Implementation of Space Vector Pulse Width

Modulation on System on Programmable Chip

Vincent Luong

A project presented to Ryerson University in a requirement for the degree of

Master of Engineering in the Electrical and Computer Engineering program

Toronto, Ontario, Canada, 2010

I PROPERTY OF ‘
RYERSON UNVERSITY LIBRARY

Declaration

I hereby declare that I am the sole author of this thesis report.

I authorize Ryerson University to make copies of this thesis by any means, in

whole or in part, for the purpose of scholarly research.

Signature:

I

Acknowledgements

I would like to express my sincere gratitude to my supervisor Professor Richard
Cheung for his guidance. His tremendous patient and constant encouragement has helped
me accomplishing what I thought to be beyond my ability.

I am grateful to my wife and sons for their love and support. Because of my study,
many weekend activities were cancelled.

I give thanks to my Lord Jesus for everything I have. To Him all glory belongs!

I

Abstract

For years, DSP has been the dominant tool in implementing gate switching for
power inverter. It is a powerful and reliable technology in carrying out complex
switching schemes. DSP is still expensive due to its intensive use of resource in chip
fabrication. There is no flexibility in making change on hardware once a DSP chip is
selected. It is also time consuming in a design development because the learning curve of
the DSP is stiff. Recently, a new approach to the problem has emerged. It is called
embedded system design. Basically, it is a FPGA system combined with a RISC type
microprocessor. This is a robust combination that allows users to pick and choose any
functional peripheral devices only as needed. Once the complete hardware platform is
decided upon, the circuit is configured and down loaded to a chip. Software codes are
then written to run the application. The hardware system is reconﬁgurqble. Designers can
always go back to change the hardware with ease in order to improve the performance
and to meet the target cost.

This is an attempt to utilize the embedded system design also called System on
Programmable Chip (SOPC) to perform Space Vector Modulation (SVM) gate switching

strategy. The Altera Nios II IDE tool is selected for this task.

v

Table of Content

Chapter I Introductionc.ceevviiiiinveriniirncceissesoinrsnenrtasassesssossscessssosnseal

o
LT ODJECHIVE et e e e et r e e TR |
1.2 Background................. e errrieieeaaanaaes et rerteraeeeiereireeataraaiaaas el
1.3 Methodologies S PP P PO
1.4 Proposal.......... e ererieaens rereeeen e tetreaereereanenaaaa. SPPRRN «!

Chapter I Principal of Space Vector Modulationcccccvuinvienrncncicncninnennn8

2.1 Switching State...... e ettt e e teeateeaeienaarerae e eearenanans 9
2.2 Space Vector............... N et et ateataaaeea e aaaaann .10
2.3 Dwell Time Calculation............c....eveeene. PR PPRN 13
2.4 Modulation Index.............. P e, e ceenean 15
2.5 Switching Sequencecoevviiviiiiriineninnn.. O UPRPPPRIOON I «

Chapter III SVPWM Matlab Simulaﬁon‘....’)'i.‘.‘OQ..‘O.l...‘..l..i..“..‘.“'..l"‘..‘zo

3.1 Specification Ceeveraenaas Ceerreesirietieasriens veeen20
3.2 Simulati h 21
. mmulating SCheme ... e

3.3 RESUI . it e e F N4 |
K- I 0175 o 721 10) 1 BT

Chapter IV SVPWM Realization by SOPCcccviiiviiiiiiiiiiiriniiiiiiinciseceeenn 28

4.1 Target Board P, et r e 28
4.2 Embedded Processor PP OTR.A*
4.3 System Development Flow PR PPPPPPUUPPPPPNC ||
4.3.1 Hardware Development Tasks.............c.cooiiiii, 32
4.3.2 Software Development Tasks........... eeene e, ceeene34
4.3.3 Refining Hardware and Softwareooeviiiiinnn 35
4.4 Creating The Design ...c.oeevniiiiiiiiiiiiiiiiiir it 35
4.5 Design Resultooiiiiiiiiiiiiiiiiciii e 52
4.6 Future Work: Multiple Processors System..........ccooeiiiiiiiniicinninncnee. 54

Chapterv Conclusion.‘li..l.l“..'!.0.‘00.“‘.l..QDO‘IIOII'lC(Qi!b..Il.i’....l.'.QIII'..QC.!IOS?
Appendix A Matlab Simulink Block Diagramccccoviveieinininnniiiiaienennnnn 59

Appendix B Software Codes in C Programming Language.......c.ccceeveivinicnennn 62

R O CIICES. 1 eeetesrsrssacassassssrasussssesscracnssssasssnssscecsnnnsossarsaansssassconssssesvoasansdl

Lists of Figures

Figure 2-1 Simplified Schematic of an Inverter...........ccoevviieiiiiniinininvinennen, 8
Figure 2.1-1 Switching State Definitionc.ooiiiiiiiiiiiniiiinieecre 9
Figure 2.1-2 All Switching State Combinationccviiveiiiiineiieniriininneens 10
Figure 2.2-1 Space Vector Diagram.........ccovviiiiiiniiiiiiiiiiiirineieeieaere e eaenas 11
Figure 2.3-1 Dwell Time and Voltage Vectorsccccvvvnieiirvinerieinrsennnns e 14
Figure 2.5-1 Switching Sequence in Sector Ic.oviviiiiiiiiiiiiiiiiiniiiieanns 17
Figure 2.5-2 Switching Sequence in All Six Sectorsccovviiiviiiiiiriniiivnnnnnne 18
Figure 3.2-1 Simulation Logic FIOWoiiiiiiiiiiiiiiiieie e e 20
Figure 3.3-1 Simulation output at f=60Hz, f,,w=900Hz, m,=0.7ccceevrrirens 21
Figure 3.3-2 Simulation output at £=60Hz, f;,=900Hz, my=0.5 22
Figure 3.3-3 Simulation output at f=60Hz, f,,=900Hz, my=0.2ccccceveans 23
Figure 3.3-4 Simulation output at f=30Hz, f,,=900Hz, my=0.9c0verrneen. 24
Figure 3.3-5 Simulation output at £=10Hz, f=900Hz, my=0.9ceeviienn... 25
Figure 3.3-1 Table of Simulation output and Its Load Current THD.................. 26
Figure 4.1-1 Target Boardcooiiiiiiiiiiiiii e 28
Figure 4.3-1 Embedded System Design Flowcccoovviiiiiiiiiiiniiiiiiiiiin 30
Figure 4.3.1-1 Preliminary Design Blockoooiiiiiiiinniinnin 32
Figure 4.3.2-1 Software Algorithm ...t 33
Figure 4.4-1 SOPC Builder GUIcciiiiiiiiiiiiii e 35
Figure 4.4-2 On-chip Memory MegaWizardcccooivviiiiiiiniiiiieiiiiiniennns 36
Figure 4.4-3 NIOS IT Processor Core GUIooiiiiiiiiiiiiiiiiiiiiiiiiiieieenenes 37
Figure 4.4-4 Floating Point GUIcoiiiiiiiiiiii e eviren e e 38
Figure 4.4-5 Serial Communication GUILoooiiiiiiiiiiiiiiniiiie e 38
Figure 4.4-7 Interval Timer MegaWizardcooviiiiiiniiiiiiniiieiennenenn. 39
Figure 4.4-8 PIO MegaWizardooociiiiviiiiiiiii e 40
Figure 4.4-9 System ID Peripheral Interface Boxc...cooiiiiniiiiinnae. 41
Figure 4.4-10 Content of Complete Systemcoovviiiiiiiiiiiiiiiiiiiiiiciienienen 42
Figure 4.4.5-1 SystemModulecooiviiiiiiniiiiiiiii e 43
Figure 4.4.5-2 FPGA Pin Assignment MegaWizardcooiiiininnnnn 43
Figure 4.4.7-1 Software Main Flow Chart ... 44
Figure 4.4.7-2 Flow Chart of Some Subroutinescociviiiiiiiiininnn. 45
Figure 4.4.7-3 Overview of Switching Pattern, Timing Sequence and Interrupt
THINIEES . c1 v eveecreresrreseasassersenen s s e e ssesbeees e seere et e b st s b e saessh e e aebbesbenasaesas s e saresasannesstans 48
Figure 4.5-1 Waveforms of Software Simulation and Hardware Output52
Figure 4.5-2 Matlab Simulation Waveformsccocovvviiiiiiiiiiiiinnn 53
Figure 4.6-1 Multiple Processors in Open Loop Control System 55

VII

VIII

Chapter I

Introduction

1.1 Objective

The focus of this report is on the implementation of space vector modulation for
induction load or motor using System on Programmable Chip (SOPC) method. The
advantages of the induction motor over the DC motor will mentioned, two main pulse
width modulation schemes will be discussed, different ways to apply the scheme will be

examined before heading to the proposal.

1.2 Back Ground

The first induction motor was invented by Nicola Tesla in 1888. To this day, it
still remains the most rugged, reliable, less expensive to build and the least maintenance
_ required machine. In comparison with a DC motor, the DC one relies on built in
permanent magnets for flux generation in order for the machine to run. The induction
motor produces its ﬂﬁx through the supply voltages. Hence, the induction machine is
lighter in term of weigh and output power ratio. In addition, the rotor of the DC machine
brings about a turning force as the current carrying conductor is placed inside the
magnetic field. This conductor is connected to the power source through some kind
brushing mechanism. Over times, this connector gets corroded due to wear and tear that
affects the performance of the motor. Therefore, periodic maintenance must be carried

out to ensure its efficiency [1]. For induction motor, the supply voltages in the stator give

off a rotating field. This moving field induces voltage in the rotor. In the case of squirrel
cage induction motor where the rotor windings are short circuited, the flowing current
creates a rotor flux. Consequently, the rotor flux reacts with the stator flux to yield torque
to the rotor. The whole process requires no external connection to the rotor. Therefore,
the motor is rugged and needs no maintenance [2].

The advantages of the induction motor out weigh that of the DC motor. It was,
however, not commonly used in the early days because the motor has a fixed speed which
depends on the frequency of the voltage source. Recent advancement in power electronic
has given the induction motor a face lift in its applications which can be found in
robotics, machine tools and hybrid vehicles [3].

The general scheme for controlling the speed of the induction motor involves an
AC to DC rectifying process and a DC to AC transformation procedure. A typical unit
takes AC power source, rectifies it into a steady DC voltage, and then converts it back to
a desired frequency AC waveform. This DC to AC sub unit is called an inverter, which is
how the motor control inverter has its name. There are two main methodologies to
convert DC to AC for induction motors. One method is called Sine Pulse Width
Modulation (SPWM) or Voltage Frequency (VF) control. The other is Space Vector
Modulation (SVM).

