
Ryerson University
Digital Commons @ Ryerson

Theses and dissertations

1-1-2013

Rapid And Efficient Multi Objective Design Space
Exploration Methods In High Level Synthesis Of
Computation Intensive Applications
Anirban Sengupta
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations
Part of the Electrical and Computer Engineering Commons

This Dissertation is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and
dissertations by an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

Recommended Citation
Sengupta, Anirban, "Rapid And Efficient Multi Objective Design Space Exploration Methods In High Level Synthesis Of
Computation Intensive Applications" (2013). Theses and dissertations. Paper 1631.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1631&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1631&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1631&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1631&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/1631?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1631&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

RAPID AND EFFICIENT MULTI OBJECTIVE

DESIGN SPACE EXPLORATION METHODS IN

HIGH LEVEL SYNTHESIS OF COMPUTATION

INTENSIVE APPLICATIONS

By

Anirban Sengupta

 Master of Applied Science

 Electrical and Computer Engineering

Ryerson University, Toronto, Canada, 2010

Bachelor of Technology

 Electronics and Communication Engineering

West Bengal University of Technology, Kolkata, India, 2008

A dissertation

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in the Program of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2013

©Anirban Sengupta 2013

ii

Author's Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the dissertation,

including any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this thesis or dissertation to other institutions or

individuals for the purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis or dissertation by photocopying or

by other means, in total or in part, at the request of other institutions or individuals for the

purpose of scholarly research.

I understand that my dissertation may be made electronically available to the public.

* Signature

 Anirban Sengupta

iii

ABSTRACT

Title of Dissertation:

RAPID AND EFFICIENT MULTI OBJECTIVE DESIGN SPACE EXPLORATION

METHODS IN HIGH LEVEL SYNTHESIS OF COMPUTATION INTENSIVE

APPLICATIONS

Dissertation Submitted By:

 Anirban Sengupta, Doctor of Philosophy, 2013

Electrical and Computer Engineering Department, Ryerson University, Canada

Dissertation Directed By:

Dr. Reza Sedaghat

Electrical and Computer Engineering Department, Ryerson University, Canada

 Design Space Exploration (DSE) is an indispensable segment of the High Level Synthesis

(HLS) design process. Moreover, the enormous increase in complexity of the recent Very Large

Scale Integration (VLSI) circuits has only been possible due to use of advanced DSE techniques

during HLS process. This dissertation presents four automated optimization algorithms and

methodologies that are capable to handle various multi-objective problems during design space

exploration and high level synthesis of computation intensive applications. Algorithmic solutions

to four different branches of DSE problems have been proposed in this dissertation viz. a)

Solution to power-performance-area/cost trade-off of Digital Signal Processing (DSP) kernels

using priority factor process which also includes deriving analytical mathematical model for

modern performance parametric frameworks b) Solution to area-performance-power tradeoff/

power-performance-area tradeoff of DSP kernels using hybridization of fuzzy algorithm and

iv

vector design space technique with Self-Correction Scheme c) Solution to dual parametric

optimization using efficient multi structure genetic algorithm for integrated scheduling and

allocation and d) Solution to control step bound static power optimization using power gradient

methodology for integrated scheduling and allocation. Some techniques proposed are equipped

with pipelined execution time parameter (based on need), in addition to hardware area, power

and cost depending on the user’s objective for exploration of a final solution in a short time. In

addition to architecture exploration capability, rapid automated circuit generation of DSP kernels

is also possible in a short time for verification and synthesis in Field Programmable Gate Array

(FPGA) platforms. The proposed exploration approaches are applied to custom data intensive

applications (application specific processors/custom processors) or standalone Application

Specific Integrated Circuits (ASIC’s). Results of the experiments for proposed approaches on all

the standard DSP benchmarks have indicated improvements either in terms of exploration

runtime, quality of final solution, reduced execution time, power and area or a multiple

combination of all factors when compared to recent approaches.

v

Acknowledgement

I would like to thank my supervisor, Dr. Reza Sedaghat for his thoughtful guidance and advice as

well as OPR-AL members for their endless support. Further, I am also thankful to my supervisor

for providing me all the necessary support and required amenities to help me perform my

incessant research for all the past years.

I am highly indebted to my parents for their great guidance and sacrifice all throughout my life.

Further I highly owe them for being a constant source of love and motivation throughout my life,

particularly in times of hardships and difficulty. They have always been a source of true guide

inducing the feeling of eternal divine power in me.

Moreover I am highly obliged to my grandparents for continuously supporting me and inspiring

me to always do better than before. I deeply express my gratitude for their eternal blessings.

I am also very thankful to my friends, who helped me in tough times and provided me with

encouraging words to accomplish my goals.

vi

Table of Contents

Abstract ---iii

Acknowledgement --v

Table of Contents --vi

List of Tables --ix

List of Figures ---xi

Nomenclature ---xiii

Chapter 1 Introduction ---1

1.1 Overview ---1

1.2 Fundamentals on Modular System Design ---3

1.3 Related Work---4

1.4 Background Information---7

1.5 Summary of Contribution --12

1.6 Organization of Dissertation --14

Chapter 2 Rapid Design Space Exploration in High Level Synthesis Based on Power-

Performance Tradeoff using Priority Factor Metric--16

 2.1 Mathematical Derivation for Cost/Area Model---17

 2.2 Mathematical Derivation for Execution Time Model------------------------------------20

 2.3 Mathematical Model for Power Consumption ---23

 2.4 Proposed Method of Design Space Exploration of Architecture Based on Power-

 Performance tradeoff with area/cost a as optimization criteria-----------------------24

vii

Chapter 3 Design Space Exploration in High Level Synthesis for Area/Power-Performance

Tradeoff using Hybridization of Fuzzified Algorithm and Vector Design Space with Self-

Correction Scheme---31

 3.1 The Proposed Theory for Fuzzy Search during Design Space Exploration----------32

 3.2 The Steps Needed to Obtain the Final Variant of Architecture-------------------------38

Chapter 4 Priority Function Driven Design Space Exploration in High Level Synthesis

Based on Power Gradient Technique--53

 4.1 The Proposed Exploration Approach--54

 4.2 Demonstration of the proposed approach---56

Chapter 5 A Multi Structure Genetic Algorithm for Integrated Design Space Exploration

of Scheduling and Allocation in High Level Synthesis for DSP Kernels------------------------61

 5.1 The Proposed Framework Using MSGA--63

 5.2. Description of the Proposed MSGA steps--68

Chapter 6 Fast Multi-Objective Exploration and RTL Circuit Generation using

Architecture Synthesis Platform: Exploration Synthesizer--82

 6.1 The Proposed Exploration Synthesizer Design Flow--------------------------------------83

 6.2 Keystones of the Proposed Exploration Synthesizer Platform---------------------------86

 6.3 Input Format and Intermediate Representation---87

 6.4 Output Details of the Tool--88

Chapter 7 Implementation, Results and Analysis ---90

viii

 7.1 Experimental results: The Proposed Approach ‘Rapid Design Space Exploration in

High Level Synthesis Based on Power-Performance Tradeoff using Priority Factor

Metric’ and comparison with recent approach --91

 7.2 Experimental results: The Proposed Approach ‘Rapid Design Space Exploration in

High Level Synthesis Based on Area-Performance and power-performance

Tradeoff using Hybrid Fuzzified Algorithm’ and performance comparison ---95

 7.3 Experimental results: The Proposed Approach ‘Priority Function Driven Design

Space Exploration in High Level Synthesis Based on Power Gradient Technique’

and comparison with recent approach---102

 7.4 Experimental results: The Proposed Approach ‘A Multi Structure Genetic Algorithm

for Integrated Design Space Exploration of Scheduling and Allocation in High

Level Synthesis for DSP Kernels’ and comparison with recent approach ------105

Chapter 8 Conclusion and Future work --108

Publications --111

Appendix --118

References--123

ix

List of Tables

Table 1 System Specifications and Constraints for PF Method---------------------------26

Table 2 System Specifications for hybrid fuzzy approach ---------------------------------40

Table 3 Variants obtained for area after applying fuzzy search on the arranged

design space---48

Table 4 Variants obtained for execution time after applying fuzzy search on the

arranged design space --51

Table 5 Portion of Module Library for MSGA---77

Table 6 Data Extracted from the integrated solution of offspring 1---------------------78

Table 7 Experimental results of comparison between proposed PF approach and

recent GA approach-- 94

Table 8 Experimental results of comparison between the proposed hybrid Fuzzified

DSE for Area-Performance trade-off with Power as optimization criteria

with the current approach for large benchmarks --------------------------------97

Table 9 Experimental results of comparison between the proposed hybrid Fuzzified

DSE for Area-Performance trade-off with Power as optimization criteria

with GA based current approach --98

Table 10 Experimental results of the proposed hybrid Fuzzified approach for Power-

Performance trade-off with Area as optimization criteria compared with

exhaustive analysis for Benchmarks ---100

x

Table 11 Experimental results of the comparison between the proposed DSE for

Power-Performance trade-off with Area as optimization criteria with the

recent approach --101

Table 12 Experimental Results of the proposed Iterative Power Gradient approach

for the DSP Benchmarks ---102

Table 13 Comparison of measured power consumption through Xilinx Power

Analyzer (XPA) 9.2i ---103

Table 14 Experimental Results of the comparison between the proposed Iterative

Power Gradient and recent approach ---104

Table 15 Experimental Setup for MSGA--105

Table 16 Experimental Results of Comparison of MSGA with recent approach ---106

xi

List of Figures

Figure 1 Generic Overview of the Proposed PF Exploration Method--------------------26

Figure 2 Flow chart model of the proposed algorithm --------------------------------------27

Figure 3 The arranged design space for execution time parameter----------------------29

Figure 4 Graphical representation of the algorithm for area/power for searching a

greater value in the design space ---35

Figure 5 Graphical representation of the algorithm for execution time for searching a

greater value in the design space ---35

Figure 6 Graphical representation of the algorithm for area/power for searching a

lesser value in the design space--35

Figure 7 Graphical representation of the algorithm for execution time for searching a

lesser value in the design space ---35

Figure 8 The flow for the steps required to obtain the optimal variant of architecture

using the proposed Hybrid DSE --39

Figure 9 Design space with all possible resource combinations--------------------------45

Figure 10 Arranged Vector Design Space for area --48

Figure 11 Arranged Vector Design Space for execution time--------------------------------50

Figure 12 Overview of the proposed heuristic approach -----------------------------------55

Figure 13 Details of the proposed heuristic Exploration approach ------------------------57

Figure 14 ASAP scheduling of DWT benchmark ---58

Figure 15 Scheduling after 1
st
 Iteration---59

Figure 16 Scheduling solution after 11th Iteration --60

Figure 17 MSGA design space exploration approach overview ----------------------------64

xii

Figure 18 Flow chart of the proposed MSGA ---65

Figure 19 The perturbation algorithm for resource --67

Figure 20 DFG of the IIR Digital Filter---68

Figure 21 Scheduling of the IIR Digital Filter using ASAP----------------------------------70

Figure 22 Chromosome Encoding for the first parent (P1) ---------------------------------70

Figure 23 Chromosome Encoding for the second parent (P2) ------------------------------70

Figure 24 Chromosome Encoding for the third parent (P3) --------------------------------71

Figure 25 Offspring 1 obtained for the nodal string obtained after crossover between

P1 and P2--72

Figure 26 Offspring 2 obtained for the nodal string obtained after crossover between

P1 and P2--72

Figure 27 Offspring 1 and Offspring 2--73

Figure 28 Mutation algorithm for the proposed approach -----------------------------------74

Figure 29 Proposed load-factor heuristic for the MSGA Framework ---------------------76

Figure 30 Integrated solution to offspring 1 (Decoding of the chromosome) for the IIR

Digital Filter benchmark---77

Figure 31 Cycle time calculation during data pipelining for offspring 1-------------------80

Figure 32 Design Flow of the proposed Exploration Synthesizer platform ---------------84

Figure 33 DFG of the DWT Benchmark--88

Figure 34 Application library: The intermediate representation of DWT DFG which

acts as the input format for the tool--88

xiii

Nomenclature

A
Total Area of the resources

Ri
The resources available for system designing

Rclk

The clock oscillator used as a resource providing the necessary clock

frequency to the system

NRi The number of resource Ri

KRi The area occupied per unit resource ‘Ri’

n Functional resources

L Latency of scheduling an application

Tc Cycle time of execution

N (D) Number of data elements to be processed

TRi Number of clock cycles needed by resource ‘Ri’

Tp Time period of the clock

pc
Power consumption per area unit at particular frequency

H (z) The transfer function of the filter in the frequency domain

p Position where the variant is located in the design space

i An index

P optimal The constraint for Power Consumption

T optimal The constraint for Execution Time

vRi Number of variants of resource ‘Ri’

P Total power consumption

Texe Total execution time

M Each Performance Parameter

xiv

NRM Number of memory elements present (such as registers)

CR Total cost of all resources

CRi Cost per area unit of the resource (such as adders, multipliers)

CRclk Cost per area unit of the clock oscillator

CRM Cost per area unit of memory element

W Total workload of all the resources

x position of the variant in the set

τ
approximated membership value of the variant which is the x

th
 element

in the sorted arrangement

α order of the first element

β order of the last element

τB membership value of the border variant for the parameter in the space.

τV membership value for the variant under test

VVariant Respective value of variant under test for a parameter

τMin membership values of the minimum variants in the architecture space

τMax membership values of the maximum variants in the architecture space

VBorde actual border variant value

τini calculated initial membership value

τmax
Maximum membership value (equals to ‘1’) corresponding to the fuzzy

logic membership value rule

τmin
Minimum membership value (equals to ‘0’) corresponding to the fuzzy

logic membership value rule

G Power Gradient

O (i) Operation of a schedule

CS Control step of a schedule

xv

PI Priority Indicator

PT Power consumption due to dissipation of leakage current

ps
power dissipated per area unit when the transistors in the chip are not

switching

L
ASAP

 ASAP scheduling with maximum resource

load factor (α) Load factor or workload of each resource

β Encoded value of each operation (oi) of the second parent chromosome

µ Random value equal or between ‘α’ and ‘β’

W1, W2 Tuning factor/Weightage factor

CL Local cost function

Pcross Crossover probability

vn Version of the each type of resources used

CG Global cost function

 AFU Total area of the functional units.

 TCONS Execution time constraint specified by user during genetic algorithm

TMAX Max execution time taken by a solution during the specific generation

AFU Total area of the functional units

AREG Total area of registers

AMUX Total area of registers

ADEMUX Total area of the demultiplexers used during implementation

PCONS Power consumption constraint specified by the user

PMAX Max power consumption of a solution during a specific generation

G(Max) Maximum generation of an algorithm

1

Chapter 1

Introduction

 1.1 Overview

The never ending increase in the growth of chip complexity has only been possible due to

efficient scheduling and exploration techniques. The growth in chip capacity has enabled

processing of huge amounts of data with greater flexibility and less expense. This requirement to

yield high performance with a concurrent balance in power expenditure is often a primary

specification in the area of Digital Signal Processing (DSP), communications and network

processing. For e.g., Application Specific Processor cores are increasingly being used to

simultaneously address the need for high performance, low area, minimum cost and timely

operation in many embedded systems. Particularly elements used in mobile phones, such as the

DSP cores, must be low cost and consume less power than their general purpose counterparts.

Hence, exploration of an optimized solution that has the capability to encounter conflicting

conditions such as minimizing the speed of the exploration process and maximizing the quality

of the scheduling solution by limiting power expenditure at minimal control step (time) usage is

extremely significant for the development of computation intensive DSP cores [1][2][3].

2

Moreover, the complicated process of exploration of the final scheduling solution also requires a

tradeoff between the contradictory parameters of power and latency/performance in addition to

the contradictory demands [1][3].

A DSE problem therefore considers two orthogonal issues: (a) how can a single design

point be evaluated? (b) How can the design space be covered during the exploration process?

The latter issue arises since an exhaustive exploration of the design space, including evaluating

every possible design point, is usually prohibitive due to the sheer size of the design space.

Therefore, trade-offs linked to the choice of appropriate evaluation and coverage methods are

discussed. The designer must balance: the accuracy of the evaluation, the time it takes to

evaluate one design point (including the implementation of the evaluation model), the

precision/granularity of the design space coverage, as well as the possibilities for automating the

exploration process.

Multi-objective algorithms could use combined objectives in order to reduce the number

of dimensions to the problem. For example, it could make sense to only consider the speed-cost

and the flexibility-cost ratios for a certain design and not speed, cost, and flexibility as separate

optimization goals. One of the most prevalent combined objectives is energy-delay product. The

energy-delay product is used to assess embedded systems. The delay-power ratio objective can

be interpreted as a computational clock cycles versus power dissipated. The combined speed-cost

ratio objective represents a computational complexity related to the costs of the design. It should

be noted that there are also optimizer-specific metrics that guide the search, such as the steepness

to surrounding solutions in the case of hill climbing or the number of dominated solutions in the

case of some multi-objective, evolutionary algorithms. Hill climbing, for instance, evaluates the

neighborhood of the current design to determine the next steepest step towards the optimization

3

goal. In order to avoid being trapped on top of a local maximum, hill climbing requires

backtracking mechanisms which might be expensive in “bumpy terrains". Moreover, the search

becomes aimless on plains and is not able to recognize diagonal ridges since the probe directions

would always lead to lower quality solutions [1][2][4]. The proposed method has a tendency to

yield high quality solutions (which obeys multi parametric optimization requirement) due to its

unique algorithmic and framework features. It also manages to balance the tradeoff proficiently

between exploring a high quality solution and the runtime taken.

1.2 Fundamentals on Modular System Design

The design and development of modular systems with heterogeneous performance

optimization objective requires extensive analysis and assessment of the design space, not only

due to the assorted nature of the parameters, but also due to the diversity in architecture for

implementation. Given the specifications and the system requirements the aim of designers is to

reduce the large and complex design space into a set of feasible design solutions meeting

performance objectives and functionality. For most modular systems and systems based on strict

operational constraints the selection of the optimal architecture for system design is the most

important step in the development process. Design space architecture can have innumerable

design options for selection and implementation based on the parameters of optimization. Hence

selection of the optimal architecture from the design space which satisfies all the performance

objectives is crucial for the present generation of System-on-chip (SoC) designs [5, 6]. As it is

always possible to implement different functions of a system on different hardware components,

the architecture design space has become more complex to analyze. In the case of high level

synthesis, performing design space exploration to choose the best candidate architecture by

4

concurrently satisfying many operating constraints and optimization parameters is considered the

most important stage in the whole design flow (details on design space exploration is provided

later). The method for exploration of the best candidate architecture should not only be less in

terms of complexity factor and time but should also explore the variant in an efficient way

meeting all the specifications provided. The process of high level synthesis design is very

complicated and descriptive and is usually performed by system architects. Depending on the

application, the process of defining the problem, performing design space exploration and the

other steps required for its successful accomplishment are very time consuming. Furthermore,

recent advancements in areas of communications and multimedia have led to the growth of a

wide array of applications requiring huge data processing at minimal power expense. Such data

hungry applications demand satisfactory performance with power efficient hardware solutions.

Since the selection process for the best design architecture is complex, an efficient approach to

explore the design space for selecting the best design option is needed [1,2,3,4].

1.3 Related Works

An engineering problem can generally be described as a phenomenon of analyzing and

managing the tradeoffs between contradictory design objectives. The problem of obtaining a

comprehensive Pareto optimal set [42-46] has been addressed by few researchers. In [7] the

researchers proposed an approach for synthesis of heterogeneous embedded systems by using

Pareto Front Arithmetic (PFA) to explore the giant search spaces. Their method utilized the

hierarchical problem structure for exploring the set of Pareto optimal solutions. Similar problem

was also addressed in [8] by suggesting order of efficiency, which assists in deciding preferences

amongst the different Pareto optimal points. Work in [9] suggested the identification of a few

5

superior design points from the Pareto set is enough for an excellent design process. In [10]

evolutionary algorithms such as the Genetic Algorithm (GA) had been suggested to yield better

results for the design space exploration process. The use of GA had also been suggested as a

framework for DSE of data paths in high level synthesis in [11]. Another approach was

introduced by researchers in [12] which were based on Pareto optimal analysis. According to

their work, the design space was arranged in the form of an Architecture Configuration Graph

(ACG) for architecture variant analysis and optimization of performance parameters. Their

results proved quite promising for architectural synthesis of digital systems. Furthermore in [13]

and [14], authors described another approach for DSE in high level systems based on binary

encoding of the chromosomes. Work shown in [15] for DSE suggests that authors used an

evolutionary algorithm for successful evaluation of the design for an application specific SoC.

The work shown in [16] discusses the optimization of area, delay and power in behavioral

synthesis, but does not focus on the high level design flow with multi parametric optimization

objective. Authors in [17] introduce a tool called SystemCoDesigner that offers rapid design

space exploration with rapid prototyping of behavioral systemC models. In [17] an automated

integration was done by integrating behavioral synthesis into the proposed design flow. Authors

in [18] have proposed a power optimization in SoC data flow systems. Although the proposed

optimization yielded significant results, the focus of their work was not on control time

constrained scheduling but rather power optimization hardware during exploration. Authors in

[19] describe current state-of-the-art high-level synthesis techniques for dynamically

reconfigurable systems. In addition to above, authors in [20] have applied GA to the binding and

allocation phase. The authors have introduced an unconventional crossover technique depending

on a force directed data path binding completion algorithm. One of the key features of their

6

approach is the use of multiport memories. Its main drawback is that it accepts as input the

scheduled data flow graph, thus is unable to handle the scheduling problem. Authors in [21]

presented a time constrained scheduling based on the GA. A list decoder is used to decode

chromosome encoding by permutation of operations, into a valid schedule. Although the method

is promising, it is slow compared to the other GA approaches. In addition, authors in [22] have

proposed a problem space genetic algorithm for design space exploration of data paths. They

have used the concept of heuristic/problem pair to convert a data flow graph [23] into a valid

schedule. Another class of scheduling algorithms presented previously includes constructive

approaches such as As Soon As Possible (ASAP) [5], As Late As Possible (ALAP) [23], list

scheduling [24] and Force Directed scheduling [25]. These approaches are very simple and fast

in nature. These algorithms all suffer from inherent tendency to optimize one parameter at the

expense of other. Moreover, non-consideration of multiple user objective and implementation

runtime dilutes its ability to be used in the fore front of modern performance driven designing

process. Additionally, the tradeoffs performed using above methods which tends to engulf high

exploration/optimization runtime. Moreover, the execution time parameter is not taken into

account during exploration where needed but only delay. For the modern generation of hardware

systems, deficiency of pipelining provision (by considering only delay) is extremely fatal for

efficiency enhancement. Hence, the thesis eliminates the deadlock associated with these

techniques. Also in many cases, the optimization factor and performance goal of the user may

completely change depending upon his design requirement. For example, besides the multiple

user criteria viz. (a) Accelerated power-performance tradeoff with area/cost as minimization

criteria (b) Accelerated Area-performance tradeoff with power as minimization criteria, there can

be a third type of optimization goal viz. (c) static power optimization under minimum control

7

step usage. Thus, besides being able to tradeoff based on requirement a) and b), an efficient

novel optimization methodology must also be available that can address (c) which is equally

significant. But unfortunately, to the best of the authors’ knowledge, all the approaches so far are

deficient in addressing (c). This dissertation develops a novel technique for addressing

deficiency in (c).

1.4 Background Information

1.4.1 Theoretical Background on High Level Synthesis

Interdependent tasks such as scheduling, allocation and module selection are important

ingredients of the high level synthesis design process. High level synthesis is a methodology of

transforming an algorithmic behavioral description into an actual Register Transfer Level (RTL)

structure. Therefore high level synthesis methodology contains a sequence of tasks to convert the

abstract behavioral description of the algorithm into its respective structural block at RT level.

The design at the RT level comprises of functional units such as Arithmetic Logic Unit (ALU),

storage elements, registers, busses and interconnections. The algorithmic description specifies

the inputs and outputs of the behavior of the algorithm in terms of operations to be preformed

and data flow. A description of the algorithm is usually represented in the form of an acyclic

directed graph known as a sequencing graph. These graphs specify the input/output relation of

the algorithm and the data dependency present in the data flow. The graph is defined in terms of

its vertices and edges, where the vertices signify the operations and the edges indicate the data

dependency present in the function. High level synthesis is therefore a conversion from the

abstract behavioral description to its respective hardware description in the form of Arithmetic

Logic Units (ALU), memory elements, storage units, multiplexers/demultiplexers and the

8

necessary interconnections. The transformed algorithm at the RT level is comprised of a control

unit and the data path unit. High level synthesis offers many advantages, such as productivity

gains and efficient design space exploration [51-60]. Performing DSE at a higher level of

abstraction provides more dividend than at lower levels of abstraction, i.e. transistor level or

logic level. Traditional high level synthesis design methodology is much simpler than modern

design techniques. In general, the initial step of synthesis is to compile the behavioral

specification into an internal representation. The next step is to apply high level transformation

techniques with the aim of optimizing the behavior as per the desired performance. In order to

realize the structure, the final step is to perform scheduling to determine the time at which each

operation is executed and the allocation, which is synthesizing the necessary hardware to

perform the operations [5].

