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    Design Space Exploration (DSE) is an indispensable segment of the High Level Synthesis 

(HLS) design process. Moreover, the enormous increase in complexity of the recent Very Large 

Scale Integration (VLSI) circuits has only been possible due to use of advanced DSE techniques 

during HLS process. This dissertation presents four automated optimization algorithms and 

methodologies that are capable to handle various multi-objective problems during design space 

exploration and high level synthesis of computation intensive applications. Algorithmic solutions 

to  four different branches of DSE problems have been proposed in this dissertation viz. a) 

Solution to power-performance-area/cost trade-off of Digital Signal Processing (DSP) kernels 

using priority factor process which also includes deriving analytical mathematical model for 

modern performance parametric frameworks b) Solution to area-performance-power tradeoff/ 

power-performance-area tradeoff of DSP kernels using hybridization of fuzzy algorithm and 
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vector design space technique with Self-Correction Scheme c) Solution to dual parametric 

optimization using efficient multi structure genetic algorithm for integrated scheduling and 

allocation and d) Solution to control step bound static power optimization using power gradient 

methodology for integrated scheduling and allocation. Some techniques proposed are equipped 

with pipelined execution time parameter (based on need), in addition to hardware area, power 

and cost depending on the user’s objective for exploration of a final solution in a short time. In 

addition to architecture exploration capability, rapid automated circuit generation of DSP kernels 

is also possible in a short time for verification and synthesis in Field Programmable Gate Array 

(FPGA) platforms. The proposed exploration approaches are applied to custom data intensive 

applications (application specific processors/custom processors) or standalone Application 

Specific Integrated Circuits (ASIC’s). Results of the experiments for proposed approaches on all 

the standard DSP benchmarks have indicated improvements either in terms of exploration 

runtime, quality of final solution, reduced execution time, power and area or a multiple 

combination of all factors when compared to recent approaches. 
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Chapter 1    

Introduction 

 1.1 Overview 

The never ending increase in the growth of chip complexity has only been possible due to 

efficient scheduling and exploration techniques. The growth in chip capacity has enabled 

processing of huge amounts of data with greater flexibility and less expense. This requirement to 

yield high performance with a concurrent balance in power expenditure is often a primary 

specification in the area of Digital Signal Processing (DSP), communications and network 

processing. For e.g., Application Specific Processor cores are increasingly being used to 

simultaneously address the need for high performance, low area, minimum cost and timely 

operation in many embedded systems.  Particularly elements used in mobile phones, such as the 

DSP cores, must be low cost and consume less power than their general purpose counterparts. 

Hence, exploration of an optimized solution that has the capability to encounter conflicting 

conditions such as minimizing the speed of the exploration process and maximizing the quality 

of the scheduling solution by limiting power expenditure at minimal control step (time) usage is 

extremely significant for the development of computation intensive DSP cores [1][2][3]. 
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Moreover, the complicated process of exploration of the final scheduling solution also requires a 

tradeoff between the contradictory parameters of power and latency/performance in addition to 

the contradictory demands [1][3].  

A DSE problem therefore considers two orthogonal issues: (a) how can a single design 

point be evaluated? (b) How can the design space be covered during the exploration process? 

The latter issue arises since an exhaustive exploration of the design space, including evaluating 

every possible design point, is usually prohibitive due to the sheer size of the design space. 

Therefore, trade-offs linked to the choice of appropriate evaluation and coverage methods are 

discussed. The designer must balance: the accuracy of the evaluation, the time it takes to 

evaluate one design point (including the implementation of the evaluation model), the 

precision/granularity of the design space coverage, as well as the possibilities for automating the 

exploration process.  

Multi-objective algorithms could use combined objectives in order to reduce the number 

of dimensions to the problem. For example, it could make sense to only consider the speed-cost 

and the flexibility-cost ratios for a certain design and not speed, cost, and flexibility as separate 

optimization goals. One of the most prevalent combined objectives is energy-delay product. The 

energy-delay product is used to assess embedded systems. The delay-power ratio objective can 

be interpreted as a computational clock cycles versus power dissipated. The combined speed-cost 

ratio objective represents a computational complexity related to the costs of the design. It should 

be noted that there are also optimizer-specific metrics that guide the search, such as the steepness 

to surrounding solutions in the case of hill climbing or the number of dominated solutions in the 

case of some multi-objective, evolutionary algorithms. Hill climbing, for instance, evaluates the 

neighborhood of the current design to determine the next steepest step towards the optimization 
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goal. In order to avoid being trapped on top of a local maximum, hill climbing requires 

backtracking mechanisms which might be expensive in “bumpy terrains". Moreover, the search 

becomes aimless on plains and is not able to recognize diagonal ridges since the probe directions 

would always lead to lower quality solutions [1][2][4]. The proposed method has a tendency to 

yield high quality solutions (which obeys multi parametric optimization requirement) due to its 

unique algorithmic and framework features. It also manages to balance the tradeoff proficiently 

between exploring a high quality solution and the runtime taken. 

 

1.2 Fundamentals on Modular System Design 

The design and development of modular systems with heterogeneous performance 

optimization objective requires extensive analysis and assessment of the design space, not only 

due to the assorted nature of the parameters, but also due to the diversity in architecture for 

implementation. Given the specifications and the system requirements the aim of designers is to 

reduce the large and complex design space into a set of feasible design solutions meeting 

performance objectives and functionality. For most modular systems and systems based on strict 

operational constraints the selection of the optimal architecture for system design is the most 

important step in the development process. Design space architecture can have innumerable 

design options for selection and implementation based on the parameters of optimization. Hence 

selection of the optimal architecture from the design space which satisfies all the performance 

objectives is crucial for the present generation of System-on-chip (SoC) designs [5, 6]. As it is 

always possible to implement different functions of a system on different hardware components, 

the architecture design space has become more complex to analyze. In the case of high level 

synthesis, performing design space exploration to choose the best candidate architecture by 
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concurrently satisfying many operating constraints and optimization parameters is considered the 

most important stage in the whole design flow (details on design space exploration is provided 

later). The method for exploration of the best candidate architecture should not only be less in 

terms of complexity factor and time but should also explore the variant in an efficient way 

meeting all the specifications provided. The process of high level synthesis design is very 

complicated and descriptive and is usually performed by system architects. Depending on the 

application, the process of defining the problem, performing design space exploration and the 

other steps required for its successful accomplishment are very time consuming. Furthermore, 

recent advancements in areas of communications and multimedia have led to the growth of a 

wide array of applications requiring huge data processing at minimal power expense. Such data 

hungry applications demand satisfactory performance with power efficient hardware solutions. 

Since the selection process for the best design architecture is complex, an efficient approach to 

explore the design space for selecting the best design option is needed [1,2,3,4]. 

 

1.3 Related Works  

An engineering problem can generally be described as a phenomenon of analyzing and 

managing the tradeoffs between contradictory design objectives. The problem of obtaining a 

comprehensive Pareto optimal set [42-46] has been addressed by few researchers. In [7] the 

researchers proposed an approach for synthesis of heterogeneous embedded systems by using 

Pareto Front Arithmetic (PFA) to explore the giant search spaces. Their method utilized the 

hierarchical problem structure for exploring the set of Pareto optimal solutions. Similar problem 

was also addressed in [8] by suggesting order of efficiency, which assists in deciding preferences 

amongst the different Pareto optimal points. Work in [9] suggested the identification of a few 
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superior design points from the Pareto set is enough for an excellent design process. In [10] 

evolutionary algorithms such as the Genetic Algorithm (GA) had been suggested to yield better 

results for the design space exploration process. The use of GA had also been suggested as a 

framework for DSE of data paths in high level synthesis in [11]. Another approach was 

introduced by researchers in [12] which were based on Pareto optimal analysis. According to 

their work, the design space was arranged in the form of an Architecture Configuration Graph 

(ACG) for architecture variant analysis and optimization of performance parameters. Their 

results proved quite promising for architectural synthesis of digital systems. Furthermore in [13] 

and [14], authors described another approach for DSE in high level systems based on binary 

encoding of the chromosomes. Work shown in [15] for DSE suggests that authors used an 

evolutionary algorithm for successful evaluation of the design for an application specific SoC. 

The work shown in [16] discusses the optimization of area, delay and power in behavioral 

synthesis, but does not focus on the high level design flow with multi parametric optimization 

objective. Authors in [17] introduce a tool called SystemCoDesigner that offers rapid design 

space exploration with rapid prototyping of behavioral systemC models. In [17] an automated 

integration was done by integrating behavioral synthesis into the proposed design flow.  Authors 

in [18] have proposed a power optimization in SoC data flow systems. Although the proposed 

optimization yielded significant results, the focus of their work was not on control time 

constrained scheduling but rather power optimization hardware during exploration. Authors in 

[19] describe current state-of-the-art high-level synthesis techniques for dynamically 

reconfigurable systems.  In addition to above, authors in [20] have applied GA to the binding and 

allocation phase. The authors have introduced an unconventional crossover technique depending 

on a force directed data path binding completion algorithm. One of the key features of their 
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approach is the use of multiport memories. Its main drawback is that it accepts as input the 

scheduled data flow graph, thus is unable to handle the scheduling problem. Authors in [21] 

presented a time constrained scheduling based on the GA. A list decoder is used to decode 

chromosome encoding by permutation of operations, into a valid schedule. Although the method 

is promising, it is slow compared to the other GA approaches. In addition, authors in [22] have 

proposed a problem space genetic algorithm for design space exploration of data paths. They 

have used the concept of heuristic/problem pair to convert a data flow graph [23] into a valid 

schedule. Another class of scheduling algorithms presented previously includes constructive 

approaches such as As Soon As Possible (ASAP) [5], As Late As Possible (ALAP) [23], list 

scheduling [24] and Force Directed scheduling [25]. These approaches are very simple and fast 

in nature. These algorithms all suffer from inherent tendency to optimize one parameter at the 

expense of other. Moreover, non-consideration of multiple user objective and implementation 

runtime dilutes its ability to be used in the fore front of modern performance driven designing 

process. Additionally, the tradeoffs performed using above methods which tends to engulf high 

exploration/optimization runtime. Moreover, the execution time parameter is not taken into 

account during exploration where needed but only delay. For the modern generation of hardware 

systems, deficiency of pipelining provision (by considering only delay) is extremely fatal for 

efficiency enhancement.  Hence, the thesis eliminates the deadlock associated with these 

techniques. Also in many cases, the optimization factor and performance goal of the user may 

completely change depending upon his design requirement. For example, besides the multiple 

user criteria viz. (a) Accelerated power-performance tradeoff with area/cost as minimization 

criteria (b) Accelerated Area-performance tradeoff with power as minimization criteria, there can 

be a third type of optimization goal viz. (c) static power optimization under minimum control 
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step usage. Thus, besides being able to tradeoff based on requirement a) and b), an efficient 

novel optimization methodology must also be available that can address (c) which is equally 

significant. But unfortunately, to the best of the authors’ knowledge, all the approaches so far are 

deficient in addressing (c). This dissertation develops a novel technique for addressing 

deficiency in (c). 

 

1.4 Background Information 

1.4.1 Theoretical Background on High Level Synthesis 

Interdependent tasks such as scheduling, allocation and module selection are important 

ingredients of the high level synthesis design process. High level synthesis is a methodology of 

transforming an algorithmic behavioral description into an actual Register Transfer Level (RTL) 

structure. Therefore high level synthesis methodology contains a sequence of tasks to convert the 

abstract behavioral description of the algorithm into its respective structural block at RT level. 

The design at the RT level comprises of functional units such as Arithmetic Logic Unit (ALU), 

storage elements, registers, busses and interconnections. The algorithmic description specifies 

the inputs and outputs of the behavior of the algorithm in terms of operations to be preformed 

and data flow. A description of the algorithm is usually represented in the form of an acyclic 

directed graph known as a sequencing graph. These graphs specify the input/output relation of 

the algorithm and the data dependency present in the data flow. The graph is defined in terms of 

its vertices and edges, where the vertices signify the operations and the edges indicate the data 

dependency present in the function. High level synthesis is therefore a conversion from the 

abstract behavioral description to its respective hardware description in the form of Arithmetic 

Logic Units (ALU), memory elements, storage units, multiplexers/demultiplexers and the 
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necessary interconnections. The transformed algorithm at the RT level is comprised of a control 

unit and the data path unit. High level synthesis offers many advantages, such as productivity 

gains and efficient design space exploration [51-60]. Performing DSE at a higher level of 

abstraction provides more dividend than at lower levels of abstraction, i.e. transistor level or 

logic level. Traditional high level synthesis design methodology is much simpler than modern 

design techniques. In general, the initial step of synthesis is to compile the behavioral 

specification into an internal representation. The next step is to apply high level transformation 

techniques with the aim of optimizing the behavior as per the desired performance. In order to 

realize the structure, the final step is to perform scheduling to determine the time at which each 

operation is executed and the allocation, which is synthesizing the necessary hardware to 

perform the operations [5].  

Scheduling can be of two different classes: time constrained scheduling and resource 

constrained scheduling. Time constrained scheduling refers to finding the minimum cost 

schedule that satisfies the given set of constraints with the given maximum number of control 

steps. Resource constraint scheduling, on the other hand, refers to finding the fastest possible 

schedule that satisfies the given set of constraints with the given maximum number of resources. 

Resource constraints are generally specified by the area occupied by the functional units like 

adders/subtractors, multipliers, dividers and ALUs. Although the data path of the system consists 

of registers and interconnections, they are not considered to be included as resource constrained 

because they are difficult to specify. High level synthesis can be broadly divided into the 

following steps: input description, internal representation, design space exploration, allocation, 

scheduling and binding. Therefore the final structure at the RT level consists of the data path and 

the control path. Traditional high level synthesis design flow falls short for the modern 
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generation of complex VLSI and SoC designs, because the conventional design flow just takes 

into account the optimization of two parameters, namely area and latency. But the new 

generation of system designs requires multi parametric optimization strategies in HLS while 

simultaneously utilizing rapid and efficient DSE approaches for finding the best suitable 

architecture [5]. 

 

1.4.2 Theoretical Background on Design Space Exploration 

For the present generation of Very large Scale Integration (VLSI) designs with multi 

objective nature, the cost of solving the problem of scheduling, allocation and module selection 

discretely or simultaneously by exhaustive analysis is strictly prohibitive. Multi objective VLSI 

designs are used in low end Application Specific Integrated Circuits (ASICs) with low power 

dissipation and acceptable performance, as well as in high end ASICs with high performance 

requirements and satisfactory power expenditure. Hence, efficient design space exploration 

techniques are needed that not only satisfy the above requirements but also make efficient use of 

runtime, due to time to market pressure [6]. Design space exploration [51-60] is a procedure for 

analyzing the various design architectural alternatives in the design space to obtain the optimum 

architecture needed for the behavioral description based on the predefined user specifications. 

Design space exploration has always been a challenge for researchers due to the heterogeneity of 

the objectives and parameters involved. The current trend towards design space exploration has 

been the reduction of the design space into a set of Pareto optimal points [42-46] by Pareto 

optimal analysis. Sometimes even the Pareto optimal set can be very large for analysis and 

selection of the design for system implementation. In order to assist the decision maker in 

exploring the design space better, an accurate and fast approach efficient in terms of time 
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expended and quality of solution found is very significant for high level synthesis design of 

hardware systems. 

1.4.3 Overview on the Abstraction Level of Optimization 

Today's electronic systems are designed starting from specifications given at a very high 

level of abstraction. This is because many Electronic Design Automation (EDA) tools accept a 

design expressed in a high-level format as input and can automatically produce the 

corresponding RT/Logic/transistor-level implementation with very limited human intervention. 

All hardware systems can be classified into various levels of abstraction such as System level, 

Architecture level, Register Transfer Level (RTL), Layout level and Transistor level. This 

abstraction level also provides an insight into the hierarchy that a system can be classified into. 

Optimization performed at the higher levels of abstraction provides more flexibility, productivity 

and design specification awareness than performing only at the lower levels of abstraction. 

Moreover, although effective, performing optimization only at the transistor level is not 

sufficient for the current generation of high performance, power hungry application specific 

systems (used in embedded applications) due to the enormous complexity involved. The 

traditional method of optimization performed by circuit designers only at low level for area and 

latency is insufficient for current power and performance requirements. Therefore, the role of 

system architects has become extremely crucial. System architects consider user goals during the 

architecture selection process by performing optimization of the given application based on high 

level parametric models. The design process must consider user goals even at the very high 

abstraction level (during high level synthesis process) in order to generate a quality aware 

solution (at the RT-Level) with greater possibility of optimization at the transistor level. 
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1.4.4 Reasons for Studying High Level Synthesis 

There has been a trend towards automating synthesis at higher levels of the design 

hierarchy in the recent years. Logic synthesis has gained acceptance in industry long back and 

currently there has been substantial interest shown in Register Transfer Level (RTL) design 

obtained from higher levels of abstraction (algorithmic). The reasons are the following [27]: 

Reduced design time and high acceleration: If more of the design process is automated, a 

company can complete a design faster, and thus have a better chance of hitting the market 

window for that design. 

Design is specification aware from the very earliest stage: Design space exploration to 

perform multi-objective optimization and tradeoff is needed from the very earliest stage of 

designing. This will enable the designers to start the development with an architecture that is 

already specification aware (high level optimized) from the highest level of abstraction thus 

rendering more chances that final design (logic/layout) corresponds to the given constraints. 

The ability to search the design space (and design alternatives): A good synthesis system can 

produce several designs from the same specification in a reasonable amount of time. However, 

final selection can be challenging with many choices. Therefore, an efficient exploration method 

is needed to tackle the problem from the very high abstraction level to assure the designer a 

greater chance of optimization and flexibility to control architecture based on user requirements. 

This allows the developer to explore different tradeoffs between cost, speed, power etc. or to take 

an existing design and produce a functionally equivalent one that is more efficient. 

Easy availability of IC technology: As more design expertise is moved into the synthesis 

system, it becomes easier for non-expert designers to manufacture a chip that meets a given set 

of specifications and operating constraints. 
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1.5 Summary of Contribution 

The proposed exploration approach can be used during the design process of application specific 

processors/custom processors or standalone Application Specific Integrated Circuits (ASIC’s) 

custom data intensive applications. Therefore, systems that include adaptable applications which 

change dynamically during runtime should not be considered with these approaches.  

This dissertation contributes to the following by removing bottlenecks in previous approaches: 

• Solving the Problem of Design Space Exploration for Power-Performance-Cost/Area 

tradeoff in High Level Synthesis using novel Priority Factor approach: 

(Note: Publications: S1, S2, S7, S8, S14, S15, S19, S20, S24, S22, S27 on Page: 111) 

a) Introduces /Derives mathematical model for modern parametric framework viz. 

performance (execution time) for Design Space Exploration. 

b) Introduces/Derives mathematical model for modern performance parametric 

framework viz. Hardware Cost for Design Space Exploration. 

c) Presents mathematical model for modern performance parametric framework viz. 

Power for Design Space Exploration 

d) Proposes a new technique using Priority Factor Metric and Vector Design Space 

scheme for arranging the architecture design space. 

d) Provides significant improvements in exploration speed compared to a recent 

technique for various signal processing benchmarks. 

• Solving the Problem of Design Space Exploration for Hardware Area/power-

Performance-power/area tradeoff in High Level Synthesis using Self-Correction Scheme 

based Hybrid Fuzzy approach: 

(Note: Publications: S3, S4, S9, S10, S13, S16, S23 on Page: 111) 
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a) Proposes Hybrid Fuzzy scheme based frameworks for all cases of exploration for 

Area/Power and Performance parameters. 

b) Development of Fuzzy sets for representation of architecture design variances. 

c) Algorithms with Self-Correction Scheme for exploring the final design point. 

d) This hybrid technique provides an average improvements of greater than 22 % in 

exploration process compared to a recent technique for various size benchmarks. 

• Solving the Problem of Integrated Exploration of Scheduling and Module Allocation in 

High Level Synthesis for static power optimization under minimum control step usage: 

(Note: Publications: S5, S11, S18, S21 on Page: 111) 

a) Proposes a mathematical expression for power gradient based on the power 

dissipation of the resources used during determination of high priority nodes. 

b) Presents a new priority function called ‘Priority indicator (PI)’ based on selection 

criterion that takes into account the power gradient. This new iterative exploration 

approach method is used for exploring the optimal/sub optimal integrated solution to 

the problem of scheduling and module selection. 

c) Provides a completely automated design space exploration tool for rapid exploration 

of scheduling and module selection in high level synthesis design process. 

d) The proposed approach successfully improves the quality of final solution by an 

average of 5.07 % and reduces the exploration runtime by an average of 59% 

compared to a current approach for standard DSP Benchmarks. 

