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Master of Applied Science, Aerospace Engineering, Ryerson University, Toronto (2019)

ABSTRACT

Many interplanetary mission concepts can benefit from autonomous orbit estimation, particu-

larly during critical mission phases. Previous studies have examined the feasibility of optical

navigation using nanosatellite class instruments. While promising, these techniques are not

without drawbacks. Convergence of the navigation estimates are often sensitive to errors in ini-

tial state estimates. This thesis compares various methods to perform nonlinear estimation for

autonomous optical navigation. These methods include an extended Kalman filter (EKF), an

unscented Kalman filter (UKF), a particle filter (PF), a fixed-lag smoother (FLS), and moving

horizon estimation (MHE). The EKF, UKF, and PF can be implemented in real time, while

the FLS and MHE implement a delay into the estimation process. To compare the performance

of each state estimator three initial reference scenarios around Mars were considered: a hyper-

bolic flyby, an elliptic orbit and a orbital maneuver using observations of Mars and its moons.

Parameter estimation was also explored, where the mass of Mars was to be estimated as a ref-

erence parameter in both the hyperbolic and elliptical trajectories. One last reference scenario

included a low Earth orbit (LEO) using observations of satellites in a geosynchronous equatorial

orbit. In each case, the FLS and MHE showed similar or better performance over each state

estimator but at the cost of an increased computation time with respect to the reference EKF.

Similarly the UKF was able to provide improved results withe respect to the EKF. While, the

PF provided poor estimates in the Mars trajectories but improvements were seen from the UKF

and EKF in the LEO scenario.
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Chapter 1

Introduction

A small satellite is of smaller mass and size than the conventional satellite, and have become

popularized due to their economic benefits. Their small size allows for a reduction in manu-

facturing and launching costs. One class of small satellite is a nanosatellite, which has a mass

ranging from 1 to 10 kg. For a nanosatellite mission a navigation system may be required to

locate or guide the spacecraft depending on the mission requirements. One method to perform

navigation is by optical navigation (OpNav), where a star tracker can be used to fit the small

size and weight requirements that come with nanosatellite missions.

OpNav can provide orbit determination by analyzing captured images. It is a proven concept

that has been used in a wide variety of missions. It was first demonstrated in the 1960s by

the Mariner 6 and Mariner 7 missions, where Mariner 6 used images of the lit limb of Mars to

determine the spacecrafts trajectory as it approached the planet [1]. Recently the New Horizons

mission used OpNav for planning the flyby encounter with Pluto in 2015 [2], while the Cassini

mission used images of Saturn’s moons for trajectory planning [3]. When performing OpNav

there are distinctions between the type of observations made. For example, in this thesis horizon

based OpNav was performed. This method uses the lit limb of a planet or moon to perform

OpNav. Other methods include landmark navigation which uses distinct landmarks, such as

observations of craters on the surface of a planet, for orbit determination or entry, descent and

landing (EDL) applications. While, star occultation can provide measurements by observing

the appearance or disappearance of stars behind other bodies.

As more small satellites are launched ground based tracking can become more challenging.

Autonomous OpNav can alleviate some of the challenges by allowing the satellite to perform

estimates of its state without communication with Earth. To add it can potentially reduce
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navigation and operation costs by allowing less reliance on ground personal and ground based

tracking through automating orbit determination or trajectory planning. A autonomous system

can also provide faster updates to the spacecraft than would be achievable through ground

communication [4]. Autonomous OpNav was first demonstrated on the Deep Space 1 mission

and has since seen success on many missions [5].

