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Abstract 

 

      The Sparse representation research field and applications have been rapidly growing during the 

last 15 years. The use of overcomplete dictionaries in sparse representation has gathered extensive 

attraction. Sparse representation was followed by the concept of adapting dictionaries to the input 

data (dictionary learning). The K-SVD is a well-known dictionary learning approach and is widely 

used in different applications. In this thesis, a novel enhancement to the K-SVD algorithm is 

proposed which creates a learnt dictionary with a specific number of atoms adapted for the input 

data set. To increase the efficiency of the orthogonal matching pursuit (OMP) method, a new sparse 

representation method is proposed which applies a multi-stage strategy to reduce computational 

cost. A new phase included DCT (PI-DCT) dictionary is also proposed which significantly reduces 

the blocking artifact problem of using the conventional DCT. The accuracy and efficiency of the 

proposed methods are then compared with recent approaches that demonstrate the promising 

performance of the methods proposed in this thesis.    
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Chapter 1. Introduction 

 

 

 

 

      A digitized signal or image consists of a finite number of samples taken with the Delta function. 

Although this kind of signal representation is useful to playback the signal or image, more efficient 

mathematical functions may be used to extract desired characteristics out of the signal. For 

example in order to have smarter signal representation it is possible to separate noise and signal 

from one another thereby representing a large signal with only a few coefficients.  

      The signal representation task requires a set of functions in order to linearly combine them so as 

to approximate the given signal or image. The set of functions is called as a Dictionary and each 

function is an Atom. The dictionary is orthogonal if all inner products of different atom pairs are 

zero. In this case, the inner product of the given signal or image with all dictionary atom provide 

coefficients of the signal representations. In the other case, the signal representation coefficient is 

obtained by the product of the signal and the dictionary inverse. The effectiveness of the signal 

representation with square size dictionaries is limited [1]. The use of over-complete dictionaries 

has resulted in a more effective signal representations. The number of atoms in an over-completed 

dictionary is much more than the size of its atoms. The use of over-completed dictionaries leads to 

have many zero coefficients in the signal representation. In this case, the signal representation is 
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called the Sparse Representation because it has many zero coefficients. The sparse representation 

engages an optimization algorithm to efficiently reconstruct the input signal by reducing a cost 

function.  

      The over-completed dictionary can be created in either analytic-based way or learn-based way. 

In an analytic-based dictionary, the atoms are created using a stationary function such as cosine 

function, wavelet function and etc. In contrast, a learn-based dictionary is generated based on a 

training set. A learning algorithm is derived to take a small subset of the training set and modify it 

in an iterative process to find an optimal solution. A new method to create dictionaries has been 

recently emerging which makes a bridge between analytical-based and learn-based dictionaries. 

      An over-complete dictionary
n KD ×∈ℝ  of K atoms{ }

K
d . The sparse vector K

x ∈ℝ represents 

an input signal 
ny ∈ℝ  with a weighted summation of a few dictionary atoms. The aim is to 

approximate the input signal y Dx≈  with only a few non-zero coefficients of vector x. This 

condition maintains the sparsity of the vector x. This idea can be formulated as a minimization 

problem (1.1) or (1.2), which is the basic concept of the sparse representation theory (Figure 1.1). 

0
arg min

x

x
  
subject to    y Dx ε− <  (1.1) 

and, 

2
,

arg min
x D

y Dx−    subject to     
0

x ε<  (1.2) 

where the 
0

.  is the norm-zero. In the first equation, the subject is to optimize the problem to 

achieve a smaller error than ε , while having the minimum number of non-zero coefficients in the 

vector x. In the second equation, the subject is to minimize the error with a specific number of non-

zero coefficients in the vector x. The implementation of the second equation is easier. 
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Figure 1.1. In this figure, the sparse representation concept and the size of each matrix are depicted. The Y is the 

input signal, D is the Dictionary and X is the Sparse Matrix. 

      The human visual system analyzes image information by taking localized, directional and band-

pass features [2]. We are going to present a comprehensive study in order to show how accurately 

and effectively the three aforementioned visual characteristics are supported by different image 

representation methods. The important features in the image representation are listed as follows 

[3]: 

1) Multiresolution Representation: It should cover all image information from coarse to fine 

resolutions. 

2) Localized Information: Features should be extracted based on localized information both in 

spatial and frequency domain.  

3) Sampling Window: It determines if the representation takes overlapping sampling 

windows. 

4) Directionality: It specifies whether the representation is able to sense orientation of image 

data or not.  

The first part of this thesis is dedicated to describe a set of existing analytical dictionaries, sparse 

representation methods and different dictionary learning approaches. In the second part, our 

contributions to the sparse representation and dictionary learning areas are presented along with 

comprehensive comparisons with existing methods.  
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In this thesis, a new analytical dictionary is presented based on the conventional DCT. A set of 

evenly selected phases between 0 to 2π is involved to create DCT dictionary atoms and is therefore 

called phase included DCT (PI-DCT) dictionary. It is important to note that the conventional DCT 

dictionary consists of cosine functions with only different frequencies in vertical and horizontal 

directions. The conventional way to create DCT atoms is not sufficiently representative for input 

signal components which have both frequency and phase information. This lack of representation 

leads to the problem of blocking artifacts. The proposed PI-DCT dictionary addresses this problem 

by mapping phase information to a specific atom with defined phase and frequency. In other words, 

for each vertical and horizontal frequency we have a set of atoms with different phases to cover 

input signal components with non-zero phase information.  

      This analytical dictionary is followed with a new sparse representation method which applies a 

multistage approach to the orthogonal matching pursuit (MS-OMP) method. The proposed MS-OMP 

method selects a set of atoms per each stage whereas the orthogonal matching pursuit (OMP) only 

adds 1 atom per each iteration. The OMP method calculates a pseudo-inverse for each iteration. 

Therefore, for 0T  selected atoms, 0T  pseudo-inverse computations are needed. In each stage, it 

selects M atoms, and thus it needs only 0 /T M  stages to opt 0T  atoms. The MS-OMP method 

performs 1 pseudo-inverse transform for a set of M added atoms. Therefore, the number of 

pseudo-inverse transforms is reduced in our proposed approach. Similar to the matching pursuit 

based methods, the proposed approach tries to reduce the signal residual of the previous stage and 

send it to the next stage. In each stage, the MS-OMP selects a set of m atoms with higher 

correlations with the residual. Then the conventional matching pursuit (MP) method is applied on 

the set of selected atoms to opt M  descriptive atoms where M m< . After selecting new atoms, the 

sparse vector is updated in the same way that the OMP method performs by computing the pseudo-
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inverse of the sub-dictionary consisting of all selected atoms in the 
th

s  stage. The last step of each 

stage is formed by updating the signal residual. 

      The third proposed approach is a novel enhancement to the existing K-SVD dictionary learning 

method. The conventional K-SVD method iteratively updates a fixed number of atoms, subject to 

minimizing the reconstruction error. However, it is not clear how many atoms are needed for each 

input data set. The other problem of using the conventional K-SVD method is that it does not find 

the best solution to the optimization problem. Instead it minimizes the error until it converges to a 

local minimum point this is highly dependent on the initial selection of atoms. The proposed novel 

dictionary learning method starts with only 1 atom and spreads until a convergence is achieved. 

For example suppose, each atom represents a set of input patches, these represented input patches 

fall into a high-dimensional volume in space. The size of this volume determines the low-pass 

characteristic of the representation using this atom. Thus, if the volume is too large, it fails to 

properly represent details of all involved input patches. In this case, this atom is divided into more 

atoms in which each one has a smaller volume of involved patches. This operation iteratively 

repeats for all dictionary atoms until all atoms represent a limited volume in high-dimensional 

space. This procedure optimally creates atoms to cover all information in the space, and therefore it 

solves the problem associated with the conventional K-SVD method. Thus, this method is called 

variable length K-SVD (VLK-SVD) method. In each iteration of this approach, all dictionary atoms 

are updated one by one (In the same way that the K-SVD approach performs). The procedure of 

dividing each atom is performed right after the atom updating process. After all atoms are updated 

in each iteration, insignificant atoms with a small number of representing atoms are removed from 

the dictionary, this is to maintain the efficiency of the dictionary. After some iterations, the 

proposed approach converges to a number of atoms which sufficiently cover the input data set. If 

the input data set contains more details, the VLK-SVD method adds more atoms to cover all input 



6 

 

data contents. A comprehensive study is presented in this thesis to draw a relation between the 

frequency domain information and the number of added atoms using the VLK-SVD approach.  

      This thesis is organized as follows. In Chapter 2, an introduction to featured analytical 

dictionaries is presented. In Chapter 3, the sparse representation problem is described and some of 

its existing solutions are introduced, in detail. Chapter 4, provides an introduction to the dictionary 

learning problem and two recently proposed approaches are introduced in this chapter. In Chapter 

5, the PI-DCT and the MS-OMP method are introduced in detail. In Chapter 6, the VLK-SVD method 

is presented along with its evaluations and results. Chapter 7 provides  conclusion and discussion of 

the new proposed methods and the possible future works.   
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Chapter 2. Analytical Dictionaries 

 

 

 

 

 

2.1. Time-Frequency Dictionaries 

      Since early research in the area of signal processing, the Fourier transform has been widely 

focused to extract signal characteristics. The Fourier transform represents a signal as its frequency 

domain components. It is inferred from the concept that sinusoidal functions are pairwise 

orthogonal and all signals can be represented as a linear combination of these orthogonal basis. The 

coefficients of the signal representation are obtained using the inner product of the given signal 

with the Fourier basis (2.1). 

2( ) ( ) i ft
x t X f e df

π
+∞

−∞

= ∫  
(2.1) 

The Fourier basis is used to create K atoms of a Time-Frequency dictionary related to low 

frequencies to approximate signals. Hence, the resultant representation is the smoothed signal and 

has a noise-reduction effect.  
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2.1.1. Discrete Cosine Transform 

      In order to produce non-complex coefficients, the signal is anti-symmetrically extended. This 

transform is called the Discrete Cosine Transform (DCT) and was introduced by [4], [5] and [6]. A 

digital signal is decomposed with the DCT as follows [7]: 

1

1

1 (2 1)
( ) (0) ( )cos

22

M

x x

k

m k
X m G G k

M

π−

=

+
= +∑ ,      1, 2,..., 1m M= −  

(2.2) 

 

where ( )
x

G k  is the 
thk  coefficient. For a specific value of 8M = , eigenvectors are calculated as 

follows: 

1 (2 1)
{ ,cos }

162

m kπ+
,     1, 2,..., 7k =      and     0,1,..., 7m =  

(2.3) 

By expanding the equation (2.2) in the 2D space, this formula is modified as follows [6]: 

1 1

0 0

(2 1) (2 1)
( , ) ( , ) cos cos

2 2

M N

xy

m n

k u y v
X m n G k l

n m

π π− −

= =

+ +
=∑∑

    

1,..., 1u N= −      1,..., 1v M= −  
(2.4) 

In Figure 2.1, a set of 64 atoms taken from DCT basis for 8M =  and 8N =  is displayed. 

 
Figure 2.1. Displaying a dictionary of 64 atoms of size 8*8, based on DCT basis. [5] 

In the Fourier basis, all of the atoms are created with a similar scale and represent a localized 

frequency response of a signal. This is referred to the Short Time Fourier Transform (STFT).   
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2.1.2. Gabor Transform 

      The other similar Time-Frequency signal decomposition is the Gabor Transform. Indeed, Gabor 

offers optimal localized windows using the Gaussian function. The Gabor transform is defined by 

( ) [ ( )] ( )j t

GT a
F e f t g t b dtωω

∞
−

−∞
= −∫  

(2.5) 

and, 

2 41
( )

2

t a

a
g t e

aπ
−=  

(2.6) 

 

 

      The Gabor Transform (Figure ) localizes the Fourier Transform around t b=  where the 

parameter a determines the window width. Hence, it is inferable to say that the STFT is a 

generalized form of the Gabor Transform [8]. Due to the size limitation, these introduced basis 

functions are not adequately able to present the frequency response of the image. In the other 

words, the limited size of the sampling window contributes to fail these methods to describe the 

frequency characteristics of larger or smaller structures inside images corresponding to very high 

and very low frequency components, respectively [9]. 

 
Figure 2.2. Displaying atoms (basis functions) of a typical Gabor Transform [10]. 
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2.1.3. Wavelet Transform 

      To address the problem of different structure sizes, the Wavelet transform offers a resizable 

structure for atoms in which the frequency is related to each atom size. In the other words, the 

flexible time-frequency windows in the wavelet transform provides a non-uniform frequency 

bandwidth in which the frequency resolution is higher at lower frequencies and vice versa. The 

wavelet basis functions, called wavelets, are generated by dilation and translation of the basic 

wavelet ( )tψ , as [8], 

1

2( ) ( )
ab

t b
t a

a
ψ ψ

− −
=  . 

(2.7) 

Based on the above definition, the wavelet transform is obtained by the product of basis functions 

using the following Integral form as, 

1/2 *( , ) ( ) ( )CWT

t b
F a b a f t dt

a
ψ

∞
−

−∞

−
= ∫  . 

