FPGA-based Switch-level Fault Emulation using

Modular-based Dynamic Partial Reconfiguration

By
Ming-Han Peter Lee
Bachelor of Applied Science
University of Toronto
Toronto, Ontario, Canada, 2004

A project report
presented to Ryerson University
in partial fulfillment of the
requirements for the degree of
Master of Engineering
in the program of
Electrical and Computer Engineering

Toronto, Ontario, Canada, 2006/05/09

©Ming-Han Peter Lee 2006

PROPERTY OF

RYERSON UNIVERSITY LIBRARY

e

UMI Number: EC53517

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

®

UMI

UMI Microform EC53517
Copyright2009 by ProQuest LLC
All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, MI 48106-1346

Author’s Declaration

I hereby declare that I am the sole author of this project report. I authorize
Ryerson University to disclose this thesis to other institutions or individuals for the
purpose of scholarly research.

\

Signature

/

I further authorize Ryerson University to reproduce this thesis by photocopying
or by other means, in total or in part, at the request of other institutions or individuals

for purpose of scholarly research.
-

Signature

A

e
m

ABSTRACT

' FPGA-based Switch-level Fault Emulation using
Modular-based Dynamic Partial Reconfiguration

Ming-Han Peter Lee, Master of Engineering, 2006

Project Directed By: Dr. Reza Sedaghat,
Department of Electrical and Computer Engineering, Ryerson University

Fault simulation is a process of purposely injecting faults into a target circuit and
observing a circuit’s behavior in the presence of faulty logic. This observation helps
designers to implement certain fault tolerance schemes thereby combating hardware
failures. Fault simulation in most implementations has until now been software-based.
Several fault emulation approaches have been pfoposed to accelerate fault simulation
process using FPGA. There are generally two types of hardware fault injection:
injector-based and reconfiguration-based. Injector-based methods require inserting
fault injector circuitry into the circuit under test thus adding hardware overhead. On
the other hand, reconfigurable-based methods require much less hardware overhead.
However, these methods may be very slow because reconfiguring an entire FPGA
device can take several seconds. This long configuration time is usually the bottleneck
of the emulation system.

This project proposes a novel switch-level fault emulation system utilizing FPGA
modular-based dynamic partial reconfiguration (DPR). In the proposed approach,
faults are modeled at switch-level for an accurate fault list and mapped to gate-level
for efficient synthesis. In addition, circuit-under-test is partitioned using an
unbalanced tree structure to facilitate modular-based DPR. Modular-based DPR
partitions a design into modules, and each module can be reconfigured independently
without shutting down the FPGA. This capability is applied to fault injection where
each circuit partition can be reconfigured individually without erasing the rest of
FPGA. First a partial configuration bitstream representing the faulty partition is
created. Fault injection can then be performed by downloading only this partial
bitstream to FPGA, thereby eliminating the need for full-device reconfiguration and
therefore reducing fault emulation runtime.

This report presents both a theoretical explanation and the implementation details
regarding this approach. Experimental results are also be provided.

iv

Acknowledgment

I would like to thank Dr. Sedaghat and OPR-AL lab for their contribution and
constant support.

I would like to express my gratitude to my mother and my two aunts who
provide me with valuable guidance in life. I would also like to thank my brothers and
sisters from C.E.A.C.T. fellowship for their encouragement and prayers. Last but not
the least, a sincere thank-you from the bottom of my heart to my true love, Rachel.
Without her kind care and patience, I would never have gotten to where I am today.

Table of Contents

Chapter 1. IntroducCtion........cccoceeevevinininiisiinictiieinteene et stessesaeses 1
1.1 BacKEroundccceeeereeecensenncnsennnssinsenseeneisnessnessesssnessesssssssessssssassssssssssenss 2

1.2 Summary of Contributioncccceccevinieninsinicsicnninnnnnesnenisssssesseseenes 4

1.3 RePOIt OULINEccveeueereeieererieeeneiiinenesestssietesesessrssnessesssssessnesssnennenaans 5
Chapter 2. Switch-level Fault Modeling.......cocoovevenieneneniiinninnenenieniiinninnenenesennnses 6
2.1 Switch-level to Gate-level Fault Mapping......cccocceeviueeniiereriniiencsnencneinneens 6
Chapter 3. Unbalanced Circuit Partitioning......ccccceeeveevueieivenieensennneiiennneenseensnennne 11
Chapter 4. Dynamic Partial Reconfiguration...........ccccoeeevvenuvsinveneincneeneennenennennenn 14
4.1 Difference-based DPR FIOWccccceevvuiiiiniriinininneninnniccnneeinnnecnneecnneennne 14

4.2 Modular-based DPR FIOW......ccccecervuiriimnecnnenneinnennieinnneinisisnensnesnessnnenne 14
4.2.1 Module Synthesis Phase..........cceverruerireensirisecnsnennecnnnnnneinnennennes 15

4.2.2 Initial Budgeting Phasecccccevernirisueineinucnnninnnecninnnneennnnennennens 17

4.2.3 Active Module Implementation Phasecccccovvnennieninniiniennnennnn. 19

4.2.4 Final Assembly Phasecccceeeveriruirinernneenniinncnnccnneinneessnennennnes 20

4.3 BUS MAECIO c.uuuurereeecerenreecsneerssneessssnssssssssnssssssasessssssstsssssssssssssssssnssssossnnesases 21
4.3.1 Bus Macro Placement...........ccccvecueriirnenisecicseninneenssneinnneccsneenssnnens 21

4.3.2 Bus Macro USQEE......cccerveeererrerericrcnnenessessesesssnsesssssssessssssssssessssaness 23

Chapter S. Fault Emulation System........ccccvvvieeririninnnnnnenneenneinnennenneeneenene 26
5.1 Fault Emulation Controllerccccceeevvercnneeenans ferveeessereeeeeeeraneessnneseneassnas 26
5.1.1 Hardware OVEIVIEWcccceeeruerecrneecrseesssnenessensessnessssnnesssssesssssessssesns 26

5.1.2 SOftWare OVEIVIEWccceeveeererrrnrsneersnennereneessessseesssnesssessnssssesssnne 27

5.1.3 Microblaze Processor System.........cccceveeeuernuenerisinsnessnennensessecnnennees 28

5.1.4 Hardware SetUP.......cccceeerreeereeeirueicseeecseessseesssseescsnssssssssssssnsssssassnns 28

5.2 Test Pattern GENErator........ccceeereeesrerrseseessssesssannsssnesesssessssnsssssssessssssssssnssnns 31

5.3 Interface LOZIiC COre......uuuiiiuieiireeerreereneenseeenneenncsneeesnessssssesessnsessssssssnasenas 32

5.4 Internal Configuration Access POrt........cccvvvreenierniincnninnncnncninneninesennees 33

5.5 Serial Communication CONtroller.......cceceereeerrerieeererssseeesseesseeessessssessenssnees 34

5.6 Final System INtegrationccceceecreersersneeceesseensaeesseeesneessessssesesssssssssnessnes 35

5.7 Inject Faults in Other Partitions........ccccceeeeieeeeneeeeiieecnieeesseeeessseeesssesssneeenns 37

5.8 Programming the FPGA with Partial Bitstreamsccceceveevecreeercerscnennnes 37

vi

Chapter 6. Experimental RESUILScoceeremenresiesnninininininiinsssssassesinne 38

6.1 Switch-level Fault Injection Result ...ccceeviienniinnniiniiiiiiiiniescsicienn 38
6.2 Linear Growth of Fault Injection RUNtIMEccocuvieuiiiiiiiiiininniiiiscnsiscnsiens 40
6.3 Switch-level Fault COVErageoerereresesesesisnsucninninsisnsusessesnssssssesssssesane 42
6.4 Runtime Prediction for Large CirCUitS.......ccceoneriniininiininininiinniiniensessscinsnns 42
Chapter 7. ConcluSiON........ccvuiiiiiineiineninnsnessessniieneneiinssssst s snsssassine 47
7.1 Project CONtribULION.cccevereerereesnernnsssnnnesssscsnsstiisiscsissnensnssnsssssnsssssssssssans 47
7.2 FULULE WOTK...eoouieeirieiiieeieeriseesssseeessaneesinesssssssssetsssstsssanssssansssssnasasssnsessssssnss 48
RETEIEIICES ..uvvreeenrrereteeertreeitereraessseessseessseessssaesssssssssnsassssessttsssstessssnessssssssnesansassssss 49

vii

List of Tables

Table 2.1 ° Inverter Short Faults

Table 2.2 Inverter Open Faults

Table 2.3 Inverter I/0 Stuck-At Faults

Table 6.1 ISCAS-89 Benchmark Circuits (C: Combinational, S: Sequential)
Table 6.2 Fault Injection (FI) Time .
Table 6.3 Fault Emulation Result

viii

List of Figures

Figure 1.1 Fault Injection inside NAND Gate Issue after Optimization
Figure 2.1 CMOS Inverter

Figure 2.2 Stuck-At Fault: Input is stuck-at-0

Figure 2.3 Short Fault: Input is shorted to Output

Figure 2.4 Open Fault: S1 is open

Figure 2.5 Inject a fault into s298 (Inverter G131 pMOS Source is Open)
Figure 3.1 Full Binary Tree Circuit Partitioning (L: Left, R: Right)
Figure 3.2 Unbalanced Partitioning Graph (DP: LLR)

Figure 4.1 Unbalanced Partitioning FPGA Implementation

Figure 4.2 XST Script for Synthesis (xst.scr)

Figure 4.3 Pin Assignment and Clock Constraints

Figure 4.4 Module Area and Bus Macro Location Constraints

Figure 4.5 Bus Macro Schematic [8]

Figure 4.6 Bus Macro Used for Intermodule Signals

Figure 4.7 Bus Macro Placement

Figure 4.8 Examples of Bus Macro Placement

Figure 4.9 Bus Macro Declaration in VHDL

Figure 4.10 Bus Macro Port Mapping Example

Figure 4.11 Bus Macro Schematic with I/O Signals

Figure 5.1 Emulation Controller Module Overview

Figure 5.2 Fault Emulation Program Flow

Figure 5.3 Base System Builder Wizard

Figure 5.4 Add/Edit Hardware Platform Specifications

Figure 5.5 Address Assignment for Various Components

Figure 5.6 Peripheral Block Diagram (PBD) view generated by Xilinx XPS
Figure 5.7 Important Interface Core Port List

Figure 5.8 Software Code to perform Dynamic Partial Reconfiguration
Figure 5.9 Microblaze OS Parameter Setup

Figure 5.10 Block Diagram for the Final System

Figure 5.11 (a) Initial Floorplan (b) Final Assembled System for s5378
Figure 6.1 Fault Injection Time vs. Circuit Size

Figure 6.2 Dynamic partition’s size grows linearly with circuit size
Figure 6.3 Fault Emulation Time vs. Number of Test Patterns for s13207
Figure 6.4 Emulation time vs. Circuit size for large number of Test Patterns
Figure 6.5 Emulation Time vs. Circuit Size

Npo

Pi
PMAX

Nomenclature

Number of bits in the partial bitstream

system clock speed

Inverter pMOS drain

Inverter pMOS drain

Fault location

i level in the tree

Input

First input of a two-input logic gate

Second input of a two-input logic gate

Inverter pMOS transistor

Inverter nMOS transistor

total number of faults to inject

Number of gates

Number of primary outputs

Output

Number of test patterns needed to detect the ith fault
Number of test patterns allowed to run

Inverter pMOS source

Inverter nMOS source

Time for processing each emulation result chunk
Time to perform fault emulation for one test pattern
Time to perform full-device reconfiguration
Time to perform good emulation for one test pattern
Initialization time for the system and components
System overhead

Time to process each configuration data chunk
Time to perform partial reconfiguration

Width of the system bus, size of data chunk
Width of configuration medium

NAND gate output

Inverter output

AND gate output

High impedance

Chapter 1

Introduction

The rapid advancement of CMOS process technology enables designing larger
and more complex digital systems. To ensure such complex designs work flawlessly is
one of the main challenges for both researchers and manufacturers. Fault simulation is
a process of purposely injecting faults into a fault-free circuit to observe its faulty
behavior. The fault simulation results allow circuit designers to implement possible
fault tolerance and repairing schemes. Most of the traditional fault simulators are
software-based. The drawback of software simulators is that output evaluation is
usually computed serially. For a large and complex circuit, such serial computation
may result in exponentially increasing runtime [19].