The principal of the sinusoidal PWM scheme is that a control sine wave at the
desired frequency is compared with the triangular wave at constant amplitude. The
frequency of the triangular wave set the inverter switching frequency [4]. Traditionally,
VF control was popular mainly due to its uncomplicated implementation and the least on

chip computation requirement. This algorithm has some major drawbacks. First of all, it

is not able to fully utilize the supply DC voltage. Less than 90% of DC supply voltage is
used. Secondly, it has substantial high Total Harmonic Distqrtion (THD) which results in
heat generated in switching devices and larger heat sink is needed. The THD is
worsening when the frequency modulation index defined by the ratio of carrier and
modulating frequency is not an integer. It brings about a so called non characteristic
harmonics whose frequency is not a multiplication of the fundamental frequency. This
poses a challenge in designing a proper filter to eliminate the unwanted frequency [5].
This method also imply an inefficient way to use the memory since three 120 degree
phase shifted sine tables have to be stored in the chip memory in order to generate the
necessary sine waves [6].

The SVM algorithm is based on the fact that for a balanced three phase system,
the sum of vectors representing 3-phase line to neutral AC power supply sine waves is
zero. Hence, these vectors can be expressed as a single space reference vector in a and
plane [7]. By controlling the amplitude and the rotating speed of this vector, the motor’s

torque and speed can be regulated. The SVM is an advanced and computation intensive
technique which gives 15% more voltage output compared to the SPWM method [8]. It
generates less THD. Now a day, this technique is widely adopted in motor speed
regulation.

The main challenge of the SVM approach lays in the calculation of the angle
between two vectors. The trigonometric function such as sine and cosine to define angle
can be solved conventionally by interpolating from a detailed table of the known values.
The end result may lack of the resolution needed for some applications. Modern day

computers resolve that problem mainly by Taylor series with very high precision. That

requires large amount of hardware resources and long computing time on the computers
part [9]. How fast the angles are worked out determines how well the performance of

SVM. In fact, estimating the angles becomes the bottle neck of the entire process.

1.3 Methodologies

Over the years, with the progress of microelectronics and its cost reduction have
made the SVM feasible in real time. There are many ways to carry out the scheme of
which in general can be categorized into two three main streams: software, hardware and
the combination of both. With many choices available, today designers have to juggle
between the performance, cost effective and the ease of implementation in adopting the
best method for their application.

Until recently, software stream has been realized by high speed microprocessor
such as RISC machines and DSP. This approach is very flexible and able to accomplish
complex algorithms, but the disadvantages are long development time, poor portability of
programming codes and more CPU resources. DSP still is comparatively expensive.

RISC stands for Reduced Instruction Set Computer. The idea behind the creation
of RISC processor is based on the observation that only a small percentage of a
processor’s basic instructions are used in majority of cases. Therefore, it is better to build
processors where those instructions are handled efficiently on simplified and faster
hardware [10]. The instructions of RISC engine are simple and fixed in size so that the
implementation for this faster hardware called pipelined machines can be made easy. The
concept the pipeline is borrowed from assembly line in manufacturing process. Instead of

putting all the time and resource into processing one computer code, the entire operation

can be divided into smaller different stages where codes are managed continuously. The
end result is that, after the initial delay, commands are completed in every cycle.

DSP are designed for extensive enumeration purposes. It is also a RISC machine
with Harvard architecture. This architecture utilizes segregated, independent program and
data memories with different buses so that the two memories can be accessed at the same
time. It allows an instruction and an operand to be fetched from memory in one clock
cycle [11]. In order to make quick calculation, all DSP processors equip with at least one
fast hardware multiplier. This fast multiplier is able to bear result in a single clock cycle.
Some advance DSP employ parallel execution technique called parallelism where second
or more multipliers are needed. Floating point data formats are generally used in DSP
algorithms and hence complex hardware are developed for this format. Since much
hardware circuits are used in its construction, DSP remains the most expensive
computation machine. Also, dedicated hardware requires specialized instruction set,
programmers can only optimize codes in assembly level instead of high level languages
as C and C++. This may prolong system development time [12].

Recent arising of the field programmable gate array or FPGA technology, has
given designers a new arsenal in tackling comprehensive enumerating challenge. This is
the hardware approach for SVPWM. FPGA is an array of many logic blocks that are
linked by horizontal and vertical wiring channels. A logic block consists of many logic
elements which embodies look up tables (LUT), a programmable flip-flop with a
synchronous enable, a carry chain, and a cascade chain. The FPGA chip is configured by
a specific programming code called hardware description language (HDL). A HDL

programmer can “write” a hardware and down load it onto a FPGA chip which performs

as a complex combinational function or even like an application specific integrated
circuit (ASIC). The hardware is reconfigurable and therefore complicated circuits can be
realized and tested in very short time. In addition, instead of executing instructions
sequentially as in software approach, FPGA is able to carry out different tasks
simultaneously [13]. There is no need for external wiring; the system is reliable. Asa
result, sine and cosine function modules, PWM output waveform module [14] and even
an entire SVPWM core [15] are developed. This has greatly enhanced the SVPWM
performance where the sampling rate can reach as high as 40 KHz [16]. There are a few
disadvantages; a new programmable language is to be learned; proficiency in finite state
machine (FSM) design and handshaking protocol is a must in order to have all these

hardware modules working together in correct timely manner.

1.4 Proposal

The quest for faster sampling time is propelled by Field Oriented Control (FOC)
in servo motors. This is because in the heart of FOC, sit the SVPWM. To achieve
(iynamic performance, FOC demands high sampling rate. However, not all SVPWM
applications have to be'high speed. In the case of high power medium voltage (MV)
drive, the switching frequency of the inverter is usually below 1 KHz [17]. The reason is
that the switching devices can’t handle over that frequency range. This gives rise to the
proposal of this report as high sampling rate is not required. A hardware and software
combined method called embedded system design is introduced.

An embedded system is a digital system with at least one processor that

implements a hardware function which is part of an over all system. The Embedded

processors are typically RISC machines which are used the same way as
microcontrollers. The main difference is that embedded system allows more flexibility
and design customization due to its reconfigurable capability [18]. Designers are able to
choose the hardware functions and merge together with microprocessors then down load
the system into a FPGA chip. Assembler or high level language such as C and C++ is
written to program the processor. The entire process necessitates a software tool called
System on a Programmable chip or SOPC. This tool provides graphic user interface
(GUI) for system components selection and generates interconnect logic automatically.
SOPC outputs HDL files that define all modules of the system and HDL design file that
connects all modules together for the purpose of FPGA configuration. Besides that, it
offers features to write software codes and to do simulation for the prototype.

The SOPC used to realize SVPWM in this report belongs to Altera’s Quatus
software package. The sampling rate of this SVPWM method depends on how
sophisticate the hardware components are selected or created. A process will be shown
later that this method is easy to implement.
| This paper is organized as the following. The next chapter demonstrates the
principle of vector modulation technique. Chapter III simulates SVPWM using Mathlab
and its results are served as benchmark in comparing with the real implementing results.

Chapter IV executes SVPWM by SOPC mean. Chapter V concludes the report.

Chapter I1

Principle of Space Vector Pulse Width Modulation

The theory presented here is base on the text book; High power converter and AC
drive by Professor Bin Wu [19].

Voltage source inverter (VSI) is the unit that converts a DC voltage to a three-
phase AC voltage with varying amplitude and frequency. The inverter is made up of six
group of active switches, S;~ S¢. Each switch has a free-wheeling diode coupled in
parallel. A simplified schematic for a voltage source converter for a typical high power
medium voltage is shown in Fig.2-1. Base on the DC operating voltage of the inverter,

each switching group may composes two or more IGBT or GCT connected in series.

P
]

Sy ZED1 sy /NDs ss /N\Ds

Sa ZSD4 S ZSDB s. /o

Figure 2-1 Simplified schematic of an inverter

2.1 Switching state

Before introducing the SVPWM theory, some of the terminologies are
familiarized in order to have a better understanding. The operating status of the switches
in each inverter branch is represented by switching states. P is denoted as upper switch
being turned on and its inverter terminal carrying positive voltage (Vd). O stands for the
lower switch being turned off and its inverter terminal having zero voltage. Figure 2.1-1

provides the definition of the switching state.

Switching LEG A LEGB LEGC
State Si Ss VAN S3 Ss V¥ Ss S, VN
P ON OFF V4 ON OFF V4 ON OFF V4
O OFF ON 0 OFF ON 0 OFF ON 0

Figure 2.1-1 Switching State Definition

There are eight combinations of the switching states for the inverter. For instants,
combination [P O O] corresponds to the conduction of Sy, Se, and Sy in legs A, B, C
accordingly. Within the eight switching states, [P P P] and [O O O] are the zero states,

the rest are active states. Figure 2.1-2 lists the definition of all combinations.

Switching On-state Vector Definition
Space Vector State Switch
v, [PPP] S1, 83, Ss V,=0
Zero Vector
[000] S4, Se, 82
S 2
7 [POO] S1, S 2 =3
. -~ 2 jir_
Active Vector 7 [PPO] S1, S3, Sz v, = nge 3
V3 [OPO] S4, 83, Sz VB = ;Vde
v, [OPP] S4, S3, Ss Vy= 3 Ve
. 2
7, [OOP] S4, S, Ss Vs = nge
2, =
v, [POP] S1, S6; Ss Ve = 3 Vie
Figure 2.1-2 All Switching State Combination
2.2 Space Vector PWM

This theory is better demonstrated in graphical way. The active and zero

switching states can be represented as active and zero state vectors. A space vector

diagram is shown in figure 2.2-1.

The six vectors ¥ 1to V' form a regular hexagon with six equal sectors (I to VI).
The zero state vector, V ¢ lies in the centre of the hexagon. The reference voltage vector

V ref rotates within the hexagon at a certain speed.

.

3 \ SECTOR
¥ »F ‘:

oep N

SECTOR IV

SECTORY

Figure 2.2-1 Space Vector Diagram

The relationship between the space vector and the switching states can be derived
as the following. From the inverter shown in figure 2-1, with the assumption that the

inverter having three-phase balanced load, this expression is valid,
Vo) + Vo () + Vo (1) =0 (2.2-1)
The state of ¥, (¢) is redundant, since it can be defined by V,,(f) and ¥, (¢).

Also, it is convenient to transform the three-phase variable to two-phase variable.

11

12806

V. 2 2 2
= = Vs 2.2-2
[Vﬁ(t)} 3] 03.3) V"g; N

Therefore, the space vector can be expressed in a — B plane two-phase voltages.
V() =V, (0)+ jV, (1) (2.2-3)

Substituting (2.2-1) to (2.2-3),
= 2 o = i
V()= 3 Vio@e’ +Vyo(t)e > +V,(t)e (2.2-4)

where e” = cos(x)+ jsin(x) and x =0, 2n/3 and 4n/3.
Considering the Active switching state [P O O] for example, the generated
inverter phase voltages are

-¥, -V,

Vi) = ZK;— s Vao(l) = s Vo) = (2.2-5)

The corresponding space vector,;’; can be found by placing (2.2-5) to (2.2-4)

Vi= %Vdej" (2.2-6)

In general, all six space vectors can be represented as

— JE=DE

Ve = %Vde 3 wherek=1,2,3...6

The zero-space vector ?0. has two switching states. These two states are redundant

to each other. The redundant state is used to minimize the switching frequency and
eliminate the even harmonics. The zero and active space vectors are stationary in space

and hence they are called stationary vectors.