• Solving the Problem of Integrated Exploration of Scheduling and Module Allocation in 

High Level Synthesis for Power-Performance tradeoff using Heuristic Genetic Algorithm: 

(Note: Publications: S6, S12, S17, S26 on Page: 111) 
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a) Multi Structure Genetic Algorithm is based on a novel cost function based on the 

power consumption-execution time tradeoff.  

b) The total execution time constraint considered in the cost function of the proposed 

approach is based on latency, cycle time and number of data (N) to be pipelined. 

c) Multi structure genetic algorithm is based on a new structural topology where each 

functional unit type is represented by an independent chromosome.  

d) Since the multi structure genetic algorithm incorporates a new seeding process with 

two special chromosomes, hence the final solution found is always certain to be 

global optimal or local optimal (in certain cases) in terms of the execution time 

(including latency and cycle time) and power.   

e) The results produced by proposed approach are better compared to another genetic 

algorithm based approach, for almost all digital signal processing benchmarks. 

• Introducing a design Automation Platform (DAP) in high level synthesis for multi-

objective optimization and RTL circuit generation capable of: 

(Note: Publications: S1, S2, S3, S4 on Page: 111) 

a) Power-Performance Tradeoff using Area as Optimization Criteria. 

b) Hardware Area- performance Tradeoff using Power as Optimization Criteria. 

 

 

1.6 Dissertation Organization 

The rest of the dissertation is organized as follows: Chapter 2 describes in details the 

proposed techniques behind solving the problem of Design Space Exploration for power-

performance-area/cost tradeoff using priority factor and vector design space technique. Chapter 3 
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elaborates on proposing the solution for solving the problem of design space exploration for 

hardware area-performance-power tradeoff using fuzzy membership based algorithm and priority 

factor framework. Chapter 4 proposes the approach for solving the problem of integrated 

exploration of scheduling and module allocation for static power optimization under minimum 

control step usage based on power gradient theory, while in Chapter 5, the approach for solving 

the problem of integrated Exploration of scheduling and module allocation for power-

performance tradeoff using multi structure genetic algorithm is proposed. Chapter 6,  introduces 

a high level synthesis DAP for multi-objective optimization and RTL circuit generation capable 

of performing multi objective tradeoff.   The results of the proposed DSE approaches for various 

well known high level synthesis benchmarks indicating exploration time and quality 

improvements obtained when compared to the current existing DSE approach are provided in 

Chapter 7.  Chapter 8 is dedicated to conclusion and future scope of work in this area. The list of 

publications related to this field of research study and the total list of citations are also provided 

thereafter. 
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Chapter 2  

Rapid Design Space Exploration in High Level 

Synthesis Based on Power-Performance Tradeoff 

using Priority Factor Metric 

This chapter introduces the first algorithm of the dissertation based on priority factor metric 

which deals with proposing a solution to the design space exploration in high level synthesis for 

computation intensive applications. It is used for performing tradeoff based on power-

performance constraint and area/cost as optimization criteria. The proposed approach is 

deterministic in nature and therefore finds the final architecture based on resolute evaluation 

steps (unlike heuristic methods).  It is important to note that the proposed exploration approach is 

only applied to custom data intensive applications (application specific processors/custom 

processors) or standalone Application Specific Integrated Circuits (ASIC’s). The priority factor 

metrics proposed in this chapter are based on mathematical models for modern parametric 

frameworks viz. power, performance area/cost. The approach also employs a special topology 

called vector design space based on priority order sequencing for sorted arrangement of the 

design space. The mathematical framework for each parameter is described and deduced below: 
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2.1 Mathematical Derivation for Cost/Area Model 

A. The Proposed Framework for Hardware Cost   

Let the area of the resources be given as ‘A’. Ri denotes the resources available for system 

designing; where 1<i<n. ‘n’ represents the maximum resource available for designing. ‘Rclk’ 

refers to the clock oscillator used as a resource providing the necessary clock frequency to the 

system (Note: to simplify the mathematical modeling of area, the existence of multiple clocks 

operating in a single system has been ignored.  For high level area modeling, only the global 

clock operating in a system has been considered. However, the user has the flexibility to declare 

in the module library various clock frequency oscillators available for selection based on the 

exploration result). The total area can be represented as the sum of all the resources used for 

designing the system, such as adder, multiplier, divider, clock frequency oscillator and the 

memory elements. At the high level all elaborate lower level details such as routing information 

(wire connection etc.) are not available. Thus they have been ignored in eqn. (1) for high level 

area estimation. As described in [5, 41], the total area of a system mainly consists of the areas of 

the functional blocks; the total area can be approximated as follows:  

∑= )( RiAA                                                                                                                                (1)  

RMRMclkRnRnRRRR KNRAKNKNKNA ⋅++⋅++⋅+⋅= )()...( 2211
                                                                     (2) 

Where ‘NRi’ represents the number of resource ‘Ri’, ‘KRi’ represents the area occupied per unit 

resource ‘Ri’, ‘NRM’ represents the number of memory elements present (such as registers) and 

‘KRM’ represents the area occupied by each memory element. Let the total cost of all resources in 

the system is ‘CR’. Further, cost per area unit (in fiscal units) of the resource (such as adders, 

multipliers etc) is given as ‘CRi’, the cost per area unit (in fiscal units) of the clock oscillator is 
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‘CRclk’ and finally the cost per area unit (in fiscal units) of memory element is ‘CRM’. Therefore 

total cost of the resources in fiscal units is given as: 

RclkclkRiRnRnRRRRR CRACKNKNKNC ⋅+⋅⋅++⋅+⋅= )()...( 2211 RMRMRM CKN ⋅⋅+                                                 (3)  

Applying partial derivative to equation (3) with respect to NR1 ….NRn, with respect to NRM and 

with respect to ARclk yields equation (4) to (7) respectively as shown below:  
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For the sake of simplicity, while applying partial derivative to a certain resource (equations (4) 

– (7)), the others resources are assumed fixed (or constant). In order to determine the 

contribution of a specific resource on the change in a parameter, other resources have to be kept 

fixed (constant). For example, in equation (7), while applying partial derivative with respect to 

NRM, the change in number of resources NR1 ….NRn is assumed to be fixed. Without keeping the 

other resources NR1 ….NRn fixed during analysis, the impact of resource NRM in the deviation of 

cost parameter cannot be determined. Now using the theory of approximation by differentials, 

the change in the total cost can be approximated by the following equation: 
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                                                                        (8)  

Additionally, equation (8) above indicates the total change in CR (total cost of resources) with  
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respect to change in number of resource NR1 ….NRn, NRM and Rclk. Substituting equations (4) to 

(7) into equation (8) yields equation (9) shown above: 

 Equation (9) represents the change in total cost of resources with the change in the number of all 

resources and the clock period (clock frequency). The Priority Factor (PF) for cost of resources is 

defined as: 
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PF yields a real number, which suggests the extent to which the change in number of a 

particular resource contributes to the change in hardware cost. The PF is a determining factor 

which helps us to judge the influence of a particular resource on the variation of the optimization 

parameters like area, time of execution and power consumption. This PF is used later in our 

approach to organize the architecture design space consisting of variants in increasing or 

decreasing order of magnitude. The equation (10) and (11) indicates the change of cost with 

respect to change in resource R1,….Rn. Similarly, equation (12) indicates the change of cost of 

the system with respect to change in number of resource ‘RM’. Further equation (13) indicates 

The change of cost 
contributed by 

resource Rn 

  The change of cost 
contributed by 
memory RM 

  The change of cost 
contributed by 
resource clock 

=RdC RclkclkRMRnRMRiRnRn CRACKNCKN ⋅∆+⋅⋅∆+⋅⋅∆ )(                                                                                            (9)            
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the change of cost of the system with respect to change in resource ‘Rclk’.  

 

2.2 Mathematical Derivation for Execution Time Model      

For a system with ‘n’ functional resources the time of execution can be represented by the 

following formula: 

Based on [5, 61,62,12], the time of execution can be represented by the following equation: 

])1([ cexe TDLT ⋅−+=                                                                                                                     (14) 

where ‘L’ represents latency of execution, ‘Tc’ represents the cycle time of execution , ‘D’ 

denotes the number of data elements to be processed . Equation (14) indicates the time needed to 

data pipeline an application based on data dependency and available functional units. The 

equation also captures any situation through initiation interval where an operation is not 

available for pipelining due to data hazard. It is important to mention the difference between data 

pipelining/data level parallelism and instruction level parallelism: In the former, there are no 

service operations such as instruction fetch, instruction decode, data fetch and write back. Only 

the execution stage can directly processes the input data and produce the output for the next 

operation. Therefore, no latch requirements are necessary during data pipelining. In contrast, 

instruction level pipelining includes service operations as well as execution stage and pipelining 

is effectively between the hardware units. Therefore, latches are necessary to store the 

information of the previous unit and to pass it to the next stage. (An example of data pipelining 

for a sample application is demonstrated in Chapter 6). 

The term ‘workload’ of a resource signifies the time required (or clock cycles needed) to finish 

its assigned operation during scheduling. Hence the total workload (W) of all resources to finish 
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their respective operations during scheduling for ‘D” sets of processing data can be represented by 

(15): 

PRnRnRRRR TDTNTNTNW .)....( 2211 ⋅⋅++⋅+⋅=                                                                     (15) 

Where NRi represents the number of resource ‘Ri’ and ‘TRi’ represents the number of clock cycles 

needed by resource ‘Ri’ (1<=i<=n) to finish each operation. ‘D’ is the number of sets of data 

elements that must be processed.  Note: In the mathematical modelling process in equation (15),  

the operations have been considered to operate in a sequential manner for theoretical assumption 

and simplicity purposes. In the experimental exploration process described later, actual data 

parallelism has been considered while evaluating a particular solution. Therefore if variable NRi 

in equation (15) is increased, then ‘W’ will increase. In equation (16) and (17), objective is to 

evaluate the deviation of workload (W) with respect to change in variable NRi. For example, the 

average deviation of ‘W’ with respect to change in NRi from 1 adder/subtractor to 3 

adder/subtractors can be evaluated. Therefore, the motive is to determine the contribution of each 

resource type on a specific parameter (as explained in Section 3.2). The demonstration of this 

approach is described later in this chapter. 

From the approximation of differentials the change in ‘workload’ is approximated in (16).  
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Applying partial derivative to the (15) with respect to NR1…..NRn and Tp will produce the 

following set of equations: 

1

2211

1

])...[(

R

pRnRnRRRR

R N

DTTNTNTN

N

W

∂

⋅⋅⋅++⋅+⋅∂
=

∂

∂
 

DTT pR ⋅= 1
                                                                                                                               (17) 



22 

 

Rn

pRnRnRRRR

Rn N

DTTNTNTN

N

W

∂

⋅⋅⋅++⋅+⋅∂
=

∂

∂ ])...[( 2211  

DTT pRn ⋅=                                                                                                                                (18) 

p

pRnRnRRR

p T

DTTNNTN

T

W

∂

⋅⋅⋅+++⋅∂
=

∂

∂ ])...[( 211                                                                     (19) 
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         Substituting equations (17), (18) and (19) in equation (16) yields equation (21): 

DTTNDTTNDTTNdW pRnRnpRRpRR ⋅⋅∆++⋅⋅⋅∆+⋅⋅⋅∆= ..2211 )...( 2211 RnRnRRRRp NTNTNTTD ⋅++⋅+⋅⋅∆⋅+   

                                                                                                                                                    (21)                                       

Equation (21) reflects the change in total workload with the change in number of all the 

resources and the clock period (clock frequency).  

DTTN pRnRn ⋅⋅⋅∆ = The change of ‘W’ contributed by the change in number of resource Rn. 

DNTNTNTT RnRnRRRRp ⋅⋅++⋅+⋅⋅∆ )...( 2211
= The change of ‘W’ contributed by the change in clock 

period (frequency).  

Considering constraint on the number of resources, the increase in total workload (W) will 

cause an increase in total execution time. Therefore, the more the workload increases, the more 

the execution time increases under resource constraints. Hence, the change in number of a 

resource (e.g. change in adder from one to three) that contributes to the change in total workload 

the most, also contributes to the change in total execution time the most.  So based on above 

analysis, PF for execution time parameter is defined as: 
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‘D’ is ignored in the expression for PF because it does not contribute to the change in Priority 

Order (PO) sequence described later in the paper. The factors defined above reflect the average 

change in execution time (Texe) with the change in number of a resource (change in adder from 

one to three) at maximum clock period. These factors also reflect the average change in 

execution time (Texe) with the change in clock frequency. In the expression for PF in (23), 

minimum clock frequency is considered because at this frequency the clock period is the 

maximum. Hence, the change in number of a specific resource at maximum clock period will 

influence the change in execution time the most, compared to the change in execution time at 

other clock periods.  

2.3 Mathematical Model for Power Consumption  

Based on [5, 64, 12], dynamic power (PD) of a system as a function of operating frequency 

and number of devices switching due to frequency of operation can be represented as: 

∑
=

⋅⋅=
n
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cRiRiD pKNP
1

)(                                                                                                                 (24) 

Where ‘n’ is number of functional resources, ‘NRi’ represents the number of resource Ri as 

mentioned earlier. ‘KRi’ represents the area occupied per unit resource Ri and ‘pc’ denotes the 

power consumed per area unit resource at a particular frequency of operation. Equation (24) 

models the dependency of power on the activity rate (which in turn is based on frequency of 

operation) of the modules in the system. Theoretically if there is no activity in the circuit the 

dynamic component of the power will be zero. The leakage power has been ignored in this 

model.  

        Applying the using partial derivative method on equation (24) (as shown in Section 2.1 for 

cost parameter), the Priority Factor (PF) for power consumption is extracted as follows (PF) 

[27]: 
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The priority factor defined in equation (25) indicates the change of total power consumption 

with the change in number of resources at maximum clock frequency. In contrast, the priority 

factor defined in equation (26) indicates the deviation in total power consumption with respect to 

the change in number of clock oscillators from minimum to maximum. The priority factor helps 

to arrange the architectural variants of the design space in increasing or decreasing order of 

magnitude depending on the objective parameter. The PF is arranged in such a way that the 

resource with the minimum PF is chosen first, gradually increasing and then ending at the 

resource with the highest priority factor. The above rule applies for all three parameters 

described in this chapter.  

2.4 Proposed Method of Design Space Exploration of Architecture Based on 

Power-Performance tradeoff with area/cost as optimization criteria 

 

The overview of the proposed method is shown in Figure 1.  

A. System specifications 

The case study of a selected benchmark has been provided for demonstration of the proposed 

method based on some real system specifications (as shown in Table 1). The value assumed for 

area of each functional unit (in CLB slices) is obtained through synthesis in commercial logic 

synthesis tools. The values assumed for the clock cycle consumed for each functional unit is 

obtained from the literature [14, 22, 23]. If the user has different types of the same functional 

unit (such as 8-bit adder, 16 bit adder etc.), then the area of each functional unit type is also 
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specified in this stage simultaneously with the number of each functional unit type available for 

choice (e.g. Both the area of 8-bit adder (15 au) and the area of 16 bit adder (30 au) can be 

specified in addition to information 6) and 7) provided in Table 1). 

 Note 1: The parameters have fixed values assigned/specified by the user in this stage. These 

parametric constraints are the demand of the user and the final solution must meet these high 

level constraints as well as the requirement of the optimization parameter. For example, in Table 

1, the assumed value of the user constraints for power and time is 8W and 140 us respectively. 

This indicates that the final solution must meet these high level constraints while also being 

minimum in occupied area. Therefore during the exploration process, the design space will be 

pruned based on these requirements and the best possible solution will result (as will be 

demonstrated later).  

Note 2: The method assumes fixed hardware units such as 3 adder/subtractors, 4 multipliers, 

and 2 clock oscillators as shown in Table 1 because this is the specified maximum available units 

affordable by the user for this custom application specific system design. In other words, every 

user has a maximum limit on the permissible fixed hardware units that can be afforded based on 

specific configuration needs. However, for demonstration in this dissertation, these values are 

arbitrarily assumed for a sample application and are subject to flexibility depending on the 

requirement of the user and problem (as will be demonstrated latter). 

Note 3: In Table 1 there are two available choices for clock frequency oscillators assumed to 

be specified by the user. The clock oscillator available for selection through exploration process 

is the global clock frequency of the system. For high level architecture decisions only global 

clock frequency has been considered in the proposed exploration method (as will be 

demonstrated later in this chapter).  
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The function of the selected second order digital IIR Butterworth filter benchmark is given in 

eqn (27).  

)3(167.0)2(5.0)1(5.0)(167.0)( −+−+−+= nxnxnxnxny )2(33.0 −− ny               (27) 

B. Calculation of the priority factor for each available resource for execution time parameter 

For resource adder/subtractor (R1), multiplier (R2), clock oscillator (Rclk): 
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According to the above analysis the change in number of adder/subtractor affects the change 

in execution time the least, while the change in clock frequency from 50 MHz to 200 MHz 

affects the change in execution time the most. The minimum for adder/subtractor and multiplier 

Table1.  System Specifications and Constraints for PF Method 

1) Maximum power consumption: 8 watts (W) 

2) Maximum time of execution: 140 µs (for D =1000 sets of data) 

3) Hardware area of resources: Minimum  

4) Maximum resources available for the system design: 

    a) 3 Adder/subtractor units. 

    b) 4 Multiplier units 

    c) 2 clock frequency oscillators: 50 MHz and 200 MHz 

5) No. of clock cycles needed for multiplier and adder/subtractor to finish each operation: 4 cc and 2cc 

6) Area occupied by each adder/subtractor and multiplier: 20 area units (a.u) and 100a.u. (e.g. 20 CLBs on FPGA) 

7) Area occupied by the 50MHz and 200MHz clock oscillator: 4 area units and 10 area units 

8) Power consumed at 50 and 200MHz:10mW/a.u. and 40mW/a.u. 

 

Figure.1.Generic Overview of the Proposed Exploration Method  
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is one in above equations because the digital IIR Butterworth filter function at least requires one 

adder and one multiplier to successfully accomplish the functioning of the task. 

C. Arrangement of resources in Priority Order based on calculation of PF for execution time 

Based on the priority factors calculated, a new terminology called ‘Priority Order (PO)’ is 

defined. The priority order is a sequence ordering of the resource types (R1…Rn)  based on 

reverse PF magnitude. In other words, the resource type with the lowest priority factor is 

assigned the highest priority order while the resource type with the highest priority factor is 

assigned the lowest priority order, i.e. the priority order of the resource increases with the 

decrease in priority factor of the resource.  

For example, resource Rclk with the highest PF (see Section 2.4.B) has been assigned the 

lowest PO. On the other hand, resource R1 with the lowest PF (see Section 2.4.B) has been 

assigned the highest PO. Therefore the following PO of resources is achieved for arranging the 

design variants in decreasing order for execution time. 

 Let initial number of all 

resources to be 1  

Let position p=1 and 

Assign (NR1… NRn) to 

position ‘p’ 

Let i = the resource whose 

PO is maximum 

NRi== NRi max? 

Increase NRi by 1 Reset NRi to 1 

Assign    

(NR1,,…,NRn) to 

position (p+1) 

Increase p by 1 

(p=p+1) 

p==p(final)? 

No Yes 

Let i= next resource 

with next higher 

priority order 

No 
Done 

Yes 

p(final)= Final position according to 

maximum design option available 

NRi =Number of a 

particular resource 

Where ‘i’ is an 

index 

p = position where 

the variant is 
located in the 

design space 

 

Figure2. Flow chart model of the proposed algorithm 
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PO (R1) > PO (R2) > PO (Rclk) 

 

D.  Arrange the design space in decreasing order for execution time according to the priority 

order 

This section presents an algorithm for arranging the random design space in an organized 

decreasing order for the execution time parameter. Before demonstrating the proposed algorithm 

it is imperative to identify the advantages of this algorithm compared to existing approaches 

[12]. The algorithm in Figure 2 differs from the existing techniques [12],  which are based on the 

hierarchical criterion method, with respect to the topology used to represent the design variants 

in the design space. The proposed algorithm is based on vector design space topology while the 

approach used in [12] is based on tree topology. Further, the proposed algorithm does not need 

any variant analysis to arrange the design space in increasing/decreasing order. It therefore  

requires less time while performing exploration. On the contrary, approach [12] utilizes critical 

variant analysis to determine the hierarchy of each resource type and then constructs the arranged 

design in increasing/decreasing order. 

The proposed algorithm is based on priority order sequencing as described in Section 2.4.C. 

The algorithm presented in Fig. 2 clearly describes the required steps in order to properly arrange 

the design variants. The PO obtained for execution time was PO (R1) > PO (R2) > PO (Rclk). 

