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ABSTRACT 

This study presents an on-street parking model for downtowns in urban centers 

that incorporates the often-neglected parking demand of commercial vehicles. The 

behavior of truck deliveries is distinctly different from commuter parking: trucks do not 

cruise for parking spaces when parking is saturated, instead they are more likely to 

double-park near their destinations and occupy a travelling street lane.  

The study generalizes the downtown on-street parking model from Arnott and 

Inci (2006) to investigate the relationship between commercial and passenger vehicles’ 

parking behaviors, and provide tools for policy makers to optimize the trade-offs in 

parking space allocation, pricing, and network congestion. The social optimum can be 

obtained by solving a nonlinear optimization problem.  

The model is applied to a case study of downtown Toronto. It is shown that 

developing an inclusive policy, one that captures the effect of all road users including 

commercial vehicles, leads to considerable efficiency gains. 
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1 INTRODUCTION 

As the rate of urbanization increases, societies struggle to develop policies to 

make the most efficient use of space to cope with congestion. Parking management is 

one such policy. Poorly implemented parking policies can lead to “cruising” for 

parking spaces, which can account for more than 30% of downtown traffic in some 

cases (Shoup, 2005). On the other hand, parking pricing strategies can be more 

effective than road pricing strategies because of a greater public acceptance. The 

effectiveness of parking policies can also be enhanced by such engineered technologies 

as real time information systems (e.g. Cao and Menendez, 2015) like SFpark.org or 

data-driven parking pricing (Qian and Rajagopal, 2013; Mackowski et al., 2015).  

Researchers have developed analytical means of evaluating trade-offs in pricing, 

capacity, information technologies, and spatial-temporal allocation of parking spaces 

with respect to their welfare effects on cruising, traffic congestion, transit use, and 

activity patterns, among others. However, urban freight is largely neglected in these 

studies, despite the significant differences in freight parking use patterns from 

commuter patterns, the high demand for freight parking or loading/unloading, and the 

exacerbated effects that truck delivery inefficiencies have on multiple aspects of urban 

sustainability—congestion, safety, air quality, etc. (e.g. Chow et al., 2010; You et al., 

2015). In a recent study of freight parking demand in New York City, Jaller et al. 

(2013) confirmed that parking policies often overlook urban freight. 

Urban freight parking needs are inherently different from commuter parking. 

Unlike commuters, delivery trucks typically need spaces to temporarily park to load or 

unload goods at destinations in the central business district. Trucks take up more space, 

require close proximity to destinations (Tipagornwong and Figliozzi, 2015), and require 
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access routes to parking locations with greater turning radii. For example, parcel 

delivery services like FedEx, UPS, and Purolator accounted for more than $1.5M in 

parking fines in Toronto in 2006 (Haider et al., 2009). Jaller et al. (2013) highlight a 

list of example parking policies available to policy-makers: parking management 

systems, car-share provision, in-lieu fee, maximum parking standard, parking freeze, 

residential parking permits, transferable parking rights, variably priced parking, among 

others. These policies typically overlook freight or commercial vehicle parking 

demand.  

In a focus group survey of thirteen industry sectors, Morris et al. (1998) 

identified parking as one of the key transportation barriers for freight mobility. Focus 

groups indicated congestion, inadequate docking space, inadequate curb space for 

commercial vehicles, and oppressive parking regulations as examples. 

Recommendations included off-peak deliveries, reducing passenger vehicle traffic, 

improving mass transit to reduce private passenger vehicles, creating “truck only” areas 

like the garment district in New York City, using integrated information systems, or 

introducing consolidation centres outside the city. While some strategies like off-peak 

deliveries have been studied further (e.g. Holguín-Veras et al., 2011), there are 

generally no analytical downtown parking models that consider freight delivery 

activities. The few efforts that do exist are either traffic simulation-based (Nourinejad 

et al., 2014) or do not consider equilibrium interactions of truck deliveries and 

passenger parking (Tipagornwong and Figliozzi, 2015). As such, many of the 

recommendations or issues in urban freight and city logistics related to parking cannot 

be analytically addressed.  

I propose a downtown on-street parking equilibrium model that incorporates the 

effects of urban freight. The model generalizes a state-of-the-art on-street parking 

model (Arnott and Inci, 2006) to include effects of space allocation for truck deliveries, 
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truck double parking, and consequences in traffic flow capacities. To the best of my 

knowledge, this is the first parking equilibrium model that considers all these trade-

offs. I then apply the theoretical model to a case study of downtown Toronto to support 

first-best and second-best space allocation policies for truck deliveries. The model can 

be easily customized to other downtown regions around the world to support similar 

policy recommendations. 
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2 LITERATURE REVIEW 

Analytical commuter parking models are relatively new compared to other 

transportation models. Some of the earliest models of note examined the dual nature of 

parking as a private and public good. Glazer and Niskanen (1992) noted that 

economists (e.g. Vickrey, 1954) generally assumed curbside parking to be a private 

good to justify marginal cost pricing. On the contrary, the authors demonstrated that 

insufficient parking spaces lead to cruising behavior, which results in increased costs 

for both travelers looking for parking as well as in-transit travelers. When the roadway 

is sub-optimally priced or free, there should be a positive lump sum parking fee that 

covers that cost.  

Another feature of the dual nature of parking observed by Arnott et al. (1991) 

and Anderson and de Palma (2004) is that the pricing by a market of private operators 

is both monopolistic and competitive. Each operator sets the price as profit-maximizing 

due to the all-or-nothing demand for a single space (this behavior has been empirically 

confirmed by Kobus et al., 2013), but is competitive with other parking spaces for a 

user. Because operators may ignore the costs they impose on cruising, it is possible that 

the competitive pricing may result in welfare reduction relative to no pricing at all.  

Arnott et al. (1991) used Vickrey’s (1969) bottleneck congestion model to 

derive insights on the spatial and temporal nature of parking pricing. When parking is 

free, the authors showed how driver behavior to naturally park “outwards”—occupy 

spots in order of decreasing accessibility—leads to increased inefficiencies. Time-

varying road pricing may eliminate queueing and reduce schedule delay costs, but 

distance-based parking pricing is needed to induce a more efficient “inward” parking 

behavior. They concluded that it is easier to implement an efficient parking fee policy 

than efficient road tolling policy. Their bottleneck model of parking has been extended 
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by Zhang et al. (2008) to consider both morning and evening commutes, by Zhang et al. 

(2011) to investigate the efficiency of parking permits, by Qian et al. (2012) to examine 

parking clusters, and by Yang et al. (2013) to add capacity constraints and parking 

reservations. Fosgerau and de Palma (2013) studied the effects of early bird specials 

with time-varying parking pricing. While Lam et al.’s (2006) work is not directly a 

bottleneck parking model, they considered departure time choice at a network level 

using variational inequalities. The model requires route enumeration, which makes it 

difficult to apply to large scale study areas. 

Arnott and Rowse (1999) used a circular city structure to analyze the 

randomness of parking availability and cruising to examine dynamic parking pricing 

and justify parking information systems. The model structure resulted in non-unique 

equilibria, however, and required a number of assumptions including ignoring traffic 

congestion. Anderson and de Palma (2004) incorporated cruising in a simpler model to 

arrive at several major conclusions. First, the socially optimal parking configuration is 

independent of the cost of cruising. However, the equilibria of both unpriced parking 

and privately operated parking have smaller optimal parking spans as cruising costs 

increase, though the price of parking is always better off than the unpriced parking.  

Arnott and Inci (2006) first introduced a parking equilibrium model with traffic 

flow behavior to explicitly measure cruising effects. They found that regardless of the 

curbside parking capacity, it is efficient to price the spots to the point where cruising 

can be eliminated without parking becoming unsaturated. On the other hand, if pricing 

is fixed, then it is second-best optimal to increase the number of curbside spaces until 

cruising is eliminated without parking becoming unsaturated. 

In more recent years, research on parking has shifted to interactions between 

multiple decision-makers. Calthrop and Proost (2006) studied curbside parking in the 

presence of off-street parking using a Stackelberg game with a single garage operator 
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as a follower. Arnott (2006) extended his earlier traffic flow explicit parking model to 

include spatial competition between parking garages and curbside parking under a 

public authority. The study includes a variant model that accounts for mass transit, 

allowing policy-makers to evaluate trade-offs between system-wide transit designs and 

parking policies. Several conclusions were made: competition between parking 

operators determines the full price of parking; cruising costs adjust the curbside 

parking pricing to match the garage parking; increasing saturated curbside parking 

prices reduces cruising and traffic congestion; mass transit can significantly affect 

second-best parking policy, which can be exploited by considering maximum garage 

parking standards (done so in Boston, New York, and San Francisco). Arnott and 

Rowse (2009) illustrated the model with a detailed numerical example.  