The effectiveness of autonomous OpNav often depends on the convergence properties of the

chosen state estimator, which fuses together known dynamic and measurement models with

observations made by the satellite to produce an estimate of the spacecrafts state. An extended

Kalman filter (EKF) is one of the most popular methods for nonlinear estimation. However, the

EKF can be unreliable if there are large nonlinearities present in the dynamic or measurement

models [6]. The aim of this thesis is to explore other forms of nonlinear estimation to improve

the navigation accuracy for nanosatellite missions by exploring other algorithms that perform

nonlinear estimation. These algorithms include an EKF to be used as a reference solution, an

unscented Kalman filter (UKF), a particle filter (PF), a fixed-lag smoother (FLS), and moving

horizon estimation (MHE). To compare the performance of each state estimator multiple case

studies were used. To perform OpNav a nanosatellite star tracker was used. Section 1.1 provides

an introduction to star trackers and the star tracker used for all simulations.

In this thesis, Chapter 2 provides an overview of each state estimator, the various mathematical

notations used, and the star tracker used to perform OpNav. Chapter 3 outlines the first

reference scenario, a hyperbolic Mars approach using observations of Mars and its moons. Here

the scenario’s framework, the dynamic and measurement models, and results from a series of

Monte Carlo (MC) trials is presented. Chapter 4 uses the framework seen in Chapter 3 for the

next two reference scenarios, a elliptical orbit around Mars, and comparing the performance

of each state estimator in timing an orbital maneuver. Chapter 5 looks at applications of

OpNav, these include parameter estimation, and another reference mission of a satellite in low

Earth orbit (LEO) using observations of geostationary satellites for orbit determination. Lastly,

Chapter 6 summarizes the thesis, provides any concluding remarks, and an outline for potential

future work.

1.1 The ST-16 Star Tracker

A star tracker is typical used to determine the attitude of the spacecraft by capturing stars in

the field of view of the sensor and comparing their position to a star catalog. Extending the

applications to OpNav can potential reduce the required instruments onboard the nanosatellite

2



Figure 1.1: The ST-16 star tracker [7].

by having the sensor perform many tasks. A miniaturized star tracker could also be fitted

onboard a nanosatellite to meet the required size and mass requirements.

To perform optical navigation and model the performance of a typical nanosatellite class star

tracker parameters from Sinclair Interplanetarys ST-16RT star tracker were used. The ST-16RT

star tracker is a nanosatellite class star tracker with key parameters listed in Table 1.1. Figure

1.1 shows the ST-16 star tracker, the predecessor of the ST-16RT, and its size relative to a

loonie.

Table 1.1: The ST-16RT Star Tracker

Focal Length 16 mm
Field of View 7.5◦ half-angle
Pixel Size 2.2 µm
Accuracy < 7 arcsecond cross-boresight (RMS)

< 70 arcsecond around boresight (RMS)
Mass ≈ 90 g
Size 59× 56× 31.5 mm

In the preceding chapters the observations made by the star tracker were based on a pinhole

camera model. A coordinate system was attached to the sensor to describe where it was pointing

and the location of a point on the detector plane. Figure 1.2 outlines the sensor frame.

3



Optical Axis (Boresight, +z)Focal Point

Detector Plane

Increasing Rows (+x)

Increasing Columns (+y)

Object

Figure 1.2: Pinhole camera model.
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Chapter 2

Background

To perform nonlinear state estimation, five algorithms were considered: an extended Kalman

filter (EKF); an unscented Kalman filter (UKF); a particle filter (PF); a fixed-lag smoother

(FLS); and moving horizon estimation (MHE). The EKF, UKF and PF can be implemented in

real time, while the FLS and MHE introduce a delay into the estimation process. Throughout

this thesis a window length of N (or delay of N−1) contains all discrete state values in the range

of xk−N+1 to xk, refer to Figure 2.1. The notation xp|q was used to refer to some estimate xp

at time tq. For example, xk|k−2 refers to the estimate of xk two time steps ago. The shorthand

notation xk or xk−N+1 for example was used to represent xk|k and xk−N+1|k respectively. That

is the estimates of xk or xk−N+1 at the current time step tk.

Figure 2.1: Estimation window.