Fault emulation is fault simulation implemented in hardware [18]. Because circuit
elements in hardware are evaluated in parallel, the exponential growth in runtime can
be avoided. Recently, FPGA has been utilized as an efficient, low-cost platform for
fault emulation [17]. In these approaches, faults are injected by the means of fault
injector hardware activation [21,22,24] or by FPGA reconfiguration [1,10]. Inserting
extra fault injector hardware increases both the cost and design complexity. On the
other hand, reconfiguring an entire FPGA may take a long time (up to several seconds)
and becomes the bottleneck of the emulation process.

Moreover, most of the existing fault injection approaches are performed at
gate-level or at lookup-table level. Faults modeled at these levels do not represent
realistic and complete faults. In a real hardware environment, faults can occur inside a
logic gate at the transistor-level. These faults are impossible to include in a gate-level
fault list. For lookup-table level fault injection [1,10] the fault list may also be
incomplete due to the loss of fault locations. Original circuit structure is usually
modified by the optimization performed by the tool during technology mapping prior
to fault injection. This causes inaccessibility of certain fault locations in a circuit. This
issue will be discussed in the next section.

In this report, a novel method is developed to emulate switch-level faults using
FPGA and to perform fast fault injection utilizing modular-based dynamic partial
reconfiguration. Faults are modeled at switch-level to represent a more realistic and
accurate fault list in comparison to traditional gate-level fault model [25]. However,

this switch-level fault list needs to be mapped to gate-level description so that it can
be efficiently synthesized and implemented on FPGA. Generally, FPGA-based fault

injection runtime mainly depends on the following factors:

1. The speed of reconfiguring medium (number of bits transferred per second)
2. Speed of fault injection controller (PC, on-chip or off-chip hardware, etc.)
3. Configuration bitstream size (number of bits)

Since the first two factors are technology dependent, having better equipment will
result in faster fault injection. Therefore, this project is focused on reducing the total
configuration bitstream size. To accomplish this, a circuit-under-test is first partitioned
into an unbalanced structure such that faults are only injected into a small sub-circuit.
This results in significant resynthesis time reduction because only a small faulty
partition needs to be synthesized for each fault. Next, partial bitstreams of these
individually synthesized partitions are generated using modular-based dynamic partial
reconfiguration flow. Each of these partial bitstreams represents the same circuit
partition with different faults injected. As a result, fault injection is accomplished by
downloading only the partial bitstream into FPGA. This fault injection method
requires much less time because for each fault injection only a small portion of the
FPGA is reconfigured.

The following section discusses the requirements for switch-level fault emulation
and the issues of the existing switch-level fault injection schemes.

1.1 Background

Traditional FPGA-based fault emulation approaches emulate faults at the gate level.
These approaches involve gate-level fault injection by means of hardware description
language (HDL) modification. However, faults modeled at gate-level are not as
realistic as switch-level faults because in real hardware, circuit outputs are evaluated
by the switching of transistors inside logic gates. Moreover, a switch-level fault list is
usually more accurate and thorough in comparison to a gate-level fault list because
each CMOS logic gate contains more than one switch, and each switch (or transistor)
has several locations where faults could occur. As a result, switch-level fault list is
usually larger than gate-level. In this project, switch-level fault model is considered.

FPGA-based switch-level fault emulation has already been proposed in [25] to
improve fault emulation speed. This approach involves inserting extra hardware into
the circuit-under-test as fault injectors. This not only increases hardware overhead in

the system, but also the design complexity of the configuration controller. The author
in [25] foresees the possibility for improvement if partial reconfiguration is utilized.

Dynamic Partial Reconfiguration has already been exploited as an efficient FPGA
fault injection technique in [1,10,12,13,14]. These approaches involve injecting faults
directly into the fault-free bitstream by using Xilinx JBit [2] software tool. Bitstream
content is directly modified without going back to the top of design flow in which
synthesis and routing are performed. Therefore, this type of fault injection scheme
injects faults at the bitstream level, which can also be called the lookup-table (LUT)
level. In SRAM-based FPGA, logic functions are implemented by the use of lookup
tables (LUT), whose entries are set by configuration bitstream. By directly changing
the content of lookup tables, faults can be injected with very fast speed since this
process does not involve resynthesis and rerouting. However, logic functions
implemented in LUTs may not reflect the original circuit structure due to optimization
done by the tools at synthesis and technology mapping stage [3]. A synthesis tool
usually tries to optimize the original circuit into a different structure with equivalent
logic function in order to reduce resource usage. This is a problem for switch-level
fault injection because transistor-level faults are modeled according to the original
circuit description. For example, consider the circuit in Figure 1.1.

(Fault location is gone)

Z=Yy

Figure 1.1 Fault Injection inside NAND Gate Issue after Optimization

The original circuit contains a NAND gate followed by an Inverter (NOT gate). A
switch-level fault is to be injected at location F. If a fault is injected after synthesis and
technology mapping, the circuit might be optimized into a lookup-table that
implements the function of an AND gate since both circuits are logically equivalent.
As a result, the target fault location F is lost when part of the circuit is removed (the
area enclosed by the dash line). Therefore, some of the fault locations may become

3

inaccessible when faults are injected into lookup-tables after technology mapping
optimization. Furthermore, sometimes more than one LUT needs to be modified
because the same component may be replicated during technology mapping to reduce
routing cost [9]. As a result, the fault injection process can become very complex.

In order to inject faults into the original circuit structure before being altered by
all sorts of optimization processes, faults should be injected at the hardware description
(HDL) level. However, this requires a complete circuit description to be synthesized,
routed and programmed into the FPGA. These steps significantly increase the total
emulation time. For instance, reconfiguring an entire Virtex-II device requires about
0.5 seconds, whereas the time to emulate one fault is in the neighborhood of a few
microseconds. It is obvious that fault injection time is the major speed bottleneck for
approaches where full-device reconfiguration is required for each fault injection. A
solution was proposed to inject multiple independent faults together and thus reduce
the total number of reconfigurations required [S]. However, this approach requires
extra fault injection circuitry and control pins to active faults in sequence. In addition,
even though the number of reconfigurations is reduced, for each reconfiguration there
are still unnecessary configuration bits being downloaded to the FPGA.

In the proposed approach, modular-based dynamic partial reconfiguration is
exploited to provide significant speedup without the need for extra fault injector
hardware overhead and control pins. In summary, the key difference between the
proposed approach and the existing ones is that faults are injected and emulated at
switch-level instead of lookup-table level. In addition, fault injection time and
hardware overhead is significantly reduced by reconfiguring only the necessary circuit
partition. This report will provide both theoretical explanation and the implementation

details for this approach.

1.2 Summary of Contribution

This project contributes to the following areas:

e Conducting research on dynamic partial reconfiguration and its
implementation methodology

¢ Implementing Modular-based Dynamic Partial Reconfiguration on FPGA
for all the selected benchmark circuits listed in Chapter 6

e Writing scripts and Java programs to automate Modular-based Dynamic

" Partial Reconfiguration flow
e Creating template files for automatic bus macro generation and port

mapping

¢ Designing the configuration controller using a Microblaze processor
e Designing pseudo-random input generator and necessary interface logic
e Collecting fault injection time and fault coverage data for analysis

1.3 Report Outline

Switch-level fault modeling is discussed in Chapter 2. Chapter 3 presents the
Unbalanced Partitioning scheme, its advantage, and how it applies to the proposed
fault injection campaign. Dynamic Partial Reconfiguration flow is explained in
Chapter 4. In Chapter 5, the proposed fault emulation system is presented. All system
components are also individually introduced. Then, fault injection time and emulation
results are provided in Chapter 6 along with analysis. Chapter 7 concludes this paper.

Chapter 2

Switch-level Fault Modeling

Switch-level faults are faults that occur in transistors inside a logic gate. Every
transistor in a gate is treated as a switch with on and off characteristics. Since circuit
outputs are evaluated by the switching of transistors in real hardware environment,
faults modeled at switch-level are more realistic compared to those modeled at other
levels such as gate-level or behavior-level. Moreover, since each logic gate is
constructed by several transistors in CMOS technology, a switch-level fault list is
much larger in comparison with gate-level fault list. These many faults offer a more
accurate and thorough fault model.

Switch-level faults need to be mapped to gate-level description so that circuit
description can be efficiently synthesized by common design tools [27]. For design
entry, Hardware Description Language (HDL) is one of the most popular methods.
However, it is not possible to describe a circuit in terms of its switching
characteristics in HDL. Thus, a library is necessary to map the switching

characteristics into logic behavior.

2.1 Switch-level to Gate-level Fault Mapping

In order to have greater confidence in a system’s fault tolerance ability in the
presence of faults, a complete and accurate fault list is needed in the fault simulation
process. Such a fault list can be attained if all switch-level (or transistor-level) faults
are considered thoroughly. However, these faults need to be mapped to gate-level for
efficient synthesis and test pattern generation. This section presents the methodology
used to map switch-level faults to gate-level description.

Failures in CMOS circuits can be classified into shorts, opens, and circuit
degradation. In reality, short and open faults occur most of the time. In this project,
for any two-input CMOS gate the following switch-level faults are considered:

1. Short Faults:
o Short between gate and source in both p-channels
e Short between gate and drain in both p-channels
o Short between source and drain in both p-channels

o Short between gate and source in both n-channels
e Short between gate and drain in both n-channels
e Short between source and drain in both n-channels

2. Open (Floating) Faults:
e Open gate in both p-channels and n-channels
o Open source in both p-channels and n-channels
¢ Open drain in both p-channels and n-channels

In addition, I/O line stuck-at faults need to be considered. For a two-input logic gate,
these include:

o Input #1 stuck-at-0 or stuck-at-1 fault;
o Input #2 stuck-at-0 or stuck-at-1 fault;
e Output stuck-at-0 or stuck-at-1 fault.