Scheduling can be of two different classes: time constrained scheduling and resource

constrained scheduling. Time constrained scheduling refers to finding the minimum cost

schedule that satisfies the given set of constraints with the given maximum number of control

steps. Resource constraint scheduling, on the other hand, refers to finding the fastest possible

schedule that satisfies the given set of constraints with the given maximum number of resources.

Resource constraints are generally specified by the area occupied by the functional units like

adders/subtractors, multipliers, dividers and ALUs. Although the data path of the system consists

of registers and interconnections, they are not considered to be included as resource constrained

because they are difficult to specify. High level synthesis can be broadly divided into the

following steps: input description, internal representation, design space exploration, allocation,

scheduling and binding. Therefore the final structure at the RT level consists of the data path and

the control path. Traditional high level synthesis design flow falls short for the modern

9

generation of complex VLSI and SoC designs, because the conventional design flow just takes

into account the optimization of two parameters, namely area and latency. But the new

generation of system designs requires multi parametric optimization strategies in HLS while

simultaneously utilizing rapid and efficient DSE approaches for finding the best suitable

architecture [5].

1.4.2 Theoretical Background on Design Space Exploration

For the present generation of Very large Scale Integration (VLSI) designs with multi

objective nature, the cost of solving the problem of scheduling, allocation and module selection

discretely or simultaneously by exhaustive analysis is strictly prohibitive. Multi objective VLSI

designs are used in low end Application Specific Integrated Circuits (ASICs) with low power

dissipation and acceptable performance, as well as in high end ASICs with high performance

requirements and satisfactory power expenditure. Hence, efficient design space exploration

techniques are needed that not only satisfy the above requirements but also make efficient use of

runtime, due to time to market pressure [6]. Design space exploration [51-60] is a procedure for

analyzing the various design architectural alternatives in the design space to obtain the optimum

architecture needed for the behavioral description based on the predefined user specifications.

Design space exploration has always been a challenge for researchers due to the heterogeneity of

the objectives and parameters involved. The current trend towards design space exploration has

been the reduction of the design space into a set of Pareto optimal points [42-46] by Pareto

optimal analysis. Sometimes even the Pareto optimal set can be very large for analysis and

selection of the design for system implementation. In order to assist the decision maker in

exploring the design space better, an accurate and fast approach efficient in terms of time

10

expended and quality of solution found is very significant for high level synthesis design of

hardware systems.

1.4.3 Overview on the Abstraction Level of Optimization

Today's electronic systems are designed starting from specifications given at a very high

level of abstraction. This is because many Electronic Design Automation (EDA) tools accept a

design expressed in a high-level format as input and can automatically produce the

corresponding RT/Logic/transistor-level implementation with very limited human intervention.

All hardware systems can be classified into various levels of abstraction such as System level,

Architecture level, Register Transfer Level (RTL), Layout level and Transistor level. This

abstraction level also provides an insight into the hierarchy that a system can be classified into.

Optimization performed at the higher levels of abstraction provides more flexibility, productivity

and design specification awareness than performing only at the lower levels of abstraction.

Moreover, although effective, performing optimization only at the transistor level is not

sufficient for the current generation of high performance, power hungry application specific

systems (used in embedded applications) due to the enormous complexity involved. The

traditional method of optimization performed by circuit designers only at low level for area and

latency is insufficient for current power and performance requirements. Therefore, the role of

system architects has become extremely crucial. System architects consider user goals during the

architecture selection process by performing optimization of the given application based on high

level parametric models. The design process must consider user goals even at the very high

abstraction level (during high level synthesis process) in order to generate a quality aware

solution (at the RT-Level) with greater possibility of optimization at the transistor level.

11

1.4.4 Reasons for Studying High Level Synthesis

There has been a trend towards automating synthesis at higher levels of the design

hierarchy in the recent years. Logic synthesis has gained acceptance in industry long back and

currently there has been substantial interest shown in Register Transfer Level (RTL) design

obtained from higher levels of abstraction (algorithmic). The reasons are the following [27]:

Reduced design time and high acceleration: If more of the design process is automated, a

company can complete a design faster, and thus have a better chance of hitting the market

window for that design.

Design is specification aware from the very earliest stage: Design space exploration to

perform multi-objective optimization and tradeoff is needed from the very earliest stage of

designing. This will enable the designers to start the development with an architecture that is

already specification aware (high level optimized) from the highest level of abstraction thus

rendering more chances that final design (logic/layout) corresponds to the given constraints.

The ability to search the design space (and design alternatives): A good synthesis system can

produce several designs from the same specification in a reasonable amount of time. However,

final selection can be challenging with many choices. Therefore, an efficient exploration method

is needed to tackle the problem from the very high abstraction level to assure the designer a

greater chance of optimization and flexibility to control architecture based on user requirements.

This allows the developer to explore different tradeoffs between cost, speed, power etc. or to take

an existing design and produce a functionally equivalent one that is more efficient.

Easy availability of IC technology: As more design expertise is moved into the synthesis

system, it becomes easier for non-expert designers to manufacture a chip that meets a given set

of specifications and operating constraints.

12

1.5 Summary of Contribution

The proposed exploration approach can be used during the design process of application specific

processors/custom processors or standalone Application Specific Integrated Circuits (ASIC’s)

custom data intensive applications. Therefore, systems that include adaptable applications which

change dynamically during runtime should not be considered with these approaches.

This dissertation contributes to the following by removing bottlenecks in previous approaches:

• Solving the Problem of Design Space Exploration for Power-Performance-Cost/Area

tradeoff in High Level Synthesis using novel Priority Factor approach:

(Note: Publications: S1, S2, S7, S8, S14, S15, S19, S20, S24, S22, S27 on Page: 111)

a) Introduces /Derives mathematical model for modern parametric framework viz.

performance (execution time) for Design Space Exploration.

b) Introduces/Derives mathematical model for modern performance parametric

framework viz. Hardware Cost for Design Space Exploration.

c) Presents mathematical model for modern performance parametric framework viz.

Power for Design Space Exploration

d) Proposes a new technique using Priority Factor Metric and Vector Design Space

scheme for arranging the architecture design space.

d) Provides significant improvements in exploration speed compared to a recent

technique for various signal processing benchmarks.

• Solving the Problem of Design Space Exploration for Hardware Area/power-

Performance-power/area tradeoff in High Level Synthesis using Self-Correction Scheme

based Hybrid Fuzzy approach:

(Note: Publications: S3, S4, S9, S10, S13, S16, S23 on Page: 111)

13

a) Proposes Hybrid Fuzzy scheme based frameworks for all cases of exploration for

Area/Power and Performance parameters.

b) Development of Fuzzy sets for representation of architecture design variances.

c) Algorithms with Self-Correction Scheme for exploring the final design point.

d) This hybrid technique provides an average improvements of greater than 22 % in

exploration process compared to a recent technique for various size benchmarks.

• Solving the Problem of Integrated Exploration of Scheduling and Module Allocation in

High Level Synthesis for static power optimization under minimum control step usage:

(Note: Publications: S5, S11, S18, S21 on Page: 111)

a) Proposes a mathematical expression for power gradient based on the power

dissipation of the resources used during determination of high priority nodes.

b) Presents a new priority function called ‘Priority indicator (PI)’ based on selection

criterion that takes into account the power gradient. This new iterative exploration

approach method is used for exploring the optimal/sub optimal integrated solution to

the problem of scheduling and module selection.

c) Provides a completely automated design space exploration tool for rapid exploration

of scheduling and module selection in high level synthesis design process.

d) The proposed approach successfully improves the quality of final solution by an

average of 5.07 % and reduces the exploration runtime by an average of 59%

compared to a current approach for standard DSP Benchmarks.

• Solving the Problem of Integrated Exploration of Scheduling and Module Allocation in

High Level Synthesis for Power-Performance tradeoff using Heuristic Genetic Algorithm:

(Note: Publications: S6, S12, S17, S26 on Page: 111)

14

a) Multi Structure Genetic Algorithm is based on a novel cost function based on the

power consumption-execution time tradeoff.

b) The total execution time constraint considered in the cost function of the proposed

approach is based on latency, cycle time and number of data (N) to be pipelined.

c) Multi structure genetic algorithm is based on a new structural topology where each

functional unit type is represented by an independent chromosome.

d) Since the multi structure genetic algorithm incorporates a new seeding process with

two special chromosomes, hence the final solution found is always certain to be

global optimal or local optimal (in certain cases) in terms of the execution time

(including latency and cycle time) and power.

e) The results produced by proposed approach are better compared to another genetic

algorithm based approach, for almost all digital signal processing benchmarks.

• Introducing a design Automation Platform (DAP) in high level synthesis for multi-

objective optimization and RTL circuit generation capable of:

(Note: Publications: S1, S2, S3, S4 on Page: 111)

a) Power-Performance Tradeoff using Area as Optimization Criteria.

b) Hardware Area- performance Tradeoff using Power as Optimization Criteria.

1.6 Dissertation Organization

The rest of the dissertation is organized as follows: Chapter 2 describes in details the

proposed techniques behind solving the problem of Design Space Exploration for power-

performance-area/cost tradeoff using priority factor and vector design space technique. Chapter 3

15

elaborates on proposing the solution for solving the problem of design space exploration for

hardware area-performance-power tradeoff using fuzzy membership based algorithm and priority

factor framework. Chapter 4 proposes the approach for solving the problem of integrated

exploration of scheduling and module allocation for static power optimization under minimum

control step usage based on power gradient theory, while in Chapter 5, the approach for solving

the problem of integrated Exploration of scheduling and module allocation for power-

performance tradeoff using multi structure genetic algorithm is proposed. Chapter 6, introduces

a high level synthesis DAP for multi-objective optimization and RTL circuit generation capable

of performing multi objective tradeoff. The results of the proposed DSE approaches for various

well known high level synthesis benchmarks indicating exploration time and quality

improvements obtained when compared to the current existing DSE approach are provided in

Chapter 7. Chapter 8 is dedicated to conclusion and future scope of work in this area. The list of

publications related to this field of research study and the total list of citations are also provided

thereafter.

16

Chapter 2

Rapid Design Space Exploration in High Level

Synthesis Based on Power-Performance Tradeoff

using Priority Factor Metric

This chapter introduces the first algorithm of the dissertation based on priority factor metric

which deals with proposing a solution to the design space exploration in high level synthesis for

computation intensive applications. It is used for performing tradeoff based on power-

performance constraint and area/cost as optimization criteria. The proposed approach is

deterministic in nature and therefore finds the final architecture based on resolute evaluation

steps (unlike heuristic methods). It is important to note that the proposed exploration approach is

only applied to custom data intensive applications (application specific processors/custom

processors) or standalone Application Specific Integrated Circuits (ASIC’s). The priority factor

metrics proposed in this chapter are based on mathematical models for modern parametric

frameworks viz. power, performance area/cost. The approach also employs a special topology

called vector design space based on priority order sequencing for sorted arrangement of the

design space. The mathematical framework for each parameter is described and deduced below:

17

2.1 Mathematical Derivation for Cost/Area Model

A. The Proposed Framework for Hardware Cost

Let the area of the resources be given as ‘A’. Ri denotes the resources available for system

designing; where 1<i<n. ‘n’ represents the maximum resource available for designing. ‘Rclk’

refers to the clock oscillator used as a resource providing the necessary clock frequency to the

system (Note: to simplify the mathematical modeling of area, the existence of multiple clocks

operating in a single system has been ignored. For high level area modeling, only the global

clock operating in a system has been considered. However, the user has the flexibility to declare

in the module library various clock frequency oscillators available for selection based on the

exploration result). The total area can be represented as the sum of all the resources used for

designing the system, such as adder, multiplier, divider, clock frequency oscillator and the

memory elements. At the high level all elaborate lower level details such as routing information

(wire connection etc.) are not available. Thus they have been ignored in eqn. (1) for high level

area estimation. As described in [5, 41], the total area of a system mainly consists of the areas of

the functional blocks; the total area can be approximated as follows:

∑=)(RiAA (1)

RMRMclkRnRnRRRR KNRAKNKNKNA ⋅++⋅++⋅+⋅=)()...(2211
 (2)

Where ‘NRi’ represents the number of resource ‘Ri’, ‘KRi’ represents the area occupied per unit

resource ‘Ri’, ‘NRM’ represents the number of memory elements present (such as registers) and

‘KRM’ represents the area occupied by each memory element. Let the total cost of all resources in

the system is ‘CR’. Further, cost per area unit (in fiscal units) of the resource (such as adders,

multipliers etc) is given as ‘CRi’, the cost per area unit (in fiscal units) of the clock oscillator is

18

‘CRclk’ and finally the cost per area unit (in fiscal units) of memory element is ‘CRM’. Therefore

total cost of the resources in fiscal units is given as:

RclkclkRiRnRnRRRRR CRACKNKNKNC ⋅+⋅⋅++⋅+⋅=)()...(2211 RMRMRM CKN ⋅⋅+ (3)

Applying partial derivative to equation (3) with respect to NR1 ….NRn, with respect to NRM and

with respect to ARclk yields equation (4) to (7) respectively as shown below:

1

111

1

])()..[(

R

RMRMRMRclkclkRnRnRnRRR

R

R

N

CKNCRACKNCKN

N

C ⋅⋅+⋅+⋅⋅++⋅⋅∂
=

∂

∂
11 RR CK ⋅= (4)

Rn

RMRMRMRclkclkRnRnRnRRR

Rn

R

N

CKNCRACKNCKN

N

C])()..[(111 ⋅⋅+⋅+⋅⋅++⋅⋅∂
=

∂

∂
RnRn CK ⋅= (5)

Rclk

Rclk

R C
A

C
=

∂

∂ (6)

RMRM

RM

R CK
N

C
⋅=

∂

∂ (7)

For the sake of simplicity, while applying partial derivative to a certain resource (equations (4)

– (7)), the others resources are assumed fixed (or constant). In order to determine the

contribution of a specific resource on the change in a parameter, other resources have to be kept

fixed (constant). For example, in equation (7), while applying partial derivative with respect to

NRM, the change in number of resources NR1 ….NRn is assumed to be fixed. Without keeping the

other resources NR1 ….NRn fixed during analysis, the impact of resource NRM in the deviation of

cost parameter cannot be determined. Now using the theory of approximation by differentials,

the change in the total cost can be approximated by the following equation:

Rclk

Rclk

R
RM

RM

R
Rn

Rn

R
R

R

R
R A

A

C
N

N

C
N

N

C
N

N

C
dC ∆⋅

∂

∂
+∆⋅

∂

∂
+∆⋅

∂

∂
+∆⋅

∂

∂
= 1

1

 (8)

Additionally, equation (8) above indicates the total change in CR (total cost of resources) with

19

respect to change in number of resource NR1 ….NRn, NRM and Rclk. Substituting equations (4) to

(7) into equation (8) yields equation (9) shown above:

 Equation (9) represents the change in total cost of resources with the change in the number of all

resources and the clock period (clock frequency). The Priority Factor (PF) for cost of resources is

defined as:

1

11)1(
R

RiRR

N

CKN
RPF

⋅⋅∆
= (10)

 …..

Rn

RiRnRn

N

CKN
RnPF

⋅⋅∆
=)((11)

RM

RMRMRM

N

CKN
RMPF

⋅⋅∆
=)((12)

Rclk

Rclk

N

CRclkA
RclkPF

⋅∆
=

)(
)((13)

PF yields a real number, which suggests the extent to which the change in number of a

particular resource contributes to the change in hardware cost. The PF is a determining factor

which helps us to judge the influence of a particular resource on the variation of the optimization

parameters like area, time of execution and power consumption. This PF is used later in our

approach to organize the architecture design space consisting of variants in increasing or

decreasing order of magnitude. The equation (10) and (11) indicates the change of cost with

respect to change in resource R1,….Rn. Similarly, equation (12) indicates the change of cost of

the system with respect to change in number of resource ‘RM’. Further equation (13) indicates

The change of cost
contributed by

resource Rn

 The change of cost
contributed by
memory RM

 The change of cost
contributed by
resource clock

=RdC RclkclkRMRnRMRiRnRn CRACKNCKN ⋅∆+⋅⋅∆+⋅⋅∆)((9)

20

the change of cost of the system with respect to change in resource ‘Rclk’.

2.2 Mathematical Derivation for Execution Time Model

For a system with ‘n’ functional resources the time of execution can be represented by the

following formula:

Based on [5, 61,62,12], the time of execution can be represented by the following equation:

])1([cexe TDLT ⋅−+= (14)

where ‘L’ represents latency of execution, ‘Tc’ represents the cycle time of execution , ‘D’

denotes the number of data elements to be processed . Equation (14) indicates the time needed to

data pipeline an application based on data dependency and available functional units. The

equation also captures any situation through initiation interval where an operation is not

available for pipelining due to data hazard. It is important to mention the difference between data

pipelining/data level parallelism and instruction level parallelism: In the former, there are no

service operations such as instruction fetch, instruction decode, data fetch and write back. Only

the execution stage can directly processes the input data and produce the output for the next

operation. Therefore, no latch requirements are necessary during data pipelining. In contrast,

instruction level pipelining includes service operations as well as execution stage and pipelining

is effectively between the hardware units. Therefore, latches are necessary to store the

information of the previous unit and to pass it to the next stage. (An example of data pipelining

for a sample application is demonstrated in Chapter 6).

The term ‘workload’ of a resource signifies the time required (or clock cycles needed) to finish

its assigned operation during scheduling. Hence the total workload (W) of all resources to finish

21

their respective operations during scheduling for ‘D” sets of processing data can be represented by

(15):

PRnRnRRRR TDTNTNTNW .)....(2211 ⋅⋅++⋅+⋅= (15)

Where NRi represents the number of resource ‘Ri’ and ‘TRi’ represents the number of clock cycles

needed by resource ‘Ri’ (1<=i<=n) to finish each operation. ‘D’ is the number of sets of data

elements that must be processed. Note: In the mathematical modelling process in equation (15),

the operations have been considered to operate in a sequential manner for theoretical assumption

and simplicity purposes. In the experimental exploration process described later, actual data

parallelism has been considered while evaluating a particular solution. Therefore if variable NRi

in equation (15) is increased, then ‘W’ will increase. In equation (16) and (17), objective is to

evaluate the deviation of workload (W) with respect to change in variable NRi. For example, the

average deviation of ‘W’ with respect to change in NRi from 1 adder/subtractor to 3

adder/subtractors can be evaluated. Therefore, the motive is to determine the contribution of each

resource type on a specific parameter (as explained in Section 3.2). The demonstration of this

approach is described later in this chapter.

From the approximation of differentials the change in ‘workload’ is approximated in (16).

])...[(2

2

1

1 p

pRn

Rn

R

R

R

R T

W
TN

N

W
N

N

W
N

N

W
DdW

∂

∂
⋅∆+∆

∂

∂
++∆⋅

∂

∂
+∆⋅

∂

∂
⋅= (16)

Applying partial derivative to the (15) with respect to NR1…..NRn and Tp will produce the

following set of equations:

1

2211

1

])...[(

R

pRnRnRRRR

R N

DTTNTNTN

N

W

∂

⋅⋅⋅++⋅+⋅∂
=

∂

∂

DTT pR ⋅= 1
 (17)

22

Rn

pRnRnRRRR

Rn N

DTTNTNTN

N

W

∂

⋅⋅⋅++⋅+⋅∂
=

∂

∂])...[(2211

DTT pRn ⋅= (18)

p

pRnRnRRR

p T

DTTNNTN

T

W

∂

⋅⋅⋅+++⋅∂
=

∂

∂])...[(211 (19)

DTNTNTN RnRnRRRR ⋅⋅++⋅+⋅= ⋅)...(2211
 (20)

 Substituting equations (17), (18) and (19) in equation (16) yields equation (21):

DTTNDTTNDTTNdW pRnRnpRRpRR ⋅⋅∆++⋅⋅⋅∆+⋅⋅⋅∆= ..2211)...(2211 RnRnRRRRp NTNTNTTD ⋅++⋅+⋅⋅∆⋅+

 (21)

Equation (21) reflects the change in total workload with the change in number of all the

resources and the clock period (clock frequency).

DTTN pRnRn ⋅⋅⋅∆ = The change of ‘W’ contributed by the change in number of resource Rn.

DNTNTNTT RnRnRRRRp ⋅⋅++⋅+⋅⋅∆)...(2211
= The change of ‘W’ contributed by the change in clock

period (frequency).

Considering constraint on the number of resources, the increase in total workload (W) will

cause an increase in total execution time. Therefore, the more the workload increases, the more

the execution time increases under resource constraints. Hence, the change in number of a

resource (e.g. change in adder from one to three) that contributes to the change in total workload

the most, also contributes to the change in total execution time the most. So based on above

analysis, PF for execution time parameter is defined as:

max)()(p

Rn

RnRn T
N

TN
RnPF ⋅

⋅∆
= (22)

)(
..

)(2211

p

Rclk

RnRnRRRR T
N

TNTNTN
RclkPF ∆⋅

⋅++⋅+⋅
= (23)

23

‘D’ is ignored in the expression for PF because it does not contribute to the change in Priority

Order (PO) sequence described later in the paper. The factors defined above reflect the average

change in execution time (Texe) with the change in number of a resource (change in adder from

one to three) at maximum clock period. These factors also reflect the average change in

execution time (Texe) with the change in clock frequency. In the expression for PF in (23),

minimum clock frequency is considered because at this frequency the clock period is the

maximum. Hence, the change in number of a specific resource at maximum clock period will

influence the change in execution time the most, compared to the change in execution time at

other clock periods.

2.3 Mathematical Model for Power Consumption

Based on [5, 64, 12], dynamic power (PD) of a system as a function of operating frequency

and number of devices switching due to frequency of operation can be represented as:

∑
=

⋅⋅=
n

i

cRiRiD pKNP
1

)((24)

Where ‘n’ is number of functional resources, ‘NRi’ represents the number of resource Ri as

mentioned earlier. ‘KRi’ represents the area occupied per unit resource Ri and ‘pc’ denotes the

power consumed per area unit resource at a particular frequency of operation. Equation (24)

models the dependency of power on the activity rate (which in turn is based on frequency of

operation) of the modules in the system. Theoretically if there is no activity in the circuit the

dynamic component of the power will be zero. The leakage power has been ignored in this

model.

 Applying the using partial derivative method on equation (24) (as shown in Section 2.1 for

cost parameter), the Priority Factor (PF) for power consumption is extracted as follows (PF)

[27]:

24

 max)()(c

Rn

RnRn p
N

KN
RnPF ⋅

⋅∆
= (25)

)(
..

)(2211
c

R

RnRnRRRR p
N

TNTNTN
RclkPF

clk

∆⋅
⋅++⋅+⋅

= (26)

The priority factor defined in equation (25) indicates the change of total power consumption

with the change in number of resources at maximum clock frequency. In contrast, the priority

factor defined in equation (26) indicates the deviation in total power consumption with respect to

the change in number of clock oscillators from minimum to maximum. The priority factor helps

to arrange the architectural variants of the design space in increasing or decreasing order of

magnitude depending on the objective parameter. The PF is arranged in such a way that the

resource with the minimum PF is chosen first, gradually increasing and then ending at the

resource with the highest priority factor. The above rule applies for all three parameters

described in this chapter.

2.4 Proposed Method of Design Space Exploration of Architecture Based on

Power-Performance tradeoff with area/cost as optimization criteria

The overview of the proposed method is shown in Figure 1.

A. System specifications

The case study of a selected benchmark has been provided for demonstration of the proposed

method based on some real system specifications (as shown in Table 1). The value assumed for

area of each functional unit (in CLB slices) is obtained through synthesis in commercial logic

synthesis tools. The values assumed for the clock cycle consumed for each functional unit is

obtained from the literature [14, 22, 23]. If the user has different types of the same functional

unit (such as 8-bit adder, 16 bit adder etc.), then the area of each functional unit type is also

25

specified in this stage simultaneously with the number of each functional unit type available for

choice (e.g. Both the area of 8-bit adder (15 au) and the area of 16 bit adder (30 au) can be

specified in addition to information 6) and 7) provided in Table 1).

 Note 1: The parameters have fixed values assigned/specified by the user in this stage. These

parametric constraints are the demand of the user and the final solution must meet these high

level constraints as well as the requirement of the optimization parameter. For example, in Table

1, the assumed value of the user constraints for power and time is 8W and 140 us respectively.

This indicates that the final solution must meet these high level constraints while also being

minimum in occupied area. Therefore during the exploration process, the design space will be

pruned based on these requirements and the best possible solution will result (as will be

demonstrated later).

Note 2: The method assumes fixed hardware units such as 3 adder/subtractors, 4 multipliers,

and 2 clock oscillators as shown in Table 1 because this is the specified maximum available units

affordable by the user for this custom application specific system design. In other words, every

user has a maximum limit on the permissible fixed hardware units that can be afforded based on

specific configuration needs. However, for demonstration in this dissertation, these values are

arbitrarily assumed for a sample application and are subject to flexibility depending on the

requirement of the user and problem (as will be demonstrated latter).

Note 3: In Table 1 there are two available choices for clock frequency oscillators assumed to

be specified by the user. The clock oscillator available for selection through exploration process

is the global clock frequency of the system. For high level architecture decisions only global

clock frequency has been considered in the proposed exploration method (as will be

demonstrated later in this chapter).

26

The function of the selected second order digital IIR Butterworth filter benchmark is given in

eqn (27).

