The THD result of the load current i A at 1000Hz range is included in 

Figure 3.3-1. 

Simulation ~ (Hz) fsw (Hz) ma Ta (ms) Load Current, i A , THD% 

A 60 900 0.7 1.11 7.1 
B 60 900 0.5 1.11 8.7 
C 60 900 0.2 1.11 11.8 
D 30 900 0.9 1.11 5.5 
E 10 900 0.9 1.11 5.4 

Figure 3.3-1 Table of Simulation output and Its Load Current THD 

3.4 Observation 

The simulation result does prove that the theory works. With sampling rate 

remains the same through out, lower the rotating frequency yields better THD. The same 

is true for higher the modulation index. Higher sampling rate reduces the effect ofTHD. 

Most of the distortions occur at and over 900Hz range and are far away from the 

fundamental frequency. They can be easily filtered out. 
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Chapter IV 

SVPWM Realization by SOPC 

The best way to get familiar with Altera SOPC builder is to follow its tutorial on 

Nios II hardware development [20]. This tutorial serves as a guideline on designing a 

Nios II hardware system and then composing a software program to run on the system. 

Since the objective of this exercise is different from the thesis project, changes will be 

made as needed to fit the project's goal. . 

4.1 Target Board 

.. The circuit board used here is the Altera DE2 Development and Education Board 

with Altera Cyclone II (2C~5) FPGA chip on it. It has a number of switches, LEDs, LCD, 

and 7-segment displays either for input to the processor or visual indicator of processor 

activities for small project. It includes RS232 and PS2 for communication. For video and 

sound experiment, it provides connectors for microphone,. line-in, 24-bit audio CODEC 

line out, video in and VGA out. It also equips USB 2.0 connectivity for host and device. 

For more challenging experiments, there are SRAM, SDRAM, and Flash memory chip. 

The board runs at frequency of 50 MHz. Figure 4.1-1 is the picture of the target board 
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Figure 4.1 -1 Target Board 

4.2 Embedded Processor 

The Nios II processor is a general-purpose RISe machine. It comprises of a full 

32-bit instruction set, data path, and address space; 32 general purpose registers , 32 

external intemlpt sources; smgle ins~ruction 32x32 multiplier and divider resulting in 32-

"it data ; floating point instruction for single preclsion floating point manipulation. 
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4.3 System Development flow 

The embedded system development flow consists of three forms of development: 

hardware design, software design and system design which includes both hardware and 

software. For a simpler system, all ofthe above procedures can be performed by one 

person. For a more complex system, it may request several teams of engineers to cover 

all those steps. Figure 4.3-1 suggests the designing flow. 

System Requirements 
analysis 

~ 
Defining and Generating 

System in SOPC Environment: 
Nios Processor Cores and 

Standard Peripherals 

~~ 
Developing Software 

Integrating SO PC with the Nios II IDE: CI 
Builder System into C++ programming. 

Quartus Project Custom Libraries, 
Peripheral Drivers 

Pins Assignment Compiling Software 

Compiling Hardware Downloading Software 
for Target Chip to Target Board 

Downloading Design 
Running and 

Debugging Software 
to the Target Board on Target Board 

~~ 
Refining Software and 

Hardware 

Figure 4.3-1 Embedded System Design Flow 
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Following the figure 4.3-1 suggestion, the requirement ofthe project has to be 

clearly defined. For SVM control scheme, calculation ofthe switching time and 

switching patterns are the predominant issues. 

The switching time calculation is determined by the sine trigonometry function of 

an angle. This is done by mean of power series and hence a hardware multiplier is 

incorporated inside the processor core. 

. X 3 X 5 X7 
Sm(X)=X- +---+ ... 

3! 5! 7! 
(Equation 4.3.1) 

The easiest way to achieve the switching pattern is to utilize interrupt timers. This 

is because the switching sequences change after a certain time interval according to the 

figure 2.5 .1. 

4.3.1 Hardware Development tasks 

Based on these observations, a concrete system design is fmalized. This project 

requires a fast Nios II processor with a hardware multiplier for the power series 

calculation; seven interrupt timers for seven changes in switching sequences. The next 

step will be using sope builder tool to specify the processor core, memory, and other 

peripheral devices such as timers. The builder tool will automatically generate the 

interconnected logic to integrate the component in the system. In general, there are two 

classes of peripherals. One is the standard type such as timers, SDRAM, general purpose 

va, even a secondary processor etc provided by Nios II Embedded Design Suite. The 

other is the custom type like custom-made logics or the ready-made intellectual property 

(IP). There are two advantages; hardware implementation is faster than software; the 
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processor is free to execute other task in parallel while the peripheral operates on data. 

Ideally, a hardware sine function for SVM should be created to handle this kind of 

computation as hardware approach is always faster than software approach. This incurs 

higher development cost and longer development time. For the pilot run, the fastest and 

cheapest technique is used. Figure 4.3.1-1 shows the preliminary design for the SVM. 

Continuing the process, pins assignment for the IIO signals can be arranged with 

design constraints using the Altera SOPC builder. Finally, the entire project is compiled 

to produce an SRAM Object File to configure the FPGA. This file is then downloaded to 

the FPGA on the target board through the cable called Altera USB-Blaster. 

Target Board 

AII"era FPGA 
VDD 

] ~ 
,... 

N ios II System LEDO 'i' ./] 
'V'--- Debug I"'J 

•• G Control Instr i 

•• r--
N,osili. 