(2.8) 

It is shown that if the dilation parameter is 2 m
a

−=  and the translation parameter is 2 m
b k

−= , the 

signal ( )f t  is recoverable using the wavelet series as follows, 

,

( ) , ( ) ( )
mk mk

m k Z

f t f t tψ ψ
∈

= < >∑  . (2.9) 

where the .,.< >
 is the inner product operator and wavelet basis functions, { }

mk
ψ , are supposed to 

be orthonormal [8].  The wavelet transform of a discrete signal is calculated with a combination of 

multi-layer filter banks combined with the decimation blocks (Figure ). This filter bank structure 

divides the frequency domain of the signal ( )x n  into 4 analytical parts. 
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Figure 2.3. Displaying the three-level tree structure of forward (left) and reverse (right) Discrete Wavelet Transform 

[8]. The ( )
a

H z  block is a high-pass filter which selects the upper-half part of the frequency response of the signal 

whereas the ( )
a

G z  block selects the lower-half part [8]. 

In the synthetic phase, 4 parts are combined to constitute the frequency response of the given 

signal. In Figure , 2 dictionaries are displayed in which their atoms are basis functions of 

Daubechies and Har wavelets. The JPEG comparison uses the DCT transform whereas the JPEG 

2000 is designed based on the wavelet transform.  

      The success of an image representation stands with its ability to capture visual information 

using a few descriptions. The wavelet transform perfectly represents 1-D signals. It is sensitive to 

high-frequency changes while it detects low-frequency terms in the signal. But when the wavelet 

transform comes to the higher dimensionalities, it fails to perfectly grab all directional information 

except vertical and horizontal directions. Moreover, the wavelet transform is sensitive to 

discontinuities in the edge points. But it fails to accurately represent smoothness along the contours 

in images.  

  

Figure 2.4. Demonstration of atoms (wavelets) of the Wavelet Transform. The left side and right side figures show 

basis functions of the Daubechies and Har, respectively [10]. 
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2.1.4. Contourlet Transform 

      To address the abovementioned problem, the Contourlet transform is used to sparsely represent 

visual directional information in images [3]. If the smooth contour, shown in Figure 2.5, is 

represented with the Wavelet transform, a large number of square blocks are needed to represent 

its shape whereas the Contourlet transform easily describes it using 6 directional blocks. 

Apparently, the efficiency and performance of the Contourlet representation is higher. 

 
Wavelet representation Counturlet Representation 

Figure 2.5. This figure illustrates how the Contourlet transform has a dominant performance comparing with the 

Wavelet transform [3]. 

      As mentioned above, the Contourlet approach defines a filter bank, inspired from the 

Multiresolution property of the Wavelet Transform, combined with the directional image 

segmentation using contour model. Hence, this approach is called the directional Multiresolution 

analysis framework.  

      In the Contourlet sparse expansion, the first step is to use a multi-scale transform (wavelet-like) 

for edge detection. In the second step, a local directional transform is applied for contour segment 

detection. Since the multi-scale and directional transform are decoupled, a variety of combinations 

can be defined providing flexibility for the Contourlet transform. The directional filter bank (DFB), 

introduced by [14], is used to derive basis functions of the directional transform by taking the 
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impulse responses of the filter bank. The directional divisions and basis functions are displayed in 

the Figure . 

 
 

(a) (b) 

Figure 2.6. Displaying the directional filtering concept of the Contourlet method. (a) It shows the directions related 

to 3l = which makes 
32 8= directional divisions. (b)  It displays 32 basis functions which are generated using the 

Haar filter [3]. 

      According to the down-sampling of a 1-D signal, [ ] [ ]
d

x n x a n= ⋅  provides samples and the 

frequency response is 
1

( ) ( )
| |

d
X X

a a

ω
ω = . For down-sampling of a 2-D signal, a sampling matrix is 

needed [11] and the resampled signal is obtained by 

[ ]
x x

d

y y

n n
x x M

n n

′   
= ⋅   ′   

, 
11 12

21 22

m m
M

m m

 
=  
 

 

1 11

2 2

1
( ) (( ) )

| det( ) |

TX X M
M

ω ω

ω ω
−

′   
=   ′   

 

(2.10) 

 

where M  is the sampling matrix. 
x

n
 
and y

n
 
refer to samples in the spatial domain while

1
ω  and 

2
ω represent the 2-D frequency domain.  This sampling matrix is a transform which maps the 

frequency domain area specified by 
11 1 21 2 12 1 22 2

{ } { }m m m mπ ω ω π π ω ω π− ≤ + ≤ ∩ − ≤ + ≤ into 

1 2
{ } { }π ω π π ω π− ≤ ≤ ∩ − ≤ ≤  [12]. According to this definition, directional frequency domain 

signal decomposition is implemented which divides the frequency domain into two hour-glass-

shaped spectral regions (2.7). The resampling matrix is a combination of the scaling and rotation 

matrix (-45 degree) as,  
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1 1

1 1
M

− 
=  
 

 
 

. 

(2.11) 

Using this transform the input image is divided into two images in which the first one and second 

one are formed with the spectral regions shown in (Figure 2.7.a) and (Figure 2.72.7.b), respectively. 

In order to attain wedged-shaped frequency domain decomposition, each split is divided into finer 

oriental decompositions, refer to Figure .a. 

      The proposed FDB structure by [12] has a great problem in which its oriental decompositions 

are distorted and repositioned in sub-bands images (Frequency Scrambling). Therefore, this 

interesting method has not been widely used until an improved method was proposed by [13]. 

 
 (a)                             (b) 

  

  
(c) 

Figure 2.7. (a) and (b) display the selected spectral regions of two directional Hour-Glass-Shaped filters. (c) shows 

the frequency response of the parallelogram filters [12] for finer oriental decompositions. 

Before introducing the improved DFB method, we need to introduce different sampling matrixes as 

follows [13]: 

1) Resampling Matrix: 2 2×  integer matrix with non-zero determinant.  

2) Diagonal Sampling Matrix: a resampling matrix in which its principal diagonal values are in 

the order of 2n
and 2 other elements are zero.  
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3) Generalized Quincunx Sampling Matrix: a sampling matrix with 1±  elements with 

determinant 2.  

1

1 1

1 1
q

 
=  − 

  and   2

1 1

1 1
q

− 
=  
 

 
(2.12) 

The 
1

q
 
and 

2
q  are the most common quincunx matrixes and they will be used to implement 

directional filters (Figure 2.8).  

4) Unimodular Matrix: a resampling matrix in which its determinant is 1±  with a Unimodular 

inverse. 

 
 (a) (b) (c)  

 
 (d) (e) (f)  

Figure 2.8. (a) shows the Fourier transform of the input, (b) shows the down-sampled input with 
1

q , (c) 

shows the down-sampled input with 
2

q . (d), (e) and (f) show a typical image rotated using 
1

q
 
and 

2
q . 

[13] 

5) Diamond-Conversion Matrix: it is a Unimodular matrix, { , 1,2,3,4}
i

R i = , which can be used 

with the 
0
( )H ω

 
(band-pass filters described in the Wavelet transform) to create four 

parallelogram band-pass filters, 0 ( )i
R ω  (Figure 2.9). 

1

1 1

0 1
R

 
=  
 

 2

1 1

0 1
R

− 
=  
 

 
(2.13) 

 

3

1 0

1 1
R

 
=  
 

 4

1 0

1 1
R

 
=  − 
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(a) 

 
(b) 

Figure 2.9. (a) Diamond shaped pass-band and four parallelogram pass-bands by 
i

R . (b) An input image 

and its resampled output with 
i

R matrixes [13]. 

A simple two-band DFB is designed using the quincunx sampling matrixes and the diamond filters 

0
( )H ω and 

1
( )H ω (Figure).  

 
Figure 2.10. Displaying the two-band DFB image decomposition. Oriental frequency components are divided into 

two down-sampled images [13]. 

      It is easy to create a four-band directional decomposition by cascading the same module on the 

two outputs obtained with two-band directional decomposition. In order to implement an eight 

band DFB, the four diamond-conversion matrixes (2.13) are applied to outputs of four-band 

directional decomposed images (Figure 3).  
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Figure 3. Showing the sequence of the 2 layers of a two-band directional decomposition. This image shows why a 

diamond-conversion matrix is needed to decompose green (lighter) and blue (darker) regions in the right side 

resultant image for further decomposition into eight-bands. 

The tree-structure used for eight band decomposition can be replaced with a simpler form which 

consists of a converted filter, 
3( )iH ω , and a single down-sampler matrix, 

3

iD , 

3

1 1 1 1

2 2

0 4
iD q q R q

− 
= ⋅ ⋅ ⋅ =  − 

 . 
(2.14) 

 

This down-sampler matrix is a non-diagonal matrix, therefore it results in unwanted geometrical 

transformations in the frequency domain, and this is not desired. To get rid of this problem, a 

Unimodular matrix is used to convert the overall matrix to a diagonal matrix. The post-sampling 

matrix, 
3

iB , is applied which the 
3 3 3

i i iS D B= ⋅
 
provides a proper decimation.  

1 1

1 1

(2 , 2) 0 2

(2, 2 ) 2 2

l l

l

i l l l

diag i
S

diag i

− −

− −

 ≤ ≤
= 

≤ ≤
 

(2.15) 

The impulse response of the equivalent synthesis filter is resampled and the result provides basis 

functions which span all directions.  

{ } 20 2 ,l

l l

i i
i m

d n S m
≤ ≤ ∈

 −  ℤ
 

(2.16) 
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Figure 2.124. Displaying the multi-scare directional decomposition. In figure (a) the concept of multi-scale 

directional filtering is displayed as a two steps process. In figure (b) the Contour packets are specified for a 

particular selection of layers and directional divisions [3]. 

 

 

 
(b) 

 
(a) (c) 

Figure 2.13. Displaying Contourlet atoms  [14]. (a) basis functions of level 2, (b) level 3 and (c) level 4. 

Now, the multi-scale decomposition is combined with the directional filtering. The block diagram of 

the described approach is displayed in Figure 2.124 and the result is shown in Figure. Band-passed 

images are fed into the FDB and repeated to the coarse resolution by iteratively decimating the 

filtered image. 

2.2. Karhunen-Loeve Transform 

      In 1977, a new statistical approach for restoring images degraded by Gaussian noise was 

proposed by [15], based on the Karhunen-Loeve Transform (KLT). The KLT is a linear Transform 

which provides a statistical tool to adapt the signal representation based on the signal data. Its 

basis functions are eigenvectors of the covariance matrix which are uncorrelated and maintains the 



19 

 

maximum compression. This was the first step to use the signal’s data to create basis functions. The 

KLT dictionary atoms are the first K  eigenvectors of the data covariance matrix. In Figure 2.14, a 

close relation between the DCT atoms and KLT atoms is displayed. The advantage of the KLT 

transform is to provide an adapted representation with the given signal whereas its complexity is 

higher than the DCT transform. 

 
Figure 2.14. Displaying the under-completed DCT dictionary atoms (left) versus the KLT atoms. 

2.3. Principal Component Analysis 

      The Principle Component Analysis (PCA) is an unsupervised method to reduce the 

dimensionality of a data set with a large number of interrelated variables. In essence, the idea 

behind the PCA is similar to the KLT transform in which they both are built based on the signal data. 

The PCA method transforms the space represented by the current variables into a new set of 

variables which are uncorrelated. Only the most uncorrelated variables are kept to reduce the 

dimensionality while maintaining the data set variation [16].  The PCA can be obtained using the 

Singular Value Decomposition (SVD) of the Data Matrix, or using eigenvalue decomposition of the 

data covariance matrix [17]. 

      Suppose 
TX  is data with a zero empirical mean value (mean of columns are zero). The singular 

value decomposition of X is T
X UDV= in which U  is a m m×  matrix of eigenvectors of 

TXX , 

D is a m n×  rectangular diagonal matrix and V is a n n×  matrix of eigenvectors of 
TX X . The 

principal components are columns 
i

Z  of Z UD=  with the variance of 
2 /iiD n .  V is the 
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corresponding loading vector of PCs. According to the concept of the PCA, the data can be 

approximated having only { min( , )}q q n p≪ principal components and it is the clue to reduce the 

data dimensionality. In addition, principal components are uncorrelated which provides a better 

analysis on the data with converting the data into separable modes.  

      According to the advantages of using the PCA, a large number of applications have been derived 

based on this method (Figure) such as handwritten character recognition [18], human face 

recognition [19], gene expression data analysis [20] and etc.   

      The basic PCA defines the principal components as a linear combination of all the original 

variables which have non-zero values. This problem is known as the loading problem and results in 

a difficult interpretation of the results [21]. A very simple way to address this problem is to define a 

threshold to set loadings below the threshold equal to zero, and is called Simple Thresholding.  

 
Figure 2.15. Displaying the face representation using PCA method. (a) is the original image, (b) is the result of 

summing first 8 principal components and (c) shows 8 principal components [22]. 

Sparse PCA is proposed by [21] to address this loading problem which is based on a linear 

regression method, Lasso, proposed by [23]. We first introduce the Lasso method and then continue 

to describe the sparse PCA approach.  



21 

 

2.3.1. Multiple Linear Regression, Lasso and Elastic Net 

      Multiple linear regression is a method which models the relationship between an measured 

variable (response vector), 1( ,..., )T

nY y y= , and a set of explanatory variables (predictors), 

1( ,...., ) , 1,...,T

j j njX x x j p= = . In the multiple linear regression method the data is modeled using 

linear functions which its parameters are estimated from data. Linear regression methods are 

implemented using the least squares approach or minimizing the penalized least squares loss 

function. The linear regression can be applied to predict the new value of Y having an additional 

value of X , or to find the relative strength between Y and j
X . 

y X β ε= +  (2.17) 

where β  is a p -dimensional parameter vector (regression coefficients) while ε  models an 

additive noise (disturbance term).  The Lasso method combines the regression model with an 

additional constraint on the regression coefficients to maintain the sparseness of the result.  