)3(167.0)2(5.0)1(5.0)(167.0)(−+−+−+= nxnxnxnxny)2(33.0 −− ny (27)

B. Calculation of the priority factor for each available resource for execution time parameter

For resource adder/subtractor (R1), multiplier (R2), clock oscillator (Rclk):

1

max

11 /)()1(RpRR NTTNRPF ⋅⋅∆= = 026.0)02.0(
3

2)13(
=⋅

⋅−

2

max

22 /)()2(RpRR NTTNRPF ⋅⋅∆= = 06.0)02.0(
4

4)14(
=⋅

⋅−

RclkpRRRRclk NTTNTNRPF)()(2211 ∆⋅⋅+⋅=

= 165.02)005.002.0()4423(=−⋅⋅+⋅

According to the above analysis the change in number of adder/subtractor affects the change

in execution time the least, while the change in clock frequency from 50 MHz to 200 MHz

affects the change in execution time the most. The minimum for adder/subtractor and multiplier

Table1. System Specifications and Constraints for PF Method

1) Maximum power consumption: 8 watts (W)

2) Maximum time of execution: 140 µs (for D =1000 sets of data)

3) Hardware area of resources: Minimum

4) Maximum resources available for the system design:

 a) 3 Adder/subtractor units.

 b) 4 Multiplier units

 c) 2 clock frequency oscillators: 50 MHz and 200 MHz

5) No. of clock cycles needed for multiplier and adder/subtractor to finish each operation: 4 cc and 2cc

6) Area occupied by each adder/subtractor and multiplier: 20 area units (a.u) and 100a.u. (e.g. 20 CLBs on FPGA)

7) Area occupied by the 50MHz and 200MHz clock oscillator: 4 area units and 10 area units

8) Power consumed at 50 and 200MHz:10mW/a.u. and 40mW/a.u.

Figure.1.Generic Overview of the Proposed Exploration Method

Hierarchical construction using PF for
power parameter

Hierarchical construction using PF for
execution time parameter

Border variant (search)

Border variant (search)

Problem and Specifications

Pareto optimal
(Then final soln)

27

is one in above equations because the digital IIR Butterworth filter function at least requires one

adder and one multiplier to successfully accomplish the functioning of the task.

C. Arrangement of resources in Priority Order based on calculation of PF for execution time

Based on the priority factors calculated, a new terminology called ‘Priority Order (PO)’ is

defined. The priority order is a sequence ordering of the resource types (R1…Rn) based on

reverse PF magnitude. In other words, the resource type with the lowest priority factor is

assigned the highest priority order while the resource type with the highest priority factor is

assigned the lowest priority order, i.e. the priority order of the resource increases with the

decrease in priority factor of the resource.

For example, resource Rclk with the highest PF (see Section 2.4.B) has been assigned the

lowest PO. On the other hand, resource R1 with the lowest PF (see Section 2.4.B) has been

assigned the highest PO. Therefore the following PO of resources is achieved for arranging the

design variants in decreasing order for execution time.

 Let initial number of all

resources to be 1

Let position p=1 and

Assign (NR1… NRn) to

position ‘p’

Let i = the resource whose

PO is maximum

NRi== NRi max?

Increase NRi by 1 Reset NRi to 1

Assign

(NR1,,…,NRn) to

position (p+1)

Increase p by 1

(p=p+1)

p==p(final)?

No Yes

Let i= next resource

with next higher

priority order

No
Done

Yes

p(final)= Final position according to

maximum design option available

NRi =Number of a

particular resource

Where ‘i’ is an

index

p = position where

the variant is
located in the

design space

Figure2. Flow chart model of the proposed algorithm

28

PO (R1) > PO (R2) > PO (Rclk)

D. Arrange the design space in decreasing order for execution time according to the priority

order

This section presents an algorithm for arranging the random design space in an organized

decreasing order for the execution time parameter. Before demonstrating the proposed algorithm

it is imperative to identify the advantages of this algorithm compared to existing approaches

[12]. The algorithm in Figure 2 differs from the existing techniques [12], which are based on the

hierarchical criterion method, with respect to the topology used to represent the design variants

in the design space. The proposed algorithm is based on vector design space topology while the

approach used in [12] is based on tree topology. Further, the proposed algorithm does not need

any variant analysis to arrange the design space in increasing/decreasing order. It therefore

requires less time while performing exploration. On the contrary, approach [12] utilizes critical

variant analysis to determine the hierarchy of each resource type and then constructs the arranged

design in increasing/decreasing order.

The proposed algorithm is based on priority order sequencing as described in Section 2.4.C.

The algorithm presented in Fig. 2 clearly describes the required steps in order to properly arrange

the design variants. The PO obtained for execution time was PO (R1) > PO (R2) > PO (Rclk).

After using the model of the proposed algorithm the arranged design space for execution time is

obtained and is shown in Fig.3. After the variants were organized in decreasing order the binary

search algorithm [63] is applied to obtain the border variant for the execution time parameter.

Border variant is the extreme design point in the architecture space that demarcates the points

that satisfy and do not satisfy the parametric constraint specified [12]. Results of binary search

29

[63] on the design space shown in Fig.3 yielded ‘variant V5 (marked in bold) as the border

variant for the execution time parameter. This signifies that variant V5 is the first variant in the

design space that satisfies the constraint for execution time specified (as given in Table I).

E. Arrange the design space for Power in increasing order, Determination of Pareto Optimal

points and Final solution

 Similar to the execution time parameter, the PF for all the available resources was calculated

to determine how much a change in each resource affects power consumption. Once the PF was

determined then the PO was obtained following the procedure described in Section D. The PO

sequence (PO (R1) > PO (R2) > PO (Rclk)) helped to obtain the arranged design space for power

consumption using the algorithm in Fig. 2. Binary search [63] was then applied on the arranged

design space for power consumption. Binary search yielded variant V21 as the border variant

Satisfying set for time

of execution

Arrangement of time of execution in decreasing order from

the top to the bottom element using the proposed algorithm

Border Variant

V1 = (1,1,1) p=1

V9 = (2,1,1)

V17=(3,1,1)
V2 =(1,2,1)

V10=(2,2,1)

V18=(3,2,1) p=6
V3 = (1,3,1)

V11=(2,3,1)

V19=(3,3,1)

V4 = (1,4,1)

V12=(2,4,1)

V20=(3,4,1) p=12

V5 = (1,1,2)

V13=(2,1,2)
V21=(3,1,2)

V6 = (1,2,2)

V14 =(2,2,2)

V22=(3,2,2) p=18

V7 = (1,3,2)

V15=(2,3,2)
V23=(3,3,2)

V8 = (1,4,2)

V16=(2,4,2)

V24=(3,4,2) p= 24

Minimum time of

execution

 Maximum time of

execution

Non-satisfying set

for time of

execution

Figure3. The arranged design vector space in decreasing

order for time of execution

30

that meets the constraint imposed for power consumption. Since the steps to obtain the border

variant for power are exactly the same as those to obtain the border variant for execution time

(steps from Section 2.4.B to Section 2.4.D) they have not been shown in the dissertation. The

priority factor for area is determined using equations described in this chapter to arrange the

variants of the Pareto optimal set in increasing order, similarly to the way it was determined for

power and execution time (Note: If cost was the third parameter then equations (10) – (13)

should have been used to find PF and then the final solution). After calculation of the PF the

priority order is determined. The obtained priority order is: PO (Rclk) > PO (R1) > PO (R2).

Using the algorithm in Figure2, the variants V5, V13, V21 of the Pareto set are arranged in

increasing orders of magnitude. Since the design specification in Table 1 demanded minimum

area overhead with simultaneous satisfaction of the constraints imposed by user, hence the aim is

to find the variant with minimum area overhead. After the arrangement of the variants of Pareto

optimal set the variant number ‘V5’ is found to be the only variant among twenty four variants

that concurrently optimizes hardware area, power consumption and time of execution while

meeting all the specifications provided. The optimal solution obtained through the proposed

approach is reported later in Chapter 7.

Note: The results of this approach applied on various benchmarks and the results of

exploration time improvement are reported in Chapter 7.1.

31

Chapter 3

Design Space Exploration in High Level Synthesis for

Area/Power-Performance Tradeoff using

Hybridization of Fuzzified Algorithm and Vector

Design Space with Self-Correction Scheme

This chapter introduces the solution to another branch of architecture exploration problems based

on area-performance constraint and power as optimization criteria. The second algorithm of the

dissertation viz. hybridized fuzzified algorithm and vector design space technique with self-

correction scheme will be presented. This algorithm proposes solutions to design space

exploration in high level synthesis for computation intensive applications based on area-

performance constraint with power as optimization criteria. It has also been applied on problems

specified as power-performance constraint and area as optimization criteria. The algorithm is

also deterministic in nature and therefore finds the final architecture based on resolute evaluation

steps (unlike heuristic methods).

32

3.1 The Proposed Theory for Fuzzy Search Framework during Exploration

Before deducing the functions of fuzzy search for design space exploration, in this section the

general concept behind the proposed theory is first discussed. The concept of assigning

membership value to each respective element of the set considered in the proposed theory.

Fuzzy set theory involves manipulation of the fuzzy linguistic variables [28]. In fuzzy set

theory, the characteristic function is generalized to a membership function that assigns every

element ‘x’ a membership value. The membership function µF of a fuzzy set F is a function:

]1,0[: →UFµ

A graphical representation of the proposed approach takes into consideration that architectural

variants in the architectural design space are already organized in increasing or decreasing order.

These architectural variants of the design space will be represented in the form of a fuzzy set

where each variant will have a certain assigned membership value based on the characterized

membership function as shown later. The membership value will be assigned to each variant

taking into consideration that the values of the design space variants are organized in either

increasing or decreasing from the left to the right extreme of the fuzzy set (which is equivalent to

top to bottom of the design space). In this theory, only the extreme elements’ actual values

(which are the minimum and the maximum values or maximum and minimum values) are

calculated at the beginning. The membership value of the variants between the two extremes will

be considered to be directly proportional (sorted increasing order or sorted decreasing order) to

the position of the variants in the sorted arrangement. Therefore, the membership value of a

variant can be calculated by equations (28) or (29) for design space arranged in increasing or

decreasing orders of magnitude:

33

αβ

α
τ

−

−
=

x
 (28)

Or,
βα

β
τ

−

−
=

x
 (29)

The actual value of the variant is assumed proportional to the position of the variant in the

sorted arrangement. In equation (28) and (29), ‘x’ is the position of the variant; ‘τ’ represents the

approximated membership value of the variant which is the x
th

 element in the sorted

arrangement; ‘α’ and ‘β’ are the order of the first element and the last element in the same sorted

arrangement. Thus, ‘α’ is equal to 1 and ‘β’ is equal to the total number of variants in the sorted

arrangement. The above function represents a straight line which will aid in finding the border

variant, e.g. the first variant which satisfies the execution time constraint and the last variant in

the arranged design space which satisfies the specified constraint for area/power. In all figures

shown below, the x-axes refer to the architectural variants of the design space and the y-axes

refers to the actual values and membership values respectively. ‘τB’ is the membership value of

the border variant for the parameter in the architecture space. Similarly, ‘τV’ is the membership

value for the variant under test and VVariant is its respective value. Similarly, ‘τMin’ and ‘τMax’ are

the membership values for the minimum and maximum variants in the architecture space, while

‘Max’ and ‘Min’ are its respective values. The increase in trend line for area /power consumption

and the decrease in trend line for execution time from left to right extreme of the design space

are represented by membership value of each variant. Therefore the actual value of each variant

is directly proportional to its associated membership value. An algorithm has been developed to

search for the border variant with the given actual value. The graphical representations of the

proposed algorithm are shown in Figures 4 to 7.

34

The trend line shown in Figure4 and Figure6 represents the increase in membership values of

each variant in the design space for area/power parameters. The trend line shown in Figure5 and

Figure7 represents the decrease in membership values of each variant in the design space for

execution time parameter. The membership values in this theory are not calculated separately for

each variant but rather by applying equations (28) and (29). After arranging the design space by

determining the priority factors in increasing or decreasing order, the membership values of each

variant are also arranged in increasing or decreasing order. The actual values of the variants in

the design space are directly proportional to the membership values of those variants.

In Figure 4 the increase in membership value for area, i.e. actual area increase, is

approximated by the straight line (OR) drawn from origin to the maximum. ‘M’ refers to the

point in the line, corresponding to the actual border value (VBorder) being searched. ‘V1’ indicates

the initial variant obtained corresponding to the calculated initial membership value (τini). ‘P’ is a

point in the straight line corresponding to the actual membership value (τV) and the actual variant

value (VVariant) of variant ‘V1’. If, for example, the variant value (VVariant) calculated is less than

the value searching for (VBorder), then the search should be performed between points ‘P’ and

point ‘R’. A second straight line (PR) is approximated for the increase in membership values for

area/power parameter. In this straight line point ‘N’ corresponds to the actual border value being

searched. τmax and τmin are the maximum and minimum membership values (either ‘1’ or ‘0’).

Using similarity of triangles ∆ PNQ and ∆ PRS the following function is easily derived:

VariantBorder

Variant

VB

VMax

VV

VMax

−

−
=

−

−

ττ

ττ
 (30)

35

A similar analysis has been made for execution time with decreasing trend line (Figure 5).

The trend line shows the decrease in magnitude of membership value based on the decrease in

actual execution time in the arranged design space.

Similar to the previous section, Figure 6 represents the increase trend line for area/power. ‘M’

refers to the point on the line corresponding to the actual border value (VBorder). ‘V1’ indicates the

initial variant obtained corresponding to the calculated initial membership value (τini). ‘P’ is a

point in the straight line corresponding to the actual membership value (τV) and the actual variant

value (VVariant) of variant ‘V1’. If, for example, this calculated variant value is more than the

value searching for (VBorder), then the search should be performed between points ‘P’ and point

‘O’. A second straight line can be approximated for the increase in membership values for

Figure4. Graphical representation of the algorithm
for area/power for searching a greater value in the

design space

Architectural variants

 V1

τV

Membership value

τB

∆

VBorder

VVariant

τMin=0

Min

Max

Actual values

 Vn V2

1

M

N

P Q

R

S

 τMax

O

Figure7. Graphical representation of the algorithm for
execution time for searching a lesser value in the

design space

∆ Architectural variants

 V1

τV

Membership value

τB VBorder

VVariant

τMin=0

Min

Max

Actual values

 Vn V2

1

M

P

N

R

O

Figure6. Graphical representation of the algorithm
for area/power for searching a lesser value in the

design space

∆

τMin=0

Architectural variants

 V1

τV

Membership value

τB VBorder

VVariant

Min

Max

Actual values

 Vn V2

1

M

P

N

O

R

Figure5. Graphical representation of the algorithm for
execution time for searching a greater value in the

design space

Actual values

Architectural variants

 V1

τV

Membership value

τB

∆

VBorder

VVariant

τMin=0

Min

Max

 Vn V2

1

M

P

N

S

R

O

Q

36

area/power. In this straight line ‘N’ is a point corresponding to the actual border value searching

for (VBorder). Using the similarity between the triangles ∆ MPN and ∆ RPO another function can

easily be derived:

VariantBorder

Variant

VB

VMin

VV

VMin

−

−
=

−

−

ττ

ττ
 (31)

Similar analysis has been made for execution time with decreasing trend line. The trend line

in Figure 7 shows the decrease in membership value based on the decrease in actual execution

time. Similar analysis for execution will yield equation (31). The proposed algorithm is

described as follows:

Algorithm

Searching for the border variant (Border)

1. Define the Universe of discourse (The fuzzy set)

2. Identify and define the Linguistic variables

3. Assign the approximate membership values (τ) based on the function described in equation

(28) or (29) for each variant in the universe of discourse based on trendline for that parameter

(increasing or decreasing).

4. Calculate the initial membership value (τ ini) based on the function:

MinMax

MinVBorder

ini
−

−
=τ ; where τ is the initial membership value corresponding to border variant

(VBorder). ‘Min’ and ‘Max’ are the minimum and maximum values of the variants for a

respective parameter.

5. Look for the variant (V) closest to ‘τini’ in the fuzzy set.

6. Calculate the value of the variant `V`, indicated by Vvariant

37

7. If Vvariant < VBorder then go to step 8, else go to step 10.

8. Solve the membership value (τB) based on the following function:

VariantBorder

Variant

VB

VMax

VV

VMax

−

−
=

−

−

ττ

ττ

9. Jump to step 11.

10. Solve the membership value (τB) based on the following function:

VariantBorder

Variant

VB

VMin

VV

VMin

−

−
=

−

−

ττ

ττ

11. Look for the variant `V` which has the closest membership value to ‘τB’ calculated in step 8

or in step 10.

12. If variant ‘V’ has already been checked , then

{If Vvariant < VBorder then look for the unchecked variant with the next higher membership

value in the set, and jump to step 13.

Elseif Vvariant > VBorder then look for the unchecked variant with the next lower membership

value in the set, and jump to step 13}

Else variant ‘V’ has not been checked then go to step 13

13. Calculate the Vvariant.

14. If still the ‘Border’ is not found then repeat step 7.

15. End

The above algorithm successfully determines the border variant for a respective parameter

during searching. The border variant for area and power consumption indicates the last variant in

the design space (design space which is arranged in increasing order of magnitude) to satisfy the

VBorder specified by the user. In contrast, the border variant for execution time is the first variant

38

in the arranged design space (design space which is arranged in decreasing order of magnitude)

that satisfies the VBorder specified by the user.

3.2 The Steps Needed to Obtain the Final Variant of Architecture

The proposed theory behind the framework for DSE will be used in the upcoming sections.

Additionally the fuzzy search algorithm proposed in Section 3.1 will be used as a method for

searching the final architecture after our design space is organized in increasing or decreasing

order based on the PF calculation (as explained in Section 3.2.F). The steps required to obtain the

final architecture for high level synthesis is explained in this section with three objectives being

satisfied (for hardware area, time of execution and power consumption). The goal of the

proposed DSE approach is to find the final optimal variant of architecture which satisfies all

three parameters specified in the design problem. Figure 8 shows the exploration process steps

which are required to obtain the optimal variant of architecture using the proposed DSE

methodology for high level synthesis designing. The proposed exploration approach has been

designed for custom data intensive applications (application specific processors/custom

processors) or standalone Application Specific Integrated Circuits (ASIC’s) rather than systems

that include adaptable applications which change dynamically during runtime.

A. Problem formulation and Technical specifications

This stage marks the beginning of high level synthesis designing, beginning with the problem

description and the technical specifications provided for the designer. The application should be

properly defined with its associated data structure. This phase is very critical for the designer and

the operational constraints should be clearly defined along with the parameters to be optimized.

39

These specifications act as the input information for the high level synthesis tools. To

demonstrate the DSE approach the following sample specifications were assumed as shown in

Table 2. The specifications used for the area occupied by each adder/subtractor and multiplier

were based on the results obtained after each module (resource) was synthesized and

implemented using Xilinx ISE9.2i tool in Spartan 3E FPGA (XCS3E5000E-5fg320 FPGA). For

example, synthesis and implementation of a type of adder/subtractor module occupies 12 CLB’s

in XCS3E5000E-5fg320 FPGA.

Specification

and Problem

formulation

Create random

design space

1) Calculate Priority
Factor (PF) for each

available resource

construct the priority order

Arrange the design space

in the form Hierarchy

architecture tree in

increasing order

Get the border design

vector for area

Calculate PF for

each available
resource and

construct the priority

Get the border

design vector for

Execution time

1) Determine the

pareto-optimal set

2) Get the Best design

vectors for power

Sequencing graph

and development of

the system

Proposed hybrid

approach for

DSE

Using Fuzzy

search

technique

Using
Fuzzy

search

technique

Proposed hybrid

approach for DSE

Arrange the design

space in the form of

Hierarchy architecture
tree in decreasing order

Get the border

design vector for

Execution time

Exploration

process

complete

Figure8. The flow for the steps required to obtain the optimal variant of architecture using the proposed DSE

40

However, the provided constraints do not always yield a solution. There are two situations

where this could occur: a) when the constraints provided are invalid or b) if the Pareto set is

empty. This would signify that no solution exists which simultaneously satisfies the two

constraints, which would then be considered too tight and need to be relaxed. Thus the two

generalized algorithms proposed for constraints validation check of a parametric constraint are:

Algorithm 1 (Extremism check):

Inputs: Module Library, Data Flow Graph (or Mathematical function) of the application and user

Constraints

Output: The decision whether the design process continues or terminates (i.e. constraints are

Table2. System Specifications for hybrid fuzzy approach

1) Maximum hardware area of resources: 160 area

units (a.u) (Note: The specification for Power

consumption could also be assumed)

2) Maximum time of execution: 200µs (For 1000

sets of data)

3) Power consumption: Minimum.

4) Maximum resources available for the system

design:

a) 3 Adder/subtractor units.

b) 3 Multiplier units

c) 3 clock frequency oscillators: 24 MHz, 100

MHz and 400 MHz (Note: The choice of the 3

clock frequencies is arbitrary and any other clock

frequency oscillator could also be used)

5) No. of clock cycles needed for multiplier and

adder/subtractor to finish each operation: 4 cc

and 2cc

6) Area occupied by each adder/subtractor and

multiplier: 12 a.u. and 65 a.u. on the chip (e.g. 12

CLB on FPGA for adder/subtractor)

7) Area occupied by the 24MHz, 100MHz and 400

MHz clock oscillators are: 6 a.u., 10 a.u. and 14

a.u. respectively.

8) Power consumed at 24MHz, 100MHz and 400

MHz: 10mW/a.u.,32 mW/a.u. and 100mW/a.u.

respectively.

41

valid or invalid)

Repeat for all the user constraints specified

{

1. Calculate the minimum value of the optimization parameter under consideration. Calculate the

minimum value of the hardware area (power consumption)/execution time based on the

minimum resource/maximum resource (considering whichever parameter among hardware area,

power consumption or execution time is the first user constraint) using any one of the functions

described below based on the user requirement:

In case of hardware area:

)()...(2211min clkRnRnRRRR RAKNKNKNA +⋅++⋅+⋅=

Where, NRi represents the number of resource Ri and is equal to 1 for all cases. Therefore for

calculating the minimum area, NR1 = NR2 = NR3 = ... = NRn= 1. Also ‘KRi’ represents the area

occupied per unit resource ‘Ri’ which is obtained from the user as input. A(Rclk) refers to the area

of clock oscillator which occupies least area used for providing the necessary clock frequency to

the system. ‘KRi’ represents the area occupied per unit resource ‘Ri’ (1<=i<=n).

In case of power consumption:

cRnRnRRRR pKNKNKNP)...(2211min ⋅++⋅+⋅=

Therefore for calculating the minimum area, NR1 = NR2 = NR3 = ... = NRn= 1. Moreover, ‘pc’ is the

slowest clock frequency available in the module library which consumes the least power per unit

area.

In case of execution time:

])1([cexe TNLT ⋅−+=

42

‘L’ and ‘Tc’ should be calculated based on maximum resources considering NR1 = NR2 = NR3 = ...

= NRn= Maximum resource of certain functional unit specified by user in the library. ‘L’

represents latency of execution, ‘Tc’ represents the cycle time of execution during data

pipelining. Also, ‘N’ is the number of data sets to be pipelined as user input.

2. Calculate the maximum value of the optimization parameter under consideration. Calculate

the maximum value of the hardware area based on the minimum resource (considering that

hardware area is the first user constraint) using the function described below:

In case of hardware area:

)()...(2211max clkRnRnRRRR RAKNKNKNA +⋅++⋅+⋅=

Where, NRi represents the number of resource Ri. Therefore for calculating the maximum area,

NR1 = NR2 = NR3 = ... = NRn= Maximum resource of certain functional unit specified by user in

the library. Also ‘KRi’ represents the area occupied per unit resource ‘Ri’ which is obtained from

the user as input.

In case of power consumption:

cRnRnRRRR pKNKNKNP)...(2211max ⋅++⋅+⋅=

Therefore for calculating the minimum area, NR1 = NR2 = NR3 = ... = NRn = Maximum resource of

certain functional unit specified by user in the library. Moreover, ‘pc’ is the fastest clock

frequency available in the module library which consumes the maximum power per unit area.

In case of execution time:

])1([min cTNLT ⋅−+=

43

‘L’ and ‘Tc’ should be calculated based on minimum resources considering NR1 = NR2 = NR3 = ...

= NRn= 1.

3. Check if Constraint specified satisfies the upper threshold (maximum value) and lower

threshold (minimum value) of the parameter calculated above in steps 1 and 2. In other words,

let the constraint for hardware area is ‘Aconst’, power consumption is ‘Pconst’ and execution time is

‘Tconst’. Then, the following conditions are checked:

Amin <=Aconst<= Amax (For Hardware area)

Tmin <=Tconst<= Tmax (For Execution time)

Pmin <=Pconst<= Pmax (For Power consumption)

If the above conditions are satisfied then, the design process continues

Elseif the above conditions fail then the design process stops and constraints need to be

corrected by the user.

}

END

Algorithm 2 (Relaxation Phase): This constraints validation check only comes into play when

the Pareto optimal set formed as a result of the design space exploration process is absolutely

vacant. A vacant Pareto optimal set signifies that the user constraints provided (which passed the

test of ‘Extremism Check’) is too tight/strict in deadline. Therefore the strict user constraints of

the given parameter need to be relaxed (self-corrected) to a certain extent:

44

1) Let the variants obtained in the pareto optimal set (P) after applying the proposed design space

exploration approach be P = {Va, Vb, Vc...., Vn}, where Va, Vb, Vc...., Vn are variants of the

design space that are elements of the pareto optimal set.

