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Abstract 

PRINCIPAL COMPONENT ANALYSIS FOR ICP POSE ESTIMATION 

OF SPACE STRUCTURES 

Masters of Applied Science, 2008, Lun Howe Mark 

Aerospace Engineering, Ryerson University 

 

 

This thesis investigates how geometry of complex objects is related to LIDAR scanning with the Iterative 

Closest Point (ICP) pose estimation and provides statistical means to assess the pose accuracy.  LIDAR 

scanners have become essential parts of space vision systems for autonomous docking and rendezvous.  

Principal Component Analysis based geometric constraint indices have been found to be strongly related 

to the pose error norm and to the error of each individual degree of freedom.  This leads to the 

development of several strategies for identifying the best views of an object and the optimal 

combination of localized scanned areas of the object’s surface to achieve accurate pose estimation.  Also 

investigated is the possible relation between the ICP pose estimation accuracy and the distribution or 

allocation of the point cloud.  The simulation results were validated using point clouds generated by 

scanning models of Quicksat and a cuboctahedron using Neptec’s TriDAR scanner.
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1 Introduction 

Within the area of computer and robot vision, there is a need for target objects to be processed 

and registered to find their relative pose.  The pose is a 6-element vector comprised of 3 rotational and 

3 translational components.  The pose defines the transformation between the reference frames 

associated with the target object and the rangefinder scanner or CCD camera.  A commonly used pose 

estimation tool is the Iterative Closest Point (ICP) algorithm which iteratively processes data from the 

scanner and corresponding data from an available CAD model of the object.  Computer vision algorithms 

have become integral parts of space vision systems and currently assist in space operations such as 

autonomous assembly of the International Space Station, space rendezvous, satellite servicing, and the 

surface inspection of the Shuttle Orbiter (Ruel, English, Anctil, & Church, 2005). 

There are many sizeable objects in low-earth orbit (LEO) either man-made, debris from man-made 

objects or other natural matter.  Notable man-made objects in space include the ISS, Hubble space 

telescope and the Genesis I & II inflatable modules.  In addition, there are numerous LEO satellites for 

the purposes of communications, weather, and observation.  There are also satellites in other orbits; 

polar, geostationary, etc.  One problem with orbiting objects is the proliferation of an estimated 200,000 

pieces of debris (United Nations, 1999).  As a result, collisions between functional equipment and 

random debris can and does occur.  This has the potential of causing damage that must be repaired if 

full functionality of each satellite is to be maintained.  The normal wear and tear of components, poor 

design, replacing of batteries or refueling represent other mission elements for a satellite that will 

necessitate some form of service or repair. 

Manned flights into space are expensive and are an inherently dangerous undertaking.  Not only 

do they require that astronauts undergo training and conditioning, but astronauts require supplies and 

specialized habitation and/or crew compartments to remain in orbit.  The obvious alternative is to send 

unmanned flights into space; this has the potential advantages of being cheaper and safer.   Building and 

launching unmanned repair and/or servicing units into space could lead to more robust satellite 

networks due to more active satellites, less downtime and newer technological components.  However, 

unmanned missions are not without their own problems; communication lag makes remotely controlling 

anything at that distance more difficult.  Therefore, service and repair units should be able to navigate 

and coordinate their own motion to reach the target space structure.   
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Ideally, service and repair units should be capable of autonomous movement and rendezvous.  

Actual repair of a satellite may require human intervention or teleoperation as this task can be much 

more complex, and may require an operator's discretion as the extent of damage may be unknown until 

a visual inspection.  Thus the area of computer vision is especially useful for docking and rendezvous 

between spacecraft, space structures and satellites.  In 2007, the U.S. Defense Advanced Research 

Projects Agency (DARPA) created the Orbital Express, a feasibility study into the autonomous refueling 

and reconfiguration of satellites (Friend, 2008).  Two prototype satellites were built and then flown into 

LEO, one acted as a servicing unit and while the other acted as a serviceable unit.  The conclusion of the 

study was that autonomous rendezvous and refueling of a target satellite is possible.  The Orbital 

Express demonstration also showed that it is possible to upgrade and reconfigure a modular satellite on 

station. 

To make the capturing operation simpler, traditional camera devices are eschewed for laser-

based devices such as LIDARs (Light Detection and Ranging).  This is because LIDAR operations operate 

on different wavelengths, and by using their own laser beams as an illumination source, they are 

independent of albedo, the effect of light reflection on earth and other surfaces.  Albedo can cause large 

variations in the surrounding light levels which visual algorithms must take into account, thus LIDARs are 

preferred for their independence of ambient lightning scenarios.  A LIDAR provides a discretized point 

sampling of the target object’s surface, called a point cloud.  This point cloud can be registered against a 

model point cloud to estimate the pose via the Iterative Closest Point algorithm which is accredited to 

Besl & McKay (1992).  

Planning a space mission is a very complicated procedure as the margins of error are very slim.  To 

plan a mission, extensive ground testing and data analysis are required.  In an ideal case, full-scale and 

accurate replications of the spacecraft modules should be manufactured for testing in a space-like 

environment using certified equipment.  All of this can be very expensive and are highly inflexible, 

mission parameters can change and modules may need alterations based on the tests run.  A computer 

simulation can be a powerful tool and is much cheaper than a full fledged test rig, which can include: 

full-scale spacecraft modules and flight capable LIDARs or cameras.   

The first item required to simulate the LIDAR and ICP operation is a virtual scanner.  This scanner 

requires the input of a CAD model; in this work, triangular meshes are used to represent the CAD model 

surfaces so that ray tracing may be performed.  The ray tracing and virtual scanner must replicate the 

manner in which a real LIDAR operates.  This includes the manner in which the laser beams sweep 
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across the surfaces.  In general, LIDARs are accurate tools, however, there is uncertainty stemming from 

the measurement noise and the accuracy of the LIDAR’s internal mechanisms.     

The second item required to simulate the LIDAR and ICP operation is a voxelizer which is used to 

increase the speed of the virtual scanning and of the ICP algorithm.  From the original CAD model, a 

voxelized model is created.  The voxelized model is an associated data structure that works alongside 

the original CAD model.  Visually, the voxelized model is a very low resolution representation of the 

original model using large volume elements.  While the speed of the virtual scanner has no bearing in a 

real application of the ICP algorithm, the speed of the ICP algorithm is very important.  If an ICP 

algorithm can return results at a quicker pace, then it becomes more suitable for real-time tracking.   

The third item required to simulate the LIDAR and ICP operation is the ICP algorithm itself.  The 

ICP algorithm requires a scanner point cloud and a model point cloud to align.  In addition, an initial 

guess of the pose is required for iterations to begin.  With a good initial guess, the ICP algorithm is able 

to arrive at very close approximations of the true pose.  With an initial guess far from the true pose, the 

ICP algorithm performance can suffer and a local minimum, as opposed to the global minimum, is found.   

The fourth item required to simulate the LIDAR and ICP operation is the ability to evaluate the 

results.  If the results of the ICP algorithm are accurate, it is expected that the error will be small.  

Conversely, if the ICP algorithm falls into a local minimum, then it is expected that the error will be large.  

It would be extremely advantageous if the overall pose error and the error of each pose component 

could be accurately predicted.  However, as the ICP algorithm is complex, the next best thing would be 

to know the constraint or limit on the error levels.  This can be done by measuring the geometric 

constraint in the scanner point cloud using a constraint matrix.  Geometric constraint is an 

interpretation of how the visible surface of a target can reduce ICP pose error.  A rich surface geometry 

has high geometric constraint.  Several geometric constraint measures derived from the constraint 

matrix are evaluated: the Noise Amplification Index (NAI), the Inverse Condition Number (InvCond) the 

Minimum Eigenvalue (ME) and the Expectivity Index (EI).  These measures define upper bounds on the 

pose error norm, relative pose error norm and the standard deviation of the expected pose error.  

There are several factors which can influence the overall registration error.  One factor is the 

manner in which points lie along the edges of a model or along the outline of the model.  These points 

contribute to not only the geometric constraint, but also to the edge constraint.  The effect of edge 

constraint is that the point cloud has less room to manoeuvre, wiggle or oscillate; all of which helps to 
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properly align the point clouds together.  The effects of edge constraint are especially evident when 

there is lower geometric constraint. 

To make the ICP algorithm more suitable for real-time tracking, the amount of data can be cut 

down by selecting small portions or areas of the scanner point cloud.  There are several options 

available for this; however, many of these options are somewhat computationally expensive, requiring 

the constant recalculation of the constraint matrix.  A very simple method to reduce the number of 

points is to subdivide the point cloud into a grid based on the projected X- and Y- axis coordinates.  Each 

subdivision is called a window, and each window peeks into a different section of the point cloud.  While 

there is occasionally a lone window that provides a good registration result, the use of two is typically 

much better.  This is because there are more types of varying constraint provided by two windows than 

just one window; consequently, this leads to a much better pose estimation.   

While two windows are shown to be better than one, the question remains of how to select the 

combination of the two windows that will provide the best registration.  There are two separate options 

to consider when designing strategies for window selection.  The windows can be combined based upon 

the geometric constraint found in the individual windows or in the combined window.  Ideally, a 

selection strategy should consistently select good pairs of windows over a range of views.   

The organization of this thesis is structured using the requirements listed above.  Chapter 2 

presents a review of PCA and its application to computer vision.  Chapter 3 describes the mathematical 

formulation of the ICP algorithm as well as all the components needed to simulate an ICP situation.  

Chapter 4 illustrates the investigation into ICP performance and the application of point cloud windows.  

Chapter 5 summarizes and concludes the thesis. 
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2 Principal Component Analysis and Computer Vision 

Principal Component Analysis (PCA) is a common technique used to simplify data.   PCA is used to 

discover relations within the data with the goal of identifying the principal, or most important, 

components in the data.  Using the principal components (PCs), a simplification of the data set can be 

achieved.  This means that a large data set can be reduced to a smaller data set by eliminating or 

ignoring certain portions of the data which are found to be superfluous.  In computer vision, PCA was 

initially used as a tool used for facial recognition.  Later, PCA principals were applied to the pose 

estimation of computer models for applications in space. 

2.1 Review of the Foundations of Principal Component Analysis 

PCA is a common statistical technique used for reducing the complexity of high volume data sets.  

By reducing the degrees of freedom (DOFs) or the dimensionality of the data, the dominant variables 

can be found.  PCA can frequently be found in applications calling for statistical analysis; this includes 

meteorology, computer vision, medicine and biosciences, among others (Jolliffe, 2002). 

PCA was initially developed by Karl Pearson in 1901.  Pearson outlined the use of centroids and 

ellipsoidal measures to determine the lines of best and worst fit (Pearson, 1901).  At higher dimensions, 

Pearson used a best-fit plane instead.  Later in 1933, Harold Hotelling created his own PCA techniques 

and is also credited as a founder of PCA.   

In practice, the use of PCA is to reduce the complexity of the data to make it easier to interpret.  

Figure 1 shows a simple data set of 300 X-Y-Z points to which PCA is applied.   Figure 1 also shows the 

three PCs of the data set as vectors which are sized to reflect the value of the PC.  While an easy way of 

reducing complex data would be to ignore certain variables or components, such as the Z variable, PCA 

will reduce the DOFs without losing vital information.  By applying PCA, the PCs are defined by the 

amount of variation in the original data; the first PC represents the most variation while the last PC 

represents the least.  Depending on the application, only the first few PCs, which represent the most 

variation, are important.  In other applications, such as this work, all PCs are equally important. 
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Figure 1 - Sample data set XY and YZ views 

A covariance matrix is built by assembling the variances and covariances of a data set with   

points.   PCA calculates the PCs by decomposing the covariance matrix.  The covariances in a data set 

identify the way that two variables relate to each other.  If the covariance between two variables is 

positive, then it is likely that as one variable increases so does the other.  If the sign of the covariance is 

negative, then as one variable increases, the other should decrease.  If two variables are completely 

independent of each other, then the covariance will be zero.  Suppose there are   number of variables, 

       , each with a respective mean           , then the covariance between any two variables is 

defined by 

 
         

 

   
                 

   

   

 

                     

2.1 

where      represents the expected value of  .  The variance of a variable is defined by 

 
                 

 

   
                 

   

   

 

             

2.2 

Together, the variances and covariances can be combined together to form the data set’s     

covariance matrix,  , is given by 
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  2.3 

A much simpler way of creating and representing the covariance matrix   is used in this work.  

By subtracting the     data set,               , by the mean,                   , the data 

becomes centred on the           position.  The covariance matrix calculation then becomes a much 

simpler matrix math operation 

 
  

 

   
     
       2.4 

where                                                     

The covariance matrix S is symmetric as the formula for          is equivalent to         .  Similarly, 

the result of        is equivalent to         .   

After finding the PCs, the next step in PCA is to transform the data into a new coordinate 

system; the major axes of the new coordinate system will be defined by the direction of the PCs.  By 

definition, PCs are uncorrelated and independent of each other and are orthogonal to each other.  A PC, 

  , can be represented as a linear combination of the original variables in the form of       
      

                 .  The order the PCs is important; the first PC will correspond to the variable 

with the greatest variance while the second PC will contain the second greatest variance, and so on.  The 

result of PCA is that the first few PCs contain the majority of the variation and can represent nearly all of 

the initial data set.  In a data set with a large number of variables, it is likely that the number of original 

variables,  , will be much greater than the final number of principal components,  , such that    .  

This is because some variables will not contribute to the overall solution of the data set, and are 

otherwise independent and/or negligible.   

To find the direction and magnitude of the PCs, either Eigenvalue Decomposition (ED) or 

Singular Value Decomposition (SVD) may be performed on the covariance matrix,  .  Eigenvalue 

Decomposition is a technique used to find the eigenvalues and eigenvectors of   (Moler, 2004).  The 

scalar eigenvalues,  , and vector eigenvectors,  , are defined such that 

       2.5 
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The eigenvectors give the direction of the PCs in the original data set, therefore      .  

Meanwhile, the eigenvalues give the standard deviations of the original data along the PCs.  The PCs are 

ordered based on the eigenvalues.  While Equation 2.5 is a more prevalent form, it does not directly give 

the eigenvectors.  To find the eigenvectors, matrix   is factorized as 

       2.6 

where    
  is a matrix of eigenvectors; the jth column corresponds to eigenvalue    

                        , alternatively,           
 

If   is if of full rank, then it should be possible to find the inverse of X and reshape Equation 2.6 as 

         2.7 

Singular Value Decomposition (SVD) is another decomposition technique with similar results to 

that of ED.  The SVD technique can also be used to find the PCs of the data set.  

        2.8 

where    
  and   are orthogonal matrices such that                    

                         
 

Matrix   and  are the eigenvectors for     and    , respectively.  When the covariance matrix 

  is square and symmetric, such as in this work, both ED and SVD will result in the same answer.  

Therefore, the matrix   from ED is the equivalent to matrices   and   from SVD.  While the magnitudes 

of the individual eigenvector components created by ED and SVD will be similar, the signs of the entire 

eigenvectors may change as it is possible for them to point in opposite directions.  In addition, ED and 

SVD may be output the eigenvectors and eigenvalues in different orders. 

When PCA is applied, the original data set is translated and rotated so that the largest variance 

in the data will lie along the primary axis dictated by the eigenvector,    , associated with the largest 

eigenvalue,   .  As an eigenvector,   , represents the direction of the ith PC,   , it is a linear combination 

of the original variables.  The results of ED and SVD should be that        …    .  To transform the 

data into the new PC coordinate system, the eigenvector matrix is used 

             2.9 

where   
      represents the data transformed into the frame of the PCs 
      is the original data set  
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Referring back to Figure 1, by assembling a covariance matrix based on the data shown and 

performing ED, the eigenvectors and eigenvalues are found.  Each column of   represents an 

eigenvector 

            
       
       
       

 
       
      
      

 
       
       
      

       

  
  
  

   
       
      
      

  

When Equation 2.9 is applied, the rotated data set,      , becomes plotted as: 

 

Figure 2 - Principal components 

To reduce the complexity of the data set, certain variables may be discarded if their contribution 

is negligible.  This is done by comparing the relative values of the eigenvalues, if an eigenvalue is small 

compared to the sum of the eigenvalues then it can potentially be ignored.  Equivalently, this means 

that if a variable's variance is much smaller than the total variance, then its contribution will also be 

negligible.  By definition, the first PC will contain the most variation; however, it may require more PCs 

to account for an accurate representation of the full variation in the data set.  Each PC's contribution to 

the solution is calculated by the cumulative sum of the variances.  For example: 

 

      
 
       
      
      

        
     
    
    

    
     
     
      

   

As Figure 2 reflects, the first PC contains the most variation and amounts to 94.14% of the data 

set's variance.  If the second PC is included as well, then the variation increases to 99.77%.  The variables 

represented in    and    are mostly based upon a mix of X and Y.  With the first two PC's representing 

most of the data set, the third PC can potentially be dropped.  Looking at the eigenvector associated 

with the third PC, it is easy to see that it is heavily influenced by the third variable, Z.  Therefore, it would 

not be unreasonable to say that Z can be disregarded, effectively dropping the complexity of the system 

and the degrees of freedom to two. 
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2.2 Applications of PCA in Computer Vision 

The initial application of Principal Component Analysis for facial recognition and detection most 

likely belongs to Turk & Pentland (1991), for the development of Eigenfaces.  The idea behind Eigenfaces 

is that a face can be described by certain two-dimensional characteristics; however these characteristics 

are not strictly defined as being ears, nose, mouth, etc.  The idea is to begin with an average Eigenface 

that all other are compared against.  By treating a picture, which is an     matrix of pixels, as an 

     vector, a covariance matrix can be built using Equation 2.4.  This covariance matrix is defined as 

an Eigenface.  Several training faces are used to establish an average Eigenface, from this most other 

faces can be reconstructed using the PCs. 

The work done by Turk & Pentland (1991) has been extended to several other areas. Becker & 

Ortiz (2009) proposed the use of PCA, as well as other facial recognition methods, in the popular social 

networking website Facebook where a wide variety of faces are available for processing.  One problem 

with PCA facial recognition is that not all images are taken under the same conditions.  There is a wide 

variety of photograph composition variables such as lighting, framing, orientation and facial expression.  

There are also image variables including the compression, resolution and clarity of the camera.  To this 

end, Moon and Phillips created the FERET evaluation protocol which has been successfully and 

extensively tested (Moon & Phillips, 2001).  Other facial recognition methods include Linear Discriminant 

Analysis (LDA) also known as Fisherfaces; Independent Component Analysis (ICA); Gabor jets; and 

Support Vector Machines (SVM), for a comparison of these methods see Becker & Ortiz and Draper, 

Baek, Bartlett, & Beveridge (2003).  Becker & Ortiz found that for a widespread range of conditions, no 

single or hybrid registration method performs optimally.   

PCA is also used in gesture recognition, the means by which software can understand human 

motions to recreate them or to understand them.  As Braido & Zhang (2004) suggest, there are over 30 

degrees of freedom when trying to model the human hand due to the numerous finger segments and 

joints.  Braido & Zhang focused on the grasping gesture and found that 98 percent of the variation was 

contained within the first two PCs.  This led to a much simpler model of the grasping gesture. 