2

1 1

arg min
p p

lasso j j j

j j

Y X
β

β β λ β
= =

= − +∑ ∑  

(2.18) 

where the λ  is the Lagrange coefficient which mixes the linear regression model with an 
1
l  

optimization problem on the regression coefficients.   

      The number of variables selected by the lasso method is limited by the number of observations. 

Later on, a generalized form of the lasso was proposed by [24], Elastic Net, which adds the 
2
l  norm 

of the loading coefficient to the lasso problem definition.  
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2

2

2 1

1 1 1

arg min
p p p

en j j j j

j j j

Y X
β

β β λ β λ β
= = =

= − + +∑ ∑ ∑  (2.19) 

The defined penalty in the elastic net is a convex combination of the lasso penalty and a ridge 

penalty. It is shown that the elastic net solves the limitation of the lasso method in terms of the 

number of selected variables [24].  

2.3.2. Sparse Principal Component Analysis 

      An interesting approach, SCoTLASS, has been proposed by [25] which directly uses the 
1
l  norm 

on the PCA to achieve a sparse loading coefficients. The SCoTLASS method doesn’t provide a convex 

optimization problem, and therefore its high computational cost makes it an impractical method. 

The SCoTLASS optimization problem is,  

{ }arg min ( )
k

T

k k k
a

a a X X a=
     

 subject to    1T

k ka a =    and     ,

1

| |
p

k j

j

a t
=

≤∑  . 
(2.20) 

To realize the SCoTLASS as a feasible approach, the Sparse PCA method was first introduced by 

[21]and was later used by other researchers.  The Sparse PCA tries to engage the multiple linear 

regression method, Lasso, and combine it with the concept of SCoTLASS to sparsify the loading 

coefficients while holding the maximum data variance.  

      The sparse PCA is performed in two steps. In the first step the PCA is performed using the SVD 

method. In the second step, a suitable sparse approximation based on the Lasso method is fulfilled 

using the following equation: 
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2 2

1 1

ˆ arg min iZ X
β

β β λ β λ β= − + +  
(2.21) 

 

where 
i i ii

Z U D=  is the 
thi  principal component and 

1 1

p

jj
β β

=
=∑

 
are the 1-norm. The 

th
i

approximated loading ˆ
iV

β

β
=

 

which is a sparse approximated model of 
i

V . In fact, the term ˆ
iXV

approximates
i

Z . The larger value of λ  leads to the production of more zero coefficients in β .In 

this approach the principle components should be determined individually and then sparsify the 

loadings in the second step.  The reader is referred to [21] in which a numerical solution is provided 

for this problem.  
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Chapter 3. Sparse Coding Methods 

 

 

 

 

 

 

3.1. Projection Pursuit Regression 

      In 1981, a new method called Projection Pursuit Regression was proposed by [26] based on the 

nonparametric multiple regression in which an iterative procedure (Successive Refinement) finds a 

smooth representation of an input data. Although, other techniques existed to address the 

nonparametric regression (kernel, nearest-neighbor, spline smoothing), they all fail to model a 

high-dimensional sparse data. On the other hand, polynomial regression methods, which provide 

surface regression for high-dimensional data, need high order of polynomials resulting in a high 

complexity. This problem is addressed in the Projection Pursuit Regression method by 

implementing a flexible surface regression without using polynomial functions.  

      Suppose X  is a p-dimensional predictor variables and a random variable Y (response) consists 

of n measurements. The surface regression method tries to approximate the response by a linear 

combination of univariate functions 
m

Sα  of predictors. 
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1

( ) ( )
m

M

m

m

X S Xαϕ α
=

= ⋅∑  
(3.1) 

 

where 
m

Xα ⋅ is an inner product. 
m

α
 
is a coefficient vector. 

m
Sα is a smoothing function and is 

generally described with  

( ) ( )i j
i k j i k

S z AVE z
− ≤ ≤ +

= , 
i i

z xα= ⋅  (3.2) 

where AVE  is an averaging function (mean, median, or other ways). The approximation problem is 

solved in an iterative manner. 

1) Initialize the residual 
1

i ir y= , 1, 2, ...,i n=  

2) Find coefficient vector of iteration M , 
M

α  by maximizing  

( )
2

1

arg max 1 ( )
n

M

M i i

i

r S xα
α

α α
=

 
= − − ⋅ 

 
∑  

(3.3) 

3) Calculate the residual as 
1 ( )

M

M M

i i M ir r S xα α+ = − ⋅ , 1, 2, ...,i n=  

4) Terminate if the residual is acceptable, unless repeat steps 2 & 3. 

 

3.2. Matching Pursuit 

      In 1993, a method proposed by [27] to decompose any signal into a linear expansion of 

waveforms which describe time-frequency properties of the signal. Time-frequency atoms are 

selected to best match the signal structure and are created with dilations, translations and 

modulations of a single window function. In essence, the matching pursuit is closely related to the 

projection pursuit regression. The matching pursuit is a greedy method which iteratively 

decomposes the signal into its representing waveforms (atoms). Basically, its definition is inspired 

with the Hilbert transform.  
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, ( ) ( )f g f t g t dt
+∞

−∞
< >= ∫  

(3.4) 

where it describes the inner product of functions f  and g . The atoms are obtained by scaling, 

translating and modulating of a real function, ( )g t , 

1
( ) i tt u

g t g e
ss

ξ
γ

− 
=  

 
 

 (3.5) 

where the coefficient 1 s normalizes the norm of ( )g tγ  to 1. In order to have an acceptable 

representation, a comprehensive countable set of atoms should be derived using (3.5) to create a 

dictionary. Then , the signal is represented as a linear combination of created atoms as, 

1

( ) ( )
n

N

n

n

f t a g tγ
=

=∑  . 
(3.6) 

The matching pursuit seeks for a linear expansion of f which best match its inner structure. This is 

performed by successive refinements of f under the Hilbert transform as, 

0 0
,f f g g Rfγ γ= +  . (3.7) 

where Rf  is a residual vector. It is conspicuous Rf  is perpendicular to 
0

gγ .  Therefore, the energy 

preservation of f  is satisfied by, 

0

22 2
,f f g Rfγ= +  . 

(3.8) 

To minimize the error (norm of Rf ),
0

γ should be selected to maximize 
0

,f gγ . In the next step, 

the above procedure is repeated for the residual as, 

1,
n n

n n n
R f R f g g R fγ γ

+= +  . (3.9) 

This procedure should be repeated until the residual of the iteration m falls into an acceptable 

error. Now, the function f  is approximately decomposed by the matching pursuit as,   
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1

0

,
n n

m
n m

n

f R f g g R fγ γ

−

=

= +∑  . 
(3.10) 

3.3. Orthogonal Matching Pursuit 

      The matching pursuit is able to optimally decompose f  in the case that atoms are pairwise 

orthogonal. However, there is no guarantee that it converges into an efficient response if the basis 

waveforms are not orthogonal. The Orthogonal Matching Pursuit (OMP), proposed by [28], is an 

alternative solution based on the matching pursuit which provides a fast convergence with non-

orthogonal dictionaries. The key to its enhancement is to update all obtained coefficients 
k

a (3.6) to 

be used in the next iteration. Having this concept, suppose the decomposing of f  is formulated for 

the iteration k  as, 

1

k
k

n n k

n

f a x R f
=

= +∑  . 
(3.11) 

 

The objective is to update the coefficient 
k

na
 
into 

1k

na
+

, 

1
1

1

1

k
k

n n k

n

f a x R f
+

+
+

=

= +∑  . 
(3.12) 

As the dictionary atoms are not necessarily orthogonal, an auxiliary model of the new 
1k

x +  based 

on previously selected atoms are needed, 

1

1

k
k

k n n k

n

x b x γ+
=

= +∑  . 
(3.13) 

The new created term using a weighted summation of previously selected atoms, 
1

k
k

n n

n

b x
=

∑ , is a new 

projection of 
1k

x +  which is unexplainable using 
0

{ ,..., }
k

x x . Having this modification, the non-

orthogonal dictionary problem of the matching pursuit method is omitted. In the next iteration, 

these updates should be applied to maintain independency of the next adding term to existing 

descriptors as, 
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1k k k

n n k na a bα+ = − ,   1,...,n k=  
 

and 
1

1

k

k ka α+
+ =

 
 

(3.14) 

where 
1 1 1

2 2

1 1 11

, , ,

, ,

k k k k k k

k k k
k k k k n n kn

R f x R f x R f x

x x b x x
α

γ γ

+ + +

+ + +=

= = =
−∑  . 

The OMP method resolved the convergence problem of the matching pursuit method with the cost 

of adding complex computations which proportionally arises by increasing the number of 

iterations. In general, the OMP algorithm can be explained as (Table 3.1. OMP algorithm. A lot of 

techniques have been developed to address the computational complexity related to OMP iterative 

process specifically due to the calculation of { }k

nb . To illustrate, lets rewrite (3.13) in a matrix form 

as, 

k k k
v A b=  

1 1 1 2 1

1 2

1 1 2 1 1

1 2 2 2

1 2

, , , ,..., ,

, ,...,

, , ,

, ,

, , ,

T

k k k k k

T
k k k

k k

k

k

k k k k

v x x x x x x

b b b b

x x x x x x

x x x x
A

x x x x x x

+ + +=   

 =  

 
 
 =
 
 
  

⋯

⋯ ⋮

⋮ ⋮ ⋱ ⋮

⋯
.

 

(3.15) 

 

Having the third step of the OMP algorithm, the matrix 
k

A  is nonsingular. Therefore, 
k

b is 

calculated using this equation, 

1

k k kb A v
−=  (3.16) 

And 
1k

A +  is obtained as follows, 

1 * 1

k k

k

k

A v
A

v
+

 
=  
 

 
(3.17) 

And the inverse matrix of 
k

A  can be recursively calculated, 
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1 *

1

1 **

1
,

(1 )

k k k k

k

k kk

A b b b
A

v bb

β β
β

β β

−
−
+

 + −
= = 

−− 

 
. 

(3.18) 

This formula shows an iterative calculation method instead of finding 
k

A
 
in each iteration.  

Table 3.1. OMP algorithm 

1) Initialize
0

R f f= ,
0

{}D = , 
0

0 0a = , 0k = , 
0

0x =  

2) Find arg max , ;k j j
j

R f x x D∈  

3) If ,
k j

R f x threshold<  then stop 

4) Compute { }k

nb  

5) Update { }1 , 1,..., 1k

na n k
+ = +  

6) Update the model

1
1

1

1

k
k

k n n

n

f a x
+

+
+

=

=∑ , 
1 1k k

R f f f+ += − , { }1 1k k kD D x+ += ∪  

7) Go back to step 2 

 

3.3.1. Cholesky Orthogonal Matching Pursuit 

      The orthogonal update step of the OMP method computes the pseudo-inverse of the local 

dictionary
k

D . The complexity of pseudo-inverse transform arises by increasing the number of 

iterations. An intelligent substitution for the pseudo-inverse calculation is proposed by [29] which 

engages Cholesky factorization to update the sparse vector coefficients, γ , for the following sparse 

representation problem,  

: arg min
a

x Daγ = −   subject to  
0

a < Γ  (3.19) 

where Γ is the limit of non-zero coefficients. Now, consider the iteration 1k + , we have 

[ ]1k k nD D d+ = , where 
n

d  is the selected atom which maintains the maximum correlation with the 

residual, 
k

r . One straightforward formulation to obtain the sparse vector,γ  is, 

1 1 1

T T

k k kD D D xγ+ + +
  =   

(3.20) 
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[ ]1 1

T T T

kk k k k n

k k n kTT T T

n n k n n

A vD D D D d
A D d

v cd d D d d
γ γ γ γ α+ +

      
= = = =      
       

 

1

k

k T

A v
A

v c
+

 
=  
 

 

and, 

1 1k k
A γ α+ +=  (3.21) 

where 
1 1

T

k kD xα + +=
 
is a column vector of the iteration 1k + , consisting of inner products of local 

dictionary atoms and the input signal, x . In each iteration, a column and a row is added to the 
k

A  
to 

create the 
1k

A +
. Using the Cholesky decomposition, the 

1

T

kA LL+ =  is derived assuming that L  is a 

lower triangular matrix which helps to reduce computation costs of solving (3.21), 

1 1

T

k KL L γ α+ + =  

:y solve Ly α= =  

: T
solve L yγ γ= =  

(3.22) 

 

The point to use the aforementioned calculations instead of the pseudo-inverse is the simple 

relation between the 
1k

L + and 
k

L , 

1

0k

k T T

L
L

w c w w
+

 
=  

−  
,  

1

kw L v
−=  

(3.23) 

 

and, 

:
k

w solve L w v= =  (3.24) 

Supposing that the 
k

L
 
is a lower triangular matrix, the 

1k
L +  will remain a lower triangular matrix. 