8 ~ 
Core LED1 )../1 •• I-- C 

I 
L vI/' 0, Data r---- IIC Ports I ' 1'-1 

•• Nf- l- , 

•• T 
! ~ 

- R 
JTAG lED2~1./] 

a 
UART I I"'J L 

L Character 
10- pin JTAG E 110 i System 

Header R Interconnect On-Chip 
- Fabric r----

Ram 

I T,merO • 

• • • 
TimerS SystemlD 

-

I Other logic I 

I System I 
Clock 

Figure 4.3.1-1 Preliminary design Block 

31 



In this layout, JTAG UART is used for downloading both for hardware and 

software and for debugging. General VO ports PIO are used for switches with LEDs for 

visual effect. Several timer interrupts are required for setting up the switching patterns. 

Other logic is anticipated when the goal is not reached and custom made logic might be 

needed. 

4.3.2 Software Development Tasks 

With the help ofNios II IDE, software development tasks for Nios II processor 

system are performed. Designers are able to write high level computer languages like C 

or C++ codes for the system. To interact with low level hardware components like 

turning on or off switches, Altera provides components drivers and a hardware 

abstraction layer (HAL) to facilitate such a task. Once the application program is 

compiled, it can be downloaded to the target board using the same USB-Blaster cable. 

The IDE debugger allows users to start and stop the program, step through codes, create 

break points, and examine variables. This debugger also provides a way to debug the 

software without the present ofthe target hardware. 

Figure 4.3.2-1 displays the software algorithm for the SVM. T to T7 represents the 

timer interrupt interval. In one sampling period, values ofT 0, Ta, and T b are determined 

for the switching sequences. 
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One Sampling 
Period 

I 
To + Ta or ~ + Tb or Ta + 
4 2 2 2 2 

To + Tb or To + To or Tb + 
2 2 2 2 2 

Figure 4.3.2-1 Software Algorithm 

4.3.3 Refining Hardware and Software 

To 
4 

After running the software on the hardware, it might be that the performance 

does not meet the requirement. Designers can either go back to the software to make 

changes in algorithm or go to hardware to reconfigure the peripheral. Reconfigurable 

I 

peripherals is one of the most distinguish difference between an embedded system and a 

fixed microcontroller. In this context, reconfigurable means that hardware features can be 

added or removed on a system-by-system basis to meet performance and price goal. 

4.4 Creating the Design 

Following are the step by step to implement the design using Nios II 

Development tool. This procedure is carried out closely adhering to the tutorial. 
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1. Install the design files for the Nios II Hardware Development Tutorial. After 

having the files unzipped, they are stored in a d irector. 

2. Start the Quartus II software and open the tutorial project. 

3. Create a new SOPC builder system by clicking SOPC builder on the tool menu in 

the Quartus II software . On the Create New System dialog box, type system 

name. This project uses the same name as suggested in the tutorial which is 

flrst_nios2_system. Figure 4.4-1 shows the SOPC builder GUl in the early state. 

I.! AIt.r. SOP( OUIlM' ',nt nlol] 'Y1tMl.sopc tC;\aU.,.\h.rdw.,. 1uton.' 1c 70\first rrios1 1Y""T1 .~PCJ ~~ 

"
, II lJrter".' 

.. " ,- L''''J [J 

ea.. 

- - -----------------------1 I"" ~_ , .('I'i t'f"'. , •. ",t.,. t.)<;I'!W"'IOht 

I ... ·· ·J 1·:- ·1 

Figure 4.4-1 SOPC Builder GUl 

4 . Building the system in the sope builder. SOPC builder is used to define the 

hardware characteristics of the of the Nios II system, i.e. which Nios II core is 

selected, what peripherals to include in the system. Since this step is the most 

crucial of the whole process, detail contents ofGUI are shown and explained. On 

the SOPC builder, FPG A cyclone chip is chosen, and the clock is set at 50MHz. 

• Processor requires minImum one memory to store data and 

instructions; the on chip memory selection is first performed. To add 
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the memory, on the left hand side of system contents tab, under the 

category Memories and Memory Contro)Jers/On-Chip, user high 

lights the On-Chip Memory (RAM or ROM) then clicks Add. The 

On-Chip Memory MegaWizard interface appears . M4K block 

memory is select. Figure 4 .4-2 is the On-Chip Memory interface box. 

On-Chip Memory 
(RAM or ROM) r ~OUl 

• RAM rMIT()ble) (.; ROM (Reed-only ) 

l.J Duel-port ~cees. 

Read DUI ing \l\trte Mode: [ 

tiloe" type' 1:::.4" 
Iv ] Inrtlslioe memory COllt ~nt 

Dnt ''<'VldtI1. 

Total memol Y SlU: 135500 r::1fu--'i ' 
~es ' '''' j 

-...I Minimize mt!lTlor y I;lock usuye (may impact fmox 

Read latency 

5 1;)"e ,,1 r, - - T .... l SlaVeS2: l -
Mem ory'ln lt lal izati on 

~ En.Jble non-default inrti;Jfi::otion !lle 

U!::er -created inrtinll::stion file 

r Enable I,,-System M<!ffiory Content Editor f.mure 

Instance ID 

.hex 

---- ..., ~ 

Figure 4.4-2 On-Chip Memory Mega Wizard 

The total memory size is 35Kbytes. This is because the actual 

software size is bigger than the default 20Kbytes. Floating point 

computation needs more memory space as welL 
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The Nios II core selection and its configuration is done next. There 

are three classes of Nios II core processor; they are economics, 

standard and full features . Standard core is picked in this project for 

the reason that it has built in hardware multiplier and divider. This 

hardware will accelerate the float ing point manipUlation. User selects 

Nios II Processor and then clicks on ADD. The Nios II processor 

Mega Wizard appears. Figure 4.4-3 displays the Nios II core page. 