12

The reference VeCtOY-I;ref , in figure circulates in space with an angular velocity at
@ =27f| (2.2-8)
/, is the fundamental frequency of the inverter output voltage. The angle between

;—’;ref and a- axis in the a—p plane is obtained by
0(t) = [w(t)dt + 6(0) (2.2-9)
1]

I-;re/ can be approximated by the three stationary vectors for any given length and

position. These stationary vectors in turn determine the switching states of the inverter.
As ?ref rotates one revolution in space, the inverter completes one cycle over time. The
generated output voltage frequency is proportional to the angular velocity of ?rq and the
output voltage magnitude is corresponding to the magnitude of v vef -

2.3 Dwell Time Calculation

Since the spinning ;nf can be composed by three stationary vectors, the length of
these stationary vectors depends on the length of time assigned to them during the

sampling period T, . It is called the dwell time and is used to define a moving vector

position at that time instant. The dwell time calculation applies the ‘voltage second

balancing’ principle. The principle states that the product of the reference voltage
f"’,e; and the sampling period T, equal to the sum of the voltage multiplied by time
interval of the selected space vectors. The sampling period 7, is always set small enough

such that the reference vector is almost constant during T, interval. Taking V ., inside

the sector I for example, the voltage balancing equation is

13

VT, =ViT, +V 1T, + VT, 2.3-1)
and T,=T,+T, +T,
T,, T, and T,are the dwell times for Vi,V and Vo correspondingly.

The space vector in 2.3-1 can be shown as

Vg =V e’ Vs =2%"?2 =§Vaej§, Vo=0 (2.3-2)

Substituting 2.3-2 to 2.3-1 and then separate the resulting equation into real and
imaginary components in the a—p plane,
= 2 1
Re: Viyr(cosOT, = —3—VdTa + ngTb

Im Ve (snd)T, =—V,T, : (2.3-3)

1
7

Figure 2.3-1 Dwell Time and Voltage Vectors

Solving 2.3-3 with T, =T, + T, + T, yields

14

v
T, = 3T, ~Lsin(Z -)

v

T, =/3T, —Lsin(0) (2.3-4)
Vs

T,=T -T,-T, for osas%’-

Figure 2.3-1 illustrates the relation between dwell time and voltage vectors.

The equations in 2.3-4 are derived when I-;ref falls in sector I. For other sectors,

f;mf can be located by this general angle expression

6 =9-(k-1)—3’i for osa«%’-

where k=1, 2, 3,...,6 corresponding to sectors I, II,..., VI

2.4 Modulation Index

Modulation index dictates the magnitude of the inverter’s output. Equation 2.3-4

can be used to express the modulation index m, .

Vref
Va

T, = 3T, sin(-;f--a)

4
T, =37, ?”f—sin(ﬁ)

d

T,=T,-T,-1T, for
V
where m, =J3-=L
Vi

15

IA

D

IA
Wiy

(2.4-1)

The maximum amplitude of the reference vector V., ... lies on the vertices of the

hexagon outside the circle as shown in figure 2.2-1.

v =2y a3 _Va
ref max d
37 2 43

Substituting ¥V, , . intom, in 2.4-1 gives

Therefore, the modulation is within the range of
0<m<l1

and the peak fundamental voltage produced by SMV is

" vV
me,SMV = V,q;»’m = "\/-—dg

2.5 Switching Sequence

(2.4-2)

(2.4-3)

(2.4-4)

The switching sequence for any .i;ref should follow these two guide lines in order

to minimize the switching frequency.

1- Only one branch of the inverter switches change states, one being switched on and

other being switched off, when one switching segment alters from one to the next.

2- As ?ny travels from one sector to the next, none or minimum number of switches

change states. The figure 2.5-1 is an example of the switching sequence utilizing the

above guide lines. The figure shows a seven segment sequence and inverter output

voltage for ?,g in sector L. It is observed that

16

- Sum of the different dwell times equals to the sampling time.
- The transition from [0 O O] to [P O O] involves only two switches which are

S1 (ON) and S; (OFF). The requirement 1 is satisfied.

- The redundant switching states of V. are used to minimize the number of

switching.
- Each switch in the inverter is turned on and off once in one sampling period T,

Hence, the switching frequency f;, is the same as the sampling frequency f, .
1
o=t = T

Figure 2.5-1 graphs the essence of the switching sequence rule above in sector I.

5 . - - 5 i - o
e H ; K ; Ko : V : K Fo .
000 00 PPO ; ppEp :; PPO ; POO {000
Vay | § : .
AN 5 ‘ ¥ 4
. ; : \
Rl Vy : :
You | i L4
oo | L ¥y I
SN S ST DR] ' .
L L % L L L L
e o2 02 2y 22 2 4
e o e FUOPURNSNR——— - S e
U UGS & S N

Figure 2.5-1 Switching Sequence in Sector I

17

Figure 2.5-2 summarizes the seven segment switching sequences of ¥, inall six

sectors.
Sector Switching Sequence
7, 2 7, 7 7, 7 2
I 000 | POO | PPO_ | PPP | PPO | POO | 00O
7 7, 7, 7 7, v, 7,
1 000 | OPO | PPO_| PPP | PPO | OPO | 0OO
7, 2 2 A 7, 2 V
1 000 | OPO | OPP | PPP | OPP | OPO | 0OOO
7 2 2 2 2 2 7
IV G600 | oor | opP | PPP | OPP | OOP | 00O
2 2 7, 2 2 2 7
M 000 | OOP | POP | PPP | POP | OOP | 0OOO
7 7 7, 7, 2 7, 7,
VI 000 | POO | POP | PPP_| POP | POO | 00O

18

Figure 2.5-2 Switching Sequence in All Six Sectors

Chapter III

SVPWM Matlab Simulation

It is always a good practice to simulate a design before actually carrying it out.
This allows designers to see the feasibilities and the performances of their would-be
products preventing costly later alternation and time delay. The software package used
for this project is Matlab Simmulink.
The design specification is coming from an actual project.
3.1 Specifications
e Inverter configuration: Three phase two-level inverter
e Rated inverter output voltage: 4160V (rms fundamental line-to-line
voltage)
¢ Rated inverter output power : IMVA (three phase)
¢ DC link voltage: constant, ripple free
e Inverter load : Three-phase balanced RL load with a lagging power factor
0of 0.9

The inverter base parameters
o V,=V,/3=4160/y3 =2401.8V
o I,=8,/3V,=(1*10°)/(3*2401.8) =138.84

o Z,=V,/1,=2401.8/138.8=17.3Q

19

o wy,=27f,=3710rad /s

e Load: R=17.3cos(8) =15.6Q

vl =173sin(6) =754 . L=20mH

¥, can be defined by modulation index when m, =1.

V

Z48 - 0.612
Va
Ve _ 4160

LV, = 4Bl =6797.4V
470012 0.612

3.2 Simulating scheme
According to the theory of SVPWM, the position of the moving space vector at a
time instant is determined by an angle formed between the vector itself and horizontal

axis. The dwell time is calculated based on the angle found at the moment. The switching

pattern is decided upon by the sector where the ?wf is located. For strategy wise, it is

easier to find the sector right after the angle becomes known. The flow of the simulation

logic is outlined in the figure 3.2-1.

()

Angle Locating

Dwell Time | switching
Calculation J Pattern

Figure 3.2-1 Simulation Logic Flow

Sector Locating

-/

3.3 Result
The result of the simulation is categorized by two types of graphs: one is the

graphs of voltages and current waveforms; the other is the graph of harmonic spectrum.

20

Inyerter m A nzvelrng produnes dy wwssme«i SV

i ; I ;
0t Q01F Q2 Q028 Q03 G035 004 Q08 005 048 08

!

028 003 035 o0s4 Q045 005 0485 008

001 408 008 0038 00
1 1 ¥ f ¥ ¥ 1 | 4
Lo : —
{; O A : d
I - N W e My S HDE R M
]] i 1 | L | i !
401 A8 Q02 0028 003 0035 04 0448 Q008 GBS DS

fme {se¢)

{a) Waveforms

Fundsmental BOHz2: ~ 0 6358 |, THD=- 82 18%

&GO
as| .
an b
AR
=)
=
R E
1% 1 “‘
Tl il
: . I l 1.1k ‘ l l Eil h ” l_m M tl
[15063 m{«} Py 3 | 3000 A5 A0%X)

Frequency (Fie)

(b Harmouic spectrum

Figure 3.3-1: f = 60Hz, f,, =900Hz, m, = 0.7, and T, =1.11ms

21

eder oulbd wan ei:ms mxw by seve:‘-x 'nerﬁ 8yt

-4
40t Q05 Q02 G025 003 0038 044 QM5 008 0085 008

L)

%WWMQ;

4
201 s AR QQES 333 '3,&3(5 004 O0M5 005 0085 OB

a0t a5 adz QLIS 003 0035 004 QM5 ags 0.&55 0.08
{me [sec)

Fundamental HOHZ) = 0.4572 , THD= 109 61%

0k r
&0t
_05()- y
ot b
Ou%w» -~
& R
S A 1] [bl el

(4 00 1000 1600 2000 28600 3000 3500 4000
Frequency (Hz)

{b) Harmouie spectrum

Figure 3.3-2: f =60Hz, f,, =900Hz, m, =05, and T, =1.11lms

22

.:3

oV

2B DAl B i q:n{g

L

043

i

4023

3402

ST

0% 40 0035

HHHIIIHIHII

0. s

T

O'.“

h}«&n@

I Hmmnm lulimmm AAAAAAAAA T
T immni F T AT e
i umum**ﬂ'{ ,,,,,,, M ;n_llzlu,q <<<<<<<< il

| L
a0 Q045 G02 Q028 003 003 O QM5 005 D088 008
tme set)
Fundamental (50HZ) = 0 1389 | THD= 178.95%
10 v . . * v v -
&80 -
E:': @l b »
=) .
= 40 y
] .
0 .‘ngl ad dad lhill sl el
o 500 1000 B0 2000 2500 3000 3500 4000
Frequency (Hz)

(b)Y Harmoule spectrum

Figure 3.3-3: f = 60Hz, f,, =900Hz, m, =02, and T, =1.11ms

23

N | | i]] i
XX} 004 0.05 0.08 007 {08 808 {1 s 0.92
fme fsec)

() Waveforms

Fundamanrtal (30Hz) = 0. 8585 |, THD= 54 023%

N O | YOI 1 ol ;.lﬂ-

a] 500 1000 1500 2000 2500 3I000 3500 4000
Frequency (Hz)
{b} Harmonic spectrutn

Figure 3.3-4: f=30Hz, f,, =900Hz, m, =0.9, and T, =1.11ms

24

< tea

1
na

| 1]] ! 3 1 L

208 a1 Q.2 4% 0.4 248 0.2 022 024
tme sec}

{0} Waveforms

Fundamental (10H2z) = Q8299 | THD= 53 61%

i

i' llh

0 5000 100 TJDD 2000 ‘SOU m 3600 4000
Frequency (Hz)

(b} Harmonle spectrum

Figure 3.3-5: f =10Hz, f,, =900Hz, m, =0.9, and T, =1.11ms

25

Figure 3.3-1, -2, -3, -4 and -5 show simulations for the following cases A, B, C, D

and E respectively. The THD result of the load current i, at 1000Hz range is included in

Figure 3.3-1.
Simulation fi Hz) | f,, (Hz) m, T, (ms) | Load Current, i,, THD%
A 60 900 0.7 1.11 7.1
B 60 900 0.5 1.11 8.7
C 60 900 0.2 1.11 11.8
D 30 900 0.9 1.11 5.5
E 10 900 0.9 1.11 5.4

Figure 3.3-1 Table of Simulation output and Its Load Current THD

3.4 Observation

The simulation result does prove that the theory works. With sampling rate

remains the same through out, lower the rotating frequency yields better THD. The same

is true for higher the modulation index. Higher sampling rate reduces the effect of THD.