The two leading analytical parking model structures in the literature appear to be 

Arnott and Inci (2006) model and the Vickrey bottleneck parking model, each with 

their own benefits and limitations. Neither class of models currently deals with truck 

delivery behavior. As a consequence, we cannot evaluate the effects of congestion 

impacts between trucks, personal in-transit vehicles, cruising vehicles, and double-

parking vehicles; curbside space capacity for trucks; time windows for deliveries; 

integrated information systems or advanced connected truck technologies; or 

consolidation centers. In this study, Arnott and Inci (2006) model is generalized to 

include truck traffic and delivery behavior. It turns out this generalization is not a 

trivial matter (i.e. adding a second class) as the behavior and measurement of 

consequences are quite different for trucks. 

  



 7 

3 THE PROPOSED GENERALIZED MODEL 

The model is developed based on Arnott and Inci (2006) downtown parking and 

traffic congestion model with a key extension made to consider commercial vehicles 

parking. The model is chosen to allow policy makers to control the double-parking 

behavior of CVs along with the cruising behavior of passenger cars. In the next four 

sections I describe the different parts of the model. 

3.1 Assumptions and Downtown Setting Description 

Before describing the proposed generalized model, it is important to mention a 

few notes to help distinguish between passenger cars and commercial vehicles as they 

are intended in this study.  

First, the size of commercial vehicles and their maneuvering capabilities are quite 

different from passenger cars, and it is sensible that we distinguish between the size of 

the typical curbside parking spaces available for passenger cars and those required for 

commercial vehicles. In this study I consider only light commercial vehicles for which 

curbside parking is more applicable than the loading/unloading docks. The latter are 

predominantly meant for larger vehicles with different types of cargo and with much 

longer parking periods at the destination. 

With this perspective in mind, light commercial vehicles are still different from 

passenger cars and would require special parking spaces; therefore I assume that for a 

specific curbside parking space it would be necessary to assign it to either type of these 

vehicles. To distinguish between passenger and commercial vehicle parking, I denote 

the number of passenger cars parking per unit area as 𝑃! and the number of commercial 

vehicles parking as 𝑃!.  

Another important note is the distinction between passenger car and commercial 

vehicle behavior when curbside parking spaces are fully occupied. In such case, 
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passenger car drivers typically cruise around the area until an available space is found. 

This particularly occurs when curbside parking is underpriced, as it makes economic 

sense to search for cheap parking spaces.  

Commercial vehicles, on the other hand, do not cruise for parking. Due to the 

need to load or unload goods, if no parking spaces were immediately available in close 

vicinity to their destination, commercial vehicles will resort to double-parking as the 

cheapest choice available. This major difference is incorporated in the model.  

(CNBC,	2015)

(Daily	news,	2014)

 

Figure 1 Trucks double-park near its destination 

 

The term double-parking typically indicates a parking situation in which the 

truck stops to park in a lane designated for travelling vehicles and next to an occupied 

parking lane as indicated in the image above. However, the term could also be extended 

to cover similar situations in which trucks illegally stop to park in a travelling lane that 

is not necessarily being next to an occupied curbside parking as demonstrated in the 

image below. In both cases the truck occupies a travelling lane, which in this study is 

considered as a lane drop that creates a bottleneck in the traffic flow as will be 

discussed in later sections. In should be noted in this respect that a lane drop from four 
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lanes to three lanes would have different effect than lane drop from three lanes to two 

lanes. This is further addressed in the sensitivity analysis in section 5.3.1.3. 

 

Lastly, whereas passenger car demand is elastic to parking and traffic costs, 

truck deliveries are not so elastic (Tipagornwong and Figliozzi, 2015). The trucking 

company transfers that additional cost to the receiver, who in turn may transfer it to the 

customer, so as a result the freight demand is fairly inelastic.  

 

 

 

 

 

 

(Toronto, 2015) 

 

(Chicago, USA) 
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As I make clear these notes, I proceed with describing the model’s assumptions 

and variables. The model assumes a downtown area that features a Manhattan style 

street network with city blocks of side length 𝑏 and street width equal to 𝑤, where 

parking is provided uniformly on-street. Table 1 below shows an initial set of variables 

used to describe the different types of vehicles travelling on downtown streets. 

 

 

 

 

 

 

 

 

b

b
w

b   length and width of block  
w  road width 

  
City block

Street

Figure 2 Downtown features a Manhattan street network 
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Table 1 Set of variables describing travelling vehicles 

Notation Description 

𝐷! Passenger car trip demand per unit time-area (veh/hr-mi2) 

𝐷! Commercial vehicles trip demand per unit time-area (veh/hr-mi2) 

𝑇! Stock of in-transit passenger cars per unit area (veh/mi2) 

𝐶 Stock of cruising passenger cars per unit area (veh/mi2) 

𝑇! Stock of in-transit commercial vehicles per unit area-time (veh/mi2) 

𝐻 Stock of double-parking commercial vehicles per unit area-time (veh/mi2) 

𝑃! Parking spaces allocated to passenger cars per unit area (space/mi2) 

𝑃! Parking spaces allocated to commercial vehicles per unit area (space/mi2) 

𝜃 
Ratio of a commercial vehicle parking space to that of a passenger car parking 

space. 

𝑚! 
Distance travelled by passenger cars in downtown before arriving to destination 

(mi) 

𝑚! 
Distance travelled by commercial vehicles in downtown before arriving to destination 

(mi) 

𝑙! Parking duration of passenger cars (hr) 

𝑙! Parking duration of commercial vehicles (hr) 

𝜌! Value of time of passenger cars ($/hr) 

𝜌! Value of time of commercial vehicles ($/hr) 

For passenger cars, the demand for travel per unit area is 𝐷!, and drivers are 

assumed to have a homogeneous value of time 𝜌!. They must travel a distance 𝑚! 

through the downtown before arriving to their destinations. 𝑇!  is the stock of passenger 

vehicles in-transit per unit area until they arrive to their destinations. Once there, they 

park for a period of time 𝑙! if parking is available. Otherwise, they cruise until a space 

is available. 𝐶 is the stock of cruising vehicles per unit area.  

Commercial vehicles have different travel behavior and therefore another set of 

variables (𝐷! ,𝜌! , 𝑙! ,𝑚! ,𝑇!) is used to identify the above characteristics. Cruising is only 
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recognized for passenger cars and the stock of double-parking vehicles per unit area 𝐻 

is only considered for commercial vehicles. 

With the introduction of these variables, we are able to distinguish between four 

types of travelers that make up the traffic composition in the streets of the downtown. 

First, for passenger cars we have vehicles in-transit to their destinations 𝑇! and vehicles 

cruising for parking 𝐶. Second, for commercial vehicles we have vehicles in-transit to 

destination 𝑇!  and other vehicles 𝐻 that occupy part of the street space by double-

parking. Finally, there are two other types of vehicles 𝑃! and 𝑃! that occupy a non-

travelling part of the street space. 

3.2 Travel congestion  

Travel is subject to flow congestion and in this section I aim to distinguish 

between the congestion effects that every type of travelling vehicles (𝑇! ,𝑇!,𝐶,𝐻) 

contribute to the traffic. However, it is suitable to first review key concepts related to 

traffic flow models. 

3.2.1 Traffic Flow Models 

Traffic flow models are used in planning, designing, and in monitoring traffic 

operations. The main objective of these models is to provide a generalized 

mathematical representation of the relationship between key traffic stream 

characteristics. (May, 1990) described three key traffic flow characteristics that could 

be used to explain particular traffic conditions: flow, speed, and density. 

Flow (q) is the number of vehicles passing a specific point in a given period of 

time in a single lane. The flow is expressed as an hourly rate (veh/hr/lane). A unique 

flow parameter is the maximum flow (qm). Speed, commonly taken as the space-mean 

speed and it represents the average rate of motions (mi/hr). Two unique speed 
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parameters are the free-flow speed (uf) and the optimum speed (uo). The optimum speed 

occurs under maximum flow condition while free-flow occurs when the driver has the 

liberty of driving at the desired speed without being hindered by other vehicles. Density 

(k) is the number of vehicles occupying a section of roadway in a single lane. Density 

is expressed per mile and per lane (veh/mi/lane). Two unique density parameters are the 

jam density (kjam) and the optimum density (ko).  The jam density occurs when both the 

flow and the speed approach zero, while the optimum density occurs under the 

maximum flow. 

A number of traffic flow models have been proposed in a continuous effort to 

represent the relationship between the key traffic flow characteristics. They are 

generally classified between single-regime models and multi-regime-models. 