To better understand this switch-level fault model, consider the following fault
model for a CMOS inverter. The inverter is the most essential logic gate in CMOS
circuit design. It is used to build many other logic gates such as AND and OR gate. It
consists of only two transistors (switches), one n-type and one p-type transistor as

shown in Figure 2.1.
VAN

L

Input — — Output
[
Sz

Sy
M1

M2

Figure 2.1 CMOS Inverter

The output pattern in the presence of transistor-level fault is presented in the
following tables. Table 2.1 contains the possible short faults, Table 2.2 contains the
open faults, and Table 2.3 lists all the possible I/O stuck-at faults. Consider variable I
as Input, O as output, I1 and 12 as the input to transistors M1 and M2 respectively.

Short Faults .

.~ ~~Faulty Output -

O shorted with I

I

Table 2.1 Inverter Short Faults

Open Faults Input Condition Faulty Output

O is open For any I Z
1 0

I1 is open
0 Z
. 0 1

12 is open
1 Z
I is open For any I Z
. 1 0

S1 is open
0 Z
. 0 1

S2 is open
1 Z
. 1 0

D1 is open
0 Z
. 0 1

D2 is open
1 4

Table 2.2 Inverter Open Faults

/O Stuck-At Faults Faulty Output
I stuck-at 0 1
I stuck-at 1 0
O stuck-at 0 0
O stuck-at 1 1

Table 2.3 Inverter I/O Stuck-At Faults

After all possible faults have been modeled, a custom VHDL library of these faults
was created to make these faults synthesizable. This custom VHDL library also helps
simplify the fault injection process, which involves replacing gate descriptions with
faulty versions. Let us consider the above inverter fault model. The mapping of
switch-level (or transistor-level) faults to gate-level VHDL description is shown in the
following figure:

LIBRARY ieee;
USE ieee.std_logic_1164.all:

ENTITY INV_F2 is

port {

I : IN STD_LOGIC:

o OUT STD_LOGIC)
END INV_F2;:

ARCHITECTURE faulty of INV_F2 IS

BEGIN
-- input is stuck-at-0
0 <= '1';

END faulty:

Figure 2.2 Stuck-At Fault: Input is stuck-at-0

LIBRARY ieee;
USE ieee.std_logic_l164.all;

ENTITY INV_FS is
port (
I : IN STD_LOGIC:
0 : OUT STD_LOGIC):
END INV_FS5:

ARCHITECTURE faulty of INV_F5 IS

BEGIN
-- I is shorted to Output
O <= I;

END faulty:

Figure 2.3 Short Fault: Input is shorted to Output

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY INV_F7 is

port (
I : IN STD_LOGIC:
o} : OUT STD_LOGIC):

END INV_F7;
ARCHITECTURE faulty of INV_F7 IS

BEGIN

-— 31 is open

O <= '0' WHEN I = '1' ELSE 'Z';
END faulty:

Figure 2.4 Open Fault: S1 is open

In the above example, faults for the inverter are mapped to gate-level described in
VHDL. This mapping is straightforward as it is according to the above tables that list
all the possible faulty output pattern. These various versions of the inverter (INV_F2,
INV_F5, INV_F7) are used for fault injection in a circuit by replacing the inverter at
the desired location with the faulty version. This is shown in the following code:

G47:NOR2 PORT MAP (GSO_port, G40_port, G47_port):

I210:INV PORT MAP (G18_port, I210_port):

G24:0R4 PORT MAP (G38 port, G46 port, G45 port TEMP_ASSIGN, G40_port, G24_port):
[G131:INV _F7 PORT MAP (I232 port, G131 port) ;|

G113 :NOR2 PORT MAP (G115 port, G116 port, G113_port):

G112 :NOR2 PORT MAP (G62_port, G63_port, G112_port):

G92 :NOR3 PORT MAP (G94_port, G95_port, G97_port, G92_port):

G48: AND4 PORT MAP (G4S_port_TEMP_ASSIGN, G46_port, G10_port, G47_port, G48_port)
G132: INV PORT MAP (I235_port, G132_PO):

Figure 2.5 Inject a fault into s298 (Inverter G131 pMOS Source is Open)

This fault injection process is semi-automated by a Java program and Perl scripts
developed for this project. For the fault models of other basic logic gates, refer to [27].

10

Chapter 3

Unbalanced Circuit Partitioning

The basic idea of the proposed fault injection campaign is to partition the circuit
so that faults are injected into a smaller sub-circuit, resulting in shorter synthesis and
reconfiguration time. Two types of partitioning schemes are considered: balanced and
unbalanced partitioning [17]. To illustrate these partitioning schemes and their
difference, consider the following example.

Figure 3.1 Full Binary Tree Circuit Partitioning (L: Left, R: Right)

A circuit is partitioned into a full binary tree structure as shown in Figure 3.1.
Each node in the tree represents a certain circuit partition. The size of a partition is
roughly half of its parent (ex. L = LL + LR). A circuit can be represented by all the leaf
nodes with the same (or very similar) size. This partitioning scheme is called balanced
partitioning. It has been shown in [17] that in order to reduce the size of the partitions,
the circuit must be partitioned with more levels. This results in 2 leaf nodes, where i is
the tree depth level. For example, depth-of-4 partitioning results in 2* = 16 partitions.
This increasing number of partitions is not suitable for the implementation of
modular-based dynamic partial reconfiguration [8].

Modular-based partial reconfiguration design is considered to be quite complex
mainly because it requires the use of pre-synthesized, hard bus macros (explained in
Section 4.3) to facilitate the communication between two neighboring modules [8]. If

11

there are many modules in the design (i.e. many partitions), additional bus macros are
needed, which not only consume more hardware resources but also increase the design
time and complexity. As suggested in [8], the most efficient design for modular-based
dynamic partial reconfiguration includes only two partitions with only one set of bus
macros needed between them.

In order to reduce the number of partitions and partition size, an unbalanced
partitioning scheme is proposed [17]. This circuit partitioning method uses some of the
parent nodes to describe the circuit instead of using all the leaf nodes. This technique
greatly reduces the number of partitions. The use of a wrapper file can efficiently
group many partitions together to form just one partition. To better explain the
application of this partitioning scheme to the proposed fault injection campaign,
consider the following example.

After a circuit is partitioned in a full binary tree structure shown in Figure 3.1, a
partition (node LLLR) is chosen to be the Dynamic Partition (DP), and the rest of the
partitions are wrapped together to be the Static Partition (SP). Instead of having to
wrap all 15 partitions (leaf nodes) together, parent nodes can be wrapped together to
represent the same sub-circuit. To illustrate this, Figure 3.1 shows the balanced tree
partitioning of circuit s1238, and Figure 3.2 shows the unbalanced partitioning of the

same circuit.

LLLL LLLR

Figure 3.2 Unbalanced Partitioning Graph (DP: LLR)

In this example, partition LLLR (the dark-shaded circle) is chosen to be the
Dynamic Partition (DP). The rest of the partitions, LLL, LR and R (the light-shaded
portions) are wrapped together to become the Static Partition (SP). Note that only four

12

partitions are wrapped together instead of 15 in the balanced partitioning case. This
greatly simplifies the design complexity.

To apply this partitioning structure in the proposed fault injection campaign, faults
are injected in the Dynamic Partition (DP). DP is “dynamic” in the sense that its
content changes each time a different fault is injected. In another words, to inject one
particular fault, only the partial bitstream that represents that faulty version of DR
needs to be downloaded into the device. The rest of the device where SP resides is left
untouched.

13

Chapter 4

Dynamic Partial Reconfiguration

Dynamic Partial Reconfiguration (DPR) is a capability to reconfigure only a
portion of an FPGA during runtime without having to shut down the device. This is
different from traditional offline reconfiguration, which requires the full device to be
reconfigured every time. By utilizing dynamic partial reconfiguration, the fault
injection process can be accelerated by only reconfiguring the circuit partition where
faults are to be injected.

There are generally two types of DPR design flow: Difference-based and
Modular-based flow [8].

4.1 Difference-based DPR Flow

In this design flow, a partial bitstream is generated to represent the difference
between the reference design and the new design. A new design can be obtained by
changing part of the existing design using this partial bitstream. Therefore, for two
designs that are very similar, a very small partial bitstream is generated to reflect its
minor differences. This is an ideal DPR flow when designs are very similar and when
only small changes need to be made (ex. changing the content of the memory or
lookup table configuration).

4.2 Modular-based DPR Flow

Modular-based Dynamic Partial Reconfiguration flow is very similar to regular
modular design flow [36]. This flow involves partitioning the design into modules with
distinct boundaries. Each module occupies a certain portion of the FPGA and does not
overlap with the others. Each module can be individually reconfigured. Two
neighboring modules can only communicate with each other using the pre-routed bus
macros (explained in Section 4.3). Bus macros are needed to guarantee the same
routing configuration is preserved for the new module to properly communicate with

14

others. Finally, each module is converted to a partial bitstream that can be downloaded
at runtime to update the FPGA.

Since circuit partitions are individual entities with distinct boundaries, circuit
partitions can be treated as modules. Modular-based partial reconfiguration flow
naturally fits the proposed approach. In the proposed scheme, a partition named the
Dynamic Partition (DP) will be treated as one module, and the rest of the partitions are
wrapped together to form a partition named the Static Partition (SP) module. In this
project, faults are injected into Dynamic Partition (DP). This structure is based on the
unbalanced npartitioning structure explained in Chapter 3. The fault emulation
controller (EC) is also considered a module. One thing to note is that the EC module is
not needed if the emulation controller is not implemented on FPGA. Microprocessor or
PC software may also be used as the emulation controller to eliminate the use of this
EC module. The following figure illustrates this implementation structure.

= -

DP || sP o[Elct,
o m muiation :
LLLR| | LLLL + {
| LLR+ L Controller) ;

LR+ %

- R U i

FPGA

Figure 4.1 Unbalanced Partitioning FPGA Implementation

As shown in Figure 4.1, there are three modules in the modular-based dynamic
partial reconfiguration design, namely Dynamic Partition module (DP), Static Partition
module (SP) and the optional Emulation Controller module (EC). Modules can only
communicate through bus macros [8] represented by the small horizontal lines
between the modules. To inject a fault, only DP needs to be reconfigured, and SP, EC
are left untouched. As a result, the fault injection time is greatly reduced, and so is the

total emulation time.

There are several design phases in modular-based DPR flow. The following section

presents the essential details of each phase.

4.2.1 Module Synthesis Phase
Before each module can be placed and routed, it needs to be synthesized. In this

15

project, modules are synthesized using Xilinx Synthesis Technology (XST) tool [29]
through Xilinx Integrated Software Environment (ISE) interface [33]. The most
important requirement for modular synthesis is that each module has to be synthesized
individually with the “Add I/O Buffer” option disabled. The generated netlist file
(.ngc) for all three modules will be used later in the module implementation stage. In
addition, the top-level wrapper file that connects the three modules together with bus
macro description also needs to be individually synthesized. However, the synthesis
for the top-level module should be done with the “Add I/O Buffer” option enabled
and with each functional module defined as a block-box level of hierarchy. Therefore,
the HDL files for all the modules should not be included in the top-level module
synthesis.