Nios II Processor 

Cor€ IIIOS 11 

Select a mos II cor ,, : 

o Nios IVe '@Nios Ills 
-~-s-c~~~-------»~sc 

Nios II 32-brt 32-bt 
Selector GUIde 

Farlll1, Cyclone" 

f'S1~tetn 50.0 MH:I 

l:PUld 0 

Per formance 8150.0 MHz Up to 5 DI'ItIPS 

Logic U,age 600-700 LEs 

Memory Usage Two I.I4Ks (or eqliv) 

liordwOl e MultIply' 'EmDedded fUlpiers 
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Hardware Divide 
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Figure 4.4-3 Nios II Processor Core GUT 
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Hardware divide is not adopted here since it takes up huge FPGA 

chip resource. The division w ill be done by software. Nios II processor 

provides custom instruction in order to use its hardware multip liers for 

floating point operation. To activate this feature, user clicks on Custom 

Instructions on the Nios II core GUI. Figure 4.4-4 shows the configuration 

wizard. 

tt Nios II Processor - ' 

• i 

CicteS N Port 
fpolf'rt : .... 'N~bIe • ... il 01 

Figure 4.4-4 Floating point GUI 
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Figure 4.4-5 Serial Communication GUI 

• Addmg JTAG UART allows for convenient way to communicate with 

Nios II processor through the USB-Blaster download cable. This is 

very useful for software debugging purpose. On Interface 

protocols/Serial, user elects JT AG U ART the clicks Add. Figure 

4.4-5 indicates the setting. 

• To make the progranuning part straight forward, seven timer 

interrupts are required here for seven switching pattern changes. 

Under PeripheralfMicrocontroller Peripheral!, user clicks ADD 

then the Timer MegaWizard interface appears. Figure 4.4-6 displays 

the timer interface. 
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Interval Timer 
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Figure 4.4-7 Interval TImer MegaWizard 

Since our SVP sampling period is set at _1_ second or 
900 

1.11 rnilisecond, the interrupt timing for each switching sequence is in 

the order of microsecond. With 32 bits counter size, it is more than 

enough to cover one sampling cycle. The timer hardware option is set 

at full featured, so that the timer period can be written to, read from, 

and started/stopped by control bits. 

• General purpose VO port or PIO is used to drive LEOs for visual 

effect as to confirm the program working properly. They are 
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actually the switch drivers in SVM scheme. Eight bits are selected. 

Under PeripheralslMicrocontroUer Peripherals/PIO (Parallel 

110), user clicks on ADD and the PIO Mega Wizard appears. 

Figure 4.4-8 exhibits the PIO interface menu. 

PIO (Parallel 1/0) 
j ebo ut .Q.oc un H::n t at i o n 

WILlH . 

/\1dth ( 1-:3:2 bits) .0 

DII'" et l o n 

. I put pori. only 

eol'"' 111 J.)ut Ollel 'Output POt t s 

- O u tP .... tt por1Q o n ly 

O u tPlJ' P U rl Pf:!~~ 1 V t u~ 

Reset Vc\lu e. 10>( ..... ' 

r Can cel 1 t 11 I [ UI!:!:)(t ~ ] Llni s h 1 

Figure 4.4-8 PIO MegaWizard 

• The system 10 peripheral helps accidentally downloading other 

software for different Nios II system. Under PeripheralsfDebug 

and Perfonnance, user clicks on System ID Peripheral and then 

clicks on ADD. The 10 Peripheral Mega Wizard interface appears. 

There is no need to configure the 10 option. Figure 4.4-9 shows the 

pop up interface box. 
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System I D Peripheral 

System ID 701835872 

Time stamp: 1 26866741 8 

A unique ID is assigned eery time the sy'stem is generated. 

Qocurnentation 

- -- -- -- ----- - ----------, 

I Cancel I rEn i~ 

Figure 4.4-9 System ID Peripheral Ii1terface Box 

At this point, all the necessary hardware components are in place They 

need to be specified as to how they interact within the system. The issues can be 

the base addresses assigned to each component, and designating priorities for 

timer interrupt requests (IRQ) and the JT AG U ART. sope builder provides 

Auto-Assign Base Address and Auto-Assign IRQs commands to facilitate these 

assIgnments. Since the project's timer interrupts do not happen at the same time, 

they can be allocated in any priority sequences as long as the JT AG U ART get the 

lowest one. Figure 4.4-10 displays the interconnection of the system. 
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Figure 4.4-10 Contents of Complete System 
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The hardware can be now generated by clicking on System Generation 

tab and then clicking on Generate box. 

5 Integrate the sope builder system into Quartus II project. This step involves 
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instantiating the SOPC system module, assigning physical FPGA pins, compiling 

the project and verifying the timing, Figure 4.5-1 and Figure 4.5-2 each display 

system module and FPGA pins assignment. 
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6. Download hardware design to target FPGA. This process requires USB-Blaster 

and following the Programmer GUI procedure. 
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7. Develop software using Nios II IDE. Figure 4.7-1 depicts the logic flow ofthe 

main software. Figure 4.7-2 shows some of the subroutines and interrupt 

subroutines. 

(---.sta~rt ) 
Initialization: count-D, lastent-O. nJ'attern=o 

inc_degree = (1/60)/(11900); 
deg = (inc_degree' count) + offset; 

rad_deg = deg • (llp,e); 
Sec,num = (degl60) + 1; 

adLdeg = (rad_deg) - (sec,num 1)' (pieI3); 
Ta = sin( p,el3 - adLdeg) • Ts 

Tb = sine ad_deg) • Ts 
To = Ts - Ta - Tb 

Set switching patterns 
Write and enable 7 timer interrupts 

L..-

~ 
lYes 

Last_cnt = 0 
Count =0 

I 

--I 
I 
J 

No 

'deg = (inc_degree' cQunt) + offset; 
rad_deg = deg • (l/pie); 
sec,num = (deg/60) + 1; 

adLdeg (rad_deg) - (sec,num - 1) • 
(pieI3); 

Ta = sine piel3 - adLdeg)' Ts 
Tb = sine ad_deg) • Ts 

To Ts-Ta - Tb 

Goto: switching subroutine 
loading timer interrupts 

subroutine 

No 

Lastcnt = last count 
n_pattern = pattern number 

deg = degree 
Inc_degree = degree increment 

rad_deg = degree in radian 
sec.num = section number 
adLdeg = adjusted degree 

Ts = sampling time 

Figure 4.7-1 Software main flow chart 
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Loading 
subroutine 

Writing interrupt timers 
Timer = Ts 

Timer1= To/4 
Timer2=ToI4+Ta12 

Timer3= To/4+TaI2+Tb/2 
Timer4 =To/4+Ta/2+Tbl2+ 

To/2 
TimerS =To/4+Ta/2+Tbl2+ 

To/2+Tbl2 
TimerS =To/4+Ta/2+Tbl2+ 

ToI2+Tb/2+Ta/2 
Enable timer interrupts 

! 