Most of the distortions occur at and over 900Hz range and are far away from the

fundamental frequency. They can be easily filtered out.

26

PRCPGREY OF ™~ B
RYERSON BNIVEISTY LIBRARY

Chapter IV

SVPWM Realization by SOPC

The best way to get familiar with Altera SOPC builder is to follow its tutorial on
Nios I hardware development [20]. This tutorial serves as a guideline on designing a
Nios II hardware system and then composing a software program to run on the system.
Since the objective of this exercise is different from the thesis préject, changes will be

made as needed to fit the project’s goal. -

4.1 Target Board

" The circuit board used here is the Altera DE2 Development and Education' Board
with Altera Cyclone II (2C35) FPGA chip on it. It has a number of switches, LEDs, LCD,
and 7-segment displays either for input to the processor or visual indicator of processor
activities for small project. It includes RS232 and PS2 for communication. For video and
sound experiment, it provides connectors for microphone, line-in, 24-bit audio CODEC
line out, video in and VGA out. It also equips USB 2.0 connectivity for host and device.
For more challenging experiments, there are SRAM, SDRAM, and Flash memory chip.

The board runs at frequency of 50 MHz. Figure 4.1-1 is the picture of the target board.

27

E s

oo,
'l'*-{-“";j‘

i
s

ﬁ’-‘-“% ‘-Qﬂ?mu
<2 0

2.

O WREFTEETT s Iaey

B

FLI ¥7
A

e

"

-
[sof
15 |
[so
Lol

ny

CALILEA
vaghye e

Figure 4.1-1 Target Board

4.2 Embedded Processor

The Nios II processor is a general-purpose RISC machine. It comprises of a full
32-bit instruction set, data path, and address space; 32 general purpose registers, 32
external interrupt sources; single instruction 32x32 multiplier and divider resulting in 32-

bit data: floating point instruction for single precision floating point manipulation.

28

4.3 System Development flow

The embedded system development flow consists of three forms of development:
hardware design, software design and system design which includes both hardware and
software. For a simpler system, all of the above procedures can be performed by one
person. For a more complex system, it may request several teams of engineers to cover

all those steps. Figure 4.3-1 suggests the designing flow.

System Requirements
analysis

) 4

Defining and Generating
System in SOPC Environment:
Nios Processor Cores and
Standard Peripherals

—

Developing Software
integrating SOPC with the Nios il IDE: C/
Builder System into C++ programming,
Quartus Project Custom Libraries,
Peripheral Drivers
Y Y
Pins Assignment Compiling Software
Co}npihng Hardware Downloading Software
for Targst Chip to Target Board
A Y
. : Running and
Downlo.?dmgt Céesng; Debugging Software
to the Target Boar on Target Board

\/

Refining Software and
Hardware

Figure 4.3-1 Embedded System Design Flow

29

Following the figure 4.3-1 suggestion, the requirement of the project has to be
clearly defined. For SVM control scheme, calculation of the switching time and
switching patterns are the predominant issues.

The switching time calculation is determined by the sine trigonometry function of
an angle. This is done by mean of power series and hence a hardware multiplier is

incorporated inside the processor core.

Sin(X)=X-——+—-——+... (Equation 4.3.1)

The easiest way to achieve the switching pattern is to utilize interrupt timers. This
is because the switching sequences change after a certain time interval according to the

figure 2.5.1.

4.3.1 Hardware Development tasks

Based on these observations, a concrete system design is finalized. This project
requires a fast Nios II processor with a hardware multiplier for the power series
calculation; seven interrupt timers for seven changes in switching sequences. The next
step will be using SOPC builder tool to specify the processor core, memory, and other
peripheral devices such as timers. The builder tool will automatically generate the
interconnected logic to integrate the component in the system. In general, there are two
classes of peripherals. One is the standard type such as timers, SDRAM, general purpose
1/0, even a secondary processor etc provided by Nios I Embedded Design Suite. The
other is the custom type like custom-made logics or the ready-made intellectual property

(IP). There are two advantages; hardware implementation is faster than software; the

30

processor is free to execute other task in parallel while the peripheral operates on data.

Ideally, a hardware sine function for SVM should be created to handle this kind of

computation as hardware approach is always faster than software approach. This incurs

higher development cost and longer development time. For the pilot run, the fastest and

cheapest technique is used. Figure 4.3.1-1 shows the preliminary design for the SVM.

Continuing the process, pins assignment for the I/O signals can be arranged with

design constraints using the Altera SOPC builder. Finally, the entire project is compiled

to produce an SRAM Object File to configure the FPGA. This file is then downloaded to

the FPGA on the target board through the cable called Altera USB-Blaster.

Target Board

Altera FPGA

Clock

n N T
T Nios |l System LEDO T 1
A Debug i
[N G Control Instr
P Nios IIfs s .\\
c Core LEDM
.e 5 Data O Parts —ple <—w——
L N N
e x O
o JTAG LEDZ
L UART
L Character
10- pin JTAG E HO System
Header R Interconnect On-Chip
— Fabric Ram
Timer 0 .
[J
[]
L
Timer 8 System i0
Other logic
System

Figure 4.3.1-1 Preliminary design Block

31

In this layout, JTAG UART is used for downloading both for hardware and
software and for debugging. General I/O ports PIO are used for switches with LEDs for
visual effect. Several timer interrupts are required for setting up the switching patterns.
Other logic is anticipated when the goal is not reached and custom made logic might be
needed.

4.3.2 Software Development Tasks

With the help of Nios II IDE, software development tasks for Nios II processor
system are performed. Designers are able to write high level computer languages like C
or C++ codes for the system. To interact with low level hardware components like
turning on or off switches, Altera provides components drivers and a hardware
abstraction layer (HAL) to facilitate such a task. Once the application program is
compiled, it can be downloaded to the target board using the same USB-Blaster cable.
The IDE debugger allows users to start and stop the program, step through codes, create
break points, and examine variables. This debugger also provides a way to debug the
software without the present of the target hardware.

Figure 4.3.2-1 displays the software algorithm for the SVM. T to T7 represents the
timer interrupt interval. In one sampling period, values of T,, T, and Ty are determined

for the switching sequences.

32

One Sampling
Period

& + QO"Q -+ Eorzg_ -+ _TP_ -+ ﬂori “+ z‘.orﬂ_ -+ &
4 2 2 2 2 4

Figure 4.3.2-1 Software Algorithm

4.3.3 Refining Hardware and Software

After running the software on the hardware, it might be that the performance
does not meet the requirement. Designers can either go back to the software to make
changes in algorithm or go to hardware to reconfigure the peripheral. Reconﬁguréble
peripherals is one of the most distinguish difference between an embedded system and a
fixed microcontroller. In this context, reconfigurable means that hardware features can be

added or removed on a system-by-system basis to meet performance and price goal.
4.4 Creating the Design

Following are the step by step to implement the design using Nios II

Development tool. This procedure is carried out closely adhering to the tutorial.

33

1. Install the design files for the Nios II Hardware Development Tutorial. After
having the files unzipped, they are stored in a director.

2. Start the Quartus II software and open the tutorial project.

3. Create a new SOPC builder system by clicking SOPC builder on the tool menu in
the Quartus II software. On the Create New System dialog box, type system
name. This project uses the same name as suggested in the tutorial which is
first_nios2_system. Figure 4.4-1 shows the SOPC builder GUI in the early state.

" Altera SOPC Buildes - first_nias? system.sopc (C:\altera\har dware tutorial_1c20\irst _nios2_system.sepc)

Sodule Name Do sorption Clock Base Erd

Adaress Map | | Fiter

[—vw | Nest b] \——-:«mu

Figure 4.4-1 SOPC Builder GUI
4. Building the system in the SOPC builder. SOPC builder is used to define the
hardware characteristics of the of the Nios II system, 1.e. which Nios II core is
selected, what peripherals to include in the system. Since this step is the most
crucial of the whole process, detail contents of GUI are shown and explained. On
the SOPC builder, FPGA cyclone chip is chosen, and the clock is set at SOMHz.
e Processor requires minimum one memory to store data and

instructions; the on chip memory selection is first performed. To add

34

the memory, on the left hand side of system contents tab, under the

category Memories and Memory Controllers/On-Chip, user high

lights the On-Chip Memory (RAM or ROM) then clicks Add. The

On-Chip Memory MegaWizard interface appears. M4K block

memory 1s select. Figure 4.4-2 is the On-Chip Memory interface box.

- On-Chip Memory 74
K.

Parameter
Settings

Memary type

Read During Write Mode: |

Block type 4K | -

Memory will be inttiglized from onchip_mem hex

Size
Data wictth: [18 = E
Total memary size: (35500 Bytes | w
Mirimize memary block usage (may impact fmax) |
|
Read latency [
Stave 1 [1 - | Slave s |

Memaory initialization

__ Enable non-detautt intishzation tile

User-created intialization file hex

Instance ID

On-Chip Memory (RAM or ROM) - onchip_mem

(RAM or ROM) | About ’Qmunnenmu:"

e

RAM (Wirirable) ; ROM (Read-only)

| | Dual-port access

v | Intialize memory contert

Enabls In-System Memory Content Editor feature

Figure 4.4-2 On-Chip Memory MegaWizard

The total memory size is 35Kbytes. This is because the actual

software size is bigger than the default 20Kbytes. Floating point

computation needs more memory space as well.

35

The Nios II core selection and its configuration is done next. There
are three classes of Nios II core processor; they are economics,
standard and full features. Standard core is picked in this project for
the reason that it has built in hardware multiplier and divider. This
hardware will accelerate the floating point manipulation. User selects
Nios II Processor and then clicks on ADD. The Nios II processor

MegaWizard appears. Figure 4.4-3 displays the Nios II core page.