The complete algorithm of the Cholesky-OMP method is presented in Table 3.1. 
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Table 3.1. The Algorithm of Cholesky-OMP 

1. Initialize: D , input signal x ,  number of non-zero coefficients  Γ , ()I = , [1]L = , 

r x= , 0γ = , 0α = , 1n =  

2. : arg max ,T

jj d r=  

3. If 1n >  then 

: T

I jw solve Lw D d= =  

0

1T T

L
L

w w w

 
=  

−  
 

4. Update I I j= ∪  

5. Calculate 
T

n ID xα =  

6. :
n

y solve Ly α= =  

7. : T

Isolve L yγ γ= =  

8. 
I I

r x D γ= −  

9. 1n n= +  

10. If n < Γ  then go to step 2 

 3.3.2. Batch Orthogonal Matching Pursuit 

      As discussed previously, Cholesky method reduces the computations needed for the orthogonal 

update step of each iteration. The second approach proposed by [29], applies another technique to 

reduce the computational cost of calculating the correlation (inner product) of the residual with 

dictionary atoms. In this situation they are aiming to find the best matching atom with the residual. 

A pre-calculated matrix, 
T

G D D= , is stored in the memory to eliminate redundant computations.  

1 1

,( ( ) ) ( )

T

T T T T

I I I I I I I I

D x

D r D x D D D D x G G

α

α α α− −

′ =

′ ′= = − = −
 

(3.25) 

 

It shows that the correlation between the residual and dictionary atoms is calculated based on the 

matrix G , without knowing the residual. The stopping factor can be applied based on the number 

of non-zero coefficients or the norm of the residual (error). For the second case, the error in the 
th

k

iteration is calculated based on the error of the 1th
k − iteration, 
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( )1 1 1 1k k k k k k k kr x D x D D D r Dγ γ γ γ γ γ− − − −= − = − + − = + −  (3.26) 

 

The orthogonality property of the OMP method maintains that the residual is perpendicular to the 

current signal approximation [29], ( ) 0T

k kr Dγ = . Now, the norm of the residual is obtained as, 

( )

( )

2

1 1 1 12

1 1 1 1

2

1 1 12

2

1 1 12

2

1 2

2

1 1 12

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

T T T T

k k k k k k k k k k k

T T

k k k k k k

T T

k k k k k

T T

k k k k k

T T

k k k

T T

k k k k k k

r r r r r D r r r D

r D r r D

r r D r D

r x D D x D D

r x D x D

r r D D r D D

γ γ γ

γ γ γ

γ γ

γ γ γ γ

γ γ

γ γ γ

− − − −

− − − −

− − −

− − −

−

− − −

= = + − = +

= + − +

= − +

= − − + −

= − +

= − + + + 1

2

1 1 12

2

1 1 12

( ) ( )

( ) ( )

k

T T T T

k k k k k

T T

k k k k k

r D D D D

r G G

γ

γ γ γ γ

γ γ γ γ

−

− − −

− − −

= − +

= − +

 

(3.27) 

 

By defining ( )T

k k kGδ γ γ= , the error of each iteration is updated as, 

1 1k k k k
ε ε δ δ− −= − +  (3.28) 

According to the fact that ( )
1 0

,I I I I I I
G G G Gγ γ α

−
= =  which is calculated in each iteration, and 

therefore the error update step takes a low computational time. The algorithm of this method is 

presented in Table 2.3. 

Table 2.3. The Algorithm of Batch-OMP 

1. Initialize: D ,
T

G D D= , input signal x ,  
T

D xα ′ = , number of non-zero coefficients  Γ , 

()I = , [1]L = ,
0 T

x xε = , 0γ = , α α ′= , 
0

0δ = , 1n =  

2. ( ): maxj α=  

3. If 1n >  

,
:

I j
w solve Lw G= =  

0

1T T

L
L

w w w

 
=  

−  
 

4. Update I I j= ∪  

5. :
I

y solve Ly α= =  
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6. : T

Isolve L yγ γ= =  

7. I IGβ γ=  

8. α α β′= −  

9. 
T

n I Iδ γ β=  

10. 
1 1n n n n

ε ε δ δ− −= − +  

11. 1n n= +  

12. If 1n nε ε− >  then go to step 2 

3.3.3. Stagewise Orthogonal Matching Pursuit 

      Stagewise Orthogonal Matching Pursuit (St-OMP), is a fast technique proposed by [30] to 

provide a sparse solution for extremely underdetermined sparse representation problems. The 

purpose is to reduce the representation error in a Stagewise fashion by approximating the solution 

of 
0

y x= Φ , while
0

x  is the best sparse solution. This proposed method is intended to reduce the 

tedious computations needed for solving large size sparse problems. The basic idea is to extract 

multiple atoms in each stage, called Stagewise OMP, whereas the traditional OMP method finds 

exactly one atom per each iteration. Therefore, the number of iterations needed to extract a certain 

number of non-zero coefficients is significantly reduced. In this method, the process of selecting 

atoms uses the matching filter, 
Tx y= Φɶ , similar to the OMP method, and 

0
z x x= −ɶ

 
measures the 

reconstruction accuracy. This method assumes that the dictionary, 
n N×Φ ∈ℝ , is randomly taken 

from the uniform spherical ensemble (USE) and its columns are independent and identically 

distributed (i.i.d.) points on the unit sphere. Using this definition, if both n  and N are adequately 

large, then the entries of vector z approximately have a Gaussian distribution with the following 

standard deviation [30], 

0 2
x

n
σ ≈  

(3.29) 

 

In the same behavior to the OMP method, the St-OMP initiates the residual with the input signal. In 

each stage, the correlations between the residual, 
s

r , and dictionary atoms are calculated, 
T

s sc r= Φ  



 

(Matching Filter). Then, a hard thresholding is applied to the output of the matching filter

{ }: ( )s s sJ j c j t σ= >  where 
s

t  is the threshold, aiming

correlation. The index of selected atoms are gathered,

projected to all atoms of the selected sub

( )
1

( )
s s s s

T T

s I I I Ix y
−

= Φ Φ Φ  

The result is the sparse vector of the 

process is repeated for a pre

reconstruction error is achieved. The threshold in each iteration is calculated for the residual based 

on considering noise to be as a Gaussian distribution with standard deviation, 

for threshold is 2 3
s

t< < .  The St

detail to select a good threshold value, readers are referred to 

Figure 3.1. Schematic Representation of the St

3.4. Basis Pursuit 

      The basis pursuit [31] is a met

dictionaries. An over-complete dictionary can be created by concatenating multiple dictionaries 

(DCT, wavelet, Gabor and etc.) in order 

extreme desire of a lot of works, specifically the basis pursuit technique, on the over

34 

Then, a hard thresholding is applied to the output of the matching filter

is the threshold, aiming to select a subset of atoms with higher 

f selected atoms are gathered, 
1s s s

I I J−= ∪ , and then, the input signal is 

projected to all atoms of the selected sub-set,  

sparse vector of the 
th

s  stage. Then, the residual is updated by r y x

process is repeated for a pre-defined number of stages or stopped earlier if a desired 

The threshold in each iteration is calculated for the residual based 

on considering noise to be as a Gaussian distribution with standard deviation, σ . The offering value 

St-OMP block diagram is depicted in Figure. In order to have more 

a good threshold value, readers are referred to [30].  

. Schematic Representation of the St-OMP method [30]. 

is a method to decompose a signal specifically using over

dictionary can be created by concatenating multiple dictionaries 

in order to combine their characteristics. This fact contributes to an 

extreme desire of a lot of works, specifically the basis pursuit technique, on the over

Then, a hard thresholding is applied to the output of the matching filter, 

to select a subset of atoms with higher 

then, the input signal is 

(3.30) 

 

s s
r y x= − Φ .  This 

defined number of stages or stopped earlier if a desired 

The threshold in each iteration is calculated for the residual based 

. The offering value 

In order to have more 

 

hod to decompose a signal specifically using over-completed 

dictionary can be created by concatenating multiple dictionaries 

to combine their characteristics. This fact contributes to an 

extreme desire of a lot of works, specifically the basis pursuit technique, on the over-completed 
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dictionaries. For an input signal s  and an over-completed dictionary D  which consists of 

waveforms γφ  (γ  is a parameter), the representation is defined as, 

( )

1

,
i i

m
m

i

s Rγ γα φ
=

= +∑  
(3.31) 

 

where 
( )mR  is the residual. The basis pursuit method uses a convex optimization problem which 

minimizes the 
1
l  norm of the representation coefficients [32]. The 

1
l  norm creates a nonlinear 

optimization problem which leads to provide a higher sparsity. On the other hand, this method is 

based on the global optimization and therefore it stably finds the global optimum representation 

whereas the MP method cannot.  

1
min α

 
subject to   sαΦ = . (3.32) 

To introduce the solution to this problem, we should first describe the primal-dual interior point 

algorithm which is a popular linear programming method.  

3.4.1. Primal Dual Interior Point Algorithm for linear programming 

      The primal dual Interior point described by [33] is a linear programming method which 

provides a solution for the standard form primal problem as, 

arg min
T

x

x c x=  subject to   Ax b= 0x ≥ , (3.33) 

where , nc x ∈ℝ , m
b ∈ℝ  and A  is a matrix with the size of m n× . There is a dual problem 

associated with the primal problem, 

( , )

arg max T

y s

b y          subject to    
TA y s c+ = ,      0s ≥ , (3.34) 

where 
my ∈ℝ  and n

s ∈ℝ  is called the dual slack. The quantity 
T Tc x b y−  is called the duality gap 

which is the termination factor in the linear programming. The problem is rewritten as, 
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0

( , ) 0

T
A y s c

Ax b

XSe

x s

+ =

=

=

≥

 

(3.35) 

where ,[ ] 1, 1,....,n

ie e i n∈ = =ℝ , X and S are diagonal matrixes defined as, 

1

2

[ ] 0 0

0 [ ] 0

0

0 0 0 [ ]n

x

x
X

x

 
 
 =
 
 
 

⋯

⋯

⋮ ⋮ ⋱

, 
1

2

[ ] 0 0

0 [ ] 0

0

0 0 0 [ ]n

s

s
S

s

 
 
 =
 
 
 

⋯

⋯

⋮ ⋮ ⋱

 

 

 

. 

(3.36) 

To solve the problem (3.35), the variant of Newton’s method is used. Considering the result

* *( , , )x y s∗
, the problem is reformulated as follows, 

( , , ) 0,

TA s c

F x y s Ax b

XSe

 + −
 

= − = 
 
 

( , ) 0x s ≥  

 

 

. 

(3.37) 

According to the Newton’s method, the difference of the result between the current iteration and 

the next iteration ( , , )x y sδ δ δ is calculated as the following linear model, 

( , , ) ( , , )

x

F x y s y F x y s

s

δ

δ

δ

 
 ′ = − 
  

 
(3.38) 

where F′  is the Jacobean of F .  The final formula is obtained according to the equation (3.38), 

1

1

0 0 0

0 0 0

0

T

n m n m n n n

m n m m m n m

n n n m n n

A x

A y

S X s XSe

δ

δ

δ

× × × ×

× × × ×

× × ×

     
     =     
     −    

 

 

 

. 

 

(3.39) 

The value of 
1( , , ) ( , , ) ( , , )k kx y s x y s x y sδ δ δ+ = +  should be iteratively modified until the value of 

the duality gap gets smaller than a desired error. The introduced method is the simplest form of the 

interior point method and a lot of enhancements have been applied to accelerate the convergence 

and to increase the accuracy of the result.  
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3.4.2. Solving the Basis Pursuit method using the linear programming 

      After introducing the prime dual method, it is now time to utilize it to solve (3.19). The solution 

is supposed to be sparse with n non-zero coefficients corresponding to n columns of Φ . These 

columns constitute the basis of a space 
n
ℝ . After finding the optimal basis, the solution is uniquely 

identified [32]. To use the primal dual method, the signal patch, s , is split into s u v= − , while 

, 0u v ≥ . Now, define [ ]
T

x u v= and assume [ ]A = Φ −Φ . we have,  

1 1 1

T

i is u v u v c x= + = + =∑ ∑  . (3.40) 

 

Using this transformation, it is possible to use the dual prime method to solve the BP (Table ). 