Human input devices (HID), such as a keyboard, mouse or pen, are used by humans to interact 

with a computer.  However, these are limited, as they not as intuitive or simple as they could potentially 

be.  To extend human and computer interaction, PCA can be applied for gestures on a touch screen or 
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captured by a camera system.  A touch screen for a collaborative information system was designed by 

Jeong, Ribarsky, & Chang (2009) using a specialized PCA algorithm which allows for many people to work 

at once on the same touch screen.  This touch screen was designed to assist users to share and 

collaborate by employing an interactive PCA with collaborative elements (iPCA-CE).  For capturing hand 

gestures using cameras, Birk, Moeslund, & Madsen (1997) recognized and translated the American Sign 

Language using PCA and Hidden Markov Models (HMM) with a high degree of success.  Wu & 

Sutherland (2001) expanded upon this work by using Discrete Hidden Markov Models (DHMM) instead.  

The use of DHMM helps to speed up the recognition process by allowing fingertips to be recognized 

when the gesture motion has low variance.  Billon, Nédélec, & Tisseau (2008) combined the use of 

Nintendo Wiimote controllers and full body suits to control a virtual actor mimicking a real world actor.  

In this case, PCA was not used to extract the gestures, but to act as filter, reducing the data dimensions.  

This allowed for a recognition success rate better than 80% in the worst case, or 100% in an optimal 

case. 

Closer to the work presented below is the learning and recognition of 3D Objects using images 

by Murase & Nayar (1995).  However, cameras and 2-D images are troublesome due to changing scale 

and brightness, inclusion of background objects, or changes in position of the camera or pose of the 

object.  By stringing together several training images, the identity and pose of an imaged object can be 

found.  The measure used in this application is a ratio between the summations of the eigenvalues; a 

value closer to unity indicates that the image is close to one of the training poses.  This is later extended 

by Ohba and Ikeuchi (1997) when the theory is expanded to deal with the case where a portion of the 

object is hidden or occluded by using the "Eigen windows method".  Good eigen windows were selected 

on the basis of detectability, uniqueness and reliability.  With several good training eigen windows 

pre-stored in the eigenspace, known objects are detected and registered from image(s).   

2.3 PCA Indices for Pose Estimation 

Simon introduced a new application of PCA, called geometric constraint analysis, to the ICP 

process of pose estimation in computer vision Simon (1996).  Geometric constraint analysis examines 

the sensitivity of shape registration error to variations in the model’s pose.  This provides a powerful 

way of assessing the expected accuracy of iterative registration algorithms.  In Simon’s work, constraint 

analysis was used to optimize the selection of target points on human bones for scanning during 



12 
 

radiation therapy.  The optimization was based on the Noise Amplification Index (NAI) Nahvi & 

Hollerbach (1996) calculated from the constraint matrix built using the point cloud.  Larger NAI values 

were shown to correspond to smaller values of the norm of the pose error.  Originally, NAI was 

constructed to analyze robot mechanics and the position of an end effector, however, Simon saw the 

similarities between pose estimation and end effector estimation.   

While Simon used a sparse set of key points for bone alignment, Shahid & Okouneva (2007) used 

the same form of discrete-point constraint analysis and applied it to point clouds generated by 

windowed areas of spacecraft objects.  By localizing geometric features, the optimal local scan areas for 

pose estimation can be identified.  A more recent paper by McTavish, Okouneva, & Choudhuri (2009) 

generalizes the concept of discrete-point self-registration to a surface integral-based self-registration 

called Continuum-Shape Constraint Analysis (CSCA).  Like discrete-point geometric constraint analysis, 

CSCA is also used for pose estimation assessment and view selection.  To account for the directional 

nature of a scan, a view factor is incorporated into the CSCA cost matrix calculation.  In this case, 

constraint analysis was used to establish whole-object views for accurate pose estimation.  In McTavish, 

Okouneva, & Okounev (2009), a new constraint analysis index, the Expectivity Index (EI), was 

introduced.  More information on EI can be found in McTavish, Okouneva, & English (2010). 

The eigenvectors of the constraint matrix help to identify the direction in which the point clouds 

are most constrained.  A well constrained point cloud, and therefore well constrained view, will be 

constrained in several degrees of freedom (DOF).  Conversely, the eigenvectors also identify the manner 

in which the point clouds are poorly or weakly constrained.     



13 
 

3 ICP Algorithm and Program 

 The Iterative Closest Point (ICP) algorithm is a relatively simple method used to align two sets of 

data.  The alignment of the data is computed by finding a six DOF pose vector consisting of three 

translation and three rotation components.  One significant advantage of the ICP algorithm is that it 

does not need to extract geometrical features or descriptors, such as Gaussian curvature, from a model 

or data set.  The ICP algorithm is mainly accredited to Besl & McKay (1992), however it was also 

developed independently around the same time by several others (Chen & Medioni, 1992; Menq, Yau, & 

Lai, 1992; Zhang, 1994).  To begin, the ICP algorithm requires the input of an initial guess.  Using the 

initial guess as a starting point, the ICP algorithm then repetitively refines a pose estimate until one of 

the convergence criteria is met.   

The ICP algorithm is a commonly used to align between two sets of a) point sets; b) line 

segments; c) implicit curves; d) parametric curves; e) triangular sets; f) implicit surfaces; g) parametric 

surfaces.  Although the ICP algorithm is capable of iteratively aligning both 2-D and 3-D data sets based 

on geometry alone, colour and light intensity can also be included in pose estimation.  For this work, 3-D 

triangular sets, called meshes, and point sets, called point clouds, are used.  A mesh consists of two 

components, a list of vertices in three-space, and a list of faces, see Section 3.4.1.  A point cloud is a set 

of 3-D points generated by the scanner.  For each iteration step, the ICP algorithm works to minimize a 

cost function calculated by pairing corresponding points together.  The ICP algorithm in this work is 

based on quaternions which will be reviewed in the following section. 

3.1 Definition of Quaternions 

Quaternions are a numbering system that, through the extension of complex numbers, has four 

dimensions to solve three dimensional problems, and it developed by Sir William Hamilton in 1843.  

Since then, quaternions have been used as a means of representing rotations (Shoemake, 1985).  Using 

        as system bases, a quaternion,  , is defined as a linear combination of 4 coefficients,  ,   ,    

and    such that  

    
 
 
             

                     
3.1 
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Of the coefficients, only   is a real number;              are purely imaginary. The quaternion 

coefficients are constrained by  

                 

          
    

    
    

    

3.2 

Other mathematical concepts concerning quaternions include (Shoemake, 1985): 

Conjugate           

Norm          
    

    
  

Addition                     

Multiplication                                    

3.2 ICP Algorithm Mathematical Formulation 

The ICP algorithm implemented in this work is the method outlined by Besl & McKay (1992) and 

uses a quaternion matrix representation given from Horn (1987).  The only modification to the basic 

method is in the cost metric used.  Instead of the typical mean square error (MSE), the total Euclidean 

distance given by the Approximate Nearest Neighbor (ANN) method is used as the minimization metric, 

and will be further discussed in Section 3.4.4.3.   

A pose can be calculated using a     translation vector,   , and a     rotation matrix,     , 

constructed using Euler angle values of roll, pitch and yaw values as follows: 
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where
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Combining Equation 3.4 with the translation vector, a     homogeneous transformation matrix,  , can 

be defined as 

 
                

       

  
  3.5 

The ICP algorithm begins with two point clouds, the input point cloud                       

        and the model point cloud                                 .  The input point cloud is 

produced from the scanner, while the model point cloud is obtained by transforming       using the pose 

initial guess.   

During each iteration of the ICP algorithm, the input cloud       is approximated to the model 

cloud         through 

                   3.6 

Typically, the mean square error (MSE) is found by taking the difference between the model point cloud 

      and scanner point cloud     to calculate the residual errors.   

 
                  

 

 
                      

 
 

   

 3.7 

As mentioned earlier, this form of the MSE is not used as the ICP cost metric. 

To achieve the refined translation and rotation values and therefore an updated        , the 

cross-covariance matrix,      , between       and        , is used.  As with the regular covariance matrix, 

the centroids of both point clouds are required 

 
    

 

 
    

 

   

     
 

 
      

 

   

 3.8 

The cross-covariance matrix      can then be alternatively represented as 

 
    

 

 
          

 
 

 

   

       
 

 3.9 

Equation 3.9 is an alternative representation of the covariance matrix defined by Equation 2.1 

and is found by using the expected values.  The cross-covariance matrix      is then used as part of the 

    registration matrix,       , as given by: 
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  3.10 

where    
  is a vector defined by the cyclic elements of  ,                

   

A is the anti-symmetric matrix          
  

 

The eigenvector corresponding to the largest eigenvalue of        is the refined value of the 

rotation.  This eigenvector is a unitary and is a rotation quaternion,                  
 .  To find the 

optimal translation quaternion,               
   

                   3.11 

where        is the orthogonal rotation matrix as defined by Horn (1987) 

 

   

  
    

    
    

                         

              
     

    
    

             

                          
    

    
    

 

  3.12 

From the optimal quaternion translation,    , and rotation,    , a quaternion pose vector can be 

established as              
                         

 .  The next point cloud         is found by updating 

    with the optimal rotations and translations 

                     3.13 

An alternate representation of the rotation matrix    is given by Horn and allows for a one line matrix 

calculation 

                         3.14 

where   

      
            

   
   is the skew-symmetric matrix 

 

The skew-symmetric matrix of    satisfies the condition that           

 
    

  
  
  
 

 

  

      
      
      

  

3.15 

Note that the skew-symmetric matrix can be used to represent the cross product as 

                     3-16 
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Now that a new point cloud         has been found at each iteration step, the error cost function 

must be calculated to evaluate the registration.  ICP algorithm iterations will continue until one of the 

cases described by Figure 3 holds true:  

 The maximum number of iterations has been reached 

 The cost function has dipped below a certain threshold,   

 The cost function slope has flattened out such that it falls below a threshold,   according to 

Equation 3.17: 

 
  

                    

        
 3.17 

 

Figure 3 - Error vs. iterations 

 In summary, the simplified ICP algorithm is 

Input ICP Algorithm Output 

 Sample data 

 Reference data  

 Initial guess 

1. Calculate the updated pose 

2. Calculate error 

3. Repeat steps 1 & 2 until convergence 

 Pose estimate 

 Updated point 

cloud 

3.3 Review of ICP Algorithm Stages 

Section 3.2 introduces the mathematics for the ICP algorithm, however this is only one stage of an 

overall ICP program; Rusinkiewicz & Levoy (2001) suggest six other ICP program stages:  

1. Point Selection 
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2. Matching 

3. Weighting 

4. Rejection 

5. Cost Function Determination 

6. Cost Minimization 

There are multiple ways to speed up the ICP program.  Each stage of the ICP program can have 

several different variations; a review of some implemented or suggested methods follows below. 

1. Point Selection 

From a larger superset point cloud, smaller point clouds may be generated by various point 

selection strategies.  The simplest strategy at this stage would be to simply select all the points; this 

should give the ICP algorithm more data to work with and increase the registration accuracy.  However, 

using all the points may increase the computer processing time and power.  Turk & Pentland (1991) 

suggest to uniformly subsampling the available point cloud, whereas,  Masuda (2002) suggests to 

randomly choose points.  Others such as Weik (1997) advocate using colour or intensity gradients.  

Rusinkiewicz & Levoy (2001) suggest choosing points such that the normal-space will be as large as 

possible.  Simon (1996) describes several hill climbing algorithms used to create the point set.  Gelfand & 

Rusinkiewicz (2003) suggest selecting points for the PCA constraint matrix such that the weakest 

eigenvalues and eigenvectors are constrained. 

Rusinkiewicz & Levoy (2001) show that the uniform, random and normal-space sampling result 

in similar performance and conclude that point selection is not a critical component.  However, Gelfand 

& Rusinkiewicz (2003) show that selection of points to fill out the constraint matrix can lead to better 

results than the uniform and normal-space sampling.  The downside of using such a method is the 

associated cost to the algorithm speed; this method requires the repetitive building of the constraint 

matrix. 

Although random and uniform sampling may on average perform similarly, a uniform point 

selection strategy should intuitively be better as all features on an object will be covered and contribute 

to the constraint.  A random selection strategy may leave gaps or holes in the surface coverage, thus 

missing some geometric features.  Covariance and normal-space selection should also intuitively do 

better as more emphasis is placed on feature-rich areas as opposed to planar surfaces.  Point cloud 

generation will be discussed in Section 3.4.3.  
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2. Point Matching 

For this work, the inputs to the ICP algorithm are a point cloud from a scanner and a CAD model 

which are closely, but not perfectly, aligned.  To relate the point cloud to the model, each element in the 

point cloud is examined and the closest point on the surface of the model is generated.  The closet 

points on the surface form the model point cloud,      .  The ith element of       corresponds directly to the 

ith element in    .  To evaluate the registration, the scanner and model point clouds are compared and 

examined. 

Generating the model point cloud is one of the most time intensive portions of the ICP program.  

Besl & McKay (1992) recognized that the computational costs were high but continued to use the brute-

force method to find the closest point.  Chen & Medioni (1992) made use of the normal vectors which 

resulted from the scanner points on the surface of the model mesh to find the correspondence.  The use 

of varying resolution models was suggested by Jost & Hügli (2003), for the initial iterations a coarser 

resolution model is used.  For more refined matching, higher and higher levels of resolution are 

subsequently used.  This would help to reduce the number of normal vectors needed, and possibly the 

computational power and/or space.  Both Simon (1996) and Greenspan & Godin (2001) use different 

caching methods to store a number of closest points from each query, either in the current iteration 

step or preprocessed beforehand.  Subsequent iteration steps can then use the cached points to avoid 

re-searching the entire data set.   

The method used in this work uses k-dimensional (k-d) trees to improve the search time by 

using binning.  A k-d tree is a binary search tree where, starting from the root, each node is split into two 

subsequent nodes or leaves.  Each split node represents a division of the point cloud so that eventually 

several bins each contain a few points.  To traverse a binary tree, the query is compared against the 

node and is directed to the appropriate branch.  However, under specific circumstances it is possible for 

a query to travel into the incorrect bin.  Once the incorrect bin selection recognized, a costly backtrack 

through the binary tree is required Greenspan & Yurick (2003).  The response to this is to use the 

Approximate Nearest Neighbour (ANN) algorithms to create the approximate k-d tree, see Section 

3.4.4.3. 

3. Point Weighting 

Assigning a weight to corresponding pairs can give certain points or certain areas more 

emphasis.  Greater emphasis on one area should increase the alignment for that area, but possibly at 
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the cost of misaligning another area.  The neutral and basic state is to weigh all points equally.  Godin, 

Rioux, & Baribeau (1994) take a look at the angle between normals and at the use of colours as ways of 

assigning weight.  Godin et al. also look at assigning weights based on the distance between 

corresponding points; points that are separated by a greater degree receive less weight.  This is one 

possible method to reduce or remove the influence of outliers and other process errors. 

4. Rejection 

Rejection is similar to weighting; a point with a zero weighting can be considered to be rejected.  

Most rejection algorithms will rely on some metric to establish the quality of a pairing Masuda (2002) 

suggests rejecting points that are too far apart based on a factor of the standard deviation.  Like 

weighting, rejection is not necessarily required and can also be used to remove outliers. 

5. Cost and Cost Minimization 

The original ICP algorithm by Besl & McKay (1992) uses the Euclidean distance between 

corresponding points as the error metric for minimizing.  Of all the variants, this metric may be the 

simplest.  The work by Chen & Medioni(1992) pairs a scan point with a point on a virtual plane tangent.  

The tangent is located at the closest model point on the model curve.  Zhang (1994) created a limit upon 

the error metric to help filter out detrimental pairings; this was done by adding a maximum to the 

individual distances as well as a method to verify the orientation of pairings. 

There are other options which use the Euclidean distance by changing the transformation matrix 

representing the rigid-body transform.  Arun, Huang, & Blostein (1987) developed a strategy using the 

SVD of a covariance matrix.  Two different representations by Horn (1987) and Horn, Hilden, & 

Negahdaripour (1988) represent the transform using a unit quaternion and as orthonormal matrices.  

To search for the next step of the alignment, a new transformation that minimizes the error 

metric is applied to generate a new point cloud.  Besl & McKay (1992) use an extrapolation to find the 

next transformation while Chen & Medioni (1992) do not. 

3.4 Implementation of ICP and PCA Indices in a Simulated Environment 

In a real-life application, the input to the ICP algorithm is a point cloud generated by a Light 

Distance and Ranging (LIDAR) device scanning a space structure.  This point cloud,           , will be 

in the LIDAR’s frame of reference.  In a simulated environment, which is useful for path planning and for 
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scenario testing, the LIDAR scanner must be virtualized and implemented in code.  Using a virtual 

scanner, simulated point clouds can be generated for use with the ICP program.  This allows for the 

testing of ICP program components as well as predictions on the results.  To extend the ICP algorithm as 

an ICP program and simulation framework, three major modules are used: 

1. A module for virtualized scanning and point cloud generation 

2. A module to calculate ICP and estimate the pose 

3. A module to compute ICP accuracy and PCA indices 

The virtual scanning module requires a CAD model to scan.  The surface representation of a CAD 

model can be discretized from continuous surfaces and is approximated by a set of triangles known as a 

mesh.  The mesh is comprised of a set of vertices and a set of faces.  To make the processing of CAD 

models easier, the mesh is voxelized.  Voxelizing a model is the process of representing the model using 

large volume elements called voxels.  Each voxel acts like a bin by containing the list of all triangular 

elements that are contained within or intersect it.  Adapting algorithms to use the voxels will increase 

the run speed of the ICP program.  However, voxelization is a preprocessing which can take a long time 

to complete; in addition a significant amount of memory may be required to store it.   

The simulated LIDAR generates an ideal point cloud that is free of any process noise or 

measurement noise.  An ideal point cloud will most likely converge with very accurate pose estimation.  

To model a real process or scenario, the point clouds must be corrupted in some fashion.  Measurement 

noise can be easily added by individually translating each element of the point cloud according to a zero-

mean normal distribution without bias.  Process noise is much more difficult, and will require equations 

to model a LIDAR. 

After registration by the ICP module, the accuracy of the simulation is evaluated by using the 

pose error norm and the error of the individual pose components.  This module is also used to calculate 

the PCA indices by using the point cloud and normals.  Although the PCA indices can be computed 

before ICP registration, they are calculated alongside the pose errors.  One of the major outputs of this 

module is a collection of graphs which relate values of the PCA indices and pose errors.  In order to 

statistically represent the relation, all graphs contain data for 1000 randomized views of the model.  The 

descriptions of the ICP program above will be expanded upon further below.  Portions of this work are 

based on the framework outlined by Shahid (2007).   
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If real scans are being processed, the scanning module may be bypassed, but voxelization is still 

performed.  In addition, being real scans, the true pose of the point cloud is also an estimate.  This 

makes pose error calculation a relative process rather than absolute. 