After using the model of the proposed algorithm the arranged design space for execution time is 

obtained and is shown in Fig.3. After the variants were organized in decreasing order the binary 

search algorithm [63] is applied to obtain the border variant for the execution time parameter. 

Border variant is the extreme design point in the architecture space that demarcates the points 

that satisfy and do not satisfy the parametric constraint specified [12].  Results of binary search 
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[63] on the design space shown in Fig.3 yielded ‘variant V5 (marked in bold) as the border 

variant for the execution time parameter. This signifies that variant V5 is the first variant in the 

design space that satisfies the constraint for execution time specified (as given in Table I).  

 

E. Arrange the design space for Power in increasing order, Determination of Pareto Optimal 

points and Final solution 

 Similar to the execution time parameter, the PF for all the available resources was calculated 

to determine how much a change in each resource affects power consumption. Once the PF was 

determined then the PO was obtained following the procedure described in Section D. The PO 

sequence (PO (R1) > PO (R2) > PO (Rclk)) helped to obtain the arranged design space for power 

consumption using the algorithm in Fig. 2. Binary search [63] was then applied on the arranged 

design space for power consumption. Binary search yielded variant V21 as the border variant 

Satisfying set for time 

of execution 

Arrangement of time of execution in decreasing order from 

the top to the bottom element using the proposed algorithm 
 

Border Variant 
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Figure3. The arranged design vector space in decreasing 

order for time of execution 
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that meets the constraint imposed for power consumption. Since the steps to obtain the border 

variant for power are exactly the same as those to obtain the border variant for execution time 

(steps from Section 2.4.B to Section 2.4.D) they have not been shown in the dissertation. The 

priority factor for area is determined using equations described in this chapter  to arrange the 

variants of the Pareto optimal set in increasing order, similarly to the way it was determined for 

power and execution time (Note: If cost was the third parameter then equations (10) – (13) 

should have been used to find PF and then the final solution). After calculation of the PF the 

priority order is determined. The obtained priority order is: PO (Rclk) > PO (R1) > PO (R2). 

Using the algorithm in Figure2, the variants V5, V13, V21 of the Pareto set are arranged in 

increasing orders of magnitude. Since the design specification in Table 1 demanded minimum 

area overhead with simultaneous satisfaction of the constraints imposed by user, hence the aim is 

to find the variant with minimum area overhead. After the arrangement of the variants of Pareto 

optimal set the variant number ‘V5’ is found to be the only variant among twenty four variants 

that concurrently optimizes hardware area, power consumption and time of execution while 

meeting all the specifications provided. The optimal solution obtained through the proposed 

approach is reported later in Chapter 7. 

Note: The results of this approach applied on various benchmarks and the results of 

exploration time improvement are reported in Chapter 7.1. 
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Chapter 3  

Design Space Exploration in High Level Synthesis for 

Area/Power-Performance Tradeoff using 

Hybridization of Fuzzified Algorithm and Vector 

Design Space with Self-Correction Scheme 

This chapter introduces the solution to another branch of architecture exploration problems based 

on area-performance constraint and power as optimization criteria. The second algorithm of the 

dissertation viz. hybridized fuzzified algorithm and vector design space technique with self-

correction scheme will be presented. This algorithm proposes solutions to design space 

exploration in high level synthesis for computation intensive applications based on area-

performance constraint with power as optimization criteria. It has also been applied on problems 

specified as power-performance constraint and area as optimization criteria. The algorithm is 

also deterministic in nature and therefore finds the final architecture based on resolute evaluation 

steps (unlike heuristic methods).  
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3.1 The Proposed Theory for Fuzzy Search Framework during Exploration 

 

Before deducing the functions of fuzzy search for design space exploration, in this section the 

general concept behind the proposed theory is first discussed. The concept of assigning 

membership value to each respective element of the set considered in the proposed theory.  

Fuzzy set theory involves manipulation of the fuzzy linguistic variables [28]. In fuzzy set 

theory, the characteristic function is generalized to a membership function that assigns every 

element ‘x’ a membership value. The membership function µF of a fuzzy set F is a function: 

]1,0[: →UFµ    

A graphical representation of the proposed approach takes into consideration that architectural 

variants in the architectural design space are already organized in increasing or decreasing order. 

These architectural variants of the design space will be represented in the form of a fuzzy set 

where each variant will have a certain assigned membership value based on the characterized 

membership function as shown later.  The membership value will be assigned to each variant 

taking into consideration that the values of the design space variants are organized in either 

increasing or decreasing from the left to the right extreme of the fuzzy set (which is equivalent to 

top to bottom of the design space). In this theory, only the extreme elements’ actual values 

(which are the minimum and the maximum values or maximum and minimum values) are 

calculated at the beginning. The membership value of the variants between the two extremes will 

be considered to be directly proportional (sorted increasing order or sorted decreasing order) to 

the position of the variants in the sorted arrangement. Therefore, the membership value of a 

variant can be calculated by equations (28) or (29) for design space arranged in increasing or 

decreasing orders of magnitude: 
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αβ

α
τ

−

−
=

x
                                                                                                              (28) 

Or,  
βα

β
τ

−

−
=

x
                                                                                  (29) 

The actual value of the variant is assumed proportional to the position of the variant in the 

sorted arrangement. In equation (28) and (29), ‘x’ is the position of the variant; ‘τ’ represents the 

approximated membership value of the variant which is the x
th

 element in the sorted 

arrangement; ‘α’ and ‘β’ are the order of the first element and the last element in the same sorted 

arrangement. Thus, ‘α’ is equal to 1 and ‘β’ is equal to the total number of variants in the sorted 

arrangement. The above function represents a straight line which will aid in finding the border 

variant, e.g. the first variant which satisfies the execution time constraint and the last variant in 

the arranged design space which satisfies the specified constraint for area/power. In all figures 

shown below, the x-axes refer to the architectural variants of the design space and the y-axes 

refers to the actual values and membership values respectively. ‘τB’ is the membership value of 

the border variant for the parameter in the architecture space. Similarly, ‘τV’ is the membership 

value for the variant under test and VVariant is its respective value. Similarly, ‘τMin’ and ‘τMax’ are 

the membership values for the minimum and maximum variants in the architecture space, while 

‘Max’ and ‘Min’ are its respective values. The increase in trend line for area /power consumption 

and the decrease in trend line for execution time from left to right extreme of the design space 

are represented by membership value of each variant.  Therefore the actual value of each variant 

is directly proportional to its associated membership value. An algorithm has been developed to 

search for the border variant with the given actual value. The graphical representations of the 

proposed algorithm are shown in Figures 4 to 7. 
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The trend line shown in Figure4 and Figure6 represents the increase in membership values of 

each variant in the design space for area/power parameters. The trend line shown in Figure5 and 

Figure7 represents the decrease in membership values of each variant in the design space for 

execution time parameter. The membership values in this theory are not calculated separately for 

each variant but rather by applying equations (28) and (29). After arranging the design space by 

determining the priority factors in increasing or decreasing order, the membership values of each 

variant are also arranged in increasing or decreasing order. The actual values of the variants in 

the design space are directly proportional to the membership values of those variants.  

In Figure 4 the increase in membership value for area, i.e. actual area increase, is 

approximated by the straight line (OR) drawn from origin to the maximum. ‘M’ refers to the 

point in the line, corresponding to the actual border value (VBorder) being searched. ‘V1’ indicates 

the initial variant obtained corresponding to the calculated initial membership value (τini). ‘P’ is a 

point in the straight line corresponding to the actual membership value (τV) and the actual variant 

value (VVariant) of variant ‘V1’. If, for example, the variant value (VVariant) calculated is less than 

the value searching for (VBorder), then the search should be performed between points ‘P’ and 

point ‘R’. A second straight line (PR) is approximated for the increase in membership values for 

area/power parameter. In this straight line point ‘N’ corresponds to the actual border value being 

searched. τmax and τmin are the maximum and minimum membership values (either ‘1’ or  ‘0’). 

Using similarity of triangles ∆ PNQ and ∆ PRS the following function is easily derived: 

VariantBorder

Variant

VB

VMax

VV

VMax

−

−
=

−

−

ττ

ττ
                                                                                                      (30) 
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A similar analysis has been made for execution time with decreasing trend line (Figure 5). 

The trend line shows the decrease in magnitude of membership value based on the decrease in 

actual execution time in the arranged design space. 

Similar to the previous section, Figure 6 represents the increase trend line for area/power. ‘M’ 

refers to the point on the line corresponding to the actual border value (VBorder). ‘V1’ indicates the 

initial variant obtained corresponding to the calculated initial membership value (τini). ‘P’ is a 

point in the straight line corresponding to the actual membership value (τV) and the actual variant 

value (VVariant) of variant ‘V1’. If, for example, this calculated variant value is more than the 

value searching for (VBorder), then the search should be performed between points ‘P’ and point 

‘O’. A second straight line can be approximated for the increase in membership values for 

Figure4. Graphical representation of the algorithm 
for area/power for searching a greater value in the 

design space 
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Figure7. Graphical representation of the algorithm for 
execution time for searching a lesser value in the 

design space 
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Figure6. Graphical representation of the algorithm 
for area/power for searching a lesser value in the 

design space 
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Figure5. Graphical representation of the algorithm for 
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area/power. In this straight line ‘N’ is a point corresponding to the actual border value searching 

for (VBorder). Using the similarity between the triangles ∆ MPN and ∆ RPO another function can 

easily be derived: 

VariantBorder

Variant

VB

VMin

VV

VMin

−

−
=

−

−

ττ

ττ
                                                                                                      (31) 

Similar analysis has been made for execution time with decreasing trend line. The trend line 

in Figure 7 shows the decrease in membership value based on the decrease in actual execution 

time. Similar analysis for execution will yield equation (31). The proposed algorithm is 

described as follows: 

 

Algorithm 

Searching for the border variant (Border) 

1. Define the Universe of discourse (The fuzzy set) 

2. Identify and define the Linguistic variables 

3. Assign the approximate membership values (τ) based on the function described in equation 

(28) or (29) for each variant in the universe of discourse based on trendline for that parameter 

(increasing or decreasing). 

4. Calculate the initial membership value (τ ini ) based on the function: 

         
MinMax

MinVBorder

ini
−

−
=τ  ; where τ is the initial membership value corresponding to border variant 

(VBorder). ‘Min’ and ‘Max’ are the minimum and maximum values of the variants for a 

respective parameter. 

5. Look for the variant (V) closest to ‘τini’ in the fuzzy set.  

6.  Calculate the value of the variant `V`, indicated by Vvariant  
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7. If Vvariant < VBorder then go to step 8, else go to step 10.  

8. Solve the membership value (τB) based on the following function: 

         
VariantBorder

Variant

VB

VMax

VV

VMax

−

−
=

−

−

ττ

ττ
 

9. Jump to step 11.  

10. Solve the membership value (τB) based on the following function: 

        
VariantBorder

Variant

VB

VMin

VV

VMin

−

−
=

−

−

ττ

ττ  

11. Look for the variant `V` which has the closest membership value to ‘τB’ calculated in step 8 

or in step 10. 

12. If variant ‘V’  has already been checked , then  

{If Vvariant < VBorder then look for the unchecked variant with the next higher membership 

value in the set, and jump to step 13. 

Elseif Vvariant > VBorder then look for the unchecked variant with the next lower membership 

value in the set, and jump to step 13} 

Else variant ‘V’ has not been checked then go to step 13 

13. Calculate the Vvariant. 

14. If still the ‘Border’ is not found then repeat step 7. 

15. End 

The above algorithm successfully determines the border variant for a respective parameter 

during searching. The border variant for area and power consumption indicates the last variant in 

the design space (design space which is arranged in increasing order of magnitude) to satisfy the 

VBorder specified by the user. In contrast, the border variant for execution time is the first variant 
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in the arranged design space (design space which is arranged in decreasing order of magnitude) 

that satisfies the VBorder specified by the user.  

 

3.2 The Steps Needed to Obtain the Final Variant of Architecture 

The proposed theory behind the framework for DSE will be used in the upcoming sections. 

Additionally the fuzzy search algorithm proposed in Section 3.1 will be used as a method for 

searching the final architecture after our design space is organized in increasing or decreasing 

order based on the PF calculation (as explained in Section 3.2.F). The steps required to obtain the 

final architecture for high level synthesis is explained in this section with three objectives being 

satisfied (for hardware area, time of execution and power consumption). The goal of the 

proposed DSE approach is to find the final optimal variant of architecture which satisfies all 

three parameters specified in the design problem. Figure 8 shows the exploration process steps 

which are required to obtain the optimal variant of architecture using the proposed DSE 

methodology for high level synthesis designing. The proposed exploration approach has been 

designed for custom data intensive applications (application specific processors/custom 

processors) or standalone Application Specific Integrated Circuits (ASIC’s) rather than systems 

that include adaptable applications which change dynamically during runtime. 

  

A. Problem formulation and Technical specifications 

This stage marks the beginning of high level synthesis designing, beginning with the problem 

description and the technical specifications provided for the designer. The application should be 

properly defined with its associated data structure. This phase is very critical for the designer and 

the operational constraints should be clearly defined along with the parameters to be optimized. 
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These specifications act as the input information for the high level synthesis tools. To 

demonstrate the DSE approach the following sample specifications were assumed as shown in 

Table 2. The specifications used for the area occupied by each adder/subtractor and multiplier 

were based on the results obtained after each module (resource) was synthesized and 

implemented using Xilinx ISE9.2i tool in Spartan 3E FPGA (XCS3E5000E-5fg320 FPGA). For 

example, synthesis and implementation of a type of adder/subtractor module occupies 12 CLB’s 

in XCS3E5000E-5fg320 FPGA.  
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Figure8. The flow for the steps required to obtain the optimal variant of architecture using the proposed DSE  
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However, the provided constraints do not always yield a solution. There are two situations 

where this could occur: a) when the constraints provided are invalid or b) if the Pareto set is 

empty. This would signify that no solution exists which simultaneously satisfies the two 

constraints, which would then be considered too tight and need to be relaxed. Thus the two 

generalized algorithms proposed for constraints validation check of a parametric constraint are: 

Algorithm 1 (Extremism check): 

Inputs: Module Library, Data Flow Graph (or Mathematical function) of the application and user 

Constraints 

Output: The decision whether the design process continues or terminates (i.e. constraints are 

Table2. System Specifications for hybrid fuzzy approach 

1) Maximum hardware area of resources:  160 area 

units (a.u) (Note: The specification for Power 

consumption could also be assumed) 

2) Maximum time of execution:   200µs (For 1000 

sets of data) 

3) Power consumption: Minimum. 

4) Maximum resources available for the system 

design: 

a) 3 Adder/subtractor units. 

b) 3 Multiplier units 

c) 3 clock frequency oscillators: 24 MHz, 100 

MHz and 400 MHz (Note: The choice of the 3 

clock frequencies is arbitrary and any other clock 

frequency oscillator could also be used) 

5) No. of clock cycles needed for multiplier and 

adder/subtractor to finish each operation: 4 cc 

and 2cc 

6) Area occupied by each adder/subtractor and 

multiplier: 12 a.u. and 65 a.u. on the chip (e.g. 12 

CLB on FPGA for adder/subtractor) 

7) Area occupied by the 24MHz, 100MHz and 400 

MHz clock oscillators are: 6 a.u., 10 a.u. and 14 

a.u. respectively. 

8) Power consumed at 24MHz, 100MHz and 400 

MHz: 10mW/a.u.,32 mW/a.u. and 100mW/a.u. 

respectively. 
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valid or invalid) 

Repeat for all the user constraints specified 

{ 

1. Calculate the minimum value of the optimization parameter under consideration. Calculate the 

minimum value of the hardware area (power consumption)/execution time based on the 

minimum resource/maximum resource (considering whichever parameter among hardware area, 

power consumption or execution time is the first user constraint) using any one of the functions 

described below based on the user requirement: 

In case of hardware area:  

)()...( 2211min clkRnRnRRRR RAKNKNKNA +⋅++⋅+⋅=  

Where, NRi represents the number of resource Ri and is equal to 1 for all cases. Therefore for 

calculating the minimum area, NR1 = NR2 = NR3 = ... = NRn= 1. Also ‘KRi’ represents the area 

occupied per unit resource ‘Ri’ which is obtained from the user as input. A(Rclk) refers to the area 

of clock oscillator which occupies least area used for providing the necessary clock frequency to 

the system. ‘KRi’ represents the area occupied per unit resource ‘Ri’ (1<=i<=n). 

In case of power consumption:  

cRnRnRRRR pKNKNKNP )...( 2211min ⋅++⋅+⋅=
 

Therefore for calculating the minimum area, NR1 = NR2 = NR3 = ... = NRn= 1. Moreover, ‘pc’ is the 

slowest clock frequency available in the module library which consumes the least power per unit 

area. 

In case of execution time:  

])1([ cexe TNLT ⋅−+=  
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‘L’ and ‘Tc’ should be calculated based on maximum resources considering NR1 = NR2 = NR3 = ... 

= NRn= Maximum resource of certain functional unit specified by user in the library.  ‘L’ 

represents latency of execution, ‘Tc’ represents the cycle time of execution during data 

pipelining. Also, ‘N’ is the number of data sets to be pipelined as user input. 

 

2. Calculate the maximum value of the optimization parameter under consideration. Calculate 

the maximum value of the hardware area based on the minimum resource (considering that 

hardware area is the first user constraint) using the function described below: 

 

In case of hardware area:  

)()...( 2211max clkRnRnRRRR RAKNKNKNA +⋅++⋅+⋅=  

Where, NRi represents the number of resource Ri. Therefore for calculating the maximum area, 

NR1 = NR2 = NR3 = ... = NRn= Maximum resource of certain functional unit specified by user in 

the library. Also ‘KRi’ represents the area occupied per unit resource ‘Ri’ which is obtained from 

the user as input. 

In case of power consumption:  

cRnRnRRRR pKNKNKNP )...( 2211max ⋅++⋅+⋅=  

Therefore for calculating the minimum area, NR1 = NR2 = NR3 = ... = NRn = Maximum resource of 

certain functional unit specified by user in the library. Moreover, ‘pc’ is the fastest clock 

frequency available in the module library which consumes the maximum power per unit area. 

In case of execution time:  

])1([min cTNLT ⋅−+=  
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‘L’ and ‘Tc’ should be calculated based on minimum resources considering NR1 = NR2 = NR3 = ... 

= NRn= 1.  

 

3. Check if Constraint specified satisfies the upper threshold (maximum value) and lower 

threshold (minimum value) of the parameter calculated above in steps 1 and 2. In other words, 

let the constraint for hardware area is ‘Aconst’, power consumption is ‘Pconst’ and execution time is 

‘Tconst’. Then, the following conditions are checked: 

Amin <=Aconst<= Amax (For Hardware area)  

Tmin <=Tconst<= Tmax (For Execution time) 

Pmin <=Pconst<= Pmax (For Power consumption) 

If the above conditions are satisfied then, the design process continues 

Elseif the above conditions fail then the design process stops and constraints need to be 

corrected by the user.  

} 

END 

 

Algorithm 2 (Relaxation Phase): This constraints validation check only comes into play when 

the Pareto optimal set formed as a result of the design space exploration process is absolutely 

vacant. A vacant Pareto optimal set signifies that the user constraints provided (which passed the 

test of ‘Extremism Check’) is too tight/strict in deadline. Therefore the strict user constraints of 

the given parameter need to be relaxed (self-corrected) to a certain extent: 
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1) Let the variants obtained in the pareto optimal set (P) after applying the proposed design space 

exploration approach be P = {Va, Vb, Vc...., Vn}, where Va, Vb, Vc...., Vn are variants of the 

design space that are elements of the pareto optimal set. 

 

2) If the Pareto optimal set, P = ϕ (Null), then there exists no variants in the set P. This indicates 

that the user constraints are too tight and needs to be relaxed. This is because there is no variant 

from the design space that simultaneously obeys both user constraints. Continue the algorithm. 

Elseif P ≠ ϕ (not null), then variants exists in the Pareto set, P. Continue the design process and 

stop the algorithm. 