The bus macro file (bm_4b_v2.nmc) [8], which is provided by Xilinx, needs to
be placed in the same directory with the top-level wrapper module so that bus macro
blocks will be expanded during synthesis. That is, a bus macro should not be treated
as a black-box because it is already pre-routed and its location needs to be explicitly
specified in the constraint file. Other than bus macros, no other modules should be
expanded. These are the requirements made by Xilinx in terms of the synthesis
process [8]. The following figure contains the synthesis script used in this project.

run
-ifn s1238_PARTITION LLLL.prj
—-ifmt mixed

—ofn s1238 PARTITION_ LLLL.ngc
-ofmt NGC

-p xXc2v1000-fg456-4

-top s1238 PARTITION LLLL
-iobuf No

Explanation

Line 2: Project File Name

Line 3: Project format. Xilinx
suggests using mixed format
whether it is a real mixed
laguage project or not

Line 4: Output file name

Line 5: Output file format
Line 6: Target technology

Line 7: Top level block name
Line 8: Add I/O buffers option

Figure 4.2 XST Script for Synthesis (xst.scr)

More detail can be found in the XST user guide [29]. After placing the XST script file
and the HDL file, the synthesis procedure can be invoked by running the following

16

command:
XST -ifn xst.scr -ofn synthesis_report.log

After synthesis, a netlist file is created in NGC format, which is placed and
routed later in the implementation stage. The reason that XST is chosen is that XST
progresses in each release, improving clock frequencies and decreasing area usage, as
well as reducing run time and memory utilization. Moreover, XST is made by Xilinx
to provide simpler integration with other tools such as Xilinx Platform Studio [34],
which is the processor system design tool used in this project.

4.2.2 Initial Budgeting Phase

Initial Budgeting Phase involves setting up area constraints for the modules and
bus macro locations. These constraints are essential to DPR floorplan design.
Floorplanning is a process of allocating resource space for each module and placing
pre-routed bus macros in between the modules if necessary. The top-level and all three
modules must follow the same spatial and temporal constraints, namely location,
boundary and timing constraints. An example of such constraints is provided below:

#
Global Constraints
B
System level constraints

Net "sys_clk_pin" LOC=411;

A1l => 24MHz B6=> 100MHz;

Net "sys clk pin" PERIOD = 41666 ps:

Net sys_rst_pin LOC=B6;
Net sys_rst_pin TIG:

"A'? L H
"B'? r

NET "fpga_0_RS232_TX pin" LOC
NET "fpge_0_RS232_RX_pin" LOC

Figure 4.3 Pin Assignment and Clock Constraints

PROPERTY oF
17 RYERSON UNIVERSITY LIBRARY

#

Area & Location Constraints

#

INST "dynamic" AREA GROUP = "AG d" ;

AREA GROUP "AG_d" RANGE = SLICE_XOYO:SLICE_X7Y79:
AREA:GROUP "AG_d" RANGE = TBUF_XOYO:TBUF_X6Y79:
AREA_GROUP "AG_d" HMODE=RECONFIG:

INST "static" AREA GROUP = "AG_s" ;

AREA_GROUP "AG_s" RANGE = SLICE_X8YO:SLICE X23Y79 ;
AREA _GROUP "AG s'" RANGE = TBUF_X8YOD:TBUF_X22Y79:
AREAX GROUP "AG_s" MODE=RECONF IG;

INST "sys" AREA GROUP = "AG_sys" ;

AREA_GROUP "AG sys" RANGE = SLICE_X24Y0D:SLICE_X63Y79 ;
AREA GROUP "AG_sys" RANGE = TBUF_X24YO0:TBUF_X62Y79;

AREA GROUP "AG_sys" RANGE RAMB16_X1YO:RAMB16_X3Y9;
AREA_GROUP "AG sys" RANGE = MULT18X18_ X3Y0:MULT18X18_X3Y9
AREA_GROUP "AG sys" MODE=RECONFIG:

e

Bus Macro Location Constraints
INST "bm D_S 1" LOC = "TBUF_X4Y30";
INST "bm D S 2" LOC "TBUF_X4Y34":
INST "bm S M 1" LOC "TBUF_X32Y30";
INST "bm S_M 2" LOC "TBUF_X32Y34";

Figure 4.4 Module Area and Bus Macro Location Constraints

In the area constraints, the DP module is assigned 8 slices from the left of the
device and the SP module is assigned 16 slices from slice position X8 to X23. Finally,
EC module spans 40 slices wide from slice position X24 to the end of the device X63.
Note that for all modules, the area spans the entire column of the FPGA. This is one of
the requirements of the current DPR technology. Moreover, all resources that reside
within the module boundary must be explicitly constrained. These resources include
tri-state buffers (TBUF), block RAMs (RAMBI16) and Multipliers (MULT). In
addition, the key word AREA_GROUP “<group name>” MODE = RECONFIG;
must be included so that the tool knows that the DPR system is being designed. Lastly,
the bus macro location is explicitly defined as shown in Figure 4.4. In the example,
only four bus macros are used (two for each boundary intersection). The bus macro
position exactly straddles the dividing boundary line between two neighboring
modules. Bus macro placement and usage will be discussed in Section 4.2.

After the constraints are set, the following command is run to translate and merge
the various source files of the module into a single database file in NGD format [36].

ngdbuild -p xc2v1000-4fg456 -modular initial top.ngc

18

ngdbuild -p xc2v1000-4fg456 -uc top_sys.ucf -modular
module -active system ..\top level initial\top.ngc

ngdbuild -p xc2v1000-4£g456 -modular module -active
s27 ..\top_level_initial\top.ngc

ngdbuild -p xc2v1000-4fg456 -modular module -active
s27_1fsr ..\top_level initial\top.ngc

This concludes the Initial Budgeting Phase. Partial bitstream for reconfigurable
modules is generated in the next phase.

4.2.3 Active Module Implementation Phase

In this phase, each netlist is placed and routed individually within its assigned
boundary, and the corresponding partial bitstreams are generated. Note that signals that
need to cross the boundary are only routed up to the I/O of the bus macros. Final
routing is done in the Assembly Phase.

As described in the previous section, the User Constraint File (UCF) [35] contains
information about the size of each module (i.e. the boundaries) and bus macro
positions on the device. With this file, the tool knows where to place the module and
the bus macros. After each module is placed and routed, a viewable configuration file
(in NCD format) of each module is generated. Partial bitstream of each module is
generated at this stage. In this project, partial bitstreams for each faulty DP version are

generated.

A full device design must have been loaded into the device prior to the
downloading of partial bitstreams. In this case, this initial design consists of the
fault-free DP, its corresponding SP and the Microblaze system. The final Assembly
stage will assemble these three modules together to generate a full bitstream as the
base design. The following commands are used in this phase.

map -u -pr b -p xc2v1000-4£g456 top.ngd -o top.ncd top.pcf

par -w top.ncd topl.ncd

bitgen -d -b -f bitgen v2_jtag.ut -g binary:yes -g
ActiveReconfig:Yes topl.ncd top partial.bit

pimcreate -ncd topl.ncd ..\Pim

19

The MAP command [36] invokes the technology mapping of the module on the
floorplan design (top.ngd) obtained from the Initial Budgeting Phase. The PAR
command [36] performs the routing of the module within its boundary. Note that even
though the routed design is named topl.ncd, it is actually the routed module, not the
overall top-level design. BITGEN [36] is the command that generates bitstreams. The
option ActiveReconfig: must be set to Yes to enable dynamic partial bitstream
generation. This option makes sure the device is not shut down during the
reconfiguration of this partial bitstream. Partial bitstreams for the fault-free and all
faulty version of the DP module are generated. In addition, even though SP and EC are
not reconfigurable modules (i.e. static modules), they still need to be individually
routed. However, the partial bitstream generation process can be skipped. Finally,
PIMCREATE command [36] publishes the routed design (NCD file) of each module
to a directory where all the routed modules are collected and ready to be assembled.

In the next phase, modules are assembled to form a working base design.

4.2.4 Final Assembly Phase

Before a partial bitstream can be loaded into the device, a full design must be
loaded into the device. The initial design consists of the fault-free DP, its
corresponding SP and the Emulation Controller module. The following commands are
required to perform the final assembly:

ngdbuild -uc top_final.ucf -bm top.bmm -p xc2v1000-4£fg456
-modular assemble -pimpath ..\Pim top.ngc

map -detail -pr b -p xc2v1000-4fg456 top.ngd

par -w top.ncd top_routed.ncd

bitgen -d -b -f bitgen v2_jtag.ut top_routed.ncd
top_routed.bit

The NGDBUILD option -modular assemble invokes the assembly action. As
described in the previous phase, routed modules are published to a directory to be
collected. The directory location is specified using the -pimpath option [36].

Final technology mapping and routing are performed to finalize the design.
Finally, a full bitstream is created. Note that this phase is only needed to produce the
bitstream for the initial design. Partial bitstreams for the faulty dynamic partitions have
already been created in the Active Module Implementation phase described in Section

20

4.2.3. In the next section, more explanation is provided regarding the use of Bus
Macros.

4.3 Bus Macro

A bus macro is the essential component in the modular-based partial
reconfiguration flow [8]. It facilitates communication between two neighboring
modules and keeps the routing resources across module boundaries static and fixed. It
is a pre-synthesized, pre-routed circuitry, which consists of a pair of four tri-state
buffers at each end of a short 4-bit bus. This structure is illustrated in the following
figure.

CENTER
(Boundary) between B and C
LO [3:0] RO [3:0]
LI [3:0] %I& AL|& ’_Zr 57 ﬂk— L'k_ % RI [3:0]
LT [3:0] RT [3:0]

X200_06_032802

Figure 4.5 Bus Macro Schematic [8]

As shown, a set of two tri-state buffers with one at each end of a one-bit lane controls
the direction of data flow. Each lane can be configured to carry traffic from left to right
or the opposite. As a result, a bus macro acts as a four-lane bridge between two
neighboring modules. Bus macros are needed to ensure the same routing paths are
preserved between two neighboring modules after the content of one module is
changed by partial reconfiguration. By preserving the same routing path between
modules, it allows a modified module to communicate with its neighboring modules.

4.3.1 Bus Macro Placement

Bus macros must be placed in the middle between two neighboring modules that
wish to communicate with each other (see Figure 4.6).

21

A A

Reconfigurable Bus Reconfigurable

Module > Macro or
Fixed Module

Y

Figure 4.6 Bus Macro Used for Intermodule Signals

In this project, two sets of bus macros are needed for Dynamic Partition module
(DP) and Static Partition module (SP) to communicate with each other, and for SP
module and Emulation Controller (EC) module to communicate with each other.
Figure 4.7 illustrates such placement of these bus macros. The area boundaries of the
two neighboring modules must each enclose half of the bus macros. In other words,
bus macros must be situated exactly at the centre between two neighboring modules as
shown in Figure 4.7. Bus macro placement should be consistent for all compilations of
the same design.