3.2.1.1 Single-Regime Models 

Daiheng (2015) and May (1990) explain single-regime models that consider one 

mathematical expression to cover the complete range of flow conditions which includes 

free-flow and congested flow conditions. In this part, these models are briefly 

reviewed, while the next section discusses multi-regime models. 

Greenshields proposed a linear speed-density relationship and used a decreasing 

function expression to indicate this relation. The intercepts were intuitively identified 

at both ends, when the density approaches zero the speed approaches the free-flow 

speed (uf). And as the density increases, speeds are reduced until in reaches a standstill 

situation where the speed is equal to zero, and this occurs when the density reaches the 

maximum value (kjam) (Daiheng, 2015).  

𝑢 =  𝑢! −
𝑢!
𝑘!"#

𝑘 
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Using the identity rule of traffic flow that is 𝑞 = 𝑘 × 𝑢, one could derive the 

flow-density relationship from Greenshields model as: 

𝑞 = 𝑢! 𝑘 −
𝑘!

𝑘!"#
 

The above relation indicates a parabola in which under very low density 

conditions the flow approaches zero and the speed approaches free flow speed. And as 

the flow increases, density increases while the speed is decreasing. When optimum 

density is reached, flow becomes maximum (May, 1990). 

Similarly the flow-speed relationship could be obtained using Greenshields 

model as follows: 

𝑞 = 𝑘! 𝑢 −
𝑢!

𝑢!
 

While Greenshields model is ideal for illustration purpose, field observations 

made by transportation study centers has shown that the observed optimum density 

values are not compatible with the model which suggests that 𝑘! =
!!"#
!

. It was also 

found that the speed does not decrease in a linear manner and that the free flow speed is 

sustainable for some time even as the density continue to increase (Daiheng, 2015).  

Other single-regime models are proposed, for example Greenberg assumed a 

nonlinear speed-density model of the following form, however, a disadvantage of this 

model is that the free-flow speed is infinity: 

𝑢 = 𝑢! ln
𝑘!"#
𝑘  

Underwood proposed a model of the following form, however while the free-

flow speed is not infinity, the speed never reaches zero and jam density is infinity 

(May, 1990): 
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𝑢 = 𝑢!𝑒
!!

!! 

Northwestern University researchers proposed the following s-curve speed-

density curve, however the speed still does not go to zero as the density approaches the 

jam density: 

𝑢 = 𝑢!𝑒

!!

! !
!!

!

 

Drew proposed a model based on Greenshields model but with an additional 

parameter n. Varying the parameter n, creates a family of models that includes 

Greenshields model when n=1: 

𝑢 = 𝑢!(1−
𝑘

𝑘!"#

!!!
!
 

When compared to data collected from the field by transportation study centers, 

each of these models showed some variances at different portions of the data set. For 

example while some models showed good fit with the free-flow side, it was not in 

harmony with the capacity part.  

3.2.1.2 Multi-Regime Models 

Some discontinuity was evident in the traffic relationship data sets collected 

from the field and therefore several researchers have proposed multi-regime models 

with separate mathematical formulations representing different portions of the density 

data set, and additional parameters to distinguish different traffic conditions. 

Daiheng (2015) has presented some of the most prominent multi-regime model 

as compared in the following table: 
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Multi-regime Model Free-flow Regime Transitional Regime Congested-Flow 
Regime 

Edie model 

𝑢 = 54.9𝑒!! !"#.! 

(𝑘 ≤ 50) 
- 

𝑢 = 26.8 ln
162.5
𝑘  

(𝑘 ≥ 50) 

2-regime linear 
model 

𝑢 = 60.9− 0.515𝑘 

(𝑘 ≤ 65) 
- 

𝑢 = 40− 0.265𝑘 

(𝑘 ≥ 65) 

Modified Greenberg 
model 

𝑢 = 48 

(𝑘 ≤ 35) 

- 
𝑢 = 32 ln

145.5
𝑘  

(𝑘 > 35) 

3-regime linear 
model 

𝑢 = 50− 0.098𝑘 

(𝑘 ≤ 40) 

𝑢 = 81.4− 0.913𝑘 

40 < 𝑘 ≤ 65 

𝑢 = 40− 0.265𝑘 

(𝑘 > 65) 

 

Multi-regime models generally provide better fit to empirical observations, 

however, as noted by May (1990) there is some difficulty in determining the breakpoint 

between regimes.  

Daiheng (2015) notes that a further advanced step in representing the speed-

density relationship and the associated fundamental traffic flow relationships is to 

consider the speed as a distribution at each density level. By doing so it is possible to 

account for the scattering effect that occurs in real-world data and effectively providing 

a stochastic relationship. As such the speed-density relationship could be written as per 

the following generic form where omega (ω) is a distribution parameter and is 

dependent on the value of the density k at each point: 

𝑢 = 𝑓(𝑘,𝜔 𝑘 ) 
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3.2.2 Travel Congestion in the Model 

Greenshields model is ideal for illustration purpose and it was adopted in the 

study to represent the traffic flow relationship. The relationships are applied to 

determine the traffic state but with some modifications to account for travelers’ types 

discussed earlier.  

Consider the set of variables in Table 2 below which describe the traffic state. 

Table 2 Set of variables describing traffic state 

Notation Description 
𝑣 Travel speed (mi/hr) 

𝑣! Free flow speed (mi/hr) 

𝑡 Travel time per unit distance (hr/mi) 

𝑡! The free flow travel time (hr/mi) 

𝑘 Density per unit area (veh/mi2) 

𝑘! Jam density per unit area (veh/mi2) 

𝛺 Jam density in the absence of curbside parking (veh/mi2) 

𝑃!"# 
Maximum number of parking spaces that could be accommodated by the 

street per unit area (space/mi2) 

𝛼 
Equivalency factor for converting the stock of cruising cars 𝐶 to an 

equivalent in-transit passenger cars 𝑇! 

𝛽 
Equivalency factor for converting the stock of commercial vehicles 𝑇! to an 

equivalent in-transit 

𝛾 
Equivalency factor for converting the stock of double-parked vehicles 𝐻 to 

an equivalent stock of in-transit 

The travel speed 𝑣 can be expressed as 𝑣 =  𝑣! (1− 𝑘/𝑘!), where 𝑣! is the free 

flow travel speed, 𝑘 is the traffic density per unit area, and 𝑘!  is the jam density. 

Accordingly, the travel time per unit distance 𝑡 (which is the reciprocal of the travel 

speed 𝑣 = 1/𝑡) can be expressed as Eq. (1). 
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 𝑡 =
𝑡!

1− 𝑘
𝑘!

 (1) 

The density of cars per unit area 𝑘 can be expressed as the sum of densities of 

the four types of travelers occupying the street space 𝑇!, 𝐶, 𝑇!, and 𝐻. However, before 

we sum them we need to convert these different types of densities to an equivalent in-

transit passenger car density 𝑇! using equivalency factors 𝛼, 𝛽, and 𝛾. The first factor 𝛼 

is used to account for the effect of cruising vehicles. The second factor 𝛽 is used to 

account for the effect of the stock of in-transit commercial vehicles. Finally, the third 

factor γ accounts for the effect of double-parking and I discuss it in the next section. 𝑘 

can be expressed as Eq. (2). 

 𝑘 =  𝑇!+∝ 𝐶 + 𝛽𝑇! + 𝛾𝐻 (2) 

The jam density 𝑘!  is affected by the proportion of the street area assigned to 

parking spaces. The more road space that is allocated to parking, the less is the 

available street area for travelling vehicles. This relation can be modified from Arnott 

and Inci (2006) as follows, where 𝑃!"# is the number of available parking spaces if all 

the street area was allocated to parking (with no area left for travelling cars). 

 
𝑘! = 𝛺 1−

𝑃! + 𝜃𝑃!
𝑃!"#

 (3) 

It can be seen from Eq. (1), (2), & (3) that the travel time per unit distance 

𝑡 𝑇!,𝑇! ,𝐶,𝑃!,𝑃! ,𝐻  is an increasing function of the vehicles’ densities per unit area 𝑇!, 

𝑇!, 𝐶, 𝐻, and is also an increasing function of the stock of assigned parking spaces 𝑃!, 

𝑃!.  
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3.3 Modeling the effect of double-parking 

In Eq. (2), I introduced 𝛾 as a new factor to convert the stock of double-parked 

vehicles to equivalent in-transit vehicles. To estimate the value of gamma, I 

contemplate the effect of double-parking as a temporary lane drop that creates a 

bottleneck in traffic flow and carry a standard bottleneck analysis such as explained in 

May (1990). The outcome of the analysis helps estimate the impact to the traffic 

density in the congested area upstream of the bottleneck.  

Consider for example a three-lane road section, where at one location a vehicle 

stops and double-parks occupying a travelling lane. This incident reduces the capacity 

of the road at this section to two lanes. Consider locations 𝐴,𝐵,𝐶, and 𝐷 shown in 

Figure 3, and assume that the flow at location 𝐴 is equivalent to 2.5 lanes of flow. 