Table 3.3. The pseudo-algorithm of solving the BP using the dual primal interior point 

1. Initialize ,x y  and s  

2. Solve equation (3.39) to find [ ]x y s∆ ∆ ∆  

3. Update ,x y  and s  

4. Check convergence criteria, if not converged go to step 2 

5. End 
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Chapter 4. Dictionary Learning 

 

 

 

 

 

      The selection of a dictionary influences the quality of the sparse representation in terms of the 

level of sparsity, the error of representation, the desired characteristic extractions and etc. As 

discussed previously, different analytical dictionaries have emerged to address the different 

applications in which each dictionary highlights a special property of the input signal. For example 

the DCT dictionary extracts localized frequency domain information, whereas the wavelet conducts 

a multi-resolution decomposition. All these dictionaries share the same fact that they are 

independent of input signal contents. However, it is of great interest to create a dictionary well 

adapted to the input signal, aiming to increase the sparsity of the representation. To address this 

matter, the dictionary learning has emerged and developed since the last decade. Dictionary 

learning intends to create a dictionary, D , which best represents the input set, 

{ | 1,..., }n

iY y i N= ∈ =ℝ .  
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The first approach to solve the dictionary learning problem is based on the maximum likelihood 

method. [34] proposed a probabilistic model based on the input set for learning an overcomplete 

dictionary. This approach considers the error of representation as an additive Gaussian noise, 

y Dx ε= +  (4.1) 

where 
n LD ×∈ℝ  is an overcomplete basis (dictionary), L n> . x  and ε  are sparse vector and 

reconstruction error, respectively. The data likelihood is derived as, 

2

2
11

1
( ) log ( | , ) ( )

2

N N

i i

ii

l Y P y D x y Dx
σ==

 
= ∝ − − 

 
∑∏  

(4.2) 

 

where 
2σ  is the reconstruction error variance. The problem of the above definition is that the 

overcomplete representation has many solutions. A remedy to this problem is to define prior 

probability for the sparse coefficients, ( )P x , and the optimization problem is derived as, 

1 1

arg max ( | , ) arg max ( | , ) ( )
N N

i i i i i
x xi i

x P x y D P y D x P x
= =

= =∏ ∏  
(4.3) 

One possible selection for ( )P x  is the Laplace distribution, ( )( ) expi iP x xθ∝ − , which puts a great 

emphasis on zero values and forces the problem to maintain the sparsity condition. The total 

formulation turns into the following minimization problem [35], 

{ }2

2 1
1

arg min min
i

N

i i i
xD i

D Dx y xλ
=

= − +∑  
(4.4) 

 

A solution to the above optimization is obtained by the use of the gradient descend procedure, 

( )1

1

N
T

n n n i i i

i

D D D x y xη+
=

= − −∑  
(4.5) 

 

where η  adjusts the update step. The other method to learn a set of atoms is the method of optimal 

directions (MOD) which is proposed by [36] and works in the similar way of the K-means method.  
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      In this paper, it is stated that for an overcomplete set of vectors, namely frames, because L n> , 

frames are dependent and therefore can’t be taken as the basis for the space. In this method, the 

author avoids to use the term, dictionary, because it implies the vector quantization or classification 

whereas the term frame covers both basis and an overcomplete set. Each signal,
ny ∈ℝ , can be 

represented as a linear combination of frames. The training process is iteratively performed in 

which each iteration is combined with a sparse coding update and dictionary atoms update 

procedures. The sparse coding update step uses OMP or Basis Pursuit methods. For the dictionary 

update method, the error of reconstruction, 
i

r , for all input sets are calculated based on the 

Frobenius norm, 1 2[ , ,..., ]
N

R r r r= , where R  is the residual of representing all input signals [35] 

and is calculated as,  

2

2 2

1

N

iF F
i F

R r Y DX
=

= = −∑  
 

. 

(4.6) 

 

Taking the derivative of (4.6) with respect to D , we reach to the point ( ) 0T
Y DX X− = . Suppose 

,

T

r xR RX=ɶ
 
is the estimation of the cross correlation between the residual and vector of sparse 

coefficients. 
,

T

x xR XX=ɶ
 
is the auto correlation of the sparse vector. Then the set of frames is 

iteratively updated as follows [37], 

1

1 , ,i i r x x xD D R R
−

−= + ⋅ɶ ɶ  (4.7) 

 

       The next category of dictionary learning approaches applies the maximum a-posterior 

probability, ( | ) ( | ) ( )P D Y P Y D P D∝ . This category is similar to the maximum likelihood method, 

but the prior probability, ( )P D , brings more flexibility to derive a lot of formulations. For a prior 

probability that forces the dictionary atoms to have unit Frobenius norm, the dictionary update is 

derived as follows, 
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1 ( )T T

n n n nD D EX tr XE D Dη η+ = + + ⋅  (4.8) 

In the following, two recent dictionary learning methods, 1l -regularized and K-SVD, are introduced 

in detail.  

4.1. Sparse coding using l1-regularized least squares and learning using Lagrange dual 

      A new learning scheme based on the maximum a-posteriori (MAP) estimation is proposed by 

[38]. In this model, it is assumed that the reconstruction error has a zero-mean Gaussian 

distribution with covariance 
2
Iσ . The prior probability distribution for each coefficient in the 

sparse vector is selected to be Laplacian, ( ) exp( ( ))
j j

P x xβφ∝ −  , where (.)φ  is the sparsity 

function.
1

( )j jx xφ =
 

is the L1-Penalty which maintains sparsity while still being robust to 

irrelevant features. Considering the uniform distribution for the dictionary atoms, the solution to 

the maximum posterior estimation is obtained as, 

2

{ },{ } , ,

1 1 1 1

1
min ( )

2j i

N L N L

d x i j i j i j

i j i j

y d x xβ φ
= = = =

− +∑ ∑ ∑∑  subject to 
2

, 1,...,
j

d c j L≤ ∀ =  

(4.9) 

 

The above optimization problem can be more easily written in matrix form as follows, 

2

, , 1
,

min
D X i jF

i j

Y DX xβ− + ∑  subject to 
2

,
, 1,...,

i j

i

D c j L≤ ∀ =∑  (4.10) 

 

      The above optimization problem is convex if the problem is optimized in terms of D while X  is 

fixed or visa versa. The optimization problem to simultaneously update both of them is not a convex 

problem. For updating D  (fixed X ), the optimization problem is a least squares problem with 

quadratic constraints. The solution proposed by [38] is to use the Lagrange dual which is claimed to 

be much more efficient than other gradient descend approaches. For learning X (fixed D ), the 

optimization problem is a regularized least squares problem. The proposed method by [38] to 

address this updating step is the L1-regularized least squares problem.  
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For solving the problem to find the optimum value of atoms,{ }
j

x , for fixed D , the following 

minimization problem should be solved, 

( )
2

2

, ,
min 2

x i j i j i j

j j

y d x xσ β− +∑ ∑  

(4.11) 

 

Considering only non-zero coefficients, ,i j
x , the problem is simplified to an unconstrained 

quadratic optimization problem, by replacing ,i j
x−  for ,

0
i j

x < .  Thus, the proposed method tries to 

make a guess on the sign of coefficients, ,i j
x , and then change the sign if it is not correct. X presents 

the solution to the following simplified notation, 

2

2 1
min

x
y Dx xγ− +  . (4.12) 

 

During the iterative optimization solution, the set of non-zero coefficients are kept and updated in 

the active set. 

      The dual Lagrange method is applied to derive the dictionary update step. In this case, the 

sparse matrix, X , is obtained and fixed and the minimization is over D , 

2
min

F
Y DX−   subject to  

2

,

1

, 1,...,
k

i j

i

B c j n
=

≤ ∀ =∑  
(4.13) 

 

This problem is a least squares with quadratic constraints. The Lagrange definition to (4.13) is, 

( ) ( )( ) 2

,

1 1

( , )
L n

T

j i j

j i

l D trace Y DX Y DX D cλ λ
= =

 
= − − + − 

 
∑ ∑  

(4.14) 

 

0
j

λ ≥ is a dual variable. The minimization problem over the Lagrange dual is, 

1( ) min ( , ) ( ( ) ( ) )T T T T T

B
D l D trace Y Y YX XX YX cλ λ −= = − + Λ − Λ , ( )diag λΛ =  (4.15) 

 

The Newton’s method solution to (4.15) is, 
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1( ) ( )T T T TD XX YX−= + Λ  (4.16) 

 

Solving the dual problem tackles much less number of variables in contrast with the primal 

problem. The pseudo-algorithm of the L1-regularized least squares is displayed in Table .  

Table 4.1. The pseudo-algorithm of the L1-regularized least squares 

1. Initialize 0x = , 0θ = , active set={}, where { 1,0,1}
i

θ ∈ −  

2. From zero coefficients of x , select 

2

2arg max
i i

y Dx
i

x

∂ −
=

∂
 

Add 
i

x  to the active set if: 

a. If 

2

2

i

y Dx

x
γ

∂ −
>

∂
, then set 1

i
θ = −  and active set = active set i∪ , 

b. If 

2

2

i

y Dx

x
γ

∂ −
< −

∂
, then set 1

i
θ =  and active set = active set i∪ , 

 

3. Feature-Sign Step:  

Select D̂ (sub matrix of D ), x̂ (sub-vector of x ) and θ̂ (sub-vector of θ ) corresponding to 

the active set. Compute 
1

ˆ
ˆ ˆ ˆˆ ( ) ( )

2

T T

new
x D D D y

θ
γ−= −  

Perform a discrete line search on the close line from x̂  to ˆ
new

x : 

a. Check the objective value at ˆ
new

x and all points where any coefficient changes sign 

b. Update x̂  and the corresponding value in x to point with the lowest objective value. 

Remove zero coefficients from the active set and update ( )sign xθ =  

4. Check the optimality conditions: 

a. Optimality condition for nonzero coefficients: 

2

( ) 0, 0
j j

j

y Dx
sign x x

x
γ

∂ −
+ = ∀ ≠

∂
 

If condition (a) is not satisfied, go to step (3) without new activation, unless check (b) 

b. Optimality condition for zero coefficients: 

2

, 0
j

j

y Dx
x

x
γ

∂ −
≤ ∀ ≠

∂
 

If condition (b) is not satisfied, go to step (2), unless return x as the solution. 

4.2. K-SVD method 

      The K-SVD method is proposed by [35], generalizes the K-means method to address the 

dictionary learning problem. In the K-means method a dictionary of codewords, 
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1[ ,..., ],{ } n

L iC c c c= ∈ℝ , is calculated using a training algorithm and each input signal is 

represented to its closest code word such that 
2 2

2 2
,

i k
y c y c i k− ≥ − ∀ ≠  which is the extreme 

case of the sparse representation problem with only one nonzero coefficient and the coefficient is 1. 

The K-SVD method proposes a generalized K-means method in which each input signal can be 

represented by more nonzero coefficients with arbitrary values between 0 to 1. For this case, the 

minimization problem is, 

2

,
min

FX D
Y DX−   subject to  

00
,ix T i≤ ∀  (4.17) 

 

       At each iteration, two steps are performed. The first step considers that the dictionary, D , is 

fixed and determines the sparse vector, X , using any possible method such as OMP. In the second 

step, the obtained sparse vector is fixed and the dictionary is updated to minimize the optimization 

problem (4.17). To perform this, dictionary columns are updated, 
idɶ , individually in which each 

column is calculated to minimize the mean square error of the input signal reconstruction using all 

other dictionary columns (atoms). The problem of updating only one column can be addressed 

using the singular value decomposition (SVD). For updating only the column, 
k

d , the following 

optimization problem should be solved, 

2

2

1

2

L
T T T

j j j j k kF
j j kF

T

k k k F

Y DX Y d X Y d X d X

E d X

= ≠

 
− = − = − − 

 

= −

∑ ∑
 

(4.18) 

 

The column, 
k

d , should be updated to reduce the reconstruction error, 
k

E , obtained by all other 

atoms. Using the SVD, new values for both 
k

d  and 
T

kX  are obtained. However, 
T

kX may have a lot 

of nonzero coefficients which is against the sparsity constraint. The key to solve this problem is to 

consider only nonzero coefficients and corresponding input signals. Then, the obtained updated 
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result corresponds to nonzero coefficients of existing sparse vector and it maintains the sparsity 

condition. For each atom update, a set of indexes of atoms which are involved to represent the 

updating atom is defined as, 

{ }|1 , ( ) 0T

k ki i L X iω = ≤ ≤ ≠  (4.19) 

Now, a matrix 
( )kN length

k

ω×Ω ∈ℝ is formed with ones on [ ]: ( ) :
k

col i row iω  positions and zeros 

elsewhere. Now, the transform 
R T

k k kx x= Ω  only keeps nonzero coefficients. The same thing is 

applied on the input signals, 
R

k kY Y= Ω , which shrinks the input signals to relative input signals 

which are represented with the 
th

k atom. Similarly, it is applied on the error, 
R

k k kE E= Ω , and the 

minimization problem is modified, 

arg min
k

R R

k k k k
d

d E d x= −ɶ  (4.20) 

Now, we can decompose 
R

kE using the SVD into 
R T

kE U V= ∆ .  kdɶ
 
is the first column of U and 

R

kx  is 

the first column of V multiplied by (1,1)∆ . In Table 4.2, the pseudo-algorithm of the K-SVD method 

is presented which shows the simplicity of this method. 

Table 4.2. The pseudo-algorithm of the K-SVD method. 

1. Initialize dictionary with 
n LD R ×∈  which all columns are normalized 

2. Use any pursuit algorithm to solve arg min
X

Y DX−  subject to 00
X T≤  

3. For each column in D ,
k

d ,  

a. Find 
k

ω , according to (4.19). 

b. Compute the representation error 
R

kE  

c. Apply SVD decomposition and find kdɶ  and 
R

kx  

4. Check the convergence criteria and if it is not achieved go to step 2. 

 

  



 

Chapter 5. Phase Included DCT and 

Multi-Stage OMP

 

 

 

5.1. New Overcomplete DCT dictionary

      To our best knowledge, all previously used DCT dictionaries

changes of the frequency with no consideration on the phase of the signa

whose frequency components have

illustrate, consider a simple example that the input signal is 

The representation of this signal using the OMP 

conventional completed DCT dictionary is 

sum of absolute differences for reconstructing this pat

43.37%. It illustrates that the conventional DCT dictionary is not representative for 

however it is created using a simple cosine function

 

 

 
Input patch  Atom #1 

 

=
Reconstructed  × 0.0783 

 

Figure 5.1. Reconstruction of a cosine function (input patch) with a non

the OMP method with 5 nonzero coefficients. Selected atoms are displayed in the first row and the result of 

multiplying them with their correspondin

obtained by the sum of abs differences (SAD
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Phase Included DCT and 

OMP 

vercomplete DCT dictionary: Phase Included-DCT 

To our best knowledge, all previously used DCT dictionaries were only defined based on the 

no consideration on the phase of the signal. Therefore, for a signal 

frequency components have a nonzero phase, causes to a high reconstruction error. To 

illustrate, consider a simple example that the input signal is 
8 8( , ) cos(2 / 2)f x y f n
×∈ = +ℝ

The representation of this signal using the OMP with 5 nonzero coefficient

completed DCT dictionary is depicted in Figure. The calculated accuracy based on the 

sum of absolute differences for reconstructing this patch using the conventional DCT dictionary is 

that the conventional DCT dictionary is not representative for 

a simple cosine function.  