3.4.1 Meshed Model 

The models used in this thesis are three-dimensional triangular sets called meshes.  Typically, a 

mesh begins as a Computer Assisted Design (CAD) model with continuous smooth surfaces and is 

discretized and converted into a triangular mesh.  If the resolution of the mesh is sufficiently high, finely 

detailed models can be fully represented.  Each mesh consists of two sets, a set of vertices and a set of 

faces.  The elements in the vertex set are 3-D points and represent the vertices for each of the triangular 

surfaces.  The entries in the face set are indices which point to entries in the vertex set.  Each row in the 

face set selects three vertices to form a triangular mesh element.  Together the vertex and face sets 

form the entire triangular mesh.  Each entry in the vertex set is unique, but can be reused to represent 

several triangular faces, thus there will always be more faces than vertices.  Figure 4 shows an example 

of a meshed cube alongside a portion of the vertex and face sets, there are 8 vertices and 12 faces in the 

meshed cube.  The second triangular element defined by the face set selects vertices         and has 

been highlighted in Figure 4.   

 

 

Vertex Set Face Set 

# X Y Z #          

2 0.5 -0.5 0.5 1 1 3 2 

3 -0.5 0.5 0.5 2 2 3 4 

4 -0.5 -0.5 0.5 3 2 4 8 

        

Figure 4 - Meshed model 

The only constraint on the face set is that the triangles must conform to the right-hand rule; in 

Figure 4 the normal vectors always point outwards.  If the triangle does not conform, then it is possible 

to have errors in the algorithms for ray tracing or closet point matching.  For this work, several models 

are examined, including:  a) Space Shuttle Atlantis; b) International Space Station (ISS) airlock; c) Hubble 
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Telescope; d) Radarsat satellite; e) Quicksat satellite; f) a skewed pyramid; and g) a reduced-ambiguity 

cuboctahedron. 

The space models are freely available from (NASA) and (The Celestia Motherlode), and can be 

imported into Autodesk 3DS or Biturn for conversion or manipulation.  While simple CAD models with 

planar surfaces can easily be represented by a triangular surface; highly detailed ones often include 

smooth curves which require many more triangular elements to represent them.  In addition, the CAD 

models often include small details that are unnecessary or do not contribute to the overall ICP solution.  

One possible action to clean and simplify a model is to decimate the number of meshes using MeshLab 

or MATLAB.  Decimation involves the simplification of a surface to reduce the number of faces and 

vertices while preserving the overall shape and features, effectively decreasing the model's resolution in 

certain areas.  Decimation typically works very well if it is done slowly in many steps; however, if a large 

number of triangles are removed in a step, it can potentially leave gaps in the mesh resulting in 

unintended holes in a model's surface.  A gap in the mesh will cause errors when scanning the surface.  

Another way of simplifying a model is to remove smaller features that will not contribute to the pose 

estimation or are much smaller than the scanner's scan density and result in zero to few to zero ray 

intersections.  Finally, as the models are highly detailed, there may be inner surfaces and features that 

are hidden from the outside and cannot be seen by the LIDAR; these should be removed.  Removing 

extraneous surfaces will create savings in computer memory and program runtime as there are fewer 

elements to process.   

3.4.2 Voxelizing 

Voxelizing a mesh model is a way of sorting and binning a 3-D object to make it easier for 

computation.  Originally, the use of voxelization was to represent continuous objects as discrete voxel 

elements.  For example, instead of a smooth line, a lower resolution one would take its place; it is akin 

to modelling a curve using large Lego blocks.  Early ray tracing methods used a basic brute force method 

to process the mesh faces to find where an element and the ray intersected.  This means that each and 

every element was tested to see if it was intersected by every ray generated.  This resulted in many 

intersection tests and a lot of wasted time and effort.  To increase the efficacy and efficiency in 

simulated scanning and ray tracing applications, each model can be broken up into much smaller voxels; 

a voxel is typically a cube, however, spheres or some other polygon could potentially be used.  A cube 

may be preferred because it allows all the voxels to be mutually exclusive or non-overlapping.  Figure 5 
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shows the meshed model for the Space Shuttle; each cube represents a voxel element.  If a sectioned 

view were taken, there would be a gap in centre of the model as there are no triangular faces in that 

area and therefore no voxels are required to hold them. 

 

Figure 5 - Meshed and voxelized Space Shuttle 

Instead of using the voxels to approximate the model, voxels are used to hold pointers to all the 

triangular elements that are within or intersect the voxel boundaries.  By having a list of triangular 

elements associated with each voxel a much quicker lookup can be performed and the number of 

intersection tests is reduced. 

Voxelization is a one-time preprocessing step but it can potentially be time consuming.  Starting 

either at the centroid of the model or at one corner of a box bounding, small cubes are established and 

tested to see if they contain or intersect any triangle elements.  A bounding box is a volume that is 

described by the maximum and minimum values of the entire model along the X, Y and Z axes.  Voxels 

with no associated triangular elements are discarded.  A voxel is defined by its centroid and the 

triangular elements it contains.   

The sizing of voxels is important as it dictates the voxel resolution, the number of associated 

triangles and the size of the voxel in computer memory.  Generally, the voxel sizing is constant 

throughout; however, a variable size voxel could theoretically be used as well.  An adaptive voxel could 

be more useful to contain large triangular elements rather than many small voxels.  As voxel sizes 
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decrease, each voxel will have fewer associated triangles; this is advantageous once a voxel selected for 

testing as fewer ray intersection tests are required.  However, a smaller voxel size will increase the 

number of voxels; if the side length of a cube is divided by two, then the volume of the voxel decreases 

by eight.  Consequently the number of voxels should increase eight-fold; however it is typically less than 

this amount.  Larger voxels tend to include large amounts of empty space, especially if it is located on 

the fringe of a model.  Smaller voxel sizing is generally preferred as it can capture finer details of the 

overall model; however, Greenspan & Yurick (2003) report that voxel size is relatively independent of 

accuracy.  

A MATLAB implementation of the voxelizer program written in C/C++ was attempted.  To make 

the program speed comparable, incorporation of C code in MATLAB was done through the MEX 

software interface layer.  However, one C function did not operate properly and made this 

implementation unusable until the next iteration of the C/C++ compiler.  The fmod function frequently 

returned an indeterminate result which it did not do when run through the standard C/C++ compiler1.  

Currently Microsoft Visual Studio 2008 is being used as the C/C++ compiler. 

3.4.3 Scanning and Ray Tracing  

Simulating the scanning of a space structure is done by ray tracing a model.  With multiple light 

rays emanating from a virtual LIDAR source, a point cloud can be generated by finding where the ray 

intersects one or more triangular mesh elements.  A valid intersection requires that the mesh element is 

not occluded from the ray source and is the closest intersection to the ray source.  In addition, the 

normal vector from the triangular mesh element should be in the opposite direction to the ray.  The 

angle between the ray and normal should be greater than     and the dot product less than 0.  This 

indicates that the ray is hitting the front side of the triangle, however if the angle is less than 90°, then 

the ray has hit the back face of a triangle.  This most likely means that the model contains a gap or hole 

in the mesh which allowed the ray to enter inside the model.  The other possibility is that the model is 

not right-hand conformant.  Hitting a back-facing triangle can cause that triangle to be ignored or 

deleted from the mesh or it can be tested for intersection as if it conformed to the right-hand rule; 

however this is not advised.  Figure 6 shows the potential scenario when a ray passes through a 

triangular face with an incorrect normal.  A ray tracing algorithm may choose to bypass face A and select 

face B as it has a correct normal. 

                                                            
1 fmod: "http://support.microsoft.com/kb/972497" 
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Figure 6 - Occluded triangle 

3.4.3.1 LIDARs and Ray Generation 

To properly replicate the scanning of an object in the virtual scanner, a Light Detection and 

Ranging (LIDAR) device must be first introduced.  A LIDAR is a laser based device used for tracking and 

scanning by sending out laser pulses.  The range between the LIDAR and a target object can be 

calculated from the time-of-flight, Equation 3.18.  The distance from an object is measured based on the 

half the time it takes a pulse to return, so the outgoing and returning times are averaged.  Because a 

LIDAR uses laser pulses, the speed of the beam can be approximated as that of light, c, roughly 

        .  Note that 

 
        

          

 
 3.18 

where range is the distance from LIDAR source to the target, represented by R in Figure 7.  

A LIDAR device is also capable of scanning and triangulating objects.  By varying the direction of 

the laser pulses, a point cloud covering the visible faces of the target object is formed.  Figure 7, adapted 

from Beraldin, Blais, & El-Hakim (1995),  shows a LIDAR device scanning a surface.  The advantage of a 

LIDAR is that it is highly accurate and is capable of constructing good point clouds for pose estimation.  

As previously mentioned a LIDAR is independent of the lighting effects and can operate under various 

light conditions Blais, Beraldin, & El-Hakim (2000). 
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Figure 7 - LIDAR scanning 

Figure 7 depicts a LIDAR performing a raster scan to create a point cloud.  A raster scan is akin to 

human eyes reading western text or an old dot matrix printer.  Assume that the LIDAR scanner works by 

rotating a mirror on its vertical and another on its horizontal axis to be able to sweep the forward arc.  

Therefore, a raster can simply be implemented by simply constructing a direction based on the rotation 

of along the X and Y axes.  If a model is expected to be between       and     , then a raster scan will 

define the X or Y components through the beam projections, defined by: 

 

    
 
 
 
   

        

        

 

  3.19 

The direction vector,   , is then normalized.  Figure 7 shows the X and Y axes scanners or galvanometers 

used to rotate the mirrors for 3-D scanning.   

The problem with a raster scanning is the non-continuous motion required of the mirrors; a line 

is scanned and then the direction is switched and the next line is scanned.  A smooth motion is more 

advantageous as the mirror can sweep in continuous arcs.  Continuous scan patterns are possible by 

making use of the lissajous, and rose/rosette waveforms Ruel, English, Anctil, & Church (2005) described 

by Equation 3.20 and shown in Figure 8.  
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 3.20 

 

Figure 8 - Two Lissajous and two rosette curves 

McTavish, Okouneva, & English (2010) suggest to increase the randomness of a scanning process 

by rotating the scanner around the boresight or barrel before every scan.  This will randomize the scan 

points if the same view is scanned multiple times or if the model is scanned anew for each trial.  Figure 9 

demonstrates the difference when boresight spin is employed.  The lines indicate the direction of 

motion of the raster scan over the model; by varying the motion, a different point cloud is generated. 

 

Figure 9 - Boresight spin 

3.4.3.2 Ray Tracing 

The rays generated from the scanner must be tested to see which, if any, mesh elements are 

intersected.  Ray tracing is a technique used to trace a path from a common source onto the surface of a 

model.  Ray tracing has been used in computer imaging and graphics for rendering special effects such 

as reflection and area lighting.  There are several different methods that have been developed to test if 
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a ray has intersected a triangular surface.  The rays have a common source,          , that can be used to 

represent either a LIDAR, camera, light source or eye.  Figure 10 shows the typical ray and mesh 

intersection; to find the point of intersection the as a function of distance along the ray 

                   3.21 

where    
t is the Euclidian distance between the origin and the intersection 

   is the unitary direction vector of the ray given by Equations 3.19 or 3.20 
 

 
Figure 10 - Ray intersection 

There are many algorithms available for ray and triangle intersection testing, including some 

notable ones by Segura & Feito, O'Rourque, Snyder, Sunday, Möller-Trumbore, Held and Badouel.  The 

common thread with the last four algorithms is that they are all based on barycentric coordinates.  

Barycentric coordinates can be defined as the ratios of vertices with respect to a reference vertex and 

can be used a simplex of any dimension.  A simplex is the abstraction of a triangle into other dimensions; 

a 1-D simplex is a line, a 2-D simplex is a triangle and a 3-D simplex is a tetrahedron.  Figure 11 shows 

the typical formulation of barycentric coordinates.   

 

Figure 11 - Barycentric coordinates 

If    is chosen to be the reference vertex, then all other points within and around the triangle can be 

described by  
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3.22 

where    
    and    are vectors pointing away from the reference vertex 
  and   are ratios of the overall position on the vector 

 

From Figure 11, the query point,              , is built from by combining vectors parallel to 

    and   , as seen in Equation 3.22.  In barycentric coordinates,                , this means that the 

query point P can be found by combining two vectors, moving 23.3% in the direction of    and 63.3% in 

the direction of   . 

The main concern with barycentric coordinates is if the query point is within the bounds of the 

triangle.  There are four conditions that will dictate if a point is contained within a triangle 

     

    

      

    

3.23 

if the first three constraints hold true, then the point P lies inside a triangle.  If    , then according to 

Equation 3.22, it is likely that the meshed model has been improperly placed as this indicates the model 

is behind the LIDAR camera.  Several ray-triangle intersection test algorithms use the barycentric 

principal; within this work, the Badouel and Möller-Trumbore algorithms have been implemented.  See 

Shahid (2007) for a comparison of the various algorithms. 

3.4.3.3 Scanning Implementation 

One way of scanning a model is through an imaging plane, by using the Open Graphics Library 

(GL) to establish a viewport.  The image plane can be used to define the direction vector    as seen in 

Shahid (2007).  As an alternative to iterating through all the triangular mesh elements in a model, the 

voxel set that was created for the k-d tree in the ICP algorithm may be used.  Shahid indicated that voxel 

traversal is possible for ray tracing.  Voxel traversal allows a ray to move from one voxel to another 

without having to search for the next.  When a model is voxelized, a matrix of voxels is formed, because 

of this, it is easy to calculate the next voxel a ray will enter.  Using this property, ray tracing can be 
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performed very quickly by avoiding the need to process the entire mesh in search of intersections.  

Figure 12 (a) demonstrates how a ray can pass through a voxel matrix using the neighbours to move 

quickly though the model. 

 

 
a) Translated b) Rotated 

Figure 12 - Voxel traversal 

The problem with voxel traversal is that it only works under certain circumstances.  There is no 

problem if the model is only translated as the voxels can be translated as well; see Figure 12 (a).  

However, if the model is arbitrarily rotated by a value other than               , then the voxels 

will no longer be aligned in a convenient matrix.  Moreover, the voxels were previously aligned to the 

principal X, Y and Z axes; once the model is rotated, and the voxel matrix is rotated as well, but the 

voxels will not be.  Figure 12 (b) shows how the voxels are no longer aligned once the model is rotated.  

As the voxel matrix is no longer aligned, voxel traversal is not possible.  This is most noticeable in the 

area around the tail. 

To make use of the voxels in ray tracing, a program was written to select all the voxels which 

pass close to the ray.  By selecting the closest voxels, there should be a reduction in the number of 

triangle intersection tests.  This method used MATLAB's function inpolygon, which finds all points within 

and upon a prescribed polygon.  In this case, the points were the centroids defining the voxel elements 

and the polygon was a wide ray.  The intention is to grab all the voxels that are within a certain 

projected distance of the ray projection.  As C++ programs generally operate quickly in procedural 

programs, the C++ implementation is much quicker when there are fewer faces and mesh elements.  

However, when there are more faces, above 10,000, then the MATLAB implementation using voxels 

operates quicker. 
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The general steps for scanning a model for a given view are: 

1. Determine camera or origin position, and the scanning method used (raster, lissajous, rosette)  

2. Based on the scanning method, determine the ray directions 

3. Find the intersecting triangle(s) 

4. Determine the intersection point with parametric value   

5. Repeat steps 2-4 until the scanning method has been completed 

3.4.3.4 Pose Randomization 

In the OpenGL/C++ version of the scanner, there is a limit as to where a model can be placed.  

The scanned model must be contained within an X and Y frontal arc which defines a viewing volume, see 

Figure 13.  To randomize the views, the half chord of the model is found as the vertex the furthest point 

from the model's centroid.  Using the half chord, a spherical envelope is defined to represent all possible 

combinations of roll, pitch and yaw.  The spherical envelope may be shifted by its centroid within the 

frontal arc without worrying if some part of the model will exceed the viewing volume.  If the viewing 

volume is exceeded, then that part of the model will not be scanned.   

 
Figure 13 - Open GL viewing volume 

For each model, 1000 poses are typically generated using this random process.  The only 

stipulation is that gimbal lock must be avoided.  Due to the way that the roll, pitch and yaw angles are 

represented, it is possible to be stuck in a position where there is a loss of one degree of freedom, 

typically this happens when pitch angle approaches     .  In this position, the yaw axis and the roll axis 

align which allow yaw and roll lose their uniqueness.  Therefore, the random pose rotation values are 

limited to                                    .  Additionally, some models should be limited to 
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avoid certain views; i.e., the airlock is currently mounted onto the ISS, so the back face and arc where it 

is mounted should not be accessible.   

3.4.4 ICP Program 

Once the point cloud      has been generated the virtually scanner, the ICP algorithm can utilize it 

to simulate pose estimation using the equations from Section 3.2.  At this point,      is made up of 

perfect/ideal data without noise of any sort, and if registered to the CAD model, the ICP algorithm 

would mostly result in little to no error.  To simulate real LIDAR scanning, noise must be added to the 

point cloud     .  A new noisy point cloud       is generated every time ICP is run.  An initial guess is also 

generated every time the ICP program is run.   

To align       with the CAD meshed model, a model point cloud,     , is generated during each 

iteration step.  To generate     , each point in       is projected onto the surface of the meshed model.  

The closest projected point on the surface of the meshed model is used to create     .  Since there are 

many triangular elements in the mesh and many points in      , an efficient algorithm to search for the 

closest projected point is required.   

For each view being registered, the ICP program is run 100 times to generate statistically valid 

results.  Each run includes the generation of       and the ICP pose registration. 

3.4.4.1 LIDAR Simulation and Noise 

Process and measurement noise can be added to      by modelling the LIDAR parameters and 

limitations.  In this work, the performance of Optech’s Rendezvous Laser Vision System (RELAVIS) 

apparatus is replicated.  The relevant LIDAR parameters are presented below in Table 1. 

Table 1 - RELAVIS specifications 

Minimum Range 0.5 m 

Maximum Range 5000 m 

Range Accuracy 0.01 m 

Bearing Accuracy 0.00035 rad 

To model a LIDAR, the internal arrangement of mirrors must be considered.  Typically, the mirrors in a 

LIDAR are not completely aligned, as seen in Figure 14, adapted from Blais, Beraldin, & El-Hakim (2000).    
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Figure 14 - LIDAR astigmatism 

For a LIDAR to generate the beams, the laser source itself is fixed and does not rotate or 

translate.  Instead, several sets of mirrors are rotated to direct the beam.  For accurate measurements, 

precision galvanometers are used to reflect the laser beam to the correct location.  The space between 

the X-axis mirror, Y-axis mirror, the charge-coupled device (CCD) and the lens creates the astigmatism 

seen in Figure 14.  The offset between the X and Y rotation axes is the called the astigmatism which 

occur when two scanning axes are not aligned or symmetric.  Although astigmatisms are frequently 

intentionally built into some telescopes, they are detrimental if developed in the human eye.  The X, Y 

and Z coordinates of a point given by the LIDAR are modelled by 

 

 
 
 
 
     

      
                   

                            
  3.24 

where

 
 
 

 
 

  

   is the distance between the rotating mirror axes 

  is the distance between the LIDAR and the scanner target, see Equation 3.18 
  and   are the deflection angles along their respective axes 
  is the ratio between    and   

 

Typically, the separation between the rotation axes is small relative to the distance to the 

target,     ; therefore both    and   are negligible.  The overall system uncertainty can then be 

approximated by taking the partial derivatives of Equation 3.24 

 
 
  
  
  
  

 

  
 
 
 
 
  

 

  
 
 
 
 
  

 

  
 
 
 
 
  3.25 

and applying     , 
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3.26 

Now that Equation 3.26 has been defined, noise can be added to the point cloud     .  The maximum 

range error,       , and the maximum angle error,         are found from Table 1. 