Assuming Greenshield’s relationship holds, the traffic state at location 𝐴 must be on the 

low-density leg of the flow-density curve as shown on Figure 3. At location 𝐶, the 

flow-density curve is different from the three-lane section because it is only two lanes. 

Therefore, the capacity and the jam density are two-thirds of their corresponding values 

on the bigger curve. The traffic flow at this section must drop from 2.5 lanes flow to 

the maximum capacity of the two lanes section. Location 𝐵  just upstream of the 

bottleneck is on the three-lane section. However, it is influenced by the bottleneck so 

the flow on location 𝐵 is equal to the flow on location 𝐶. Since this section represents a 

congested zone it necessarily falls on the right arm of the flow-density curve as shown 

in Figure 3. Location 𝐷 represents the section just downstream of the bottleneck where 

the flow of traffic is still equal to the flow of the bottleneck, but now the traffic is 

travelling again on the three-lane section. Finally, gamma is considered as the ratio 

between the traffic densities at location 𝐵 and location 𝐴 as shown in Eq. (4). 

 𝛾 =
𝑑!
𝑑!

 (4) 
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where: 

dB = density at location B veh/mi 

dA= density at location A veh/mi 

 

For illustration, assume the following numbers are applicable for an urban three-

lane road section in downtown:  

Lane capacity 𝑞!  =  660 vph/lane (or 1980 vph for 3 lanes) 

Free flow speed 𝑢!  =  20 mph 

Jam density 𝑑!"# =  176 veh/mi-lane  (or 528 veh/mi for 3 lanes) 

 
 

density 
d

flow 
q

    3-lane section

   2-lane section

A

 BCD

 B C DA

dA dB

qA

qB=qC

Figure 3 Modelling double-parking effect 
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Assume the Greenshield flow-density relationship in Eq. (5) applies to this 

setting. As described, this example would result in 𝛾 = !"#.!"
!"#.!!

= 4.40. Other lane drop 

scenarios such as 2 lanes to 1 lane lead to 𝛾 = !"#.!"
!".!"

= 5.29, and for 4 lanes to 3 lanes it 

is 𝛾 = !"#.!"
!"#.!"

= 3.99. This gives a fair range for selecting an appropriate factor to apply 

to double-parking vehicle densities.  

 
𝑞 =  𝑢!𝑑 −

𝑢!
𝑑!"#

𝑑! (5) 

where: 

d = traffic density 

u! = free flow speed 

d!"# = jam density 

 

3.4 Demand function 

Passenger car demand per unit area 𝐷! is assumed to be elastic (price sensitive). I 

use the same formula presented in Arnott and Inci (2006) except for the assumptions 

related to the travel time 𝑡, which now incorporates the effect of commercial vehicles 

as well as passenger cars as explained in Section 3.2. A Cobb-Douglas formula of the 

form 𝐷! = 𝐷!𝐹! is used to define the relation between the commuter trip demand and 

the trip price, where 𝐹 is the full trip price and 𝑒 is the demand elasticity with respect 

to price. 

𝐹 consists of three cost components: the in-transit travel time 𝑚!𝑡, the cruising for 

parking travel time 𝐶 !!
!!

, and the parking fee 𝑓𝑙!.Cruising time is set to be the cruising 

stock 𝐶 times the reciprocal of the rate of vacating a parking spot per unit area !!
!!

. 



 22 

The value of time 𝜌! is used to convert the time components to equivalent dollar 

cost. The demand function could therefore be written as Eq. (6). 

 
𝐷! = 𝐷! 𝜌!𝑚!𝑡 + 𝜌!𝐶

𝑙!
𝑃!

+ 𝑓𝑙!
!

 (6) 

 

where: 

𝐷!  = passenger car trip demand per unit time-area (veh/hr-mi2) 

𝐷!  = constant calibrated depending based on actual demand in study area 

𝑚!  = distance travelled by passenger cars in the downtown area to destination (mi) 

𝐶 = stock of cruising passenger cars per unit area (veh/mi2) 

𝑃!  = parking spaces allocated to passenger cars per unit area = stock of cars parked 
(veh/mi2) 

𝑙!  = parking duration of passenger cars (hr) 

𝑓 = on-street parking fee per unit time ($/hr) 

e = elasticity of demand with respect to trip price 

While we have assumed an elastic demand function for passenger cars, the same 

is not valid for freight. It is far less sensitive to the price of parking, as discussed in 

Section 3.1.  

3.5  Equilibrium conditions 

The parking equilibrium is described by a system of equations that considers 

saturated parking in a steady-state traffic flow in an increment of time, as summarized 

in Figure 4. Saturated parking indicates a demand that is high enough such that parking 

spaces remain 100% occupied during the study period, so as soon as one spot is vacated 

it is taken by another cruising car. It has a more explicit effect on the model: since 

100% of spaces are assumed to be occupied, the terms 𝑃! and 𝑃! refer to both number of 

spaces occupied as well as number of spaces available. As mentioned by Arnott and 
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Inci (2006), unsaturated conditions would not have a cruising problem, so we restrict 

ourselves to the saturated setting.  

The steady state flow is defined as a stationary point in a dynamic setting where 

the traffic inflow into the system equals the traffic outflow. The steady state saturated 

parking equilibrium is demostrated in Figure 4 and can be described by four 

equilibrium conditions described in Eq. (7) – Eq. (10), a pair for each type of vehicle. 

 

Figure 4 Saturated parking in a steady state flow 
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For passenger cars 

 

 
𝐷! =

𝑇!
𝑚!𝑡 𝑇!,𝑇! ,𝐶,𝑃!,𝑃! ,𝐻

 (7) 

 

 𝑇!
𝑚!𝑡 𝑇!,𝑇! ,𝐶,𝑃!,𝑃! ,𝐻

=
𝑃!
𝑙!

 (8) 

 

For commercial vehicles 

 𝐷! =
𝑇!

𝑚!𝑡 𝑇!,𝑇! ,𝐶,𝑃!,𝑃! ,𝐻
 (9) 

 

 𝑇!
𝑚!𝑡 𝑇!,𝑇! ,𝐶,𝑃!,𝑃! ,𝐻

=
𝑃!
𝑙!
+
𝐻
𝑙!

 (10) 

 

Eq. (7) and Eq. (9) are state transition conservation conditions. Eq. (7) for 

passenger cars and Eq. (9) for commercial vehicles require the flow of vehicles 

entering the in-transit pool per unit area (𝐷! and 𝐷!) as equal to the flow of vehicles 

exiting the in-transit pool per unit area !
!"

. Since 𝑡 is the travel time per unit distance, 

we multiply it by the travel distance 𝑚 to get the total time spent in-transit.  

Eq. (8) and Eq. (10) describe the dynamic equilibrium. For passenger cars, Eq. (8) 

states that the exit rate from the in-transit pool !!
!!!

 is now considered to be entry rate 

into the cruising for parking pool. And as mentioned earlier, cars will continue to cruise 

until a space is open, so the exit rate from crusing from parking could be defined in 

terms of parking spaces per unit area and parking duration as !!
!!

 (Arnott and Inci, 2006).  



 25 

As shown in Figure 4, !!
!!

 in this case also defines the entry and exit rates from the 

parking pool. 

Eq. (10) defines the dynamic equilibrium condition for commercial vehicles in 

terms of the double-parking behavior of commercial vehicles. The vehicles exiting the 

in-transit pool are ones that have arrived to destination and would require to park, so 

the exit rate from the in-transit pool is !!
!!!

. If parking spaces are not available then they 

double-park near the destination. 𝑃!  is the stock of parking spaces assigned to 

commercial vehicles per unit area and 𝐻 is the stock of double-parking commercial 

vehicles per unit area. Accordingly, the entry rate into the parking pool is !!
!!

, where 𝑙! is 

the average parking duration of commercial vehicles, and the remaining stock for the 

entry rate into double parking is !
!!

. 

3.6 Analysis of social optimum 

Under this model framework, the social optimum can be obtained under either a 

first-best allocation (where the number of parking spaces 𝑃 = 𝑃! + 𝑃! can be set under 

saturated conditions) or in a second-best allocation setting where a policymaker is 

restricted to allocating between 𝑃! and 𝑃! based on only the current set of total parking 

spaces 𝑃. In both scenarios, policymakers can set a parking fee.  

The average cost of a passenger car trip is the sum of four components as shown in 

(Arnott and Inci 2006): the cost of in-transit travel time, the cruising for parking time, 

the cost of parking fee, and the opportunity cost of time at the destination, as shown in 

Eq. (11). 