 

  

 

  

 Atom #2  Atom #3  Atom #4  

 

+ 
 

+ + 

 

+
 × 0.1602  × 0.0821  × 0.0783  

. Reconstruction of a cosine function (input patch) with a non-zero phase. It is sparsely represented

the OMP method with 5 nonzero coefficients. Selected atoms are displayed in the first row and the result of 

with their corresponding coefficients are shown in bottom row. The reconstructed atom error 

obtained by the sum of abs differences (SAD) is 43.37%. 

Phase Included DCT and 

defined based on the 

l. Therefore, for a signal 

causes to a high reconstruction error. To 

( , ) cos(2 / 2)x xf x y f nπ π∈ = + . 

nonzero coefficients based on the 

The calculated accuracy based on the 

ch using the conventional DCT dictionary is 

that the conventional DCT dictionary is not representative for this patch, 

 
Atom #5 

+ 

 

× 0.0711 

sparsely represented using 

the OMP method with 5 nonzero coefficients. Selected atoms are displayed in the first row and the result of 

g coefficients are shown in bottom row. The reconstructed atom error 
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      One possible way to decrease the representation error is to apply overlapping when selecting 

input signal patches. This, results in tremendously increasing the computational cost. [35] applies 

an overcomplete DCT dictionary by defining more frequency divisions and comparing the result 

with the complete DCT dictionary. Figure  shows that the representation error using the 

overcomplete DCT with more frequency divisions is not reduced [35]. The reason is that the phase 

information of input patches are lost using the overcomplete DCT and complete DCT dictionaries 

used by [35]. 

 

 
(b) 

Overcomplete DCT dictionary 

PSNR =32.4021 

8 bits per coefficients 

Rate=0.69419  BPP 

(c) 

Complete DCT dictionary 

PSNR =32.3917 

8 bits per coefficients 

Rate=0.70302  BPP (a) 

Figure 5.2.  Demonstration of the insignificance of using the overcomplete DCT with more frequency divisions [35]. 

(a) shows the overcomplete dictionary, (b) and (c) show the sparse representation results obtained using  

overcomplete DCT and complete DCT dictionaries, respectively. The PSNR obtained using the overcomplete DCT 

is not better than the representation using complete DCT dictionary. 

      We propose the phase included DCT (PI-DCT) dictionary which is the extension of the complete 

DCT dictionary by including the phase information. For each frequency in vertical direction,
x

f , or 

horizontal direction, y
f , Nϕ  phase divisions, {0,2 / ,4 / ,...., 2( 1) / }N N N Nϕ ϕ ϕ ϕϕ π π π∈ − , are 

added to the dictionary. The size of the dictionary is calculated by 

(( 1) ) (( 1) ) (( 1) ) (( 1) ) 1
x y x y

L n N n N n N n Nϕ ϕ ϕ ϕ= − × × − × + − × + − × +  where 
x

n  and y
n  are 

number of frequency divisions (equal to the patch size x y
n n× ) in vertical and horizontal 

directions, respectively. For example, consider that the size of each patch is 8 8×  and therefore, 



48 

 

8
x

n =  and 8
y

n = . Then for 4Nϕ = ( [ ]0, / 2, ,3 / 2ϕ π π π= ), the number of dictionary atoms is 841 

(Figure 5). Atoms are created using the following equation, 

( ) ( ), , ,

( , , , ) (1,1) (1,2) (1, ) (2,1) (2,2) ( , )

( , ) ( , ) cos(2 ) cos(2 )
x y x y

T

x y x y x y x

x y f f x y x x x y y y

d f f f f f n f f f n n

f i i f i i f i f i

θ θ θ θ θ θ

ϕ ϕθ

ϕ ϕ

π ϕ π ϕ

 =  

= = + × +

⋯ ⋯
 

(5.1) 

 

where [ , , , ]x y x yf fθ ϕ ϕ=  is the set of parameters. This can be interpreted that nonzero coefficients 

obtained of the sparse representation using this overcomplete DCT dictionary reflect phase and 

magnitude of dominant components of the patch frequency transform. The coefficient values show 

the magnitude of the frequency components while their phases are defined based on θ  used to 

create corresponding atoms. 

  

 

PI-DCT 

(841 atoms), 4Nϕ = , 8
y

n = , 8
x

n =  

Overcomplete DCT  

(841 atoms) 

DCT 

(64 Atoms) 

Figure 5. Displaying PI-DCT, Overcomplete DCT and conventional DCT dictionaries. 
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Figure 5.4. Demonstration of the reconstruction quality using the OMP method for PI-DCT, DCT and overcomplete 

DCT dictionaries. The patches of size 8*8 are extracted from the Lena photo (512*512). This figure shows that the 

PI-DCT offers a higher PSNR for the same number of atoms. 

      To evaluate the PI-DCT, 4096 patches are extracted from the Lena photo in which each patch is 

8 8×  pixels. The overcomplete DCT dictionary (Figure 5) is created assuming 29 frequency 

divisions from 0 to 2π  without phase equal to 0.  The PI-DCT is created with 4Nϕ = , 8yn = , 8
x

n = . 

The OMP sparse coding method is applied because of its simplicity and fast performance with 

different number of nonzero coefficients. Figure shows a comparison between PI-DCT, DCT and 

overcomplete DCT dictionaries based on the number of nonzero-coefficients versus the PSNR 

calculated as shown below [35], 

10

1
10log ( )PSNR

MSE
=  

(5.2) 

 

where MSE  is the mean square error between the original image and the reconstructed image. 

According to Figure5.4, the PI-DCT provides at least 2.5 dB more value of PSNR than the 

overcomplete DCT. The DCT dictionary fails to compete with PI-DCT and overcomplete DCT 

dictionaries. To have more illustration, Figure shows the Lena image reconstructed using the PI-

DCT, DCT and overcomplete DCT dictionaries. Reconstructed images using the DCT and 

overcomplete DCT dictionaries suffers from high blocking artifacts, because they don’t support 

5 10 15 20 25 30 35 40
20

25

30

35

40

45

50

55

60

Number of Nonzero Coefficients

P
S

N
R

 (
d
B

)

 

 

PI-DCT (841 atoms)

DCT (64 atoms)

Overcomplete Dictionary (841 atoms)



50 

 

phase information, whereas the reconstructed image of Lena using the PI-DCT eliminates this 

problem and provides a higher PSNR.  

      In Figure5.6, an investigation over the influence of Nϕ on the reconstruction quality is shown 

with a different number of nonzero-coefficients. A significant improvement is attained by 

increasing Nϕ  from 1 (conventional DCT) to 2 which implies the importance of using at least two 

phase divisions to create a DCT dictionary. For 3Nϕ = , the results are averagely improved by 1 dB 

in contrast with 2Nϕ = . However, the number of atoms for 2Nϕ =  and 3Nϕ =  are 225 and 484, 

respectively. For 4Nϕ = , the PSNR is less than 0.5 dB improved while the dictionary size is 841 

atoms. For 5Nϕ = , the dictionary size is increased to 1296 atoms and it improves the PSNR value 

to 1.3 dB more than the PSNR obtained with 3Nϕ = . However, this is achieved by sacrificing the 

efficiency of representation. After 5Nϕ = , the size of the dictionary increases while the 

reconstruction quality is not significantly improved. Therefore, the offered selections of Nϕ  are 2, 3 

and 5. Figure shows the reconstruction results of 2 other standard images using OMP, St-OMP and 

MS-OMP methods.  

PI-DCT 

4Nϕ = , 8yn = , 8
x

n = , (841 atoms) 

5 nonzero coefficients 

PSNR = 31.98 dB 

DCT 

 
5 nonzero coefficients 

PSNR =27.69 dB 

Overcomplete DCT 

 
5 nonzero coefficients 

PSNR = 29.06 dB 
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Figure 5.5. Displaying reconstruction results using PI-DCT, DCT and overcomplete DCT dictionaries with 5 

nonzero coefficients. Blocking artifacts can be seen for results obtained by the DCT and overcomplete DCT 

dictionaries whereas the PI-DCT perfectly reconstructed the Lena image without the blocking artifact. 

 

 
Figure 5.6. Demonstration of the reconstruction quality versus the number of phase divisions, Nϕ . The sparse 

coding method is OMP and 4096 patches (8 8× pixels) are extracted from the Lena image to obtain these results. 

The PSNR increases by more than 5 dB when Nϕ  changes from 1 (conventional DCT) to 2. 

 

    
PSNR = 27.1208 dB 

Overcomplete DCT 

1296 atoms 

PSNR = 29.9359 dB 

PI-DCT 

2Nϕ = , 225 atoms 

PSNR =30.0372 dB 

PI-DCT 

3Nϕ = , 484 atoms 

PSNR =31.0955 dB 

PI-DCT 

5Nϕ = , 1296 atoms 

    
PSNR = 27.1614 dB 

Overcomplete DCT 

1296 atoms 

PSNR = 29.1307 dB 

PI-DCT 

2Nϕ = , 225 atoms 

PSNR =29.834 dB 

PI-DCT 

3Nϕ = , 484 atoms 

PSNR =30.8909 dB 

PI-DCT 

5Nϕ = , 1296 atoms 

Figure 5.7. Demonstration of the quality of reconstruction using the PI-DCT and overcomplete DCT 

dictionaries. Both images are reconstructed using the OMP method with 6 nonzero-coefficients. 
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5.2. New Sparse Representation Method: MS-OMP 

      In section 3.3. Orthogonal Matching Pursuit, a brief introduction is presented on the orthogonal 

matching pursuit (OMP) and its derivatives which all try to increase the speed of the OMP method. 

We are proposing a new scheme to reduce the computational cost of the OMP method by selecting 

more than 1 atom per each stage. This implies a close relation with the St-OMP method [30]. 

However, an essential difference exists for selecting atoms in each stage which leads our proposed 

method to behave more accurate than the St-OMP. Indeed, the St-OMP uses a hard-thresholding 

approach to opt better matching atoms from the dictionary. This results in a high dependency with 

the threshold value which highly affects the quality and speed of this algorithm. To illustrate, the 

higher threshold selection causes less entering atoms while it increases the number of stages 

needed to maintain a certain sparsity condition, 
0

T . It improves the quality of representation by 

reducing the representation error, r , in more stages. On the other hand, each stage needs pseudo-

inverse computation these are computationally demanding. Therefore, selecting higher threshold 

values improves the quality by sacrificing the computational cost. By selecting a lower threshold 

value, the number of entering atoms increases leading to an uncontrollable increment in nonzero 

coefficients. Thus, the strong dependency of the threshold selection complicates solving the sparse 

representation problem conditioned with a defined sparsity level. In contrast, the proposed MS-

OMP approach eliminates such a hard-threshold step and replaces it with a more robust group of 

atom selections. This gated entrance of atoms decreases the solution speed, but it provides more 

robustness and controllability while maintains a higher efficiency than the OMP method.  

      The proposed multi-stage approach finds a sorted set, of m atoms with the highest correlations 

to the reconstruction residual at each stage. Then, the MP method is employed to efficiently extract 

M  atoms from the sorted set of m atoms, m M> .The coefficients updating step computes the 

pseudo-inverse of the corresponding atoms multiplied with the input patch which is inspired from 
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the OMP method. As in each stage M nonzero coefficients are added to the sparse vector, the 

number of stages is determined based on the sparsity condition, 
0

T . We first present a theoretical 

justification to show the mathematical background of the MS-OMP method. Then, more technical 

details are presented followed by comprehensive experimental evaluations. 

5.2.1. Component-Based Signal Extraction 

      Similar to the St-OMP method, the input of each stage is the residual of the previous stage. The 

basic idea behind it is to minimize the stage error before passing it to the next stage. Each stage 

error is assumed to be a function which can be represented with a linear combination of atoms and 

the input patch is the summation of these functions (Signal Components). Suppose for an input 

patch, NP∈ℝ , there exists a linear combination of signal components,{ }N

kf ∈ℝ ,    

1

K

k

k

P f
=

=∑  (5.3) 

In the matching step, the inner product of the residual and dictionary atoms feature those atoms 

which better project the residual. Therefore, for each stage, a set of atoms can be selected which 

maintains the following condition, 

1

k

k ia k ib
f d f d t⋅ − ⋅ < , ,

k
ia ib U∈  (5.4) 

The above condition only considers atoms of each stage. Another condition applies between atoms 

of 
th

k  and ( 1)thk + stages as,  

1 2

k

k i k jf d f d t+⋅ − ⋅ > ,  
1k

j U +∈  and 
k

i U∈  (5.5) 

where 1

k
t  and 2

k
t  are two values, 2 1

k k
t t≫ . .

 
stands for the inner product of two vectors and 

k
U is a 

set of dictionary atom indexes which satisfies the above condition for the 
th

k component, kf . 