 

 
  
  
  

   

                  

                  

                  

  3.27 

Equation 3.27 uses MATLAB's randn function to create the noise in the system with a mean of 

zero and without basis.  The randn function distributes values from [0,1] based on the normal 

distribution.  Each time a trial is run, a new set of noise variables are generated. 

Using Equation 3.27 is somewhat computationally intensive as the noise values  ,   and   all 

need to be computed for each and every point.  Once        and    have been computed, the scanner 

point cloud,      , is updated through 

 

       

       
       
       

  3.28 

The noise introduced must be at an appropriate level.  If too little noise is added, the scanner 

point cloud will not resemble a real point cloud and will be closer to an ideal point cloud; thus making it 

difficult to simulate a true LIDAR and ICP program.  However, if too much noise is added, the ICP closest 

point matching algorithms will have difficulty establishing the points to their true CAD model surfaces.  

Unless the scanning is very dense, the noise level should be much smaller than that of the scanning 

density.  Figure 15 represents a Shuttle raster scan with two different noise levels; the circles represent 

the possible location of a point with noise added.  If the noise is low, Figure 15 (a), then the points will 

appear within circles with a small radius    and the points will not move too far out of position.  Figure 

15 (b) depicts a raster scan with high noise; the possible point locations overlap with a larger radius   .  

This means that the points move more, criss-cross and can cause holes in the raster scan, all of which is 

undesirable.  When the noise is low, the ICP results are inherently more accurate.  When the noise on a 

point is capable of bringing it further than the adjacent point(s), the ICP algorithm may struggle. 
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a) 

 

b) 

Figure 15 - Raster scan low and high noise 

3.4.4.2 Initial Guess 

To begin, an ICP algorithm requires an initial guess to iteratively refine.   In simulation, the initial 

guess is used to move the point cloud       away to form the initial pos;, see Figure 16.  If the initial guess 

translation and/or rotation values are too far away from the true values, it is possible for the ICP 

algorithm to fall into a local minimum.  Once in a minimum, the ICP algorithm is unable to climb out and 

will stop iterating due to the increasing cost associated with moving out of the minimum.  A new initial 

guess and initial pose is calculated as each time an ICP trial is run.  If a view is well-constrained, then it 

will typically converge to the correct alignment.  If a view is poorly-constrained, then the initial guess 

may cause the ICP algorithm to fall into a local minimum. 

 

Figure 16 - Initial guess and pose 

There have been attempts to work around the problem of local minimums by applying basin 

filling methods Ling, Singh, & Brown (2007).  Figure 17, adapted from Ling et al., shows an example of 

basin filling; this technique involves slowly increasing the weight on points that have poor registration 

cost.   
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Figure 17 - Basin filling 

By focusing the algorithm on the poorly registered point pairs, the point cloud should move to 

correct them and bring them into alignment.  The problem with basin filling is the time and power it 

takes to move the point out of the minimum with trial and error.  This can lead to the ICP algorithm 

being infeasible for real-time operations due to the computational time required. 

If the initial guess is too far from the true pose, then it is possible that other algorithms are used 

to achieve a closer initial pose.  However, in a space rendezvous application, the most likely target will 

be a known satellite in need of servicing or repair.  In this case, a good initial pose will likely be known 

from other means. 

A poor initial rotation value is more likely to impact the convergence than a poor initial 

translation.  Although the initial guess requires both a translational and rotational component, 

rotational component seems to be much more important.  The translational component of an initial 

guess can be partially solved by bringing the centroids of the two point clouds together.   

After noise has been added to create point cloud      , it is transformed so that it is intentionally 

misaligned.  If a point cloud is brought into alignment using the transformation  , then the initial pose 

and initial point cloud can be found roughly via    ; see Figure 16.  Note, this is not the same 

transformation used to bring the model from the base state to the current pose, but is the 

transformation between the ideal and guess poses.  

To calculate    , an initial rotational disturbance,  , and an initial translational disturbance,  , 

are required.  The maximum range of translational and rotational disturbances are user set values,      

and     , respectively.  By making use of MATLAB's random uniform number generator function, rand, 

a random initial guess can be computed via  
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3.29 

Using the rotational disturbance  ,     can be constructed using the axis angle theorem.  

Euler's rotation theorem dictates that any rotation can be represented by a rotation about an arbitrary 

axis as seen in Figure 18.    

 
Figure 18 - Axis angle 

Using the Euler rotation matrices, the sequence     

                       3.30 

outlines the rotation matrix for a rotation about an arbitrary axis (Ellzey, Kreinovich, & Peña, 1993).  

        use projected line segments for rotation instead of the primary X and Y axis.  Equation 3.30 can 

be simplified to 

                                   3.31 

where

 
 
 

 
 

  

  is the normalized unit vector defining the rotation axis 

     is the     identity matrix 

  is the outer product operator  

  is the amount of rotation about the arbitrary axis 

 

In axis angle rotation, a random axis,   , is required.  The normalized axis,   , is given by  

               

              

               

         

3.32 

 After the rotational disturbance has been applied, the translation disturbance is applied.  

Performing the translation and rotation in opposite order would cause a very large rotation. 
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3.4.4.3 Voxel and k-d Search 

A k-dimensional (k-d) tree is a binary search tree; this means that, starting from the root, each 

node only has two possibilities, left or right, which allows for a quick search requiring only a few 

comparisons.  A k-d tree can be an efficient means of finding the nearest point to a query point.  K-d 

trees were developed by Friedman, Bentley, & Finkel (1977) and work by repetitively subdividing the k-

space until the desired number of values is in each subdivision.  For this work, the k-d tree was applied 

to the 3-D voxels, with    .  Search trees, such as k-d trees, are made up of several components 

analogous to a real tree; the root, the branches and the leaves.  The root and the branches are nodes 

where decisions are made as to how the program will traverse through the tree; a node contains only 

the information needed to make the comparison.  Each node might contain the dimension to compare 

and the over/under value.  The root is the starting point of the tree from which several branches may be 

visited before finding the final leaf.  The leaves are where the data is located; once a leaf is reached by 

the search algorithm, it stops the tree traversal and begins to process the data found within that leaf.  A 

leaf can represent a bin containing one or more points. 

 

Figure 19 - k-d tree 

Figure 19, adapted from Mount & Arya (2010), represents a typical 2-D k-d tree.  Each point,   , 

has X-Y coordinate values and has been split into partitions with a bin size of one.  To search for the 

query point,   , positioned at        , the root is the first comparison.  The query point's X-dimension 

value is compared to the value held by the root node, as it is less than the root's, the program traverses 

into the left branch.  At the next branch, the    is compared and is again found to be smaller, the 

program traverses into the left branch and so on.  Eventually the traversal selects the leaf containing    

and selects    as the closest point.  The advantage of a k-d tree is that they grant the able to search 
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quickly for a leaf without having to resort to the brute force method of calculate the Euclidean distance 

for each   .  By comparing the values of a query point in the k-space, the nodes are traversed to 

efficiently find the leaf.  The problem with k-d tree is when   is too close to the partition boundaries, as 

seen in Figure 19, the true closest point of   is    and will be discussed further below. 

There are a few different ways to formulate a k-d tree from data; one commonly used method is 

to split the points across the dimension with the greatest range.  By selecting the dimension with the 

maximum range, the points are quickly sorted in two partitions based on the average value of the 

maximum range.  In Figure 19, initially the X-dimension has the greatest range and the points are split 

based on the average X value.  Points less than or equal to the average are shunted into the left node of 

the k-d tree while the rest are placed into the right node of k-d tree.  Each node will store the average 

value and the dimension to compare for future use.  The k-d tree creation continues by searching for the 

greatest range within the new partitions, the splitting dimension does not have to alternate like in 

Figure 19.  Splitting will occur until the number of points is below a desired threshold in each resulting 

partition.    

The concept of a nearest neighbour search is to find the closest existing data point to a query 

point.  The k-d tree enables the search for the nearest neighbour of a query point much quicker than a 

brute force method.  Rather than have to check every single point to find the closest, the k-d tree 

quickly narrows the number of points to test to the number of data points in the bin.  While the k-d tree 

traversal may correctly discover the bin that would contain   , the resulting closest point may be 

incorrect.  It is possible to backtrack through the k-d tree traversal in an attempt to find the proper bin 

containing the point closest to   .  However, backtracking requires extra computation power and time.  

The response to this is to use the approximate k-d tree method (Greenspan & Yurick, 2003).   

The approximate k-d tree uses the Approximate Nearest Neighbour method by Mount & Arya 

(2010).  ANN: A Library for Approximate Nearest Neighbour Searching will quickly return what it believes 

to be the approximate closest neighbour using the k-d tree (Greenspan & Yurick, 2003).  Using the 

approximate k-d tree will generally return the correct nearest point.  However, when the approximate k-

d tree does not return the closest point, the returned point is still serviceable due to the small point 

cloud density.  The advantage of using the ANN library and the approximate k-d tree is that the results 

are returned quickly and fairly accurately in comparison to the basic k-d tree.  Additionally, the ANN 

library will return the Euclidian distance between the query point and the resultant point.  It is possible 
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to request   closest neighbours from the ANN library, which would result in   results and distances.  

Using this library, each entry in the scanner point cloud       can be tested and the total Euclidian 

distance can be computed.  The Euclidian distance can later be used as part of the MSE seen in Section 

3.2. 

For the implemented ICP program, the ANN library will return the voxel containing the 

triangular mesh elements that are the closest.  By testing these triangular mesh elements, the closest 

point can be calculated using a projection algorithm. 

3.4.4.4 Closest Point Matching 

The ICP algorithm listed in Section 3.2 evaluates the match between two point clouds       and 

    .  However, at this point in the ICP program, the only input available is the noisy point cloud      , a 

meshed model, and the voxel set.  To generate the second point cloud, a corresponding point on the 

surface of the mesh is projected for each entry in     .  This is done by finding the triangular element 

with the closest projection of     .  Evaluating each element of      as a query point, the approximate k-

d tree algorithm will return the voxel with its centroid that is either the closest, or one of the closest 

points to the query point.  Using the voxel's list of triangular mesh elements, the query point is 

projected several times in an effort to find the projection with the smallest distance.  The projected 

point that has the smallest normal distance is selected as the closest point     .  In this manner, the 

scanner point cloud is used to generate a similar sized model point cloud     , where the ith element of 

     corresponds directly to the ith element of     .  

Figure 20 depicts a point    that searching a corresponding point   .  The after searching for the 

nearest voxel, the highlighted voxel elements are processed to find the triangular element that contains 

the closest point to   .  By using the voxel list, there are much fewer elements to project upon than if 

the whole mesh were used.  The number of projections is reduced when the voxel size is also reduced, 

thus limiting the average number of triangles that intersect or are contained by the voxel.  The voxel size 

in Figure 20 is large for demonstration purposes.   
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Figure 20 - Closest point generation 

Figure 21 demonstrates that the smallest distance between a query point and a plane is through 

the plane’s normal,   .  Each triangle in the mesh can define its own plane and normal.  At this point, the 

distance between the query point and a plane is unknown, as is where the location of the query point 

when it is projected onto the triangle plane.  It is possible that the projection of the query point will fall 

inside the triangle, outside the triangle or on one of the triangle edges. 

 

Figure 21 - Point to plane distance 

  The absolute normal distance between a query point,      and a triangle defined by vertices 

[                      ] can be related through the dot product 

                  3.33 

Using the normal distance, d, the projection point on the surface,   , can be found through 

            3.34 
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As previously mentioned, the projected point can potentially lie outside boundaries defined of the 

triangle.  A point lying outside the triangle can be projected onto the closest line segment of the triangle 

or onto the closest vertex.  Ericson (2004) describes a way to use triangle barycentric coordinates to 

define the zones in Figure 22.   

 
Figure 22 - Triangle projection areas 

The method used to find the barycentric coordinates was listed in Section 3.4.3.2.  From Ericson, Table 2 

summarizes the options for point projection.  

Table 2 - Triangle projection 

Region               Closest Point 

A         
B    Project on line segment          

C         
D    Project on line segment          

E         
F    Project on line segment          

G       

To project a point onto a line segment, the decomposition of the dot product may be used.  The 

line formed by the query point and the projected point is perpendicular to the line segment and the dot 

product between the two is zero (cosine of 90°.)  The projected point can also be defined by its relative 

distance from one end of the line segment, i.e., 

                  3.35 
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Figure 23 - Point to line 

From Figure 23 

                   

            
 

                           
 

   
3.36 

Where   is the ratio of the overall position on the vector, similar to the barycentric parameters   and   

Solving Equation 3.36 for  , one arrives at: 

   
   

    
 3.37 

The parameter   differs from the barycentric parameters   and   in that it is bounded by      .  The 

projected point must fall somewhere on the line segment. 

 
   

    
      
    

  3.38 

Using the voxel search and the closest point projection, the following steps are used to generate the 

model point cloud      from the noisy point cloud      : 

1. Select a point from       to be the query point   

2. Use the approximate k-d tree to find the voxel closest to   

3. Test the triangular mesh elements in the voxel to find the smallest normal distance,    

4. Project   onto the surface the plane of the closest triangle to form    

5. Convert    into barycentric coordinates   and   

6. Use the barycentric coordinates to project    onto the closest triangle 

7. Store    in      as the corresponding point to   

8. Repeat steps 1 through 7 for all points in       to complete the model point cloud      
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3.4.5 Evaluation of ICP Results 

After the ICP program has completed the registration of the point cloud to the CAD model, the 

accuracy of the result must be evaluated.  There are six individual degrees of freedom in the system, this 

corresponds to a translational and rotational value for each of the X, Y and Z axes.  One way to predict or 

indicate the registration accuracy is through the use of PCA-based indices computed from the constraint 

matrix.  As previously mentioned, the evaluation of errors is absolute in a simulation environment; an 

exact true pose is known.  When real data is known, the true pose is an estimate which makes the 

evaluation of errors a relative comparison. 

3.4.5.1 Registration Error 

There are a few ways to represent the pose error.  The most common way can be seen in Simon 

(1996); the error is represented by the transformation required to translate and rotate the output of the 

ICP program to the true position.  The transformation from the camera origin to the target model is 

represented as the true transformation,      .  The result of the ICP algorithm is the ICP transformation 

    .  The error transformation,   , is due to the noise added to the data and relates       to     ; see 

Figure 24. 

 
Figure 24 - Error transformation 

From vector mechanics, the error transformation can be found through 

               

         
         

3.39 
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        and       are all represented by a homogeneous transform matrix in the form of Equation 3.5.  

The rotation values in    are the rotational errors,             , and    is represented as 

 

     

                                         
                                         
                  
    

  3.40 

where   

    is         

    is         

  is the error in the translation of the point cloud  

 

It is expected that the translation and rotation errors will be small in general and comparatively to     .  

Because of this, the small angle assumption can be used: 

         

               

                    

The small angle assumption simplifies the transformation matrix, Equation 3.40, to 

 

  

 
 
 
 
        
       
        
     

 
 
 
 3.41 

which can be simplified to  

    
       

  
  3.42 

From the above two formulations, the rotational errors       and    can easily be found by 

selecting corresponding elements from the transform matrices.   

The translation error can be calculated directly from the ICP registration results as 

                   3.43 

The total error for translation and rotation can be found by normalizing the values.  The 

translation error is given as 

 
        

    
    

  3.44 

Similarly, the rotation error is found through 
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  3.45 

 

The translation and rotational component errors can be combined as a six-element vector called 

the pose error: 

                   3.46 

However, depending on the size and scaling of the model, the rotational components may outweigh or 

be outweighed by the translational components, and will be discussed in Section 3.4.5.2.   

The error representing the rotation is not of the same form as that of the translation; it is not 

represented as                  .  This is the value that, in part, represents the amount of rotation 

needed to bring the point cloud from the frame defined by      to      .  Therefore, it is the 

incremental rotation that will bring the point clouds into alignment.  Another way of representing the 

rotational error is by selecting components from both the rotation matrix, built using the roll, pitch and 

yaw values, and the quaternion matrix. 

The problem with this representation is that gimbal lock may occur when the value of pitch 

approaches     .  At this value, errors will be difficult to recover due to the loss of one degree of 

freedom and the non-exclusivity of the pose representation.  If the values of roll, pitch and yaw values 

are allowed to exceed   , then another set of values maybe used to represent the identical pose.  

Values for roll, pitch and yaw can be found by taking the inverse sine, inverse cosine and inverse tangent 

of select elements of     .   

Another problem with this representation is due to the cyclic nature of the angles.  For example, 

when the true angle is approximately 0°, the ICP program will return the roll, pitch or yaw some runs as 

          or     .  Each of the previous answers is valid, as 359° and -1° are identical.  However, if the 

standard deviation and mean are calculated using the unmodified results, then the mean is found to be 

      , which is incorrect as the true mean should be   .  It may be possible to either add or subtract 

360° to see which error is smaller on a per run basis, but the resulting value must be consistent and the 

true value known beforehand.  For example, the program should always result in an answer that is 

between              or between           . 

A third option for error representation is implementing                     .  The 

rotation matrix      is calculated using  
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3.47 

and using the trigonometric identity  

 
         

             

               
 3.48 

such that the values of       and    may be solved for. 

This representation was found to be slightly misleading as in practice; as the error was reported 

as being high when it should not have been.  As a result, the representation that is used is the same as 

the one used by Simon (1996). 

3.4.5.2 Rotational Balancing 

Depending on the size of the model, the rotational components may outweigh or be 

outweighed by the translational components.  This is because the rotational components are akin to the 

moment of force defined by      , where   is the moment      ,   is the radius     and   is 

the force vector    . 

If two identical shapes of different scale are both rotated by   , then a point on the surface of 

model 1 will move a different amount than a similar point on model 2.  Figure 25 shows the effect of 

scale on rotation on the point displacement,    and   .  Thus, a smaller shape will undergo smaller point 

displacements for a similar rotation.  This means that the displacement due to rotation is dependent on 

scale, as changes in   increases or decreases the moment/torque. 

 
Figure 25 - Rotational imbalance 

A similar study is performed for the translational component.  If two identical shapes of 

different scale are both translated by   , then a point on the surface of model 1 will move the same 
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amount as a similar point on model 2.  Figure 26 shows the effect of scale on translation on the point 

displacement,    and   .  Therefore, a smaller shape will undergo the same point displacements for a 

similar translation as a larger shape.  This means that the displacement due to translation is 

independent of scale. 

 
Figure 26 - Translation balance 

To combat the rotational imbalance, the CAD model is normalized and scaled so that the 

average vertex,            distance from the centroid is 1.  First, the centroid of the CAD model is 

shifted to the origin        , scaling will not work properly if the centroid is not translated.  Second, 

          is normalized so that the average distance to the centroid is 1 

 
         

 

 
          

 

   

 3.49 

The scale factor is then applied to the vertices so that 

  

 
  

       
        

 

 

   

   3.50 

In this work, the mean distance to the centroid was set so that           is between 1.5 and 2.  

Anything smaller than this can result in a point cloud that is       .  By applying the scale factor to 

the vertices, the effects of using different units for the CAD model is negated.  CAD models can be 

modelled in inches or in feet; meters or centimetres; a model with smaller units will most likely be 

dominated by the rotation.  By performing the scaling, the model can be brought into the scanner's 

reference frame and unit of measurement. 