Nios Il Processor - cpu

Nios II Processor

§ Qecumentation |

‘a-n—-—.ﬂ
Advanced Features MMU and MPU Settings JTAG Debug Medule w

Parameter
Sethings
1

|

Core Hios Il

Caches and Memary Interfaces

Select a Hios |l core:

|

O Nios Ilfe | ©Nios Iifs ONios IIf

. RISC RISC RISC |
Nios I 32-bit 32-bt 32t ;
Selector Guide Instruction Cache Instruction Cache |
. o 5 |
Family. Cyclone Branch Predlction Branch Prediction ;
Hardware Multiply Hardware Multiply |
{ystem. 500 MHz Hardware Divide Hardware Divide |
coukd: O Barrel Shifter |
"Rk Data Cache ;
Dynamic Branch Prediction |
Performance at 50.0 MHz Up to 5 DMIPS Upto 25 DMIPS Up to 51 DMIPS H
Lagic Usage 600-700 LEs 1200-1400 LEs 1400-1800 LEs ‘

Memory Usage Two M4Ks (or equiv) Twa MdKs + cache Three M4ks + cache
Hardware Mubply: Emnedded Multipliers | wr] Hardware Divide |

Reset Vector

Exception Vecior

Only inchude the MM
Fast TLE Miss Ex

1 Vectar

temary lanchip_mem

Memory. anchip mem

Memary

| w |Offset \0x0

xhen using an operating system that explicitly supports an MMU
Offset

0x00010000

0x00010020

3

Figure 4.4-3 Nios II Processor Core GUI

Hardware divide is not adopted here since it takes up huge FPGA
chip resource. The division will be done by software. Nios II processor
provides custom instruction in order to use its hardware multipliers for
floating point operation. To activate this feature, user clicks on Cusiom

Instructions on the Nios II core GUIL Figure 4.4-4 shows the configuration

wizard.

Nios Il Processor - cpu

Nios II Processor

Paramater
| Selligs
| CorgNiosIl Caches and Memory Interfaces | Advanced Features > MM and MPU Settings

fpoirit ariable N1 1111115

19 Poat Hardware

Inter rupt Vector

impart

Figure 4.4-4 Floating point GUI

37

Parameter

JTAG UART - jtag_uart)
T& JTAG UART , R

Alout } Dacumentation §
e

Setkings

Write FIFO (Data fram Avalon to JT.AG) t
Buflfer depth (bytes). [gq - (== } IRG threshold, o
Construct using registers instead of memory blocks
FRead FIFO (Data from JTACG to Avalon)
Buffer depth (bytes) (g4 | - | IRQ threshald. [g

Caonstruct using registers instead of memory blocks

I !
Cancel ‘ | Next > Einish |

Figure 4.4-5 Serial Communication GUI

e Adding JTAG UART allows for convenient way to communicate with
Nios II processor through the USB-Blaster download cable. This is
very useful for software debugging purpose. On Interface
protocols/Serial, user elects JTAG UART the clicks Add. Figure
4.4-5 indicates the setting.

e To make the programming part straight forward, seven timer
interrupts are required here for seven switching pattern changes.
Under Peripheral/Microcontroller Peripheral/, user clicks ADD
then the Timer MegaWizard interface appears. Figure 4.4-6 displays

the timer interface.

38

Interval Timer - timer

Interval Timer

About || Documeantation B8

R —

Parameter
Settings

Timeout period

Period: 11 us -
Timear counter size
Counter Size |32 - ihns :
Hardware options
Presets: [Full-featured 7 7 o v
Registers

|

] ST

Gutput signals

Lol #H

| ii

| Einish ||

| Cancel |

Figure 4.4-7 Interval Timer MegaWizard
Since our SVP sampling period is set at ﬁ second or

1.11milisecond, the interrupt timing for each switching sequence is in
the order of microsecond. With 32 bits counter size, it is more than
enough to cover one sampling cycle. The timer hardware option is set
at full featured, so that the timer period can be written to, read from,
and started/stopped by control bits.

e General purpose /O port or PIO is used to drive LEDs for visual

effect as to confirm the program working properly. They are

39

Par ameter

actually the switch drivers in SVM scheme. Eight bits are selected.
Under Peripherals/Microcontroller Peripherals/P1O (Parallel
1/0), user clicks on ADD and the PIO MegaWizard appears.

Figure 4.4-8 exhibits the PIO interface menu.

PIO (Parallel 1/0) - led_pio
PIO (Parallel I/0)

g -

N

Zbhout | Docurnentation @8

Sethings
Basic Setkings |
wicith
MNickh (1-32 bits) - [
Oitrection

Blich sctionaal (tristate) ports
Input ports only
Baoth mput and output ports

- Outpunr ports only

Outpaut Port Reset Value

Reset Value: 1), 0

Cancel j]__{v':-(- ‘ Cinish

Figure 4.4-8 PIO MegaWizard
e The system ID peripheral helps accidentally downloading other
software for different Nios II system. Under Peripherals/Debug
and Performance, user clicks on System ID Peripheral and then
clicks on ADD. The ID Peripheral MegaWizard interface appears.

There is no need to configure the ID option. Figure 4.4-9 shows the

pop up interface box.

40

System ID Peripheral
System ID Peripheral

| About l Dacumentation

AT

Parameter
Settings

System ID: 701835872
Time stamp: 1268667418

A unique ID is assigned every time the system is generated.

al | | Einish

Figure 4.4-9 System ID Peripheral Interface Box

At this point, all the necessary hardware components are in place They
need to be specified as to how they interact within the system. The issues can be
the base addresses assigned to each component, and designating priorities for
timer interrupt requests (IRQ) and the JTAG UART. SOPC builder provides
Auto-Assign Base Address and Auto-Assign IRQs commands to facilitate these
assignments. Since the project’s timer interrupts do not happen at the same time,
they can be allocated in any priority sequences as long as the JTAG UART get the

lowest one. Figure 4.4-10 displays the interconnection of the system.

41

¥ Altera SOPC Builder - first_nios2_system.sopc* (/home/faculty/viuong/DE_tut2/niosii_cyclonell_2c35/first_nios2;

W

tile Edd | 2 System Jew Jools Nosl Heip
System Contents System Generation
A Atera SOP Target Clock Seftings
Davice Famiy: Cyclonz I - o - 20rce i Ada
- ik External 50.0 S
Use Con Module Name Description Cloc Base [£nd IRQ
11
- Components v B enchip_mem On-Chip Memory (RAM or ROM) A
. 4 1.“:”,;“]&,: Contiol (g 81 Avaion Memor y IMapped Slave clk 0x00010000 300
9 4 cpu Nwos | Processor clk 0x00020800 T« (=
v 3 jtag_uart JTAG UART
- avalon_jtagy_slave Avaion Memery Mapped Stave clk 0x000210f0 Ox000210F7 I
v A sysid yslem 0 Perpheral
g ontrol_slave Avaion Memary Mapped Slave clk 0x000210f8 Ox000710FfF
v, B led_pio PIC (Parakel 110)
=g s1 Avaion Memcry Mapped Slave clk 0x000210e0 0x000210ef
v B timer Interval Tmer
USB e §1 Avaion Memary Mapped Slavs clk 0x00021000 2-0002L0LF i
o= ideo and Image Piocessing 4 B tmer_1 interval Tmer
— s1 Avaion iMemery Wapped Slave clk 0x00021020 Ox000Z103F I
v g tmer 2 interval Timer
q) =4 s1 Avaion Memary Mapped Slave clke 0x00021040 C«000Z10SF i
v E timer 3 inter val Timer
= 81 Avalon Memery Mapped Slave clk 0x00021060 Dx0O0Z10T7F i v
New. Remove Edit A& Move Up ¥ Move Qown Address Map Eier
£ Info Mo errors or warnngs
Exit Help Mext p Generate

Figure 4.4-10 Contents of Complete System
The hardware can be now generated by clicking on System Generation
tab and then clicking on Generate box.
Integrate the SOPC builder system into Quartus II project. This step involves
instantiating the SOPC system module, assigning physical FPGA pins, compiling
the project and verifying the timing. Figure 4.5-1 and Figure 4.5-2 each display

system module and FPGA pins assignment.

42

W Quartus Il - /home/faculty/viuong/DE_tut2/niosil
:Ella Edit View Project Processing Yool \Windaw

_cyclonell_2c35/nios2_qua .. "% W

R A Nios || Quartus Il Project —- Nios 11, Cyclone ||
D D il This ks the top level desio for the Nios | Hardyvare Developmerd Tiuorkal
- l '—l . un the Mios Devalopment Beard, Cyclone | Edition -
=1/ : This design works tor both e ER2C34 and BP2C3SES devicas.
A&
T " L
|
at o
i -
D O . I first _ mos? system
o VD clk
—_— resel : :
. out_rort_trom_the_Jed_pio[? 0] p————RUreir ——— - L - . \?Eﬁlf[fr oy
Vst S I HiE
—_
: ' ' b BB ERE ALY =4
x| | Y|
|For Halp. press F1 [551. 414 I | |]

Figure 4.5-1 System Module

S

< Quartus Il - /home/faculty/viuong/DE_tut2/niosli_cyclionell_2c35/nios2_qua . & &

| Eile Edit View Processing JTools %/ind
’ T - | Groups ——— — =154 Top View - e 8ona
=) Named [=] Cycione Il - EPICISFETCE
Iy T o iR .. oo TP
[R i (2] O Node Name I ci s 3 3
| < <new node > > v
| of = 2 2 . §
I |
fawmoH =
R RS 3
A uh o
| i~
i 23
| > Yo % 3
I v o
| ¢LE2
I K1 »l
X Named: [f v] «» Edit 3¢ | all =]
| Node Name Direction | Location 1O Bank 1 VREF Gre = |
[[¢ © LEDGD] . Unknown PIn_agz2 7 87 _NO —
z € Lepgl1] Unknavn |PIN_aAF22 7 |87 _Ma
3 © LEDG[2) Urkrown [PIN_W19 7 B7_MNO
B © LEDG[3] Urikrawn [PIM_v18 7 B7_NO
s €© LEDG[4] Unkrown PIN_ULE 7 |B7_ND
} & € LeDg[s] Unknown _lPm_us? 7 '87_mio
’ b 0 LEDG[6] Urikraven (PIN_AAZO 7 87 NO
I8 € LEDG[7] |Urkraven [FIN_Y18 7 a7
) £ 1N DS 1 b ‘BTML ¥ > 22 Al il
L Ll | >
For Help, press F1 o e BT Fan]

Figure 4.5-2 FPGA pin assignment Wizard
6. Download hardware design to target FPGA. This process requires USB-Blaster

and following the Programmer GUI procedure.