( return ) 

Interrupt Timer 

~ 
Increment count 
Reset switching 

pattern 

I 

( 
., 

return ) 

Switching 
subroutine 

A set of switching 
sequence depending on 

section number. 
Section 1 '" pattern set 1 
Section 2 = pattern set 2 
Section 3 = pattern set 3 
Section 4 ;:; pattern set 4 
Section 5 '" pattern set 5 
Section 6 = pattern set 6 

i 

( 
i: 

return ) 

Interrupt Timer1 

... 
Set switching • • pattern 1 • 

( 
y 

return ) 

Set switching 
pattern 6 

., 
( return 

Figure 4.7-2 Flow charts of some subroutines 
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The detail of software implementation is described as the following. There 

are three parameters that the program needs to know in order to set the inverter 

frequency and amplitude. They are sampling frequency, modulating frequency 

and the modulation index. In this project the sampling frequency is set at 900Hz, 

the modulating frequency is at 60Hz, and the modulation index is 1. 

The sampling period is 

Sampling period = 1 = 1 = 1.11mS (4.4.7-1) 
- Sampling _frequency 900Hz 

The number of sampling time per cycle is 

Sampling _ time 900Hz =15 
60Hz 

The sampling angle increment in one circle is 

Sampling _ increment = 31~0 = 24 deg ree 

(4.4.7-2) 

(4.4.7-3) 

An interrupt timer at every sampling period is established. At each 

interrupt, a counter ranging from zero to 14 is increased by one and it will reset 

itself when the number reaches 15. The sampling angle at any given time is just 

the product of the number in the counter and the angle of the sampling increment. 

Sampling _ angle = 24 * counter's _ number (4.4.7-4) 

When the angle is became known, the switching time constant T a, T band 

To can be found but the angle has to be fIrst converted to radian degree. 

. 7r 
radzan deg ree( 8) = deg ree *-

- 180 
(4.4.7-5) 

T = sin( 7r - 8) 
a 3 

with ma = 1 (4.4.7-6) 
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Tb = sin(B) (4.4.7-7) 

(4.4.7-8) 

These time constant T a, T b and To are just the relative time as compared to 

the sampling period. In order to become real time, they have to be multiplied by a 

system clock time Ts related to the sampling time. These real times can now be 

used in setting the interrupt timers. 

Ts = sampling period * system clock = 1 * 50MHz 
- - 900Hz 

(4.4.7-9) 

Ts = 55555.55 

The angle is also used to figure out the sector number that the angle 

belongs to. The sector number decides the switching patterns. As indicated in the 

chapter II, Figure 2.5_2 of this report, each sector has its unique switching 

patterns. 

Sector number = int( sampling angle) + 1 
60 

(4.4.7-11) 

Not only does the sector number affect the switching sequence, it also has 

effect on the order of the timing sequence. The odd sector number has this timing 

T T T Tb T d T Th fh .. sequence: _0 -!!.. • _0 , -, _Q an -!!.. • e arrangement 0 t e tImmg 
4' 2' 2 2 2 2 4 

b . d'ffi . . l'k hi To Tb Ta T T order for the even sector num er IS 1 ere nt, It IS 1 e t s: -, -, -. -!!.., -!!.., 
4 2 2 2 2 

and To . All these procedures are observed closely according to the switching 
2 4 

rules laid out in the chapter II to ensure minimum switching loss. 
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Figure 4.4.7-3 Overview of Switching Pattern, Timing Sequence and Interrupt Timers 

Within one sampling period, T, there are seven interrupts are set to 

correspond to seven changes in switching sequence as shown in figure 4.4.7-3 

where sector I is taken as an example. The length of time of each interrupt is the 

sum of current time and all ofthe previous timing. The timer 1 is the only 

exception when it starts from fresh. In this example, timer interrupt T is 

responsible for [000] switching, timer interrupt Tl is responsible for [POO] and 
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so on. The interrupt timer seven is not used here since it is redundant with the 

sampling time T. The contents of each timer are listed below. 

I 
. 1 

nterrupt timer T = * T 
900Hz s 

Interrupt timer T 1 = Tr> * T 
4 s 

Interrupt timer T 2 = (To + To ) * T 
4 2 s 

Interrupt timer T 3 = (To + To + Tb) * T 
4 2 2 s 

Interrupt ttm' er T - (To + To + 7;; + To ) * T 4-
4 2 2 2 s 

I . T (To+To+Tb+TO+Tb)*T nterruptttmer 5 = 
4 2 2 2 2 s 

I . T (To Tb To Tb TO)*T nterruptttmer 6= -+ +-+-+-+-
422222 s 

(4.4.7-12) 

(4.4.7-13) 

(4.4.7-14) 

(4.4.7-15) 

(4.4.7-16) 

(4.4.7-17) 

(4.4.7-18) 

Once the interrupt timer ofthe sampling period occurs, the software 

program will select the switching patterns and the timing order then set off other 

six interrupt Hmers. The program then calculates the angle related t~g> selects 

the switching pattern and timing sequence to prepare for the next sampling period. 