The effect of not scaling a model can be seen in Figure 27.  Figure 27 (a) shows the translation 

error norm values for an unscaled Shuttle model, while Figure 27 (b) shows the rotation error norm 
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values. The rotational components,      , are several magnitudes smaller than the translational, 

     . 

 
a)Translation b)Rotation 

Figure 27 - Translation vs. rotation error levels  

A similar scaling factor is built for balancing the pose error.  Based on Equation 3.49, the points 

in the scanner point cloud are normalized so that       .    

 
      

 

 
     

 

   

 3.51 

Equation 3.46 becomes 

                                  3.52 

and should balance the magnitude of the translation and rotation errors.  This balance allows for a 

combined value indicating the overall registration error for a specific view by taking the norm of the 

pose error components: 

 
        

    
    

            
    

    
   3.53 

3.4.5.3 Constraint Matrix and PCA Measures of ICP performance 

While the ICP program gives the translational and rotational error, this is only known after the 

completion of several trials.  To generate statistically valid data, 100 trials are run for each view.  Each 

trial run has a different initial guess and measurement noise.  Therefore, a prediction on the translation 

and rotational errors would be advantageous.  One way to indicate the error is through the geometric 
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constraint contained within the point cloud.  The derivation of predictive measures and indices methods 

is a reformulation of the work done by Simon (1996) and by Gelfand & Rusinkiewicz (2003).     

There are several different measures that can be used to assess a view for pose estimation and 

to predict the pose error.  The Noise Amplification Index (NAI), which was originally developed for robot 

dexterity, will be used.  Other measures that will also be considered include the Minimum Eigenvalue 

(ME); Inverse Condition Number (InvCond) and the Expectivity Index (EI), which was developed in 

McTavish, Okouneva, & Okounev (2009) and studied further in McTavish, Okouneva, & English (2010).  

These measures are derived from constraint matrices decomposed using PCA.  By assembling a 

constraint matrix to numerically define the geometric constraint, Eigenvalue Decomposition can be 

performed.  ED will yield the strength and direction of the constraint through the eigenvalues,   , and 

eigenvectors,   , recalling that         .  Therefore, the constraint matrix is very similar to the 

covariance matrix found using the typical PCA methods. 

The MSE in Equation 3.7 calculates the Euclidean distances between the scanner point cloud 

      and the model point cloud     , each of which has   points.  When the MSE is minimized, the ICP 

algorithm results in a more accurate pose estimation. This means that it will find accurate translational 

and rotational values which align the two point cloud sets.  Similar to minimizing the MSE, is the notion 

of minimizing the point-to-plane error metric proposed by Chen & Medioni (1992).  The point-to-plane 

error metric calculates the distances between a point       and the tangent plane defined by      and 

    .  For this error metric,   , each model point in      requires its own normal     . 

 
                     

 

 

   

 3.54 

where

 
 
 

 
 

  

   is the point-to-plane Rotation matrix minimizing    

   is the point-to-plane translation vector minimizing    

   is are the normal vectors associated with    

  denotes point-to-plane 

 

This is represented in Figure 28, which is a simplification of Chen & Medioni (1992) 

 
Figure 28 - Point to plane correspondence 
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 In the final iterations of the ICP algorithm, the rotational increments are very small.  At this point  

the rotation matrix, defined by Euler angle rotations about the primary axes           , can be 

reduced to 

 

     

      

      

      
         3.55 

Expanding the terms of Equation 3.54 and substituting Equation 3.55, 

 
                         

 

 

   

 

                        
 

 

   

 

                         
 

 

   

 

3.56 

Equation 3.56 can be simplified further by combining the terms together, and applying cross product 

and skew-symmetric matrix properties: 

             

            
3.57 

which results in 

 
                              

 
 

   

 3.58 

To align the point sets, the translation and rotation required to minimize Equation 3.58, 

parameterized by the vector   as 

                   3.59 

are found by equating the partial derivatives of Equation 3.58 with respect to   as zero   

  

  
    

  

   

  

   

  

   

  

   

  

   

  

   
    3.60 
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The result of Equation 3.60 is a     linear system of the form  

           3.61 

where   is a     jacobian, 

    
  

     

 
 

  
     

  

   
  

  
   

 
 

  
  

   
  

3.62 

and    is the 6-element vector representing the residuals.  The constraint matrix     can be considered a 

sensitivity matrix for small displacements.  The Equation 3.61 represents the system of normal equations 

     .   The solution of Equation 3.61 will minimize the norm        , or the norm      , as   is 

small near the end of the alignment.  The vector     represents the total amount by which the point-to-

plane distances will change if a small differential transformation   is applied. 

Strang (1976) showed that the relation between   and   is bounded by 

 
   

    

   
    3.63 

where          are the ordered singular values of   .  Therefore when undergoing a small 

transformation  , the residuals   are bounded by  

            3.64 

In addition, Strang also relation between the bound of a variable's relative error to the relative change.  

The small transformation   is expected to have both noise and error associated to it through   .  

Additionally, the residual error is also expected to have uncertainty associated to it through   .     

represents the noise and error from sensors and other sources.  Thus Strang gives the inequality 

     

   
 
  
  

    

   
 3.65 

The implication of combining inequalities 3.64 and 3.65 is 

     

   
 
  
  

 

  

    

   
 3.66 

which is simplified to 
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     3.67 

The inequality of Equation 3.67 states that in order to minimize the pose error norm     , the 

ratio     
   must be minimized.  Alternatively,   

     can be maximized instead.  Nahvi & Hollerbach 

(1996) called this ratio the Noise Amplification Index (NAI) and defined it as 

 
     

 

   
                   

  
 

  
  3.68 

Similar to 3.68, the ratio        from Equation 3.65 is called the matrix conditioning number.  In 

order to minimize the relative pose error, the condition number must also be minimize.  Conversely, to 

create the same form as 3.68, the inverse conditioning number (InvCond), which must be maximized to 

minimize relative pose error, is defined as  

     

   
 

 

       

    

   
                

  
  

 3.69 

Finally, looking back at inequality 3.64, the value of the residuals   will be greatest felt when the 

magnification of   by    is maximized.  This means that with a larger value of    the system constraint 

will increase, and the error function will be affected to a greater degree. A larger error function value 

will cause the ICP algorithm to take more notice to  .  Thus having higher levels of    will result in a 

better pose estimation.  Remembering that       , the Minimum Eigenvector (ME) index is defined 

as          . 

Equation 3.62 can also be reformulated on a per point basis.  From McTavish, Okouneva, & 

English (2010), each point is represented as  

     
   

  
  

   
    

    
    

   

  
    

      
   

 

  
     

   
     

    
   

3.70 

Note that the skew symmetric matrix gives    
    

     
   

 . 

To calculate the entire constraint matrix, Equation 3.70 is computed as a running total which reduces 

the need to store Equation 3.62 as a very large     matrix.   
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 3.71 

 If the squared norm      is the misalignment error   , then it can be represented as 

 
               3.72 

The geometric constraint analysis of the constraint matrix    is used to reflect the constraint or 

unconstraint directions in the current view of CAD model.  Using PCA to perform ED on    results in 

 

                            

 
 
 
 
 
 
       
       
       
       
       
        

 
 
 
 
 

 
 
 
 
 
 
 
  
 

  
 

  
 

  
 

  
 

  
  
 
 
 
 
 
 

 3.73 

where    
  is a matrix of eigenvectors, each column is an eigenvector,    
  is a matrix of eigenvalues,          

 

This means that the misalignment error is also represented as  

 

                     
    

 

 

   

 3.74 

The singular values of   
 
 and   

  
 from   and   , respectively, correspond to the eigenvalues of     as 

  
 
   

  
        

   
. 

The eigenvectors represent the amount of rotational and translational constraint of the point 

cloud.  The first three components of the eigenvector,   
   , represent the translation components, 

while the last three eigenvector components   
    represent the rotational components. 

 The surface geometry and complexity determines the amount of geometric constraint in the 

point cloud.  The geometric constraint plays an important role in the convergence of the ICP to the 

global solution.  For example, two planes can slide with respect to each other without ever changing the 

error in Equation 3.58.  Similarly, two spheres can rotate with respect to each other for the same reason.  
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Motion where rotation and/or translation does not change the error metric is considered to be 

unconstrained.  Alternatively, motion where rotation and/or translation vastly changes the error metric 

is considered to be constrained. 

 To find the constrained or unconstrained motion, the eigenvectors    and eigenvalues    are 

used.  Eigenvector   , corresponding to the largest eigenvalue   , represents the direction in which the 

point cloud      is most constrained.  This is called the "transformation of maximum constraint".  If      

is transformed by a   that is parallel to   ,    will experience a large change, thus indicating that this 

disturbance is incorrect and costly. 

Conversely, eigenvector   , corresponding to the smallest eigenvalue   , represents the 

direction in which the point cloud      is the least constrained.  If      is transformed by a   parallel to 

  ,    will experience a small or negligible change, thus allowing this transformation to continue and 

incorrectly influence the rotation and translation values.  It is possible to have values of eigenvalue    

either zero or negligible, in this case rotating or translating around    will have no discernable impact on 

  .  Ideally, this scenario should be avoided as it leads to large amounts of uncertainty in the system.  

Referring back to Section 2.1 and the definition of PCA, this means that there is a loss of a degree of 

freedom. 

For the examples below, the constraint matrices were assembled by taking points from all sides 

of the model in sphere, cube and diamond examples.  That eigenvalues      for the sphere in Figure 29 

are very small, theoretically they should be zero.  Small      demonstrates that rotation is 

unconstrained.  Because the diamond is nothing more than a rotated cube, the overall constraint 

between the two objects is similar.   

Only one side of the model was scanned in the flat plate examples to show the ability of plates 

to slide.  Scanning both sides would not change the overall constraint.  By examining the eigenvalues of 

the flat plate in Figure 32, the zero values apparent in the X and Y translation and the Z rotation are a 

direct result of the lack of constraint.  However, by rotating the plate, the translational and rotational 

components are convoluted and coupled together.  Figure 33 and Figure 34 have more geometric 

constraint as more DOFs are affected by   
    and   

   . 



57 
 

                     

27.78 0.00 -0.11 -0.99 0.11 0.00 0.00 

24.74 0.98 0.01 0.00 0.00 -0.13 0.12 

21.00 0.01 -0.98 0.10 -0.14 0.00 0.00 

0.13 -0.14 0.00 0.01 0.03 -0.99 0.07 

0.12 -0.01 0.13 -0.12 -0.98 -0.02 0.08 

0.11 0.11 0.01 -0.01 -0.08 -0.09 -0.99 

 

Figure 29 - Sphere 

 

                     

8.98 0.80 0.55 -0.23 0.00 0.00 0.00 

8.98 -0.27 0.00 -0.96 0.00 0.00 0.00 

8.98 -0.53 0.83 0.15 0.00 0.00 0.00 

4.07 0.00 0.00 0.00 0.00 0.00 1.00 

4.07 0.00 0.00 0.00 0.33 -0.94 0.00 

4.07 0.00 0.00 0.00 -0.94 -0.33 0.00 

 

 
Figure 30 - Cube 

 

                     

8.98 -0.43 0.88 -0.20 0.00 0.00 0.00 

8.98 0.70 0.19 -0.69 0.00 0.00 0.00 

8.98 0.57 0.44 0.69 0.00 0.00 0.00 

4.07 0.00 0.00 0.00 0.98 0.17 -0.04 

4.07 0.00 0.00 0.00 0.07 -0.14 0.99 

4.07 0.00 0.00 0.00 -0.16 0.98 0.15 

 

Figure 31 - Diamond 
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11.00 0.00 0.00 1.00 0.00 0.00 0.00 

6.26 0.00 0.00 0.00 0.00 1.00 0.00 

6.26 0.00 0.00 0.00 -1.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 1.00 

0.00 0.00 1.00 0.00 0.00 0.00 0.00 

0.00 1.00 0.00 0.00 0.00 0.00 0.00 

 

Figure 32 - Flat Plate 

 

                     

11.00 0.00 -0.71 -0.71 0.00 0.00 0.00 

6.26 0.00 0.00 0.00 0.00 0.71 -0.71 

6.26 0.00 0.00 0.00 -1.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 -0.71 -0.71 

0.00 1.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 -0.71 0.71 0.00 0.00 0.00 
 

Figure 33 - Plate rotated Yaw = 45° 
 

                     

11.00 -0.34 0.66 0.66 0.00 0.00 0.00 

6.26 0.00 0.00 0.00 -0.87 -0.49 0.04 

6.26 0.00 0.00 0.00 0.36 -0.56 0.75 

0.00 0.00 0.10 -0.11 0.34 -0.66 -0.66 

0.00 -0.03 0.69 -0.71 -0.05 0.10 0.10 

0.00 0.94 0.26 0.22 0.00 0.00 0.00 

 

Figure 34 - Plate rotated Yaw = 45° Pitch = 20° 
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Recently in McTavish, Okouneva, & English (2010), a new geometric constraint analysis index 

was introduced as the Expectivity Index (EI) 

 

                    
 

  
 

  

 3.75 

It was shown that the standard deviation of the pose error is related to the EI as 

 
        

        
 

  
 3.76 

where    
   is the standard deviation of the measurement noise 
   is the misalignment error  

 

Of the four constraint measures, only the inverse conditioning number is dimensionless, making 

it more suitable for comparisons as it is independent of the number of points   in     .     and all other 

indicies will grow as the number of points in      rises; this can potentially alter the results between a 

high or low density scan on the same shape and view.  Therefore, each dimensional measure above 

should be point normalized, as the Expectivity, NAI and Minimum Eigenvalue indicies are of dimension 

  , they are divided by   .  The error metric    is normalized by    .  The point normalization can 

help in the assessment of differing views of the same object or differing objects altogether: 

 
         

 

       
   

    
 

         
    

    
 

       
    

3.77 

 The eigenvectors and eigenvectors of     can also be used to represent an error hyperellipsoid.  

To establish whether or not a view and the point cloud will perform well under the ICP algorithm, the     

constraint matrix is used to generate constraint measures.  Consider that the general equation of an 

ellipsoid is 

        3.78 

where A is a symmetric, positive definite matrix.  
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Then Equation 3.78 can represent a hyperellipsoid of any dimension and is used in conjunction with     

to define  

          3.79 

Equation 3.79 describes an error ellipsoid with principal axes defined by the eigenvectors,   .  The length 

of the primary axes is defined by the square root of the inverse of the eigenvectors,      .  This 

geometry can be seen in Figure 35, which represents the 3D scenario.  The ellipsoid may be referred to 

as the uncertainty or error hyperellipsoid, a greater primary axis will result in larger registration errors.  

Smaller primary axis lengths will occur when the eigenvalues    are larger, this is typical a well 

constrained shape. 

 
Figure 35 - 3D - Ellipsoid 

The main properties of the hyperellipsoid that require addressing to decrease the uncertainty 

are the 

1. hyperellipsoid volume  

2. hyperellipsoid eccentricity  

3. length of primary axes 

However, property 1 and 2 are tied directly to the length of the largest primary axis,      .  A smaller 

volume should appear when the hyperellipsoid approaches a spheroid shape.  The eccentricity of the 

hyperellipsoid will diminish as the six primary axes become smaller.  A well conditioned hyperellipsoid 

will be spheroidal as it should constrain all degrees of freedom equally and effectively. 

The ME, NAI and InvCond indices are composed of only the largest and smallest eigenvalues; as 

the result, they only give an upper boundary of the pose error norm.  The Expectivity Index, is composed 

of all eigenvalues, and by its definition should give an exact boundary on the standard deviation of the 

pose norm. 
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3.4.5.4 Rotational Balancing for the Constraint Matrix 

Similar to how the CAD model is scaled as the means to balance the rotational effects in Section 

3.4.5.2.  The point cloud      which is used to generate     from Equation 3.70 must also be scaled and 

adjusted.  The rotational components again have the potential to dominate the constraint matrix.  

Looking at the components of     
   in Equation 3.70, when the points are located further out, the 

rotational constraint is reported as being large.  Therefore, the further      is translated, then the larger 

moment/torque will develop.  As seen in Figure 36, if the point cloud is not at the origin, then 

           .  Therefore      is adjusted so that its centroid lies at        .  For the same reasons 

outlined in Section 3.4.5.2,      is scaled so that        using Equation 3.51.   

 

Figure 36 - Translation balance 

3.4.5.5 Point Cloud Normals 

Each point in the point cloud      has an associate normal vector,   , that has been calculated 

by the scanner while ray tracing the CAD model.  Because the normals are calculated from the model, 

they are ideal and without any added noise.  However, there are no associated normals for any point of 

a real scan, which poses a problem as normals are required to calculate the constraint matrix, see 

Equation 3.70.  Normals are not involved in the registration process as the ICP algorithm does not 

require them.  To generate normals there are several different options will be briefly discussed: 

1. The true normal generated by scanner program 

2. Adding noise to the meshed model and recalculating each point and normal  

3. Corrupting the true normals 

4. Reconstructing from the point cloud 

True surface normals are generated by the scanner module.  This can be done either as a 

preprocessing step to calculate all surface normals at once to be made available for use; or, on demand 
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once a ray has calculated an intersection with the model surface.  The normal is computed by using the 

right-hand rule in conjunction with the face set for the triangular mesh elements.   

When Gaussian, zero-mean noise is added the LIDAR point cloud during ICP registration, it may 

be possible to also morph the surface of the CAD model by altering the vertex positions.  If the triangular 

mesh element is warped based on the Gaussian noise added to the intersection points, then the 

resulting normals change as well.  This method is likely the most difficult way of generating normals. 

The corruption of the true normals can be achieved by applying a process similar to that of the 

initial pose generation.  Each normal can be rotated slightly about an arbitrary axis so that it still points 

within a degree or two of the true normal or so that the dot product between the two normals is   .  

Over a large planar surface, the normals should all point in the same direction, however with this 

random process, it is likely that the normals will not be parallel.   

The final method for normal generation is to reconstructed the normals from the point cloud 

itself.  This requires no other data available, such as the CAD model, and is the method used to process 

real scan data.  Hoppe, DeRose, Duchamp, McDonald, & Stuetzle (1992) describe a way to use 

fundamentals of PCA for normal calculation.  Small portions a point cloud are fitted to temporary planes 

to generate the normal for a point.  By using   number of neighbouring points from the point cloud, a 

covariance matrix is built using  

 
                   

   

   

 3.80 

which is similar to Equation 2.2, but is not normalized.  After using ED, the eigenvector associated with 

the smallest eigenvalue will be the normal vector for that point.  In the example shown in Section 2.1, 

the smallest eigenvector is         , which is out of the dominant X-Y plane.  To make sure that a 

normal calculated using the PCA method is oriented in the correct direction, the dot product of the 

reconstructed normal and a vector from the intersection point to the camera origin is used.  As 

previously mentioned, the sign of eigenvectors from ED may be flipped.  Using the Approximate Nearest 

Neighbour library,   neighbours were selected to form the temporary plane, and experimentally     

gave reasonable results.  Figure 37 and Figure 38 show the true and reconstructed normal vectors from 

simulated data. 
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Figure 37 - Normal reconstruction: Hubble Telescope (zoomed) 

 

Figure 38 - Normal reconstruction: Space Shuttle 

To establish some sort of qualitative measure, the dot product was used.  The dot product for 

each normal vector was taken and resulted in an average of [0.9454, 0.9340], for the Space Shuttle and 

the Hubble Telescope, respectively.  For this test, views that predominately featured rounded surfaces 

were scanned; planar and flat surfaces will give much better results as the neighbouring normal vectors 

will generally be parallel.  A comparison of the geometric constraint measures calculated using the true 

and reconstructed normals are shown in Table 3.   