43

7. Develop software using Nios II IDE. Figure 4.7-1 depicts the logic flow of the

main software. Figure 4.7-2 shows some of the subroutines and interrupt

subroutines.

start

Initialization : ccunt:(),,ias\‘cnr—‘o_ n_pattern=o
inc_degree = (1/60)/1/900);
deg = (inc_degree * count) + offset;

rad_deg = deg * (1/pie),;
sec.num = (deg/60) + 1;

adj_deg = (rad_deg) —~ (sec.num - 1) * (pie/3});

Ta = sin{ pie/3 — adj_deg) * Ts
Th =sin{ ad_deg) * Ts
To=Ts ~Ta~Th

Set switching patterns
Writs and enable 7 timer interrupts
]

| I

Last_ont = count

T
|
i
i
¢

Yes

Last_ cnt =0
Count =0

X
‘deg = (inc_degree * count) + offset;
rad_deg = deg * (1/pie);
sec.num = (dey/80) + 1;
adj_deg = (rad_deg) — (sec.num - 1} *

Ta = sin(pie/3 — adj_deg)* Ts
Tb = sin{ ad_deg) * Ts
To=Ts~Ta-Tb

[

Y

Goto: switching subroutine
loading timer interrupts
subroutine

(pie/3), b

Lastent = last count
n_pattern = pattern number
deg = degree
Inc_degree = degree increment
rad_deg = degree in radian
sec.num = section nurmber
adj_deg = adjusted degree
Ts = sampling time

Figure 4.7-1 Software main flow chart

44

Loading
subroutine

Switching
subroutine

Y

Writing interrupt timers
Timer = Ts
Timer1= To/4
Timer2=To/4+Ta/2
Timer3= Told+Ta/2+Tb/2
Timer4 =Tol/4+Ta/2+Th/2+
To/2
Timer5 =To/4+Ta/2+Th/2+
Tol2+Tb/2
Timer6 =To/d+Ta/2+Th/2+
To/2+Tb/2+Ta/2
Enable timer interrupts

A set of switching
sequence depending on
section number.
Section 1 = pattemn set 1
Section 2 = pattern set 2
Section 3 = paftern set 3
Section 4 = pattern set 4
Section § = pattern set 5
| Section 6 = pattern set 6

1

h 4

return J

return
Interrupt Timer Interrupt Timer1
v v
Increment count o
Reset switching Set switching ® & O
pattern 1
pattern
i |

Interrupt Timer6)
]
4

Set switching
pattern 6

y
return

Figure 4.7-2 Flow charts of some subroutines

45

The detail of software implementation is described as the following. There
are three parameters that the program needs to know in order to set the inverter
frequency and amplitude. They are sampling frequency, modulating frequency
and the modulation index. In this project the sampling frequency is set at 900Hz,
the modulating frequency is at 60Hz, and the modulation index is 1.

The sampling period is

1 1

= =1.11mS (4.4.7-1)
Sampling _ frequency 900Hz

Sampling _ period =

The number of sampling time per cycle is

900Hz _

Sampling _time = p 15 4.4.7-2)

Hz

The sampling angle increment in one circle is
: . 360
Sampling _increment = T3 = 24deg ree (4.4.7-3)

An interrupt timer at every sampling period is established. At each
interrupt, a counter ranging from zero to 14 is increased by one and it will reset
itself when the number reaches 15. The sampling angle at any given time is just
the product of the number in the counter and the angle of the sampling increment.

Samp‘ling _angle =24 * counter's _number (4.4.7-4)

When the angle is became known, the switching time constant T,, Ty, and

T, can be found but the angle has to be first converted to radian degree.

radian _degree(6) = degree* 1—;—% (4.4.7-5)
T, = sin(-‘;f-e) with m, =1 (4.4.7-6)

46

T, =sin(H) (4.4.7-7)

T,=T,-T,-T, (4.4.7-8)

These time constant T,, Ty, and T, are just the relative time as compared to
the sampling period. In order to become real time, they have to be multiplied by a

system clock time T related to the sampling time. These real times can now be

used in setting the interrupt timers.

T = sampling _ period * system _clock =

*S0MH:z (4.4.7-9)
0Hz

T, = 55555.55

The angle is also used to figure out the sector number that the angle
belongs to. The sector number decides the switching patterns. As indicated in the
chapter II, Figure 2.5_2 of this report, each sector has its unique switching
patterns.

sampling _angle
60

Sector _number = int(}+1 (4.4.7-11)

Not only does the sector number affect the switching sequence, it also has

effect on the order of the timing sequence. The odd sector number has this timing

T ..
sequence: —%, =%, =, - — - and T° The arrangement of the timing

5 and %— All these procedures are observed closely according to the switching

rules laid out in the chapter II to ensure minimum switching loss.

47

VAN
Van
Ven :

Tl TZ T3 T4 TS T6 T7

L | L T, T, 7, 7, 7,

4 2 2 2 2 2 4

One Sampling
Period
1 R

L +£orT”+—§’-0r£+ L +—bor£+£0rT—b+ L
4 2 2 2 2 2 2 2 2 4

Figure 4.4.7-3 Overview of Switching Pattern, Timing Sequence and Interrupt Timers

Within one sampling period, T, there are seven interrupts are set to
correspond to seven changes in switching sequence as shown in figure 4.4.7-3
where sector I is taken as an example. The length of time of each interrupt is the
sum of current time and all of the previous timing. The timer 1 is the only
exception when it starts from fresh. In this example, timer interrupt T is

responsible for [00O0] switching, timer interrupt T; is responsible for [POO] and

48

so on. The interrupt timer seven is not used here since it is redundant with the
sampling time T. The contents of each timer are listed below.

1

Interrupt timer T = *T, (4.4.7-12)
900Hz
Interrupt timer T; = %’- *T, (4.4.7-13)
. T, T

Interrupt timer T, = (7 +—21) *T, (4.4.7-14)

Interrupt timer T3 = (Zi + % + 5) *T, (4.4.7-15)
4 2 2

Interrupt timer T4 = (IQ- + s + T + E) *T, (4.4.7-16)
4 2 2 2

Interrupt timer T's = (-—7-‘"— + Zi + 2 + E + E) *T, 4.4.7-17)
4 2 2 2 2

Interrupt timer Tg= (5+£+-Ti+£+£
4 2 2 2 2

+%") *T (4.4.7-18)

Once the interrupt timer of the sampling period occurs, the software
program will select the switching patterns and the timing order then set off other
six interrupt timers. The program then calculates the angle related timing, selects
the switching pattern and timing sequence to prepare for the next sampling period.

The switching sequences are handled by interrupt timers. Usually, the
number of timers available is fixed in microprocessor systems. With FPGA, users
are able to instantiate as many as needed as long as the resource permits.

Hardware choices ease software writing.

49

Armed with a hardware multiplier within the processor core, there was an
attempt to avoid floating point computation. Integer arithmetic was implemented

in order to speed up the calculation of the sine function.
Sin(@)y=X - —+"— (4.47-19)

Only three terms were used in those trials and some scaling factors are
employed for the integer arithmetic method. The scale factor has to be chosen
carefully so that at the fifth power term it does not exceed the capacity of the data
register of the processor. The practice does not yield much higher computing
speed as compared to the Nios II floating-point custom instructions. It makes
calculation complicated and software codes not easy to read.

As it turns out, the Nios II floating-point custom instructions help writing
the software an easy task. In this project, floating point manipulation is the major
part. Instead of creating custom codes for sine or cosine functions, Nios II custom
instructions have done the hard work and allow users to use simple ANSI C math
functions. The Nios II processor performs single precision floating-point
arithmetic operations. The time spent on code writing is much shorter, but much
on chip resource is also occupied.

The debugging method here utilized the printf function of the C codes.
This function transmits data from FPGA chip through UART and displayed them

on the host computer screen. Timing constants such as T,, 7, and T,, sector

number, sampling angle and switching pattern were able to be shown on the

computer screen at a desired interval.

50

C code:
Printf(“%d %d %d %d %u %u %u\n”, sec.num, deg, pattern,Tp/4, To/2,
Ty/2);

Sampling time was first changed to1.11Sec as to allow enough time for
the data to be transferred and displayed. A complete cycle, 360 degree, of data
were collected and compared to hand calculations. When the numbers were
correctly matched, the sampling rate was put back to 1.11 mSec and the switching
action was captured by an oscilloscope. The switching waveform was then

weighed against the switching waveform of the Mathlab.

51

4.5 Design Result

Matlab simulation

Te il B =g - Stop P Pos: —3.300ms
~d
CHZ2 100m%EBg M 2.50ms CH1 -~
SOPC Hardware output

Figure 4.5-1 Wave forms of software simulation and hardware output

The design result is right on its target. The pulse width modulation output of the
hardware is identical to that of the Mathlab simulation. Since the SVM inverter design is
intended for high power system (~3800V), it would be impractical to build a complete
system just to show the validity of SOPC method. Hence, the switching waveform of

Mathlab is used as a benchmark to verify the switching outcome of SOPC design. Figure

52

4.5-1 illustrates both result of the theory and practicality. The inverter sampling rate is set
at 1/900 second, rotating at 60 Hz frequency and the amplitude modulation index is one.

Figure 4.5-2 shows current, voltage, sector number, switching waveforms of the Matlab

simulation at above setting.

P PH RGP

Figure 4.5-2 Matlab simulation waveforms

53

4.6 Future Work: Multiple Processors System

In this paper, all hardware resources and software effort are concentrated on
realization of Space Vector Modulation (SVM). The processor spends most of its time
computing power series of the two trigonometry sine functions and outputting switching
patterns. At each sampling period, calculation of the timing vectors has to be carried out.
That means no pre-calculated values or table is stored in the memory as to boost up the
sampling speed. The highest true sampling rate obtained is close to 1000Hz with SOMHz
system clock. Since sampling rate of the SVM is the dominant issue, there is little
attention paid for controlling and safely running of the motor. The subjects such as over
current, over voltage, over temperature protection, blanking time and user input interface
are left out. To amend these shorting comings, a multiprocessor system within a SOPC is
suggested. Basically, it is a system which incorporates two or more microprocessors
working together to perform one or more related tasks.

Altera SOPC builder package allows users to add as many processors to a system
as desired effortlessly. The arranging and connecting of hardware components are no
longer an issue in building multiprocessor system. The challenge now lies in writing the
software for the processors so that they do not conflict with one another. To prevent
multiple processors from interfering with each other, hardware peripherals i‘o coordinate
effective operating of the processors are included in the Embedded Design Suite. The
hardware allows different processors to claim ownership of a share resource for a period
of time and to coordinate data exchange in a single resource such as memory. They are
named hardware mutex core and hardware mailbox core accordingly.

A preliminary design for the open loop motor control system is shown below in
figure 4.6-1. The first processor takes care of SVM and switching functions. The second
processor looks after the safety operating of the machine and interfaces with users for
input speed; this information is passed through the shared memory to the processor 1
which will decides either to stop, run or change speed of the motor. There is an added

feature for this configuration, When the first processor detects no change in motor speed,

54

higher sampling rate can be obtained by pre-calculating all the timing vectors in one
cycle and their values are stored in the memory. The next time around, the processor 1
Jjust reads from memory and generates switching sequences without going through the

long computing process. Higher sampling rate yields cleaner waveform and reduces
THD.