DP || SP

I 1111117
2]
Q

DP sp

Figure 4.7 Bus Macro Placement

As suggested in [8], the first slice (left-most) of the 8-slice wide bus macros
should be placed on a position that is divisible by 4 (ex. X24 or X28) as illustrated in
Figure 4.8.

22

BM#1

DP [BM#2] SP

» X08
| BM#3 | Y06
A 4 h 4

X24 X31

Figure 4.8 Examples of Bus Macro Placement

As shown in Figure 4.8, each bus macro occupies two slices in height. The FPGA used
in this project, Virtex-II VC2V1000-4fg456, has only 80 slices in height. Therefore, 40
bus macros is the maximum number of bus macros that can be placed between two
neighboring modules. In another words, two neighboring modules can have up to 160
signals across their boundaries. Therefore, the FPGA used in this project prevents the
system from testing a circuit with more than 160 primary I/Os because these 1/O
signals need to be sent from and to the emulation controller (EC). To overcome this,
the Test Pattern Generator is implemented inside SP to eliminate the need for bus
macros to carry primary inputs from EC to SP. This will be discussed in more detail in
Section 5.2.

4.3.2 Bus Macro Usage

A macro file (.nmc) provided by Xilinx needs to be placed in the same directory
with the top-level wrapper file. After the initial floorplanning stage, all bus macros will
be placed and routed. To use a bus macro, the following declaration (see Figure 4.9)
must be included in the top-level wrapper file.

-— Bus Macro Declaration
COMPONENT bm_4b_v2 IS

PORT (LI, RI : in std logic_vector (3 downto 0);
LT, RT : in std_logic_vector (3 downto 0);
o] ¢ out std_logic_vector (3 downto 0)

)
END COMPONENT;

Figure 4.9 Bus Macro Declaration in VHDL

For each bus macro instance, proper port mapping is very important as this process can
become quite confusing. The following VHDL code shows such port mapping:

23

bm example : bm 4b_v2
PORT MAP(
.LI(0) => a_in, —-- signal 'a' from left to right
LI(1) => b_in, -- signal 'b' from left to right
LI(2) => GND_D, -- to ground
LI{3) => GND_D, -- to ground
LT(0) => GND D, -- logic-0
LT(1) => GND_D, -- logic-0
LT(2) => VCC_D, -- logic-1
LT(3) => VCC_D, -- logic-1
RI(0) => GND_S, -- to ground
RI(1) => GND_S, -- to ground
RI(2) => c_in, -- signal 'c' from right to left
RI(3) => d_in, -- gignal 'd' from right to left
RT(0) =>» VCC_S, -- logic-1
RT(1) =>» VCC_S, -- logic-1
RT(2) => GND_S, -- logic-0
RT(3) => GND_S, -- logic-0
0({0) => a_out, —- crossed the boundary to the right
0({1) => b_out, —-- crossed the boundary to the right
0(2) => c_out, -- crossed the boundary to the right
0(3) => d_out -— crossed the boundary to the right
):

Figure 4.10 Bus Macro Port Mapping Example

To better illustrate the above port mapping structure, consider the following

schematic:
CENTER
(Boundary) between DP and SP
0 [3:0] 0 [3:0)

a_out

b_out
d_out
c_out

K X K

Ny

—Zﬁ A —2& Ay

X Zlk-
RI [3:01
b_in c.in

ain LI [3:0] .
d_in

= =

LT [3:0) RT [3:0]

Figure 4.11 Bus Macro Schematic with I/O Signals

24

In Figure 4.11, signal a_in and signal b_in need to be routed across the DP-SP
boundary to signal a_out and signal b_out. On the other hand, signal c_in and signal
d_in need to travel from SP to DP. The control signal for a tri-state buffer (LT, RT)
controls the direction of the data flow. When LT or RT is pulled low (logic-0), the
corresponding tri-state buffer’s output is driven by its input data. On the other hand,
when LT or RT is pulled high (logic-1), the tri-state buffer’s output is at high
impedance state, and is driven by the tri-state buffer at the other end. This facilitates
bi-directional communication. However, to keep the design simple, the data flow
direction should be set during the design stage and should not be changed afterwards.

For signal a_in and signal b_in, signal flows from DP to SP (left to right) because
the tri-state buffers on the left side are on, and the ones on the left are at high
impedance. The situation is opposite for signal c_in and signal d_in. One important
thing to note is that for signals traveling across one or several modules, bus macros
are still needed to help route across all boundaries along the way. Therefore, bus
macros are needed when a signal needs to travel across any boundary, except for
global clock signals.

25

Chapter 5

Fault Emulation System

The fault emulation system consists of the partial reconfiguration
implementation for the partitioned circuit-under-test and the fault emulator module
implemented on a soft-core Microblaze processor. Detail information and
implementation steps of the system are provided in this section.

5.1 Fault Emulation Controller

5.1.1 Hardware Overview

The Emulation Controller (EC) module is responsible for controlling the entire
emulation flow. The system block diagram is presented in Figure 5.1.

fifi iR
cessor

i
sEact i o gt fde b

Local Local
Instruction Instruction
Bus Bus

" Peripheral
Bus EC Module

Figure 5.1 Emulation Controller Module Overview

An interface core is designed to provide the interface between the circuit-under-test
and the processor. It also interfaces between the test pattern generator and the

processor.

26

This prototype system contains 16KB local instruction/data memory and 32KB
Block RAM to store the good outputs and partial bitstreams. Serial communication is
needed for debug purposes.

The FPGA chosen has a build-in Internal Configuration Access Port (ICAP),
which enables the FPGA to reconfigure itself. By using Microblaze processor, such
utilization is very simple because the interface IP core (opb_hwicap core [31]) is
already provided for this purpose.

5.1.2 Software Overview

The software flow of the fault emulation and configuration controller is
summarized in Figure 5.2. First, the system performs good emulation to obtain the
outputs when no faults are present in the circuit. After that the system performs fault
emulation by first injecting a fault into the circuit (i.e. partially reconfigure the
Dynamic Partition), then the same input patterns are fed into the circuit to obtain
outputs with fault present in the circuit. Then the emulation controller determines if a
fault is detected by comparing these outputs against the outputs collected during good
emulation. The fault coverage result is recorded as the program-progresses.

~Csan D

Perform Partial

v
Waiting for a
command from PC

ood Outpu
Collection Mode

to generate circuit

memory (or on PC)

to generate circuit

inputs, and clock the | inputs, and clock the #of
CUT, and Store the CUT, and Store the Test Patterns
circuit outputs in circuit outputs in we want?

memory (or on PC)

eached the # o
Test Patterns we
want?

!

s this output the same
with the good one?

Reconfiguration
Good iy to]
l Jest Mode?, Test Inject a new fault
Reset the Reset the
LFSR and all LFSR and all
DFFs DFFs
Clock the LFSR once Clock the LFSR once

eached the

No |

Figure 5.2 Fault Emulation Program Flow

27

5.1.3 Microblaze Processor System

The presented hardware and software generalization is realized using Xilinx
soft-core Microblaze processor. As described earlier, the reason for a processor

system is simplicity. Fault emulation process can be easily setup and modified
through simple programming. Therefore, this should not count as hardware overhead

since one can choose external hardware or PC as the fault emulation controller.

Xilinx Microblaze is a soft-core 32-bit RISC processor. It is soft-core in the
sense that its configuration and peripheral can be customized by the designer. The
customization is converted to HDL code and gets synthesized. The synthesized
processor code is then able to be implmented on the FPGA alone with other circuitry.
Since the FPGA board used in this project does not come with a physical processor,
Microblaze processor is a suitable choice for this experiment. The following section
presents the hardware and software setup for Microblaze system.

5.1.4 Hardware Setup

Xilinx Platform Studio (XPS) [34] simplifies the design flow for Microblaze
processor system. The Base System Builder wizard creats a base system with all the
fundamental features based on designer’s choice (see Figure 5.3). After the wizard
generates a base system, custom user core can be added into the system (see Figure
23). As shown in Figure 5.4, LFSR is the user-core added to the base system. The
purpose for this user-core is explained in Section 5.3. In addition, address mapping is
also done through this interface (see Figure 5.5). Finally, a schematic is generated to
provide a graphical view of the system (see Figure 5.6). This sytem module is then
synthesized individually and ready to be implemtned along with the circuit-under-test.

The integration process is explained in Section 5.6.

28

Axdzkdsl c;_;n

. —Sytbm wdo Settings

Processor-Bus

c XMDMSIW dob\umb

Rofmmeck
. | SEiiium 5000 v |MHz. -
i Emat)ni)onrbouﬂnmnﬁgmdﬁur ‘tpocﬁedﬁvqmmy,
Resat Polarity Hctmww B _V_I o
 Processor Configant —
Debug UF

(‘NoDebu
MicraBiare
rc&,h“; —
| Enablad
Morlnfo_| [Chots] camal |

Figure 5.3 Base System Builder Wizard

FATE ‘J OIS P E L R A i

* Peripherals lBus Connect:ons] Addn:sesl Ports | Pammiml

Cells with white backgrounds can be edited. To delete (‘ Ehaw EQ —CompomntFihar
) s_,gE peripherals, choose one or more rows and click Delete. ~Processor = Specific ¢ Interrupt
n | € MicroBlaze Only fali(s]

Peripheral HW Ver lhuu\nco ! ¢~ PowerPC Only ; {‘T’a]‘;il Losic
opb_hwicap 1.00.a Topb_hwicap 0 3 (" Either Processor TP emory
bram_block 100.a opb_bram_if_cnflr_{_bram | Bus " Co AHOS - Sexialn
opb_brem if cuflr 1004 opb_brem _if_cntlr 1 rcr o || 7 CF Tomr
microblze 300 microblaze_0 CRL ~pp || O Cwoml B RS
bram_block 100a Imb_bram 4 € LMB ¢~ Trns || © D28
Imb_bram_if_cntlr {1.00.b . ilmb_entlr B COCM -
!mb_bmg_if_cnﬂx 1.00.b dimb_cntlr ‘ v _ o block @I
opb_vartlits ll]Ob}__"_ _ R§232 N | chipscope_icon
LFSR 1100 LFSR_O : e Add l . c]}‘fﬁi'g“ b

chipscope _prb 1ba

Chork o le et

" caaw [clock_module_re:
Delsts >> I gcm e
. dsbmm_;f entlr
fit_timer
isbram_if_cntlr
}fazppc_cnﬂr
FSR

1mb_bram_if_cntlr

microblaze

mii_to_ymii

opb2der_bridge

opghlg :ndze

opb_arbiter

v]

Figure 5.4 Add/Edit Hardware Platform Specifications

29

[Gonsrab Addmeses | Generats eddreses for eriphenlstht do mothave ocked addresses ~

" | Peripheral - Instance Lock BmAddm High Address | Min Size _-| Size (KB) ICxche |DCuxheyy
- opb_hwicap opb_hwicap 0 [~ |OxFFFFB000 |OxdfifBiff Ox1000 | .- ’
opb_bram_if_cntlr: |opb_bram_if_cnilr... [~ |0x20000000 |0x20007{ff |0x800 . |32 | .
- | opb_uartiil RS232.) - ;
LR - LR OxHE5000 | ‘
Imb_bram_if_cnflr | ilmb_cnflr .
Imb_bram_if_cntlr | dlmb_cntlr

Figure 5.5 Address Assignment for Various Components

30

lnter/nil Bus OPB Peripheral Bus Memory Bus

(o] o] E-fl EEN A fime pof simi. a1

RAM Block
ICAP <« ~

Microblaze F_—@ , %

troller

woa

ntc'%? UART Controljer

I E‘fg I]terface Co
(fms] s bt s 7 [5a1

Figure 5.6 Peripheral Block Diagram (PBD) view generated by Xilinx XPS

5.2 Test Pattern Generator

Pseudo-random inputs are used for emulation because the objective of the
proposed approach at this stage is not to achieve high fault coverage. Pseudo-random
input patterns are generated by the longest sequence XOR Linear feedback shift
register (LFSR) [15].