2) If the Pareto optimal set, P = ϕ (Null), then there exists no variants in the set P. This indicates

that the user constraints are too tight and needs to be relaxed. This is because there is no variant

from the design space that simultaneously obeys both user constraints. Continue the algorithm.

Elseif P ≠ ϕ (not null), then variants exists in the Pareto set, P. Continue the design process and

stop the algorithm.

3) Relax the user constraints by 5 % to set new constraints for the parameter. Therefore, if the

constraint for hardware area is ‘Aconst’, constraint for power consumption is ‘Pconst’ and constraint

for execution time is ‘Tconst’, then depending on the user specified constraints, the new

constraints after applying the relaxation phase are as follows:

a) Aconst (new) = Aconst (original) + 5% of Aconst (original)

b) Tconst (new) = Tconst (original) + 5% of Tconst (original)

c) Pconst (new) = Pconst (original) + 5% of Pconst (original)

B. Problem formulation stage

In the problem formulation stage the mathematical model of the application is used to define

the behavior of the algorithm. The model suggests the input/ output relation of the system and

the data dependency present in the function. In this paper the digital IIR Chebyshev filter is used

45

as an example benchmark to demonstrate the DSE method for high level synthesis. The transfer

function of a second order digital IIR Chebyshev filter can be given as:

21

21

6743.04418.11

041.0082.0041.0

)(

)(
)(

−−

−−

+−

++
==

zz

zz

zX

zY
zH (32)

=)(ny)2(041.0)1(082.0)(041.0 −+−+ nxnxnx)1(4418.1)2(6743.0 −+−− nyny (33)

Where x(n), x(n-1) and x(n-2) are the input vector variables for the function. The previous

outputs are given by y (n-1) and y(n-2), while the present output of the function is given by y(n).

For simplicity, constants 0.041,0.082,0.6743 and 1.4418 are denoted by ‘A’, ‘B’,’D’ and ‘E’

respectively. x(n), x(n-1), x(n-2), y (n-1) and y (n-2) are denoted by Xn, Xn1, Xn2, Yn1 and

Yn2 respectively.

C. Creation of a random architecture vector design space for area parameter

The architecture design space is represented in the form of vectors consisting of the resources

available for the system. The random organization of the design space is shown only to represent

the different combinations of the resources that make the total design space. The total design

space is first created according to the specifications mentioned for total available resources in

Section VI.A of the flow. Vn = (NR1, NR2, NR3) represents the architecture design space. The

variables NR1, NR2 and NR3 indicate the number of adders/subtractors, multipliers and clock

frequencies. Therefore, according to specification in Section Table2, 1<=NR1<=3, 1<=NR2<=3,

and 1<=NR3<=3. The random design space in Figure 9 represents all the different combinations

V1 = (1,1,1) V8 = (1,2,3) V15= (2,3,2) V22= (3,1,2)

V2 = (1,2,1) V9 = (1,3,3) V16= (2,1,3) V23= (3,2,2)

V3 = (1,3,1) V10= (2,1,1) V17= (2,2,3) V24= (3,3,2)

V4 = (1,1,2) V11= (2,2,1) V18= (2,3,3) V25= (3,1,3)

V5= (1,2,2) V12= (2,3,1) V19= (3,1,1) V26= (3,2,3)

V6= (1,3,2) V13 = (2,1,2) V20= (3,2,1) V27= (3,3,3)

V7 = (1,1,3) V14 = (2,2,2) V21= (3,3,1)

Figure9. Design space with all possible resource combinations

46

of available resources viz. adder/subtractor, multiplier and oscillators. The next section describes

the methodology of calculation of priority factor (PF) for the area.

D. Calculation of the priority factor for each available resource and arrangement of the PF in

increasing order for area parameter using DSE approach

Using equations described in Chapter 3, the PF for resource adder /subtractor (R1) is:

8)1(=RPF

For resource multiplier (R2):

33.43)2(=RPF

For resource clock oscillator (Rclk):

67.2)(=RclkPF

The above factors are a true measure of the change in area with the change in number of a

specific resource. For example, according to the above analysis, the change in number of

multiplier affects the change in area the most, while the change in clock frequency from 24 MHz

to 400 MHz influences the change in area the least. Now based on the PF calculated for area, the

hierarchy vector space is constructed using the algorithm in Figure 2 (in Chapter 2).

E. Arrangement of the hierarchy vector space comprising the design space in increasing order

Based on the PF calculated for each resource for area (as shown in previous section), the

hierarchy vector space is constructed using the algorithm in Figure 2. The arranged design space

for area in form of hierarchy vector space according to the explanation above is shown in Figure

10. This arrangement of the hierarchy architecture tree ensures that the design space becomes

sorted. There is no additional necessity to sort the variants of the design space.

47

F. Fuzzy search technique for the determination of the border variant for the area and

calculation of PF for execution time

The presented fuzzy search technique is applied on the arranged design space in Figure 10.

The design space shown is arranged in increasing orders of magnitude from the north extreme to

the south extreme. This arrangement helps to prune the design space in order to obtain the border

variant for area requirement. After arrangement of the vector space, the universe of discourse set

is constructed based on the arrangement of the variants in the design space in increasing order in

the vector space (In other words, the set reflects the arranged design space in the tree, for area as

shown in Figure 10). The universe of discourse for area can be represented by the set shown

below. After defining the set, the algorithm described in Section 3.1 is used.

Large area set (µL) =

{

}
27

1
,

24

962.0
,

21

923.0
,

18

885.0
,

15

846.0
,

12

808.0
,

9

769.0
,

6

731.0
,

3

692.0

,
26

654.0
,

23

615.0
,

20

577.0
,

17

538.0
,

14

500.0
,

11

462.0
,

8

423.0
,

5

385.0
,

2

346.0

,
25

308.0
,

22

269.0
,

19

231.0
,

16

192.0
,

13

154.0
,

10

115.0
,

7

077.0
,

4

038.0
,

1

0

VVVVVVVVV

VVVVVVVVV

VVVVVVVVV

Where ‘Large area’ is a linguistic variable for the set defined above. According to step 4 of

the fuzzy search algorithm the initial membership value (τ ini) is calculated based on the Min and

the Max value of area. According to the specification provided for area, VBorder = 160 a.u. while

Min = 83 a.u. and Max= 245 a.u. (according to equation 1) are the calculated minimum and

maximum values of the variants with minimum and maximum resources respectively.

As shown in Table 3, the fuzzy search technique finds the border variant in just one iteration.

The border variant obtained is variant 11. This value indicates the last variant in the space which

satisfies the constraint for area requirement (VBorder).

48

After the border variant for area is obtained, the priority factor for each available resource

type for time of execution parameter is calculated. Hence the PF obtained for each resource for

execution time parameter are as follows:

For resource adder/subtractor (R1):

055.0)1(=RPF

For resource multiplier (R2):

 1109.0)2(=RPF

For resource clock oscillator (Rclk):

V1 = (1,1,1) p=1

V4= (1,1,2)

V7 = (1,1,3)

V10= (2,1,1)

V13= (2,1,2)

V16= (2,1,3)

V19 =(3,1,1)

V22= (3,1,2)

V25= (3,1,3)

V2= (1,2,1)

V5= (1,2,2)

V8= (1,2,3) p=12

V11= (2,2,1)

V14= (2,2,2)

V17= (2,2,3)

V20= (3,2,1)

V23 =(3,2,2)

V26= (3,2,3)

V3 = (1,3,1)

V6= (1,3,2)

V9 = (1,3,3)

V12= (2,3,1)

V15= (2,3,2)

V18= (2,3,3)

V21= (3,3,1)

V24= (3,3,2)

V27= (3,3,3) p=27

Arrangement of area in increasing order from the top

to the bottom element using the proposed algorithm

Minimum area

Maximum area

Border Variant

Satisfying set for

area

 Non- satisfying set

for area

Figure10. The vector design space in increasing order for area

Table3. The variants obtained for area after applying fuzzy search on the arranged design space

Equations for obtaining the calculated

membership values

Calculated

membership

values(τ)

Variants corresponding in

the set according to the

calculated ‘τ’
Area

Decision based on

the VBorder

83245

83160

−

−
=iniτ τ ini = 0.475 0.462/V11

A11 = 2*12 + 2*65 + 6

 = 160 a.u.

A11
 <= VBorder ,

stop

49

2346.0)(=RclkPF

The factors determined above indicate a measurement of the change in time of execution with

the change in number of a specific resource. For instance, according to the above analysis the

change in number of adder/subtractor affects the change in time of execution the least, while the

change in clock frequency from 24 MHz to 400 MHz affects the change in time of execution the

most. Now based on the PF calculated for execution time, the hierarchy vector space is

constructed using the algorithm in Figure 2.

G. Arrangement of the hierarchy vector design space in decreasing order and use of fuzzy search

technique to determine the border variant for time of execution parameter

(Note: The universe of discourse set for execution time is constructed based on the

arrangement of the variants in the design space in decreasing order, similar to the way the set

was constructed for area). As explained in Sections E and F, design space is similarly arranged in

decreasing orders of magnitude for execution time as shown in Figure11. The universe of

discourse set for time of execution parameter is defined as:

Small time of execution set (µS) =

{

}
27

0
,

18

038.0
,

9

077.0
,

26

115.0
,

17

154.0
,

8

192.0
,

25

231.0
,

16

269.0
,

7

308.0

,
24

346.0
,

15

385.0
,

6

423.0
,

23

462.0
,

14

500.0
,

5

538.0
,

22

577.0
,

13

615.0
,

4

654.0

,
21

692.0
,

12

731.0
,

3

769.0
,

20

808.0
,

11

846.0
,

2

885.0
,

19

923.0
,

10

962.0
,

1

1

VVVVVVVVV

VVVVVVVVV

VVVVVVVVV

According to the algorithm in step 4 for fuzzy search, the initial membership value (τ ini) is

calculated based on the Min and the Max value of time of execution. According to the

specification, VBorder = 200 µs, while Min = 20.01µs, Max= 833.41 µs are the calculated

minimum and maximum values (using equation 14) of the variants with maximum and minimum

50

resources respectively. As shown in Table 4 the proposed fuzzy search technique finds the

border variant (variant 5) in just five comparisons. This value indicates the first variant in the

design space which satisfies the constraint for execution time specified (VBorder).

 H. Determination of the Pareto-optimal set of design architecture

After successfully obtaining the border variants for both parameters the next step is to find the

design variants which simultaneously satisfy the specifications for area and execution time

defined in the design problem. This step is driven by the fact that the designer must arrive at a

point of optimum suitability for the application according to the user specifications for the multi

parameters provided. After satisfying both parameters, the next step is to satisfy the power

consumption parameter for the variants obtained. After observing the design space shown in

Arrangement of time of execution in decreasing order from the

top to the bottom element using the proposed algorithm

Border Variant

V1 = (1,1,1) p=1

V10=(2,1,1)

V19=(3,1,1)

V2 = (1,2,1)

V11=(2,2,1)

V20=(3,2,1)

V3 = (1,3,1)

V12=(2,3,1)

V21=(3,3,1)

V4 = (1,1,2)

V13=(2,1,2)

V22=(3,1,2)

V5= (1,2,2) p=13

V14= (2,2,2)

V23= (3,2,2)

V6 = (1,3,2)

V15= (2,3,2)

V24= (3,3,2)

V7 = (1,1,3)

V16= (2,1,3)

V25= (3,1,3)

V8 = (1,2,3)

V17= (2,2,3)

V26= (3,2,3)

V9 = (1,3,3)

V18= (2,3,3)

V27= (3,3,3) p=27

 Minimum time of

execution

Maximum time

of execution

Non-satisfying set for

time of execution

 Satisfying set for time

of execution

Figure11. The vector design vector space in decreasing order for time of execution

51

Figure10 and Figure11, five architectural variants are found to simultaneously satisfy the

constraints specified. Hence the variants V5, V7, V16, V25, V8 belong to Pareto optimal set.

Next, the priority factor for the power consumption parameter is determined according to

Chapter 3. After calculation of the PF, the priority order is determined. The obtained priority

order is: PO (R1) > PO (R2) > PO (Rclk). Similar to the method described in Section 3.2.F, the

variants of the Pareto set for power consumption are then arranged in increasing order of

magnitude by using the proposed method. According to the specification (see Table 2) provided,

the variant with the minimum power consumption should be selected. When the variants of the

Pareto set are arranged in increasing orders of magnitude, the first variant in the order is

guaranteed to be the variant with the minimum value (i.e. minimum power consumption) with

the value increasing respectively with each next variant in the set. Hence, after arrangement of

the variants in increasing order, it is found that ‘V5’ is the one with the minimum power

consumption as it is the first variant after arrangement. Therefore, the final optimal solution

found (V5) with 1 adder/subtractor, 2 Multiplier, 100 MHz clock occupies 152au. This signifies

that in the FPGA the optimal solution for the hardware resources occupies approx. 152 CLB’s.

Table4. The variants obtained for execution time after applying fuzzy search on the arranged design space

Equations for obtaining the calculated

membership values

Calculated
membership

values(τ)

Variants corresponding in
the set according to the

calculated ‘τ’

Execution time

Decision based on
the VBorder

01.2041.833

01.20200

−

−
=iniτ τ ini = 0.2213 0.231/V25

Texe
25 = (22 +(1000-1)*20)

*0.0025 = 50.005 µs

Texe
25

 < VBorder ,
search up in the

design space

005.50200

005.5041.833

231.0

231.01

−

−
=

−

−

Bτ
 τB = 0.378 0.385/V15

Texe
15 = (12 +(1000-1)*8)

*0.01 = 80.04 µs

Texe
15

 < VBorder ,
search up in the

design space

04.80200

04.8041.833

385.0

385.01

−

−
=

−

−

Bτ
 τB = 0.483 0.500/V14

Texe
14 = (14 +(1000-1)*10)

*0.01 = 100.04µs

Texe
14

 < VBorder ,
search up in the

design space

04.100200

04.10041.833

500.0

500.01

−

−
=

−

−

Bτ
 τB = 0.568 0.577/V22

Texe
22 = (22 +(1000-1)*20)
*0.01 = 200.02 µs

Texe
22

 > VBorder ,
search down in
the design space

02.200200

02.20001.20

577.0

577.00

−

−
=

−

−

Bτ

τB = 0.577

0.538/V5
(Since V22 has been

checked so according to
the algorithm check V5)

Texe
5 = (14 +(1000-1)*10)
*0.01 = 100.04 µs

Stop

52

Therefore, even if the Pareto optimal set obtained after determining the border variant using

fuzzy search is large, the arrangement of the variants in the Pareto optimal set, in increasing

order using PF is the only requirement to determine the variant with the minimum power

consumption. Therefore the variant obtained is regarded as the final optimal variant for the

system design as it concurrently satisfies the specification of all the three objectives for

execution time, hardware area and power consumption.

Note: The detailed results of this approach applied on various benchmarks and the results of

exploration time improvement are reported in Chapter 7.2.

53

Chapter 4

Priority Function Driven Design Space Exploration in

High Level Synthesis Based on Power Gradient

Technique

This chapter introduces the third novel algorithm of the dissertation viz. a novel heuristic based

multi objective exploration process based on power gradient theory that simultaneously reduces

the static power dissipation at the usage of minimal control step (time step) during scheduling.

The proposed iterative power aware integrated optimization approach is based on Priority

Indicator (PI) function which is responsible for minimizing allocated hardware functional units

during the scheduling process. When the final solution was compared to a Genetic Algorithm for

the benchmarks it resulted in a considerable power reduction, runtime reduction as well as

improvement in the quality of final solution.

54

4.1 The Proposed Exploration Approach

The proposed approach accepts the data flow graph (DFG) of the application as an input along

with the set of module library information. According to the proposed approach, in each iteration

only one operation (node) can be moved at a time into its next immediate control step as long as

the dependency is obeyed. The selection of a particular operation (node) is chosen based on the

value of ‘PI’. The PI acts as a determining metric to choose the highest priority node (operation)

among the existing available movable operations that can result in reducing the power of the

final solution. The flow of the proposed approach is shown in Figure 12. The detailed algorithm

of the proposed approach is shown in Figure 13. The main motivation behind this research is the

development of a novel technique that can simultaneously reduces the static power dissipation at

the usage of minimal control step (time step) during scheduling by capturing the power gradient

effect which arises during movement of operations.

4.1.1 Proposed Power Gradient and Priority Indicator (PI)

Power Gradient (G) is a metric that models the power consumption relationship between the two

consecutive control steps (j) and (k) as well as the power consumption relationship between

scheduling solutions before and after movement of an operation. Hence effectively ‘G’ signifies

the difference in Power consumption (Pc) between control step (CS), CS (j) and CS (k) before

movement of operation o(i) and difference in power consumption between CS (j) and CS (k)

after movement of o(i). The mathematical expression of power gradient between any two

arbitrary control steps CS (j) and CS (k) is shown below in equation (34).

G = Sbefore – Safter (34)

SBefore = Difference in Pc before movement of o(i).

 = (Pc) before movement at CS (j) – (Pc) before movement at CS (k)

55

SAfter = Difference in Pc after movement of o(i)

 = {(Pc) after movement at CS (j) – (Pc) opn o(i)}

 – {(Pc) after movement at CS (k) + (Pc) opn o(i)}

Where, CS (j) and CS (k) are the two immediate control steps in the scheduling solution, opn (i)

is the operation selected for movement through the ‘PI’ metric. The metric called power gradient

defined in equation (34) will be used in the ‘PI’ metric described later for selection of the highest

priority node for movement during optimization power gradient defined above takes into account

Figure12. The overview of the proposed heuristic approach

User specified module library with area, latency and power consumed per area unit as

input

Data flow graph as input

ASAP scheduling

(Note: The precedence violation is checked before performing scheduling)

Calculate cost of schedule

solution

ASAP imposes a restriction on control

step. Hence now the scheduling solution is

improved under this CS constraint

Movable operations from recent schedule are identified

Calculate the PI of each identified movable operation

The movable operation with the highest PI is selected for movement into its next

immediate control step

• If there is a tie between the PI values then any operation is randomly chosen for

movement into the next control step.

Is the terminating condition for the algorithm reached?

Stop the iteration and yield the solution with the minimum cost among all

iterations as the final output

Yes

No

56

the change in power dissipation and its effect on a scheduling solution when a certain operation

is moved from one control step to another. The proposed priority indicator metric used for

selection of high priority nodes during movement is shown in equation (35):

 PI = G * Max [Pc (j), Pc (k)] * cost [opn (i)] (35)

Where ‘cost [opn (i)]’ is the development cost of resource o (i) obtained from the module library,

‘G’ is obtained from equation (34) and ‘Max [Pc (j), Pc (k)]’ signifies the maximum of the power

dissipation between CS (j) and CS (k).

 In eqn (35), ‘cost [opn (i)]’ is considered as the associated development cost of the

respective operational resource (oi) which is one of the factors that contributes to the PI of the

node during selection.

4.2 Demonstration of the proposed approach

In the proposed approach, the cost of each schedule solution is evaluated in terms of static

power. One of the most significant ways to reduce static power is to minimize the number of

functional units (i.e. reduce the number of resources in order to reduce the standby/leakage

current of the system). Therefore in Equation (36), power dissipated per area unit multiplied by

the total area of the resources (in area units) yields the total static power of the resources (i.e.

contribution of static power by major functional resources). Therefore for high level estimation

(contributed by major functional resources) the static power cost of each schedule solution can

be determined using Equation (36).

∑
=

⋅⋅=
n

i

PRiRiPT SKNC
1

)((36)

57

‘NRi’ represents the number of resource Ri as mentioned. ‘KRi’ represents the area occupied per

unit resource Ri and ‘SP’ denotes the power dissipated per area unit when the transistors in the

chip are not switching (standby mode). The cost model used in (36) is only used in estimating the

likely high level static power dissipation during the demonstration of the proposed method.

According to the algorithm proposed in Figure 13, all movable candidate operations are

identified for movement from initial As Soon As Possible (ASAP) scheduling of Discrete

Wavelet Transformation (DWT) benchmark. The DWT benchmarks are standard high level

synthesis benchmarks that were selected for demonstration of the proposed approach [23], [30].

The ASAP is shown in Figure 14.

Iteration (1):

i) Movement – opn 2 (1→2) ii) Movement - opn 7 (2→3)

iii) Movement – opn 8 (2→3) iv) Movement – opn 9 (2→3)

For example (i) above signifies that opn 2 is one of the identified movable operations that can be

1.0 Obtain ASAP schedule (put a limit on the number of CS) and determine its cost (PT)

1.1 Repeat {

Count = 1;

1.2 while there is a movable operation

Begin

1.3 Calculate the Power Gradient (G) of each movable operation;

//Power Gradient (G) is a metric that models the power dissipation relationship between consecutive control steps CS (J) and CS (k) as

well as power dissipation relationship between scheduling solutions before and after movement of oi.///

1.4 Calculate the Priority Indicator (PI) of each movable operation;

// PI is the selection mechanism based on power when oi is moved from CS (J) to CS (K)//

1.5 Select a 'Movement' for moving an operation to the mentioned CS;

//Movement selects a duo of operation and its destined CS based on maximum PI of movable operation///

 1.5.1 If there is a tie in the PI values, then

 Any movement is randomly chosen;

1.6 move oi from CS (J) to CS (K) to obtain the new schedule;

1.7 Determine its associated cost (PT) of the schedule;

1.7 increment count, count = count + 1;

1.8 Freeze the Movement (also operation, oi, cannot traverse backward);

1.9 End;

} Until

N = 25;

Figure13. Details of the proposed heuristic Exploration approach

58

moved from CS 1 to CS 2. (Note: Movable operations are those that have a free space to move in

the immediate next CS without disturbing the data dependency present. The representation of the

movable operations of ASAP schedule is shown above in i), ii), iii) and iv)). The priority

indicator (PI) for each identified movable operation is then calculated using equation (35). But

before the PI is calculated the ‘power gradient’ is determined using equation (34) as follows:

G = [(400 +400 +400 + 400 +400) – (80 +80+80 + 80] – [(400 + 400 + 400 + 400) – (80 + 80 +

80 + 80 + 400)] = 800.

(Note: From equation (36) power dissipated by each multiplier and adder is 400mW and 80mW)

Therefore substituting the value of respective ‘G’ for each case i), ii), iii) and iv) as calculated

above for case i):

i) PI opn 2 (1→2) = 800 * Max (2000, 320)* 5 = 8000000 (selected).

Similarly, calculating the ‘G’ for each case and then finding the Priority Indicator yields:

ii) PI opn 7 (2→3) = 160* Max (320, 80) * 3 = 153600.

iii) PI opn 8 (2→3) = 160* Max (320, 80) * 3 = 153600.

+

Figure14. ASAP scheduling of DWT benchmark

11

12

13

14

15

*

+

*

+

*

+
16

+ 17

4

5

6

7

8

9

10

M1

A1

10
3

NOP

1

2 + 7
8

9 + + + A2 A3
A4

6

1
M2 * * * M4 M3 M5 * * 2 3 4 5

59

iv) PI opn 2 (1→2) = 160* Max (320, 80) * 3 = 153600.

According to the next step of the algorithm, the highest PI is selected for movement which is (i).

The power consumption of the scheduling solution is {(4 * 100) + (4 * 20) + (16 * 3) + (8 * 3) +

(15 * 5)} * 4 = 2.50 Watts. (Note: assuming multiplier and adder/subtractor occupies 100 CLB’s

and 20 CLB’s respectively while multiplexer, de-multiplexer and register occupies 3au, 3 au and

5 au respectively; where 1 area unit (au) = 1 CLB has been assumed; Power dissipated per au

(ps) when in standby is 4 milli-watt.). Thus, the cost in terms of power consumption is reduced

from the initial solution. The scheduling solution after first iteration is shown in Figure 15.

Finally the algorithm yields the solution with the minimum final cost. Experiments revealed that

iteration 11 yielded the scheduling solution with minimum cost:

Iteration (11):

i) Movement – opn 4 (2→3) ii) Movement – opn 8 (4→5), iii) Movement – opn 9 (3→4)

iv) Movement – opn 7 (4→5)

Therefore after the PI for each operation was calculated, opn 4 had the highest PI. Hence after

iteration 11(fig.16) the optimal solution to the scheduling problem was found. The cost of this

2
+

Figure15. Scheduling after 1
st
 Iteration

* 11

+ 12

*

+

*

+

+

4

5

6

7

8

9

10

+ 10

1

3

2 + + + 6

1

*

* * *

NOP

*

7

13

14

15

16

17

8 9

3 4 5

A1

M1

A2 A3 A4

M2
M3 M4

60

respective scheduling solution is {(2 * 100) + (2 * 20) + (8 * 3) + (4 * 3) + (14 * 5)} * 4 = 1.38

watts. The final reduction in cost in terms of power consumption obtained compared to the initial

solution (in Figure 16) is 2.94 Watts – 1.38 Watts = 1.56 Watts. (Note: The cost of initial ASAP

solution and schedule after iteration 11 respectively are both determined using Eq. (36)).

Note: The results of this approach applied on various benchmarks and improvements attained

are reported in Chapter 7.3.