 
𝐴𝑣𝑒𝑟𝑔𝑎𝑔𝑒 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 𝑐𝑎𝑟 𝑡𝑟𝑖𝑝 =  𝜌!𝑚!𝑡 +  𝜌!𝐶

𝑙!
𝑃!

+  𝑓𝑙! + 𝜌!𝑙! (11) 
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The total cost is calculated by aggregating the average cost of all passenger car 

trips. This is achieved by multiplying the average cost by the flow per unit area !!
!!

. The 

total cost, or social cost, of passenger cars can be written as Eq. (12). 

 

 𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 𝑐𝑎𝑟 𝑡𝑟𝑖𝑝 =  𝜌!𝑇! + 𝜌!𝐶 + 𝑓𝑃! + 𝜌!𝑃! (12) 

 Likewise, the average cost of commercial vehicles is broken-down to four 

components. There is the cost of in-transit travel time, the cost of parking fee applied 

only to the proportion of vehicles that park !!
!!!!

, the cost of the double-parking fine 

which applies only to the proportion of vehicles that double-park !
!!!!

, and finally the 

opportunity cost of time at destination, as shown in Eq. (13). 

 

 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑡𝑟𝑖𝑝

= 𝜌!𝑚!𝑡 + 𝑓𝑙!
𝑃!

𝐻 + 𝑃!
+ 𝑞𝑙!

𝐻
𝐻 + 𝑃!

+ 𝜌!𝑙! 
(13) 

where: 

 𝑞 = double-parking fine per unit time 

In a steady-state environment the constant flow of commercial vehicles per unit 

area 𝐷! is equal to the combined exit rates of parked vehicles !!
!!

 and double-parked 

vehicles !
!!

, as illustrated in Figure 4. Taking the flow as !!!!
!!

 and multiplying it by the 

average cost in Eq. (13), the total cost of commercial vehicles trips is shown in Eq. 

(14). 

 𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑡𝑟𝑖𝑝 = 𝜌!𝑇! + 𝑓𝑃! + 𝑞𝐻 + 𝜌!(𝑃! + 𝐻) (14) 
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Finally, the total social cost of both passenger cars and commercial vehicles is 

the sum of Eq. (12) and Eq. (14), as shown in Eq. (15). 

 𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 = 𝜌!𝑇! + 𝜌!𝐶 + 𝑓𝑃! + 𝜌!𝑃! + 𝜌!𝑇! + 𝑓𝑃! + 𝑞𝐻 + 𝜌!(𝑃! + 𝐻) (15) 

The total social benefit 𝐵 is likewise the sum of passenger cars and commercial 

vehicles benefits 𝐵! = 𝐷!!! 𝑥 𝑑𝑥
!!/!!
! , where 𝐵! = 0 since 𝐷! is a constant.  

The social surplus equals the social benefit minus the social cost as shown in Eq. 

(16).  

 
𝑆𝑆 = 𝐷!!! 𝑥 𝑑𝑥

!!/!!

!

− 𝜌!𝑇! + 𝜌!𝐶 + 𝑓𝑃! + 𝜌!𝑃! + 𝜌!𝑇! + 𝑓𝑃! + 𝑞𝐻 + 𝜌!(𝑃! + 𝐻)  (16) 

In other words, the social optimum in the first-best allocation is the set 

(𝐷!,𝑇!,𝐶,𝑃!,𝑇! ,𝐻,𝑃! , 𝑓) that maximizes the social surplus subject to the equilibrium 

conditions. For second-best allocation, one of the two variables 𝑃! ,𝑃!  is taken out 

since the constraint 𝑃 = 𝑃! + 𝑃!  for an exogenous 𝑃 must be satisfied. The optimization 

problem is written in full in Eq. (17). 
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max

!!,!!,!,!!,!!,!,!!,!
𝐷!!! 𝑥 𝑑𝑥

!!/!!

!

− 𝜌!𝑇! + 𝜌!𝐶 + 𝑓𝑃! + 𝜌!𝑃! + 𝜌!𝑇! + 𝑓𝑃! + 𝑞𝐻 + 𝜌!(𝑃! + 𝐻)  (17a) 

   
 Subject to  

   
 

𝐷! = 𝐷! ∗ 𝜌!𝑚!𝑡 + 𝜌!𝐶
𝑙!
𝑃!

+ 𝑓𝑙!
!

 (17b) 

   
 𝐷! =

𝑇!
𝑚!𝑡 𝑇!,𝑇! ,𝐶,𝑃!,𝑃! ,𝐻

 (17c) 

   
 𝑇!

𝑚!𝑡 𝑇!,𝑇! ,𝐶,𝑃!,𝑃! ,𝐻
=
𝑃!
𝑙!

 (17d) 

   

 𝐷! =
𝑇!

𝑚!𝑡 𝑇!,𝑇! ,𝐶,𝑃!,𝑃! ,𝐻
 (17e) 

   

 𝑇!
𝑚!𝑡 𝑇!,𝑇! ,𝐶,𝑃!,𝑃! ,𝐻

=
𝑃!
𝑙!
+
𝐻
𝑙!

 (17f) 

   

 𝑡 =
𝑡!

1− 𝑘
𝑘!

 (17g) 

 

Eq. (17) is a nonlinear optimization problem with nonlinear equality constraints. 

Due to the strict equality constraints, the problem is solved by finding a vertex that 

maximizes the objective function (17a). With a concave inverse demand function, the 

objective is also concave since the costs are all linear. As a result, the model should 

converge to a global optimum. I employ an interior point method using a commercial 

solver (fmincon) in MATLAB for convenience (further details of solver and hardware 
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settings in Section 5). The unique optimum is empirically verified in the Toronto case 

study in Section 5 (and encourage users of this model to do so as well) by initiating the 

solver with numerous initial guesses to demonstrate that they do indeed all reach the 

same optimum. 

An examination of the objective presented in Eq. (17) indicates that the 

optimization process should tend to clear the stock of double-parking vehicles followed 

by the cruising vehicles as they produce the highest costs. One way they incur higher 

costs compared to in-transit vehicles is through their effect on the traffic density 𝑘 as 

defined in Eq. (2), which adversely affects the travel time 𝑡.  
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4 MODEL VERIFICATION 

I demonstrate that the proposed model is indeed a generalization of the Arnott 

and Inci (2006) model by replicating it as a special case of the proposed model. The 

benchmark example used in Arnott and Inci (2006) is input into this model. I then 

proceed to show that when commercial vehicles are considered, the proposed model is 

capable of incorporating their behavior and provide a more comprehensive view of 

traffic and parking in the downtown. 

4.1 Input parameters 

For comparison purpose I use the same calibration values from Arnott and Inci 

(2006) (Table 2 in their study). It was based on a study-area featuring 64 blocks per 

square mile, and an assumed 58 parking spaces per block, so the total available parking 

spaces per square mile is 3712 spaces. If hypothetically all the street area was assigned 

to parking (with no street area left to travelling cars) then this would yield a max 

number of parking spaces 𝑃!"#  = 11,136. Therefore the ratio of the allocated parking 

area to the total street area is !
!!"#

= !"#$
!!!"#

= 0.33, which is used in Eq. (3) to estimate 

𝑘!.  

Other parameters used in the model include the demand function constant, 𝐷!, 

which is set to 3190.04 when the base trip price is 𝐹 = 15 and 𝛺 = 2667.2 with 30 

percent of cars cruising for parking. The free flow travel speed is assumed to be 20 

mph, which corresponds to a free flow travel time per unit distance of 0.05 hr/mi. And 

finally, the elasticity of trip demand with respect to trip price is 𝑒 =  −0.2. In all 

scenarios I hold the parking fee fixed at 𝑓 = $1/ℎ𝑟 to enable comparison of these 

equilibrium cases. 
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4.2 Results  

Table 3 displays the outcome of the (Arnott and Inci 2006) model in their base 

scenario and the corresponding outcome of the proposed generalized model in the same 

scenario in addition to two other scenarios.  

The base scenario represents a case where no flow of commercial vehicles are 

allowed, i.e. 𝐷! =  0. In such case, the outcomes of both models are shown to be 

identical, and this could be seen by comparing the first two columns of Table 3. This 

test empirically proves that the model is capable of representing the (Arnott and Inci 

2006) as a special case by setting the truck demand to zero.  