One of the difficulties encountered in this project is the limitations of bus macros.
As described in Section 4.3.1, only 160 signals are allowed to travel between two
neighboring modules due to hardware limitation. LFSR was originally implemented
inside the Emulation Controller (EC) module boundary. Thus, bus macros are needed
to carry the generated input patterns from EC module to the circuit-under-test (SP and
DP module). This puts a constraint on the circuits that this system can work with. In

31

order to test a circuit with more than 160 I/Os, the LFSR is implemented in the static
partition. Since LFSR is moved from EC module to SP, primary inputs are generated
and fed into the static partition of the circuit-under-test circuit within the SP boundary.
As a result, the need for bus macros to carry primary inputs from EC to SP is
eliminated. This allows the proposed system to work with more circuits with large
number of I/Os because the generated test patterns no longer need to travel from EC to
SP. However, since the result analyzer (output comparator) is done by the Microblaze
processor, it is within the EC boundary. As a result, outputs of the circuit-under-test
still have to travel from the DP to SP (if any), and then from SP to EC using bus
macros.

5.3 Interface Logic Core

As described in the previous section, input generator is implemented in the static
partition module (SP), and the output analyzer is situated in the emulation controller
module (EC). Interface core is necessary to interface the LFSR with the Microblaze
processor, receive circuit outputs, and send them to Microblaze for comparison. A
user-logic core is designed to accomplish these tasks. A user-logic core is an IP core
customized by the designer. In this project, this user-logic core is written in VHDL,
and is able to communicate with Microblaze processor using the On-Chip Peripheral
Bus (OPB) [7]. It is named Interface Core (iCore). In order to communicate through
Microblaze processor’s bus, certain bus protocol ports are required. Some of the
important ports are listed here: '

32

entity user_logic is
generic

(

-~ Bus protocol parameters

C_AVIDTH : integer 1= 32; -- bus address width
C_DWIDTH ¢ integer t= 32; -- hus data width
C_NUM CE : integer =1 -~ number of processor chip
):
port

(

-- Bus protocol ports

Bus2IP_Clk : in std_logic: -- Bus to IP clock
-- Bus to IP address bus
Bus2IP_Addr : in :cd_logiq_vecco:(ﬂ to C_kﬂIDTH—i):

-~ Bus to IP data bus for user logic
Bus2IP_Data : in std_logic_vector {0 to C_DWIDTH-1):
—- Bus to IP read chip enable for user logic
Bus2IP_RdCE : in std_logic_vector (0 to C_NUM CE-1):
—- Bus to IP write chip enable for user logic
Bus2IP_WrCE : in std_logic_vector(o to C_NUM CE-1):
-- IP to Bus data bus for user logic
IP2Bus_Data : out std_logic_vectorto to C_DWIDTH-1):
—-— IP to Bus acknouwledgement
IP2Bus_Ack : out std_logic:

):

end entity user_logic:

Figure 5.7 Important Interface Core Port List

Bus2IP_Data port carries the signal sent from the processor to iCore. Such signals
include the clock signal for the LFSR, reset signal for the LFSR, clock signal for the
circuit-under-test (CUT), and the reset signal for the CUT. In addition, the
IP2Bus_Data port is used by iCore to send the received CUT outputs to the processor
for comparison. Bus2IP_ClIk is the clock signal for the bus. For more information on

user core design, please refer to [32].

5.4 Internal Configuration Access Port

Internal Configuration Access Port (ICAP) is the configuration mode used in the
project. Before choosing this configuration mode, standard Boundary Scan (JTAG)
configuration mode is used. Both configuration modes support dynamic partial
reconfiguration. However, ICAP has the ability to allow FPGA to self-reconfigure
itself with the control of an ICAP controller. Microblaze has a pre-designed ICAP
controller IP Core called OPB HWIPAP [31]. HWICAP module enables an embedded
microprocessor (either Microblaze or PowerPC) to read and write the FPGA
configuration memory through ICAP during runtime. FPGA configuration can be
changed at runtime through software modification. Such modification is done using
the read-modify-write mechanism. Several configuration frames are read into the
on-chip memory one at a time. A frame is the smallest granularity where the FPGA

33

allows configuration data to be read and written. It is a collection of bits, which is -
one-bit wide and spans the entire column of the FPGA device. Once a frame is read
into the memory, modification is done by the processor through software. After
modification, the frame is written back to where it is read on the device.

In addition, ICAP core has the ability to load a partial bitstream into the device,
therefore the ability to self-reconfigure the FPGA. This feature is used in the project
to perform dynamic partial reconfiguration. The following piece of software code is

used to accomplish this:

#include "xhwicap.h”

*
.
L]

void main () (

Xuint32 *data = 0x20000000,size = 6309:;
XHulcap myICAP;

.
.

XHUIcap Initialize (&myICAP, XPAR | OPB_HVICAP_O_| DEVICE_ID +XHI_. XC2v1000) ;
XHwIcap SecContiguration(&myICAP, data, size), // size in 32bit word

L]
*

Figure 5.8 Software Code to perform Dynamic Partial Reconfiguration

The above code loads a partial bitstream stored in the on-chip memory at location
0x2000000. The partial bitstream size is 6309 x 32-bit =201,888 bits.

L]

5.5 Serial Communication Controller

The standard RS232 serial communication port is used in this project mainly for
debugging purposes. It is also used by a Java program running on PC to send
commands to Microblaze processor running on FPGA. Note that even though
Microblaze is responsible for controlling the fault emulation process, a Java program
is designed to test the system. Therefore, this is an optional part of this system
prototype to help debug and simplify the proposed fault emulation approach.

The serial communication IP core used by Microblaze is called the OPB UART
Lite [30]. UART stands for Universal Asynchronous Receiver-Transmitter. It is a
full-duplex (one transmit and one receive channel) transmission module with a
configurable transmission rate. The transmission speed (baud rate) is set to 115200
bits per second with no parity. UART Lite core can be easily added into the system by
setting it as Microblaze’s standard I/O as shown in the following figure.

34

Intice - |CowentVeloe .
£ microblaze_0 :standalone . |
A= T sdin RS232 .
7 stlout 3 RS232 ... |stlout peripheral .

Figure 5.9 Microblaze OS Parameter Setup

5.6 Final System Integration

Before a partial bitstream can be loaded into the device, an initial design must
already exist on the device. This initial design consists of the fault-free DP, its
corresponding SP and the emulation controller module presented in Section 5.1. The
initial design is created at the final Assembly phase where the three modules are
assembled to form a full bitstream. Figure 5.10 shows the assembled design, which is

an elaborated version of the system block in Figure 4.1.

Serial_out | [Serial_in SP

{ Bus Macro
Circuit Inputs

~1¢

Bus Macro

!

XXXXXEEIN

- |LFSR_CIk

—Rst
p Bus Macro
Circuit Outputs

Figure 5.10 Block Diagfam for the Final System

After the final place and route of the assembled system, the actual FPGA resource

view can be obtained (see Figure 5.11).

35

@)
Figure 5.11 (a) Initial Floorplan (b) Final Assembled System for s5378

In Figure 5.11, clear boundaries between the modules are shown. Signals can
only cross module boundary through bus macros. Moreover, in Figure 5.11, 14 bus
macros are used between SP and EC because there are 56 signals traveling across this

boundary. These signals are:

e 49 primary output signals for s5378

e 2 signals for transmission (TX) and receiver port (RX) of the UART Lite core
e 2 signals for circuit reset and LFSR reset

e 2 signals for circuit clock and LFSR clock

e 1 signal for global reset to go into EC

Therefore, since each bus macro can carry four 1-bit signals across module boundary,
a total of 56/4 = 14 bus macros are needed. Bus macros for UART Lite’s TX and RX
signals are needed for them to route between SP and EC. This is because the physical
location of these two 1/O pins resides within the SP boundary. It is the same case for
the global reset signal, which needs to be routed from the pin location residing within
the SP boundary to Microblaze processor residing within the EC boundary. This final
design is the realization of the proposed system illustrated in Figure 5.10, which
implements the unbalanced partitioning structure illustrated in Figure 3.2 and Figure
4.1.

36

5.7 Inject Faults in Other Partitions

To inject faults into other partitions, one first needs to determine the partition
where the faults are to be injected. Then rerun the modular-based partial
reconfiguration flow with this partition being the DP, and the rest of the circuit being
the SP. The remaining steps are the same. All the above steps are automated through
the developed scripts and Java programs.

5.8 Programming the FPGA with Partial Bitstreams

After the full bitstream is generated, it can be loaded into the FPGA. Internal
Configuration Access Port (ICAP) is the method used to reconfigure the device. ICAP
is a subset of the SelectMap configuration architecture [31]. The difference is that
ICAP can be accessed internally in the FPGA. Originally, JTAG was used to perform
partial reconfiguration. However, JTAG requires a configuration controller program
running on a PC. In addition, by utilizing the provided ICAP IP Core, Microblaze is
able to self-reconfigure the device with partial bitstreams stored in the on-chip memory.
This approach reduces the reconfiguration time and greatly simplifies the system.

37

Chapter 6

Experimental Results

Two main results are presented in this section: fault injection time and fault
coverage. Fault coverage results demonstrate the ability of the proposed system to
perform switch-level fault emulation. Fault injection time indicates the efficiency of

this approach.
The presented fault emulation system is evaluated using ISCAS-89 benchmark

suite [13]. Ten circuits are selected for this experiment. The following table

summarizes these benchmark circuits.

- Circuit No. of Switches | No. of Inputs | No. of Outputs
C17 24 5 2
S27 66 4 1
S298 694 3 6

S1238 2,718 14 14

C2670 6,212 233 140
S5378 15,456 35 49

C7552 18,802 207 108
$13207 30,984 62 152
S35932 80,730 35 320
S38584 93,194 38 304

Table 6.1 ISCAS-89 Benchmark Circuits (C: Combinational, S: Sequential)

A selected number of faults are injected into the above benchmark circuits, and fault
injection and coverage results are collected. The following section provides more

detail.