+

A1

A2

M1

M2
2

11

12

13

14

16

7 8 +

* 3

+

* 5

9 + * 4

Figure16. Scheduling solution after 11
th

 Iteration

*

+

*

+

* 15

+

17

4

5

6

7

8

9

10

+ 10

1

3

2 + 6

1

*

NOP

*

61

Chapter 5

A Multi Structure Genetic Algorithm for Integrated

Design Space Exploration of Scheduling and

Allocation in High Level Synthesis for DSP Kernels

This chapter presents the fourth algorithm/methodology of the dissertation viz. an integrated

design space exploration of scheduling and allocation problem in high level synthesis using the

heuristic based multi structure genetic algorithm. A cost function based on a combination of

power consumption and pipelined execution time as well as a scheme to select functional unit

type in case of multiple versions is proposed that can guide the genetic algorithm to global

optimal or local optimal (in few cases) solution. The cost function model takes the functional

units, registers, multiplexers and demultiplexers into consideration. The encoding process of the

parent chromosome incorporates a special seeding process that enables the genetic algorithm to

62

search for an optimal solution. This type of seeding process was specifically incorporated

because the optimal solution to a problem always lies between the maximum serial and parallel

implementation. Therefore it is always capable of finding an optimal solution to the combined

problem of scheduling and allocation based on the provided user specified constraints. Results of

the comparison with another recent genetic algorithm based exploration technique indicated

considerable reduction of execution clock cycle as well as power consumption for almost all the

benchmarks.

For the sake of clarity, summarized below are the abbreviations that will be used in the rest of

this chapter:

MSGA: Multi Structure Genetic Algorithm

GA: Genetic Algorithm

HLS : High Level Synthesis

VLSI : Very Large Scale Integration

DFG : Data Flow Graph

CDGF : Control Data Flow Graph

CS : Control Steps

cc : clock cycle.

FU : Functional Unit

DSE : Design Space Exploration

SoC : System on Chip

ASAP : As Soon As Possible

ALAP : As Late As Possible

RASM : Resource Allocation Selection Mode

63

DSP : Digital Signal Processing

ARF : Auto Regressive Filter

DWT : Discrete Wavelet Transformation

EWF : Elliptic Wave Filter

WDF : Wave Digital Filter

BPF : Band Pass Filter

5.1. The Proposed Framework Using MSGA

5.1.1. The MSGA Design Space Exploration

The MSGA overview is shown in Fig.17. The input to the proposed framework is the behavioral

description of the DFG that comprises data path structure, set of user specified design constraints

for power and execution time (with the user specified weight factors), control parameters for the

GA and module library. The module library contains four different information viz. the

maximum available resources, clock cycle of each resource, hardware area of each resource,

finally the details about the versions of each available functional resource. The proposed

framework consists of two basic units. The first unit is the proposed heuristic that acts as an input

to the skeleton for the GA. The second unit processes the information provided by the first unit

to produce an optimal solution. The flow chart representation of the complete MSGA is shown

in Fig.18. The proposed skeleton uses a new heuristic based on load factor criterion that assigns a

specific priority for each operation in the chromosome structure. The first parent (P1)

chromosome of the nodal string (this string is defined later in Section 5.1.2) is encoded based on

the load factor (α) of each resource from the ASAP scheduling graph. On the contrary, each

operation of the second parent (P2) nodal string is encoded based on the difference of the latency

obtained by using ASAP scheduling with maximum resource (L) and the load factor (α) for each

64

operation (oi) obtained for P1 chromosome. The encoded value of each operation (oi) of the

second parent chromosome (P2) is calculated using Equation (37) below. Equation (37) yields

integer values that will be used for encoding the genes of the nodal string of parent (P2). The

main purpose behind the proposed formulation of Equation (37) is the deliberate insertion of

diverse encoded gene values that could possibly capture the minimum load factor value of each

operation. Equation (37) is described below:

)(i

ASAP oL αβ −= (37)

The proposed MSGA framework

DFG

Control Parameters for the GA

(E.g. Pm, Pcross, etc)

Module Library (Details of

resources)

1.) Available versions of

resources

2.) Maximum available

resources

3.) Clock cycle and area

occupied

User specified Constraints

Power and Execution time

The Proposed

skeleton for

the GA

The Proposed

Heuristic for

the GA

Global Cost Function and

Fitness Evaluation

1. Scheduling

solution

[Latency]

2. Cycle Time, Tc

3. Number of

data to be

executed (N)

Data Extracted for Hardware

Implementation

Fig.17 MSGA design space exploration approach overview

65

The rest of the parents of the population in the nodal string encoded with the load-factor values

are obtained by random perturbation. The other parent chromosomes (P3…..Pn) of the

population obtained by the perturbation function should be individuals lying between the Parent

Figure18. Flow chart of the proposed MSGA

Schedule the DFG using ASAP and calculate the

latency (L)

Creation of the initial population by chromosome

encoding based on the proposed load factor values

Perform Crossover for following two chromosomes

independently:

a) Nodal String

b) Resource allocation string

Decode the chromosome using proposed ‘load

factor heuristic’

Invoke RASM () to decide the version of each

FU.

DFG and module library information

Calculate the Global cost function based on power consumption-execution time

tradeoff.

Perform mutation on the least fit nodal string and

the resource allocation string

Decode the mutated chromosomes using the

proposed ‘load Factor Heuristic’ and calculate the

cost of mutated chromosome

Select the best population and forward to next

generation

No

STOP

 BEGIN

Is specified maximum number of

generations reached?

66

P1 derived from the schedule based on maximum resource and Parent P2 derived based on

minimum resource. This is logical because the optimal solution to the integrated problem lies

somewhere between the maximum and the minimum resource. The perturbation function

developed which yields the load-factor values is given in equation (38):

 µβα ±+= 2/)(PF (38)

where ‘µ’ is a random value equal or between ‘α’ and ‘β’. This function is used when encoding

the values of the nodal string. On the other hand, the perturbation of the resource allocation

string (this string is defined later in this chapter) for the other parents is obtained by applying the

algorithm shown in Fig 19. Once the parents for the initial population are formed then direct

crossover is applied. Crossover results in creation of off-springs in that generation. The next task

is to decode the generated individuals of the first generation by applying a new ‘load factor

heuristic’ that results in valid schedule. During the process of formation of the schedule solution,

the data dependency is strictly followed before any operation is selected for scheduling. Once the

valid schedules corresponding to all the specific individuals of the population are obtained, the

RASM () must be selected. Since the module library contains multiple versions of the same

resource, this mode selects the allocation type based on the user choice. This mode has four basic

choices based on the user preference. The first choice is kept by default (Note: also by default

equal weightage of area and latency is kept in the local cost function i.e. W1 =0.5 and W2= 0.5).

This is because the first option chooses the units which have the lowest cost compared to all the

available units of that kind. The cost is determined by a local cost function which is given in eqn

(39) as:

 LWAWCL ⋅+⋅= 21 (39)

67

Where ‘A’ represents the area occupied by the specific type of resource and is obtained from the

module library, while ‘L’ represents the latency of the specific type of resource. W1 and W2 are

the user specified weightage for area and latency respectively (0<=W1<=1 and 0<=W2<=1). The

RASM () is composed of the following modes:

•Each operation is allocated to the FU of a particular kind with the lowest cost.

•All operations are allocated to fast FU, including operations on critical and non-critical path.

•Operations are randomly allocated to FU of that kind.

•All operations are allocated to FU with minimum area overhead of that kind.

Since RASM () selects the FU’s of a specific kind for a specific operation based on the

minimum cost, the next step is to retrieve the information from the module library. This

information enables us to calculate the local cost function of each scheduling solution at the end

of a specific generation. Calculation of the local cost function yields the FU version with the

minimum cost. These low cost FU versions of each kind are then simply assigned to the specific

operations of the valid scheduling solutions found before. Once the versions of the FU are

assigned, the global cost function can be determined in order to judge the fitness of each

individual. The least fit individual is mutated in order to hope for a better solution followed by

decoding and fitness calculation. The best fit individuals from this first generation are then

Algorithm (Input: Resource allocation string; Output: new

resource allocation string)

1. Randomly pick any two nodes (v1, v2) from the
resource allocation string.

2. Randomly select any integer value (i) ranging
between or equal to ‘α’ and ‘β’ for that specific node.
Where, α <=i<= β

Fig.19 The perturbation algorithm for resource

68

forwarded to the next generation. This process continues until the maximum generation G(Max)

specified is reached.

5.2. Description of the Proposed MSGA steps

 A. Encoding of the Chromosome

The proposed approach uses independent strings to separately represent the priority of the nodes

of the DFG and the resource allocation information. The approach is called multi structure

because each FU (resource) is represented as an independent substring in the nodal string

structure. It has two independent strings to separately represent the nodes of the DFG (called

‘nodal string’) and the resource allocation information (called ‘resource allocation string’). The

‘nodal string’ contains the load-factor values of each node which will determine the priority of

the nodes during scheduling. The ‘load factor heuristic’ is used when decoding the nodal string

in order to obtain a valid scheduling solution. The ‘resource allocation string’ contains list of

integers which indicate the maximum number of resources allowed during scheduling. The

encoding scheme for the ‘nodal string’ and the ‘resource allocation string’ is shown with an

Figure20. DFG of the IIR Digital Filter

X X X X

+

1 2 3
4

7

X

6

5

 8

+

-

+

 9

69

example of a benchmark ‘IIR Digital Filter’. Fig. 20 shows the DFG of the above benchmark.

The schedule of the DFG of the differential equation solver using ASAP is shown in Fig.21. The

latency (L) obtained is 12cc. (Note: Arbitrarily assuming multipliers and adders/subtractor takes

4cc and 2cc respectively). The corresponding chromosome encoding for the first parent (P1) of

the nodal string is shown in Fig. 22. The total load-factor of each operation (node) is obtained by

summing the load-factor of the successor operations following that node. E.g. for node 2, the

load factor is (4+2+2+2+2) cc = 12cc. The second parent (P2) chromosome is encoded based on

the load-factor values obtained using equation (37). The second parent (P2) chromosome

encoding is shown in Fig. 23. The rest of the parents of the initial population are obtained using

equation (38) which is a perturbation function used to encode the load –factor values. The load

factor values for the rest of the parents always lie between the values from the first and second

parent. This scheme has been developed because the optimal solution to the problem should

always lie between the serial and maximally parallel implementation [22]. On the other hand,

the first parent (P1) shown in Fig. 22b and second parent (P2) of the resource allocation string

shown in Fig. 23b are based on the user specified maximum and minimum resources

respectively. The user specified maximum resource assumed here acts as the maximum resource

constraint for the application. Thus, from Fig.22, the resource constraint for the number of

multipliers, adders and subtractor are 4, 3 and 2 respectively. The assumed user specified

constraint on number of clock oscillator is three (The details of the resources are provided later

in the module library shown in Table 5). The rest of the parents (P3…P8) are obtained using

Equation 38 and Figure19. The nodal string and the resource allocation string for rest of the

parents are shown in Fig.24 respectively. For example, in case of Fig 24b, the encoding of the

third parent for the resource allocation string is obtained first picking up randomly any two nodes

70

M (multiplier) & A (adder) and then randomly selecting any integer value between ‘4’ and ‘1’

for M & between ‘3’ and ‘1’ for A. The randomly selected value for both M & A is ‘2’.

X X X X

+

Latency = 12cc

T1= 4cc

1 2 3
4

7

X

T2= 2cc

T3= 2cc

T4= 2cc

6

5

 8

+

-

+

 9
T5= 2cc

Fig.21. Scheduling of the IIR Digital Filter

using ASAP

1 1 1 1

M A S F

Sub

6 0 0 2 4

 1 2 3 4 5

4 6 8

 6 7 8
Adder

10

 9

Mul

Fig.23a. Nodal String

Fig.23. Chromosome Encoding for the second parent (P2)

Fig.23b. Resource

allocation String

(Min resources)

Sub

6 12 12 10 8

 1 2 3 4 5

8 6 4

 6 7 8

2

 9

4 3 2 3

M A S F

Mul

Fig.22a. Nodal String

Fig.22. Chromosome Encoding for the first parent (P1)

Fig.22b. Resource

allocation String (Max

resources)

 Add

71

Similarly, the rest of the parent chromosomes can be built by perturbation.

B. Crossover Scheme

The parents for crossing are selected by binary tournament selection method [29]. Proposed here

is an independent direct crossover of the two independent strings viz. nodal string and resource

allocation string to produce separate off-springs for each with a very high crossover probability

(Pcross = 1.0). (Note: This value is similar to the values considered in other GA-based approaches

such as in [11].) The direct crossover is applied to each sub structure of the nodal string

structure. Since the nodal string encodes the load factor of each operation for a particular FU, the

crossover does not damage the precedence relationship. This is because the nodal string in the

proposed approach does not encode the topologically sorted permuted list of operations (nodes).

Further, during the final decoding process, the load factor heuristic is followed which always

produces feasible solutions. The detailed explanation on the decoding process is provided in

Section 5.2.D.

B.1 Multi-Point Crossover of the Nodal String

Before the crossover scheme can be applied to the nodal strings, the two parents are

randomly divided into two halves at point n (where ‘n’ represents a random cut point in the

2 2 1 1

M A S F

Sub

0 16 15 10 11

 1 2 3 4 5

12 0 11

 6 7 8

10

 9

Mul

Fig.24a. Nodal String

Fig.24. Chromosome Encoding for the third parent

Fig.24b. Resource

allocation String

Add

72

nodal string). The proposed crossover is called multi-point because each substring of the nodal

string representing independent FUs is divided at a different point. For example, applying the

direct crossover operator to the nodal string between the first (Fig. 22a) and second parent

(Fig.23a) at point 2 for multiplier and point 1 for adder and subtractor, yields offspring 1 and

offspring 2 respectively. The offspring 1 inherits all the properties of the first half from the first

parent. While the second half is inherited from the second parent. The properties that are

inherited from the parents are the load factor values and corresponding node numbers

(operations). The offspring 1 obtained after crossover operation between P1 and P2 is shown in

Fig 25 while offspring 2 obtained after crossover between P2 and P1 is shown in Fig. 26. For the

sake of brevity, the remaining off-spring have been omitted in the chapter.

B.2 Crossover of the Resource Allocation String

The resource allocation string is responsible for encoding the number of hardware functional

units of each type available for scheduling operations in each time step. Since the number of

allocated functional units of each type is totally independent of each other, the n-point crossover

can be easily applied. For instance, in case of

Sub

6 0 12 10 8

 1 2 3 4 5

4 6 4

 6 7 8

2

 9

Mul

Fig.26. Offspring 2 obtained for the nodal string

obtained after crossover between P2 and P1

Add

6 12 0 2 4

 1 2 3 4 5

8 6 8

 6 7 8

10

 9

Mul

Fig.25. Offspring 1 obtained for the nodal string

obtained after crossover between P1 and P2

Add

Sub

73

the DFG for Digital IIR filter benchmark, the two parents (P1 and P2) for the resource allocation

string are shown in Fig 22b and 23b respectively. P1 represents a solution with four multiplier,

three adders, two subtractors, one comparator and third frequency oscillator while P2 represents

a solution with one multiplier, one adder, one subtractor, one comparator and first frequency

oscillator. Application of the direct crossover at a random cut point between P1 and P2 yields

offspring 1 while between P2 and P1 yields offspring2 in fig 27.

C. Mutation Operation

Mutation is performed on the least fit nodal string chromosome and the resource allocation

string chromosome with probability, Pm = 0.25. Pm = 0.25 is the minimum number of time

mutation is performed in each generation. Since any mutation probability between 0.20 to 0.25 is

considered standard, refining the value slightly does not alter the final solution.

4 3 2 3

M A S F
Parent (P1) =

Parent (P2) =
1 1 1 1

M A S F

4 3 1 1

M A S F

Offspring 1 =

1 1 2 3

M A S F

Offspring 2 =

Fig.27 Offspring 1 and offspring 2

74

C.1 Mutation operator of the Nodal String

The mutation operator for the nodal string and resource allocation string is invoked independent

of each other. The mutation algorithm for the nodal string is shown in Fig 28. According to the

algorithm, any two nodes (vi, vj) in the string (k) are randomly selected for mutation. Next the

load factor values of the two selected nodes are swapped. For example, let the load factor value

for the two nodes (vi) and node (v2) selected be ‘L1’ and ‘L2’ respectively. Therefore, after

mutation the new load factor values for node (vi) is ‘L2’ and node (vj) is ‘L1’. This mutation

technique drastically alters the load factor values of nodes which act as the priority indicator to

select the operations for scheduling. Further, since the mutation scheme of nodal string alters just

the load factor values of the nodes and does not displace the actual nodes themselves, this kind of

mutation scheme always produces valid solutions.

Mutation technique for the nodal string
Algorithm (Input: nodal string [k]; Output: New nodal string

[k])
1. Randomly select any two nodes (vi, vj) from the

nodal string [k].

2. Swap the load factor values (Li and Lj) of the two
selected nodes. Thus,

Let vi = Li and vj = Lj. After swapping

 vi = Lj and vj = Li.

Fig.28. Mutation algorithm for the proposed approach

Mutation technique for the resource allocation string
Algorithm (Input: resource allocation string [k]; Output: New

resource allocation string [k])

1. Randomly select any two nodes (vi, vj) from the

resource allocation string [k].

2. Randomly choose to increment or decrement the
integer (m[k]) of the resource allocation string[k].

If increment, m[k] = m[k] +1

Else if decrement, m[k] = m[k] -1

{ }2][, ≥kmwhere

75

C.2 Mutation operator of the resource allocation String

The mutation algorithm for the resource allocation string is shown in Fig.28. The concept of the

proposed mutation scheme has been adopted from [11]. All possible combinations of the

functional units that can be allocated during a scheduling solution can be attained through this

mutation technique. The algorithm first randomly selects any two nodes (vi, vj) and then

randomly increments or decrements the value of the integer (m) which represents a particular

type of FU. (Note: the integer is only randomly incremented or decremented if the minimum

value of that FU is 2. This is because if the integer (m) is less than 2, then decrementing the

integer will result in invalid number of FU of a specific type). (Note: Since the mutation scheme

of the resource allocation string only alters the integer value of each resource, application of this

mutation technique does not disobey any precedence relationship present in the DFG).

D. Decoding Process (Determination of a Valid Schedule)

The decoding of chromosome always results in a valid scheduling solution which strictly obeys

the data dependency present between the operations. For the decoding process, a ‘load factor

heuristic’ is proposed. The load factor heuristic is shown in Fig. 29. For example, in case of

offspring 1, the nodal string and the resource allocation string are shown in Fig.25 and Fig.27

respectively. The resource allocation string of the offspring1 represents an allocation solution

containing four multipliers, three adders, one subtractor, one comparator and first frequency

oscillator. On the other hand, the priority of each operation for a particular type of FU is

indicated by the load factor values in the nodal string (fig.25). Therefore, for the DFG shown in

Fig.20, the scheduling solution of offspring 1 is shown in Fig. 30. The resulting solution is a

valid schedule, allocation and binding obtained for offspring 1. The solution provides an

76

integrated solution to the concurrent problem of scheduling and allocation. The version (vn) of

the each type of resources used is clearly indicated beside each node. As mentioned before, the

RASM () is by default kept at first option. The FU was chosen based on the minimum cost

obtained among the available FU choices, by using the local cost function (in equation (39)). The

information and details about each FU is obtained from the module library during the local cost

calculation process. A portion of the module library is shown in Table 5. The data extracted for

the hardware implementation and global cost calculation from the integrated solution of

offspring1 (Fig.30) is described in Table 6.

Load Factor Heuristic: Building a priority order of nodes in list L[k] based on load factor of each nodal string [k] of operation

type and assigning the nodes of FU type in CS.

Algorithm (Inputs: DFG, the nodal string [k], FU type; Output: Scheduled DFG).

Step 1) CS = 1

Repeat

 {

Step 2) Select independent nodes from list L[k], to assign in the current CS, based on two conditions: i) Number of FUs for each

operation type is available ii) The nodes are not scheduled in the CS.

 a. If there is a tie during the selection then select the nodes with the higher load factor values.

 b. If there is still tie during the selection then randomly select the nodes as desired.

Step 3) Select dependent nodes with higher load factor value from list L[k] to assign in the current CS, based on two conditions:

i) Number of FUs for each operation type is available ii) The parents of the dependent node are scheduled.

 a. If there is a tie between the load factors during selection then select the nodes with higher utilization factor

 b. If there is still a tie between the utilization factors during selection then randomly select the nodes as desired.

 }

Step 4) C.S = C.S + 1, Until L[k] = Null

(Note: Utilization Factor refers to a metric which indicates the number of children of node vi [k]. So if two nodes of operation o(i)

have the same load factor precedence is given to the node with more children)

Fig.29 The proposed load-factor heuristic for the MSGA Framework

77

Table5. Portion of Module Library for MSGA
(Note: The clock frequency shown in Table V has been chosen arbitrarily for demonstration of the proposed approach for MSGA. Clock

frequency of other type could also have been included in the module library for MSGA)

Resources

(FU)
FU type

Area (area

units in a.u.)
Delay (cc)

Power

consumption per

area unit (au) @

50 MHz

(pc) in milli-

Watts (mW)

Power

consumption per

area unit (au) @

100 MHz

 (pc)) in milli-

Watts (mW)

Power consumption

per area unit (au) @

200 MHz

(pc)) in milli-Watts

(mW)

3 Adders

(+)

Versions

3 6 12

1 V1 50 1

1 V2 30 2

1 V3 15 3

4 Multipliers

(*)

Versions

1 V1 80 3

3 V2 50 4

2 Subtractors

(-)

Versions

1 V1 30 2

1 V2 15 3

X

X

X X

+

T1= 4cc

1 2

3

4

7

X

T2= 4cc

T3= 3cc

T4= 3cc

6

5

 8

+

-

+

 9

T5= 3cc

 T6= 3cc

 V2
 V2

 V2
 V1

V2

 V3

 V3

 V3

 V2

Fig.30. Integrated solution to offspring 1 (Decoding of

the chromosome) for the IIR Digital Filter benchmark

78

E. Global Cost Function and Fitness Evaluation Methodology

The objective of the proposed approach is to simultaneously reduce the total execution

time required for execution of a specific set of data as well as the total power consumption

expended. All of the previous approaches have only considered latency and hardware area as a

design constraint such as [11] [20] [21] [22] and not total execution time which considers the

latency, cycle time and also the number of sets of data to be executed. Thereby, the methods are

not able to reduce the total execution time as they do not consider data pipelining. In the

presented approach a sophisticated global cost function has been developed that considers the

total execution time taking data pipelining as well as total power consumed into account.

The cost is calculated using the global cost function after each chromosome is decoded to

obtain a new integrated solution. The decoding process strictly follows the ‘load factor heuristic’

and hence always results in a feasible solution. The global cost function (CG) developed which

considers total execution time and power expenditure/hardware area is shown in equation (40).

Table6. Data Extracted from the integrated solution of offspring 1

FU Type

3 Multiplier (version V2)

1 Multiplier (version V1)

1 Subtractor (version V2)

1 Adder (version V3)

1 2 to 1 MUX for 1
st
 multiplier (V2)

1 3 to 1 MUX for adder (V3)

1 1to 2 DEMUX for 1
st
 multiplier (V2)

1 1 to 3 DEMUX for adder (V3)

Number of Registers allocated using left edge algorithm

[29].

79

MAX

CONST

MAX

CONSEXE
G

P

PP
W

T

TT
WC

−
⋅+

−
⋅= 21 (40)

Where ‘P’ is the total dynamic power as a function of operating frequency and number of

devices switching due to frequency of operation based on [5, 64, 12]:

∑
=

⋅⋅=
n

i

cRiRi pKNP
1

)((41)

Where, ‘NRi’ represents the number of resource of resource Ri as mentioned before. ‘KRi’

represents the area occupied per unit resource Ri and ‘pc’ denotes the power consumed per area

unit at a particular frequency of operation.

Where TEXE = Total execution time in clock cycles taken for execution of the given ‘N’ sets of

data is calculated using the function from Chapter 2 given in equation (42):

CEXE TNLT ⋅−+=)1((42)

Based on [61,62, 12], the respective execution time in micro-seconds (assuming frequency in

Mega Hertz) can be expressed as:

PCEXE TTNLT ⋅⋅−+= })1({ (43)

L= Latency of the scheduling solution. N = Number of sets of data to be executed.

TP = Time period of the clock frequency oscillator; TC = Cycle time of the scheduling solution.

(Note: The cycle time is the difference in clock cycles between any consecutive outputs

of pipelined data instances. The cycle time difference during data pipelining is the result of

initiation interval (which is the difference in clock cycles between any consecutive inputs

instances of pipelined data sets). For example, the cycle time calculation for the integrated

solution (Fig. 30) is shown in Fig.31 below. The output for first set of data is arriving after 20cc

while the output for second instance of data after 28cc. Thus, due to exploring initiation interval

80

of 8cc during pipelining, there is a cycle time difference of 8 cc, which is the result of

considering the initiation interval. As seen clearly in Fig 31, the cycle time consideration in

equation (42) has resulted from genuine data pipelining. Therefore the option of cycle time

during pipelining has been also taken into account during the exploration process.)

CG = Global Cost of the integrated solution

TCONS = Execution time constraint specified by user.