 

3) Relax the user constraints by 5 % to set new constraints for the parameter. Therefore, if the 

constraint for hardware area is ‘Aconst’, constraint for power consumption is ‘Pconst’ and constraint 

for execution time is ‘Tconst’, then depending on the user specified constraints, the new 

constraints after applying the relaxation phase are as follows: 

a) Aconst (new) = Aconst (original) + 5% of Aconst (original) 

b) Tconst (new) = Tconst (original) + 5% of Tconst (original) 

c) Pconst (new) = Pconst (original) + 5% of Pconst (original) 

 

B. Problem formulation stage 

In the problem formulation stage the mathematical model of the application is used to define 

the behavior of the algorithm. The model suggests the input/ output relation of the system and 

the data dependency present in the function. In this paper the digital IIR Chebyshev filter is used 
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as an example benchmark to demonstrate the DSE method for high level synthesis. The transfer 

function of a second order digital IIR Chebyshev filter can be given as:        

21

21

6743.04418.11

041.0082.0041.0
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zH                                                                                      (32) 

=)(ny )2(041.0)1(082.0)(041.0 −+−+ nxnxnx )1(4418.1)2(6743.0 −+−− nyny                                       (33)         

Where x(n), x(n-1) and x(n-2) are the input vector variables for the function. The previous 

outputs are given by y (n-1) and y(n-2), while the present output of the function is given by y(n). 

For simplicity, constants 0.041,0.082,0.6743 and 1.4418 are denoted by ‘A’, ‘B’,’D’ and ‘E’ 

respectively.  x(n), x(n-1), x(n-2), y (n-1) and y (n-2) are denoted by Xn, Xn1, Xn2, Yn1 and 

Yn2 respectively.  

 

C. Creation of a random architecture vector design space for area parameter 

The architecture design space is represented in the form of vectors consisting of the resources 

available for the system. The random organization of the design space is shown only to represent 

the different combinations of the resources that make the total design space. The total design 

space is first created according to the specifications mentioned for total available resources in 

Section VI.A of the flow. Vn = (NR1, NR2, NR3) represents the architecture design space.  The 

variables NR1, NR2 and NR3 indicate the number of adders/subtractors, multipliers and clock 

frequencies.  Therefore, according to specification in Section Table2, 1<=NR1<=3, 1<=NR2<=3, 

and 1<=NR3<=3. The random design space in Figure 9 represents all the different combinations 

V1 =  (1,1,1) V8  = (1,2,3) V15= (2,3,2) V22= (3,1,2) 

V2 =  (1,2,1) V9  = (1,3,3) V16= (2,1,3) V23= (3,2,2) 

V3 = (1,3,1) V10= (2,1,1) V17= (2,2,3) V24= (3,3,2) 

V4 = (1,1,2) V11= (2,2,1) V18= (2,3,3) V25= (3,1,3) 

V5=  (1,2,2) V12= (2,3,1) V19= (3,1,1) V26= (3,2,3) 

V6=  (1,3,2) V13 = (2,1,2) V20= (3,2,1) V27= (3,3,3) 

V7 = (1,1,3) V14 = (2,2,2) V21= (3,3,1)  

Figure9. Design space with all possible resource combinations 
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of available resources viz. adder/subtractor, multiplier and oscillators. The next section describes 

the methodology of calculation of priority factor (PF) for the area.  

 

D. Calculation of the priority factor for each available resource and arrangement of the PF in 

increasing order for area parameter using DSE approach  

Using equations described in Chapter 3, the PF for resource adder /subtractor (R1) is: 

8)1( =RPF  

For resource multiplier (R2): 

33.43)2( =RPF    

For resource clock oscillator (Rclk):  

67.2)( =RclkPF   

The above factors are a true measure of the change in area with the change in number of a 

specific resource. For example, according to the above analysis, the change in number of 

multiplier affects the change in area the most, while the change in clock frequency from 24 MHz 

to 400 MHz influences the change in area the least. Now based on the PF calculated for area, the 

hierarchy vector space is constructed using the algorithm in Figure 2 (in Chapter 2).  

 

E. Arrangement of the hierarchy vector space comprising the design space in increasing order 

Based on the PF calculated for each resource for area (as shown in previous section), the 

hierarchy vector space is constructed using the algorithm in Figure 2.  The arranged design space 

for area in form of hierarchy vector space according to the explanation above is shown in Figure 

10. This arrangement of the hierarchy architecture tree ensures that the design space becomes 

sorted. There is no additional necessity to sort the variants of the design space.  
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F. Fuzzy search technique for the determination of the border variant for the area and 

calculation of PF for execution time 

The presented fuzzy search technique is applied on the arranged design space in Figure 10. 

The design space shown is arranged in increasing orders of magnitude from the north extreme to 

the south extreme. This arrangement helps to prune the design space in order to obtain the border 

variant for area requirement. After arrangement of the vector space, the universe of discourse set 

is constructed based on the arrangement of the variants in the design space in increasing order in 

the vector space (In other words, the set reflects the arranged design space in the tree, for area as 

shown in Figure 10). The universe of discourse for area can be represented by the set shown 

below. After defining the set, the algorithm described in Section 3.1 is used. 

Large area set (µL) =  

{

}
27

1
,

24

962.0
,

21

923.0
,

18

885.0
,

15

846.0
,

12

808.0
,

9

769.0
,

6

731.0
,

3

692.0

,
26

654.0
,

23

615.0
,

20

577.0
,

17

538.0
,

14

500.0
,

11

462.0
,

8

423.0
,

5

385.0
,

2

346.0

,
25

308.0
,

22

269.0
,

19

231.0
,

16

192.0
,

13

154.0
,

10

115.0
,

7

077.0
,

4

038.0
,

1

0

VVVVVVVVV

VVVVVVVVV

VVVVVVVVV  

Where ‘Large area’ is a linguistic variable for the set defined above. According to step 4 of 

the fuzzy search algorithm the initial membership value (τ ini) is calculated based on the Min and 

the Max value of area. According to the specification provided for area, VBorder = 160 a.u. while 

Min = 83 a.u. and Max= 245 a.u. (according to equation 1) are the calculated minimum and 

maximum values of the variants with minimum and maximum resources respectively.  

As shown in Table 3, the fuzzy search technique finds the border variant in just one iteration. 

The border variant obtained is variant 11. This value indicates the last variant in the space which 

satisfies the constraint for area requirement (VBorder).  
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After the border variant for area is obtained, the priority factor for each available resource 

type for time of execution parameter is calculated. Hence the PF obtained for each resource for 

execution time parameter are as follows: 

For resource adder/subtractor (R1): 

055.0)1( =RPF   

For resource multiplier (R2): 

 1109.0)2( =RPF   

For resource clock oscillator (Rclk): 

V1 =  (1,1,1)  p=1 

V4=   (1,1,2) 

V7 =  (1,1,3) 

V10= (2,1,1) 

V13= (2,1,2) 

V16= (2,1,3) 

V19 =(3,1,1) 

V22= (3,1,2) 

V25= (3,1,3) 

V2=   (1,2,1)  

V5=   (1,2,2) 

V8=   (1,2,3)     p=12 

V11= (2,2,1) 

V14= (2,2,2) 

V17= (2,2,3) 

V20= (3,2,1) 

V23 =(3,2,2) 

V26= (3,2,3) 

V3  = (1,3,1)   

V6=   (1,3,2)  

V9  = (1,3,3) 

V12= (2,3,1) 

V15= (2,3,2) 

V18= (2,3,3)     

V21= (3,3,1) 

V24= (3,3,2) 

V27= (3,3,3)    p=27 

 

Arrangement of area in increasing order from the top 

to the bottom element using the proposed algorithm 

Minimum area 

 

Maximum area 

Border Variant 

Satisfying set for 

area 

  Non- satisfying set 

for area 

Figure10. The vector design space in increasing order for area 

 

Table3.  The variants obtained for area after applying fuzzy search on the arranged design space 

Equations for obtaining the calculated 

membership values 

Calculated 

membership 

values(τ) 

Variants corresponding in 

the set according to the 

calculated  ‘τ’  
Area  

Decision based on 

the VBorder 

83245

83160

−

−
=iniτ  τ ini = 0.475 0.462/V11 

A11 = 2*12 + 2*65 + 6  

       = 160 a.u. 

A11
 <=   VBorder ,  

stop 
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2346.0)( =RclkPF  

The factors determined above indicate a measurement of the change in time of execution with 

the change in number of a specific resource. For instance, according to the above analysis the 

change in number of adder/subtractor affects the change in time of execution the least, while the 

change in clock frequency from 24 MHz to 400 MHz affects the change in time of execution the 

most. Now based on the PF calculated for execution time, the hierarchy vector space is 

constructed using the algorithm in Figure 2. 

 

G. Arrangement of the hierarchy vector design space in decreasing order and use of fuzzy search 

technique to determine the border variant for time of execution parameter 

(Note: The universe of discourse set for execution time is constructed based on the 

arrangement of the variants in the design space in decreasing order, similar to the way the set 

was constructed for area). As explained in Sections E and F, design space is similarly arranged in 

decreasing orders of magnitude for execution time as shown in Figure11. The universe of 

discourse set for time of execution parameter is defined as:  

Small time of execution set (µS) =  

{

}
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,
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846.0
,

2

885.0
,

19

923.0
,

10

962.0
,

1

1

VVVVVVVVV

VVVVVVVVV

VVVVVVVVV  

According to the algorithm in step 4 for fuzzy search, the initial membership value (τ ini) is 

calculated based on the Min and the Max value of time of execution. According to the 

specification, VBorder = 200 µs, while Min = 20.01µs, Max= 833.41 µs are the calculated 

minimum and maximum values (using equation 14) of the variants with maximum and minimum 
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resources respectively. As shown in Table 4 the proposed fuzzy search technique finds the 

border variant (variant 5) in just five comparisons. This value indicates the first variant in the 

design space which satisfies the constraint for execution time specified (VBorder).  

 

  H. Determination of the Pareto-optimal set of design architecture 

After successfully obtaining the border variants for both parameters the next step is to find the 

design variants which simultaneously satisfy the specifications for area and execution time 

defined in the design problem. This step is driven by the fact that the designer must arrive at a 

point of optimum suitability for the application according to the user specifications for the multi 

parameters provided. After satisfying both parameters, the next step is to satisfy the power 

consumption parameter for the variants obtained. After observing the design space shown in 

Arrangement of time of execution in decreasing order from the 

top to the bottom element using the proposed algorithm 

 

Border Variant 

V1 = (1,1,1)   p=1 

V10=(2,1,1) 

V19=(3,1,1) 

V2 = (1,2,1) 

V11=(2,2,1) 

V20=(3,2,1) 

V3 = (1,3,1) 

V12=(2,3,1) 

V21=(3,3,1) 

V4 = (1,1,2)  

V13=(2,1,2) 

V22=(3,1,2)     

V5=  (1,2,2)    p=13 

V14= (2,2,2) 

V23= (3,2,2) 

V6  = (1,3,2) 

V15= (2,3,2) 

V24= (3,3,2) 

V7  = (1,1,3)   

V16= (2,1,3)  

V25= (3,1,3) 

V8  = (1,2,3) 

V17= (2,2,3) 

V26= (3,2,3)    

V9  = (1,3,3)    

V18= (2,3,3)    

V27= (3,3,3)   p=27 

 

     Minimum time of 

execution 

Maximum time 

of execution 

Non-satisfying set for 

time of execution 

  Satisfying set for time 

of execution 

Figure11. The vector design vector space in decreasing order for time of execution 
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Figure10 and Figure11, five architectural variants are found to simultaneously satisfy the 

constraints specified. Hence the variants V5, V7, V16, V25, V8 belong to Pareto optimal set. 

Next, the priority factor for the power consumption parameter is determined according to 

Chapter 3. After calculation of the PF, the priority order is determined. The obtained priority 

order is: PO (R1) > PO (R2) > PO (Rclk). Similar to the method described in Section 3.2.F, the 

variants of the Pareto set for power consumption are then arranged in increasing order of 

magnitude by using the proposed method. According to the specification (see Table 2) provided, 

the variant with the minimum power consumption should be selected. When the variants of the 

Pareto set are arranged in increasing orders of magnitude, the first variant in the order is 

guaranteed to be the variant with the minimum value (i.e. minimum power consumption) with 

the value increasing respectively with each next variant in the set. Hence, after arrangement of 

the variants in increasing order, it is found that ‘V5’ is the one with the minimum power 

consumption as it is the first variant after arrangement.  Therefore, the final optimal solution 

found (V5) with 1 adder/subtractor, 2 Multiplier, 100 MHz clock occupies 152au. This signifies 

that in the FPGA the optimal solution for the hardware resources occupies approx. 152 CLB’s. 

Table4.  The variants obtained for execution time after applying fuzzy search on the arranged design space 

Equations for obtaining the calculated 

membership values 

Calculated 
membership 

values(τ) 

Variants corresponding in 
the set according to the 

calculated  ‘τ’  

Execution time  

 

Decision based on 
the VBorder 

01.2041.833

01.20200

−

−
=iniτ  τ ini = 0.2213 0.231/V25 

Texe
25 = (22 +(1000-1)*20) 

*0.0025 = 50.005 µs 

Texe
25

 <   VBorder ,  
search up in the 

design space 

005.50200

005.5041.833

231.0

231.01

−

−
=

−

−

Bτ
 τB = 0.378 0.385/V15 

Texe
15 = (12 +(1000-1)*8) 

*0.01 = 80.04 µs 

Texe
15

 <   VBorder ,  
search up in the 

design space 

04.80200

04.8041.833

385.0

385.01

−

−
=

−

−

Bτ
 τB = 0.483 0.500/V14 

Texe
14 = (14 +(1000-1)*10) 

*0.01 = 100.04µs 

Texe
14

 <   VBorder ,  
search up in the 

design space 

04.100200

04.10041.833

500.0

500.01

−

−
=

−

−

Bτ
 τB = 0.568 0.577/V22 

Texe
22 = (22 +(1000-1)*20) 
*0.01 = 200.02 µs 

Texe
22

 >   VBorder ,  
search down in 
the design space 

02.200200

02.20001.20

577.0

577.00

−

−
=

−

−

Bτ
 

τB = 0.577 

0.538/V5 
(Since V22 has been 

checked so according to 
the algorithm check V5) 

Texe
5 = (14 +(1000-1)*10) 
*0.01 = 100.04 µs 

Stop 
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Therefore, even if the Pareto optimal set obtained after determining the border variant using 

fuzzy search is large, the arrangement of the variants in the Pareto optimal set, in increasing 

order using PF is the only requirement to determine the variant with the minimum power 

consumption. Therefore the variant obtained is regarded as the final optimal variant for the 

system design as it concurrently satisfies the specification of all the three objectives for 

execution time, hardware area and power consumption.  

Note: The detailed results of this approach applied on various benchmarks and the results of 

exploration time improvement are reported in Chapter 7.2. 
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Chapter 4  

Priority Function Driven Design Space Exploration in 

High Level Synthesis Based on Power Gradient 

Technique 

This chapter introduces the third novel algorithm of the dissertation viz. a novel heuristic based 

multi objective exploration process based on power gradient theory that simultaneously reduces 

the static power dissipation at the usage of minimal control step (time step) during scheduling. 

The proposed iterative power aware integrated optimization approach is based on Priority 

Indicator (PI) function which is responsible for minimizing allocated hardware functional units 

during the scheduling process. When the final solution was compared to a Genetic Algorithm for 

the benchmarks it resulted in a considerable power reduction, runtime reduction as well as 

improvement in the quality of final solution. 
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4.1 The Proposed Exploration Approach 

The proposed approach accepts the data flow graph (DFG) of the application as an input along 

with the set of module library information. According to the proposed approach, in each iteration 

only one operation (node) can be moved at a time into its next immediate control step as long as 

the dependency is obeyed. The selection of a particular operation (node) is chosen based on the 

value of ‘PI’. The PI acts as a determining metric to choose the highest priority node (operation) 

among the existing available movable operations that can result in reducing the power of the 

final solution. The flow of the proposed approach is shown in Figure 12. The detailed algorithm 

of the proposed approach is shown in Figure 13. The main motivation behind this research is the 

development of a novel technique that can simultaneously reduces the static power dissipation at 

the usage of minimal control step (time step) during scheduling by capturing the power gradient 

effect which arises during movement of operations. 

4.1.1 Proposed Power Gradient and Priority Indicator (PI) 

Power Gradient (G) is a metric that models the power consumption relationship between the two 

consecutive control steps (j) and (k) as well as the power consumption relationship between 

scheduling solutions before and after movement of an operation.  Hence effectively ‘G’ signifies 

the difference in Power consumption (Pc) between control step (CS), CS (j) and CS (k) before 

movement of operation o(i) and difference in power consumption between CS (j) and CS (k) 

after movement of o(i).  The mathematical expression of power gradient between any two 

arbitrary control steps CS (j) and CS (k) is shown below in equation (34). 

G = Sbefore  –  Safter                                                                                                                  (34)                               

SBefore = Difference in Pc before movement of o(i). 

         = (Pc) before movement at CS (j) – (Pc) before movement at CS (k) 
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SAfter  = Difference in Pc after movement of o(i) 

         = {(Pc) after movement at CS (j) – (Pc) opn o(i)}  

                                                 – {(Pc) after movement at CS (k) + (Pc) opn o(i)}                                                    

Where, CS (j) and CS (k) are the two immediate control steps in the scheduling solution, opn (i) 

is the operation selected for movement through the ‘PI’ metric. The metric called power gradient 

defined in equation (34) will be used in the ‘PI’ metric described later for selection of the highest 

priority node for movement during optimization power gradient defined above takes into account 

Figure12. The overview of the proposed heuristic approach 

User specified module library with area, latency and power consumed per area unit as 

input 

Data flow graph as input 

ASAP scheduling 

(Note: The precedence violation is checked before performing scheduling) 

Calculate cost of schedule 

solution 

ASAP imposes a     restriction on control 

step. Hence now the scheduling solution is 

improved under this CS constraint 

 

Movable operations from recent schedule are identified 

Calculate the PI of each identified movable operation 

 

The movable operation with the highest PI is selected for movement into its next 

immediate control step  

• If there is a tie between the PI values then any operation is randomly chosen for 

movement into the next control step. 

Is the terminating condition for the algorithm reached? 

Stop the iteration and yield the solution with the minimum cost among all 

iterations as the final output 

Yes 

No 
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the change in power dissipation and its effect on a scheduling solution when a certain operation 

is moved from one control step to another. The proposed priority indicator metric used for 

selection of high priority nodes during movement is shown in equation (35): 

           PI = G * Max [Pc (j), Pc (k)] * cost [opn (i)]                                                         (35)                       

Where ‘cost [opn (i)]’ is the development cost of resource o (i) obtained from the module library, 

‘G’ is obtained from equation (34) and ‘Max [Pc (j), Pc (k)]’ signifies the maximum of the power 

dissipation between CS (j) and CS (k). 

 In eqn (35), ‘cost [opn (i)]’ is considered as the associated development cost of the 

respective operational resource (oi) which is one of the factors that contributes to the PI of the 

node during selection. 

 

4.2 Demonstration of the proposed approach 

In the proposed approach, the cost of each schedule solution is evaluated in terms of static 

power. One of the most significant ways to reduce static power is to minimize the number of 

functional units (i.e. reduce the number of resources in order to reduce the standby/leakage 

current of the system). Therefore in Equation (36), power dissipated per area unit multiplied by 

the total area of the resources (in area units) yields the total static power of the resources (i.e. 

contribution of static power by major functional resources). Therefore for high level estimation 

(contributed by major functional resources) the static power cost of each schedule solution can 

be determined using Equation (36).               

∑
=

⋅⋅=
n

i

PRiRiPT SKNC
1

)(                                                                                                                                      (36)  
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‘NRi’ represents the number of resource Ri as mentioned. ‘KRi’ represents the area occupied per 

unit resource Ri and ‘SP’ denotes the power dissipated per area unit when the transistors in the 

chip are not switching (standby mode). The cost model used in (36) is only used in estimating the 

likely high level static power dissipation during the demonstration of the proposed method. 

According to the algorithm proposed in Figure 13, all movable candidate operations are 

identified for movement from initial As Soon As Possible (ASAP) scheduling of Discrete 

Wavelet Transformation (DWT) benchmark. The DWT benchmarks are standard high level 

synthesis benchmarks that were selected for demonstration of the proposed approach [23], [30]. 

The ASAP is shown in Figure 14. 