> Memory
Processor 1]
SVM & Switching ~ —————®————" |nterrupt Timer 0
Patterns
®
o
®
*—— > Interrupt Timer 6
o——— = Output to Switches
». Shared Memory
Processor 2 :
Speed Input & Safety ~—————-T—————>5 Memory
; Features f
L N Sensors

Y

UART (Speed Input) |

|

Figure 4.6-1 Multiple Processors in Open Loop Control System

A closed loop servo motor control like the FOC can also be carried out in the same

fashion. The field oriented control unit can be comprised of more than one processors

55

operating together. Each processor acts as a functional unit, thereby, data are processed
concurrently. The performance of the overall system is faster as a result.

The Altera Nios II development software is capable of debugging simultaneously
a multiple processors design. Debug for all processors can run at the same time and is
able to pause and restart each processor independently. Break points can be placed
individually anywhere in a processor. Once a breakpoint is hit, it does not halt the debug
procedures of other processors. This debugging capability facilitates the development of a

multiple processors system.

56

Chapter 5

Conclusion

Space Vector Modulation is a superior method in converting DC voltage to AC
voltage. It is a known fact that SVM has a lower THD, less switching loss, and more
efficient usage of DC power supply as comparing to all other modulation schemes. The
major disadvantage of this method is that it requires intensive computation. For this
reason, DSP and high end microprocessor are often chosen to implement SVM. They are
expensive because of complicated computer architecture is employed and hence huge
resources are used to fabricate these chips. There is lack of flexibility in DSP or
microprocessor technique. Once a DSP chip is elected, there is no easy turning back to
make the hardware change without replacing with other DSPs. This may result in longer
development period or an under utilization design. The recent emerging FPGA
technology has giveri rise to a new approach to carry out SVM. It is called embedded
system design or System On Programmable Chip SOPC. The system is consisted of a fast
RISC microprocessor in a FPGA chip. Since FPGA can be configured into any logics or
functions, coupling this with a processor makes it a‘ robust combination. The processor is
acting like a tasks distributor that it out sources the works to the hardware peripherals

formed by FPGA. The work done by hardware is always faster than the software for

57

hardware works concurrently and software works sequentially. That also frees up the
processor to operate on other task and the system becomes truly multitasking. Software
coding gets easier as well as in the case of floating-point arithmetic. The hardware added
is not limited only to peripherals; a multiple processors can be put together as well. This
feature makes the hardware peripherals more intelligent. The over all system performance
is increased as a consequence. Unlike DSP or microprocessor structure which has fixed
peripherals, the hardware in the embedded system is reconfigurable. Designers can easily
reiterate the hardware by adding or deleting functions in order to meet performance or
price goal.

The tools for this project are Altera DE2 development board and Altera Quatus II
design suite. It is a successful implementation of SVM in SOPC. The output switching
waveform is the same as the Mathlab simulation. There is two-fold in the purpose of the
Mathlab exercise. One is to observe how the theory works. The other is served as a
benchmark to verify the practical outcome. It is a long journey to go from proving the
theory of the Space Vector Modulation to practically working hardware design. In reality,
it is the same procedure that any serious engineering design has to go through. This
practice not only detects any design flaws at early stage. It also helps foreseeing problems
may emerge later on. An idea is stemmed from the same reasons; SOPC can be served as

hardware simulation for the design.

58

Appendix A

Mathlab Simulink Block Diagrams

Puiges
Gate signals SVYMin 2 level Inverter
¢ —
+ A ala
‘ i
o4 s
DC Woltagd Soyice .
T Cusrent Measuremint gt 5 Continuous
] ° r‘ ‘
] cle e [Cis
Y:?Md. 10 o T Brid Three-Phase
niversal Sndge Series RLL Branch
[sedtors P
Gain3
N “” :fb\
Mollage Measurement L//
¥ >
I Gain
»
! Voltage Measurementt bt
:[u:\\ Fo=B0Hz
L »> \ >

1 ZnQ-Grﬂef
Fitter
' —
Lo signal THD

=

Scopet

SVM overview in Matlgb Simulink

59

sector

Data Store
Memary

sector

theta
Pulses
seotord
Angle and sectors Dwell-time calculation Signals generation
Pulses-Gate signal block overview
pif3
0
pEHETe g
. oS

8
3
4

2

@pir3

Angle and sectors block diagram

60

ma

theta

sectom

pir3 +_ ! sin 3){ = Ta
Ts 3:
«© Tb
———-——’J sin
To
ector +

Dell time calculation diagram

To

- » ’ns!od Oeiny

sectodd

Long
Variabl 4
| J
Lt} v
NOT
»i =
>
=
L}
Madium

odd/avan NOT

Short

T |
L]

AAAd

Signal generation block diagram

61

ROT

y v

Yy Y YT VY
3

H

seiachion 1

- -

¥

-4
~é

v v

Yy¥ ¥ Yy ¥ Y VY¥YY

Puice sataction 2

§

\L

Yy Y9 Y vYTVYY

Pulce sulection 3

»D

Signai

Software Codes in C Programming Language

#include
#include
#include
#include
#include
#include
#include

Appendix B

"count_binary.h"
"sys/alt_irq.h"

Ysystem.h"

"unistd.h”

"math.h"

"float.h"
"altera_avalon_timer_ regs.h"

//typedef unsigned int REGISTER;
//typedef unsigned int BITS;
// union TIMER*STATUS“REG {

// REGISTER data;

/7 struct {

// BITS TO N
/7 BITS RUN + 1;
/7 BITS unused 30;
/7 } bits;

/7}:

//union TIMER_CONTROL REG {
/7 REGISTER data;

// struct {

/7 BITS ITO 11;
// BITS CONT :1;
7/ BITS START :1;
/7 BITS STOP :1;
/7 BITS unused 128;
/7 } bits;

//Y:

//struct TIMER_REGS {

/7 union TIMER STATUS_REG status;
// union TIMER CONTROL_REG control;
/7 REGISTER periodl;

// REGISTER periodh;

// REGISTER snapl;

// REGISTER snaph;

/7Y

//struct TIMER REGS *TIMER = (struct TIMER_REGS *}) (TIMER BASE

{0x00021020);

static char lastcnt;

62

/* B "loop counter" variable, */

static alt u8 count;
float rad = 0.0174532f;
float pi = 3.141592f;

float Ts = 55555.55f; //416666666. 66f;

float pi_ by 3 = 1,04719f;
float rad_deg;

float adj_deg;

float adj_angl;

unsigned long int Ta;
unsigned long int Tb;
unsigned long int To;
unsigned long int adj_To 1;
unsigned long int adj_ To 2;
unsigned long int adj_Ta,
unsigned long int adj_Tb:
unsigned short int c_deg;
char pattern_0; -
char pattern 1 _5;

char pattern_2 4;

char pattern_3;

char pattern;

char n_pattern;

char section;

char flag;

//char red_flag;

static char int_cnt;

char cnt;

unsigned short int deg;

struct b_type {
unsigned last:1;
int: 7;

}:

union sec {

¢char num;

struct b_type bits;
} sec;

union duration_type {
unsigned short int d[2];
unsigned long int 1 _durtn;
} duration;

void handle timer_interrupts () {
count++;

//55555.5555;//555555555. 5;

IOWR_ALTERA AVALON TIMER STATUS(TIMER BASE, 0):

/177
}

void handle timerl interrupts {) {

IOWR ALTERA AVALON TIMER _CONTROL(TIMER BASE, 8);

IOWR . ALEERA AVALON TIMER STATUS(TIMER 1 BASE, 0);
IOWR ALTERA _ AVALON TIMER CONTROL(TIMER 1 _BASE, 8);
IOWR ALTERA . AVALON PIO DATA(LED PIO_BASE, pattern_1l_5);

63

n_pattern = pattern 1 5;
}

void handle_timer2_interrupts () {
IOWR ALTERA _AVALON_TIMER STATUS(TIMER 2 BASE, 0);
IOWR _. ALTERA AVALON TIMER CONTROL(TIMER 2 _BASE, 8):
TOWR_ALTERA_AVALON_PIO DATA(LED PIO BASE, pattern 2 4);
n_pattern = pattern 2 4;
}

void handle_timer3_interrupts () {
IOWR . ALTERA _AVALON_TIMER_ STATUS (TIMER_3_BASE, 0);
IOWR ALTERA AVALON TIMER CONTROL(TIMER 3 _BASE, 8);
IOWR_ALTERA_AVALON_PIO DATA(LED PIO_BASE, pattern 3);
n_pattern = pattern_3;

}

void handle_timer4_interrupts () {
IOWR_ALTERA_AVALON_TIMER_STATUS(TIMER 4 BASE, 0);
IOWR_ALTERA_AVALON_TIMER_CONTROL(TIMER_4_BASE, 8);
TOWR_ALTERA_AVALON_PIO_DATA(LED PIO BASE, pattern_2_4);
n_pattern = pattern_2_4;

}

void handle timer5 interrupts () {
TOWR_ALTERA AVALON_TIMER_STATUS (TIMER 5_BASE, 0);
IOWR_ALTERA_AVALON_TIMER_CONTROL(TIMER 5_BASE, 8);
IOWR_ALTERA_AVALON_PIO_DATA(LED_PIO BASE, pattern_l_5};
n_pattern = pattern_l _5;

}

void handle_timeré6_interrupts () {
IOWR_ALTERA_AVALON_TIMER_STATUS (TIMER_6_BASE, 0):
ICWR_| ALTERA AVALON TIMER CONTROL(TIMER 6 BASE, 8):
IOWR . ALTERA AVALON PIO DATA(LED PIO_BASE, pattern_0);
n_pattern = “pattern_0;

static void initial_message()

{

prlntf(\n\n**************************\n")

printf("* Hello from Nios II! *\n");
printf("* Counting from 00 to ff *\n");

prlntf("**************************\n")

static void switching{)

{

switch{section)
{

case 0xl:

pattern 0 = 0x0;
pattern_1 5 = 0x4;
pattern 2 4 = 0x6;
pattern 3 = 0x7;
break;
case 0x2: ,
pattern 0 = 0x0;
pattern_1 5 = 0x2;
pattern_2 4 = Qx6;
pattern_3 = 0x7;
break;
case 0x3:
pattern 0 = 0Ox0;
pattern_ 1 5 = 0x2;
pattern_2 4 = 0x3;
pattern_ 3 = 0x7;
break;
case 0x4:
pattern 0 = 0x0;
pattern_1 5 = 0x1;
pattern 2 4 = 0x3;
pattern_3 = 0Ox7;
break;
case 0x5:
pattern 0 = 0x0;
pattern_1 5 = 0Oxl;
pattern_2 4 = 0x5;
pattern 3 = 0x7;
break;
case (0x6:
pattern 0 = 0x0;
pattern_1 5 = (Ox4;
pattern 2 4 = 0x5;
pattern_3 = 0x7;
break;

}

static void load_1()

{]
IOWR ALTERA_AVALON_TIMER_PERIODL(TIMER_l_BASE, duration.d[0]
IOWR_ALTERA AVALON TIMER PERIODH(TIMER 1 BASE, duration.d[1]

}

static void load 2()

{ 3
IOWR ALTERA AVALON TIMER PERIQDL(TIMER 2 BASE, duration.d[0

IOWR_ALTERA AVALON TIMER PERIODH(TIMER 2 BASE, duration.d[l

[

65

e —

static void load_3()
{
IOWR_ALTERA AVALON _TIMER _FPERIODL{TIMER_ 3 BASE, duration.d[0]);