In Scenario 1, I now show what happens to the equilibrium if we do model the 

truck delivery behavior. The commercial vehicles are introduced with 𝐷! =  250 𝑣𝑒ℎ/

ℎ𝑟/𝑚𝑖!  and parking period 𝑙! =  0.15 ℎ𝑟  (9 min) and an in-transit travel distance 

between stops of 𝑚! =  0.181 𝑚𝑖𝑙𝑒. In this Scenario 1, I assume no parking spaces are 

allocated to trucks. The proposed model shows that the corresponding density of 

commercial vehicles in-transit per unit area is 𝑇! =  13.34 and the density of double-

parked vehicles per unit area 𝐻 =  37.5 𝑣𝑒ℎ/𝑚𝑖!. Due to the presence of trucks and 

double-parking behavior, the model shows that the new 𝑇! has increased while 𝐶 has 

reduced. This is a direct reflection of the increased trip price from 𝑡 𝑇!,𝑇! ,𝐶,𝑃!,𝑃! ,𝐻  

and makes sense intuitively. The results of Scenario 1 suggest that ignoring trucks 

when they are operating at 250 truck demand compared to 1856 passenger car demand 

(~ 12% of traffic demand) can overestimate cruising by 223% and underestimate travel 

times by 22.8%.  
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Table 3 Comparing Equilibrium Outcome- Base Model vs. Proposed Model 

 

A&I 06 Model Proposed Model 

 

Base Scenario 

No commercial vehicles 

(CVs) considered 

Base Scenario 

No commercial vehicles 

(CVs) considered 

Scenario 1 

CVs considered, but 

no parking assigned 

Scenario 2 

CVs considered, and 

parking assigned to it 

Inputs 

𝑚!     (mi) 2 

𝑙!        (hr) 2 

𝜌!       ($/hr) 20 

𝑡!       (hr/mi) 0.05 

𝐷!    (constant) 3190.04 

𝑃!"#   (space/mi2) 11136 

𝛺      (veh/mi2) 2667.2 

𝐾!      (veh/mi2) 1778.2 

𝑒      (unitless) -0.2 

𝑓     ($/hr) 1 

𝛼      (uniless) 1.5 

𝛽      (unitless) n/a 1.8 1.8 1.8 

𝛾      (uniless) n/a 5.07 5.07 5.07 

𝑚!    (mi) n/a 0.181 0.181 0.181 

𝑙!      (hr) n/a 0.15 0.15 0.15 

𝑃!    (space/mi2) 3712 3712 3712 3692 

𝑃!    (space/mi2) n/a 0 0 20 

𝐷!   (veh/hr/mi2) n/a 0 250 250 

Resulting Equilibrium  

𝐷!   (veh/hr/mi2) 1856 1856 1856 1846 

𝑡    (hr/mi) 0.2275 0.2275 0.2948 0.2768 

𝑇!   (veh/mi2) 844.5 844.5 1094.34 1022.03 

𝐶  (veh/mi2) 361.89 361.89 112.05 215.77 

𝑇!   (veh/mi2) n/a 0 13.34 12.53 

𝐻  (veh/mi2) n/a 0 37.5 17.5 
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 In Scenario 2, I now assign 20 of the 3712 parking spaces to commercial 

vehicles. The corresponding equilibrium shown in the last column of Table 3 shows a 

6.1% reduction travel time 𝑡, 53.3% reduction in truck double-parking, and 92.6% 

increase in passenger car cruising. The above examination shows how the proposed 

model provides a new set of tools for policy makers to evaluate the full effect of 

parking polices on road users and traffic congestion taking into account truck delivery 

behavior. 

In order to exercise policies that can effectively clear the double-parking vehicles 

and cruising passenger cars, I demonstrate in a case study of Toronto how the model in 

Eq. (17) is applied to optimize the social surplus. 
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5 CASE STUDY OF TORONTO PARKING PRICING AND 

ALLOCATION 

Toronto is Canada’s largest economic center and most populous city. Haider et 

al. (2010) carried an extensive analysis for a segment in downtown Toronto and found 

that around 80,000 packages and parcels are delivered to that part of the downtown in a 

given day. The study points to the inadequate supply of infrastructure necessary for the 

freight industry to deliver packages and parcels to consignees in an efficient manner 

without disrupting the traffic.  

In this section I consider part of downtown Toronto shown in Figure 5 to 

demonstrate the application of the model and how useful it could be in creating 

significant gains in social surplus.  

Figure 5 Study area in Downtown Toronto 
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5.1 Field data and assumptions 

The following data is collected from the City of Toronto (either from field 

surveys or from online resources) in June through July of 2015. The chosen area is 

bound by Simcoe St. and Victoria St. from east and west, and Queen St. and Front St. 

from north and south. 

 The study area is almost 0.2923 square miles. Within this perimeter, we can 

measure a total lane length of 19.836 lane miles and if we remove the parts occupied by 

the intersections from this number it becomes 18.845 lane miles. To find the total street 

area multiply this length by the typical lane width in the downtown, which is 0.00211 

miles (3.4m), the total street area is therefore almost 0.0398 square miles (102,890 

square meters).  

According to the city by-law no. 569-2013, the minimum length of a passenger car 

parking space considering parallel parking is 6.7m. I assume that the width of a parking 

space is that of a typical street lane in Toronto downtown, which is 3.4 m. With the 

above information we can find 𝑃!"# by dividing the total street area by the area of a 

single parking space, which generates almost 4,517 parking spaces in the study area 

and when normalized per square mile we get 𝑃!"#  =  15,452 𝑠𝑝𝑎𝑐𝑒/𝑚𝑖!. Assume that 

one-fourth of the street area is allocated to on-street parking so 𝑃 = 15452/4 =

 3863 𝑠𝑝𝑎𝑐𝑒𝑠/𝑚𝑖!.  

𝛺 is calibrated assuming that at jam density the headway distance between vehicles 

is 30 𝑓𝑡  and therefore the jam density per lane per mile stands at 176 vehicles. 

Headway distance is the spacing between the fronts of successive vehicles, usually in 

one lane of a roadway as demonstrated in the image below. The jam headway distance 

is therefore the headway distance that is expected at jam density, the maximum density 

that takes place when the speed of vehicles is zero.  
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In this study, the headway distance is considered 30 feet which is inline with 

default values used in a number of references. For example The Highway Capacity 

Manual HCM 2010 applies a default jam density value of 190 veh/mi/ln, this could be 

translated to a jam headway distance equal to 28.8 feet using the formula: 

𝑘!"# =
5280
𝑑  

 𝛺 can then be estimated as the product of the total lane miles 18.845 and 176, 

and divided by the study area 0.2923, which gives 𝛺 = 11,346.97. 

The demand function constant 𝐷! is calibrated at 3319.8 for the study area 

assuming a base trip price 𝐹 = 15 (following Arnott and Inci 2006). For the on-street 

parking fee in this area I considered the 2015 rate, which is metered using pay-and-

display devices, and charges $4/hr (TPA, 2015).  

For data related to the commercial vehicles, I referred to the Cordon Count Data 

Retrieval System (CCDRS) (DMG, 2015) managed by regional municipalities in the 

Greater Toronto Region and the University of Toronto to obtain an estimated truck flow 

in the study area of 𝐷! = 865 𝑣𝑒ℎ/ℎ𝑟/𝑚𝑖!. 

For the value of time of commercial vehicles (VOTCV), there are a number of 

studies providing estimates. Kawamura (2000) estimated the VOTCV to be US $23.4/hr 

based on stated preference data collected in California. However, this value represents 

(FHWA, 2005) 
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a trucking industry prior to the year 2000, and primarily for long haul trucks. Ismail et 

al. (2009) estimated a value from the Canadian border crossings to be within CAD 

$100/hr to $125/hr. Miao et al. (2014) looked at value of delay and found that the fleet 

operator’s value is in the range of US $94 to $121/hr. Lastly, de Jong et al. (2014) 

estimated the value in The Netherlands and found EUR 59/hr for small trucks. To be on 

the conservative end, I assume a value of CAD $100/hr from Ismail et al. (2009), which 

is in Canadian dollars and coincides with Miao et al. (2014), and on the more 

conservative end.  

In January 2014 new parking enforcement rules went into effect in Toronto, with a 

minimum fixed parking fine of 𝑞 = $150 at busy streets in Toronto according to the 

media (Citynews, 2014). More recently in January 2015, Toronto police have 

introduced a zero tolerance rush hour policy in the downtown, in which police will not 

just issue fines but will also tow every vehicle that parks illegally in downtown during 

rush hours. In response to that the Ontario trucking Association released a statement 

asking the mayor of Toronto to reconsider the enforcement of the policy for delivery 

trucks (CBCnews, 2015). For our case study I assume the cost of a fine is simply the 

$150. 

The average parking duration for commercial vehicles is assumed to be 9 min (0.15 

hr) based on my observation of 10 sampled cases in the study area. Finally, I consider 

the commercial vehicle parking space dimension to follow the requirements of Type B 

of the city by-law no. 569-2013, which is 11 m in length. Using this information we can 

estimate 𝜃, the ratio between the parking space dimensions of commercial vehicle and 

that of passenger cars, as !!
!.!
= 1.64. 