A continuous dynamic model was used to model the spacecrafts state, x, over time. Thus the

state matrix was propagated as

ẋ = f(x,w, t) (2.1)

Where, w(t) refers to the process noise with continuous process noise covariance matrix Q(t),

by definition Q(t) = E
{

w(t)w(t)T
}

. Strictly speaking the process noise is random inputs that

excite the dynamic system. It can be used to compensate for some modeling error between the

dynamic model and actual system. To add each discrete measurement was assumed to have

5



additive noise, leading to the measurement model

z̃k = h(xk, tk) + νk (2.2)

Here, νk refers to the measurement noise with covariance matrix Rk, Rk = E
{
νkν

T
k

}
, at

some time step k. The measurement noise is used to model the variance seen in the sensor

measurements. As needed the dynamic and measurement Jacobians can be evaluated, denoted

as Fk and Hk respectively.

Fk =
∂f

∂x

∣∣∣∣
x=xk

(2.3)

Hk =
∂h

∂x

∣∣∣∣
x=xk

(2.4)

To initialize each state estimator an initial estimate of the state is provided, x̂0, with covariance

matrix P0 = E
{

(x0 − x̂0)(x0 − x̂0)T
}

. The initial covariance matrix is based on how accurately

the initial state estimate is believed to be.

The rest of this chapter provides background knowledge on the various concepts used throughout

this thesis. Section 2.1 presents the mathematical notions used throughout the thesis, Section

2.2 overviews a method to discretize the continuous system, Section 2.3 to Section 2.7 provide a

brief overview of each nonlinear state estimator, and lastly, Section 1.1 presents the star tracker

that was used for OpNav.

2.1 Mathematical Notations

This section provides some overview on the mathematical notations used further in this thesis.

To begin, principal axes rotations are denoted by C1, C2, and C3. Given a rotation angle θ

each rotation matrices is defined as

C1(θ) =


1 0 0

0 cos θ sin θ

0 − sin θ cos θ

 (2.5)
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C2(θ) =


cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

 (2.6)

C3(θ) =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 (2.7)

Given a matrix a = [a1 a2 a3]T a skew symmetric matrix that describes the cross product is

defined as

a× =


0 −a3 a2

a3 0 −a1

−a2 a1 0

 (2.8)

A small angle error rotation vector is defined as a series of Euler angle rotations. Given a small

angle error rotation vector θ, a first-order approximation can be defined as

C(θ) = C1(θ1)C2(θ2)C3(θ3) ≈ (I3×3 − θ×) (2.9)

A axis angle rotation of the form θ = θa, where a is a unit vector, can be expressed by a rotation

matrix using

C(θ) = cos θI3×3 + (1− cos θ)aaT − sin θa× (2.10)

Lastly, the notation In×n refers to an identity matrix of size n. For example,

I3×3 =


1 0 0

0 1 0

0 0 1

 (2.11)
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2.2 Discretization

For implementation of some of the state estimators a discrete dynamic model is needed. To

discretize the continuous system Van Loan’s procedure was done at each time step [8]. To begin,

the matrix M is formulated using the continuous state matrix Fk at time step k with continuous

covariance matrix Q(t).

M =

−Fk Q(t)

0 FT
k

 (2.12)

The matrix exponential is then taken

E = eM∆t =

E11 E12

0 E22

 (2.13)

This leads to the discrete state transition matrix Φk of the form xk+1 = Φkxk with discrete

process noise covariance Qk at time instance tk.

Φk = E22 (2.14)

Qk = E12E
T
11 (2.15)

2.3 Extended Kalman Filter

A Kalman Filter (KF) takes sensor measurements with known dynamic and measurement mod-

els to produce an estimate of the current state. For linear systems with Gaussian noise the KF

is the optimal estimator [9]. An Extended Kalman Filter adapts the standard KF equations

to a nonlinear system by linearizing the functions f() and h() around the current estimated

state while assuming Gaussian process and measurement noise. For a continuous system with

discrete measurements the equations are summarized below, where x̂k refers to an estimate of

the state at time step k with covariance Pk. As well in the proceeding equations the notation

a−k refers to the pre-update value right after propagation and a+
k the post-update value right

before propagation. The update step includes

Kk = P−k HT
k

(
HkP

−
k HT

k + Rk

)
(2.16)

x̂+
k = x̂−k + Kk[z̃k − h(x̂−k , tk)] (2.17)