TMAX = Max execution time taken by a solution during the specific generation (G).

AFU = Total area of the functional units.

AREG = Total area of registers.

AMUX = Total area of the multiplexer used during implementation.

ADEMUX = Total area of the demultiplexers used during implementation.

Fig.31.Cycle time calculation during data pipelining for offspring 1

Latency = 20cc

Mul M 1

(v2)

Add A

(v3)

Add A

(v3)

Add A

v3

Mul M 2

(v2)

Mul M 3

(v2)

Output Y2 Output Y1

FU’s

Clock cycles (cc)

Sub S

V2

Mul M 4

(v1)

20cc 25cc

Initiation Interval=8cc

12cc

Cycle time = 8cc

28cc 14cc

Opn 1

Opn 3

Opn 2

Opn 4

Opn 5

Opn 6

Opn 7

4cc 8cc 0cc

Opn 1

Opn 2

Opn 4

Opn 5

Opn 3

Opn 8

Opn 9

Opn 6

Opn 7

Opn 8

Opn 9

 First set of data

Second set of data

17cc

81

PCONS = Power consumption constraint specified by the user.

PMAX = Max power consumption of a solution during a specific generation (G).

pc = Power consumed at a particular frequency of operation.

W1 and W2 = User specified preference of the constraints.

The cost function requires input from various sources to evaluate the fitness of each solution

found. The sources consists of the a) module library information, b) data extracted for the

hardware implementation (e.g. as shown in Table 6), c) DFG and d) scheduling solution found

after decoding the chromosome (latency), number of sets of data, cycle time together, for

calculation of the execution time.

F. Termination Criterion for the MSGA

The maximum generation has been kept constant for each benchmark run. Although making the

number of generations proportional to the problem size is more logical, settling on an average

number of maximum generations for both small and large size benchmarks is a good

compromise. Therefore, experiments dictated that retaining the maximum generation G(Max) to

100 is an optimal compromise between reasonable runtime and achieving high quality solution.

Setting the G(Max) to some higher value will still produce the same solution but will also

increase the computation time. On the other hand, setting G(Max) to a lower value will yield

inferior solutions particularly for large benchmarks.

Note: The results of this approach applied on various benchmarks and its improvements are

reported in Chapter 7.4

82

Chapter 6

Fast Multi-Objective Exploration and RTL Circuit

Generation using Architecture Synthesis Platform:

Exploration Synthesizer

A novel efficient architecture synthesis platform capable of performing extremely fast multi

objective design space exploration of an optimal solution as well as register transfer level circuit

generation of DSP applications is proposed in this chapter which is a combination of algorithms

described in Chapters 2 and 3. Design space exploration based on trio parametric objectives can

be performed through this platform due to the determination of border variant for each parameter

followed by the formation of the Pareto optimal set obtained by the intersection of all satisfying

variants. Currently, the experimental results reported here are based on three parametric

objectives viz. hardware area, pipelined execution time (or performance) and power

83

consumption. The proposed tool is an hybrid combination of multi-objective design space

exploration approach and fuzzy search heuristics (Chapters 3 and 4) based on priority factor

pareto optimal method and fuzzy search heuristics, which support features such as functional

pipelining. Due to lack of availability of a standard format for intermediate representation of the

data flow graph, a custom intermediate format called ‘application library’ is developed. The key

benefit of this platform is the rapid exploration/optimization time (in order of a few secs to mins)

to find the optimal solution regardless of the complexity of the design space as well as generation

of the complete processor schematic in a short time. This is followed by VHDL generation of

centralized control unit and data path circuit. The results of the comparison with a current

heuristic approach indicate 99% improvements in exploration time with ability to yield an

optimal solution in almost all cases.

6.1 The Proposed Exploration Synthesizer Design Flow

Using the proposed Exploration Synthesizer tool, multi-objective architecture exploration is

performed by a combination of the exploration techniques described in Chapters 2 and 3 (For

details please see the exploration flow illustrated in Chapters 2 and 3). Hence, the proposed

technology is a combination of novel hybridization based on the priority factor Pareto analysis

and a hybrid fuzzy algorithm. Priority factor Pareto analysis (Chapter 2) is employed when user

preference is power-performance (pipelined execution time) tradeoff with hardware area

minimization, while the hybrid fuzzy algorithm (Chapter 3) is employed when the user

requirement is hardware area-performance (pipelined execution time) tradeoff with power

consumption minimization. It should be noted that the design space is extensive and consists of

innumerable alternative combinations of adders-subtractors, multipliers and frequency

84

oscillators. The overview of the proposed approach of the tool including the multi-objective

architecture exploration phase and its RTL circuit generation phase comprised of the centralized

controller and data path unit is shown in Fig.32. After the exploration phase is complete the

RTL circuit is generated based on the high level synthesis design flow described in [27]. The

high level synthesis design flow described in [27] consists of various design stages such as

architecture selection (or exploration) followed by scheduling, allocation, binding, determination

Figure32. Design Flow of the proposed Exploration Synthesizer platform

85

of interconnect units, development of block diagram and finally development of control

structure. The exploration solution in the form of an architecture configuration is fed into an

integrated scheduling algorithm that performs scheduling, allocation and binding steps, which is

then subjected to an algorithm which determines the interconnect units, storage units etc and

finally develops the schematic of the complete system.

Therefore, the RTL circuit generated by the tool (schematic in .giff format) is based on the high

level design flow mentioned in the previous paragraph. In addition to generation of the complete

schematic of the processor circuit, the tool also generates the hardware description (VHDL) of

the controller in the form of a finite state machine and the data path in the form of components

and port mapping details. The schematic of the circuit can be easily emulated in any

commercially available logic synthesis tool such as Xilinx ISE or Altera Quartus for simulation

and FPGA implementation. The VHDL obtained can be directly synthesized on the mentioned

synthesis tools for generating the bit streams for FPGA implementation. The design space

exploration process used in the tool describes that the random design space consisting of

innumerable design alternatives is first hierarchically arranged in increasing or decreasing order

(strictly or partially) using the priority factor metric and priority order logistics. Once the design

space is sorted, the fuzzy logistic searching or binary searching [63] is applied to obtain the

border variant of the specific optimization parameter (Refer to Chapters 2 and 3 for more

details). The groups of all satisfying and non-satisfying variants are obtained from this step.

Similar methodology is applied for the other parameters to obtain their satisfying and non-

satisfying variants. All satisfying sets of variants are intersected to find the common set of

variants. The set obtained consists of the variants which concurrently satisfy all operating

constraints specified by the user. Finally, the obtained Pareto optimal set is again sorted for the

86

final optimization parameter using priority factor metric and priority order logistics to find the

variant with the minimum value with respect to the optimization parameter. (Note: For all

mathematical proofs, discussion and demonstration on the DSP kernels please refer to Chapters 2

and 3).

6.2 Keystones of the Proposed Design Automation Platform: Exploration

Synthesizer

1. The capability of ‘trio’ parametric optimization (including area, power and pipelined

performance) provides the foundation for extremely rapid design space exploration (in seconds)

regardless of the size of the design space during ASP design.

2. Efficient design space exploration enables additional selection of the frequency oscillator from

the extensive design space besides the optimal architecture for the system design.

3. Development of a hybrid multi objective optimization flow for Register Transfer Level (RTL)

design for generation of a RTL circuit consisting of a controller description and data path in a

short time.

4. The platform also provides an added advantage to the designer to auto-correct the user

specification if the constraints do not obey the upper threshold and lower threshold limit.

A synopsis of the proposed tool with its functionality for research and industry use is as follows

[36- 40]:

i) Architectural Exploration: Allows selection of the best architecture among the possible

implementations.

87

ii) Automated Decision making capability for circuit generation: In the absence of the register

transfer level design team, with high level synthesis systems companies can do high-level

exploration to determine what will effectively run their applications.

iii) Shorter design time: Reduction in exploration runtime helps faster deign time and generation

of design with fewer errors and redesign.

iv) IP reuse and implementing algorithms in FPGA hardware: IP created by high level synthesis

can be shared between companies.

The features supported by the proposed software platform include functional pipelining

considering initiation interval.

The design automation platform/tool works as a 3 step process. The first step of the tool accepts

as input the user specified module library, the application data flow graph in a custom

intermediate format specified by the user, and the number of data elements to be pipelined. The

second stage accepts as input the user specified constraint and optimization requirements for

three parameters. Finally, the last stage of the tool produces multiple outputs: a) exploration

result b) schematic of the complete system c) VHDL of the complete system. The snapshot of the

developed design automation platform for a sample problem is shown in the appendix.

6.3 Input Format and Intermediate Representation

A customized intermediate representation of the DFG has been developed since there is no

standard input format and intermediate representation of the DFG after the architecture synthesis

design process. This intermediate representation of the application DFG serves as the input

format for the proposed Exploration Synthesizer tool. The input format of the proposed tool is

termed ‘application library’. An explanation of the ‘application library’ is provided with the aid

88

of a Discrete Wavelet Transformation (DWT) DSP benchmark shown in Fig. 33 and 34

respectively. Every operator is denoted by four tuples, viz. operation, input 1, input 2 and output

name. Hence, the operators are indentified by oi = (operation, ip1, ip2, op). The levels of the

operators in this custom format are obtained straight from As Soon As Possible (ASAP)

schedule. Hence, opn 1, opn 2, opn 3, opn 4 and opn 5 are assigned level 1, opn 6, opn 7, opn 8

and opn 9 are assigned level 2 and so on. This rule is followed to obtain the application library

format.

6.4 Output Details of the Tool

This final phase of the platform produces all the required results in a very short runtime which

can be easily downloaded into the local machine such as:

1) Exploration solution result: comprising of the design architecture (Number of FU’s and type

of clock oscillator frequency) which meets all the user specs and constraints which is used to

design the system. The execution time, estimated power consumed and hardware area is also

Figure33. DFG of the DWT Benchmark

17

* 11

+

12

* 13

+
14

* 15

+
16

+

+
10

+ 7 8 9 + + +
6

1 * * * *

NOP

* 2 3 4 5

,I1,I2,1,,I3,I4,2,*,I5,I6,3,*,I7,I8,4,*,I9,I10,5

+,1,1,6,+,3,3,7,+,4,4,8,+,5,5,9

+, 2,6,10

*, 10, 10, 11

+, 11, 11, 12

*, 7, 12, 13

+, 13, 13, 14

*, 8, 14, 15

+, 15, 15, 16

+, 9, 16, 17

Fig.34. Application library: The intermediate

representation of DWT DFG which acts as the input

format for the tool

89

indicated which confirms that the solution produced meets in almost all cases the user

constraints.

2) Custom processor schematic (.gif diagram): This can be used to imitate design of the

application in commercial digital synthesis tools (Xilinx ISE, Altera Quartus etc).

3) VHDL (complete HDL description) of the custom processor of the application kernel

(consisting of the controller description and data path circuit): This can be used to directly into

commercial digital logic synthesis tools (Xilinx ISE, Altera Quartus etc) and Layout Synthesis

CAD tools such as Synopsys Design Analyzer for further simulation or chip core designing in

cadence encounter.

4) Module library and application input can also be downloaded.

5) Summary of the provided user constraints values is also indicated.

Note: A sample custom processor schematic and a portion of its VHDL description for Elliptic

Wave Filter DSP benchmark with some arbitrary constraints generated by the tool are shown in

the Appendix.

90

Chapter 7

Implementation, Results and Analysis

This chapter describes the complete experimental results of the four proposed

algorithms/methodologies which resolves four branches of the design space exploration problem:

a) Design Space Exploration methodology for Power-Performance-Cost/Area tradeoff in High

Level Synthesis using novel Priority Factor approach b) Design Space Exploration methodology

for Hardware Area-Performance-power tradeoff in High Level Synthesis using Hybrid Fuzzified

approach c) Methodology for Integrated exploration of Scheduling and Module Allocation in

High Level Synthesis for static power optimization under minimum control step based on Power

Gradient theory d) Methodology for Integrated Exploration of Scheduling and Module

Allocation in High Level Synthesis for Power-Performance tradeoff using Heuristic Genetic

91

Algorithm which includes the implementation details, library details and improvements attained

compared to the state of the art approaches.

7.1 Experimental Results: Proposed approach ‘Rapid Design Space

Exploration in High Level Synthesis Based on Power-Performance-Area

Tradeoff using Priority Factor Metric’ and Comparison with recent approach

This section describes the experimental results of the proposed approach based on power-

performance-area/cost trade-off (elaborated in Chapter 2) and the improvements obtained

compared to recent approach [11]. The proposed hybrid DSE approach has been implemented in

Java language on AMD Athlon 64 X2 Dual-Core Processor TK-157 with 3072 MB DDR2

memory, 64KB L1D cache and 256 KB L2 cache memory. The processor frequency is 1.90

GHz. For a qualitative analysis, the proposed hybrid approach was tested on a number of DSP

benchmarks ranging from small to large number of variants. Many large size benchmarks were

selected for the experiment. The DSP benchmarks such as discrete wavelet transformation

(DWT) [30], autoregressive filter (ARF) [31], and MPEG motion vectors (MMV) [32] were also

adopted for experiments.

For determination of the optimal architecture, design space exploration requires elaborate

analysis and evaluation of the architectural variants (design points). Before selecting the optimal

architecture, the border variant of architecture for both the performance (execution time and area/

power) parameters needs to be found separately. Binary search conducted on the arranged design

space (increasing or decreasing) leads to the border variant, taking into account the operating

constraints for execution time and area/power separately. The proposed DSE approach uses

binary search after the arrangement of the design space using the priority factor method. The

92

search of the optimal architecture requires only
∏

=

n

i

Riv
1

2log

.Where ‘n’ = number of type of

resources and ‘vRi’ is the number of variants of resource ‘Ri’. On the contrary, the exhaustive

search checks for
∏

=

n

i

Riv
1 architectural variants during optimal architecture selection while

satisfying all operating constraints. In this design space exploration approach and in the design

flow three performance parameters have been used for optimization. The execution time and

power are the parametric constraints and area is the optimization parameter. Hence, the searching

has to be repeated for both the parameters to determine the border variant. Therefore the total

number of architecture evaluations using exhaustive search is given as: ∏
=

n

i

RivM
1

* And total

number of architecture evaluations using the proposed method is given as: ∏
=

n

i

RivM
1

2log* . Here,

‘M’ denotes each performance parameter. In this case the value of ‘M’ is two because there are

two performance parametric constraints. The proposed approach was applied on various realistic

benchmarks to check the acceleration obtained through this DSE method. Results indicated

massive improvement in exploration time compared to the exhaustive approach. A sample

module library for this approach must consist of the following information:

a) Type of functional units (FU) b) Number of FU’s of each type (e.g. number of adder/sub

resources) c) Area occupied by each FU (e.g. area in FPGA slices obtained through

characterization during synthesis in CAD tool) d) Number of clock cycles for each FU needed to

finish an operation, e) Number of clock frequency oscillator available for selection

f) The power consumed per au/power consumed by each FU type.

93

The results of proposed design space exploration framework for the standard benchmarks

and the improvements obtained with recent approach [11] are illustrated in Table 7. The

percentage improvements in exploration time with respect to [11] as shown in Table 7 are

obtained as follows: [(Exploration time
 [11]

 - Exploration time
 Proposed

) / Exploration time
 [11]

] *

100. For example, in the case of Discrete Wavelet Transformation with user provided module

library information, the proposed approach explores the architecture in 250 milli-secs while

recent approach [11] in 3.40 secs. This provides an improvement in exploration time of [3.40

secs – 0.25 secs)/ 3.40 secs] * 100= 92.64% compared to the existing approach [11]. Similar

improvements in exploration time are noted in case of other different size benchmarks such as

Fast Fourier Transform and MPEG Motion Vectors. Additionally, the speedup is obtained as

follows: Exploration time
 [11]

/ Exploration time
 Proposed

. For example, for DWT benchmark, the

speedup is: 3.40 secs / 0.25 secs = ~ 14 times. Further, as evident by the experimental results

shown Table 7, the final solution was global optimal in nature for all the benchmarks because it

meets both the user specified arbitrary constraints values for power and for execution time. For

example, in case of DSW benchmark based on the specified time constraint of 400us and power

constraint of 6W, the proposed PF approach finds the final solution which is optimal in nature.

The final solution has execution time constraint value is 340.3us and power value of 2.74W. To

the best of the author’s knowledge, there are no other works except [12] that consider power and

pipelined execution time as constraint and area as optimization criteria during the exploration

process. A comparison of final results with [12] is not reported because both approaches find the

same quality of solution through the exploration process. However, the proposed approach is

able to achieve significant acceleration compared to [12]. Hence based on the experiments

performed on the benchmarks it can be concluded that the proposed approach for DSE is able to

94

provide increased acceleration without sacrificing the quality of the final solution when

compared to existing DSE approach. The power values reported in Table 7 are not closer to

reality power values for modern consumer applications but the main purpose of the reported

values is to prove the efficiency of the proposed approach. Therefore, the proposed approach is

able to handle the desired orthogonal issues encountered during DSE which is balancing the

exploration speed and enhancing the preferred exploration result.

 Table7. Experimental results of comparison between proposed PF approach and recent GA approach [11]

Benchmark

Executio

n time

constrain

t (us)

Power

consumpti

on

constraint

(Watts)

Final

Resource

Pipelined

Execution

time (us)

Power

consumptio

n (Static and

Dynamic)

and

Hardware

Area (CLB

slices

including

Exploration

Runtime of

proposed

approach

GA based

DSE [11]

Approach

G(Max) =

100

Improvement

and speedup in

Exploration

compared to

[11]

Discrete

Wavelet

Transformati

on (DWT)

400us 6W

ADD:2,

MUL: 2,

OSC:

50MHz

340.32us

Power:

2.74W

Area: 254

CLB slices

250milli-sec 3.40 secs

Improvement

= 92.64 %

Speedup

= 14 times

Band Pass

Filter (BPF)
800us 6W

ADD:2,

MUL: 2,

OSC:

50MHz

640.12us

Power:

3.02W

Area: 356

CLB slices

140milli-sec 10.19 secs

Improvement

=98.26 %

Speedup

= 73 times

Finite

Impulse

Response

Filter (FIR)

400us 10W

ADD:3,

MUL: 2,

OSC:

50MHz

360.24us

Power:

3.91W

Area: 329

CLB slices

250milli-

secs
1.30 secs

Improvement

=80.76 %

Speedup

= 5 times

MPEG

Motion

Vector

(MMV)

500us 6W

ADD:2,

MUL: 3,

OSC:

50MHz

480.08us

Power:

4.59W

Area: 440

CLB slices

188milli-

secs
4.14 secs

Improvement

=95.45 %

Speedup

= 22 times

JPEG:

Downsample
800us 4W

ADD:2,

MUL: 1,

OSC:

50MHz

720.12us

Power:

3.88W

Area: 368

CLB slices

453milli-

secs
24.14 secs

Improvement

=98.12 %

Speedup

= 53 times

MESA:

Feedback

Points

900us 6W

ADD:2,

MUL: 2,

OSC:

50MHz

880.04us

Power:

5.98W

Area: 578

CLB slices

340milli-

secs
36.32 secs

Improvement

=99.06 %

Speedup

= 106 times

95

7.2 Experimental Results: Proposed approach ‘Rapid Design Space

Exploration in High Level Synthesis Based on Area-Performance-Power

Tradeoff and Power-Performance-Area Tradeoff using Hybrid Fuzzified

Algorithm’ and Comparative study with recent approaches

This chapter primarily describes the experimental results of the proposed approach based on

area-performance-power trade-off (elaborated in Chapter 3) and the improvements obtained

compared to recent approaches [11] and [12]. This is because the proposed approach works most

efficiently when trading off between hardware area and performance with the power kept as

optimization criteria. However, for the sake of investigation and inquisitiveness, this approach

has also been applied for exploring design points during power-performance tradeoff with

hardware area kept as optimization criteria. A sample module library for this approach must

consist of the same information as described in Section 7.1. The proposed hybrid DSE approach

has been implemented and run on AMD Athlon 64 X2 Dual-Core Processor TK-157 with 3072

MB DDR2 memory, 64KB L1D cache and 256 KB L2 cache memory. The processor frequency

is 1.90 GHz. For a qualitative analysis, the proposed hybrid approach was tested on a number of

DSP benchmarks ranging from small to large number of variants. Many large size benchmarks

were selected for the experiment. For example, Elliptic, an elliptic wave filter, and Diffeq, a

differential equation solver, are from the NCSU CBL high-level synthesis benchmark suite [33].

Further DSP benchmarks such as discrete wavelet transformation (DWT), autoregressive filter

(ARF), and MPEG motion vectors (MMV) [32] were also adopted for experiments. Additionally,

benchmarks such as Finite Impulse Response (FIR) and Infinite Impulse Response Butterworth

filter with large design solution spaces were also tested and compared to current DSE.

96

A. Experimental and Implementation Results for Area-Performance trade-off with

power as optimization criteria using Hybrid Fuzzified Algorithm

In the proposed method, adding the fuzzy search technique to the priority factor method for DSE

enhances the speed of the exploration process more than the current approach [12]. Approach

[12] has been compared as it is also based on a multi parametric objective which considers

hardware area, execution time and power consumption. The framework used during architecture

design space construction as well as the searching method in [12] both have been considered

during the comparison with the proposed approach. Experimental results in Table 8 indicate that

the proposed hybrid approach is capable of achieving high acceleration compared to the

exhaustive search as well as with approach [12]. Improvement of up to 45.45 % is achieved for

the DWT benchmark compared to [12]. Similarly for large benchmarks like Elliptic Wave Filter

(EWF), the proposed approach obtained improvement of 42 % compared to the DSE approach

[12] as shown in Table 8. The results of the exploration time improvement and comparison with

the current approach [12] for all tested benchmarks are shown in Table 8. For large benchmarks,

the proposed hybrid approach yielded significantly improved results, with improvements ranging

from 20% to 42% as evident from Table 8. Colossal acceleration of over 96% was obtained with

the proposed DSE method compared to the exhaustive searching for Discrete Wavelet

Transformation (DWT) benchmark as seen in Table 8. Additionally, verified through the

experiments it was revealed for all the benchmarks that the proposed approach yielded optimal

results as it met both the arbitrary user specified constraint values of area and execution time. To

the best of the authors’ knowledge there are no other works in the literature except [12] that

considers area and pipelined execution time as constraint and power as optimization criteria

97

during exploration process. Since both the approaches find the same quality of solution through

the exploration process, no comparison of results with [12] are reported. However, the proposed

approach is able to achieve significant acceleration compared to [12]. For example, the runtime

for the DWT benchmark using [12] is 273 milli-secs (ms), while the runtime using the proposed

approach is 79 milli-secs (ms).

Table8. Experimental results of comparison between the proposed hybridized DSE with the current approach [12] for benchmarks

Benchmarks

Total

possible

architecture

in the

design

space for

exhaustive

search

Architecture

evaluation using

[12] (Number of

variants

analyzed)

Architecture

evaluation

using

proposed

hybrid

Priority

Factor

method

with Fuzzy

Search

technique

(Number of

variants

analyzed)

Improvement

in

architecture

analyzed

compared to

current

approach

[12]

Improvement

in

architecture

analyzed by

proposed

approach

compared to

exhaustive

search

Run Time

comparison

Area
Execution

time

DSE

Approach

[12]

Proposed

hybrid

approach

Discrete

Wavelet

Transformation

(DWT)

432

13 13

16 38.46% 96.29 %
0.273 sec

(273 ms)

0.079

sec

(79 ms)
Total = 26

Differential

Equation

Solver (HAL)

180

11 12

17 26.08% 90.55 %
0.156 sec

(156 ms)

0.039

sec

(39 ms)
Total = 23

Elliptic Wave

Filter (EWF)

156

10 9

11 42.10% 87.82 %
0.447 sec

(447 ms)

0.334

sec

(334 ms)
Total = 19

Auto

Regressive

Filter

288

12 12

15 37.5% 94.79 %
0.433 sec

(433 ms)

0.316

sec

(316 ms)
Total = 24

MPEG Motion

Vector (MMV)
756

14 13

31 ----- 95.89 %
0.424 sec

(424 ms)

0.430

sec

(430 ms) Total = 27

IIR Digital

Butterworth

Filter

1280

15 15

21 30 % 98.35 %
0.22 sec

(220 ms)

0.101

sec

(101 ms)
Total = 30

Finite Impulse

Response

Filter (FIR)

1200

15 15

24 20 % 98.00 %
0.395 sec

(395 ms)

0.377

sec

(377 ms)
Total = 30

98

The proposed method was also compared to another design space exploration approach based on

the genetic algorithm [11] which considers dual parametric objectives. Although the method is

very promising, it only considers two parameters, such as hardware area and latency, as design

objectives during design space exploration. The proposed method, however, is based on multi

parametric objective which additionally considers power consumption in addition to hardware

area of resource and execution time (compared to only latency) as major design objectives.