The switching sequences are handled by interrupt timers. Usually, the 

number oftimers available is fixed in microprocessor systems. With FPGA, users 

are able to instantiate as many as needed as long as the resource permits. 

Hardware choices ease software writing. 
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Anned with a hardware multiplier within the processor core, there was an 

attempt to avoid floating point computation. Integer arithmetic was implemented 

in order to speed up the calculation of the sine function. 

. X 3 X S 

Szn(8) = X --+-
3! 5! 

(4.47-19) 

Only three terms were used in those trials and some scaling factors are 

employed for the integer arithmetic method. The scale factor has to be chosen 

carefully so that at the fifth power term it does not exceed the capacity of the data 

register ofthe processor. The practice does not yield much higher computing 

speed as compared to the Nios II floating-point custom instructions. It makes 

calculation complicated and software codes not easy to read. 

As it turns out, the Nios II floating-point custom instructions help writing 

the software an easy task. In this project, floating point manipulation is the major 

part. Instead of creating custom codes for sine or cosine functions, Nios II custom 

instructions have done the hard work and allow users to use simple ANSI C math 

functions. The Nios II processor performs single precision floating.:point 

arithmetic operations. The time spent on code writing is much shorter, but much 

on chip resource is also occupied. 

The debugging method here utilized the printffunction of the C codes. 

This function transmits data from FPGA chip through UART and displayed them 

on the host computer screen. Timing constants such as Ta, Tb and To' sector 

number, sampling angle and switching pattern were able to be shown on the 

computer screen at a desired interval. 
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C code: 

Printf("%d %d %d %d %u %u %uln", sec.num, deg, pattern,ToI4, Ta12, 

T,/2); 

Sampling time was fIrst changed to1.11Sec as to allow enough time for 

the data to be transferred and displayed. A complete cycle, 360 degree, of data 

were collected and compared to hand calculations. When the numbers were 

correctly matched, the sampling rate was put back to 1.11 mSec and the switching 

action was captured by an oscilloscope. The switching waveform was then 

weighed against the switching waveform ofthe Mathlab. 
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4.5 Design Result 
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Figure 4.5-1 Wave forms of software simulation and hardware output 

The design result is right on its target. The pulse width modulation output of the 

hardware is identical to that of the Mathlab simulation. Since the SVM inverter design is 

intended for high power system (-3800V), it would be impractical to build a complete 

system just to show the validity of SOPC method. Hence, the switching waveform of 

Mathlab is used as a benchmark to verify the switching outcome of SOPC design. Figure 
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4.5- 1 illustrates both result of the theory and practicality. The inverter sampling rate is set 

at 1/900 second, rotating at 60 Hz frequency and the amplitude modulation index is one. 

Figure 4.5-2 shows current, voltage, sector number, switching wavefonns of the Matlab 

simulat ion at above setting. 

Figure 4.5-2 Matlab simulation waveforms 
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4.6 Future Work: Multiple Processors System 

In this paper, all hardware resources and software effort are concentrated on 

realization of Space Vector Modulation (SVM). The processor spends most of its time 

computing power series of the two trigonometry sine functions and outputting switching 

patterns. At each sampling period, calculation ofthe timing vectors has to be carried out. 

That means no pre-calculated values or table is stored in the memory as to boost up the 

sampling speed. The highest true sampling rate obtained is close to 1000Hz with 50MHz 

system clock. Since sampling rate of the SVM is the dominant issue, there is little 

attention paid for controlling and safely running ofthe motor. The subjects such as over 

current, over voltage, over temperature protection, blanking time and user input interface 

are left out. To amend these shorting comings, a multiprocessor system within a SOPC is 

suggested. Basically, it is a system which incorporates two or more microprocessors 

working together to perform one or more related tasks. 

Altera SOPC builder package allows users to add as many processors to a system 

as desired effortlessly. The arranging and connecting of hardware components are no 

longer an issue in building mUltiprocessor system. The challenge now lies in writing the 

software for the processors so that they do not conflict with one another. To prevent 

multiple processors from interfering with each other, hardware peripherals to coordinate 

effective operating of the processors are included in the Embedded Design Suite. The 

hardware allows different processors to claim ownership of a share resource for a period 

oftime and to coordinate data exchange in a single resource such as memory. They are 

named hardware mutex core and hardware mailbox core accordingly. 

A preliminary design for the open loop motor control system is shown below in 

figure 4.6-1. The first processor takes care of SVMand switching functions. The second 

processor looks after the safety operating of the machine and interfaces with users for 

input speed; this information is passed through the shared memory to the processor 1 

which will decides either to stop, run or change speed of the motor. There is an added 

feature for this configuration. When the first processor detects no change in motor speed, 
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higher sampling rate can be obtained by pre-calculating all the timing vectors in one 

cycle and their values are stored in the memory. The next time around, the processor 1 

just reads from memory and generates switching sequences without going through the 

long computing process. Higher sampling rate yields cleaner waveform and reduces 

THD. 

~----~~~I Memo~ 

P 1 rocessor 
J SVM & Switching I 

Interrupt Timer 0 
I 

i 
Patterns I ! 

i • • • 
i I 

I 
Interrupt Timer 6 I 

\ Output to Switches I 

! J Shared Memo~ 
i I 

Processor 2 I 
Speed Input & Safety i I 

Memo~ I I Features 

I 
Sensors 

. I I 

~ UART (Speed Input) I 

Figure 4.6-1 Multiple Processors in Open Loop Control System 

A closed loop servo motor control like the FOC can also be carried out in the same 

fashion. The field oriented control unit can be comprised of more than one processors 
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operating together. Each processor acts as a functional unit, thereby, data are processed 

concurrently. The perfonnance of the overall system is faster as a result. 