\ IOWR . ALTERA AVALON _TIMER PERIODH(TIMER 3_BASE, duration.d[1]):

static void load_4()
{
IOWR ALTERA _AVALON _TIMER PERIODL{TIMER 4 _BASE, duration.d{O]):

IOWR . ALTERA AVALON _TIMER PERIODH(TIMER 4 BASE, duration.d[1]);
}

static void load _5()

{
IOWR_ALTERA_AVALON TIMER _PERIODL(TIMER 5 BASE, duration.d[0]):
IOWR ALTERA AVALON _TIMER PERIODH(TIMER S5S_BASE, duration.d[1])

}
static veid load 6()
{
IOWR ALTERA_AVALON_TIMER PERIODL(TIMER 6 BASE, duration.d[0]):
IOWR“ALTERAuAVALON_TIMER_PERIODH{TIMER 6 BASE, duration.d[1]):
) 0
//static void load 7()
e
/7 IOWR_ALTERA_AVALON_TIMER_PERIODL(TIMER_BASE, duration.d{0]);
/7 IOWR_ALTERA_AVALON_TIMER_PERIODH(TIMER”BASE, duration.df1]1}:
/7%
static void fire()
{
TOWR_ALTERA_AVALON_TIMER CONTROL(TIMER_1 BASE, 5);
IOWR_ALTERA_AVALON_TIMER CONTROL(TIMER_2 BASE, 5);
IOWR_ALTERA AVALON_TIMER CONTROL(TIMER_3 BASE, 5);
IOWR_ALTERA AVALON TIMER CONTROL(TIMER 4 BASE, 5):
IOWR_ALTERA_AVALON TIMER CONTROL{TIMER 5 BASE, 5);

IOWR_ALTERA AVALON TIMER_CONTROL(TIMER_6_BASE, 5);

// IOWR_ALTERA AVALON TIMER_CONTROL (TIMER_BASE, 5);

}

static void leocading(}
{

duration.l durtn = 0;
// Segment 1 //
duration.l _durtn = adj_To_1;

load 1():

if (flag != 0} // It is odd section //

66

else

}
fire():

int main{void)

{

/7 FILE * lcd;

/7

/7

1/

//

//

/7

//

//

//

/7

Segment 2 //

duration.l _durtn =

load 2();
Segment 3 //
duration.l_durtn
load_3();
Segment 4 //

duration.l durtn =

load 4();
Segment 5 //
duration.l durtn
load 5();
Segment 6 //
duration.l_durtn
load_6();

Segment 2 //
duration.l durtn
load 2():
Segment 3 //
duration.l_durtn
load_3():
Segment 4 //
duration.l_durtn
load 4():
Segment 5 //
duration.l_durtn
leoad 5(3;
Segment 6 //
duration.l_durtn
load_6{):

//unsigned long int sine_fen{);

count = 0;
lastent
sec.num
deg = 0;
int_cnt = 1;

1;
0;

67

duration.l_durtn
durati?n.l_durtn
duration.l durtn
duration.l durtn

duration.l durtn

// It is even

duration.l_durtn
duration.l_durtn
duration.l_durtn
duration.l_durtn

duration.l_durtn

+ adj_Ta:

+ adj_Tb;

+ adj_To_2;

+ adj_Tb;

+ adj_Ta:

section //

+ adj_Tb:

+ adj_Ta;

+ adj_To_2;

+ adj_Ta;

+ adj_Tb;

/7 int_cnt = 0;

/* Initial message to output. */

initial_message():
TOWR_ALTERA_AVALON_PIO_DATA(LED_PIO BASE, 0x0c);

alt_irq_register (TIMER_IRQ, NULL, (void*)handle_timer_interrupts);

//duration.l_durtn= 0x2faf080;
duration.l_durtn= (unsigned long int}Ts;

IOWR_ALTERA AVALON_TIMER_PERIODL(TIMER BASE, duration.d[0]):
IOWR_ALTERA_AVALON_TIMER_PERIODH(TIMER BASE, duration.d[1]);

IOWR_ALTERA AVALON_TIMER_CONTROL (TIMER BASE, 7);
alt_irq_register(TIMER_IRQ, NULL, (void*)handle_timer_ interrupts):

/* initialization */

alt_irqg register(TIMER 1 IRQ, NULL, (void*)handle_timerl_interrupts);
alt_irq_register (TIMER_2 IRQ, NULL, (void*}handle_timer2 interrupts);
alt_irq register (TIMER_3_IRQ, NULL, (void*)handle_timer3 interrupts);
alt_irq register(TIMER 4 IRQ, NULL, (void*)handle_timer4 interrupts);
alt_irgq_register{TIMER_5_IRQ, NULL, (void*)handle_timer5_ interrupts);
alt_irqg register (TIMER 6 IRQ, NULL, (void*)handie_timer6_interrupts});

/! IOWR_ALTERA_AVALON PIO_DATA(LED_PIO_BASE, pattern 0);
n_pattern = 0;
ent = 0;

//red_flag = 0;
deg = (24 *count) + 4;
rad_deg = deg * rad;

[

sec.num {deg/60) + 1;

i

adj_deg rad_deg - (sec.num -1)*pi by 3;
adj_angl = pi_by 3 - adj_deg;

Ta (unsigned long int) (sin(adj_angl) *Ts);
Tb (unsigned long int) (sin(adj_deg) *Ts):
To = (unsigned long int)Ts - Ta - Tb ;

I

adj_To_2 = To >> 1;
adj To_ 1 = To >> 2;
adj_Ta = Ta >> 1;
adj_Tb = Tb >> 1;

section = sec.num;

flag = (char) (sec.bits.last);
switching();

loading(};

68

printf("%d %4 %4 %4 %u %u %u\n", sec.num, flag,
deg,pattern,adj_to_E, adj_Ta, adj_Tb);

/7 IGWR_ALTERA_AVALON_PIO_DATA(LED_PIO_BASE, pattern_0);
n_pattern = 0;

//TIMER -> periodl = dur_0_6.d[0];
//TIMER -> periodh = dur 0 6.d[1];
//TIMER -> status.bits.TO = 0;
//TIMER -> control.bits.ITQ = 1;
//TIMER->control.bits.START = 1;

/* Continue 0-ff counting loop. */

while(1)
{

if (lastcnt != count)
{
lastcent = count;
if (count >= 15)
{
count = 0;
lastent =0;
}

IOWR_ALTERA_AVALON_PIO_DATA(LED_PIO_BASE, pattern 0);
n_pattern = 0; '

switching{();
loading():

deg = {24 *count) + 4;

rad _deg = (float)deg * rad;
sec.num = (deg/60) + 1;
adj_deg = rad deg -(float) (sec.num -1)*pi by 3;

adj_angl = pi_by 3 - adj_deg;

Ta = (unsigned long int) (sin(adj_angl)*Ts);
Tb = (unsigned long int) (sin(adj_deq)*Ts);
To = (unsigned long int)Ts - Ta - Tb ;:
adj_To_2 = To >> 1;

adj_To_1 = To >> 2;

adj_Ta = Ta >> 1;

adj Tb = Tb >> 1;

c_deg = deg;
section = sec.num;
flag = (char) (sec.bits.last};

//switching();

69

//loading{();
// count_all(lcd });
//printf ("%d %4 %d %d %u %u %u\n", sec.num, flag, deg,pattern,

adj_To_2, adj_Ta, adj_Th):

}

return 0;

70

References

[1]Ned Mohan, “Electric Drives, An Integrative Approach”, MNPERE Minneapolis,
2001, pp7-1.

[2]Harold W.Gingrich, “Electrical Machinery, Transformers, and Controls”, Prentice-
Hall, Inc., 1979, pp231. |
[3]JNed Mohan, “Electric Drives, An Integrative Approach”, MNPERE Minneapolis,
2001, ppli-1.

[4]Mohan, Undeland, Robbins, “Power Electronics-Converters, Applications and
Design”, John Wiley & Sons, INC., 2003, pp203.

[5]Bin Wu, “High-Power Converters and AC Drives”, John Wiley and Sons, INC., 2006,
pp 6.3. |
[6]Microchip, “VF Control of 3-Phase Induction Motor Using Space Vector
Modulation”, AN955, 2005, ppl.

[7]Hein Willi Van Der Broeck, Hans-Christoph Skudelny and Georg Viktor Stanke,
“Analysis and Realization of a Pulsewidth Modulator Based on Voltage Space Vector”,
IEEE Transaction on Industry Applications, Vol. 24, No. 1, January/February 1988,
ppl43.

[8]D.Rathnakumar, J.Lakshmana Perumal and T.Srinivasan, “A new Soﬁware

Implementation of Space Vector PWM?”, Proceedings IEEE SoutheastCon, 2005, pp131.

71

[9]Clive “Max” Maxfield, “The Design Warrior’s Guide to FPGAs”, Newnes, 2004,
pp95, pp229.

[10]Michel Cosnard, Denis Trystram, “Parallel Algorithms and Architectures”,
International Thomson Computer Press, 1995, pp22.

[11] Douglas Gard, “Digital Signal Processor Architecture”, US patent 5954811, 1999,
pp20.

[12]Theerayod Wiangtong and Prasoot Dechsuwan, “Unified Motor Controller Based on
Space Vector Modulation Technique”, IEEE International Symposium on Circuit and
System, 2006, pp5635.

[13]Rui Wu, Donghua Chen and Shaojun Xie, “A Three-Dimentional Space Vector
Modulation Algorithm in A-B-C Coordinate Implemented By a FPGA”, IEEE 32™
Annual conference of Industrial Electronics Society, 2005, pp1071.

[14]Su Chen and Gera Joos, “Symmetrical SVPWM Pattern Generator Using Field
Programmable Gate Array Implementation”, 17" Annual IEEE Applied Power
Electronics Conference and Exposition, 2002, pp1004,

[15]Guijie Yang, Pinzhi Zhao and Zhaoyong Zhou, “The Design of SVPWM IP Core
Based on FPGA”, The 2008 IEEE Conference on Embedded Soﬁware ans System
Symposia, 2008, pp191.

[16] Zhaoyong Zhou and Tiecai Li, “Design of a Universal Space Vector PWM
Controller Based on FPGA”, IEEE 19™ Annual IEEE Applied Power Electronics
Conference and Exposition, 2004, pp1968.

[17]Bin Wu, “High-Power Converters and AC Drives”, John Wiley and Sons, INC.,

2006, pp 6.1.

72

[18]Zainalabedin Navabi, PH.D., “Embedded Core Design with FPGAs”, McGraw-Hill,

2007, pp217, pp391.

[19]Bin Wu, “High-Power Converters and AC Drives”, John Wiley and Sons, INC,,
2006, pp6.1-pp6.13.

[20]Altera Corporation, “Nios II Hardware Development Tutorial”, Nios II Applications,

2007, ppl-1 -ppl-41.

73