Iteration (1): 

i)  Movement – opn 2 (1→2)  ii) Movement - opn 7 (2→3)                          

iii) Movement – opn 8 (2→3)  iv) Movement – opn 9 (2→3)                           

For example (i) above signifies that opn 2 is one of the identified movable operations that can be 

1.0 Obtain ASAP schedule (put a limit on the number of CS) and determine its cost (PT) 

1.1 Repeat { 

Count = 1; 

1.2 while there is a movable operation 

Begin 

1.3 Calculate the Power Gradient (G) of each movable operation; 

//Power Gradient (G) is a metric that models the power dissipation relationship between consecutive control steps CS (J) and CS (k) as 

well as power dissipation relationship between scheduling solutions before and after movement of oi./// 

1.4 Calculate the Priority Indicator (PI) of each movable operation; 

// PI is the selection mechanism based on power when oi is moved from CS (J) to CS (K)// 

1.5 Select a 'Movement' for moving an operation to the mentioned CS; 

//Movement selects a duo of operation and its destined CS based on maximum PI of movable operation/// 

   1.5.1 If there is a tie in the PI values, then 

               Any movement is randomly chosen; 

1.6 move oi from CS (J) to CS (K) to obtain the new schedule; 

1.7 Determine its associated cost (PT) of the schedule; 

1.7 increment count, count = count + 1; 

1.8 Freeze the Movement (also operation, oi, cannot traverse backward); 

1.9 End; 

} Until 

N = 25;         

Figure13. Details of the proposed heuristic Exploration approach  
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moved from CS 1 to CS 2. (Note: Movable operations are those that have a free space to move in 

the immediate next CS without disturbing the data dependency present. The representation of the 

movable operations of ASAP schedule is shown above in i), ii), iii) and iv)). The priority 

indicator (PI) for each identified movable operation is then calculated using equation (35). But 

before the PI is calculated the ‘power gradient’ is determined using equation (34) as follows: 

G = [(400 +400 +400 + 400 +400) – (80 +80+80 + 80] – [(400 + 400 + 400 + 400) – (80 + 80 + 

80 + 80 + 400)] = 800. 

(Note: From equation (36) power dissipated by each multiplier and adder is 400mW and 80mW) 

Therefore substituting the value of respective ‘G’ for each case i), ii), iii) and iv) as calculated 

above for case i): 

i) PI opn 2 (1→2) = 800 * Max (2000, 320)* 5 = 8000000 (selected). 

Similarly, calculating the ‘G’ for each case and then finding the Priority Indicator yields: 

ii) PI opn 7 (2→3) = 160* Max (320, 80) * 3    = 153600. 

iii) PI opn 8 (2→3) = 160* Max (320, 80) * 3   = 153600. 

+ 

Figure14. ASAP scheduling of DWT benchmark 
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iv) PI opn 2 (1→2) = 160* Max (320, 80) * 3   = 153600. 

According to the next step of the algorithm, the highest PI is selected for movement which is (i). 

The power consumption of the scheduling solution is {(4 * 100) + (4 * 20) + (16 * 3) + (8 * 3) + 

(15 * 5)} * 4 = 2.50 Watts. (Note: assuming multiplier and adder/subtractor occupies 100 CLB’s 

and 20 CLB’s respectively while multiplexer, de-multiplexer and register occupies 3au, 3 au and 

5 au respectively; where 1 area unit (au) = 1 CLB has been assumed; Power dissipated per au 

(ps) when in standby is 4 milli-watt.). Thus, the cost in terms of power consumption is reduced 

from the initial solution. The scheduling solution after first iteration is shown in Figure 15. 

Finally the algorithm yields the solution with the minimum final cost. Experiments revealed that 

iteration 11 yielded the scheduling solution with minimum cost: 

Iteration (11): 

i) Movement – opn 4 (2→3) ii) Movement – opn 8 (4→5), iii) Movement – opn 9 (3→4)  

iv) Movement – opn 7 (4→5)                            

Therefore after the PI for each operation was calculated, opn 4 had the highest PI. Hence after 

iteration 11(fig.16) the optimal solution to the scheduling problem was found. The cost of this 
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st
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respective scheduling solution is {(2 * 100) + (2 * 20) + (8 * 3) + (4 * 3) + (14 * 5)} * 4 = 1.38 

watts. The final reduction in cost in terms of power consumption obtained compared to the initial 

solution (in Figure 16) is 2.94 Watts – 1.38 Watts = 1.56 Watts. (Note: The cost of initial ASAP 

solution and schedule after iteration 11 respectively are both determined using Eq. (36)). 

Note: The results of this approach applied on various benchmarks and improvements attained 

are reported in Chapter 7.3. 
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Chapter 5  

A Multi Structure Genetic Algorithm for Integrated 

Design Space Exploration of Scheduling and 

Allocation in High Level Synthesis for DSP Kernels 

 

This chapter presents the fourth algorithm/methodology of the dissertation viz. an integrated 

design space exploration of scheduling and allocation problem in high level synthesis using the 

heuristic based multi structure genetic algorithm. A cost function based on a combination of 

power consumption and pipelined execution time as well as a scheme to select functional unit 

type in case of multiple versions is proposed that can guide the genetic algorithm to global 

optimal or local optimal (in few cases) solution. The cost function model takes the functional 

units, registers, multiplexers and demultiplexers into consideration. The encoding process of the 

parent chromosome incorporates a special seeding process that enables the genetic algorithm to 
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search for an optimal solution. This type of seeding process was specifically incorporated 

because the optimal solution to a problem always lies between the maximum serial and parallel 

implementation. Therefore it is always capable of finding an optimal solution to the combined 

problem of scheduling and allocation based on the provided user specified constraints. Results of 

the comparison with another recent genetic algorithm based exploration technique indicated 

considerable reduction of execution clock cycle as well as power consumption for almost all the 

benchmarks. 

For the sake of clarity, summarized below are the abbreviations that will be used in the rest of 

this chapter: 

MSGA: Multi Structure Genetic Algorithm 

GA: Genetic Algorithm 

HLS    : High Level Synthesis 

VLSI   : Very Large Scale Integration 

DFG    : Data Flow Graph 

CDGF : Control Data Flow Graph 

CS       : Control Steps 

cc         : clock cycle. 

FU       : Functional Unit 

DSE     : Design Space Exploration 

SoC      : System on Chip 

ASAP   : As Soon As Possible 

ALAP   : As Late As Possible 

RASM  : Resource Allocation Selection Mode 
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DSP      : Digital Signal Processing 

ARF      : Auto Regressive Filter 

DWT     : Discrete Wavelet Transformation 

EWF      : Elliptic Wave Filter 

WDF     : Wave Digital Filter  

BPF      : Band Pass Filter 

5.1. The Proposed Framework Using MSGA 

5.1.1. The MSGA Design Space Exploration  

The MSGA overview is shown in Fig.17. The input to the proposed framework is the behavioral 

description of the DFG that comprises data path structure, set of user specified design constraints 

for power and execution time (with the user specified weight factors), control parameters for the 

GA and module library. The module library contains four different information viz. the 

maximum available resources, clock cycle of each resource, hardware area of each resource, 

finally the details about the versions of each available functional resource. The proposed 

framework consists of two basic units. The first unit is the proposed heuristic that acts as an input 

to the skeleton for the GA. The second unit processes the information provided by the first unit 

to produce an optimal solution.  The flow chart representation of the complete MSGA is shown 

in Fig.18. The proposed skeleton uses a new heuristic based on load factor criterion that assigns a 

specific priority for each operation in the chromosome structure. The first parent (P1) 

chromosome of the nodal string (this string is defined later in Section 5.1.2) is encoded based on 

the load factor (α) of each resource from the ASAP scheduling graph. On the contrary, each 

operation of the second parent (P2) nodal string is encoded based on the difference of the latency 

obtained by using ASAP scheduling with maximum resource (L) and the load factor (α) for each 
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operation (oi) obtained for P1 chromosome. The encoded value of each operation (oi) of the 

second parent chromosome (P2) is calculated using Equation (37) below. Equation (37) yields 

integer values that will be used for encoding the genes of the nodal string of parent (P2). The 

main purpose behind the proposed formulation of Equation (37) is the deliberate insertion of 

diverse encoded gene values that could possibly capture the minimum load factor value of each 

operation. Equation (37) is described below: 

            )( i

ASAP oL αβ −=                                                                                        (37) 

The proposed MSGA framework      
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Fig.17 MSGA design space exploration approach overview 
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The rest of the parents of the population in the nodal string encoded with the load-factor values 

are obtained by random perturbation. The other parent chromosomes (P3…..Pn) of the 

population obtained by the perturbation function should be individuals lying between the Parent 

Figure18.  Flow chart of the proposed MSGA  

Schedule the DFG using ASAP and calculate the 

latency (L) 

Creation of the initial population by chromosome 

encoding based on the proposed load factor values 

Perform Crossover for following two chromosomes 

independently: 

a) Nodal String 

b) Resource allocation string 

Decode the chromosome using proposed ‘load 

factor heuristic’ 

Invoke RASM ( ) to decide the version of each 

FU. 

DFG and module library information 

 

Calculate the Global cost function based on power consumption-execution time 

tradeoff. 

Perform mutation on the least fit nodal string and 

the resource allocation string 

Decode the mutated chromosomes using the 

proposed ‘load Factor Heuristic’ and calculate the 

cost of mutated chromosome  

Select the best population and forward to next 

generation 

No 

STOP 

    BEGIN 

Is specified maximum number of 

generations reached? 
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P1 derived from the schedule based on maximum resource and Parent P2 derived based on 

minimum resource. This is logical because the optimal solution to the integrated problem lies 

somewhere between the maximum and the minimum resource. The perturbation function 

developed which yields the load-factor values is given in equation (38): 

         µβα ±+= 2/)(PF                                                                                           (38) 

where ‘µ’ is a random value equal or between ‘α’ and ‘β’.  This function is used when encoding 

the values of the nodal string. On the other hand, the perturbation of the resource allocation 

string (this string is defined later in this chapter) for the other parents is obtained by applying the 

algorithm shown in Fig 19.  Once the parents for the initial population are formed then direct 

crossover is applied. Crossover results in creation of off-springs in that generation. The next task 

is to decode the generated individuals of the first generation by applying a new ‘load factor 

heuristic’ that results in valid schedule. During the process of formation of the schedule solution, 

the data dependency is strictly followed before any operation is selected for scheduling. Once the 

valid schedules corresponding to all the specific individuals of the population are obtained, the 

RASM ( ) must be selected. Since the module library contains multiple versions of the same 

resource, this mode selects the allocation type based on the user choice. This mode has four basic 

choices based on the user preference. The first choice is kept by default (Note: also by default 

equal weightage of area and latency is kept in the local cost function i.e. W1 =0.5 and W2= 0.5). 

This is because the first option chooses the units which have the lowest cost compared to all the 

available units of that kind. The cost is determined by a local cost function which is given in eqn 

(39) as: 

        LWAWCL ⋅+⋅= 21                                                                                              (39) 
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Where ‘A’ represents the area occupied by the specific type of resource and is obtained from the 

module library, while ‘L’ represents the latency of the specific type of resource. W1 and W2 are 

the user specified weightage for area and latency respectively (0<=W1<=1 and 0<=W2<=1). The 

RASM ( ) is composed of the following modes: 

•Each operation is allocated to the FU of a particular kind with the lowest cost. 

•All operations are allocated to fast FU, including operations on critical and non-critical path. 

•Operations are randomly allocated to FU of that kind. 

•All operations are allocated to FU with minimum area overhead of that kind. 

Since RASM ( ) selects the FU’s of a specific kind for a specific operation based on the 

minimum cost, the next step is to retrieve the information from the module library. This 

information enables us to calculate the local cost function of each scheduling solution at the end 

of a specific generation.  Calculation of the local cost function yields the FU version with the 

minimum cost. These low cost FU versions of each kind are then simply assigned to the specific 

operations of the valid scheduling solutions found before.  Once the versions of the FU are 

assigned, the global cost function can be determined in order to judge the fitness of each 

individual. The least fit individual is mutated in order to hope for a better solution followed by 

decoding and fitness calculation. The best fit individuals from this first generation are then 

Algorithm (Input: Resource allocation string; Output: new 

resource allocation string) 

1. Randomly pick any two nodes (v1, v2) from the 
resource allocation string. 

2. Randomly select any integer value (i) ranging 
between or equal to ‘α’ and ‘β’ for that specific node. 
Where, α <=i<= β  

Fig.19 The perturbation algorithm for resource 
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forwarded to the next generation. This process continues until the maximum generation G(Max) 

specified is reached. 

 

5.2. Description of the Proposed MSGA steps 

 A. Encoding of the Chromosome 

The proposed approach uses independent strings to separately represent the priority of the nodes 

of the DFG and the resource allocation information. The approach is called multi structure 

because each FU (resource) is represented as an independent substring in the nodal string 

structure. It has two independent strings to separately represent the nodes of the DFG (called 

‘nodal string’) and the resource allocation information (called ‘resource allocation string’).  The 

‘nodal string’ contains the load-factor values of each node which will determine the priority of 

the nodes during scheduling. The ‘load factor heuristic’ is used when decoding the nodal string 

in order to obtain a valid scheduling solution. The ‘resource allocation string’ contains list of 

integers which indicate the maximum number of resources allowed during scheduling. The 

encoding scheme for the ‘nodal string’ and the ‘resource allocation string’ is shown with an 

Figure20. DFG of the IIR Digital Filter 
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example of a benchmark ‘IIR Digital Filter’. Fig. 20 shows the DFG of the above benchmark. 

The schedule of the DFG of the differential equation solver using ASAP is shown in Fig.21. The 

latency (L) obtained is 12cc. (Note: Arbitrarily assuming multipliers and adders/subtractor takes 

4cc and 2cc respectively). The corresponding chromosome encoding for the first parent (P1) of 

the nodal string is shown in Fig. 22. The total load-factor of each operation (node) is obtained by 

summing the load-factor of the successor operations following that node. E.g. for node 2, the 

load factor is (4+2+2+2+2) cc = 12cc.  The second parent (P2) chromosome is encoded based on 

the load-factor values obtained using equation (37). The second parent (P2) chromosome 

encoding is shown in Fig. 23. The rest of the parents of the initial population are obtained using 

equation (38) which is a perturbation function used to encode the load –factor values. The load 

factor values for the rest of the parents always lie between the values from the first and second 

parent. This scheme has been developed because the optimal solution to the problem should 

always lie between the serial and maximally parallel implementation [22].  On the other hand, 

the first parent (P1) shown in Fig. 22b and second parent (P2) of the resource allocation string 

shown in Fig. 23b are based on the user specified maximum and minimum resources 

respectively. The user specified maximum resource assumed here acts as the maximum resource 

constraint for the application. Thus, from Fig.22, the resource constraint for the number of 

multipliers, adders and subtractor are 4, 3 and 2 respectively. The assumed user specified 

constraint on number of clock oscillator is three (The details of the resources are provided later 

in the module library shown in Table 5). The rest of the parents (P3…P8) are obtained using 

Equation 38 and Figure19. The nodal string and the resource allocation string for rest of the 

parents are shown in Fig.24 respectively. For example, in case of Fig 24b, the encoding of the 

third parent for the resource allocation string is obtained first picking up randomly any two nodes 
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M (multiplier) & A (adder) and then randomly selecting any integer value between ‘4’ and ‘1’ 

for M  & between ‘3’ and ‘1’ for A. The randomly selected value for both M & A is ‘2’. 

X X X X 

+ 

Latency = 12cc 

T1= 4cc 

1 2 3 
4 

7 

X 

T2= 2cc 
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T4= 2cc 
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T5= 2cc 

Fig.21. Scheduling of the IIR Digital Filter 
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Similarly, the rest of the parent chromosomes can be built by perturbation. 

B. Crossover Scheme 

The parents for crossing are selected by binary tournament selection method [29].  Proposed here 

is an independent direct crossover of the two independent strings viz. nodal  string and resource 

allocation string to produce separate off-springs for each with a very high crossover probability 

(Pcross = 1.0). (Note: This value is similar to the values considered in other GA-based approaches 

such as in [11].) The direct crossover is applied to each sub structure of the nodal string 

structure. Since the nodal string encodes the load factor of each operation for a particular FU, the 

crossover does not damage the precedence relationship. This is because the nodal string in the 

proposed approach does not encode the topologically sorted permuted list of operations (nodes). 

Further, during the final decoding process, the load factor heuristic is followed which always 

produces feasible solutions. The detailed explanation on the decoding process is provided in 

Section 5.2.D.  

 

B.1 Multi-Point Crossover of the Nodal String 

Before the crossover scheme can be applied to the nodal strings, the two parents are 

randomly divided into two halves at point n (where ‘n’ represents a random cut point in the 
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nodal string). The proposed crossover is called multi-point because each substring of the nodal 

string representing independent FUs is divided at a different point. For example, applying the 

direct crossover operator to the nodal string between the first (Fig. 22a) and second parent 

(Fig.23a) at point 2 for multiplier and point 1 for adder and subtractor, yields offspring 1 and 

offspring 2 respectively. The offspring 1 inherits all the properties of the first half from the first 

parent. While the second half is inherited from the second parent. The properties that are 

inherited from the parents are the load factor values and corresponding node numbers 

(operations).  The offspring 1 obtained after crossover operation between P1 and P2 is shown in 

Fig 25 while offspring 2 obtained after crossover between P2 and P1 is shown in Fig. 26. For the 

sake of brevity, the remaining off-spring have been omitted in the chapter. 

 

B.2 Crossover of the Resource Allocation String 

 
The resource allocation string is responsible for encoding the number of hardware functional 

units of each type available for scheduling operations in each time step. Since the number of 

allocated functional units of each type is totally independent of each other, the n-point crossover 

can be easily applied. For instance, in case of 
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the DFG for Digital IIR filter benchmark, the two parents (P1 and P2) for the resource allocation 

string are shown in Fig 22b and 23b respectively.  P1 represents a solution with four multiplier, 

three adders, two subtractors, one comparator and third frequency oscillator while P2 represents 

a solution with one multiplier, one adder, one subtractor, one comparator and first frequency 

oscillator. Application of the direct crossover at a random cut point between P1 and P2 yields 

offspring 1 while between P2 and P1 yields offspring2 in fig 27.  

 

C. Mutation Operation 

Mutation is performed on the least fit nodal string chromosome and the resource allocation 

string chromosome with probability, Pm = 0.25. Pm = 0.25 is the minimum number of time 

mutation is performed in each generation. Since any mutation probability between 0.20 to 0.25 is 

considered standard, refining the value slightly does not alter the final solution. 
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Fig.27 Offspring 1 and offspring 2 
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C.1 Mutation operator of the Nodal String 

 

The mutation operator for the nodal string and resource allocation string is invoked independent 

of each other.  The mutation algorithm for the nodal string is shown in Fig 28. According to the 

algorithm, any two nodes (vi, vj) in the string (k) are randomly selected for mutation. Next the 

load factor values of the two selected nodes are swapped. For example, let the load factor value 

for the two nodes (vi) and node (v2) selected be ‘L1’ and ‘L2’ respectively. Therefore, after 

mutation the new load factor values for node (vi) is ‘L2’ and node (vj) is ‘L1’. This mutation 

technique drastically alters the load factor values of nodes which act as the priority indicator to 

select the operations for scheduling. Further, since the mutation scheme of nodal string alters just 

the load factor values of the nodes and does not displace the actual nodes themselves, this kind of 

mutation scheme always produces valid solutions. 

Mutation technique for the nodal string  
Algorithm (Input: nodal string [k]; Output: New nodal string 

[k]) 
1. Randomly select any two nodes (vi, vj) from the 

nodal string [k]. 

2. Swap the load factor values (Li and Lj) of the two 
selected nodes. Thus, 

Let vi = Li and vj = Lj. After swapping 

         vi = Lj and vj = Li.  

Fig.28. Mutation algorithm for the proposed approach 

 

Mutation technique for the resource allocation string  
Algorithm (Input: resource allocation string [k]; Output: New 

resource allocation string [k]) 

 
1. Randomly select any two nodes (vi, vj) from the 

resource allocation string [k]. 

2. Randomly choose to increment or decrement the 
integer (m[k]) of the resource allocation string[k]. 

If increment, m[k] = m[k] +1 

Else if decrement, m[k] = m[k] -1  

{ }2][, ≥kmwhere  
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C.2 Mutation operator of the resource allocation String 

 

The mutation algorithm for the resource allocation string is shown in Fig.28.  The concept of the 

proposed mutation scheme has been adopted from [11]. All possible combinations of the 

functional units that can be allocated during a scheduling solution can be attained through this 

mutation technique. The algorithm first randomly selects any two nodes (vi, vj) and then 

randomly increments or decrements the value of the integer (m) which represents a particular 

type of FU. (Note: the integer is only randomly incremented or decremented if the minimum 

value of that FU is 2. This is because if the integer (m) is less than 2, then decrementing the 

integer will result in invalid number of FU of a specific type). (Note: Since the mutation scheme 

of the resource allocation string only alters the integer value of each resource, application of this 

mutation technique does not disobey any precedence relationship present in the DFG). 