The Altera Nios II development software is capable of debugging simultaneously 

a multiple processors design. Debug for all processors can run at the same time and is 

able to pause and restart each processor independently. Break points can be placed 

individually anywhere in a processor. Once a breakpoint is hit, it does not halt the debug 

procedures of other processors. This debugging capability facilitates the development of a 

multiple processors system 
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Chapter 5 

Conclusion 

Space Vector Modulation is a superior method in converting DC voltage to AC 

voltage. It is a known fact that SVM has a lower THD, less switching loss, and more 

efficient usage of DC power supply as comparing to all other modulation schemes. The 

major disadvantage of this method is that it requires intensive computation. For this 

reason, DSP and high end microprocessor are often chosen to implement SVM. They are 

expensive because of complicated computer architecture is employed and hence huge 

resources are used to fabricate these chips. There is lack of flexibility in DSP or 

microprocessor technique. Once a DSP chip is elected, there is no easy turning back to 

make the hardware change without replacing with other DSPs. This may result in longer 

development period or an under utilization design. The recent emerging FPGA 

technology has given rise to a new approach to carry out SVM. It is called embedded 

system design or System On Programmable Chip SOPC. The system is consisted ofa fast 

RISC microprocessor in a FPGA chip. Since FPGA can be configured into any logics or 

functions, coupling this with a processor makes it a robust combination. The processor is 

acting like a tasks distributor that it out sources the works to the hardware peripherals 

formed by FPGA. The work done by hardware is always faster than the software for 
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hardware works concurrently and software works sequentially. That also frees up the 

processor to operate on other task and the system becomes truly multitasking. Software 

coding gets easier as well as in the case of floating-point arithmetic. The hardware added 

is not limited only to peripherals; a multiple processors can be put together as well. This 

feature makes the hardware peripherals more intelligent. The over all system performance 

is increased as a consequence. Unlike DSP or microprocessor structure which has fixed 

peripherals, the hardware in the embedded system is reconfIgurable. Designers can easily 

reiterate the hardware by adding or deleting functions in order to meet performance or 

price goal. 

The tools for this project are Altera DE2 development board and Altera Quatus II 

design suite. It is a successful implementation ofSVM in SOPC. The output switching 

waveform is the same as the Mathlab simulation. There is two-fold in the purpose of the 

Mathlab exercise. One is to observe how the theory works. The other is served as a 

benchmark to verifY the practical outcome. It is a long journey to go from proving the 

theory of the Space Vector Modulation to practically working hardware design. In reality, 

it is the same procedure that any serious engineering design has to go through. This 

practice not only detects any design flaws at early stage. It also helps foreseeing problems 

may emerge later on: An idea is stemmed from the same reasons; SOPC can be served as 

hardware simulation for the design. 
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Appendix A 

Mathlab Simulink Block Diagrams 
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Appendix B 

Software Codes in C Programming Language 

iinclude "count_binary.h" 
iinclude "sys/alt_irq.h" 
iinclude "system.h" 
'include "unistd.h" 
'include "math.h" 
'include "float.h" 
'include "altera_avalon_timer_regs.h" 

Iitypedef unsigned int REGISTER: 
Iitypedef unsigned int BITS; 
II union TIMER STATUS REG { 
II REGISTER data; -
II struct { 
II BITS TO 1; 
II BITS RUN I: 
II BITS unused 30; 
I I bits: 
I/}: 

Ilunion TIMER_CONTROL_REG { 
II REGISTER data: 
II struct { 
II BITS ITO :1; 
II BITS CONT :1; 
II BITS START :1: 
II BITS STOP :1: 
II BITS unused :28: 
II bits; 
I/}; 

Iistruct TIMER REGS { 
II union TIMER_STATUS_REG status; 
II union TIMER_CONTROL_REG control; 
II REGISTER periodl; 
II REGISTER periodh: 
II REGISTER snapl: 
II REGISTER snaph; 
In; 
Iistruct TIMER_REGS *TIMER = (struct TIMER REGS *) (TIMER_BASE 
IOx00021020); 

static char lastcnt; 
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1* A "loop counter" variable. *1 

static alt u8 count: 
float rad ~ 0.0174532f: 
float pi = 3.141592f; 
float Ts 55555.55f: 11416666666.66f: 
float pi_by_3 = 1.04719f; 
float rad deg: 
float adf~deg; 
float adj_angl: 

unsigned long int Ta: 
unsigned long int Tb: 
unsigned long int To; 
unsigned long int adj To 1: 
unsigned long int adj-To-2: 
unsigned long int adj-Ta; 
unsigned long int adj=Tb; 
unsigned short int c_deg; 
char pattern 0; 
char pattern=1_5; 
char pattern_2_4; 
char pattern_3; 
char pattern: 
char nyattern: 
char section: 
char flag; 
Ilchar red flag; 
static char int cnt: 
char cnt; -
unsigned short int deg; 

struct b_type { 
unsigned last:l: 
int: 7; 

} ; 

union sec { 
char num: 
struct b_type bits: 

sec: 

union duration_type { 
unsigned short int d[2]; 
unsigned long int 1 durtn: 

duration: -

void handle_timer_interrupts () ( 
count++: 

1155555.5555:11555555555.5: 