A factor 𝛼 = 1.5 is assumed similar to Arnott and Inci (2006), and for 𝛽, there are 

ample references to estimate this value in accordance with prevailing site conditions in 
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the study area, such as the Highway Capacity Manual (HCM, 2010). I have assumed a 

default value of 1.8 for this factor. 

A number of data sources were used in the case study. For each value the 

relevant source(s) was mentioned when it was first cited in the study. Below is a table 

of the main data sources used in the study: 

Data Data Sources 
Parking spaces and total lane miles in 
the study area  

Field surveys  

Curbside parking charge fee in the study 
area. 

Toronto Parking Authority (TPA, 2015) 

Parking space requirements in the city 
of Toronto 

City by-law no. 569-2013 

Data related to commercial in the study 
area 

Cordon Count Data Retrieval System 
(CCDRS) (DMG, 2015) and  

Value of Time (Kawamura, 2000), (Miao et al., 2014), 
(Ismail et al., 2009), (de Jong et al., 
2014) 

Fines as per new parking enforcement 
rules in Toronto 

(Citynews, 2014) 

 

5.2 Results 

The results of the equilibrium scenario and the two social optimal scenarios are 

presented. For the optimization using Eq. (17), I used MATLAB R2015a on a PC with 

1.7 GHz Intel Core i5 processor and 4GB RAM. The fmincon solver employed an 

interior-point algorithm, with a maximum number of iterations set to1000. To verify 

that the model reaches a global optimum, 10 different initial guesses are used for each 

of the two social optimum scenarios and they all reached the same optimum solutions. 

These are shown in Table 4, along with their run times and convergence details. All 

runs reached the same global optimum solutions. 



 39 

 

Table 4 Sets of initial guesses examined 

 (4a) Initial guesses for the second-best allocation policy 

 

 (4b) Initial guesses for the first-best allocation policy 

Variable 
Starting Points 

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Set 10 

Tp 10 50 50 0 200 400 200 400 800 900 

Tc 10 10 50 0 10 200 200 200 500 800 

H 10 10 50 0 0 150 50 150 200 50 

C 10 10 50 0 0 200 100 200 200 100 

t 0.05 0.05 0.3 0.2 0.06 0.3 0.3 0.3 0.4 0.3 

Pp 10 300 700 1000 3800 600 500 600 2000 4000 

Pc 10 100 400 500 120 1000 40 80 50 50 

f 0 1 3 3 0 5 4 5 6 6 

Iterations 43 16 15 13 8 15 14 16 12 13 

Runtime (sec) 0.31 0.11 0.10 0.09 0.08 0.10 0.10 0.12 0.09 0.09 

 Variable 
Starting Points  

Set 1  Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Set 10 

Tp 10 10 0 10 10 50 50 300 800 0 

Tc 10 10 0 10 10 0 50 200 400 0 

H 10 10 0 10 10 0 50 0 0 0 

C 10 10 0 10 10 0 50 0 0 0 

t 0.05 0.05 0.3 0.05 0.05 0.05 0.1 0.3 0.3 0.1 

Pp 10 200 500 1000 2000 1000 2000 4000 6000 5000 

Pc 10 200 0 1000 2000 0 2000 500 500 2000 

f 1 1 0 2 2 0 1 0 0 0 

Iterations 175 101 38 25 18 50 19 11 21 14 

Runtime (sec) 1.75 0.84 0.28 0.15 0.12 0.39 0.13 0.08 0.12 0.10 
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Table 5 compares the outcome of three cases applied to the study area. In the first 

case, I consider the equilibrium that takes place with current parking rates and the 

allocation of all parking spaces to passenger cars only. Based on our field survey in the 

study area, trucks currently do not have dedicated on-street parking priority in Toronto.  

In the second scenario I apply the model to optimize the social surplus while 

holding the parking spaces fixed. The outcome of such optimization shows how best to 

allocate the available parking spaces between commercial and passenger cars and the 

corresponding optimum parking fees that clears cruising for parking.  

In the last case I discuss a first-best allocation scenario where on-street parking 

spaces are variable and the model is applied to find the optimum allocation of 

passenger car and commercial vehicles parking spaces, as well as the optimum parking 

fees. 
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Table 5  Optimization Results – Social Optimum vs. Equilibrium – Case study 

	
Equilibrium 

Social Optimum Social Optimum 

	

Parking fixed Parking variable 

Inputs 
𝑚!     (mi) 2 
𝑙!        (hr) 2 
𝜌!       ($/hr) 20 
𝑡!       (hr/mi) 0.05 
𝐷!    (constant) 3319.8 
𝑃!"#   (space/mi2) 15452 
𝛺      (veh/mi2) 11346.97 
𝑒      (dimensionless) -0.2 
𝛼      (dimensionless) 1.5 
𝛽      (dimensionless) 1.8 
𝛾      (dimensionless) 4.4 
𝑞   ($/hr) 150 
𝑚!   (mi) 0.181 
𝑙!      (hr) 0.15 
𝜌!     ($/hr) 110 
𝐷!   (veh/hr/mi2) 865 
𝜃   (dimensionless)  1.64  
𝑃 = 𝑃! + 𝜃𝑃!    

(space/mi2) 
3863 3863 - 

𝑃!    (space/mi2) 3863 -	 - 
𝑃!    (space/mi2) 0 -	 - 
𝑓     ($/hr) 4 -	 - 
Solution 
𝑃!∗   (space/mi2) - 3650 4406 
𝑃!∗   (space/mi2) - 130 130 
𝑓∗  ($/hr) - 8.93 2.86 
𝐷!   (veh/hr/mi2) 1932 1825 2203 
𝑇!   (veh/mi2) 233.99 186.93 227.19 
𝐶  (veh/mi2) 442.02 0 0 
𝑇!   (veh/mi2) 9.48 8.02 8.07 
𝐻  (veh/mi2) 129.75 0 0 
𝑡    (hr/mi) 0.0606 0.0512 0.0516 
𝑣			(mi/hr)	 16.5 19.5 19.4 
ΔSS	($/hr-mi2)	

	
+$13,502 +$23,204 
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5.3 Discussion 

In the first case, the equilibrium results show that despite a realized passenger 

car demand of 1932 𝑣𝑒ℎ/ℎ𝑟/𝑚𝑖! compared to truck delivery demand of 865 𝑣𝑒ℎ/ℎ𝑟/

𝑚𝑖! , the resulting stock of road traffic is 𝑇! = 233.99 𝑣𝑒ℎ/𝑚𝑖!  compared with 

𝑇! = 9.48 𝑣𝑒ℎ/𝑚𝑖!. This result is interesting because a typical road traffic count would 

indeed show about 5% truck traffic typically, and in this case we obtain 3.9%. 

However, it turns out that much of the truck demand is being allocated to double-

parking for deliveries.   

The implication of ignoring commercial vehicle on-street parking is evident on the 

relatively high density of double-parking vehicles on the streets with 𝐻 = 129.75 𝑣𝑒ℎ/

𝑚𝑖!. On the other hand, the applied parking fee did not eliminate all the cruising for 

parking as 𝐶 = 442.02 𝑣𝑒ℎ/𝑚𝑖!, which is about 54% of the total road users in the road 

space allocated to travelling. The higher cruising stock in this case is a result of 

ignoring the traffic entering the downtown looking to park in garage parking. 

Incorporating this traffic would reduce the relative proportion of cruising vehicles, for 

example if street parking is comprised of only half the traffic coming to downtown, 

then the actual cruising proportion should be closer to 27%. Since this data is 

unavailable, the actual cruising rate is not considered a valid output of the model.  

The relative proportion of each segment of road users with respect to total road 

users is best demonstrated in Figure 6 below. The first stacked bar represents the first 

scenario, while the other bars represent the optimized scenarios. The height of each bar 

reflects the total number of vehicles that result from each policy. The first bar shows 

the resulting densities of four segments of road users; these are the stocks of in-transit 

passenger and commercial vehicles 𝑇!  and 𝑇!  as well as the stocks of cruising and 

double-parking vehicles 𝐶 and 𝐻. The congestion in this scenario is evident in the total 

height of the bar which indicates the highest aggregate stock of vehicles on the street 
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among the three scenarios, and this in turn has resulted in the lowest travelling speed 

among the scenarios at 16.5 mi/hr.  

 

 

Figure 6 Mixture of road space usage across three scenarios in Toronto. 
 

In the second scenario, the allocation of the fixed parking spaces is optimized, 

resulting in 130 spaces/mi2 assigned to commercial vehicles and 3650 spaces/mi2 to 

passenger cars. Parking fees are also optimized at $8.9/hr. With this policy the travel 

speeds rise to an average of 19.5 mi/hr and the total gain in social surplus compared to 

the initial equilibrium is $13,502 per hour per square mile. Both the cruising and 

double-parking are eliminated.  