 

D. Decoding Process (Determination of a Valid Schedule) 

The decoding of chromosome always results in a valid scheduling solution which strictly obeys 

the data dependency present between the operations. For the decoding process, a ‘load factor 

heuristic’ is proposed. The load factor heuristic is shown in Fig. 29. For example, in case of 

offspring 1, the nodal string and the resource allocation string are shown in Fig.25 and Fig.27 

respectively. The resource allocation string of the offspring1 represents an allocation solution 

containing four multipliers, three adders, one subtractor, one comparator and first frequency 

oscillator. On the other hand, the priority of each operation for a particular type of FU is 

indicated by the load factor values in the nodal string (fig.25).  Therefore, for the DFG shown in 

Fig.20, the scheduling solution of offspring 1 is shown in Fig. 30. The resulting solution is a 

valid schedule, allocation and binding obtained for offspring 1.  The solution provides an 
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integrated solution to the concurrent problem of scheduling and allocation. The version (vn) of 

the each type of resources used is clearly indicated beside each node. As mentioned before, the 

RASM ( ) is by default kept at first option. The FU was chosen based on the minimum cost 

obtained among the available FU choices, by using the local cost function (in equation (39)). The 

information and details about each FU is obtained from the module library during the local cost 

calculation process. A portion of the module library is shown in Table 5. The data extracted for 

the hardware implementation and global cost calculation from the integrated solution of 

offspring1 (Fig.30) is described in Table 6.  

Load Factor Heuristic: Building a priority order of nodes in list L[k] based on load factor of each nodal string [k] of operation 

type and assigning the nodes of FU type in CS.  

 

Algorithm (Inputs: DFG, the nodal string [k], FU type; Output: Scheduled DFG). 

 

Step 1) CS = 1 

 

Repeat 

 { 

 

Step 2)    Select independent nodes from list L[k], to assign in the current CS, based on two conditions: i) Number of FUs for each 

operation type is available ii) The nodes are not scheduled in the CS.  

    a.     If there is a tie during the selection then select the nodes with the higher load factor values.       

    b.     If there is still tie during the selection then randomly select the nodes as desired. 

 

 

Step 3)  Select dependent nodes with higher load factor value from list L[k] to assign in the current CS, based on two conditions:   

i) Number of FUs for each operation type is available ii) The parents of the dependent node are scheduled.                                                                               

                 a.     If there is a tie between the load factors during selection then select the nodes with higher utilization factor 

                          b.    If there is still a tie between the utilization factors during selection then randomly select the nodes as desired.      

  } 

 

Step 4)   C.S = C.S + 1, Until L[k] = Null 

 

(Note: Utilization Factor refers to a metric which indicates the number of children of node vi [k]. So if two nodes of operation o(i) 

have the same load factor precedence is given to the node with more children) 

 

Fig.29 The proposed load-factor heuristic for the MSGA Framework 
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Table5. Portion of Module Library for MSGA  
(Note: The clock frequency shown in Table V has been chosen arbitrarily for demonstration of the proposed approach for MSGA. Clock 

frequency of other type could also have been included in the module library for MSGA) 

Resources 

(FU) 
FU type 

Area (area 

units in a.u.) 
Delay (cc) 

Power 

consumption per 

area unit (au) @ 

50 MHz  

(pc) in milli-

Watts (mW) 

Power 

consumption per 

area unit (au)  @ 

100 MHz 

 (pc) ) in milli-

Watts (mW) 

Power consumption 

per area unit (au)  @ 

200 MHz  

(pc) ) in milli-Watts 

(mW) 

3 Adders  

(+) 

# Versions  

3 6 12 

1 V1 50  1 

1 V2 30  2 

1 V3 15  3 

4 Multipliers 

(*) 

# Versions  

1 V1 80  3 

3 V2 50  4 

2 Subtractors 

(-) 

# Versions  

1 V1 30  2 

1 V2 15 3 
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Fig.30. Integrated solution to offspring 1 (Decoding of 

the chromosome) for the IIR Digital Filter benchmark 
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E. Global Cost Function and Fitness Evaluation Methodology 

  

The objective of the proposed approach is to simultaneously reduce the total execution 

time required for execution of a specific set of data as well as the total power consumption 

expended. All of the previous approaches have only considered latency and hardware area as a 

design constraint such as [11] [20] [21] [22] and not total execution time which considers the 

latency, cycle time and also the number of sets of data to be executed. Thereby, the methods are 

not able to reduce the total execution time as they do not consider data pipelining. In the 

presented approach a sophisticated global cost function has been developed that considers the 

total execution time taking data pipelining as well as total power consumed into account.  

The cost is calculated using the global cost function after each chromosome is decoded to 

obtain a new integrated solution. The decoding process strictly follows the ‘load factor heuristic’ 

and hence always results in a feasible solution.  The global cost function (CG) developed which 

considers total execution time and power expenditure/hardware area is shown in equation (40). 

 

Table6. Data Extracted from the integrated solution of offspring 1 

# FU Type 

3 Multiplier (version V2) 

1 Multiplier (version V1) 

1 Subtractor (version V2) 

1 Adder (version V3) 

1 2 to 1 MUX for 1
st
 multiplier (V2) 

1 3 to 1 MUX for adder (V3) 

1 1to 2 DEMUX for 1
st
 multiplier (V2) 

1 1 to 3 DEMUX for adder (V3) 

Number of Registers allocated using left edge algorithm 

[29]. 
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Where ‘P’ is the total dynamic power as a function of operating frequency and number of 

devices switching due to frequency of operation based on [5, 64, 12]: 

∑
=

⋅⋅=
n

i

cRiRi pKNP
1

)(                                                                                                   (41)         

Where, ‘NRi’ represents the number of resource of resource Ri as mentioned before. ‘KRi’ 

represents the area occupied per unit resource Ri and ‘pc’ denotes the power consumed per area 

unit at a particular frequency of operation.                                                                                             

Where TEXE = Total execution time in clock cycles taken for execution of the given ‘N’ sets of 

data is calculated using the function from Chapter 2 given in equation (42): 

CEXE TNLT ⋅−+= )1(                                                                                                                   (42) 

Based on [61,62, 12], the respective execution time in micro-seconds (assuming frequency in 

Mega Hertz) can be expressed as: 

PCEXE TTNLT ⋅⋅−+= })1({                                                                                                          (43) 

L= Latency of the scheduling solution. N = Number of sets of data to be executed. 

TP = Time period of the clock frequency oscillator; TC = Cycle time of the scheduling solution. 

(Note: The cycle time is the difference in clock cycles between any consecutive outputs 

of pipelined data instances. The cycle time difference during data pipelining is the result of 

initiation interval (which is the difference in clock cycles between any consecutive inputs 

instances of pipelined data sets). For example, the cycle time calculation for the integrated 

solution (Fig. 30) is shown in Fig.31 below. The output for first set of data is arriving after 20cc 

while the output for second instance of data after 28cc. Thus, due to exploring initiation interval 
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of 8cc during pipelining, there is a cycle time difference of 8 cc, which is the result of 

considering the initiation interval. As seen clearly in Fig 31, the cycle time consideration in 

equation (42) has resulted from genuine data pipelining. Therefore the option of cycle time 

during pipelining has been also taken into account during the exploration process.) 

CG = Global Cost of the integrated solution 

TCONS = Execution time constraint specified by user. 

TMAX = Max execution time taken by a solution during the specific generation (G). 

AFU = Total area of the functional units. 

AREG = Total area of registers. 

AMUX = Total area of the multiplexer used during implementation. 

ADEMUX = Total area of the demultiplexers used during implementation. 

Fig.31.Cycle time calculation during data pipelining for offspring 1 
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PCONS = Power consumption constraint specified by the user. 

PMAX = Max power consumption of a solution during a specific generation (G). 

pc = Power consumed at a particular frequency of operation. 

W1 and W2 = User specified preference of the constraints.  

The cost function requires input from various sources to evaluate the fitness of each solution 

found. The sources consists of the a) module library information, b) data extracted for the 

hardware implementation (e.g. as shown in Table 6), c) DFG and d) scheduling solution found 

after decoding the chromosome (latency), number of sets of data, cycle time together, for 

calculation of the execution time. 

  

F. Termination Criterion for the MSGA 

 

The maximum generation has been kept constant for each benchmark run. Although making the 

number of generations proportional to the problem size is more logical, settling on an average 

number of maximum generations for both small and large size benchmarks is a good 

compromise. Therefore, experiments dictated that retaining the maximum generation G(Max) to 

100 is an optimal compromise between reasonable runtime and achieving high quality solution. 

Setting the G(Max) to some higher value will still produce the same solution but will also 

increase the computation time. On the other hand, setting G(Max) to a lower value will yield 

inferior solutions particularly for large benchmarks.  

 

Note: The results of this approach applied on various benchmarks and its improvements are 

reported in Chapter 7.4 
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Chapter 6  

Fast Multi-Objective Exploration and RTL Circuit 

Generation using Architecture Synthesis Platform: 

Exploration Synthesizer 

 

A novel efficient architecture synthesis platform capable of performing extremely fast multi 

objective design space exploration of an optimal solution as well as register transfer level circuit 

generation of DSP applications is proposed in this chapter which is a combination of algorithms 

described in Chapters 2 and 3.  Design space exploration based on trio parametric objectives can 

be performed through this platform due to the determination of border variant for each parameter 

followed by the formation of the Pareto optimal set obtained by the intersection of all satisfying 

variants. Currently, the experimental results reported here are based on three parametric 

objectives viz. hardware area, pipelined execution time (or performance) and power 
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consumption. The proposed tool is an hybrid combination of multi-objective design space 

exploration approach and fuzzy search heuristics (Chapters 3 and 4) based on priority factor 

pareto optimal method and fuzzy search heuristics, which support features such as functional 

pipelining. Due to lack of availability of a standard format for intermediate representation of the 

data flow graph, a custom intermediate format called ‘application library’ is developed. The key 

benefit of this platform is the rapid exploration/optimization time (in order of a few secs to mins) 

to find the optimal solution regardless of the complexity of the design space as well as generation 

of the complete processor schematic in a short time. This is followed by VHDL generation of 

centralized control unit and data path circuit. The results of the comparison with a current 

heuristic approach indicate 99% improvements in exploration time with ability to yield an 

optimal solution in almost all cases. 

 

6.1 The Proposed Exploration Synthesizer Design Flow 

Using the proposed Exploration Synthesizer tool, multi-objective architecture exploration is 

performed by a combination of the exploration techniques described in Chapters 2 and 3 (For 

details please see the exploration flow illustrated in Chapters 2 and 3). Hence, the proposed 

technology is a combination of novel hybridization based on the priority factor Pareto analysis 

and a hybrid fuzzy algorithm. Priority factor Pareto analysis (Chapter 2) is employed when user 

preference is power-performance (pipelined execution time) tradeoff with hardware area 

minimization, while the hybrid fuzzy algorithm (Chapter 3) is employed when the user 

requirement is hardware area-performance (pipelined execution time) tradeoff with power 

consumption minimization. It should be noted that the design space is extensive and consists of 

innumerable alternative combinations of adders-subtractors, multipliers and frequency 
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oscillators. The overview of the proposed approach of the tool including the multi-objective 

architecture exploration phase and its RTL circuit generation phase comprised of the centralized 

controller and data path unit is shown in Fig.32.  After the exploration phase is complete the 

RTL circuit is generated based on the high level synthesis design flow described in [27]. The 

high level synthesis design flow described in [27] consists of various design stages such as 

architecture selection (or exploration) followed by scheduling, allocation, binding, determination 

 

Figure32. Design Flow of the proposed Exploration Synthesizer platform 
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of interconnect units, development of block diagram and finally development of control 

structure. The exploration solution in the form of an architecture configuration is fed into an 

integrated scheduling algorithm that performs scheduling, allocation and binding steps, which is 

then subjected to an algorithm which determines the interconnect units, storage units etc and 

finally develops the schematic of the complete system. 

Therefore, the RTL circuit generated by the tool (schematic in .giff format) is based on the high 

level design flow mentioned in the previous paragraph. In addition to generation of the complete 

schematic of the processor circuit, the tool also generates the hardware description (VHDL) of 

the controller in the form of a finite state machine and the data path in the form of components 

and port mapping details. The schematic of the circuit can be easily emulated in any 

commercially available logic synthesis tool such as Xilinx ISE or Altera Quartus for simulation 

and FPGA implementation. The VHDL obtained can be directly synthesized on the mentioned 

synthesis tools for generating the bit streams for FPGA implementation. The design space 

exploration process used in the tool describes that the random design space consisting of 

innumerable design alternatives is first hierarchically arranged in increasing or decreasing order 

(strictly or partially) using the priority factor metric and priority order logistics. Once the design 

space is sorted, the fuzzy logistic searching or binary searching [63] is applied to obtain the 

border variant of the specific optimization parameter (Refer to Chapters 2 and 3 for more 

details). The groups of all satisfying and non-satisfying variants are obtained from this step. 

Similar methodology is applied for the other parameters to obtain their satisfying and non-

satisfying variants. All satisfying sets of variants are intersected to find the common set of 

variants. The set obtained consists of the variants which concurrently satisfy all operating 

constraints specified by the user. Finally, the obtained Pareto optimal set is again sorted for the 
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final optimization parameter using priority factor metric and priority order logistics to find the 

variant with the minimum value with respect to the optimization parameter. (Note: For all 

mathematical proofs, discussion and demonstration on the DSP kernels please refer to Chapters 2 

and 3). 

 

6.2 Keystones of the Proposed Design Automation Platform: Exploration 

Synthesizer 

1. The capability of ‘trio’ parametric optimization (including area, power and pipelined 

performance)  provides the foundation for extremely rapid design space exploration (in seconds) 

regardless of the size of the design space during ASP design. 

2. Efficient design space exploration enables additional selection of the frequency oscillator from 

the extensive design space besides the optimal architecture for the system design.  

3. Development of a hybrid multi objective optimization flow for Register Transfer Level (RTL) 

design for generation of a RTL circuit consisting of a controller description and data path in a 

short time. 

4. The platform also provides an added advantage to the designer to auto-correct the user 

specification if the constraints do not obey the upper threshold and lower threshold limit. 

A synopsis of the proposed tool with its functionality for research and industry use is as follows 

[36- 40]:  

i) Architectural Exploration: Allows selection of the best architecture among the possible 

implementations.  
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ii) Automated Decision making capability for circuit generation: In the absence of the register 

transfer level design team, with high level synthesis systems companies can do high-level 

exploration to determine what will effectively run their applications.  

iii) Shorter design time: Reduction in exploration runtime helps faster deign time and generation 

of design with fewer errors and redesign.  

iv) IP reuse and implementing algorithms in FPGA hardware: IP created by high level synthesis 

can be shared between companies.  

The features supported by the proposed software platform include functional pipelining 

considering initiation interval. 

The design automation platform/tool works as a 3 step process. The first step of the tool accepts 

as input the user specified module library, the application data flow graph in a custom 

intermediate format specified by the user, and the number of data elements to be pipelined. The 

second stage accepts as input the user specified constraint and optimization requirements for 

three parameters. Finally, the last stage of the tool produces multiple outputs: a) exploration 

result b) schematic of the complete system c) VHDL of the complete system. The snapshot of the 

developed design automation platform for a sample problem is shown in the appendix. 

 

6.3 Input Format and Intermediate Representation 

A customized intermediate representation of the DFG has been developed since there is no 

standard input format and intermediate representation of the DFG after the architecture synthesis 

design process. This intermediate representation of the application DFG serves as the input 

format for the proposed Exploration Synthesizer tool. The input format of the proposed tool is 

termed ‘application library’. An explanation of the ‘application library’ is provided with the aid 
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of a Discrete Wavelet Transformation (DWT) DSP benchmark shown in Fig. 33 and 34 

respectively. Every operator is denoted by four tuples, viz. operation, input 1, input 2 and output 

name. Hence, the operators are indentified by oi = (operation, ip1, ip2, op). The levels of the 

operators in this custom format are obtained straight from As Soon As Possible (ASAP) 

schedule. Hence, opn 1, opn 2, opn 3, opn 4 and opn 5 are assigned level 1, opn 6, opn 7, opn 8 

and opn 9 are assigned level 2 and so on. This rule is followed to obtain the application library 

format.  

 

6.4  Output Details of the Tool 

This final phase of the platform produces all the required results in a very short runtime which 

can be easily downloaded into the local machine such as: 

1) Exploration solution result: comprising of the design architecture (Number of FU’s and type 

of clock oscillator frequency) which meets all the user specs and constraints which is used to 

design the system. The execution time, estimated power consumed and hardware area is also 

Figure33. DFG of the DWT Benchmark 
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indicated which confirms that the solution produced meets in almost all cases the user 

constraints. 

2) Custom processor schematic (.gif diagram): This can be used to imitate design of the 

application in commercial digital synthesis tools (Xilinx ISE, Altera Quartus etc).  

3) VHDL (complete HDL description) of the custom processor of the application kernel 

(consisting of the controller description and data path circuit): This can be used to directly into 

commercial digital logic synthesis tools (Xilinx ISE, Altera Quartus etc) and Layout Synthesis 

CAD tools such as Synopsys Design Analyzer for further simulation or chip core designing in 

cadence encounter. 

4) Module library and application input can also be downloaded. 

5) Summary of the provided user constraints values is also indicated. 

 

Note: A sample custom processor schematic and a portion of its VHDL description for Elliptic 

Wave Filter DSP benchmark with some arbitrary constraints generated by the tool are shown in 

the Appendix.  
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Chapter 7 

Implementation, Results and Analysis  

This chapter describes the complete experimental results of the four proposed 

algorithms/methodologies which resolves four branches of the design space exploration problem: 

a) Design Space Exploration methodology for Power-Performance-Cost/Area tradeoff in High 

Level Synthesis using novel Priority Factor approach b) Design Space Exploration methodology 

for Hardware Area-Performance-power tradeoff in High Level Synthesis using Hybrid Fuzzified 

approach c) Methodology for Integrated exploration of Scheduling and Module Allocation in 

High Level Synthesis for static power optimization under minimum control step based on Power 

Gradient theory d) Methodology for Integrated Exploration of Scheduling and Module 

Allocation in High Level Synthesis for Power-Performance tradeoff using Heuristic Genetic 
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Algorithm which includes the implementation details, library details and improvements attained 

compared to the state of the art approaches.  

7.1 Experimental Results: Proposed approach ‘Rapid Design Space 

Exploration in High Level Synthesis Based on Power-Performance-Area 

Tradeoff using Priority Factor Metric’ and Comparison with recent approach 

 

This section describes the experimental results of the proposed approach based on power-

performance-area/cost trade-off (elaborated in Chapter 2) and the improvements obtained 

compared to recent approach [11].  The proposed hybrid DSE approach has been implemented in 

Java language on AMD Athlon 64 X2 Dual-Core Processor TK-157 with 3072 MB DDR2 

memory, 64KB L1D cache and 256 KB L2 cache memory. The processor frequency is 1.90 

GHz. For a qualitative analysis, the proposed hybrid approach was tested on a number of DSP 

benchmarks ranging from small to large number of variants. Many large size benchmarks were 

selected for the experiment. The DSP benchmarks such as discrete wavelet transformation 

(DWT) [30], autoregressive filter (ARF) [31], and MPEG motion vectors (MMV) [32] were also 

adopted for experiments.  