6.1 Switch-level Fault Injection Result

This experiment demonstrates that the proposed fault injection method is able to
significantly shorten the fault injection time. As described earlier, the speed of fault

injection depends on:

38

1. Transmission speed of the configuration medium,
2. Processing speed of the configuration controller,
3. Size of the dynamic partition (DP).

Mathematically, fault injection time (7pg) can be described in the following equation
(values in the parentheses are values used in this experiment):

TPR=

B . B.n)
WCXC WBu:

where,

B = the number of bits in the partial bitstream

W¢ = width of configuration medium (8-bit)

C = system clock speed (24MHz)

W.s = width of the system bus, size of data chunk (32-bit)
Tp = time to process each configuration data chunk (~3ps)

The first term represents the configuration data transmission time. Since a

c X
byte-serial configuration medium, Internal Configuration Access Port (ICAP) [31], is
used in this experiment, each 8-bit data block can be transmitted every clock cycle
without handshaking as long as the system clock speed is under SOMHz. Moreover,
the configuration controller needs to fetch the configuration data from memory and
send it to the configuration controller. This processing time is represented as the
second term in equation (1). The following table presents the fault injection results.

Circuit | Switch No. | Partial Bitstream Size | FI' Time (ms) | Calculated FI' Time (ms)
C17 24 195,104 19.35 19.31
S27 66 201,888 20.03 19.98
S298 694 255,840 25.38 25.32
S1238 2,718 258,496 25.64 25.58
C2670 6,212 262,144 26.00 25.94
S5378 15,456 251,744 24.97 2491
C7552 18,802 258,208 25.61 25.55
S13207 30,984 258,208 25.62 25.55
S$35932 80,730 258,208 25.62? 25.55
S38584 93,194 258,208 25.622 25.55

'FI: Fault Injection 2 Predicted using calculated value

Table 6.2 Fault Injection Time

39

As shown in Table 6.2, the calculated result using equation (1) is very close to
the experiméntal results. Thus, it is safe to assume that the calculated result for
circuits, which are too large to be implemented on the FPGA used in this experiment
(i.e. S35932, S38584), will be very close to the real value. Clearly, by utilizing
dynamic partial reconfiguration, fault injection time can be significantly reduced
compared to traditional full-device reconfiguration, which takes about 405ms for each
fault injection.

Several steps are involved when performing reconfiguration. These detail
configuration steps are explained in [16]. In this experiment, the average transmission
time is around 1.1ms. Therefore, the processing speed of the configuration controller
contributes most of the runtime. Since both transmission and processing speed are
technology dependent, fault injection time can be significantly reduced by using faster
FPGA and configuration mode. Furthermore, if faster fault injection time is desired,
the size of dynamic partition can be reduced by increasing the depth of the
partitioning tree described in Chapter 3.

6.2 Linear Growth of Fault Injection Runtime

As indicated in Table 6.2, fault injection time is almost constant with respect to
the circuit size. This is also shown in the following graph:

Circuit Size vs. Fautl Injection Time

c7552 s13207

Time (ms)

! 1 !]

0 T T T T
0 2000 4000 6000 8000 10000
of Switches

Figure 6.1 Fault Injection Time vs. Circuit Size

40

This is expected because for each benchmark circuit, dynamic partition (DP) size is
chosen to be the same. Therefore, the same number of configuration frames must be
downloaded into the device. A frame is the smallest unit of configuration data, which
is 1-bit wide and extends from the top of the device to the bottom. It is the smallest
portion of the configuration memory that can be written to [16]. The slight time
variation is due to the optimization done by the bitstream generation tool, which tries
to reduce the bitstream size. In general, the fault injection time is considered constant
for the same circuit size because DP size stays the same.

Fault injection time of the presented system grows linearly with circuit size due
to the binary-tree partitioning scheme described in Chapter 3. This is because each
level down the partitioning tree the partition’s size is reduced to approximately half of
its parent. Consequently, increasing the size of the parent partition results in the
increase of its children’s partition size. For example, a circuit-under-test (CUT) with
size of ng gates is partitioned using unbalanced partitioning with depth of three levels
as shown in Figure 6.2. As a result, the size of the dynamic partition (DP) becomes ng
/8. If circuit size doubles (ng changes to ng /2), it is clear that the size of DP also
doubles (n, /8 changes to n, /4). Since DP size increases linearly with circuit size, and
fault injection is directly proportional to the size of DP module, fault injection time is
not affected by circuit complexity. This is one of the major advantages of the
proposed fault injection campaign. When CUT gets large and complex, the resulting
fault injection time still increases linearly as opposed to exponential growth in
software approach [19].

Figure 6.2 Dynamic partition’s size grows linearly with circuit size

41

6.3 Switch-level Fault Coverage

Table 6.3 presents the switch-level fault coverage (FC) for the selected
benchmark circuits.

Circuit No. of switches | No. of faults injected | FC (%)-
C17 24 60 100
S27 66 120 99.69
S298 694 130 68.46
S1238 2,718 526 68.82
C2670 6,212 1,550 67.80
S5378 15,456 4,754 58.94
C7552 18,802 4,670 59.12
S13207 30,984 9,700 57.03

Table 6.3 Switch-level Fault Emulation Result

In most cases, switch-level fault coverage is usually lower than gate-level fault
coverage. This is mainly because test pattern for detecting switch-level faults is more
difficult to generate [37]. One thing to note is that the proposed approach does not
focus on achieving high fault coverage as that will require high quality test pattern.
The fault coverage obtained from this experiment is similar to that of software
switch-level simulation approaches such as [28]. By modeling faults at switch-level,
the resulting fault list is more accurate than approaches in [1,3], in which faults are
modeled and injected at gate-level and lookup-table level.

6.4 Runtime Prediction for Large Circuits

The worst case total emulation runtime occurs when all the faults injected are
undetected after applying maximum allowable number of test patterns. This can be
further explained in the following equation:

TRWWE=Tm+7}Nﬂ+(TG£1Xpmx)+(TPR><n)

n 2
+Z(memax{pmx,pt}) @

i=1

where,
pi = the number of test patterns needed to detect the ith fault
Pmax = the number of test patterns allowed to run

42

n = total number of faults to inject

Trr = time to perform full-device reconfiguration

Tpr= time to perform partial reconfiguration

Tivir = initialization time for the system and components
TgE; = time to perform good emulation for 1 test pattern
Trg; = time to perform fault emulation for 1 test pattern

In equation (1), Tpg is considered a constant term if the size of the dynamic partition
does not change with circuit size. If circuit size increases, DP size will increase
proportionally (as explained in Section 6.2). As a result, Tpg is linear with respect
circuit size. Since fault-free emulation is only performed once for each circuit, Trz can
Tinr can also be considered as constant. In hardware, normally as circuit size
increases, the emulation time for one test pattern (Tgg;,Trer) Will also increase
proportionally. Furthermore, total fault emulation time also increases linearly with
respect to the number of test patterns applied. This is illustrated in the following
graph:

Fault Emulation Time vs. # of Test Patterns

5000
s13207

4000 /

3000

2000 /

1000

1 1 1 1 1

0 T T T T T
0 200000 400000 600000 800000 1000000 1200000

of Test Pattems

Fault Emulation Time (ms)

Figure 6.3 Fault Emulation Time vs. Number of Test Patterns for s13207

In addition, when a large number of test patterns are applied to emulation system, the
emulation time and circuit size (number of switches) still have a linear relationship as

shown in the following graph:

43

Emulation Time for 1,000,000 Test Patterns

7000
5000 E—

4000
3000
2000
1000

Time (ms)

0 5000 10000 15000 20000 25000 30000 35000
Circuit Size (# of Switches)

Figure 6.4 Emulation time vs. Circuit size for large number of Test Patterns

To better understand the relationship between the fault emulation time and circuit size,
a mathematical formula is developed for variable Trg; Trg; is the fault emulation time

for the application of one test pattern, it can be described as follows:

Trer = Tc X‘VNPO -I + Ton (3)
W

Bus

where,
Trc = Time for processing each emulation result block. This includes storing circuit

outputs into memory, fetching fault-free emulation result from memory and comparing
results to determine if a fault is detected (0.375ps in this experiment)
Npo=The number of primary outputs (for output comparison)
(ex. Circuit s35932 has 320 primary outputs)
Ty = System overhead (2.25ps in this experiment)
Wgys = The width of the bus used in the system (32-bit in this experiment)

However, equation (3) is only true in this experiment because it is based on the
processor-based emulation controller. For example, Microblaze uses 32-bit wide bus
to receive the circuit outputs from the interface core. As a result, only 32 output
signals can be processed at one time. Therefore, in equation (3), total primary outputs
of the circuit-under-test divided by the width of the bus gives the number of data
blocks that the processor needs to process. Ceiling operator is necessary because the
processor can only process block of data. Therefore, even if there is only one output
signal needs to be processed, a data block is required to include this signal. Figure 6.5

44

shows the relationship between the emulation time (not including fault injection time)

and circuit size:

Emulation Time for 1,000,000 Test Patterns
7000
6000 4~ S - [E— Y SR S—
6000 ms
5000 -
. -
~ e
E s
D) ms
.g m] N /
= &12375ms [2750ms
2000 ;
|
1000 - i
ol
27 51238 5378 s13207 35932 $38584
s208 L e
Circuit Size

Figure 6.5 Emulation Time vs. Circuit Size

As shown in Figure 6.5, the emulation time increases linearly with circuit size.
Emulation time for circuit 35932 and s38584, which are too large to fit on the FPGA,
are calculated using equation (3). This linear growth of emulation time is expected
because circuit logic is evaluated using lookup-table-based FPGA. For this type of
hardware emulator, circuit complexity does not cause exponential growth in runtime
because circuit outputs are evaluated in parallel and by table lookups, whereas for
software emulators circuit outputs are computed serially. Since all terms in equation
(2) are either fixed or linear with respect to circuit size, it is safe to state that the total
runtime of the presented system still grows linearly when a larger and more complex
circuit is emulated.

In addition, the linear growth in runtime of the presented system is expected

because of the following characteristics:

1. The fault-free emulation only needs to be performed once for each circuit.
Therefore, the time it takes can be considered constant.

2. LFSR generates a new input pattern every clock cycle regardless of circuit
complexity.

3. Faulty circuit (when a fault is present) outputs are compared with good emulation
outputs as soon as they are ready. Emulation process stops as soon as a fault is

45

detected.

4, Partial reconfiguration time depends on the size of the partial bitstream (dynamic
partition size), which is constant or grows linearly with circuit size as described in
Section 6.2.

One of the advantages of the proposed system is that it does not require extra
fault injector circuitry as required in [25]. The only hardware overhead is the bus
macros, which occupy very small areas as shown in Figure 5.11. One thing to note is
that the EC module is optional and not hardware overhead. The emulation controller
implemented using Microblaze soft-core processor is only for simplifying and
accelerating the implementation steps. A custom circuitry, PC software, or a hard-core
microprocessor can serve as the emulation controller to achieve minimum hardware

overhead.