P+
k = [I−KkHk]P

−
k (2.18)
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With the state and covariance propagated as

˙̂x = f (x̂, t) (2.19)

Ṗk = FkPk + PkF
T
k +Q(t) (2.20)

2.4 Unscented Kalman Filter

A UKF achieves state estimation using the Unscented Transform to propagate a set of 2n + 1

sigma points through the nonlinear system, with n being the size of the state matrix. A UKF

has been shown to have a lower error than the EKF by representing the state distribution as a

set of sample points rather than through linearizations [10]. To add partial derivatives do not

need to be found. Using an augmented state matrix, xak = [x̂Tk wT
k ]T , the set of sigma points,

partitioned as χk = [(χxk)T (χwk )T ]T , at each time step can be found. Here wk refers to the

discrete process noise.

χk =
[
x̂ak x̂ak +

√
(n+ λ)Pa

k x̂ak −
√

(n+ λ)Pa
k

]
(2.21)

where,

x̂ak = [x̂Tk 01×m]T (2.22)

Here, λ is a scaling parameter found as λ = α2(n + κ) − n, where α determines the spread of

the sigma points, and κ is a secondary scaling parameter. Given a proccess noise covariance

matrix of dimension m, and assuming no correlation between state error and process noise, Pa
k

refers to an augmented covariance matrix of the form:

Pa
k =

 P+
k 0n×m

0m×n Qk

 (2.23)

The estimated states are found as a weighted sum of the sigma points, with i = 0 representing

the first sigma point xak.

x̂−k =
2L∑
i=0

Wmean
i χk(i) (2.24)
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With covariance matrix

P−k =

2L∑
i=0

W cov
i [χk(i)− x̂−k ][χk(i)− x̂−k ]T (2.25)

and mean observation

ŷ−k =

2L∑
i=0

Wmean
i γk(i) (2.26)

with

γk(i) = h(χk(i), tk) (2.27)

In Wan and Merwe [11] it is stated that if the measurement noise is purely additive the mea-

surement covariance matrix can simply be added to the output covariance. This also has the

advantage of a reduced computation time by reducing the amount of sigma points. This means

Pyy
k =

2L∑
i=0

W cov
i [γk(i)− ŷ−k ][γk(i)− ŷ−k ]T + Rk (2.28)

Pxy
k =

2L∑
i=0

W cov
i [χk(i)− x̂−k ][γk(i)− ŷ−k ]T (2.29)

Finally, the state and error covariance can be updated as

x̂+
k = x̂−k +Kk(z̃k − ŷ−k ) (2.30)

P+
k = P−k −KkP

yy
k K

T
k (2.31)

where

Kk = Pxy
k (Pyy

k )−1 (2.32)

Each sigma point is propagated by integrating Eq. (2.33) over the time span tk to tk+1.

χk+1 = f(χk, tk) (2.33)

Lastly, scalar weights can be defined as Wmean
0 = W cov

0 = λ
n+λ , and Wmean

i = W cov
i = 1

2(n+λ)

for i = 1, 2, · · · , 2n.
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2.5 Particle Filter

A particle filter uses a set of n particles to approximate the posterior distribution p(xk|z̃0:k)

of the system without making assumptions about the distribution. In this paper a Bootstrap

filter is considered [12]. To begin, each particle is initialized by sampling an initial distribution

x
(j)
0 ∼ p(x0) for j = 1,...,n. At each update step the particles are assigned an importance weight

w
(j)
k based on the estimated quality of each particle relative to the true state. With each weight

being initialized as w
(j)
0 = 1

n for j = 1,...,n. For a Markov process the importance weight for

each particle is

w
(j)
k = w

(j)
k−1

p(z̃k|x
(j)
k )p(x

(j)
k |x

(j)
k−1)

q(x
(j)
k |x

(j)
k−1, z̃k)