Table 3 - Normal reconstruction results 

 Hubble Space Shuttle 

View Number 33 1 

Num Points 365 497 

Average Dot product 0.9340 0.9454 

Reconstructed Normalized NAI 0.0096 0.0435 

True Normalized NAI 0.0324 0.0529 

Reconstructed Normalized Expectivity 0.0838 0.1429 

True Normalized Expectivity 0.1202 0.1513 
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 While the reconstructed constraint measures for the Shuttle model are fairly good, this is not 

typically the case.  The disparity between the true and reconstructed measures seen in the Hubble 

results is more common.  This can be attributed to the rounded surfaces of the Hubble telescope, 

especially on the outer edges of the model where the query point is no longer in the center of a plane 

fitted by the PCA algorithm.  This view of the Shuttle also featured the bottom hull where there is low 

curvature.  Typically, because the Expectivity Index uses all six eigenvalues, the results between the true 

and reconstructed data  are much closer than NAI.  
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4 Results and Application of PCA Measures for Prediction 

4.1 Individual Degrees of Freedom 

While the pose error norm from Equation 3.53 is an efficient way of presenting the pose error, it 

is possible that one DOF will be either very well or very poorly constrained compared to the others; this 

is lost in Equation 3.53.  To show that geometric constraint is a valid tool for selecting the view of an 

object, the results of the individual DOF results for the Space Shuttle are shown in Figure 39.  The units 

of translation and rotation errors are metres and radians, respectively. 

 

Figure 39 - Individual DOF for Shuttle 
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 As Figure 39 shows, the Shuttle model shows good results with the translation DOFs.  However, 

the rotation DOFs stay level; while it is expected that the error diminishes, it is also expected that the 

error does not increase.  Figure 40 shows a similar study performed with the Hubble Telescope model, 

which is more in line with the expected results. 

 

Figure 40 - Individual DOFs for Hubble Telescope 

 Given the similarities in formulation between the InvCond and NAI indices, both measures can 

be used to select views with accurate poses.  Any rise in geometric constraint is reflected in both 

measures, as they are tied directly with the maximum and minimum eigenvalues.   In simulated data, 

both measures perform similarly, as seen in Figure 41.  Therefore, either index could be used to analyze 

the individual DOFs as well. 
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Figure 41 - InvCond and normalized NAI for Shuttle 

4.2 Edge Constraint  

This work primarily investigates the relation between surface geometry and the accuracy of ICP 

pose estimation.  However, there is may be another factor that comes into effect especially in the 

presence of weak geometric constraint(s).  The edges on the surface of a model can help to constrain 

points in the point cloud and consequently improve the pose estimation.  This is briefly mentioned in 

McTavish, Okouneva, & English (2010) where it was dubbed edge constraint.  The edges help to 

constraint the point cloud by preventing points from moving off of the model.  Once a few points begin 

to move off and away of the model surface, the cost in the ICP algorithm begins to climb due to the MSE 

and the surface to point distance.   

A large portion of the edge constraint is likely contributed from the outline of the model.  When 

the point cloud begins to move away from the ideal registration pose, some points will fall off or move 

away from the surface of the model and add significantly to the ICP cost metric.  If the point cloud 

continues to move in an erroneous direction, then the number of points that have fallen off the model 

will increase, as would the MSE; see Figure 42.  Effectively, the edge constraint stop points from moving 

off the surface of a model due to the error cost. 

 
Figure 42 - Points off model surface 
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The level of edge constraint is dictated by the distance between a point and the outline of a 

model.  If the spread of a point cloud is maximized in one direction, then it is likely that the point cloud 

will have several points that lie close to the model's outline.  A point cloud with edge constraint should 

result in low pose error and low standard deviation.  For example, if two points separated by a fixed 

distance, are placed on a line, the points will have less room to oscillate if they are placed closer to the 

edges of that line.  This can be seen in Figure 43, if the point cloud is moved against the outline of a 

model triangle, then it will most likely not move off the surface by continuing in that direction.  If the 

point cloud continues to move, the error cost would be high and would result in Figure 42.  Therefore, 

this edge constrains the movement of the point cloud as the points can only slide along the edge, or 

away from it.  However, if the points were spread further apart, then the number of constraining edges 

increase and there is less room to manoeuvre. 

 
0 constraining edges 1 constraining edge 2 constraining edges 

Figure 43 - Edge constraint 

The edge constraint is also applicable on interior edges that are not part of the outline; Figure 

43 could represent either the outline of a pyramid or a triangular mesh element.  There may be many 

small interior edges available on a highly geometrically constrained shape.  Combining the geometric 

and edge constraint effects can possibly lead to a much lower error.   

It is expected that at low geometric constraint, there should be high error.  However, this is not 

always the case; a low geometric constraint view may have a large range of pose error.  This may 

partially be explained by the presence of the edge constraint.  Therefore, it is expected that if no edge 

points or edge constraint is available, then the results of ICP registration over 1000 poses should hold to 

the generalization of high error-low geometric constraint and low error-high geometric constraint.  

Ideally, there should be no low error-low geometric constraint regions as only geometric constraints are 

being considered.   
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The ability of a point cloud to move around on the model surface before being constrained is 

called sliding.  Maximizing the point cloud spread of the model surface is one way to limit the amount of 

sliding between two surfaces.     

To investigate the effects of the edge constraint; a model can be registered using: 

1. All points 

2. Edge points 

3. Inner points 

The edge set contains the points that are very close to the model outline and to the interior edges of the 

model.  The inner set contains the points that reside near the center of a model surface, away from any 

outline or interior edges.  To get the sets of edge points and inner points, it is possible to split up a point 

cloud as they are mutually exclusive sets.  The number of edge points can become very low if the 

original scan is sparse.  Therefore, it may be advantageous to use a dense scan to extract the edge set 

and a less dense scan for the both the regular point cloud and for the inner set.  Gelfand & Rusinkiewicz 

(2003) perform a similar study of the effect of point placement, but instead used a selection scheme 

based on sampling from the normal-space to create a more rounded hyperellipsoid. 

4.2.1 Inner and Edge points 

A simple asymmetric shape was designed to see how the either the presence or absence of 

edges will impact the ICP registration accuracy.  A skewed pyramid is studied as it offers multiple edges 

and planar surfaces for testing; see Figure 44. 

 

Figure 44 - Pyramid model 

 The various different types of points are shown in Figure 45.  The outline points are those which 

form the silhouette of an object.  Interior edge points are found when the surface changes direction 

dramatically.  The edge point set will comprise both the outline and interior edge points.  Inner points 

refer to the points which are neither outline nor interior edge points.   
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Figure 45 - Pyramid edge and inner points  

Over 1000 random poses, the regular case where all points were used was registered.  The 

result of these trials shows the typical trend for geometric constraint, as pose error diminishes with 

growing geometric constraint.  When only the edge sets were registered, the errors at lower geometric 

constraint were much lower than when the inner sets were used.  For the same view, the regular, edge 

and inner point sets were analyzed twice by employing a high density scan and a lower density scan.  

Figure 45 shows a pose where the number of edge points roughly equals the number inner points. 

The high and low density regular point clouds were split into the edge set and inner set.  As seen 

in Table 4, a denser scan typically had edges points accounting for approximately one tenth of the point 

cloud.  In the less dense scan, the edges were represented by approximately one fifth of the point cloud.   

Table 4 - Average number of points in edge/inner point sets 

 High Density Low Density 

Regular points 4070 1018 

Edge points 489 224 

Inner points 3580 793 

4.2.2 Edge Point Generation 

To create the edge point set, the         data used to calculate the direction vector,   , in the 

raster scan implementation was required; see Equation 3.19 and Section 3.4.3.1.  By keeping track of the 

values used over a range of           and         , the scanned point cloud can be placed into a 2-D 

matrix.  Not all rays will generate an intersection which results the zero value elements.  Consider: 
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The outline and silhouette of the point cloud can be found by selecting the first and last non-zero 

element of each column and row.  To find the interior edge set, each element in the 2-D matrix is  

checked against its immediate neighbours: 

 

Starting at the (1,1) position of the matrix, only elements below and to the right need to referenced, 

when available.  An edge is identified if the normal of the current element differs from that of the 

element being checked.  When the normals from two elements is aligned, the dot product will be   .  

Conversely, if the dot product of two unaligned normals falls below an arbitrary value of 0.9, then it is 

assumed that both of these points lie on either side of an edge and are identified as edge points.  The 

inner set is formulated as the complement to the edge set. 

It may be possible to also create edge points by looking at small sets of point clouds and using 

the normals to define planes.  By defining a plane, the points can be fitted to a matrix similar to the one 

above.  Alternatively, if the boundaries of the surface is known, then edge points may be selected if they 

are within a certain distance from a boundary edge.  This is a much more complicated process but may 

be possible for shapes with simple geometry that can be represented as squares or triangles.  

The resulting sets contain only either edge points or inner points.  However, when the angle 

between the camera and the surface is small, then the surface is seen as being shallow.  It is possible for 

a very large surface to appear small if a view is sufficiently shallow.  A shallow surface will result in the 

surface having only a few points scattered across it; see Figure 46.  The edge generation algorithm is 

likely to select many or all of the points on these faces as being edge points.  However, as the surface is 

shallow, the projected area is small, any movement of the point cloud will be constrained by the 

surrounding edges.  Therefore, despite designating most of a surface as edge points this is correct 

behaviour; the intent of this test is to remove points which constrain the model during ICP registration. 

 

Figure 46 - Shallow scanning 
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4.2.3 Edge Constraint for a Pyramid 

When comparing Figure 47 with Figure 48, one can see that the edge points seem to constrain 

the model fairly well when there is low geometric constraint.  This is reinforced by the higher error that 

the interior point set experiences with lower geometric constraint.  When geometric constraint 

increases, the overall error level drops for the edge, the inner and the regular point sets.  As the baseline 

case uses all the points, it is constrained similarly to the edge points; see Figure 49.  This effect is seen in 

both the high density and the low density scans.   

Figure 47 - Pyramid pose error vs. 
NAI: edge points 

 

 

Figure 48 - Pyramid pose error vs. 
NAI: inner points 

 

 

Figure 49 - Pyramid pose error vs. 
NAI: regular points 
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Figure 47, Figure 48 and Figure 49 show the un-normalized NAI.  This is because the same views 

on the same object are being assessed with differing point selection strategies.  Typically, point 

normalization is done so that different views are analyzed for geometric constraint on a per-point basis.  

However, the inner and edge points are expected to provide similar geometric constraint as the same 

surfaces are used.  When NAI is normalized by (  ), Figure 50 shows similar results to Figure 47 and 

Figure 48.  As the edge sets have fewer points which provide a similar level of geometric constraint to 

the inner set, there is an over-exaggeration of the geometric constraint when the edge set is normalized.   

Figure 50 - Pyramid: pose 
error vs. normalized NAI: 
edge and inner points 

 

 

 Figure 52 shows the comparison between inner points generated by a high density scan, and 

edge points generated by a lower density scan.  At low geometric constraint, the edge point set still 

provides much better registration than the inner point set.  This means that intelligent point selection 

can perform better than increasing the scan density as a means for reducing pose errors.  However, 

there is a difference in the pose error when comparing the results of the inner points for the high and 

low density scans in Figure 48 and Figure 52.  This can be explained by the encroachment of the inner 

point set towards the edges.  In the higher density scan, the edge points surrounding the interior edges 

are much closer together than in a lose scan.  As a result, the inner points may lie much closer to the 

edges and thus be provided with some degree of edge constraint; this can be seen in Figure 51.   

 

Figure 51 - Comparison of edge selection in high and low density scans 
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Figure 52 - Pyramid pose 
error vs. normalized NAI: 
high and low density scans 
 

 

4.2.4 Edge Constraint for Space Shuttle 

The investigation of edge constraint can also be applied to the Shuttle as well.  Each of the large 

dots in Figure 53 represents a view with similarly low geometric constraint and represent a range of 

pose errors.  These views typically targeted the Space Shuttle's protective thermal tiles; as an over 

simplification, the underside of the Shuttle can nearly be approximated to a flat plate as it is very slightly 

rounded.  On its own, a flat plate has been proven to only constrain three degrees of freedom, the Z-axis 

translation and the X-axis and Y-axis rotation, see Gelfand & Rusinkiewicz (2003).  When a flat plate is 

rotated, the rotational constraint can increase, as seen in Section 3.4.5.3.    

 

Figure 53 - Space Shuttle: pose error norm vs. normalized NAI 

 



75 
 

From Figure 53, pose 951 and pose 394 are examined and are shown in Figure 54.   

 

Figure 54 - Low geometric constraint: Shuttle poses 951 and 394 

By using the edge removal method previously described, the selected Shuttle poses were 

analyzed using the edge and inner point sets.  Figure 55 shows the results when only the edge points 

were registered for the selected poses.  The vectors in Figure 55 indicate the results of the associated 

edge point sets for each selected poses.  Typically, the use of edge points slightly decreased the overall 

pose error norm and standard deviation.  This may indicates that performing ICP using a smart selection 

of points can be beneficial. 

 

Figure 55 - Shuttle edge results 
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Initially, the Pose 951 has a much lower registration pose error and a lower pose error standard 

deviation.  However, once the edge points are removed to decrease the edge constraint, the error levels 

rise substantially.  Table 5 shows the average pose error norm and pose error standard deviation for 

each view shown in Figure 55.  In all but three of the cases, the use of edge points gave better alignment 

and registration.  Conversely, the use of the inner point set significantly raised the average pose error 

and pose error standard deviations.  This does not indicate that using inner points will result in 

erroneous registration, only that it is poor relative to the use of the edge or regular sets.   

Table 5 - Pose error norm and standard deviation for select poses 

 
Pose Error Norm Pose Error Standard Deviation 

Pose Regular Edge Inner Regular Edge Inner 

394 0.0179 0.0073 0.0766 0.0172 0.0036 0.0409 

930 0.0165 0.0086 0.0806 0.0160 0.0047 0.0355 

808 0.0165 0.0109 0.0680 0.0161 0.0153 0.0385 

803 0.0146 0.0071 0.0752 0.0143 0.0036 0.0393 

463 0.0132 0.0158 0.0772 0.0149 0.0297 0.0308 

49 0.0122 0.0076 0.0785 0.0130 0.0033 0.0410 

858 0.0106 0.0059 0.0766 0.0092 0.0027 0.0392 

282 0.0093 0.0053 0.0780 0.0076 0.0023 0.0343 

554 0.0075 0.0056 0.0733 0.0054 0.0019 0.0362 

540 0.0066 0.0057 0.0879 0.0041 0.0024 0.0425 

703 0.0064 0.0047 0.0702 0.0052 0.0019 0.0372 

417 0.0062 0.0047 0.0776 0.0045 0.0017 0.0412 

217 0.0059 0.0048 0.0733 0.0042 0.0020 0.0417 

999 0.0055 0.0049 0.0863 0.0043 0.0023 0.0436 

951 0.0052 0.0061 0.0790 0.0027 0.0025 0.0450 

663 0.0037 0.0038 0.1020 0.0017 0.0015 0.0578 

To see the effect increasing the number of points, a high density scan was used to increase the 

number points in the inner set.  The inner set increased from an average of 501 to 4758 points.  Similar 

to how the pose error for the pyramid dropped, the increase in the number of points caused the 

average pose error norm to drop from 0.0745 to 0.0476.  This is still significantly higher when compared 

to the case when only the edge sets or the regular sets were used.  As with the pyramid study, this may 

be because the encroaching inner points allow for more edge constraint.  Another reason for the 

improved pose estimation is that the ICP algorithm can be affected by the number of points used.  If the 

data is very noisy, then providing more data for the registration covariance matrix will bring the average 
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closer to the expected values.  The consequence of using more points is more computational time and 

memory.  The effect of adding more points will be further discussed in Section 4.3.4. 

4.2.5 Conclusion 

This Section shows that at lower geometric constraint, poses with low NAI, the governing 

constraint can be attributed to the edge constraint rather than geometric constraint.  At higher 

geometric constraint, high NAI, the contribution of edge constraint diminishes or is outweighed, and the 

pose estimation accuracy will be depend mainly on variations of the surface geometrical structure. 

4.3 Selection of Regions for Efficient Pose Estimation 

As previously mentioned, there are several ways in which elements from a point cloud are 

selected.  Some selection algorithms include filling out the normal space and random sampling; however 

in Shahid & Okouneva (2007), a different point selection scheme is introduced.  The subdivision of the 

model's surface is used to find and locate the area with the highest constraint.  Each subdivision is called 

a window, and each window peeks into a different area of the point cloud and model surface.  In Figure 

56 each of the dots on the surface of the model represents a scan point, while the square outlines 

indicate the window areas.  Shahid & Okouneva search for one near-optimal scanning region and uses 

NAI as the measure of geometric constraint.  LIDAR scanning can be performed for just one selection 

region and still achieve acceptable pose accuracy. 

Although only one window was previously used, the selection of windows can be extended to 

combine two or more windows together.  This has the potential advantage of pairing several poorly 

constrained windows to make a window with a well constrained combined point cloud.  Using a window 

rather than the whole scan can possibly lead to increases in speed as the ICP algorithm should work 

faster when fewer points are being registered.  However, the use of a window is valid only if results 

provide adequate pose estimation accuracy.  The expected result of combining two windows should be 

a good estimate of the true pose.  This estimate can then be used as the initial guess for another ICP 

registration using all points.  However, it is desirable to develop an algorithm which selects a 

combination of windows to generate pose estimates comparable to using the whole point cloud. 
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Figure 56 - Shuttle windows 

4.3.1 Creating Windows 

Windows can be created by simply subdividing a point cloud into a grid based on the X and Y 

axis values. However, to make the subdivision more accurate, the proper perspective must be used, see 

Figure 57.  A wrong perspective may arise when a scanner projects the point cloud onto a viewing plane. 

 

Figure 57 - Airlock wrong and right perspectives 

As the camera origin is known, a direct vector from the point cloud to the origin can be defined.  

Using this vector, the X and Y axis rotation values can be found, which can then be used to create a 
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rotation matrix that will rotate the point cloud so that it lies in X-Y plane and therefore with the correct 

perspective for subdivision.  The Z-axis values are ignored when splitting the point cloud as the Z-axis is 

orthogonal to the viewing plane. 

The square windows are used in this investigation.  If square or rectangular window is used, the 

points can be verified that they fall between the X-axis and Y-axis window boundaries.  If a window has a 

circular shape then the Euclidean distance from the center of the window to the point can be used.  

Theoretically any window shape or size could be used in conjunction with MATLAB's inpolygon function.  

This application can be applied to raster, rosette and lissajous scans.  However, when the 

windows are applied, they no longer simulate a LIDAR device focusing on one area of a model.  A rosette 

or lissajous scan focused on one area is quite different than selecting points from a larger scan, as seen 

in Figure 58. 