Secondly, [11] as considers only latency, thus it does not take into account the total execution

time for ‘N’ sets of data during data pipelining. Total execution time is the total time taken for

execution of ‘N’ sets of data and includes not only the first output delay (called latency), but also

cycle time (difference in clock cycle between the outputs of two consecutive data by considering

initiation interval). Hence the proposed method offers another advantage over method [11] as it

considers the total execution time instead of just latency. The GA based approach [11] was run

for maximum generation of G (max) =100 using the exact information for the GA parameters

Table9. Experimental results of comparison between proposed hybridized DSE with GA based approach [11]

Benchmarks

Total possible

architecture in the

design space for

exhaustive search

Architecture

evaluation using

proposed hybrid

approach

(Number of variants

analyzed)

Run Time comparison

Proposed hybrid

approach

GA based DSE

Approach [11]

G(Max) = 100

Discrete Wavelet

Transformation

(DWT)

432 16 0.079 sec 4.27 sec

IIR Digital

Chebyshev Filter

54 11 0.024 sec

2.35 sec

IIR Digital Filter 2 72 12 0.027 sec 1.90 sec

Elliptic Wave Filter 156 11 0.334 sec 19.71 sec

Auto Regressive

Filter

288 15 0.316 sec 8.41 sec

MPEG Motion

Vector

756 31 0.430 sec 9.37 sec

Infinite Impulse

Response Digital

Butterworth Filter

1280 21 0.101 sec

2.37 sec

Finite Impulse

Response Filter

1200 24 0.377 sec

6.77 sec

99

provided in [11] in order to record the time taken to find the optimal solution. The runtime

comparison of the proposed approach with [11] for different DSP benchmarks is reported in

Table 9. As evident from the results obtained, the proposed approach achieves a significant

reduction in time taken to perform design space exploration compared to [11], when run for

provided G (max). For example, the runtime for the DWT benchmark using the proposed

approach is just 79 ms while the runtime is 4.27 sec using [11] when G (max) = 100. Similar

acceleration can be noted for other benchmark results as well. Therefore even by considering an

extra parametric objective (i.e. power consumption) as well as taking into account the total

execution time for data pipelining (instead of only latency), the proposed hybrid approach is able

to provide respectable improvements for known benchmarks compared to [11].

B. Experimental and Implementation Results for Power-Performance trade-off

with Area as optimization criteria using Hybrid Fuzzified Algorithm

It is worthwhile to mention again that the proposed approach works most efficiently when

trading off between hardware area and performance with the power kept as optimization criteria.

However, for the sake of investigation, curiosity and efficiency analysis, this section presents

results when this approach has also been applied for exploration of power-performance tradeoff

with hardware area kept as optimization criteria.

The sizes of the design space consisting of variants for the benchmarks are indicated in Table 10.

For example, the total number of variants in the design space for DWT is 288; while on the other

hand, the total number of variants of the design space for EWF and FIR are 450 and 1200

respectively. The results of the comparison of the proposed design space exploration process

100

with exhaustive analysis are shown in Table 10. Results indicate that the proposed approach is

capable of achieving massive time improvements compared to the exhaustive search. Exploration

time of up to 92.70 % is achieved for the well known Discrete Wavelet Transformation (DWT)

high level synthesis benchmark. Moreover exploration time of 94.22 % and 97.75 % for EWF

and FIR benchmarks are obtained respectively when compared to exhaustive search as shown in

Table 10. Furthermore, the results are also compared with the design space exploration approach

[12] as shown in Table 11. Investigations reveal that the proposed approach is able to provide

high acceleration for design space exploration while simultaneously maintaining the accuracy

needed in architecture selection. A exploration time of up to 37.50 % and 19.23 % is achieved

for IIR Digital Filter 1 and Discrete Wavelet Transformation (DWT) benchmark respectively.

Table10. Experimental results of the proposed hybridized approach compared with exhaustive analysis for Benchmarks

Benchmarks

Total

architectura

l variants in

the Design

space for

one

parameter

Total

architectural

variants in the

design space

for exhausted

search for two

parameters

(Total size of

the design

space for the

benchmark)

Proposed hybrid approach (Number of

variants analyzed) Improvements

in variants

analyzed using

proposed

approach

compared to

the exhaustive

search

(%)

Variant

searched

for Power

consumpti

on

Variants

searched

for

Execution

time

Total variants

Analyzed

IIR Digital

Butterworth Filter
24 48 4 4 15 68.75

IIR Digital Filter 1 32 64 4 4 15 76.56

IIR Digital Filter 2 36 72 4 5 16 77.77

IIR Digital Filter 3 48 96 5 6 18 81.25

Auto Regressive Filter 96 192 6 8 21 89.06

Discrete Wavelet

Transformation
144 288 8 6 21 92.708

Differential Equation

Solver
90 180 13 9 25 86.11

Digital IIR Chebyshev

Filter
64 128 12 7 23 82.03

Elliptic Wave Filter 225 450 4 20 26 94.22

Finite Impulse

Response Filter
600 1200 3 19 27 97.75

101

Further, the proposed approach was also verified for two benchmarks which consist of large

number of variants in the design space (EWF with 450 variants and FIR with 1200 variants).

Results indicated that the proposed approach when compared to [12] for EWF and FIR

benchmarks yielded exploration time improvement of 13.33 % and 18.18 % respectively as

shown in Table 11. Therefore as evident from Table 11, the proposed hybrid approach provides

accelerated design space exploration with average exploration time improvement of more than

22 % for benchmark applications, compared to the previous approach in [12]. Additionally, as

verified through the experiments it was revealed for all the benchmarks that the proposed

approach yielded optimal results as it met both the arbitrarily specified constraint values of area

and execution time. Therefore the proposed hybrid approach also provides increased acceleration

in the design space exploration process during power-performance tradeoff with area as

optimization criteria.

Table11. Experimental results of the comparison between the proposed DSE approach with approach [12]

Benchmarks

Total

architectures in

the design space

for exhausted

search for two

parameters

Architecture

evaluation using

current existing

approach [12]

(Number of

variants)

Architecture

evaluation using

proposed hybrid

approach

(Number of

variants)

Percentage

Improvements

in architecture

analyzed

compared to

current existing

approach

Average

improvement

in architecture

analyzed by

the proposed

approach wrt

[12]

IIR Digital

Butterworth Filter
48 22 15 31.81 %

22.57 %

IIR Digital Filter 1 64 24 15 37.50 %

IIR Digital Filter 2 72 24 16 33.33 %

IIR Digital Filter 3 96 25 18 28.00 %

Auto Regressive

Filter
192 24 21 12.50 %

Discrete Wavelet

Transformation
288 26 21 19.23 %

Differential

Equation
180 29 25 14 %

Digital IIR

Chebyshev
128 28 23 17.85 %

Elliptic Wave

Filter
450 30 26 13.33 %

FIR Filter 1200 33 27 18.18 %

102

7.3 Experimental Results: Proposed approach ‘Priority Function Driven

Design Space Exploration in High Level Synthesis Based on Power Gradient

Technique’ and Comparative study with a recent approach

This section primarily describes the experimental results of the proposed approach based on

static power optimization under minimum control step usage (elaborated in Chapter 4) and the

improvements obtained compared to recent approach [11].

 The proposed integrated design space exploration approach has been implemented and run on

Table12. Experimental Results of the proposed approach for the DSP Benchmarks

DSP Benchmarks

Experimental Parameters (Note: cc = clock cycles)

Resource combination

Latency

Initial Cost

 in terms of

Power

dissipation

Final

Power

dissipation

of

proposed

approach

%

Reduction

in Power

dissipation

Runtime

of

proposed

approach
Initial Solution

Proposed

approach

Proposed

approach

Discrete Wavelet

Transformation

 (DWT)

5(*), 4(+),18

(mux),

9 (demux), 15

(Reg)

2(*), 2(+),8

(mux),

4(demux), 14

(Reg)

32cc 2.94 Watts 1.38 Watts 53.06 % 3.18 secs

Band Pass Filter

(BPF)

4(*), 3(+/-), 14

(mux), 7

(demux), 20

(Reg)

2(*), 3(+/-),10

(mux),

5(demux),

19 (Reg)

28cc 2.49 Watts 1.60 Watts 35.74 % 1.38 secs

Finite Impulse

Response (FIR)

8(*), 8(+), 32

(mux),

16 (demux),23

(Reg)

2(*), 5(+),12

(mux),

6(demux), 20

(Reg)

28cc 4.87 Watts 1.73 Watts 64.47 % 5.63 secs

IIR Digital

Butterworth Filter

5(*), 1(+/-),12

(mux),6

(demux),

14 (Reg)

2(*), 1(+/-), 6

(mux),3

(demux),

11 (Reg)

16cc 2.57 Watts 1.20 Watts 53.30 % 1.62 secs

IIR Digital

Chebyshev Filter

5(*),

2(+),14(mux),

7 (demux), 16

(Reg)

3(*), 2(+),10

(mux),

5 (demux), 16

(Reg)

10cc 2.60 Watts 1.86 Watts 28.46 % 3.19 secs

MPEG Motion

Vectors

(MMV)

14(*),

5(+),38(mux),

19 (demux),

5(*),

5(+),20(mux),

10 (demux),

14cc 7.52 Watts 3.42 Watts 54.52 % 1.95 secs

103

AMD Athlon 64 Processor with 3GB RAM and 1.6 GHz processor frequency. In order to

perform a qualitative assessment, the proposed approach has been compared with a heuristic GA

based approach [11]. Furthermore for comparison with [11], the parameters chosen were quality

of the final solution found measured in terms of Effective Cost Metric (ECM) and optimization

runtime. The metric is a combination of latency and power given by eqn. (44):

maxmax

21
P

P
W

L

L
WECM ⋅+⋅= (44)

W1 and W2 are the weightage of the operating constraints for latency and hardware area (Note:

0<=W1<=1 and 0<=W2<=1). For this experiment, W1 = W2 = 0.5 has been kept, since equal

priority was given to both latency of the final solution and the power dissipated by the solution.

‘L’ and ‘P’ are the latency and power dissipation of the solution found. ‘Lmax’ and ‘Pmax’ are

the values of maximum latency (found by using minimum FU’s) and maximum power

dissipation (using maximum FU’s) respectively. Equation (44) has been divided with maximum

values of latency and power respectively in order to obtain normalized values for each. The

above metric was proposed for comparison since the quality of a solution cannot be solely

determined from the latency expenditure or the dissipated power, but rather a combination of

both. The results obtained through the proposed approach are shown in Table 12. The power

optimization (minimization) obtained for the final resource solution (FU’s) as noted from the

Table13. Comparison of measured power consumption through Xilinx Power Analyzer (XPA) 9.2i

DSP Benchmarks
Power Consumption of the
initial solution (Static and

Dynamic)

Power consumption of final

solution Proposed method

(Static and Dynamic)

% Reduction in

Power

consumption

Discrete Wavelet 2.43 W 2.10 W

≈ 11 %

Band Pass Filter 3.26 W 2.92 W

Finite Impulse Response 3.54 W 2.98 W

IIR Digital Butterworth Filter 1.90 W 1.74 W

IIR Digital Chebyshev Filter 2.15 W 2.07 W

MPEG Motion Vectors 6.14 W 5.30 W

104

results for all DSP benchmarks such as DWT, BPF, FIR, Digital Butterworth filter, Chebyshev

filter and MPEG are impressive. The comparison results of the measured power consumption

viz. dynamic power at 100MHz and static power for Spartan 3E FPGA in Xilinx Power Analyzer

(XPower) 9.2i tool suite are shown in Table 13. Analysis of the measured power for the DSP

benchmarks reveals that an adequate minimization of power consumption is obtained using the

proposed approach. On average, power reduction of ≈ 11 % is obtained using the proposed

approach compared to the initial solution (ASAP solution). The implementation runtime of the

proposed optimization approach and its comparison with approach [11] is illustrated in Table 14.

Table 14 also reflects the comparison of the final solution found by both approaches. As verified

through the experiment, the proposed approach was able to find optimal solution for all the

benchmarks (in most cases global optimal solution was found, however local optimal solution

was found in some cases). Due to its ability to obtain optimal solution for all test cases verified,

the average improvement in the quality of the final solution found is 5.07 % compared to [11].

Therefore, as evident in Table 14, the average reduction in runtime for all benchmarks is approx.

60 % and average improvement in quality of final solution is 5.07 % compared to [11].

Table14. Experimental Results of the comparison between the proposed approach and recent approach [11]

DSP Benchmarks

Experimental Parameters for Comparison

ECM
Improvement
in quality of
final solution

Average
Improvement

of quality
final solution

Runtime (seconds)

Reduction in
Runtime [11]

Proposed
approach

[11]
Proposed
approach

Discrete Wavelet
Transformation

0.64 0.61 4.68 %

5.07 %

7.53
secs

3.18 57.76 %

Band Pass Filter 0.60 0.56 6.67 % 13.96
secs

1.38 90.11 %
Finite Impulse

Response
0.46 0.46 ---- 11.04

secs
5.63 49 %

IIR Digital
Butterworth

0.56 0.53 5.35 % 3.04
secs

2.08 31.57 %
IIR Digital
Chebyshev

0.58 0.55 5.17 % 2.69
secs

1.56 42 %

MPEG Motion
Vectors

0.35 0.32 8.57 % 12.32 1.95 84.17 %

105

7.4 Experimental Results: Proposed approach ‘A Multi Structure Genetic

Algorithm for Integrated Design Space Exploration of Scheduling and

Allocation in High Level Synthesis for DSP Kernels’ and Comparative study

This section primarily describes the experimental results of the proposed approach for integrated

scheduling and module allocation based on power-performance tradeoff (elaborated in Chapter

5) and the improvements obtained compared to recent approach [11].

 A short summary of the experimental setup is given in Table 15. The proposed MSGA has been

implemented in high level language [34] [35] and run on AMD Athlon 64 X2 Dual-Core

Processor TK-157 with 3072 MB DDR2 memory, 64KB L1D cache and 256 KB L2 cache

memory. The processor frequency is 1.90 GHz. As mentioned before, W1 and W2 are the user

specified preference for power consumption and execution time constraints. The proposed

MSGA has been compared with another recent powerful GA-based approach [11] for G (Max) =

100 (keeping W1 = W2 = 0.5) to perform a qualitative assessment of the proposed approach. The

proposed system is able to find the global optimal (sometimes local optimal) resource solution in

terms of number of FU’s and clock frequency which is high quality in nature. Further, it is able

to better optimize the power consumption and the execution time for the final resource solution

Table15. Experimental Setup for MSGA

Machine AMD Athlon 64 X2 Dual-Core Processor TK-157 with 3072 MB

DDR2 memory, 64KB L1D cache and 256 KB L2 cache memory,

processor frequency is 1.90 GHz

Benchmarks IIR Digital Filter, ARF, DWT, Digital Butterworth filter, EWF,

WDF, BPF

GA Parameters 1) W1= W2=0.5, 2) G (Max) = 100

3) Pcross = 1.0, 4) Pm = 0.25

Parameters of comparison a) final resource combination

b) latency (CS)

c) execution time

d) power consumption

of Runs for averaging 25 runs performed for each benchmark

User preference W1 = W2 = 0.5

106

found. The system also optimizes the latency of the final solution found. On the other hand, [11]

is not able to optimize the execution time considerably due to its inability to create a genuinely

pipelined functional data paths. Therefore the total execution time (being a function of latency,

cycle time and pipelined data (N) as shown in eqn. (42)) does not get optimized for [11]. As

mentioned before since [11] does not have the ability to explore the optimal clock frequency

from a set of various clock frequencies it does not optimize the power. For only for the sake of

comparison, the power consumed by the FU’s, storage elements and interconnect units at 100

MHz obtained by [11] were measured to provide an estimate of average power consumption. For

determination of execution time in [11], ‘N’ sets of processing data are simply multiplied with

the delay of each data due to lack of genuine functional data pipelining capability. Thus, Texe
[11]

Table16. Experimental Results of Comparison with [11] for the DSP Benchmarks

DSP

Benchmarks

Parameters of Comparison
Note: cc= clock cycles and a.u. = area unit (1 au = 1CLB in Spartan 3E FPGA)

Explored final resource combination Latency

Execution time in

clock cycles

(N =1000)

Power Consumed

(Watts)

MSGA [11] MSGA [11] MSGA [11] MSGA [11]

IIR Digital

Filter

3(*), 2(+)
2(*), 1(+),

10(Reg)
14cc 18cc

12,002

cc

18,000

cc
0.91 W 1.45W 8(mux),4(demux), 9(Reg),

50MHz

ARF

4(*), 4(+)
4(*),3(+),

18(Reg)
24cc 25cc

10,014

cc

25,000

cc
1.62W 2.92 W 16(mux), 8(demux),

18(Reg), 50MHz

DWT

1(*), 2(+)
1(*),1(+),

10(Reg)
44cc 44cc

38,006

cc

44,000

cc
1.56 W 2.97W 6(mux),3(demux), 10(Reg),

50MHz

Digital

Butterworth

Filter

2(*), 1(+), 1(-) 2(*), 1(+),

1(-),

10(Reg)

18cc 18cc
12,006

cc

18,000

cc
1.59 W 1.59W 8(mux),4(demux), 10(Reg),

100MHz

WDF

2(*), 3(+),1(-) 1(*),

2(+),1(-),

15(Reg)

45cc 56cc
23,022

cc

56,000

cc
1.34 W 2.12W 12(mux),6(demux), 11

(Reg), 50MHz

BPF

1(*), 1(+), 2(-) 2(*), 2(+),

2 (-), 11

(Reg)

46cc 30cc
43,003

cc

30,000

cc
2.28 W 2.83W 8(mux),4(demux), 15 (Reg),

100MHz

EWF

1(*), 2(+)
1(*), 2(+),

11(Reg)
56cc 59cc

56,000

cc

59,000

cc
0.96 W 2.04W 6(mux),3(demux), 9(Reg),

50MHz

107

= N*L. In contrast, since proposed MSGA considers cycle time resulting from initiation interval

and latency to create a genuinely pipelined functional data path, the execution time in clock

cycles (Texe
MSGA

) of the proposed MSGA is determined from eqn. (42).

The better result of power and execution time for the proposed MSGA compared to [11] for all

the benchmarks is clearly evident in Table 16. An average of twenty five runs has been reported

for both approaches in Table 16. For example in case of IIR digital filter benchmark, the

resource combination found using proposed MSGA is 3(*), 2(+), 8(mux), 4(demux), 9(registers)

and 50 MHz clock frequency oscillator based on the user specified constraints. The latency of the

scheduling solution through MSGA is 14cc. The power consumed by the final solution found is

0.91W and the execution time for N = 1000 is 12,002 cc. On the other hand, [11] yields an

optimal resource combination which is 2(*), 1(+) with latency of 20cc. However, the

corresponding execution time is large, equal to 20,000 cc. The power consumed by [11] is also

large due to inability to explore optimal clock frequency oscillator. Moreover, for WDF

benchmark, the MSGA finds a final optimal scheduling solution in 45cc at the expense of just an

extra multiplier and adder compared to 56cc taken by using [11]. Therefore for WDF benchmark,

the MSGA saves 11cc at the expense of only an adder and multiplier. The proposed approach

produces a solution which consumes 23,002 cc to process 1000 data and 1.34W of power

compared to solution which consumes 56,000 cc execution time and 2.12W power using [11].

For benchmarks such as DWT and Digital Butterworth filter although the final solution found

using proposed approach is similar to solution obtained using [11], but the proposed approach is

able to achieve reduced cycle and execution times. Note: Power values reported in Table 12 and

16 are not in exact alignment with practical power values for modern consumer applications but

the main purpose of the reported values are to prove the benefit relative to prior work.

108

Chapter 8

Conclusion and Future Works

The dissertation has presented multiple novel frameworks for addressing multi-dimensional

issues in the design space exploration problem in high level synthesis of computation intensive

applications (primarily DSP kernels). Each proposed framework is unique in its own kind in

terms of the solution it proposes for resolving notorious optimization problems for different user

requisite. In particular, the dissertation introduced four different frameworks for performing fast

and efficient multi-objective tradeoff based on different user criteria viz. a) Novel Priority Factor

based Pareto optimal framework methodology for accelerated design space exploration based on

power-performance-area/cost tradeoff. Experiments revealed that this methodology provided

exploration time improvement of greater than 90 % in exploration process compared to a recent

technique for various signal processing DFG benchmarks b) Novel hybrid Fuzzy Algorithm

Based Pareto optimal framework for exploration of Area- Performance- power tradeoff.

Experimental results showed that this hybrid technique provides an average exploration time

improvement of greater than 35 % during area-performance-power tradeoff and 22 % in

109

exploration process during power-performance-area tradeoff respectively when compared to a

recent technique for various size signal processing DFG benchmarks. The above approaches a)

and b) were successful in laying the foundation for exploring the design points from the

architecture design space according to the performance objective and intended functionality.

Moreover the above DSE were capable of resolving the conflicting objectives in DSE by

concurrently maximizing the accuracy in evaluation of the design point and minimizing the time

expended for design space assessment c) Novel Priority Function driven integrated design space

exploration (scheduling and module selection) in high level synthesis based on Power Gradient

technique for static power optimization under minimum control step usage. Experimental results

indicated successful improvement in the quality of final solution by an average of 5.07 % and

reduction in the exploration runtime by an average of 59% compared to a current approach for

standard DSP DFG Benchmarks d) Novel Multi structure based Genetic Algorithm for integrated

exploration of scheduling and allocation during power-performance tradeoff. The results

produced by proposed approach are better compared to another genetic algorithm based

approach, for almost all digital signal processing DFG benchmarks.

Therefore, the dissertation presents various solutions for multi-dimensional design space

exploration problems encountered during multi-objective optimization in high level synthesis. It

is also worthwhile to mention that the presented methods are applicable for computation

intensive tasks/data hungry applications (i.e. applications that can be represented through data

flow graphs). The proposed methodologies can be efficiently applied to perform exploration in

various high level synthesis problems depending on the varied user criteria.

110

Scope of Future Work

There is much potential in the area of design space exploration and high level synthesis to

improve the search time for finding the final design architecture, and thereby accelerate the

speed of the exploration process. The developed design space exploration approach for high

level synthesis can be improved further by decreasing the number of architectural variants to be

analyzed during the exploration process. Reducing the analysis of the architectural variants

directly reduces the search time which in turn impacts the design time and hence will help in

faster designing. Another aspect of high level synthesis, which also has significant potential for

improvement, is the development of many other parameters such as reliability, temperature etc.,

for high level estimation which stills lies in the nascent stage of development. As shown in the

recent study [47-50] minimization of power does not guarantee complete minimization of

temperature. The temperature of a chip depends not only on the activity rate of the modules but

also on the past history of the activity rate of the modules. Therefore, temperature specific

resource binding algorithms need to be developed and evaluated for these with novel parametric

models. These algorithms can be integrated with existing high level synthesis techniques for

generation of optimized RTL circuits. This will allow system architects to design systems based

on performance-temperature trade-offs. Another aspect of high level synthesis that needs further

research is the unification of physical level designing with high level synthesis design. Efforts

can be made to incorporate floorplanning details into high level models to increase accuracy of

the evaluation model. This will not only provide a significant boost to the circuit designer

optimizing at low level, but would also benefit the system architects in precisely exploring the

extensive design space based on user requirements.

111

Refereed Publications

Patents

S1. Anirban Sengupta (with Reza Sedaghat), “System and Methodology for Development of

System Architecture”, US Patent allowed by United Sates Patent and Trademark Office

(USPTO), Publication number: US 2012/0159119 A1, Publication Date: June 21, 2012.

(Invention: A Fast Multi Objective Design Space Exploration approach using Priority

Factor Method)

S2. Anirban Sengupta (with Reza Sedaghat), “System and Methodology for Development of

System Architecture”, Canadian Patent filed to Canadian Intellectual Property Office

(CIPO), Application no. 20925-25, December 21, 2010. (Invention: A Fast Multi Objective

Design Space Exploration approach using Priority Factor Method)

S3. Anirban Sengupta (with Reza Sedaghat), “System and Method for Development of System

Architecture”, US Patent filed to United Sates Patent and Trademark Office (USPTO),

Application no. 13/118,139, May 27, 2011. (Invention: A Fast Multi Objective Design

Space Exploration approach using Fuzzy Searching Method in High Level Synthesis for

ASIC's”, Accepted by MARS Innovation, Govt. of Canada).

S4. Anirban Sengupta (with Reza Sedaghat), “System and Method for Development of System

Architecture”, Canadian Patent filed to Canadian Intellectual Property Office (CIPO),

Application no. 20925-28, May 27, 2011. (Invention: A Fast Multi Objective Design Space

112

Exploration approach using Fuzzy Searching Method in High Level Synthesis for ASIC's”,

Accepted by MARS Innovation, Govt. of Canada.)

Refereed Journals

S5. Anirban Sengupta, Reza Sedaghat, Pallabi Sarkar “Rapid Exploration of Integrated

Scheduling and Module Selection in High Level Synthesis for Application Specific

Processor Design”, Elsevier Journal of Microprocessors and Microsystems’, Volume 36,

Issue 4, June 2012, Pages 303–314.

S6. Anirban Sengupta, Reza Sedaghat, Pallabi Sarkar, “A Multi Structure Genetic Algorithm

for Integrated Design Space Exploration of Scheduling and Allocation in High Level

Synthesis for DSP Kernels”, Elsevier Journal of Swarm and Evolutionary Computation,

Volume 7, December 2012, Pages 35–46.

S7. Anirban Sengupta, Reza Sedaghat, Zhipeng Zeng, “Multi objective Efficient Design Space

Exploration and Architectural Synthesis of an Application Specific Processor (ASP)”,

Elsevier Journal of Microprocessors and Microsystems, Volume 35, Issue 4, June 2011,

pp. 392-404.