IOWR ALTERA AVALON TIMER STATUS (TIMER BASE, 0): 
1111 IOWR_ALTERA_AVALON_TIMER_CONTROL(TlMER_BASE, 8): 
} 

void handle timerl interrupts () { 
IOWR_ALTERA_AVALON_TIMER_STATUS(TIMER_1_BASEI 0): 
IOWR ALTERA AVALON TIMER CONTROL(TIMER 1 BASE, 8): 
IOWR=ALTERA=AVALON=PIO_DATA(LED_PIO_BASE~ pattern_1_5); 
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void handle_timer2_interrupts () { 
IOWR_ALTERA_AVALON TIMER STATUS (TIMER 2 BASE, 0); 
IOWR ALTERA AVALON-TIMER-CONTROL(TIMER 2 BASE, 8): 
IOWR=ALTERA=AVALON=PIO_DATA(LED_PIO_BASE; pattern_2_4); 

n_pattern pattern_2_4; 

void handle_timer3_interrupts () { 
IOWR ALTERA AVALON TIMER STATUS (TIMER 3 BASE, 0); 
IOWR-ALTERA-AVALON-TIMER-CONTROL(TIMER 3 BASE, 8); 
IOWR-ALTERA-AVALON-PIO DATA(LED PIO BASE; pattern 3); 
n_pattern =-pattern_3:- - - -

void handle timer4 interrupts () { 
IOWR ALTERA AVALON TIMER STATUS(TIMER 4 BASE, 0): 
IOWR-ALTERA-AVALON-TIMER-CONTROL(TIMER 4 BASE, 8); 
IOWR-ALTERA-AVALON-PIO DATA(LED PIO BASE; pattern 2 4): 
n_pattern =-pattern_2_4; - - - -

void handle timerS interrupts () { 
IOWR ALTERA AVALON TIMER STATUS(TlMER 5 BASE, 0): 
IOWR-ALTERA-AVALON-TIMER-CONTROL(TIMER 5 BASE, 8): 
IOWR-ALTERA-AVALON-PIO DATA(LED PIO BASE; pattern 1 5): 
n-pattern -pattern 1 5; - - - -

void handle timer6 interrupts () { 
IOWR ALTERA AVALON TIMER STATUS(TlMER 6 BASE, 0); 
IOWR-ALTERA-AVALON-TlMER-CONTROL(TlMER 6 BASE, 8): 
IOWR-ALTERA-AVALON-PIO DATA(LED PIO BASE; pattern_Oj: 
n-pattern =-pattern_O:- --

static void initial_message() 
( 

printf("\n\n**************************\n"); 
printf("* Hello from Nios II! *\n"); 
printf("* Counting from 00 to ff *\n"): 
printf("**************************\n"); 

static void switching{) 
{ 

switch (section) 
{ 



case OxI: 
pattern_O == 
pattern 1 5 
pattern 2 4 
pattern-3-

break: -

case Ox2: 
pattern_O 
pattern 1 5 
pattern-2-4 
pattern-3-

break; -

case Ox3: 
pattern 0 ... 
pattern-IS 
pattern=2=4 
pattern 3 

break: -

case Ox4: 

OxO: 
== Ox4: 
= Ox6: 
Ox7; 

Oxo; 
Ox2: 
Ox6; 

Ox7: 

OxO; 
= Ox2: 

Ox3: 
Ox7: 

pattern_O == OxO: 
pattern 1 5 
pattern-2-4 
pattern-3-

break: -

case Ox5: 
pattern_O == 
pattern 1 5 
pattern-2-4 
pattern-3-

break; -

case Ox6: 
pattern 0 = 
pattern=1_5 
pattern 2 4 
pattern-3-

break: -

static void load_I() 
{ 

=- OxI: 
=- Ox3; 
Ox7; 

OxO; 
== OxI: 

Ox5; 
Ox?; 

OxO; 
= Ox4: 
== Ox5: 
Ox7: 

IOWR_ALTERA AVALON_TIMER_PERIODL(TIMER_I_BASE, duration.d[O]): 
IOWR_ALTERA_AVALON_TIMER_PERIODH(TIMER_I_BASE, duration.d[ll): 

static void load_2() 
{ 

IOWR ALTERA AVALON TIMER PERIODL(TIMER 2 BASE, duration.d[O]); 
IOWR=ALTERA=AVALON=TIMER=PERIODH(TIMER=2=BASE, duration.d[ll): 
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static void load_3() 
{ 

IOWR_ALTERA_AVALON_TIMER_PERIODL(TIMER 3 BASE, duration.d[Ol); 
IOWR_ALTERA_AVALON_TIMER_PERIODH(TIMER=3=BASE, duration.d[ll); 

static void load_4() 
{ 

IOWR ALTERA AVALON TIMER PERIODL(TIMER 4 BASE, duration.d[O]); 
I OWR=ALTERA=AVALON=T IMER=PERIODH (TIMER=4=BASE, duration.d[l]); 

static void load_5() 
{ 

IOWR ALTERA AVALON TIMER PERIODL(TIMER 5 BASE, duration.d[O]); 
IOWR=ALTERA=AVALON_TIMER=PERIODH(TIMER=5=BASE, duration.d[ll); 

static void load_6() 
{ 

IOWR_ALTERA_AVALON_TIMER_PERIODL(TIMER_6_BASE, duration.d[O]): 
IOWR_ALTERA_AVALON_TIMER_PERIODH(TIMER_6_BASE, duration.d[ll): 

Iistatic void 
II{ 
II 
II 
II} 

IOWR ALTERA AVALON_TIMER_PERIODL(TlMER_BASE, duration.d[O]); 
IOWR_ALTERA_AVALON_TIMER_PERIODH(TlMER_BASE, duration.d[ll); 

static void fire() 
{ 

IOWR_ALTERA_AVALON_TIMER_CONTROL(TIMER_I_BASE, 5); 

I OWR_ALTERA_AVALON_T IMER_CONTROL (TIMER_2_BASE, 5): 

IOWR ALTERA_AVALON_TIMER_CONTROL(TIMER_3_BASE, 5); 

I OWR_ALTERA_AVALON_T IMER_CONTROL (TIMER_4_BASE, 5); 

I OWR_ALTERA_AVALON_T IMER_CONTROL (TIMER_5_BASE, 5); 