(2.34)

However in a Bootstrap filter the transition and importance density are assumed equal, p(x
(j)
k |x

(j)
k−1) =

q(x
(j)
k |x

(j)
k−1, z̃k). Therefore, each importance weight is a function of the likelihood function.

w
(j)
k = w

(j)
k−1p(z̃k|x

(j)
k ) (2.35)

Once found the weights are normalized so that
∑n

j=1w
(j)
k = 1. From below the notation a← b

means a is set to b.

w
(j)
k ←

w
(j)
k∑n

j=1w
(j)
k

(2.36)

Assuming a Gaussian additive measurement noise the likelihood function at each time step

becomes p(z̃k − h(x
(j)
k , tk)), thus from Crassidis and Junkins [6] (pp. 79)

p(z̃k − h(x
(j)
k , tk)) =

1√
(2π)n|Rk|

exp[−1

2
(z̃k − h(x

(j)
k , tk))

TR−1
k (z̃k − h(x

(j)
k , tk)))] (2.37)

For systems where few particles fall within significant regions of the likelihood function, meaning

many weights go to zero or become significantly small, each likelihood value can be raised to

a power c, where c ∈ (0, 1). This has the affect of smoothing the observation model [13]. The

value c can be found through experimentation.
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The estimated state and its covariance matrix can then be computed as

x̂k =

N∑
j=1

w
(j)
k x

(j)
k (2.38)

Pk =
N∑
j=1

w
(j)
k x̄

(j)
k x̄

(j)T
k (2.39)

x̄
(j)
k = x

(j)
k − x̂k (2.40)

As the system progresses over time the distribution of the importance weights can become

skewed in such a way that only one particle will have a meaningful weight [14]. Resampling the

distribution can help mitigate this problem and maintain an effective population of particles.

Resampling replaces the particles with negligible weights with higher weighted particles. After

resampling each particle is assigned an equal weight of w
(j)
k = 1

n for j = 1,...,n. Before resampling

occurs the number of effective particles Neff can be estimated as Neff ≈ 1∑n
j=1(w

(j)
k )2

. In this

paper resampling is performed once Neff falls below a threshold value, unlike in the normal

Boostrap filter where it is performed at every time step. There are many algorithms that perform

resampling, Li et al. [15] provides a comparison of various methods from which systematic

resampling was chosen. Systematic resampling is one of the more popular techniques due to its

ease of implementation and decreased computation time. The systematic resampling algorithm

is

1. Generate ci as the ith cumulative sum of w(j) for j = 1 : i, done by setting c1 = w(1) then

For i = 2 : n

ci = ci−1 + w(i)

end

2. Draw a single uniform sample u0 ∼ U(0, n−1), and set j = 1

For i = 1 : n

While cj < u

j=j+1

end

x(i) ← x(j)

u = u0 + i
n

end
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3. Set w(j) = 1
n for j = 1,...,n

Resampling can however can create many identical particles so a roughening step can be added

to provide variance to the particles, this steps adds an independent jitter c
(j)
k to each particle

[14].

x
(j)
k ← x

(j)
k + c

(j)
k (2.41)

This jitter is drawn from a Gaussian distribution N (0, h2Σk) with h being a tuning parameter

and Σk defined below [16]. The jitter is tunned in such a way as to provide variance to the

particles but not change the original distribution.