For determination of the optimal architecture, design space exploration requires elaborate 

analysis and evaluation of the architectural variants (design points). Before selecting the optimal 

architecture, the border variant of architecture for both the performance (execution time and area/ 

power) parameters needs to be found separately. Binary search conducted on the arranged design 

space (increasing or decreasing) leads to the border variant, taking into account the operating 

constraints for execution time and area/power separately. The proposed DSE approach uses 

binary search after the arrangement of the design space using the priority factor method. The 
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search of the optimal architecture requires only
∏

=

n

i

Riv
1

2log

.Where ‘n’ = number of type of 

resources and ‘vRi’ is the number of variants of resource ‘Ri’. On the contrary, the exhaustive 

search checks for 
∏

=

n

i

Riv
1 architectural variants during optimal architecture selection while 

satisfying all operating constraints. In this design space exploration approach and in the design 

flow three performance parameters have been used for optimization. The execution time and 

power are the parametric constraints and area is the optimization parameter. Hence, the searching 

has to be repeated for both the parameters to determine the border variant.  Therefore the total 

number of architecture evaluations using exhaustive search is given as:   ∏
=

n

i

RivM
1

*  And total 

number of architecture evaluations using the proposed method is given as:  ∏
=

n

i

RivM
1

2log* .  Here, 

‘M’ denotes each performance parameter. In this case the value of ‘M’ is two because there are 

two performance parametric constraints.  The proposed approach was applied on various realistic 

benchmarks to check the acceleration obtained through this DSE method. Results indicated 

massive improvement in exploration time compared to the exhaustive approach. A sample 

module library for this approach must consist of the following information:  

a) Type of functional units (FU) b) Number of FU’s of each type (e.g. number of adder/sub 

resources) c) Area occupied by each FU (e.g. area in FPGA slices obtained through 

characterization during synthesis in CAD tool) d) Number of clock cycles for each FU needed to 

finish an operation,  e) Number of clock frequency oscillator available for selection  

f) The power consumed per au/power consumed by each FU type. 
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The results of proposed design space exploration framework for the standard benchmarks 

and the improvements obtained with recent approach [11] are illustrated in Table 7. The 

percentage improvements in exploration time with respect to [11] as shown in Table 7 are 

obtained as follows: [(Exploration time
 [11]

 - Exploration time
 Proposed

) / Exploration time
 [11]

] * 

100.  For example, in the case of Discrete Wavelet Transformation with user provided module 

library information, the proposed approach explores the architecture in 250 milli-secs while 

recent approach [11] in 3.40 secs. This provides an improvement in exploration time of [3.40 

secs – 0.25 secs)/ 3.40 secs] * 100= 92.64% compared to the existing approach [11]. Similar 

improvements in exploration time are noted in case of other different size benchmarks such as 

Fast Fourier Transform and MPEG Motion Vectors. Additionally, the speedup is obtained as 

follows: Exploration time
 [11]

/ Exploration time
 Proposed

. For example, for DWT benchmark, the 

speedup is: 3.40 secs / 0.25 secs = ~ 14 times.  Further, as evident by the experimental results 

shown Table 7, the final solution was global optimal in nature for all the benchmarks because it 

meets both the user specified arbitrary constraints values for power and for execution time. For 

example, in case of DSW benchmark based on the specified time constraint of 400us and power 

constraint of 6W, the proposed PF approach finds the final solution which is optimal in nature. 

The final solution has execution time constraint value is 340.3us and power value of 2.74W. To 

the best of the author’s knowledge, there are no other works except [12] that consider power and 

pipelined execution time as constraint and area as optimization criteria during the exploration 

process. A comparison of final results with [12] is not reported because both approaches find the 

same quality of solution through the exploration process. However, the proposed approach is 

able to achieve significant acceleration compared to [12].  Hence based on the experiments 

performed on the benchmarks it can be concluded that the proposed approach for DSE is able to 
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provide increased acceleration without sacrificing the quality of the final solution when 

compared to existing DSE approach. The power values reported in Table 7 are not closer to 

reality power values for modern consumer applications but the main purpose of the reported 

values is to prove the efficiency of the proposed approach. Therefore, the proposed approach is 

able to handle the desired orthogonal issues encountered during DSE which is balancing the 

exploration speed and enhancing the preferred exploration result. 

 

 Table7. Experimental results of comparison between proposed PF approach and recent GA approach [11]  

Benchmark 

Executio

n time 

constrain

t (us) 

Power 

consumpti

on 

constraint 

(Watts) 

Final 

Resource 

Pipelined 

Execution 

time (us) 

Power 

consumptio

n (Static and 

Dynamic) 

and 

Hardware 

Area (CLB 

slices 

including 

Exploration 

Runtime of 

proposed 

approach 

GA based 

DSE  [11] 

Approach 

G(Max) = 

100 

 

Improvement 

and speedup in 

Exploration 

compared to 

[11] 

Discrete 

Wavelet 

Transformati

on (DWT) 

 

400us 6W 

ADD:2, 

MUL: 2, 

OSC: 

50MHz 

340.32us 

Power: 

2.74W 

Area: 254 

CLB slices 

250milli-sec 3.40 secs 

Improvement  

= 92.64 % 

Speedup 

= 14 times 

Band Pass 

Filter (BPF) 
800us 6W 

ADD:2, 

MUL: 2, 

OSC: 

50MHz 

640.12us 

Power: 

3.02W 

Area: 356 

CLB slices 

140milli-sec 10.19 secs 

Improvement 

=98.26 % 

Speedup 

= 73 times 

Finite 

Impulse 

Response 

Filter (FIR) 

400us 10W 

ADD:3, 

MUL: 2, 

OSC: 

50MHz 

360.24us 

Power: 

3.91W 

Area: 329 

CLB slices 

250milli-

secs 
1.30 secs 

Improvement 

=80.76 % 

Speedup 

= 5 times 

MPEG 

Motion 

Vector 

(MMV) 

500us 6W 

ADD:2, 

MUL: 3, 

OSC: 

50MHz 

480.08us 

Power: 

4.59W 

Area: 440 

CLB slices 

188milli-

secs 
4.14 secs 

Improvement 

=95.45 % 

Speedup 

= 22 times 

JPEG: 

Downsample 
800us 4W 

ADD:2, 

MUL: 1, 

OSC: 

50MHz 

720.12us 

Power: 

3.88W 

Area: 368 

CLB slices 

453milli-

secs 
24.14 secs 

Improvement 

=98.12 % 

Speedup 

= 53 times 

MESA: 

Feedback 

Points 

900us 6W 

ADD:2, 

MUL: 2, 

OSC: 

50MHz 

880.04us 

Power: 

5.98W 

Area: 578 

CLB slices 

340milli-

secs 
36.32 secs 

Improvement 

=99.06 % 

Speedup 

= 106 times 
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7.2 Experimental Results: Proposed approach ‘Rapid Design Space 

Exploration in High Level Synthesis Based on Area-Performance-Power 

Tradeoff and Power-Performance-Area Tradeoff using Hybrid Fuzzified 

Algorithm’ and Comparative study with recent approaches 

This chapter primarily describes the experimental results of the proposed approach based on 

area-performance-power trade-off (elaborated in Chapter 3) and the improvements obtained 

compared to recent approaches [11] and [12]. This is because the proposed approach works most 

efficiently when trading off between hardware area and performance with the power kept as 

optimization criteria. However, for the sake of investigation and inquisitiveness, this approach 

has also been applied for exploring design points during power-performance tradeoff with 

hardware area kept as optimization criteria. A sample module library for this approach must 

consist of the same information as described in Section 7.1. The proposed hybrid DSE approach 

has been implemented and run on AMD Athlon 64 X2 Dual-Core Processor TK-157 with 3072 

MB DDR2 memory, 64KB L1D cache and 256 KB L2 cache memory. The processor frequency 

is 1.90 GHz. For a qualitative analysis, the proposed hybrid approach was tested on a number of 

DSP benchmarks ranging from small to large number of variants. Many large size benchmarks 

were selected for the experiment. For example, Elliptic, an elliptic wave filter, and Diffeq, a 

differential equation solver, are from the NCSU CBL high-level synthesis benchmark suite [33]. 

Further DSP benchmarks such as discrete wavelet transformation (DWT), autoregressive filter 

(ARF), and MPEG motion vectors (MMV) [32] were also adopted for experiments. Additionally, 

benchmarks such as Finite Impulse Response (FIR) and Infinite Impulse Response Butterworth 

filter with large design solution spaces were also tested and compared to current DSE. 
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A. Experimental and Implementation Results for Area-Performance trade-off with 

power as optimization criteria using Hybrid Fuzzified Algorithm 

 

In the proposed method, adding the fuzzy search technique to the priority factor method for DSE 

enhances the speed of the exploration process more than the current approach [12]. Approach 

[12] has been compared as it is also based on a multi parametric objective which considers 

hardware area, execution time and power consumption. The framework used during architecture 

design space construction as well as the searching method in [12] both have been considered 

during the comparison with the proposed approach. Experimental results in Table 8 indicate that 

the proposed hybrid approach is capable of achieving high acceleration compared to the 

exhaustive search as well as with approach [12]. Improvement of up to 45.45 % is achieved for 

the DWT benchmark compared to [12]. Similarly for large benchmarks like Elliptic Wave Filter 

(EWF), the proposed approach obtained improvement of 42 % compared to the DSE approach 

[12] as shown in Table 8.  The results of the exploration time improvement and comparison with 

the current approach [12] for all tested benchmarks are shown in Table 8. For large benchmarks, 

the proposed hybrid approach yielded significantly improved results, with improvements ranging 

from 20% to 42% as evident from Table 8. Colossal acceleration of over 96% was obtained with 

the proposed DSE method compared to the exhaustive searching for Discrete Wavelet 

Transformation (DWT) benchmark as seen in Table 8. Additionally, verified through the 

experiments it was revealed for all the benchmarks that the proposed approach yielded optimal 

results as it met both the arbitrary user specified constraint values of area and execution time. To 

the best of the authors’ knowledge there are no other works in the literature except [12] that 

considers area and pipelined execution time as constraint and power as optimization criteria 
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during exploration process. Since both the approaches find the same quality of solution through 

the exploration process, no comparison of results with [12] are reported. However, the proposed 

approach is able to achieve significant acceleration compared to [12]. For example, the runtime 

for the DWT benchmark using [12] is 273 milli-secs (ms), while the runtime using the proposed 

approach is 79 milli-secs (ms).   

Table8. Experimental results of comparison between the proposed hybridized DSE with the current approach [12] for benchmarks  

Benchmarks  

Total 

possible 

architecture 

in the 

design 

space for 

exhaustive 

search 

Architecture 

evaluation using 

[12] (Number of 

variants 

analyzed) 

Architecture 

evaluation 

using 

proposed 

hybrid 

Priority 

Factor 

method 

with Fuzzy 

Search 

technique 

(Number of 

variants 

analyzed) 

Improvement 

in 

architecture 

analyzed 

compared to 

current 

approach 

[12]  

Improvement 

in 

architecture 

analyzed by  

proposed 

approach 

compared to  

exhaustive 

search  

 

Run Time 

comparison 

Area 
Execution 

time 

DSE 

Approach 

[12] 

Proposed 

hybrid 

approach 

Discrete 

Wavelet 

Transformation 

(DWT)  

432 

13 13 

16 38.46% 96.29 % 
0.273 sec 

(273 ms) 

0.079 

sec 

(79 ms) 
Total = 26 

Differential 

Equation 

Solver (HAL)  

180 

11 12 

17 26.08% 90.55 % 
0.156 sec 

(156 ms) 

0.039 

sec 

(39 ms) 
Total = 23 

Elliptic Wave 

Filter (EWF)  

 

156 

10 9 

11 42.10% 87.82 % 
0.447 sec 

(447 ms) 

0.334 

sec 

(334 ms) 
Total = 19 

Auto 

Regressive 

Filter  

288 

12 12 

15 37.5% 94.79 % 
0.433 sec 

(433 ms) 

0.316 

sec 

(316 ms) 
Total = 24 

MPEG Motion 

Vector (MMV) 
756 

14 13 

31 ----- 95.89 % 
0.424 sec 

(424 ms) 

0.430 

sec 

(430 ms) Total = 27 

IIR Digital 

Butterworth 

Filter  

1280 

15 15 

21 30 % 98.35 % 
0.22 sec 

(220 ms) 

0.101 

sec 

(101 ms) 
Total = 30 

Finite Impulse 

Response 

Filter (FIR)  

1200 

15 15 

24 20 % 98.00 % 
0.395 sec 

(395 ms) 

0.377 

sec 

(377 ms) 
Total = 30 
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The proposed method was also compared to another design space exploration approach based on 

the genetic algorithm [11] which considers dual parametric objectives. Although the method is 

very promising, it only considers two parameters, such as hardware area and latency, as design 

objectives during design space exploration. The proposed method, however, is based on multi 

parametric objective which additionally considers power consumption in addition to hardware 

area of resource and execution time (compared to only latency) as major design objectives. 

Secondly, [11] as considers only latency, thus it does not take into account the total execution 

time for ‘N’ sets of data during data pipelining. Total execution time is the total time taken for 

execution of ‘N’ sets of data and includes not only the first output delay (called latency), but also 

cycle time (difference in clock cycle between the outputs of two consecutive data by considering 

initiation interval). Hence the proposed method offers another advantage over method [11] as it 

considers the total execution time instead of just latency. The GA based approach [11] was run 

for maximum generation of G (max) =100 using the exact information for the GA parameters 

Table9. Experimental results of comparison between proposed hybridized DSE with GA based approach [11]  

Benchmarks  

Total possible 

architecture in the 

design space for 

exhaustive search 

Architecture 

evaluation using 

proposed hybrid 

approach 

(Number of variants 

analyzed) 

Run Time comparison 

Proposed hybrid 

approach 

GA based DSE 

Approach [11] 

G(Max) = 100 

Discrete Wavelet 

Transformation 

(DWT)  

432 16 0.079 sec 4.27 sec 

IIR Digital 

Chebyshev Filter 

54 11 0.024 sec 

 

2.35 sec 

IIR Digital Filter 2 72 12 0.027 sec 1.90 sec 

Elliptic Wave Filter  156 11 0.334 sec 19.71 sec 

Auto Regressive 

Filter  

288 15 0.316 sec 8.41  sec 

MPEG Motion 

Vector 

756 31 0.430 sec 9.37 sec 

Infinite Impulse 

Response Digital 

Butterworth Filter  

1280 21 0.101 sec 

 

2.37 sec 

Finite Impulse 

Response Filter  

1200 24 0.377 sec 

 

6.77 sec 
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provided in [11] in order to record the time taken to find the optimal solution. The runtime 

comparison of the proposed approach with [11] for different DSP benchmarks is reported in 

Table 9.  As evident from the results obtained, the proposed approach achieves a significant 

reduction in time taken to perform design space exploration compared to [11], when run for 

provided G (max). For example, the runtime for the DWT benchmark using the proposed 

approach is just 79 ms while the runtime is 4.27 sec using [11] when G (max) = 100. Similar 

acceleration can be noted for other benchmark results as well. Therefore even by considering an 

extra parametric objective (i.e. power consumption) as well as taking into account the total 

execution time for data pipelining (instead of only latency), the proposed hybrid approach is able 

to provide respectable improvements for known benchmarks compared to [11].  

 

B. Experimental and Implementation Results for Power-Performance trade-off 

with Area as optimization criteria using Hybrid Fuzzified Algorithm 

 

It is worthwhile to mention again that the proposed approach works most efficiently when 

trading off between hardware area and performance with the power kept as optimization criteria. 

However, for the sake of investigation, curiosity and efficiency analysis, this section presents 

results when this approach has also been applied for exploration of power-performance tradeoff 

with hardware area kept as optimization criteria.  

The sizes of the design space consisting of variants for the benchmarks are indicated in Table 10. 

For example, the total number of variants in the design space for DWT is 288; while on the other 

hand, the total number of variants of the design space for EWF and FIR are 450 and 1200 

respectively. The results of the comparison of the proposed design space exploration process 
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with exhaustive analysis are shown in Table 10. Results indicate that the proposed approach is 

capable of achieving massive time improvements compared to the exhaustive search. Exploration 

time of up to 92.70 % is achieved for the well known Discrete Wavelet Transformation (DWT) 

high level synthesis benchmark. Moreover exploration time of 94.22 % and 97.75 % for EWF 

and FIR benchmarks are obtained respectively when compared to exhaustive search as shown in 

Table 10. Furthermore, the results are also compared with the design space exploration approach 

[12] as shown in Table 11. Investigations reveal that the proposed approach is able to provide 

high acceleration for design space exploration while simultaneously maintaining the accuracy 

needed in architecture selection. A exploration time of up to 37.50 % and 19.23 % is achieved 

for IIR Digital Filter 1 and Discrete Wavelet Transformation (DWT) benchmark respectively. 

Table10. Experimental results of the proposed hybridized approach compared with exhaustive analysis for Benchmarks 

Benchmarks 

Total 

architectura

l variants in 

the Design 

space for 

one 

parameter 

Total 

architectural 

variants in the 

design space 

for exhausted 

search for two 

parameters  

(Total size of 

the design 

space for the 

benchmark) 

Proposed hybrid approach (Number of 

variants analyzed) Improvements 

in variants 

analyzed using 

proposed 

approach 

compared to  

the exhaustive 

search  

(%) 

Variant 

searched 

for Power  

consumpti

on 

Variants 

searched 

for 

Execution 

time 

Total variants 

Analyzed  

IIR Digital 

Butterworth Filter 
24 48 4 4 15 68.75 

IIR Digital Filter 1 32 64 4 4 15 76.56 

IIR Digital Filter 2 36 72 4 5 16 77.77 

IIR Digital Filter 3 48 96 5 6 18 81.25 

Auto Regressive Filter  96 192 6 8 21 89.06  

Discrete Wavelet 

Transformation  
144 288 8 6 21 92.708 

Differential Equation 

Solver  
90 180 13 9 25 86.11 

Digital IIR Chebyshev 

Filter 
64 128 12 7 23 82.03  

Elliptic Wave Filter  225 450 4 20 26 94.22  

Finite Impulse 

Response Filter  
600 1200 3 19 27 97.75 
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Further, the proposed approach was also verified for two benchmarks which consist of large 

number of variants in the design space (EWF with 450 variants and FIR with 1200 variants). 

Results indicated that the proposed approach when compared to [12] for EWF and FIR 

benchmarks yielded exploration time improvement of 13.33 % and 18.18 % respectively as 

shown in Table 11. Therefore as evident from Table 11, the proposed hybrid approach provides 

accelerated design space exploration with average exploration time improvement of more than 

22 % for benchmark applications, compared to the previous approach in [12]. Additionally, as 

verified through the experiments it was revealed for all the benchmarks that the proposed 

approach yielded optimal results as it met both the arbitrarily specified constraint values of area 

and execution time. Therefore the proposed hybrid approach also provides increased acceleration 

in the design space exploration process during power-performance tradeoff with area as 

optimization criteria.  

 

Table11. Experimental results of the comparison between the proposed DSE approach with approach [12] 

Benchmarks  

Total 

architectures in 

the design space 

for exhausted 

search for two 

parameters 

Architecture 

evaluation using 

current existing 

approach [12]   

(Number of 

variants) 

Architecture 

evaluation using 

proposed hybrid 

approach 

(Number of 

variants) 

Percentage 

Improvements 

in architecture 

analyzed 

compared to 

current existing 

approach 

Average 

improvement 

in architecture 

analyzed by 

the proposed 

approach wrt 

[12] 

IIR Digital 

Butterworth Filter 
48 22 15 31.81 % 

22.57 % 

IIR Digital Filter 1 64 24 15 37.50 % 

IIR Digital Filter 2 72 24 16 33.33 % 

IIR Digital Filter 3 96 25 18 28.00 % 

Auto Regressive 

Filter 
192 24 21 12.50 % 

Discrete Wavelet 

Transformation  
288 26 21 19.23 % 

Differential 

Equation  
180 29 25 14 % 

Digital IIR 

Chebyshev  
128 28 23 17.85 % 

Elliptic Wave 

Filter  
450 30 26 13.33 % 

FIR Filter  1200 33 27 18.18 % 
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7.3 Experimental Results: Proposed approach ‘Priority Function Driven 

Design Space Exploration in High Level Synthesis Based on Power Gradient 

Technique’ and Comparative study with a recent approach 

 

This section primarily describes the experimental results of the proposed approach based on 

static power optimization under minimum control step usage (elaborated in Chapter 4) and the 

improvements obtained compared to recent approach [11]. 

 The proposed integrated design space exploration approach has been implemented and run on 

Table12. Experimental Results of the proposed approach for the DSP Benchmarks  

DSP Benchmarks 

Experimental Parameters (Note: cc = clock cycles)  

Resource combination  

 
Latency  

Initial Cost 

 in terms of 

Power 

dissipation 

Final 

Power 

dissipation 

of 

proposed 

approach 

 

% 

Reduction 

in Power 

dissipation  

Runtime 

of 

proposed 

approach 
Initial Solution 

Proposed 

approach  

Proposed 

approach 

Discrete Wavelet 

Transformation 

 (DWT) 

5(*), 4(+),18 

(mux), 

9 (demux), 15 

(Reg) 

2(*), 2(+),8 

(mux), 

4(demux), 14 

(Reg) 

32cc 2.94 Watts 1.38 Watts 53.06 % 3.18 secs 

Band Pass Filter  

(BPF) 

4(*), 3(+/-), 14 

(mux), 7 

(demux), 20 

(Reg) 

2(*), 3(+/-),10 

(mux), 

5(demux),  

19 (Reg) 

28cc 2.49 Watts 1.60 Watts 35.74 % 1.38 secs 

Finite Impulse 

Response (FIR) 

8(*), 8(+), 32 

(mux), 

16 (demux),23 

(Reg) 

2(*), 5(+),12 

(mux), 

6(demux), 20 

(Reg)  

28cc 4.87 Watts  1.73 Watts 64.47 % 5.63 secs 

IIR Digital 

Butterworth Filter 

5(*), 1(+/-),12 

(mux),6 

(demux), 

14 (Reg) 

2(*), 1(+/-), 6 

(mux),3 

(demux),  

11 (Reg) 

16cc 2.57 Watts 1.20 Watts 53.30 % 1.62 secs 

IIR Digital 

Chebyshev Filter 

5(*), 

2(+),14(mux), 

7 (demux), 16 

(Reg) 

3(*), 2(+),10 

(mux),  

5 (demux), 16 

(Reg) 

10cc 2.60 Watts 1.86 Watts 28.46 % 3.19 secs 

MPEG Motion 

Vectors  

(MMV) 

14(*), 

5(+),38(mux), 

19 (demux), 

5(*), 

5(+),20(mux),  

10 (demux), 

14cc 7.52 Watts 3.42 Watts 54.52 % 1.95 secs 
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AMD Athlon 64 Processor with 3GB RAM and 1.6 GHz processor frequency. In order to 

perform a qualitative assessment, the proposed approach has been compared with a heuristic GA 

based approach [11]. Furthermore for comparison with [11], the parameters chosen were quality 

of the final solution found measured in terms of Effective Cost Metric (ECM) and optimization 

runtime. The metric is a combination of latency and power given by eqn. (44): 

maxmax

21
P

P
W

L

L
WECM ⋅+⋅=                                                                               (44) 

W1 and W2 are the weightage of the operating constraints for latency and hardware area (Note: 

0<=W1<=1 and 0<=W2<=1). For this experiment, W1 = W2 = 0.5 has been kept, since equal 

priority was given to both latency of the final solution and the power dissipated by the solution. 