S8. Anirban Sengupta, Reza Sedaghat, Zhipeng Zeng, “A High Level Synthesis design flow

with a novel approach for Efficient Design Space Exploration in case of multi parametric

113

optimization objective”, Elsevier Journal of Microelectronics Reliability, Vol. 50, Issue 3,

2010, pp. 424-437.

 (Note: This Research Journal paper featured in “SCIENCE DIRECT TOP 25 HOTTEST

ARTICLE” from ‘Microelectronics Reliability’, Elsevier of the Engineering area in the first

quarter of year 2010).

S9. Anirban Sengupta, Reza Sedaghat, Zhipeng Zeng, “Rapid Design Space Exploration by

Hybrid Fuzzy Search Approach for Optimal Architecture determination of Multi Objective

Computing Systems”, Elsevier Journal of Microelectronics Reliability, Vol. 51, Issue 2,

2011, pp. 502-512.

S10. Anirban Sengupta, Reza Sedaghat, “A High Level Synthesis Design Flow from ESL to

RTL with multi-parametric optimization objective”, IETE Journal of Research, Volume

57, Issue 2, 2011, pp. 169-186.

Refereed Conferences

S11. Anirban Sengupta, Reza Sedaghat, “Priority Function Driven Design Space Exploration in

High Level Synthesis Based on Power Gradient Technique”, Accepted in Student Forum of

17th IEEE/ACM Asia and South Pacific Design Automation Conference (ASP-DAC

2012), Australia, pp: 25, 2012.

114

S12. Anirban Sengupta, Reza Sedaghat, “Integrated Scheduling, Allocation and Binding in

High Level Synthesis using Multi Structure Genetic Algorithm based Design Space

Exploration System”, In Proceedings of 12
th

 IEEE/ACM International Symposium on

Quality Electronic Design (ISQED 2011), Silicon Valley, California, USA, March 2011,

pp. 486-494.

S13. Anirban Sengupta, Reza Sedaghat, “A Hybrid Fuzzy Search Approach for Fast Design

Space Exploration of Multi-Objective VLSI Systems”, Accepted in the Student Forum of

16th IEEE/ACM Asia and South Pacific Design Automation Conference (ASP-DAC

2011), Yokhoma, Japan, 2011, Paper ID: SF15.

S14. Anirban Sengupta, Reza Sedaghat, Zhipeng Zeng, “Rapid Design Space Exploration for

multi parametric optimization of VLSI designs”, In Proceedings of 2010 IEEE

International Symposium on Circuits and Systems (ISCAS), Paris, France, pp: 3164-

3167, June 2, 2010.

S15. Anirban Sengupta, Reza Sedaghat, “Accelerated Exploration of Cost-Performance

Tradeoffs for Multi Objective VLSI designs”, In Proceedings of 22
nd

 IEEE International

Conference on Microelectronics (ICM), 2010, pp. 100-103.

S16. Anirban Sengupta, Reza Sedaghat “Rapid Exploration of Power-Delay Tradeoffs using

Hybrid Priority Factor and Fuzzy Search”, In Proceedings of 22
nd

 IEEE International

Conference on Microelectronics (ICM), Egypt, 2010, pp. 355-358.

115

S17. Anirban Sengupta, Reza Sedaghat, Pallabi Sarkar, “Integrated Scheduling, Allocation and

Binding in High Level Synthesis for Performance-Area Tradeoff of Digital Media

Applications”, Proceedings of 24
th

 IEEE Canadian Conference on Electrical and

Computer Engineering (CCECE 2011), Canada, 2011, pp. 533-537.

S18. Anirban Sengupta, Reza Sedaghat, Pallabi Sarkar, “Priority Function based Power

Efficient Rapid Design Space Exploration of Scheduling and Module Selection in High

Level Synthesis”, In Proceedings of 24
th

 IEEE Canadian Conference on Electrical and

Computer Engineering (CCECE 2011), Niagara, Canada, May 2011, pp. 538-543.

S19. Anirban Sengupta, Reza Sedaghat, Zhipeng Zeng, “Hardware Efficient Design of speed

optimized Power stringent Application Specific Processor”, In Proceedings of 21
st
 IEEE

International Conference on Microelectronics (ICM), Morocco, pp: 167-170, December

22, 2009.

S20. Anirban Sengupta, Reza Sedaghat, “Fast Design Space Exploration for Multi Parametric

Optimized VLSI and SoC Designs”, 15th IEEE/ACM Asia and South Pacific Design

Automation Conference (ASP-DAC 2010), Taiwan, 2010, ID: 26.

S21. Pallabi Sarkar, Reza Sedaghat, Anirban Sengupta, “Power Gradient Based Design Space

Exploration in High Level Synthesis for DSP Kernels”, Accepted for Publication in

Proceedings of 23
rd

 IEEE International Conference on Microelectronics (ICM), pp: 1 – 6,

December 2011.

116

S22. Summit Sehgal, Reza Sedaghat, Anirban Sengupta, Zhipeng Zeng, “Multi Parametric

Optimized Architectural Synthesis of an Application Specific Processor”, In Proceedings of

14
th

 IEEE International CSI Computer Conference (CSICC), 2009, pp: 89-94.

S23. Zhipeng Zeng, Reza Sedaghat, Anirban Sengupta, “A Framework for Fast Design Space

Exploration using Fuzzy search for VLSI Computing Architectures”, In Proceedings of

2010 IEEE International Symposium on Circuits and Systems (ISCAS), Paris, France,

June 2, 2010, pp: 3176-3179.

S24. Zhipeng Zeng, Reza Sedaghat, Anirban Sengupta, “A Novel Framework of Optimizing

Modular Computing Architecture for multi objective VLSI designs”, In Proceedings of 21
st

IEEE International Conference on Microelectronics (ICM), Morocco, 2009, pp: 322-325.

S25. Summit Sehgal, Reza Sedaghat, Anirban Sengupta, “Automated Design Space

Exploration for DSP Applications High Level Synthesis with Stability in Competition”,

Accepted for Publication, Proceedings of 2
nd

 IEEE Latin American Symposium on

Circuits and Systems (LASCAS), Columbia, February 2011.

S26. Anirban Sengupta, Reza Sedaghat, Pallabi Sarkar “Integrated Design Space Exploration

Based on Power-Performance Trade-off using Genetic Algorithm”, In Proceedings of ACM

International Conference on Advances in Computing and Artificial Intelligence, 2011, pp.

76-80.

117

S27. Pallabi Sarkar, Reza Sedaghat, Anirban Sengupta, “Application Specific Processor vs.

Microblaze Soft Core RISC Processor: FPGA Based Performance and CPR Analysis”, In

Proceedings of ACM International Conference on Advances in Computing and Artificial

Intelligence, 2011, pp.81-84.

S28. Anirban Sengupta, Reza Sedaghat, “A Study on Architecture Optimization of the RISC

Processor used for System-on Chip (SoC) design”, In Proceedings of Research Innovation

Symposium, Ryerson University, Canada, 2010, pp: 31.

S29. Summit Sehgal, Reza Sedaghat, Anirban Sengupta, “Fault Monitoring Transformer

Reliability ASIC Design based on Ringing Effect Signature Analyzer”, In Proceedings of

Research Innovation Symposium, Ryerson University, Canada, 2010, pp: 32.

THESIS

S30. Anirban Sengupta “A Fast Design Space Exploration Based on Priority Factor for a Multi

Parametric Optimized High Level Synthesis Design Flow”, Master of Applied Science

(M.A.Sc) Thesis, Ryerson University, Toronto, Canada, Jan 2010, (Nominated for

Governor General’s Gold Medal in Canada for the Master’s Thesis).

118

Appendix

Step 1: Design Automation Tool (described in Chapter 7. See keystones of the tool in Section 7.2)

Step 2: Design Automation Tool (described in Chapter 7. See keystones of the tool in Section 7.2)

119

Step 3: Summary of proposed Design Automation Tool (described in Chapter 7. See keystones of

the tool in Section 7.2)

Sample schematic (data path and controller) output of the Design Automation Tool (in Chapter 7)

120

The portion of a sample VHDL produced by proposed tool (described in Chapter 7) for Elliptic

Wave Filter benchmark containing port map detail is shown below

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

--use work.ProjPackage.all;

---use work.filter_package.all;

 entity FinalProduct is

 Port (

 clock : in STD_LOGIC;

 resetn : in STD_LOGIC;

-- Busy : out STD_LOGIC;

-- Ready : out STD_LOGIC

 I1 : in STD_LOGIC_VECTOR (15 downto 0);

 I2 : in STD_LOGIC_VECTOR (15 downto 0);

 I3 : in STD_LOGIC_VECTOR (15 downto 0);

 I4 : in STD_LOGIC_VECTOR (15 downto 0);

 Y1 : out STD_LOGIC_VECTOR (15 downto 0);

 Y2 : out STD_LOGIC_VECTOR (15 downto 0);

 Y3 : out STD_LOGIC_VECTOR (15 downto 0);

 Y4 : out STD_LOGIC_VECTOR (15 downto 0);

 Y5 : out STD_LOGIC_VECTOR (15 downto 0);

);

end FinalProduct;

component control_unit

port(

 clock:in std_logic;

 reset:in std_logic;

 --count1 :out INTEGER;

 InputRegisterStrobe:out std_logic;

 addsub_A1:out std_logic;

 latch_strobe_A1:out std_logic;

 output_strobe_A1:out std_logic;

 enable_A1:out std_logic;

 latch_strobe_M1:out std_logic;

 output_strobe_M1:out std_logic;

 enable_M1:out std_logic;

 Strobe_Reg1:out std_logic;

 Strobe_Reg2:out std_logic;

 Strobe_Reg3:out std_logic;

 Strobe_Reg4:out std_logic;

begin

reset <= not resetn;

RegI1: Reg16 port map(I1,InputRegisterStrobe,DataRegI1);

RegI2: Reg16 port map(I2,InputRegisterStrobe,DataRegI2);

Reg1: Reg16 port map(DeMultiplexer_A1_0,Strobe_Reg1,DataReg1);

121

Reg2: Reg16 port map(DeMultiplexer_A1_0,Strobe_Reg2,DataReg2);

RegI3: Reg16 port map(I3,InputRegisterStrobe,DataRegI3);

RegI4: Reg16 port map(I4,InputRegisterStrobe,DataRegI4);

Reg3: Reg16 port map(DeMultiplexer_A1_1,Strobe_Reg3,DataReg3);

Reg4: Reg16 port map(DeMultiplexer_A1_1,Strobe_Reg4,DataReg4);

Reg5: Reg16 port map(DeMultiplexer_A1_2,Strobe_Reg5,DataReg5);

Reg6: Reg16 port map(DeMultiplexer_A1_4,Strobe_Reg6,DataReg6);

Reg7: Reg16 port map(DeMultiplexer_A1_4,Strobe_Reg7,DataReg7);

Reg8: Reg16 port map(DeMultiplexer_A1_5,Strobe_Reg8,DataReg8);

Reg9: Reg16 port map(DeMultiplexer_A1_5,Strobe_Reg9,DataReg9);

The portion of a sample VHDL of the controller for EWF is shown below:

architecture Behavioral of control_unit is

signal count : INTEGER RANGE 0 TO 132;

signal busy: std_logic;

begin

process(clock,reset)

begin

if (clock'event and clock='1') then

 if(reset='0')then

---------------------count 0---------------------

 if count=0 then

 --Reset all latches and units

 latch_strobe_A1<= '0';

 add_sub_A1<= '0';

 output_strobe_A1<= '0';

 enable_A1<= '0';

 Selector_A1<= "00000";

 Deselector_A1<= "00000";

---------------------count 130---------------------

 if count=130 then

 enable_A1<='0';

 RegY5<='1';

 count<=count+1;

 end if;

122

The schematic circuit of the designed IIR Butterworth filter in Xilinx ISE tool.

Schematic view of the designed IIR digital filter in Xilinx ISE tool

123

References

[1] Azeddien M. Sllame, Vladimir Drabek, "An Efficient List-Based Scheduling Algorithm for

High-Level Synthesis", Euromicro Symposium on Digital System Design (DSD'02), 2002, pp:

316.

[2] Srinivas Katkoori, Ranga Vemuri, "Scheduling for Low Power under Resource and Latency

Constraints", In Proceedings of IEEE International Symposium on Circuits and Systems

(ISCAS), 2000, pp. 53-56.

[3] Niraj K. Jha, Lin Zhong, "Interconnect-aware high-level synthesis for low power”,

International Conference on Computer-Aided Design (ICCAD '02), 2002, pp: 110-117.

 [4] Philippe Grosse, Yves Durand, Paul Feautrier, "Methods for power optimization in SOC-

based data flow systems", ACM Transactions on Design Automation of Electronic Systems

(TODAES), 2009, vol. 14, issue 3, Article no.: 38.

[5] De Micheli, G. Synthesis and Optimization of Digital Systems, McGraw-Hill Inc., 2000.

 [6] Robert Schreiber, Shail Aditya, Scott Mahlke, Vinod Kathail, B. Ramakrishna Rau, Darren

Cronquist And Mukund Sivaraman, “PICO-NPA: High-Level Synthesis of Nonprogrammable

Hardware Accelerators” Journal of VLSI Signal Processing, 2002, pp: 127–142.

[7]Christian Haubelt, Jurgen Teich,“Accelerating Design Space Exploration Using Pareto-Front

Arithmetic’s”, In Proceedings of Asia and South Pacific Design Automation Conference (ASP-

DAC’03), Japan, 2003, pp: 525- 531.

 [8]I. Das. A preference ordering among various Pareto optimal alternatives. Structural and

Multidisciplinary Optimization, 18(1), 1999, pp: 30–35.

124

[9]Alessandro G. Di Nuovo, Maurizio Palesi, Davide Patti, Fuzzy Decision Making in

Embedded System Design,” Proceedings of 4
th

 International Conference on

Hardware/Software Codesign and System synthesis, 2006, pp: 223-228

[10]J. C. Gallagher, S. Vigraham, and G. Kramer,“A family of compact genetic algorithms for

intrinsic evolvable hardware,” IEEE Trans. Evol. Comput., vol. 8, no. 2, 2004, pp. 1–126.

[11] Vyas Krishnan and Srinivas Katkoori, “A Genetic Algorithm for the Design Space

Exploration of Datapaths During High-Level Synthesis, IEEE Transactions on Evolutionary

Computation, vol. 10, no. 3, 2006, pp: 213- 229.

[12] Kirischian, L., Geurkov, V., Kirischian, V. and Terterian, I. ‘Multi-parametric

optimisation of the modular computer architecture’, Int. J.Technology, Policy and

Management, Vol. 6, No. 3, 2006, pp.327–346.

[13]E. Torbey and J. Knight, “High-level synthesis of digital circuits using genetic algorithms,”

in Proc. Int. Conf. Evol. Comput., 1998, pp.224–229.

[14]E. Torbey and J. Knight, “Performing scheduling and storage optimization simultaneously

using genetic algorithms,” in Proc. IEEE Midwest Symp. Circuits Systems, 1998, pp. 284–287.

[15] Giuseppe Ascia, Vincenzo Catania, Alessandro G. Di Nuovo, Maurizio Palesi, Davide Patti,

“Effcient design space exploration for application specific systems-on-a-chip” Journal of

Systems Architecture, 2007, pp: 733–750.

[16] Williams, A. C., Brown, A. D. and Zwolinski, M, "Simultaneous Optimisation of Dynamic

Power, Area and Delay in Behavioural Synthesis", IEE Proceedings Computers and Digital

Techniques, Volume: 147, Issue: 6, 2000, pp: 383-390.

125

[17] Christian Haubelt , Thomas Schlichter , Joachim Keinert , Mike Meredith, "Automatic

Design Space Exploration and Rapid Prototyping from Behavioral Models", Proceedings of

DAC , California, 2008, pp: 580 - 585.

[18] Philippe Grosse, Yves Durand, Paul Feautrier, "Methods for power optimization in SOC-

based data flow systems", ACM Transactions on Design Automation of Electronic Systems

(TODAES), vol. 14 , issue 3, 2009, Article no.: 38.

[19] J. C. Gallagher, S. Vigraham, and G. Kramer “A family of compact genetic algorithms for

intrinsic evolvable hardware,” IEEE Trans. Evolutionary Computation., volume 8, no. 2,

2004, pp: 111–126.

[20] C. Mandal, P. P. Chakrabarti, and S. Ghose, “GABIND: A GA approach to allocation and

binding for the high-level synthesis of data paths,” IEEE Transaction on VLSI, vol. 8, no. 5,

2000, pp: 747–750.

[21] M. J. M. Heijlingers, L. J. M. Cluitmans, and J. A. G. Jess, “High-level synthesis scheduling

and allocation using genetic algorithms,” in Proc.Asia South Pacific Design Automation

Conf., 1995, pp: 61–66.

[22] M. K. Dhodhi, F. H. Hielscher, R. H. Storer, and J. Bhasker, “Datapath synthesis using a

problem-space genetic algorithm,” IEEE Trans.Comput.-Aided Des., volume 14, 1995, pp:

934–944.

[23] Saraju P. Mohanty, Nagarajan Ranganathan, Elias Kougianos and Priyadarsan Patra, “Low-

Power High-Level Synthesis for Nanoscale CMOS Circuits” Chapter- High-Level Synthesis

Fundamentals, Springer US, 2008.

[24] D. Gajski, N. Dutt, A.Wu, and S. Lin, High Level Synthesis: “Introduction to Chip and

System Design”. Norwell, MA: Kluwer, 1992.

126

[25] P. G. Paulin and J. P. Knight, “Force-directed scheduling for the behavioral synthesis of

ASICs,” IEEE Trans. Comput.-Aided Des., volume 8, no.6, 1989, pages: 661–679.

[26] McFarland, M.C. Parker, A.C. Camposano, R. "The high-level synthesis of digital

systems", Proceedings of the IEEE, Volume: 78, Issue: 2, 1990, pp: 301-318

[27] Anirban Sengupta, “A Fast Design Space Exploration Based on Priority Factor for a Multi

Parametric Optimized High Level Synthesis Design Flow”, Master of Applied Science

(M.A.Sc) Thesis, Ryerson University, Toronto, Canada, 2010

[28] Zadeh, L.A. "Fuzzy sets". Information and Control, volume 8, issue 3, 1965, pp. 338–353

[29] T. Blickle and L. Thiele, “A mathematical analysis of tournament selection,” in Proceedings

of 6th International Conference on Genetic Algorithms, 1995, pp: 9–16.

[30] Jain, R., Panda, P.R.: An efficient pipelined VLSI architecture for lifting-based 2d-discrete

wavelet transform. In: Proceedings of the International Symposium on Circuits and Systems

(ISCAS), 2007, pp. 1377– 1380.

[31] Antola, A., Ferrandi, F., Piuri, V., Sami, M.: Semiconcurrent error detection in data paths.

IEEE Transactions on Computers, volume. 50, issue 5, 2001, pp. 449– 465.

[32]Express: High-Level Synthesis Benchmarks. http://express.ece.ucsb.edu/benchmark/

[33] http://www.cbl.ncsu.edu/benchmarks/, 2007.

[34] http://msdn.microsoft.com/en-us/library/aa288436(VS.71).aspx, 2003

[35] http://msdn.microsoft.com/en-us/library/ms228593.aspx, 2003

[36] Shawn Mccloud, "High Level Synthesis Report 2011", Mentor Graphics, 2011

[37] Shawn Mccloud, "High Level Synthesis Report 2011", Calypto Design Systems, 2011

[38] http://www.synopsys.com/Systems/BlockDesign/HLS/Pages/, 2012

[39] http://www.synopsys.com/systems/blockdesign/hls/pages/, 2012

127

[40] http://www.mentor.com/esl/, 2012

[41] Das, S. and Khatri, S. P. 2008. Resource sharing among mutually exclusive sum-of-product

blocks for area reduction. ACM Trans. Des. Autom. Electron. Syst. volume 13, issue 3, 2008,

Article 51.

[42] M. Geilen, T. Basten, B. Theelen, and R. Otten. An algebra of Pareto points. In Proc. of 5th

IEEE International Conference on Application of Concurrency to System Design (ACSD),

2005, pages 88–97.

[43] Roman, C. , Evenly distributed pareto points in multi-objective optimal power flow, IEEE

Transactions on Power Systems, Volume: 21 , Issue: 2, 2006, pp: 1011 - 1012.

[44] T. Givargis, F. Vahid, and J. Henkel. System-level exploration for Pareto-optimal

configurations in parameterized system-on-a-chip. IEEE Trans. VLSI Syst., volume 10, issue

4, 2002, pp. 416–422.

[45] A. Baykasoglu, S. Owen, and N. Gindy. A taboo search based approach to find the Pareto

optimal set in multiple objective optimisation. Journ. of Engin. Optimization, volume 31,

1999, pp. 731–748.

[46] M. Voorneveld. Characterization of Pareto dominance. Operations Research Letters, volume

31, issue. 1, 2003, pp. 7–11.

[47] Rajarshi Mukherjee , Seda Ogrenci Memik , Gokhan Memik, Temperature-Aware Resource

Allocation and Binding in High-Level Synthesis, Proc. of 42nd Design Automation Conf,

2005, pp. 196-201

[48] Thermal Performance Challenges from Silicon to Systems – Ram Viswanath, Vijay

Wakharkar, Abhay Watwe, Vassou Lebonheur, Manufacturing Group, Intel Corp, 2000.

128

[49] Krum, A., Thermal Management, in The CRC Handbook of Thermal Engineering, F.

Kreith, Editor, CRC Press: Boca Raton, 2000.

[50] Mukherjee, R. , Memik, S. O. , An Integrated Approach to Thermal Management in High-

Level Synthesis, IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

Volume: 14 , Issue: 11 , 2006, pp: 1165 – 1174

[51] S. Mohanty, V. K. Prasanna,S. Neema, J. Davis, Rapid Design Space Exploration of

Heterogeneous Embedded Systems using Symbolic Search and Multi-Granular Simulation,

Proceedings of the joint conference on Languages, compilers and tools for embedded systems:

software and compilers for embedded systems, 2002, pp. 18 – 27.

[52] M. Auguin, L. Capella, F. Cuesta, and E. Gresset, “CODEF: A System Level Design Space

Exploration Tool,” Intl. Conf. on Acoustics, Speech, and Signal Processing, volume 2, 2001,

pp. 1145- 1148.

[53] A. Baghdadi, N-E. Zergainoh, W. Cesario, T. Roudier, and A. Jerraya, “Design Space

Exploration for Hardware/Software Codesign of Multiprocessor Systems,” Intl. Workshop on

Rapid System Prototyping, 2000, pp. 8.

[54] H. J. Eikerling, W. Hardt, J. Gerlach, and W. Rosenstiel, “A Methodology for Rapid

Analysis and Optimization of Embedded Systems,” Symposium on Engineering of Computer

Based Systems, 1996, pp: 252- 259.

[55] P. Lieverse, P. van der Wolf, E. Deprettere, and K. Vissers, “A Methodology for

Architecture Exploration of Heterogeneous Signal Processing Systems,” Workshop on Signal

Processing Systems, Volume 29 Issue 3, 2001, pp. 197 - 207.

129

[56] S. Mohanty, S. Choi, J. Jang, and V. K. Prasanna, “A Model-based Methodology for

Application Specific Energy Efficient Datapath Design using FPGAs,” Proceedings of

Application-specific Systems Architectures and Processors, 200, pp: 76 - 87.

[57] Kanishka Lahiri , Anand Raghunathan , Sujit Dey, Efficient exploration of the SoC

communication architecture design space, Proceedings of the 2000 IEEE/ACM international

conference on Computer-aided design, 2000, pp 424-430.

[58] Javaid, H. , Rapid Design Space Exploration of Application Specific Heterogeneous

Pipelined Multiprocessor Systems, IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 2010, pp: 1777 – 1789.

[59] Stijn Eyerman , Lieven Eeckhout , Koen De Bosschere, Efficient design space exploration

of high performance embedded out-of-order processors, Proceedings of the conference on

Design, automation and test in Europe: Proceedings, 2006, pp. 351 – 356.

[60] V. Srinivasan , S. Radhakrishnan , R. Vemuri, Hardware/software partitioning with

integrated hardware design space exploration, Proceedings of the conference on Design,

automation and test in Europe, 1998, pp.28-35.

[61] Hong Shin Jun; Sun Young Hwang, Automatic Synthesis of Pipeline Structures with

Variable Data Initiation Intervals, 31st Conference on Design Automation, 1994. pp: 537 - 541

[62] Imed Eddine Bennour and El Mostapha Albouhamid, Lower bounds on the iteration time

and the initiation interval of functional pipelining and loop folding, Design Automation for

Embedded Systems, Springer, Volume 1, Number 4, 1996, pp. 333-355

[63] Cormen, Thomas H.; Leiserson, Charles E., Rivest, Ronald L., Introduction to Algorithms

(1st ed.). MIT Press and McGraw-Hill. ISBN 0-262-03141-8. 1990.

[64] http://www.altera.com/literature/an/an531.pdf

	Ryerson University
	Digital Commons @ Ryerson
	1-1-2013

	Rapid And Efficient Multi Objective Design Space Exploration Methods In High Level Synthesis Of Computation Intensive Applications
	Anirban Sengupta
	Recommended Citation