Having this definition, the inner products of the input patch and the dictionary atoms result in 
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maximum values corresponding to 1f  which are members of 
1

U . Maximum values related to the 

second component, 2f , which are members of 
2

U  are achieved using the inner product of 

1 1res P f= −  and dictionary atoms. Other { , 2}
k

U k >  are obtained using the inner product of 
1k

res −  

and atoms, 

1

1

1

k

k n

n

res P f
−

−
=

= −∑
 

(5.6) 

Having { , 1,..., }
k

U U k K ′= =  where K K′ < , an approximation of P ,
1

K

n

k

P f
′

=

=∑ɶ , is attained using 

the pseudo-inverse equation as, 

( )
1

T T

U U U
D D D Pα

−

=ɶ   and  UP D α=ɶ ɶ
 

(5.7) 

5.2.2. Sparse coding solution using the Multi-Stage OMP 

      The proposed multi-stage OMP method, selects a set of atoms in each stage to minimize the 

previous stage residual. At the stage S , the inner product of dictionary atoms and
1S

res − , assuming

0res P= , is computed to find candidate atoms entering the 
S

U  to update { }, 1,...,nU U n S= = . The 

m highest values of the inner product corresponds to the candidate atoms. The candidate atoms 

are obtained and sorted using a fast sorting method. These candidate atoms have higher matching 

with the 
th

k  component and they form a local dictionary, 
L

D . MP method [27] seeks among the 
L

D  

to find a combination of fix number, M , of atoms ( M m≤ ) to efficiently represent 
1S

res − in each 

stage to approximate the corresponding component. After selecting M  representing atoms of 
th

S  

stage, { }, 1,...,nU U n S= =  is updated and αɶ  is calculated using (5.7). This step resembles the 

update step of OMP while finding the representing atoms are handled through MP method atom 

finding strategy. Please note that for 1M = , the result of this method is exactly equal to the OMP 



55 

 

method. After a specific limit, increasing M  is not effective to reduce the component representing 

error and hence, a good selection of M  is a tradeoff between accuracy and computational cost. 

Figure 5.8 shows the block diagram of the proposed sparse representation method. The pseudo-

algorithm of the proposed method is presented in Table . 

 
Figure 5.8. Demonstration of the block diagram of the proposed method (MS-OMP). 
 

Table 5.1. Pseudo-algorithm of the MS-OMP method. 

Init: P , 0res P= , 0α → ,
U

D  

           for S=1:N 

1,Sproj res D−=  

( )ind fastSorting proj=  

(1) ( ){ ,...., }L ind ind LD d d=  

1
2

S
res res −=  

s
U empty→  

for n=1: M  

2 , Lm res D=  

2 arg max( 2)ind m=  

{ }( 2)
s s

U U ind ind= ∪  

( 2)
L

d D ind′ →  

2,
2 2

,

res d
res res d

d d

′
′= −

′ ′
 

 end 

sU U U= ∪  

1
( )

T

U U UD D D Pα −=  

1S Ures P D α− = −  

End 

D⋅  
Fast Sorting 

L
D  

Matching 

Pursuit 

s
U

{ }sU U U= ∪  U
D

 

Pseudo-

Inverse 
×  

P  

 

α  

U
D

 

1S
res −

 

m  

M  
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5.2.3. Fast Sorting Method 

This sorting method is developed to efficiently find L  highest values among all inner products of atoms 

and 
1S

res −  at the 
th

S  stage. First, a set of indexes and values 
2 LT ×∈ℝ  is initialized with all values equal to 

zero where the first row refers to maximum values and the second row consists of corresponding atom 

indexes. The inner product values are checked one by one and if the inner product value corresponding to the 

atom number n   satisfies (1, )nv T m> , this atom enters into T  and its order within the set is determined 

using the bubble sort method. The column m  containing the lowest value is eliminated at the end of sorting 

procedure.  

5.2.4. Evaluations and Results 

       As described previously, our method is inspired by the OMP method intended to increase the 

efficiency of the sparse representation for large dictionaries. The St-OMP method is basically a close 

definition to our proposed method. However, there exist some essential differences between them. 

In order to make a realistic computational time comparison between our proposed method, OMP 

and St-OMP, we have developed these algorithms using the Microsoft C#. The result of 

implementation in MATLAB shows a non-reliable inconsistent behavior because of several issues 

regarding memory allocation, interpretational-based execution and etc. which may vary in speed in 

different computers. In other words, the way that the code is written highly affects the performance 

of the code execution in MATLAB. Instead, C# is a general purpose programming language which 

compiles the code before execution and provides a realistic framework to compare different 

methods in terms of computational time. The PI-DCT dictionary (Figure 5), consisting of 841 atoms 

is used to sparsely represent images using the conventional OMP method, St-OMP approach and the 

proposed MS-OMP method.  Patches are taken without overlapping and each patch is 8 8×  pixels. 

The comparison is based on the time of computations (TOC) and the Peak Signal to noise ratio 

(PSNR) computed as follows, 
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      The proposed method is controlled using three parameters including: number of entering atoms 

to the MP block ( m ), number of selecting atoms per each stage ( M ) and number of non-zero 

coefficients 
0

T .  The number of iterations is determined [ ]0iter T M=  where [.]  takes the floor of 

0
T M .  The complexity order of the sorting module is specified by m . The effect of increasing m is 

displayed in Figure 5.9 which shows the representation quality (PSNR) in terms of changing m . 

Accordingly, its quality is increased until 40m =  and then no improvement is achieved after that. 

However, increasing m leads to proportional increment of the sorting computational time. The 

offered selected value is 10m = .  

 
Figure 5.9. Displaying the effect of the number of entering atoms in each stage, m , on the performance of the 

proposed method. The number of selecting atoms in each stage, M , is set to 3. This is repeated for 4 different 

numbers of non-zero coefficients, 
0

T . 

      The second parameter of the proposed method which plays an important role in the 

performance of the proposed method is the number of selecting atoms in each stage, M . Increasing 
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M  results in fewer iterations and reduces the computational time, because it performs fewer 

stages including MP block and pseudo-inverse calculation. In Figure 5.10, the PSNR changes of the 

MS-OMP method versus M  is displayed for 4 different values of 
0

T . According to Figure 5.10, 

increasing M  results in reducing the representation quality. Good selections for M are 3 and 4 

which keeps the PSNR still high while these values suggest a good computational time reduction.   

 
Figure 5.10. Demonstration of the influence of the number of non-zero coefficients, M , on the PSNR of the MS-

OMP method. This graph is presented for 4 different number of non-zero coefficients, 
0

T . 

      The proposed method is faster than the OMP approach, because it performs fewer pseudo-

inverse calculations to obtain the same number of nonzero coefficients, 
0

T . The St-OMP method 

applies hard-thresholding which is extremely dependent to the selection of the threshold; however 

it is faster than the MS-OMP, because it does not need any sorting block to select a set of m  atoms 

with the highest correlations. This comes with an uncontrollable number of entering atoms to the 

sparse vector per each iteration and ruins the sparsity of the result. In Figure 5.11, the efficiency 

and accuracy of the proposed method is compared with conventional OMP and St-OMP methods for 

different 
0

T (Other parameters are 10m =  and 3M = ). It shows that the St-OMP method is much 
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faster than our proposed method whereas the quality of MS-OMP stands much higher than the St-

OMP, having the same sparsity level.  

 

 
Figure 5.11. Demonstrating the result of comparison of time of computation and PSNR between OMP, MS-OMP, 

St-OMP versus the number of non-zero coefficients. 

      The reconstruction result of 3 standard images obtained using MS-OMP, OMP and St-OMP is 

shown in Figure 6 for 
0

18T = , 10m =  and 3M = . The importance of the proposed method is 

highlighted for large size dictionaries which the conventional OMP takes a long time to calculate the 

sparse vector. Instead, the designed method offers a better alternative with higher speed while 

maintaining a satisfactory sparse level. Figure 7 illustrates how the proposed method provides an 

advantage over the conventional OMP approach for larger dictionaries in terms of the 

computational time (TOC).  
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(a1) Baboon – (MS-OMP) 

PSNR=32.14, TOC=3.734 

(a2) Baboon – (OMP) 

PSNR=35.08, TOC=5.031 

(a3) Baboon – (St-OMP) 

PSNR=24.53, TOC=0.937 

   
(b1) Barbara – (MS-OMP) 

PSNR=24.34 dB, TOC=3.702sec 

(b2) Barbara – (OMP) 

PSNR=26.14 dB, TOC=5.124sec 

(b3) Barbara – (St-OMP) 

PSNR=21.33 dB, TOC=0.874sec 

   
(c1) Lena – (MS-OMP) 

PSNR=28.52 dB, TOC=3.812sec 

(c2) Lena – (OMP) 

PSNR=31.64 dB, TOC=4.937sec 

(c3) Lena – (St-OMP) 

PSNR=22.47 dB, TOC=0.953sec 

Figure 6. Displaying the result of reconstruction three standard images using MS-OMP, OMP and St-OMP. 
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Figure 7. Comparing Time of computations of OMP, MS-OMP and St-OMP methods versus the number of atoms. 
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Chapter 6. New Dictionary Learning 

Approach: Variable Length K-SVD 

 

 

 

 

 

      Analytical dictionaries extract some characteristics of the input signal. They provide generic 

basis functions for all signals without any preference for some specific images. Learnt-based 

dictionaries evolved to provide more adaptation to the signal content leading to achieve better 

representation quality and higher sparsity level. The dictionary learning problem is formulated as, 

{ }2

,

arg min
F

D X

Y DX− , subject to 
00ix T<   and { | 1,..., }

i
X x i N= =  (6.1) 

where 
n LD ×∈ℝ  is the dictionary, 

n NY ×∈ℝ  is a set of input patches and X includes all sparse 

vectors representing input patches. Among all proposed algorithms for learning dictionaries, the K-

SVD method has attracted a great deal of attention during last years, because of its simplicity and 

flexibility in working with different sparse coding methods. The optimization problem starts with 

an initiated dictionary, 
n LD ×∈ℝ , and separately updates each dictionary atom, subject to minimize 
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the reconstruction error calculated using the rest of the dictionary. The size of the predefined 

dictionary affects the time of computation and representation error. In essence, the number of 

atoms needed to perfectly represent all input patches relates to the content detail level of input 

patches. In other words, more patterns existing in input patches demands larger dictionary to be 

covered. Now, the question arises how we can determine the number of dictionary atoms for 

different applications.  

6.1. Methodology 

      We are proposing new dictionary learning based on the K-SVD method which starts with only 1 

atom and iteratively spreads until it converges to an efficient number of atoms adapted for each 

specific application. After each dictionary atom update, a weighted variance vector is calculated as, 

2 2

1

1
ˆ( ) ( ) ( ( ) ( ))

LN

j i i j

iL

v l x j y l d l
N =

= −∑ ,  [ (1),..., ( ),.... ( )]j j j jv v v l v n=  
(6.2) 

where ˆ ( )
i

y l  denotes the mean removed 
th

i input patch, j
v  is the weighted variance vector and j

refers to the updating atom index. The weighted variance considers the calculated sparse 

coefficients to determine how much a distance between ˆ
i

y  and j
d affects the variance calculated 

for j
d . In other words, patches which have greater coefficients corresponding to j

d , have more 

influence in calculating the weighted variance vector of j
d , and vise versa. The maximum value of 

the weighted variance vector is searched, 
max

max{ }l v= , and if max 2
( )

j
v l th> then the 

thj  atom is 

split into 2 atoms. In other words, the 
thj  atom is covering a wide volume in the 

n
ℝ  which works 

like a low-pass filter (averaging window) and it causes to loss input patch details. To solve this 

problem, this atom is divided into 2 atoms in the direction of maximum weighted variance and the 

dictionary size is increased by one atom as, 

(1)

max( )j jd d v lγ= −  

(2)

max( )j jd d v lγ= +  

(6.3) 
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(1) (2)

1 1 1[ ,..., , , , ,..., ]j j LD d d d d d d− +=  

where γ  is a constant value. The dictionary is updated and its size is increased and thus, X  should 

be updated as, 

T T

jg X=  

1 2 1 1[ , , ..., , 0.5 , 0.5 , ,..., ]T T T T T T T

j j LX X X X g g X X− += × ×  

(6.4) 

 

      At each iteration the size of the dictionary changes and therefore this method is named, Variable 

Length k-SVD method (VLK-SVD). The presented atom insertion procedure reduces the sparse 

representation error. This is because the maximum weighted variance of the distance of patches 

with 
(1)

d  and
(2)

d  are less than the maximum weighted variance of distances of patches with 
jd . 

Therefore, patches are more likely to be better represented after the atom insertion step. It implies 

that the new K-SVD method moves toward a better representation. The pseudo-algorithm of the 

proposed method is proposed in Table 6.1. 

Table 6.1. The pseudo-Algorithm of the proposed method 

1. Initialize 
2[ ( ,1), ( )] nD ones n mean Y ×= ∈ℝ , 

,n NY ∈ℝ  and (2, )X zeros N= , 2L =  

2. ( , )X OMP D Y=  

3. For k=2 to L  

1 1 1{ ,..., , ,..., }
k k L

D d d d d− +
′ = , 1 1 1[ ,..., , ,..., ]T T T T

k k LX X X X X− +
′ = ,

T

kg X=  

Ind := Find index of nonzero coefficients for 
th

k atom 

{ | }R jY y j Ind= ∈ , { | }
R j

X x j Ind= ∈ , 
R R R

E Y D X′= −
 

[ , , ]U V∆ := SVD decomposition  

1k
d U=  and 1({ }) T

g ind V=  

Calculate j
v  and find 

max
max{ }l v=

 

If max 2
( )

j
v l th>

 
(1)

max( )j jd d v lγ= −
 

(2)

max( )j jd d v lγ= +
 

(1) (2)

1 1 1
[ ,..., , , , , ..., ]

j j L
D d d d d d d− +=

 

1 2 1 1[ , ,..., , 0.5 ,0.5 , ,..., ]T T T T T T T

j j LX X X X g g X X− += × ×
 

1k k= +
 

1L L= +
 

end
 

end 
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4. ( , )X OMP D Y=  

5. For k=2 to L  

If 
, 1

1

N
T

k j

j

X th
=

<∑  then remove 
th

k  atom from the dictionary  

end 

6. If convergence is not achieved then go to step 2 

7. End 

6.2. Evaluations and Results 

      The proposed method is implemented in MATLAB (version 7.10) to evaluate its performance. 