 

Figure 58 - Rosette subsection 

There are two factors that govern the creation of windows: the window size and the step size.  A 

larger window will contain more points but will eventually approach the case where all points are used.  

Conversely, a smaller a window may contain too few points, which can result in poor ICP performance.  

A smaller window may miss certain geometric features or surface fluctuations, by not being able to 

feature all of it.  While combining several small windows together should improve the constraint; a 

smaller window size will increase the number of windows significantly.  Akin to the voxel sizing, every 

time the window size is halved, the number of windows increases by four.  Figure 59 shows the effect of 

decreasing both the window size and step. 
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Figure 59 - Effect of window size and step 

The checkerboard patterns shown in Figure 59 are for demonstration purposes only and are 

only used to enhance the distinction between window subsections.  The darker tiles shown in the ½ step 

are the result of multiple windows overlapping.  A darker coloured tile corresponds to more overlap; 

with a ½ step size, it is possible for 1, 2 or 4 windows to feature the same subspace.  If the step size is set 

to be the same as the window size then the windows are mutually exclusive.  If the step size is larger 

than the window size, then there will be gaps in the grid and features will be missed.  While it is 

perfectly valid to overlap the windows it increases the number of windows significantly.  If the step size 

is the half the window size, then the number of windows increases via 

                  

where    
m is the number of mutually exclusive windows along the X-direction  
n is the number of mutually exclusive windows along the Y-direction  

 

Although, this is may be the maximum number of windows, it is more likely that there will be windows 

which contain no points and can be discarded. 

If the number of windows is increased, then there will be more individual window trials and 

more window combinations to be registered using ICP.  Given all the permutations, the total number of 

trials required increases steeply when selecting more than two windows. 
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4.3.2 Combining Windows 

Once the windows have been created, each window and each window combination is registered 

using the ICP algorithm.  By first registering all the permutations of two windows, an algorithm for 

selecting windows can be quickly tested.  For combinations of three or more, the windows should be 

selected first and then registered due to the large number of potential cases.  There are several possible 

means of selecting a second window to complement a given first window, and can be based on the 

following strategies or properties: 

1. Random selection 
2. Normal space 
3. Window distance 
4. NAI value – a priori or a posteriori 
5. Expectivity value – a priori or a posteriori 
6. Maximum eigenvectors 
7. Minimum eigenvectors 

With regards to the strategies above, the random selection of a second window will most likely 

be the worst performing pairing algorithm.  Alternatively, the second window can be selected by filling 

out the normal-space.  If the normal vectors contained by a window all point in one direction, then 

several degrees of freedom will be unconstrained.  By finding a window with complementary normal 

vectors, a more balanced normal space is defined, this should allow more for more overall constraint.  It 

may also be possible to select several windows located far apart to help constrain based on the 

rotational weights.  Using windows which are not adjacent to each other allows different features of the 

model to be targeted.  The use of two window distant windows increases the chance that more surface 

features are selected. 

Alternatively, the second window can be selected by considering the eigenvalues, and geometric 

constraint measures derived from the constraint matrix.  The NAI, ME, and EI measures can be 

calculated a priori, before the windows are combined, for each individual window.  The largest two 

values for each of the constraint measures should indicate which individual windows to select.  

Alternatively, the NAI, ME, and EI measures can be calculated a posteriori, after the windows have been 

combined.   

For a window, the maximum eigenvector,   
 , associated with the maximum eigenvalue,   

 , 

shows the direction in which the window's point cloud is the most constrained.  However, it is unlikely 

that   
  will constrain all DOFs.  Therefore, a second window should be selected with a   

  that 
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complements   
 .  The complement to   

  is not    
 , an eigenvector in the opposite direction; this is 

because an eigenvector is equal to its negative value,       .  Therefore, a selection algorithm should 

avoid the case where the angle between the maximum eigenvectors of the first and second windows, 

  
  and   

 , is close to either    or     .  To find the complement to   
 , an orthogonal eigenvector is 

required, this means that the angle between the maximum eigenvectors will be near     or      and 

the dot product between   
  and   

  will approach one.   

Similarly for a window, the minimum eigenvector,   
 , defines the direction of the weakest 

geometric constraint.  Instead of finding an orthogonal vector, a parallel maximum eigenvector is sought 

to boost the constraint in that direction.  This means that the angle between   
  and   

  should be close 

to either    or     , and the dot product will approach zero.  The effect is that another window of 

dissimilar constraint is selected.  This method might also be applicable to a combination of two 

minimum eigenvectors   
  and   

 .  While the angles between eigenvectors may be used, it is easier to 

evaluate using the absolute value of the dot product, this removes the cyclic nature of the angles.  The 

dot product of the angles between    
    

   ,    
    

    and    
    

    can be calculated. 

The previous algorithms reference the eigenvectors,   , but do not take into account the 

strength of the constraint given by the eigenvalues,   .  New strategies are developed when the 

eigenvectors are scaled by multiplying them with their associated eigenvalues. 

                               4.1 

When the largest scaled eigenvectors are combined,    
  and    

 , then the question of 

orthogonality becomes which window pair results in the largest triangular area in the eigenspace.  

Suppose there are two vectors,    
  and    

  of specified length   
  and   

 , then the maximum area they 

can form will be when they are orthogonal; see Figure 60. 

 

Figure 60 - Triangle area 
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To calculate the area of a k-dimensional triangle, Heron's formula requires the semiperimeter,  , 

and the length of each side: 

                        4.2 

where

 
 
 

 
 

  

  
 

 
         

    
   

    
   

          

 

A larger area should simultaneously indicate (1) that the combination eigenvectors of the two 

windows are orthogonal and (2) that eigenvalues have significance.  This can be seen with a simple 

example, illustrated in Figure 61: 

 Windows 1 and 2 are similar:   
    

  and   
    

  

 Windows 3 and 4 are somewhat similar:   
    

  but 

  
    

  

 
 

Figure 61 - Area example: box 

The area given by the combination of Window 1 with the other windows is seen in Figure 62. 

 

Figure 62 - Area example: eigenspace area 

Windows 1 and 2 constrain in similar directions, therefore despite the large eigenvalues, they are 

eliminated as   
  and   

  are not orthogonal.  Conversely, Windows 1 and 4 are orthogonal which is 

desirable, however, they are eliminated as   
  is negligible.  Windows 1 and 3 are orthogonal and both 

eigenvalues have significance,   
    and   

   .  Therefore, the combination of Windows 1 and 3 will 

provide the best constraint out of all the cases, and they form the largest eigenspace area in Figure 62. 

The same procedure cannot be performed between the minimum eigenvalue and the maximum 

eigenvalue, this is because    
  is often relatively very small and will be dominated by    

 .  The eigenspace 

area can be calculated for two minimum eigenvalues,    
  and    

 , but will result in very small values.  This 
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is because the window subdivisions can be very poorly constrained and the minimum eigenvalues 

represent the weakest constraint.  Therefore,    is very small and occasionally is zero.  With the 

constraint matrix, a zero eigenvalue denotes no constraint in the eigenvector direction and the point 

cloud can freely rotate and/or translate without affecting the ICP cost metric. 

4.3.3 Pose Estimation Results for Combinations of Window  

The use of two windows is generally more accurate than using one.  Windows 14 and 19 from 

Figure 56 are combined together to form the point cloud, Cloud 118.  Figure 63 depicts two different 

views of Cloud 118 to provide some depth. 

 

Figure 63 - Cloud 118 

Individually, the two windows have relatively good pose error; however, once combined 

together, the pose error norm for the cloud decreased dramatically, as shown in Table 6.  Also seen in 

Table 6 is the rise in geometric constraint reflected by the NAI and Expectivity values. 

Table 6 - Window and cloud results 

 Pose Error Norm NAI Expectivity Normalized NAI Normalized Expectivity 

Window 9 0.1054 0.1431 0.9650 0.0102 0.0688 

Window 14 0.1774 0.2172 1.0905 0.0154 0.0775 

Cloud 118 0.0052 0.4520 1.8784 0.0227 0.0945 
 

The rise in geometric constraint is because each alone window is well constrained in a limited number of 

directions.  Table 7 shows the normalized constraint matrices.  By combining Window 9 and 14 which 

are well constrained in    and   , respectively, the resultant Cloud 118 becomes well constrained in 

both.  Both Windows 9 and Window 14 are poorly constrained in all rotations, but by combing the 
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windows the rotational constraint is improved, especially in   .  However, the rotational constraint 

remains the weak comparing to the translational constraint. 

Table 7 - Window and cloud eigenvectors 

                     

11.64 -0.78 0.58 0.22 0.02 0.07 0.00 

2.16 0.30 0.47 0.09 -0.49 -0.65 0.12 

1.60 -0.53 -0.57 -0.21 -0.30 -0.48 -0.15 

0.75 0.04 -0.28 0.93 0.13 -0.17 -0.08 

0.20 -0.08 -0.06 -0.08 0.52 -0.35 0.77 

0.13 0.08 0.19 -0.16 0.62 -0.43 -0.61 

Window 9 

                     

7.83 -0.85 0.42 0.28 0.02 -0.04 0.09 

3.95 -0.11 -0.69 0.70 -0.16 0.05 0.05 

2.52 0.49 0.56 0.66 0.10 0.02 -0.07 

0.56 0.07 0.01 0.02 -0.23 -0.96 0.14 

0.32 -0.05 -0.19 0.04 0.94 -0.24 -0.11 

0.16 0.11 0.01 -0.01 0.15 0.11 0.98 

Window 14 

 
 
 
 
 
 
 
 

Cloud 118 

                     

13.74 -0.80 0.53 0.23 0.07 0.08 -0.01 

3.88 0.32 0.53 -0.42 0.23 0.61 -0.15 

3.18 0.28 0.62 -0.13 -0.31 -0.60 0.25 

2.73 -0.42 -0.21 -0.86 -0.14 -0.11 0.09 

0.51 0.01 -0.03 -0.03 0.70 -0.09 0.71 

0.38 -0.01 -0.05 0.11 -0.58 0.49 0.63 

With more variation in the normal vectors and point placement, the geometric constraint, and 

therefore the eigenvalues   , increase.  Shown below in Figure 64 are the strategies from Section 4.3.2 

and the resulting pose error norm for Figure 56.  Add refers to the strategy of addition of the 

eigenvectors     or of the scaled eigenvectors    .  Area refers to the strategy of calculating the area 

described by two scaled eigenvectors    .  Angle refers to the strategy of finding the angle between two 

eigenvectors    .  Dot refers to the strategy of finding the dot product between two eigenvectors    .  The 

PCA measures are shown for the combined windows. 

a)Add   
    

   b) Add    
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c) Add   
    

   d) Add    
     

   

e) Add   
    

   f) Add    
     

   

g) Area    
     

   h) Area    
     

   

i) Angle    
    

   j) Dot    
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k) Angle    
    

   l) Dot    
    

   

m) Angle    
    

   n) Dot    
    

   

o)A posteriori normalized NAI  p) A posteriori normalized    

q) A posteriori normalized Expectivity 

 

Figure 64 - Selection strategies 
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Some of the strategies perform as expected and offered promising results.  The addition of the 

maximum eigenvectors   
    

  (a) and the addition of the maximum-minimum eigenvectors   
    

  

(c) were not beneficial.  It is expected that an orthogonal   
    

  would result in a complementary 

constraint.  Two orthogonal unit vectors should result in a hypotenuse of        ; however, the 

minimum pose error appears to be centred around 1 instead.  On the other hand, the majority of the 

high pose errors for   
    

  (e) were clustered around 1.41.  This means that the eigenvectors are 

orthogonal and that the two windows with different weak constraint directions are selected.  However, 

the low pose errors also appeared around 1.41, which makes this strategy unusable.  The orthogonality 

problem carried over to the angle (i, k, m) based and dot product (j, l, n) based strategies as well, 

rendering them all unusable.  The strategies based upon the eigenvectors alone did not perform very 

well. 

The addition of the maximum-maximum eigenvalue   
    

  (b), minimum-maximum eigenvalue 

  
    

  (d), and minimum-minimum eigenvalue   
    

  (f) all showed potential.  The maximization of 

any of these measures can possibly lead to an increase in overall constraint.  The   
    

  addition 

showed the expected decrease in pose error, however, this focuses upon the direction and strength of 

the maximum constraint; meanwhile,   , which can cause larger errors, is ignored.  The   
    

  addition 

was dominated by the   
  as it was comparably much larger than   

 , this too strategy also ignores   
  by 

outweighing it.  The   
    

  addition focuses on the weak constraint direction and strength of the two 

windows.  By maximizing the weak constraint     by adding two similar    together, there should be an 

increase in the strength of weak constraint. 

The calculated a priori scaled eigenvector measures based on the ares of    
     

   (g) and the 

   
     

  (h) gave very good results.  By focusing on the minimum eigenvectors, the    
    

  area strategy 

selected the window pairing with the lowest pose error out of all the possibilities.  The implication of 

this is that by having two large and orthogonal     is that the weakest direction of constraint is not 

compounded.  This may mean that one of the other      
  may coincide with    

  which would help to 

increase the constraint in that direction.  Additionally, the maximum area implies that two windows are 

well constrained in two different directions and that the values of    
     

  are high relative compared to 

other    . 

The PCA based indices (o,p,q) all performed as expected. 
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Figure 65 and Figure 66 show the values of NAI, EI and ME, both normalized and regular, and for 

the windows individually before they have been combined.  Generally speaking, there is not very much 

to choose from between the PCA measures.  Typically, when the value of ME,   , rises, so do the values 

of Expectivity and NAI.  The non-normalized versions of the geometric constraints are included as this is 

not comparing the constraint given by two different views of the same object or two different views of 

two different objects.  This is comparing the selection of two different areas on the same object.  In this 

case, there is a distinct advantage for a window to be selected where more points are available.  Most 

windows residing on the outline of the view contain very few points and once normalized the relatively 

little geometric constraint becomes over-exaggerated on a per-point basis.  This can be seen if Window 

3 and Window 20 from Figure 56 are examined in Figure 65 and Figure 66.   

 
Figure 65 - Individual windows and PCA measures  

 
Figure 66 - Individual windows and point normalized PCA measures 
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The a posteriori measures, calculated after the windows have been combined, include the NAI 

and Expectivity indices.  Figure 67 a) and b) show the results of combining Window 9 and Window 14 

with all other windows.  The NAI and Expectivity values for the combinations are plotted on the left Y-

axis, while the pose error norm is plotted on the right Y-axis.  The X-axis indicates which window is being 

combined with Window 9 or Window 14.   

 
a) Combined with Window 9 

 
b) Combined with Window 14 

Figure 67 - Window 9 and Window 14 NAI and EI results 

It is evident that in Figure 65 through Figure 67, the range of each PCA index will vary.  The value 

of the Expectivity index is almost always higher than the NAI value for the same window.  However, it is 

not the values of the PCA measures that are being compared, but rather the relative values and where 

the peaks are located. 

When there is a small amount of geometric constraint, the calculation of the Expectivity index is 

modified to ignore eigenvalues that are zero or very small to avoid dividing by zero.  Negligible 

eigenvalues result in the Expectivity index dropping to zero. 

 

            

 
 
 

 
 
   

 

  
  

  

       

        

  4.3 

Other than the a priori PCA measures, the selection strategies Area    
     

  , Add    
     

   and 

   
    all provide interesting results, as seen in Figure 68 and Figure 69 for Window 9 and Window 14, 

respectively.  The Area   
    

   strategy resulted in very small values, to display it alongside the other 

strategies, it was scaled by 
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 This results in the strategy spanning the full range of the left Y-axis and makes the identification of 

peaks much easier. 

 

Figure 68 - Window 9 results  

 

Figure 69 - Window 14 results  

 A few of the selection strategies described above have been summarized in Table 8.  To rank 

each strategy, the selected window's pose error was used.  From Figure 56, Window 9 and Window 14 

provided the lowest pose error of 0.0052, and was selected by several strategies.  Some strategies 

selected window combinations with larger, undesirable errors.  When entire view was registered using 

the complete point cloud, the ICP algorithm gave a pose error of 0.0022, which is comparable to the 

best window combination results.   
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Table 8 - Results of selection strategies for View 3 

Strategy Cloud Number Pose Error Overall Rank 

a priori Expectivity 118 0.0052 1 

a priori normalized NAI  118 0.0052 1 

Area    
    

   118 0.0052 1 

a priori normalized   
  118 0.0052 1 

Area    
    

   43 0.0669 5 

a posteriori normalized Expectivity  47 0.0683 6 

a posteriori normalized NAI 47 0.0683 6 

a posteriori normalized   
    47 0.0683 6 

Addition    
    

   51 0.0730 10 

Addition    
    

   156 0.1024 12 

From Figure 68 and Figure 69, every combination of window gave some form of improvement.  

However, this is not always the case.  A window can be classified as being well, average or poorly 

constrained based on the resulting pose error.  It is beneficial if there is an improvement in pose error 

regardless of the two window classifications.  It is expected that any combination including a well 

constrained window will give better results.  However, if an average window and a poor window, or two 

poor windows are combined, then there should also be an improvement.  This was seen with by 

checking the results of combination of Windows 3, 14 and 19, as seen in Figure 70.  Each dashed line 

represents a Window's error when combined with the window on the X-axis; the horizontal lines 

represent the individual window's error. 

 

Figure 70 - Well, average and poorly constrained windows 

Assume that a well constrained window has a pose error of less than 0.25 and that a poorly 

constrained window has a pose error greater than 0.50; then the pose error of an average window will 
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be between 0.25 and 0.50.  From Figure 70, Window 14 is considered to be a well constrained window , 

Window 3 an average window and Window 19 a poorly constrained window.  

The pose error decreased when Window 14 or Window 19 was combined with either a well 

constrained, average or poorly constrained window.  When Window 3 was combined with a well 

constrained window, the pose error dropped.  However, when Window 3 was combined with a poorly 

constrained window, the pose error increased slightly. 

Of all the windows from Figure 56, Windows 7, 19 and 21 had the highest individual pose errors 

of     ,      and     , respectively, and are designated as poorly constrained or bad windows.  When 

Windows 19 and 7, and Windows 19 and 21 were combined with each other, the error dropped to 0.24 

and 0.22, respectively.  This shows a marked improvement on the individual window results and Figure 

70 confirms that a combination of a poor-poor, poor-average or poor-well constrained windows will 

improve with respect to the poorly constrained window.  The flip-side of this is that combining with a 

poorly constrained window can sometimes be detrimental with respect to the other window.   

In general, this indicates that regardless of the windows classification, at least one window will 

find improvement. Of the 190 cases, only 16 combined windows caused an increase in the pose error 

with respect to one of the windows.  The relative rise in pose error for these detrimental combinations 

is small; on average, the increase was 0.01208.  There have not been any cases where combining 

windows was detrimental to both windows.   