 The last case demonstrates the social optimum under first-best allocation, 

where parking spaces are not fixed anymore. Applying the proposed model, the 

optimum passenger car parking spaces is 𝑃! = 4406 𝑠𝑝𝑎𝑐𝑒𝑠/𝑚𝑖! and for commercial 
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vehicles 𝑃! = 130 𝑠𝑝𝑎𝑐𝑒𝑠/𝑚𝑖!. By allowing total parking spaces to increase by 20%, 

the parking fee can be reduced down to 𝑓 =  $2.86/ℎ𝑟. This trade-off between parking 

fee and space availability fits with Arnott and Inci (2006). The total gain in social 

surplus from this policy compared to the initial case is $23,204 per square mile per 

hour. 

5.3.1 Sensitivity Analysis 

In this section I carryout three cases of sensitivity analyses to examine the effect 

that different factors could have on the results of the model. 

5.3.1.1 Parking Duration 

The duration of 0.15 hr found from sampling on the field is increased to 0.2 hr and 

0.25 hr to examine the effect on the first best and second best allocation policies, as 

shown in Table 6. Increasing the duration from 0.15 hr to 0.25 hr leads to a larger 

effect on the first-best policy than to the second best policy. 

Table 6 Sensitivity analysis of Toronto parking space allocation policies with 
respect to the truck parking duration 

Truck Parking Duration lc (hr) 0.15 0.2 0.25 

Tp 233.99 240.41 247.18 

Tc 9.48 9.74 10.02 

H 129.75 173 216.25 

C 443.02 435.6 428.83 

t 0.0606 0.0622 0.064 

Speed 16.5 16.1 15.63 

Δ SS compared to 2nd best SO $13,502 $16,174 $19,330 

Δ SS compared to 1st best SO $23,204 $28,600 $34,990 
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5.3.1.2 Lane Flow Sensitivity 

Gamma (ϒ) depends on the prevailing traffic flow conditions, and on the number 

of lanes on the street. Below is a sensitivity analysis that considers the effect of 

different values of gamma by changing the traffic flow from 2.5 lanes of flow to 2.9 

and 2.1 lanes of flow. This is almost 15% change in the traffic flow; the corresponding 

values of gamma are shown in the table.  

The outcome reflects the changes that take place in the traffic composition in 

each case, which appears to be minor changes, more importantly the optimization 

results remains unaffected in terms of parking space allocation.  

 

Flow 2.5 lanes 2.9 lanes 2.1 lanes 

Gamma 4.4 3.6 5.4 

Tp 233.99 230.58 238.72 

Tc 9.48 9.35 9.68 

H 129.75 129.75 129.75 

C 443.02 445.43 437.28 

t 0.0606 0.0597 0.0618 

Speed 16.5 16.75 16.18 

Δ SS compared to 2nd best SO $13,502 $13,492 $13,522 

Δ SS compared to 1st best SO $23,204 $23,194 $23,224 
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5.3.1.3 The Effect of Number of Lanes in the Bottleneck  

A lane drop from 4-lanes to 3-lanes would create different effect than a lane 

drop from 3-lanes to 2-lanes. The effect in each case could be estimated using analysis 

similar to the one explained in section 3.3 in this study. Below is a sensitivity analysis 

outcome of three cases of lane drops applied while fixing all the values used in the case 

study except the number of lanes.  

Number of lanes before 
Number of lanes After 

4 lanes 
3lanes 

3 lanes 
2 lanes 

2 lanes 
1 lane 

Gamma 3.99 4.4 5.29 

Tp 232.25 233.99 237.84 

Tc 9.41 9.48 9.64 

H 129.75 129.75 129.75 

C 443.76 443.02 4338.17 

t 0.0601 0.0606 0.0616 

Speed 16.65 16.5 16.24 
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6 CONCLUSION 

The above case study demonstrate that the current practice of disregarding the 

effect of commercial vehicles and their parking behaviour on congested downtown 

street networks has inevitably lead to devising inefficient solutions to meet the 

congestion. For policy makers to be able to best respond to congestion problems it is 

necessary to capture the effect of all road users including commercial vehicles. The 

case study demonstrates how developing an inclusive policy leads to considerable 

efficiency gains, which is much needed on the streets of the busy downtown centers. 

It is well established that urban truck deliveries make a big impact on commuter 

parking, because of the shared use of parking spaces, the inelasticity of freight demand, 

and the need to double-park when no spaces are available due to need for proximity. 

Nonetheless, the literature on downtown on-street parking generally continues to 

exclude truck delivery behavior. The few studies of truck deliveries are simulation 

based or do not integrate with commuter parking.  

In this study, I present an analytical equilibrium model that evaluates the effects of 

different parking policies in urban centers with respect to network congestion, cruising, 

double-parking, and the travel behavior of commercial and passenger vehicles. It is the 

first such model, and also the first analytical evaluation of downtown Toronto parking 

pricing and space allocation policies. The parking model is shown to be a 

generalization of the commuter equilibrium model from Arnott and Inci (2006), one 

that can also capture a truck delivery fleet class that is inelastic to traffic conditions and 

double-parks when no spaces are available.  

The case study makes several key findings. First, I measured and estimated 

parameters of the model for downtown Toronto such that a baseline scenario is defined. 

This baseline scenario can serve as a benchmark for policymakers to consider different 
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policies. From the baseline, I considered two policy tools. The first is to price and 

allocate the existing parking spaces to trucks to optimize social welfare. In this case the 

proposed model shows that increasing the parking fee from $4/hr to nearly $9/hr and 

assigning 3.4% of parking spaces to truck parking would eliminate cruising and truck 

double-parking, resulting in a social surplus gain of over $13,500/hr/mi2.  

Under a first-best allocation policy where the total number of parking spaces can 

also change, the proposed model shows that it is optimal to increase number of parking 

spaces by 20% (of which truck parking spaces would constitute 2.9% of spaces), and 

this could reduce parking fees to under $3/hr, eliminate cruising and truck double-

parking, and increase social surplus to $23,200/hr/mi2. 

The model helps policy makers develop strategies to improve urban parking 

policies by being able to plan and optimize trade-offs in parking spaces, prices, and 

network congestion.  

Commercial vehicles serve financial and commercial institutions in the 

downtown and it constitute a segment of road users that is frequently ignored by both 

policy makers and researchers. However, efficient solutions to congestion problems 

must capture all segments of road users to be able to respond with proper polices. The 

continued double-parking behaviour of commercial vehicles shows that ignoring this 

segment and resorting to traffic fines might not provide the sought efficiency in the 

network. It is therefore necessary to incorporate this segment with other road users and 

devise inclusive policies. In the case study I have demonstrated how the developed 

model captures all the segments of roads users and optimizes the road space 

accordingly, allowing the most efficient allocation of on-street parking and the 

optimum corresponding parking fees.  
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The main objective of the model is to provide an analytical means for policy 

makers to understand the congestion effects that result from neglecting the parking 

behavior of trucks in their policies. However, several features incorporated in the 

model make it suitable for evaluating other situations that resemble comparable 

scenarios. 

For example construction and maintenance activities might require temporary 

lane closures; in such case the analysis provided for modeling the effect of double-

parking could be used to explain the resulting congestion effect on the traffic flow. In 

the study, it was considered that trucks are more likely to double-park near their 

destinations occupying a travelling street lane. The effect of double-parking was 

considered as a temporary lane drop that creates a bottleneck in the traffic flow. The 

same bottleneck effect could be expected in temporary construction lane closures and 

thus it is possible to apply the same analysis. May (1990) first applied similar analysis 

to estimate the traffic flow conditions just upstream of the bottleneck, and at the 

bottleneck location, and finally downstream of the bottleneck. 

This model has shortcomings and opportunities for future city logistics research. 

First, the model currently ignores off-street parking, transit mode access, heterogeneous 

population and parking durations, and truck fleet operating characteristics like fleet size 

and number of stops. These modifications are needed should a policymaker have an 

interest in analyzing those particular scenarios. Many have been incorporated into 

Arnot and Inci (2006) (see Arnott, 2006; Arnott and Rowse, 2009, 2013), so it’s just a 

matter of taking the model generalization in this study and applying it to those cases.  

One of the long term objectives of this research is to provide a dynamic (per unit 

time) snapshot model of downtown parking for designing parking informatics systems. 

Unlike the ones proposed in the literature, there is a need for parking and delivery 

information systems for both commuters and commercial vehicle drivers. There is also 
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an opportunity to relate the parking and deliveries to commercial vehicle tours (You et 

al., 2015) and commuter activity planning (Chow and Djavadian, 2015). 
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