Standard images including Lena, Barbara, Peppers, Goldhill and Baboon are used at the size of 

512 512×  pixels to show efficiency and accuracy of the proposed algorithm. As discussed in 6.1. 

Methodology, the proposed model is sensitive to three parameters including 
0

T , 
1

th  and
2

th . 
0

T
 
is 

the number of nonzero coefficients of the sparse vector obtained in the sparse coding step. 
2

th
 
has 

an influence on the new atom creating process whereas 
1

th  controls the non-important atom 

removing procedure. We are targeting two purposes for preparing results in this section. The other 

existing parameter isγ , which is not deterministic to the result as much as the other three 

parameters. We arbitrarily selected γ  to equal 1. Firstly, we want to provide a simple reasoning to 

show why we selected specific values for the parameters mentioned above. The second purpose 

which we target to address in this section is to illustrate the relationship between the input data 

complexity and the converging number of atoms in the proposed dictionary learning method. The 

accuracy of sparse representation is presented with the PSNR (5.8). 

      Some results are provided based on the Lena image because of its general usage with other 

works. In addition, other standard images are involved to demonstrate how the proposed method 

works with different images. At the end, a frequency domain analysis is performed to show how it 

affects the size of the learnt-based dictionary obtained by the proposed algorithm.  
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      Figure6.1 shows how 
2

th  affect the performance of the VLK-SVD method for 
1

15th =
 

and 

0
18T = . This is obtained by changing 

2
th  from 0.8 to 2. Increasing 

2
th decreases the number of 

dividing atoms which satisfy max 2
( )

j
v l th> .  This fact is demonstrated in Figure where the less 

number of atoms is attained by selecting 
2

2th = or 
2

1.8th = .  According to Figure, there is a good 

trade of between the number of atoms and PSNR is obtained by selecting 
2

1.6th = .   

 

 
Figure 6.1. Demonstration of the influence of the threshold 

2
th on the proposed method. The top figure shows the 

PSNR versus iterations while the bottom figure displays the number of atoms versus iterations. (Results are obtained 

based on the Lena Image) 
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      In Figure, the influence of 
1

th  on the PSNR and number of atoms is displayed while 
2

1.6th =
 
and 

0
18T = . 

1
th

 
works as a threshold for determining insignificant atoms which should be removed 

from the dictionary. For a dictionary with a small number of atoms, each atom has a greater chance 

to be involved in representing input patches. As the size of the dictionary increases during 

iterations, the number of represented patches using some atoms decreases. This is the way that 

some atoms become insignificant after some iteration. 
1

th is the threshold to select insignificant 

atoms and their removal increases the efficiency of the dictionary. According to the Figure, selecting 

1
15th =  provides more stability.  

 

 
Figure 6.2. Displaying the result of changing 

1
th  and its effect on the PSNR and Number of atoms (Results are 

obtained based on the Lena Image) 
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      The number of non-zero coefficients, 
0

T , has a direct control on the quality of sparse coding. It 

means that more non-zero coefficients imply more involving atoms from the dictionary to 

represent an input patch. Figure shows the result of iterative process of dictionary learning with 

different 
0

T  values, selecting 
1

15th =
 
and 

2
1.6th = . According to Figure, selecting 

0
6T =  results in 

a large number of inserted atoms to sufficiently cover all patches. Selecting 
0

18T =  provides a good 

SNR value while the number of non-zero coefficients stays similar to other 
0

T  values.  

 

 
Figure 6.3. Displaying the effect of selecting different values for non-zero coefficients of the sparse coding step on 

the performance of the proposed method. (Results are obtained based on the Lena Image) 
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      The selected values for parameters 
1

15th = , 
2

2th =  and 
0

18T =  are used to learn dictionaries 

for different images in 50 iterations, specified in Figure. The Baboon image has more details 

therefore demanding more dictionary atoms (624 atoms) to accurately cover all patches whereas 

the Goldhill photo is sufficiently represented using only 100 atoms. The other interesting point 

which proves the importance of our proposed method is the appearance of dictionaries in Figure 

for different images. In fact, the complexity of input patches determines how many atoms are 

needed to provide a representative dictionary for input patches. The conventional K-SVD method 

takes a fixed-size dictionary and there is no reasoning behind the size of the dictionary. 

 

 

(a1)  Reconstructed Lena Image – PSNR 34.3 dB (a2) Lena Dictionary with 225 atoms 

 

 

(b1) Reconstructed Peppers Image – PSNR 34.2 dB (b2) Peppers Dictionary with 272 atoms 
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(c1) Reconstructed Baboon Image – PSNR 27.4 dB (c2) Baboon Dictionary with 624 atoms 

 

 

(d1) Reconstructed Barbara Image – PSNR 34.7 dB (d2) Barbara Dictionary with 483 atoms 

  

 

(e1) Reconstructed Goldhill Image – PSNR 31.6 dB (e2) GoldhillDictionary with 90 atoms 

Figure 6.4. Displaying results of 5 standard images using the proposed method. 



71 

 

      To compare the proposed method with the conventional K-SVD method, the K-SVD method is 

applied to learn dictionaries for the 5 abovementioned standard images with 484 atoms in the 

dictionary created using the overcomplete DCT dictionary. For the K-SVD method, the number of 

non-zero coefficients is selected to be 18.  

      In Table 6.2, a comparison between the proposed VLK-SVD method and the K-SVD method is 

presented. The K-SVD method is highly dependent to the initial dictionary selection and it affects 

the final converged result. The K-SVD improved the reconstruction results obtained by the 

overcomplete DCT. In contrast, the VLK-SVD starts from only 20 atoms (It can start with only 1 

atom) and converges to an optimum number of atoms needed to reconstruct the image. In the 

Goldhill image reconstruction, the result of VLK-SVD is astonishingly better than the K-SVD 

approach while the VL-KSVD creates a dictionary with only 90 atoms.  

Table 6.2. Comparison of the proposed method (VLK-SVD) and the K-SVD dictionary learning method. 

 

Image Name 

VLK-SVD  K-SVD Overcomplete DCT 

PSNR (dB) Number of 

Atoms 

PSNR (dB) Number of 

Atoms 

PSNR (dB) Number of 

Atoms 

Lena 34.32 225 29.95 484 23.66 484 

Peppers 34.24 272 26.91 484 26.59 484 

Baboon 27.43 624 24.54 484 20.38 484 

Barbara 34.71 483 24.62 484 23.66 484 

Goldhill 31.62 90 28.89 484 25.51 484 

 

6.3.1. Frequency Domain Analysis  

      It is to our interest to show the exciting relationship between the convergence of the proposed 

method and the frequency domain information of input patches. Higher frequency components 

correspond to edges which needs more atoms to be finely represented, whereas lower frequency 

components refer to homogeneous regions in the image which can be represented with a few atoms 

including the DC atom (which consists of all 1 elements).  
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      The efficiency of the proposed method comes with the fact that the frequency domain 

information affects the number of atoms in the converged result. In other words, the dictionary size 

is automatically determined based on the detail level which is related to the frequency domain 

contents of input patches. In order to prove this relation, a Gaussian low-pass filter with a window 

size 15 15×  and different sigma values, 
2 {1,2,3,4,5}σ ∈  from 1 to 5 is applied to the Lena image 

where higher values of 
2σ  corresponds to lower passing frequency band. Then the dictionary 

learning procedure is performed to find the number of atoms for each low-passed image with 

different sigma values. The selected values for parameters 
1

15th = , 
2

2th =  and 
0

18T =  are used to 

learn dictionaries in 25 iterations. The initial dictionary contains 20 atoms of a completed size DCT 

dictionary.  

      The result of this evaluation is presented in Figure 6.5. Accordingly, the number of atoms of 

learnt-dictionaries decreases when 
2σ of the Gaussian low-pass filter increases. For the original 

image where no low-pass filtering is applied, the dictionary is converged to 150 atoms whereas for 

2 5σ = , the learnt dictionary contains only 22 atoms. It means that an image with lower frequency 

contents need fewer atoms to be sparsely presented and the proposed method is highly sensitive to 

this.   
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Figure 6.5. Demonstration of the relation between the number of atoms and the frequency domain information of 

input patches. A Gaussian low-pass filter with 15x15 window size and different sigma values is applied on the Lena 

image before learning the dictionary. 
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Chapter 7. Conclusion and Discussion 

 

 

 

 

7.1. Discussion on Phase Included DCT (PI-DCT) 

      We presented a new analytical dictionary based on the DCT dictionary in which the atoms are 

created by changing both frequency and phase of the cosine function in vertical and horizontal 

directions. Using this definition, both phase and magnitude of components for all signal patches are 

extracted. In other words this dictionary provides an approximation of the Fourier transform. The 

conventional DCT dictionary only applies frequency variations to create atoms and phase 

information will be lost. The DCT dictionary is sensitive to phase shifts that result in blocking 

artifacts. Our proposed PI-DCT dictionary eliminates this problem and provides a more accurate 

signal representation. We have evaluated the accuracy of the proposed dictionary for different 

number of phase divisions. The results demonstrate that the new PI-DCT is a suitable dictionary to 

sparsely represent images as compared to other conventional analytical dictionaries.  The obtained 

results show that having 2 phases including 0 and π  are necessary to improve the result and the 

most efficient result is obtained using 3 phase divisions. Increasing the number of phases results in 

a larger dictionary and after 7 phase divisions, the enhancement achieved is negligible.   



75 

 

      In this thesis, the number of phase divisions for all frequencies are the same. In the future work, 

it is possible to have more phase divisions for lower frequencies and fewer phases divisions for 

higher frequencies. This provides a better definition which improves the efficiency of the PI-DCT 

dictionary.  

7.2. Discussion on Multi-Stage Orthogonal Matching Pursuit 

      We presented a new sparse coding algorithm that is based on the conventional orthogonal 

matching pursuit method. The conventional OMP calculates 0T  pseudo-inverse transforms to 

obtain 0T  non-zero coefficients which leads to a massive computations complexity. In the proposed 

method multiple atoms per each stage are selected, and therefore the number of pseudo-inverses 

needed to obtain 0T  non-zero coefficients are reduced. The proposed method is more efficient than 

the conventional OMP method. We compared the performance of the MS-OMP with the St-OMP 

method which is the most similar method to the proposed approach (MS-OMP). The evaluation 

results show that the St-OMP method is faster than the proposed method, however, the MS-OMP 

method provides much higher accuracy. The St-OMP method has no control on the number of 

entering atoms to the non-zero coefficients in the sparse vector per each stage whereas the MS-

OMP determines the number of selected atoms as the output of the MP block per each stage. The 

proposed MS-OMP method has three parameters which provide a flexible reconstruction accuracy. 

The offered values for these parameters provide a trade of between the efficiency and accuracy of 

the sparse representation. 

      In future work, the MP block can be replaced with another selecting strategy based on the 

covariance matrix of atoms selected by the sorting block. This can result in a faster sparse coding. 

Moreover, it is possible to combine this approach with the Cholesky-OMP method to provide much 

faster sparse representation algorithm.    
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7.3. Discussion on Variable Length K-SVD  

      In this thesis, we proposed a novel enhancement on the conventional K-SVD dictionary learning 

method. The variable length K-SVD approach starts with only one atom in the feature space and 

applies a spreading strategy to create a sufficient number of atoms to precisely encompass all input 

patches in the feature space. This provides a framework to create a dictionary with an optimal 

number of atoms well-suited for each set of input images. The conventional K-SVD approach 

minimizes the reconstruction error of a fixed size dictionary and it lacks from a strong reasoning 

for the number of atoms in the dictionary.  

      The proposed dictionary learning approach iteratively updates and adds atoms until it 

converges to an optimal point. The number of added atoms depends on the level of details inside 

the training input patches. There is a relation between the frequency response of the training 

images and the number of atoms. We applied a low pass filter to reduce the band-width of the 

image frequency domain information. A stronger low-pass filter results in creation of fewer 

dictionary atoms.  

      The other problem of the conventional K-SVD dictionary learning is that it is highly sensitive to 

the selection of the initial dictionary. If the initial dictionary is unevenly distributed among the 

input patches in the feature space, some of patches are represented with more details in a dense 

area of atoms. But some others are poorly represented which are placed in a volume in the feature 

space where fewer number of atoms are placed. The proposed dictionary learning method (VLK-

SVD) tries to insert atoms in the feature space to evenly cover the information.  

      The proposed method starts with a few atoms and spreads until convergence. In first iterations 

the dictionary contains fewer atoms and the dictionary learning approach performs faster. 

Therefore, the proposed dictionary learning method is faster than the conventional K-SVD method.  
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In future work, this method can be applied on different applications such as medical image 

representation and compress sensing, image classification and etc.  
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