4.3.4 Increasing Point Cloud Size 

While adding more points via a higher scan density can help registration by introducing extra 

edge constraint and giving the ICP algorithm more data to smooth out the noise, this effect is not as 

apparent in windows.  When the Shuttle, Figure 56, was registered, the average pose error norm was 

0.3191 with an average of 94 points in each window.  The average number of points was increased by 

using a much higher scan density so that the average number of points in each window was 2333.  This 

caused the pose error to drop to an average of 0.2586.  Figure 71 shows a comparison of each window's 

pose error and several different scan densities.  Except for Window 21, the performance of a low density 

scan is comparable to that of a high density scan.  The low density scan placed 5 points in Window 21, 

while the high density scan placed 155 points.  A better option would have been to move the scanner 

target to Window 17 or Window 20 instead. 
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Figure 71 - Shuttle: pose error with varying number of points 

Despite increasing the scan density, the pose accuracy never improves as effectively as in 

combining pairs of windows.  This is most likely because increasing the scan density in an area does not 

increase the types of available constraint.  Scanning the same region does not suddenly provide a wider 

variety of constraining points or normals; if the region being scanned is planar then adding more points 

will only increase the strength of the constraint in one direction, likely growing    at the cost of the 

other eigenvalues.  If there are very small features, smaller than the initial scan density, which are 

registered during a higher density scan, then this might possibly improve the registration accuracy.  

However, most surface features usually are scanned once or twice at the very least. 

Even though a simulated scanner can theoretically apply any scan density, in reality, a LIDAR has 

a limit to the maximum density.  In a real scenario it may not be feasible to increase the scan density any 

further. 

4.3.5 Windowed Cuboctahedron  

A real point cloud of a reduced-ambiguity cuboctahedron was taken at the Neptec Design Group 

using their TriDar system.  Using this data, the windows were created and registered; Figure 72 shows 

that the point cloud includes some edge effects which are different from the edge constraint examined 

in Section 4.2.  The edge effects can occur when a LIDAR beam scans a shallow surface which creates 

noisy points surrounding the edges. 
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Figure 72 – Cuboctahedron point cloud and windows 

The point clouds created by a simulated scan and the real scan of the cuboctahedron were 

subdivided into windows and analyzed.  The normal reconstruction method discussed in Section 3.4.5.5 

was used to generate normal vectors.  The use of windows magnifies the problem of trying to calculate 

PCA constraint measures using the reconstructed normals.  The cuboctahedron is comprised of several 

planar surfaces, for which the simulated and theoretical weakest geometric constraint is zero.  However, 

the reconstructed normals are not perfectly parallel and offer a greater variation for the constraint 

matrix.  Therefore, the noisy, real point cloud gives the illusion of having more geometric constraint than 

is actually available.  Figure 73 shows a comparison of normalized NAI between the real data and two 

sets of simulated data; the first simulated set has the same average number of points in each window, 

the second simulated set has nearly 3 times the average number of points when compared to the other 

cases.  This is done to show how similar geometric constraint is regardless of the number of points, and 

the similarity between the real and simulated cases.     

 
Figure 73 - Cuboctahedron real and simulated NAI 
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When the real and simulated point windows were registered, the pose error norms in Figure 74 

were very close.  With the major exception appearing in Window 7, this window targeted a corner of the 

cuboctahedron with noisy edge effects present. 

 

Figure 74 - Cuboctahedron real and simulated pose error 

 When the selection strategies from Section 4.3.2 was applied to the real cuboctahedron data, 

the a posteriori normalized Expectivity,     and the a priori Expectivity strategies, selected Windows 4 

and 31.  This window combination represented the best registration selected out of all the strategies.  

However, the combination of Windows 15 and 31 registered the lowest overall error but was not 

selected by any strategy.  The error for window 4 and 31 was on par with window 15 and 31. 

4.3.6 Path Planning 

By selecting and combining several windows over a variety of views, a database of window 

combinations can be formed.  Using this database, the best combination of windows can always be 

identified quickly and effectively.  This would allow for quick results with reasonable pose estimation.  If, 

during a scanning process, the current view is known to provide poor registration, then the LIDAR should 

be moved on a vector that will result in more geometric constraint.  To simulate a spinning object or a  

flyby, multiple views of an object were taken.  For each view in the path, a pair of windows was selected 

by each selection strategy defined in Section 4.3.2.  Instead of finding a window to complement another 

preselected window, the strategies are searching for what it considers to be the top window pairings.           

To evaluate the performance of the selection strategies over all the views in the path, a ranking 

system based on the pose error norm was used.  Ideally, a strategy should always pick the window 
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combination with the lowest pose error, which is given the rank of 1.   A perfect strategy should sum to 

the number of views, i.e. always selects the number one ranked pair of windows.  Alternatively, the 

average difference between the lowest error and the window error, or the average error norm of the 

selected windows may be used.  Using either of these methods is preferable to the window ranking as 

using a rank implies more difference between pose errors that are close in value.  The results of the a 

priori Expectivity and the   
    

  strategies are shown in Table 9.   

Table 9 - Shuttle path selection 

  
a priori Expectivity   

    
  

View Lowest Error Pose # Pose Error Rank Pose # Pose Error Rank 

1 0.0058 55 0.0099 4 80 0.0058 1 

2 0.0065 29 0.0468 17 95 0.0137 2 

3 0.0052 48 0.0052 1 156 0.1024 105 

4 0.0113 3 0.0187 3 134 0.0187 3 

5 0.0216 36 0.0845 71 132 0.0845 71 

6 0.0095 6 0.0721 67 272 0.0632 49 

7 0.0058 25 0.0058 1 89 0.0149 7 

8 0.0061 61 0.0083 3 190 0.0381 22 

9 0.0058 9 0.0091 3 104 0.0091 3 

10 0.0063 9 0.0372 22 120 0.0372 22 

11 0.0332 41 0.0389 3 191 0.0747 45 

12 0.0280 32 0.0742 66 176 0.0742 66 

13 0.0091 107 0.0651 34 137 0.0733 58 

14 0.0098 62 0.0727 56 299 0.0985 143 

15 0.0110 51 0.0582 34 242 0.0582 34 

16 0.0071 107 0.0631 35 263 0.0695 50 

17 0.0087 68 0.0582 38 142 0.0838 70 

18 0.0070 25 0.1080 77 71 0.1080 77 

average 0.0464 29.72  0.0571 46 

The windows selected using the a priori Expectivity strategy are shown in  Figure 75.  The 

strategy often selects a window near where the tail fin meets the engines; this is intuitively the area 

with the greatest geometric constraint.  A smart LIDAR scanner may choose to focus upon this area, and 

then concentrate upon another area by using a database of predetermined combinations.  If one 

window performs consistently well over a range of motion, then focus should be put on always selecting 

that window and then another.  This likely means that the window has a wide variety of constraining 

factors. 
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Figure 75 - Shuttle path 
 

A similar study was performed on the ISS airlock model and on the Quicksat satellite; the results 

of these are shown alongside the results of Shuttle in Table 10.  In Table 10, Pri refers to the a priori and 

Pos refers to the a posteriori cases.  

Table 10 - Results of window selection 

 
 

Shuttle Airlock Quicksat Overall 

 Algorithm Mean Error  Rank Mean Error Rank Mean Error Rank Total Rank 

1 Pos Norm NAI 0.0631 11 0.0180 13 0.0205 4 0.1016 11 

2 Pos NAI 0.1968 19 0.0772 16 0.1850 19 0.4590 18 

3 Pos Norm Exp 0.0846 12 0.0090 4 0.0264 11 0.1199 12 

4 Pos Exp 0.0596 7 0.0097 8 0.0238 8 0.0930 8 

5 area   
    

   0.1057 14 0.0237 14 0.0399 14 0.1693 14 

6 Pri NAI 0.0556 4 0.0091 6 0.0100 2 0.0748 1 

7 Pri Exp 0.0464 1 0.0097 9 0.0208 5 0.0769 2 

8 Pri Norm NAI 0.0480 2 0.0091 5 0.0249 10 0.0819 4 

9 Pri Norm Exp 0.0596 8 0.0093 7 0.0244 9 0.0932 9 

10    
    

   0.0920 13 0.0082 1 0.0566 15 0.1568 13 

11    
    

   0.1189 15 0.0246 15 0.1538 17 0.2973 15 

12 Area   
    

   0.0598 10 0.0089 3 0.0084 1 0.0771 3 

13 Pri Norm      0.0577 6 0.0086 2 0.0312 12 0.0975 10 

14 Pri Norm      0.4076 20 0.3183 20 0.2821 20 1.0079 20 

15 Pos Norm   
     0.0596 9 0.0134 12 0.0169 3 0.0899 6 

16    
    

    0.0571 5 0.0126 11 0.0223 6 0.0920 7 

17 dot   
    

   0.1271 16 0.1173 17 0.0744 16 0.3187 16 

18 dot   
    

   0.1405 17 0.1646 18 0.0387 13 0.3439 17 

19 dot   
    

   0.1547 18 0.2145 19 0.1576 18 0.5268 19 

20 Pri      0.0554 3 0.0102 10 0.0223 6 0.0878 5 
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The following strategies performed the best when compared using the window ranks and error 

differences from Table 10: 

 A priori NAI  

 A priori EI 

 addition   
    

   

 area    
    

     

 A posteriori ME   
    

 A priori normalized NAI 

 A priori ME 

 A posteriori EI 

Figure 76 shows the best window combinations and view for the ISS Airlock and Quicksat 

models.  The strategy area    
    

   made the selection for ISS Airlock; while both the a prior NAI and a 

prior EI made the selection for Quicksat.  The selections in Figure 76 consider only one view and not the 

entire path. 

 

View 6 - Cloud 131 

 

View 5 - Cloud 96 

Figure 76 - Airlock and Quicksat optimal windows and views 

4.3.7 Quicksat Windows and Path Planning 

A 6-view set of real point clouds was taken at the Canadian Space Agency using their Quicksat 

replica and Neptec’s Laser Camera System (LCS).  Using this data, a set of views were established and 

the windows were created and registered.  Unfortunately, the scans were not complete raster scans as 

seen in Figure 77; there is a considerable amount of the model which was not scanned.  This poses a 

problem as this makes it difficult to compare the real and simulated geometric constraint in each 

window.  This will also make the ICP algorithm react differently due to the point cloud distribution and 

the features covered.  Figure 77 shows both the simulated and real scans.   
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Simulated Real 

Figure 77 - Quicksat simulated and real scans 

As this is a real scan, the true pose itself is subject to some error.  For this reason, a real point 

cloud fitted onto a CAD model does not always completely align.  This was the case for the 

cuboctahedron point cloud as well. 

Based on the real data, the results of the selection strategies are shown in the Table 11.  The 

results of the selection strategies for the simulated Quicksat in Table 10 have been repeated for 

comparison purposes.  To tie together the simulated and real results, real windows were selected using 

based on the simulation results.  This was done by ensuring that the real windows were positioned at 

roughly the same location as the simulated windows.     

From Table 11, the top three performing strategies for the real Quicksat were    
    

  , 

   
    

   and a priori NAI.  The top three performing strategies for the simulated Quicksat were 

Area   
    

  , a priori NAI and normalized    
    .  The simulation selected real windows gave 

Norm   
    , Area   

    
   and a posteriori Expectivity as the top three strategies.  This shows that using 

the simulation selections provided very good windows for the real data to be registered with.  It is likely 

that because of the incomplete raster scans, that some of the results did not translate from the 

simulated case to the real case.  The incomplete raster scans caused changes in the geometric constraint 

matrix and features to be missed.   
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Table 11 - Results of window selection for real Quicksat  

 
 

Quicksat Real Simulation Selected Quicksat Simulated 

 Algorithm Mean Error Rank Mean Error Rank Mean Error Rank 

1 Pos Norm NAI 0.1652 8 0.1416 7 0.0205 4 

2 Pos NAI 0.4009 18 0.4009 19 0.1850 19 

3 Pos Norm Exp 0.1774 10 0.1383 5 0.0264 11 

4 Pos Exp 0.1513 7 0.1116 3 0.0238 8 

5 area   
    

   0.1315 5 0.1481 8 0.0399 14 

6 Pri NAI 0.1294 4 0.1408 6 0.0100 2 

7 Pri Exp 0.1777 11 0.1653 10 0.0208 5 

8 Pri Norm NAI 0.2198 15 0.2002 14 0.0249 10 

9 Pri Norm Exp 0.2029 14 0.1840 13 0.0244 9 

10    
    

    0.1139 1 0.1328 4 0.0566 15 

11    
    

    0.2480 17 0.2350 18 0.1538 17 

12 Area   
    

   0.1454 6 0.1061 2 0.0084 1 

13 Pri Norm      0.1862 13 0.2054 17 0.0312 12 

14 Pri Norm      0.7131 20 0.4689 20 0.2821 20 

15 Pos Norm    
     0.1779 12 0.0988 1 0.0169 3 

16    
    

    0.1254 2 0.1694 11 0.0223 6 

17 dot   
    

   0.6929 19 0.2045 16 0.0744 16 

18 dot   
    

   0.1744 9 0.1626 9 0.0387 13 

19 dot   
    

   0.2280 16 0.2032 15 0.1576 18 

20 Pri      0.1257 3 0.1694 11 0.0223 6 

  With regard to the calculation of pose error, the true pose for the real scan is an estimate.  As 

previously mentioned, there is an uncertainty in the measurement of the true pose which can cause 

misalignment between the CAD model and the real point cloud.  By manually rotating or translating the 

CAD model, it is possible to find a closer match.  Full alignment of the real point cloud can be difficult 

due to the measurement noise and the edge effects.  Despite the misalignment, the relative error 

rankings can still be used to evaluate the windows and combination results.   

Figure 78 shows the real scans with the window selected by the simulated Area   
    

  .  

Meanwhile Figure 79 shows the real scans with the windows selected by the a priori NAI.  Both of these 

strategies performed well under the real, the simulation and the simulation selected cases.  
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Figure 78 - Real Quicksat window selections made by simulated Area(λ6

1, λ6
2)  

 

 
 
Figure 79 - Real Quicksat window selections made by simulated a priori NAI 
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 Both the selection strategies Area   
    

   and a priori NAI perform consistently well for all 

models and views.  As seen in Figure 78 and Figure 79, they also target the same windows.  The common 

property with the two strategies is that they are directly tied to   .  While NAI measures the value of the 

minimum eigenvalue, the area strategy tries to take into account the eigenvectors as well.  From the 

development of the geometric constraint indices in Section 3.4.5.3, when the ME is larger, any 

movement in the direction of minimum constraint,   , will cause a larger error.  When more error cost is 

detected, it is dissipated by the ICP algorithm rotating and translating to minimize it. 

A database of window locations is advantageous for real applications as the window selection 

strategies have been precalculated and the normals do not have to be reconstructed.  If the current 

view of the target is known to provide poor ICP registration, then the camera should be moved to 

another location where better ICP registration is possible.  Knowing which views to target or avoid can 

be applied to planning the path of the camera. 

4.3.8 Conclusion 

While the use of one window area provides a rough pose estimation, the use of two windows is 

much better.  Identifying two feature rich locations or complementary windows can lead to results 

comparable to when the entire point cloud is used.  Several strategies have been developed for 

selecting a complementary window to a preselected first window.  These strategies have been extended 

to finding the top performing combination of windows over a range of poses.  The strategies combining 

windows based on the individual window non-normalized NAI values or the area defined by the 

minimum eigenvalues have performed consistently well.  The database of window locations generated 

from simulation results is shown to provide accurate results for real scan data.  These results have been 

verified using real point cloud data of a cuboctahedron and the Quicksat satellite.   
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5 Conclusion 

The use of a LIDAR for autonomous rendezvous and docking procedures is vital in space 

applications.  Not only are LIDAR accurate measurement tools, but they are also independent of lighting 

scenarios.  To register a LIDAR point cloud, the Iterative Closest Point algorithm has been shown to be a 

simple and effective tool.  From the ICP algorithm, a pose estimate is given as the rotation and 

translation relating the point cloud to a CAD model.  Capable of operating on the six degrees of freedom, 

the combination of LIDAR and ICP can be highly effective.   

The current view or pose of an object can affect the registration using the ICP algorithm.  If the 

current view is poorly-constrained, then ICP registration can suffer.  As shown throughout the thesis, a 

higher amount of geometric constraint indicates lower ICP pose estimation error.  To relate the 

geometric constraint as a measure to the overall ICP registration error, Principal Component Analysis 

was performed on a constraint matrix.  The constraint matrix was built to relate a point cloud's 

distribution and normal orientations to geometric constraint.  Using the results of PCA, several 

geometric constraint indices were considered: the Noise Amplification Index, the Minimum Eigenvalue, 

the Inverse Condition Number and the Expectivity Index.  These indices were used to assess the 

selection of views on several different objects.  The InvCond and NAI indices were found to be equally 

good at predicting the pose error for the individual degrees of freedom in the system. 

By simulating a LIDAR, several simulated point clouds were created.  In addition to the simulated 

data, real point clouds were provided by Neptec Design Group and by the Canadian Space Agency.  By 

comparing the results of ICP pose estimation of the real and simulated scans, it is shown that simulation 

provides a strong indication of how the ICP algorithm will react with real data.     

In addition to the geometric constraint in the point cloud, edge constraint may arise when the 

LIDAR samples points close to an edge of a surface.  If two views with similarly low geometric constraint, 

the expected result is a high pose estimation error.  However, edge constraint can aid in ICP pose 

estimation and can allow for a much lower error.  With a simple pyramid model, it was easily seen that 

with a point cloud distributed along the surface edges will provide better results than points distributed 

along the inner surfaces.  The effect of edge constraint was also investigated with the Shuttle model. 

As a way to potentially lower the amount of data needed to register the pose, the concept of 

windows have been extended.  In a real scenario, as a camera approaches a target, the viewing area will 
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become smaller and more focused upon a specific area.  When focusing on smaller areas fewer 

geometric features are available.  Therefore, certain areas should be identified and targeted for the ICP 

algorithm.  While one window has the possibility of providing good results, the use of two windows is 

much better.  The combination of nearly any two windows offers a better result than either of them 

alone.  If a database of good window positions is generated for a range of poses, then it may be applied 

to path planning.  The path of the camera should be planned such that good views for ICP registration 

are always maintained.   

Several different strategies are examined to combine windows together, including measures 

taken before and measures taken after the window combinations.  Of the geometric constraint 

measures listed above, the selection of the two highest NAI values gave the best results.  However, 

selection strategies which involved the ME and the minimum eigenvector have been also shown to work 

very well.  Combining two scaled eigenvectors, either to find the largest distance or the eigenspace area, 

very good results have been achieved. 

As a side effect of the previous investigations, it was found that increasing the scan density 

above a certain threshold did not reduce pose errors.  This was seen when entire views or when smaller 

window areas were compared.  The PCA indices increase with the number of points, however, once 

normalized, there is little difference between high and low density scans. 

Future considerations can include simulating the scanning of windows in a real test.  While 

splitting a real point cloud is viable, it may not recreate all effects of scanning small, targeted areas.  

Although this work dealt with the combination of two windows, the combination of more windows is 

also possible.  However, the number of window combinations grows very large, selecting even three 

windows results in approximately 8 to 10 times the number of possible combinations.  In addition to 

performing real window scanning, it would be beneficial to see if a LIDAR can be directed by the 

simulated ICP registration results.  The use of lissajous or rosette scan patterns should also be 

investigated for windows. 

While the minimum eigenvalue has been selected was often used as part of the main selection 

metric, the second smallest eigenvalue is sometimes of the same magnitude.  This means that a point 

cloud is actually weakly constrained in two directions as opposed to just one.  By correcting       only, 

no consideration is applied to      ; new selection strategies may take       into account to resolve all 

unconstrained directions.    
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