IOWR ALTERA AVALON TIMER CONTROL(TIMER 6 BASE, 5): - - - - --

static void loading() 
{ 

duration.l durtn 0; 
II Segment-l II 
duration.l_durtn adj_To_l; 
load_l (); 

if (flag ! = 0) II It is odd section II 
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else 
( 

fire () ; 

int main(void) 
{ 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II FILE * led; 

Segment 2 II 
duration.l_durtn 
load_2(); 
Segment 3 II 
duration.l durtn 
load_3(); 
Segment 4 II 
duration.l durtn 
load_40 ; 
Segment 5 II 
duration.l durtn 
load_5 () i 

Segment 6 II 
duration.l durtn 
load_60; 

Segment 2 II 
duration.l durtn 
load 2 (); 
Segment 3 II 
duration.l durtn 
load_3 () i 

Segment 4 II 
duration.l durtn 
load 4 () i 
Segment 5 II 
duration.l durtn 
load_50; 
Segment 6 II 
duration.l durtn 
load_6 (); 

Ilunsigned long int sine_fcn(); 
count = 0; 
lastcnt = 1; 
sec.num = 0; 
deg = 0; 
int cnt 1; 
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duration.l durtn + adj_Ta; 

duration.l durtn + adj_Tb; 

duration. 1 durtn + adj_To_2; 

duration.l durtn + adj_Tb; 

duration.l durtn + adj_Ta; 

II It is even section II 

duration.l durtn + adj_Tb; 

duration.l durtn + adj_Tai 

duration.l durtn + adj_To_2; 

dura tion.1 durtn + adj_Ta; 

duration.l durtn + adJ, .. Tb; 



II int cnt 0; 

1* Initial message to output. *1 

initial_message(); 
IOWR_ALTERA_AVALON_PIO_DATA(LED_PIO_BASE, OxOc); 

alt_ir~register(TIMER_IRQ, NULL, (void*)handle_timer_interrupts); 

Iiduration.l durtn= Ox2faf080; 
duration.l_durtn= (unsigned long int)Ts; 

IOWR_ALTERA_AVALON_TIMER_PERIODL(TIMER_BASE, duration.d[O]); 
IOWR_ALTERA_AVALON_TIMER_PERIODH(TIMER_BASE, duration.d[1]); 

IOWR_ALTERA_AVALON_TIMER_CONTROL(TIMER_BASE, 7); 
alt_irq_register(TIMER_IRQ, NULL, (void*)handle_timer_interrupts); 

1* initialization *1 

alt irq register(TIMER 1 IRQ, NULL, (void*)handle_timer1_interrupts); 
alt-irq-register(TIMER-2-IRQ, NULL, (void*)handle timer2 interrupts); 
alt-irq-register(TIMER-3-IRQ, NULL, (void*)handle-timer3-interrupts); 
alt=irq:register(TIMER=4=IRQ, NULL, (void*)handle-timer4-interrupts); 
alt_irq_register(TIMER_S_IRQ, NULL, (void*)handle-timerS-interrupts); 
alt_irq_register(TIMER_6_IRQ, NULL, (void*)handle=timer6=interrupts); 

II IOWR_ALTERA_AVALON_PIO_DATA(LED_PIO_BASE, pattern_Oj; 
n_pattern = 0; 
cnt = 0; 
Ilred flag = 0; 
deg =-(24 *count) + 4; 
rad_deg = deg * rad; 

sec.num (deg/60) + 1; 

adj deg rad_deg - (sec.num -1)*pi_by_3; 
adj=angl = pi_by_3 - adj_deg; 

Ta (unsigned long int) (sin(adj angl)*Ts); 
Tb (unsigned long int) (sin(adj=deg)*Ts); 
To (unsigned long int)Ts - Ta - Tb ; 

adj_To_2 
adj_To_1 
adj_Ta 
adj_Tb = 

= To » 1; 
= To » 2; 
Ta » 1; 
Tb » 1; 

section = sec.num; 
flag = (char) (sec.bits.last): 
switching(); 
loading(); 
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printf("%d %d %d %d %u %u %u\n",sec.num,flag, 
deg,pattern,adj_To_2, adj_Ta, adj_Tb); 

II IOWR ALTERA AVALON PIO DATA(LED PIO BASE, pattern_Oj; 
n_pattern 0; - - --

IITIMER -> periodl = dur ° 6.d[0]; 
IITIMER -> periodh : dur=0=6.d[1]: 
IITIMER -> status.bits.TO = 0: 
IITIMER -> control.bits.ITO 1; 
IITIMER->control.bits.START = 1; 

1* Continue O-ff counting loop. *1 

while ( 1 ) 
{ 

if (lastcnt != count) 
{ 

lastcnt count; 
if (count >= 15) 
{ 

count = 0; 
lastcnt =0; 

I OWR_ALTERA_AVALON_P I O_DATA (LED_PIO_BASE, pattern 0); 
nyattern = 0: 

switching(): 
loading(); 

deg (24 *count) + 4; 
rad_deg (float)deg * rad: 

sec.num (deg/60) + 1: 

adj_deg rad_deg -(float) (sec.num -1)*pi_by_3; 
adj_angl = pi_by_3 - adj_deg; 

Ta 
Tb 
To 

(unsigned long int) (sin(adj_angl)*Ts): 
(unsigned long int) (sin (adj deg)*Ts); 
(unsigned long int)Ts - Ta = Tb ; 

adj To 2 
adj=To=l 
adj Ta 
adj=Tb 

To » 1: 
To » 2; 

Ta » 1; 
Tb » 1; 

c deg = deg: 
section = sec.num; 
flag = (char) (sec.bits.last); 

Iiswitching(); 
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//loading(); 

/I count_all( lcd ); 

//printf("%d %d %d %d %u %u %u\n",sec.num,flag, deg,pattern, 
adj_To_2, adj_Ta, adj_Tb); 

return 0; 
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