46

Chapter 7

Conclusion

In this report, a new FPGA-based switch-level fault emulation approach is
introduced. In this approach, a novel fault injection campaign that utilizes
modular-based dynamic partial reconfiguration is proposed to shorten fault injection
time. Since switch-level fault model offers a more accurate and thorough fault list in
comparison to gate-level fault model, switch-level fault emulation was considered in
this project. However, the existing lookup-table fault injection approaches are
unsuitable for switch-level fault emulation because of possible circuit information loss.
Therefore, switch-level fault injection requires faults to be injected at circuit
description level where original circuit structure is still preserved. However, many
full-device synthesis, routing and reconfigurations are required in this approach.
These design steps take up too much time for this approach to be practical. By using
modular-based dynamic partial reconfiguration, faults are injected into a smaller
sub-circuit’s HDL file, resulting in synthesis time reduction. In addition, faulty circuit
partition is converted into partial bitstream, which can be downloaded into FPGA at
runtime instead of having to perform full-device reconfiguration for each fault
injection. '

The resulting system implemented in this project is able to emulate faults at
switch-level without extra fault injector circuitry, thus keeping hardware overhead
minimal with only small bus macros. The experimental results show that the proposed
fault emulation approach is able to achieve linear runtime with respect to circuit size.
Thus, the presented approach is an efficient method when emulating large, complex

circuits.

7.1 Project Contribution

In this project, a Virtex-I FPGA is used to emulate switch-level faults.
Switch-level faults are mapped to gate-level and synthesized in VHDL. The
unbalanced partitioning structure of the circuit-under-test is implemented on FPGA to
facilitate modular-based dynamic partial reconfiguration design. Modular-based DPR
allows a circuit partition to be reconfigured instead of requiring a full-device

47

reconfiguration. This capability is used in the proposed fault injection campaign. In
the proposed fault injection method, faults are only injected into a small dynamic
partition, which. This greatly reduces the reconfiguration-based fault injection time.
In addition, the proposed approach also achieves linear growth in total runtime with
respect to circuit size.

7.2 Future Work

Areas for future work are now discussed. Recently, region-based dynamic partial
reconfiguration (DPR) is developed by Xilinx in their Virtex-4 FPGA series.
Region-based DPR allows partial reconfiguration to a region, which could consist of
only a few CLBs (Configurable Logic Block) rather than full-column resources on the
device. Full-column reconfiguration required in the proposed approach is not efficient
because resources that have not. been modified still need to be reconfigured as long as

- they are within the boundary of a module being reconfigured. This new capability will
further accelerate the proposed fault injection campaign and result in shorter fault
emulation time. In addition to design flow improvement, a compete suite of scripts
and programs can be created to provide simpler and robust fault injection process.
Furthermore, the proposed fault injection campaign can be further improved by using
faster FPGA with faster configuration mode. This would allow faster partial

reconfiguration, thus improving the total fault emulation runtime.

48

References

[1] L. Antoni, R. Leveugle, and B. Feher, Using Run-Time Reconfiguration for Fault
Injection Applications, IEEE Transaction on Instrumentation And Measurement,
October 2003, Volumn 52, Issue 5, pp. 1468-1473.

[2] Xilinx Documentation: JBits 2.8, Xilinx, San Jose, CA, September 2001

[3] A. Parreira, J.P. Teixeira, and M. Santos, A Novel Approach to FPGA-Based
Hardware Fault Modeling and Simulation, the Proceedings of the Design and
Diagnostics of Electronic Circuits and Synt. Workshop, April 2003, pp. 17-24.

[4] R. Leveugle, Towards modeling for dependability of complex integrated circuits,
IEEE Internatinal On-Line Testing Workshop, July 1999, pp. 194-198.

[5] K.T. Cheng, S.Y.Hunag, and W.J. Dai, Fault Emulation: A New Methodology for
Fault Grading, IEEE Transaction on Computer-Aided Design of Integrated Circuits
and Systems, October 1999, Volumn 18, Issue 10, pp. 1487-1495.

[6] L. Burgun, F. Reblewski, G. Fenelon, J. Barbier, O. Lepape, Serial Fault
Emulation, the Proceedings of the 33rd IEEE Design Automation Conference, June
1996, pp. 801-806.

[7] Xilinx Documentation: LogiCore On-Chip Peripheral Bus V2.0, July 2004,
DS401. »

[8] Xilinx Application Note: Two Flows for Partial Reconfiguration: Module based or
Difference Based (v1.2), September 2004, XAPP290.

[9] S.A. Hwang, J.H. Hong, C.W. Wu, Sequential Circuit Fault Simulation Using
Logic Emulation, IEEE Transaction on Computer-Aided Design of Integrated Circuits
and Systems, August 1998, Volumn 17, Issue 8, pp. 724-736.

[10] L. Antoni, R. Leveugle, and B. Feher, Using Run-Time Reconfiguration for
Fault Injection in Hardware Prototypes, the Proceedings of the 17th IEEE
International Symposium on Defect and Fault Tolerance in VLSI Systems, November
2002, pp. 245-253.

[11] B. Blodget, S. McMillan, A lightweight approach for embedded reconfiguration
of FPGAs, the Proceedings of the IEEE Design Automation and Test in Eurpose
Conference and Exhibition, 2003, pp. 399-400.

[12] A. Parreira, J.P. Teixeira, A. Pantelimon, M.B. Santos, J.T. Sousa, Fault
Simulation using Partially Reconfigurable Hardware, the Proceedings of the 13th
International Conference on Field Programmable Logic and Applications, September
2003, (page number not found). URL: http:/fidelio.inesc-id.pt/~jts/fpl2003_final.PDF

[13] ISCAS-85 Benchmark Circuits: http://www.fm.vslib.cz/~kes/asic/iscas/

49

[14] R. Leveugle, L. Antoni, B. Feher, Dependability Analysis: a New Application
for Run-Time Reconfiguration, Internatinal Parallel and Distributed Processing
Symposium (IPDPS’03), April 2003, pp. 7.

[15] Xilinx Application Note: Linear Feedback Shift Registers in Virtex Devices
(v1.2), Januray 2001, XAPP210.

[16] Xilinx Application Note: Virtex Series Configuration Architecture User Guide
(v1.7), October 2004, XAPP151.

[17] R. Abedi, R. Sedaghat, Classical and Non-classical Transistor Level Fault
Injection into FPGAs, WSEAS Transaction on Circuits and Systems, February 2006,
Volume 35, Issue 2, pp. 234-240. '

[18] R. Sedaghat, M. Kunchwar, R. Abedi, R. Javaheri, Transistor-level to gate-level
comprehensive fault synthesis for n-input primitive gates, Elsevier Microelectronics
Reliability, December 2005. (Article in Press)

[19] P. Civera, L. Macchiarulo, M. Rebaudengo, M.S. Reorda, M. Violante,
Exploiting FPGA-based Techniques for Fault Injection Campaigns on VLSI Circuits,
the Proceedings of the 2001 IEEE International Symposium on Defect and Fault
Tolerance in VLSI Systems, October 2001, pp. 250-258.

[20] S.A. Hwang, J.H. Hong, Sequential Circuit Fault Simulation Using Logic
Emulation, IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, August 1998, Volume 17, Issue 8, pp. 724-736.

[21] P. Folkesson, S. Sevensson, J. Karlsson, A comparison of simulation based and
scan chain implemented fault injection, Proceedings of 28th International Symposium
on Fault-Tolerant Computing, 1998, pp. 284-293.

[22] H. Madeira, M. Rela, J.G. Silva, A general purpose pin-level fault injector, the
Proceedings of First European Dependable Computing Conference, 1994, pp.
199-216.

[23] P. Civera, L. Macchiarulo, M. Rebaudengo, M. Sonza Reorda, M. Violante,
Exploiting circuit emulation for fast hardness evaluation, IEEE Transactions Nuclear
Science, December 2001, Volume 48, Issue 6, Part 1, pp. 2210-2216.

[24] T.J. Chakraborty, C.H. Chiang, A novel fault injection method for system
verification based on FPGA boundary scan architecture, the Proceedings of
International Test conference, October 2002, pp. 923-929.

[25] A. Ejlali, S.G. Miremadi, FPGA-based fault injection into switch-level models,
Elsevier Microprocessors and Microsystems, 2004, Volume 28, pp. 317-327.

[26] G.S. Choi, R.K. Iyer, FOCUS: an experimental environment for fault sensitivity
gnalysis, IEEE Transaction Computers, December 1992, Volume 41, Issue 12,
pp.1515-1526.

50

[27] Raha Abedi, Synthesis of Classical and Non-classical CMOS Transistor Fault
Models Mapped to Gate-level for Reconfigurable Hardware-based Fault Injection,
Thesis Report, Ryerson University, 2005.

[28] R. Javaheri, R. Sedaghat, J. Zalev, Verification and fault synthesis algorithm at

switch-level, Elsevier Microprocessors and Microsystems, 2006, pp. 1-10.

[29] Xilinx Documentation: XST User Guide:
http://toolbox.xilinx.com/docsan/xilinx6/books/data/docs/xst/xst0001_1.html

[30] Xilinx Documentation: LogiCore OPB UART Lite, August 2004, DS422.

[31] Xilinx Documentation: LogiCore OPB HWICAP (v1.00a), August 2004, DS280.
[32] Xilinx Documentation: User Core Templates Reference Guide, January 2003.
[33] Xilinx Documentation: ISE Quick Start Tutorial:

http://www xilinx.com/support/sw_manuals/xilinx6/download/

[34] Xilinx Documentation: Platform Studio Tools User Guide for EDK 6.3i
http://www xilinx.com/ise/embedded/edk_docs.htm

[35] Xilinx Documentation: Constraints Guide for ISE6.3i:
http://www.xilinx.com/support/sw_manuals/xilinx6/download/

[36] Xilinx Documentation: Modular Design
http://toolbox.xilinx.com/docsan/xilinx7/books/data/docs/dev/dev0025_7.html

[37] J. Alt, U. Mahlstedt, Simulation of Non-classical Faults on the Gate Level —
Fault Modeling, the Proceedings of the 11th VLSI Test Symposium, April 1993, pp.
351-354.

Author’s Publications:

1. M.H. Lee, R. Sedaghat, FPGA-based Switch-level Fault Emulation Using
Modular-baed Dynamic Partial Reconfiguration, will submit to
Microelectronics Reliability Journal, ELSEVIER in May 2006.

2. M.H. Lee, R. Sedaghat, Using Modular-based Dynamic Partial
Reconfiguration for Fast Switch-level Fault Injection, will sumit to
Microprocessors and Microsystems, ELSEVIER in May 2006.

3. M.H Lee, R. Sedaghat, Fast Switch-level Fault Injection Campign Using
FPGA with Modular-based Dynamic Partial Reconfiguration Capability, will
submit to ASP-DAC Conference in July 2006.

51

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	00017
	00018
	00019
	00020
	00021
	00022
	00023
	00024
	00025
	00026
	00027
	00028
	00029
	00030
	00031
	00032
	00033
	00034
	00035
	00036
	00037
	00038
	00039
	00040
	00041
	00042
	00043
	00044
	00045
	00046
	00047
	00048
	00049
	00050
	00051
	00052
	00053
	00054
	00055
	00056
	00057
	00058
	00059
	00060
	00061
	00062