‘L’ and ‘P’ are the latency and power dissipation of the solution found. ‘Lmax’ and ‘Pmax’ are 

the values of maximum latency (found by using minimum FU’s) and maximum power 

dissipation (using maximum FU’s) respectively. Equation (44) has been divided with maximum 

values of latency and power respectively in order to obtain normalized values for each.  The 

above metric was proposed for comparison since the quality of a solution cannot be solely 

determined from the latency expenditure or the dissipated power, but rather a combination of 

both. The results obtained through the proposed approach are shown in Table 12. The power 

optimization (minimization) obtained for the final resource solution (FU’s) as noted from the 

Table13. Comparison of measured power consumption through Xilinx Power Analyzer (XPA) 9.2i  

DSP Benchmarks 
Power Consumption of the 
initial solution (Static and 

Dynamic) 

Power consumption of  final 

solution Proposed method 

(Static and Dynamic) 

% Reduction in 

Power 

consumption  

Discrete Wavelet 2.43 W 2.10 W 

≈ 11 % 

Band Pass Filter  3.26 W 2.92 W 

Finite Impulse Response 3.54 W 2.98 W 

IIR Digital Butterworth Filter 1.90 W 1.74 W 

IIR Digital Chebyshev Filter 2.15 W 2.07 W 

MPEG Motion Vectors  6.14 W 5.30 W 
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results for all DSP benchmarks such as DWT, BPF, FIR, Digital Butterworth filter, Chebyshev 

filter and MPEG are impressive. The comparison results of the measured power consumption 

viz. dynamic power at 100MHz and static power for Spartan 3E FPGA in Xilinx Power Analyzer 

(XPower) 9.2i tool suite are shown in Table 13. Analysis of the measured power for the DSP 

benchmarks reveals that an adequate minimization of power consumption is obtained using the 

proposed approach. On average, power reduction of ≈ 11 % is obtained using the proposed 

approach compared to the initial solution (ASAP solution). The implementation runtime of the 

proposed optimization approach and its comparison with approach [11] is illustrated in Table 14. 

Table 14 also reflects the comparison of the final solution found by both approaches. As verified 

through the experiment, the proposed approach was able to find optimal solution for all the 

benchmarks (in most cases global optimal solution was found, however local optimal solution 

was found in some cases).  Due to its ability to obtain optimal solution for all test cases verified, 

the average improvement in the quality of the final solution found is 5.07 % compared to [11]. 

Therefore, as evident in Table 14, the average reduction in runtime for all benchmarks is approx. 

60 % and average improvement in quality of final solution is 5.07 % compared to [11].  

 

Table14. Experimental Results of the comparison between the proposed approach and recent approach [11]  

DSP Benchmarks 

Experimental Parameters for Comparison 

ECM 
Improvement 
in quality of 
final solution 

Average 
Improvement 

of quality  
final solution 

Runtime (seconds) 

Reduction in 
Runtime [11] 

Proposed 
approach 

[11] 
Proposed 
approach 

Discrete Wavelet 
Transformation 

0.64 0.61 4.68 % 

5.07 % 

7.53 
secs 

3.18  57.76 % 

Band Pass Filter  0.60 0.56 6.67 % 13.96 
secs 

1.38  90.11 % 
Finite Impulse 

Response 
0.46 0.46 ---- 11.04 

secs 
5.63  49 % 

IIR Digital 
Butterworth  

0.56 0.53 5.35 % 3.04 
secs 

2.08  31.57 % 
IIR Digital 
Chebyshev  

0.58 0.55 5.17 % 2.69 
secs 

1.56  42 % 

MPEG Motion 
Vectors  

0.35 0.32 8.57 % 12.32  1.95  84.17 % 
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7.4 Experimental Results: Proposed approach ‘A Multi Structure Genetic 

Algorithm for Integrated Design Space Exploration of Scheduling and 

Allocation in High Level Synthesis for DSP Kernels’ and Comparative study 

This section primarily describes the experimental results of the proposed approach for integrated 

scheduling and module allocation based on power-performance tradeoff (elaborated in Chapter 

5) and the improvements obtained compared to recent approach [11]. 

 A short summary of the experimental setup is given in Table 15. The proposed MSGA has been 

implemented in high level language [34] [35] and run on AMD Athlon 64 X2 Dual-Core 

Processor TK-157 with 3072 MB DDR2 memory, 64KB L1D cache and 256 KB L2 cache 

memory. The processor frequency is 1.90 GHz. As mentioned before, W1 and W2 are the user 

specified preference for power consumption and execution time constraints. The proposed 

MSGA has been compared with another recent powerful GA-based approach [11] for G (Max) = 

100 (keeping W1 = W2 = 0.5) to perform a qualitative assessment of the proposed approach. The 

proposed system is able to find the global optimal (sometimes local optimal) resource solution in 

terms of number of FU’s and clock frequency which is high quality in nature. Further, it is able 

to better optimize the power consumption and the execution time for the final resource solution 

Table15. Experimental Setup for MSGA 

Machine AMD Athlon 64 X2 Dual-Core Processor TK-157 with 3072 MB 

DDR2 memory, 64KB L1D cache and 256 KB L2 cache memory, 

processor frequency is 1.90 GHz 

Benchmarks IIR Digital Filter, ARF, DWT, Digital Butterworth filter, EWF, 

WDF, BPF 

GA Parameters 1) W1= W2=0.5, 2) G (Max) = 100 

3) Pcross = 1.0, 4) Pm = 0.25 

Parameters of comparison a) final resource combination 

b) latency (CS) 

c) execution time 

d) power consumption 

# of Runs for averaging 25 runs performed for each benchmark 

User preference W1 = W2 = 0.5 
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found.  The system also optimizes the latency of the final solution found. On the other hand, [11] 

is not able to optimize the execution time considerably due to its inability to create a genuinely 

pipelined functional data paths. Therefore the total execution time (being a function of latency, 

cycle time and pipelined data (N) as shown in eqn. (42)) does not get optimized for [11]. As 

mentioned before since [11] does not have the ability to explore the optimal clock frequency 

from a set of various clock frequencies it does not optimize the power. For only for the sake of 

comparison, the power consumed by the FU’s, storage elements and interconnect units at 100 

MHz obtained by [11] were measured to provide an estimate of average power consumption. For 

determination of execution time in [11], ‘N’ sets of processing data are simply multiplied with 

the delay of each data due to lack of genuine functional data pipelining capability. Thus, Texe
[11]

 

Table16. Experimental Results of Comparison with [11] for the DSP Benchmarks  

DSP 

Benchmarks 

Parameters of Comparison  
Note: cc= clock cycles and a.u. = area unit (1 au = 1CLB in Spartan 3E FPGA)  

Explored final resource combination Latency 

Execution time in 

clock cycles 

(N =1000) 

Power Consumed 

(Watts) 

MSGA [11] MSGA  [11] MSGA [11] MSGA [11] 

IIR Digital 

Filter 

3(*), 2(+)  
2(*), 1(+), 

10(Reg) 
14cc 18cc 

12,002 

cc 

18,000 

cc 
0.91 W 1.45W 8(mux),4(demux), 9(Reg), 

50MHz 

ARF 

4(*), 4(+) 
4(*),3(+), 

18(Reg) 
24cc 25cc 

10,014 

cc 

25,000 

cc 
1.62W 2.92 W 16(mux), 8(demux), 

18(Reg), 50MHz 

DWT 

1(*), 2(+)  
1(*),1(+), 

10(Reg) 
44cc 44cc 

38,006 

cc 

44,000 

cc 
1.56 W 2.97W 6(mux),3(demux), 10(Reg), 

50MHz 

Digital 

Butterworth 

Filter 

2(*), 1(+), 1(-)  2(*), 1(+), 

1(-), 

10(Reg) 

18cc 18cc 
12,006 

cc 

18,000 

cc 
1.59 W 1.59W 8(mux),4(demux), 10(Reg), 

100MHz 

WDF 

2(*), 3(+),1(-) 1(*), 

2(+),1(-), 

15(Reg) 

45cc 56cc 
23,022 

cc 

56,000 

cc 
1.34 W 2.12W 12(mux),6(demux), 11 

(Reg), 50MHz 

BPF 

1(*), 1(+), 2(-) 2(*), 2(+), 

2 (-), 11 

(Reg) 

46cc 30cc 
43,003 

cc 

30,000 

cc 
2.28 W 2.83W 8(mux),4(demux), 15 (Reg), 

100MHz 

EWF 

1(*), 2(+) 
1(*), 2(+), 

11(Reg) 
56cc 59cc 

56,000 

cc 

59,000 

cc 
0.96 W 2.04W 6(mux),3(demux), 9(Reg), 

50MHz 
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= N*L. In contrast, since proposed MSGA considers cycle time resulting from initiation interval 

and latency to create a genuinely pipelined functional data path, the execution time in clock 

cycles (Texe
MSGA

) of the proposed MSGA is determined from eqn. (42). 

The better result of power and execution time for the proposed MSGA compared to [11] for all 

the benchmarks is clearly evident in Table 16. An average of twenty five runs has been reported 

for both approaches in Table 16.  For example in case of IIR digital filter benchmark, the 

resource combination found using proposed MSGA is 3(*), 2(+), 8(mux), 4(demux), 9(registers) 

and 50 MHz clock frequency oscillator based on the user specified constraints. The latency of the 

scheduling solution through MSGA is 14cc. The power consumed by the final solution found is 

0.91W and the execution time for N = 1000 is 12,002 cc. On the other hand, [11] yields an 

optimal resource combination which is 2(*), 1(+) with latency of 20cc. However, the 

corresponding execution time is large, equal to 20,000 cc. The power consumed by [11] is also 

large due to inability to explore optimal clock frequency oscillator. Moreover, for WDF 

benchmark, the MSGA finds a final optimal scheduling solution in 45cc at the expense of just an 

extra multiplier and adder compared to 56cc taken by using [11]. Therefore for WDF benchmark, 

the MSGA saves 11cc at the expense of only an adder and multiplier. The proposed approach 

produces a solution which consumes 23,002 cc to process 1000 data and 1.34W of power 

compared to solution which consumes 56,000 cc execution time and 2.12W power using [11]. 

For benchmarks such as DWT and Digital Butterworth filter although the final solution found 

using proposed approach is similar to solution obtained using [11], but the proposed approach is 

able to achieve reduced cycle and execution times. Note: Power values reported in Table 12 and 

16 are not in exact alignment with practical power values for modern consumer applications but 

the main purpose of the reported values are to prove the benefit relative to prior work. 
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Chapter 8 

Conclusion and Future Works  

The dissertation has presented multiple novel frameworks for addressing multi-dimensional 

issues in the design space exploration problem in high level synthesis of computation intensive 

applications (primarily DSP kernels). Each proposed framework is unique in its own kind in 

terms of the solution it proposes for resolving notorious optimization problems for different user 

requisite. In particular, the dissertation introduced four different frameworks for performing fast 

and efficient multi-objective tradeoff based on different user criteria viz. a) Novel Priority Factor 

based Pareto optimal framework methodology for accelerated design space exploration based on 

power-performance-area/cost tradeoff.  Experiments revealed that this methodology provided 

exploration time improvement of greater than 90 % in exploration process compared to a recent 

technique for various signal processing DFG benchmarks b) Novel hybrid Fuzzy Algorithm 

Based Pareto optimal framework for exploration of Area- Performance- power tradeoff. 

Experimental results showed that this hybrid technique provides an average exploration time 

improvement of greater than 35 % during area-performance-power tradeoff and 22 % in 
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exploration process during power-performance-area tradeoff respectively when compared to a 

recent technique for various size signal processing DFG benchmarks. The above approaches a) 

and b) were successful in laying the foundation for exploring the design points from the 

architecture design space according to the performance objective and intended functionality. 

Moreover the above DSE were capable of resolving the conflicting objectives in DSE by 

concurrently maximizing the accuracy in evaluation of the design point and minimizing the time 

expended for design space assessment c) Novel Priority Function driven integrated design space 

exploration (scheduling and module selection) in high level synthesis based on Power Gradient 

technique for static power optimization under minimum control step usage. Experimental results 

indicated successful improvement in the quality of final solution by an average of 5.07 % and 

reduction in the exploration runtime by an average of 59% compared to a current approach for 

standard DSP DFG Benchmarks d) Novel Multi structure based Genetic Algorithm for integrated 

exploration of scheduling and allocation during power-performance tradeoff. The results 

produced by proposed approach are better compared to another genetic algorithm based 

approach, for almost all digital signal processing DFG benchmarks.  

Therefore, the dissertation presents various solutions for multi-dimensional design space 

exploration problems encountered during multi-objective optimization in high level synthesis. It 

is also worthwhile to mention that the presented methods are applicable for computation 

intensive tasks/data hungry applications (i.e. applications that can be represented through data 

flow graphs). The proposed methodologies can be efficiently applied to perform exploration in 

various high level synthesis problems depending on the varied user criteria.  
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Scope of Future Work 

There is much potential in the area of design space exploration and high level synthesis to 

improve the search time for finding the final design architecture, and thereby accelerate the 

speed of the exploration process.  The developed design space exploration approach for high 

level synthesis can be improved further by decreasing the number of architectural variants to be 

analyzed during the exploration process.  Reducing the analysis of the architectural variants 

directly reduces the search time which in turn impacts the design time and hence will help in 

faster designing. Another aspect of high level synthesis, which also has significant potential for 

improvement, is the development of many other parameters such as reliability, temperature etc., 

for high level estimation which stills lies in the nascent stage of development. As shown in the 

recent study [47-50] minimization of power does not guarantee complete minimization of 

temperature. The temperature of a chip depends not only on the activity rate of the modules but 

also on the past history of the activity rate of the modules. Therefore, temperature specific 

resource binding algorithms need to be developed and evaluated for these with novel parametric 

models. These algorithms can be integrated with existing high level synthesis techniques for 

generation of optimized RTL circuits. This will allow system architects to design systems based 

on performance-temperature trade-offs. Another aspect of high level synthesis that needs further 

research is the unification of physical level designing with high level synthesis design. Efforts 

can be made to incorporate floorplanning details into high level models to increase accuracy of 

the evaluation model. This will not only provide a significant boost to the circuit designer 

optimizing at low level, but would also benefit the system architects in precisely exploring the 

extensive design space based on user requirements. 
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Appendix 

 
Step 1: Design Automation Tool (described in Chapter 7. See keystones of the tool in Section 7.2) 

 

 

Step 2: Design Automation Tool (described in Chapter 7. See keystones of the tool in Section 7.2) 
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Step 3: Summary of proposed Design Automation Tool (described in Chapter 7. See keystones of 

the tool in Section 7.2) 

 

Sample schematic (data path and controller) output of the Design Automation Tool (in Chapter 7) 
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The portion of a sample VHDL produced by proposed tool (described in Chapter 7) for Elliptic 

Wave Filter benchmark containing port map detail is shown below 
 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.STD_LOGIC_ARITH.ALL; 

use IEEE.STD_LOGIC_UNSIGNED.ALL; 

--use work.ProjPackage.all; 

---use work.filter_package.all; 

 

                 entity FinalProduct is 

    Port ( 

           clock : in  STD_LOGIC; 

           resetn : in  STD_LOGIC; 

--           Busy : out  STD_LOGIC; 

--           Ready : out  STD_LOGIC 

     I1 : in STD_LOGIC_VECTOR (15 downto 0); 

     I2 : in STD_LOGIC_VECTOR (15 downto 0); 

     I3 : in STD_LOGIC_VECTOR (15 downto 0); 

     I4 : in STD_LOGIC_VECTOR (15 downto 0); 

     Y1 : out STD_LOGIC_VECTOR (15 downto 0); 

     Y2 : out STD_LOGIC_VECTOR (15 downto 0); 

     Y3 : out STD_LOGIC_VECTOR (15 downto 0); 

     Y4 : out STD_LOGIC_VECTOR (15 downto 0); 

     Y5 : out STD_LOGIC_VECTOR (15 downto 0); 

   ); 

end FinalProduct; 

component control_unit  

port( 

 clock:in std_logic; 

 reset:in std_logic; 

   --count1 :out INTEGER; 

 InputRegisterStrobe:out std_logic; 

 addsub_A1:out std_logic; 

 latch_strobe_A1:out std_logic; 

 output_strobe_A1:out std_logic; 

 enable_A1:out std_logic; 

 latch_strobe_M1:out std_logic; 

 output_strobe_M1:out std_logic; 

 enable_M1:out std_logic; 

 Strobe_Reg1:out std_logic; 

 Strobe_Reg2:out std_logic; 

 Strobe_Reg3:out std_logic; 

 Strobe_Reg4:out std_logic; 

 ............................... 

            ............................... 

            ............................... 

            ............................... 

            ............................... 

            ............................... 
begin 

 

reset <= not resetn;  

RegI1: Reg16 port map(I1,InputRegisterStrobe,DataRegI1); 

RegI2: Reg16 port map(I2,InputRegisterStrobe,DataRegI2); 

Reg1: Reg16 port map(DeMultiplexer_A1_0,Strobe_Reg1,DataReg1); 
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Reg2: Reg16 port map(DeMultiplexer_A1_0,Strobe_Reg2,DataReg2); 

RegI3: Reg16 port map(I3,InputRegisterStrobe,DataRegI3); 

RegI4: Reg16 port map(I4,InputRegisterStrobe,DataRegI4); 

Reg3: Reg16 port map(DeMultiplexer_A1_1,Strobe_Reg3,DataReg3); 

Reg4: Reg16 port map(DeMultiplexer_A1_1,Strobe_Reg4,DataReg4); 

Reg5: Reg16 port map(DeMultiplexer_A1_2,Strobe_Reg5,DataReg5); 

Reg6: Reg16 port map(DeMultiplexer_A1_4,Strobe_Reg6,DataReg6); 

Reg7: Reg16 port map(DeMultiplexer_A1_4,Strobe_Reg7,DataReg7); 

Reg8: Reg16 port map(DeMultiplexer_A1_5,Strobe_Reg8,DataReg8); 

Reg9: Reg16 port map(DeMultiplexer_A1_5,Strobe_Reg9,DataReg9); 

            ............................... 

            ............................. 

 

 

 

 

 

 

The portion of a sample VHDL of the controller for EWF is shown below: 

architecture Behavioral of control_unit is 

signal count : INTEGER RANGE 0 TO 132; 

signal busy: std_logic; 

begin 

process(clock,reset) 

begin 

if (clock'event and clock='1') then 

 if(reset='0')then 

---------------------count 0--------------------- 

  if count=0 then 

   --Reset all latches and units 

   latch_strobe_A1<= '0'; 

   add_sub_A1<= '0'; 

   output_strobe_A1<= '0'; 

   enable_A1<= '0'; 

   Selector_A1<= "00000"; 

   Deselector_A1<= "00000"; 

            ............................... 

            .............................. 
---------------------count 130--------------------- 

  if count=130 then 

   enable_A1<='0'; 

   RegY5<='1'; 

   count<=count+1; 

  end if; 

            ............................... 

            ............................... 
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The schematic circuit of the designed IIR Butterworth filter in Xilinx ISE tool. 

 

 
Schematic view of the designed IIR digital filter in Xilinx ISE tool 
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