Σk =
1

n− 1

n∑
j=1

x̃
(j)
k x̃

(j)T
k (2.42)

x̃
(j)
k = x̄

(j)
k − x̂k (2.43)

x̂k =
1

N

n∑
j=1

x
(j)
k (2.44)

2.6 Fixed-Lag Smoother

A fixed-lag smoother finds improved estimates of the states x̂k−N+1|k to x̂k|k at the current time

step k given a lag of N − 1 and measurements ẑk−N+1 to ẑk. Through making use of the EKF

filtering equations, Eq. (2.16) to Eq. (2.20), and formulating an augmented state vector x̂a the

smoothed state estimates can be found. For the linear discrete case this algorithm is presented

in Moore [17], which is then extended for the nonlinear case with discrete measurements in

Moore [18]. The augmented state vector is formulated as

x̂ak = [x̂Tk|k x̂Tk−1|k x̂Tk−2|k · · · x̂Tk−N+1|k]
T (2.45)

For the continuous system the augmented state vector is propagated as

˙̂x
a

k =



˙̂xk|k
˙̂xk−1|k
˙̂xk−2|k

...

˙̂xk−N+1|k


=



f(x̂k|k, tk)

0

0
...

0


+



wk

0

0
...

0


(2.46)
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with Jacobian

Fa
k =



Fk 0 · · · 0 0

I 0 · · · 0 0

0 I
. . .

...
...

...
. . . 0 0

0 0 · · · I 0


(2.47)

and measurement sensitivity matrix

Ha
k = [Hk 0 · · · 0] (2.48)

Lastly, the augmented covariance matrix can be seen below. P
(i,j)
k represents the covariance

between the state vectors at time i, and j. Thus, P
(k−N+1,k−N+1)
k represents the error covariance

of the smoother.

Pk =


P

(k,k)
k P

(k,k−1)
k · · · P

(k,k−N+1)
k

P
(k−1,k)
k P

(k−1,k−1)
k · · · P

(k−1,k−N+1)
k...

...
. . .

...

P
(k−N+1,k)
k P

(k−N+1,k−1)
k · · · P

(k−N+1,k−N+1)
k

 (2.49)

2.7 Moving Horizon Estimation

Moving horizon estimation involves solving a least squares optimization problem over a sliding

window ofN time steps to find the optimal states. MHE has the main advantage that constraints

can be added into the filtering problem. Advantages of the unconstrained MHE may be seen

from the EKF due to the smoothed state estimates however. Estimates at the current time step

are the filtered estimates and all subsequent estimates are smoothed. The MHE cost function

is presented below, with k representing the current time step.

min
xk−N+1,{wk}k−1

k−N+1

k∑
i=k−N+1

‖νi‖2WQ
+

k−1∑
i=k−N+1

‖wi‖2WR
+ Γ(xk−N+1) (2.50)

subject to

xi+1 = f(xi, ti) + wi

z̃i = h(xi, ti) + νi
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Weights can be defined as the inverse of the discrete covariance matrices with process and

measurement noise wk and νk respectively, WQ = diag([Q−1
k−1 Q−1

k−2 · · ·Q
−1
k−N+1]) and WR =

diag([R−1
k R−1

k−1 · · ·R
−1
k−N+1]). In the least squares problem the term Γ(xk−N+1) describes the

arrival cost which is used to partially summarize all past data that has left the window. Two

different arrival costs presented by V. Rao et al. [19] were considered, the filtering and smoothing

formulation.

• Filtering Formulation: Here estimates are penalized for their deviation from an a priori es-

timate xk−N+1|k−N+1 of the state k−N+1 time steps ago with covariance Pk−N+1|k−N+1.

Γ(xk−N+1) = ‖xk−N+1 − xk−N+1|k−N+1‖2P−1
k−N+1|k−N+1

(2.51)

This covariance can be found using the covariance update and propagation equations from

the EKF, these are Eq. (2.18) and Eq. (2.20).

• Smoothing Formulation: In Eq. (2.52) estimates are penalized for their deviation from

an estimate xk−N+1|k−1 of the state at a previous time step k − 1. With the covari-

ance Pk−N+1|k−1 found by solving the backward Riccati equation given estimates Pk|k

and Pk+1|k. Refer to Appendix A for expansion of unknown terms. The measurements

z̃T−N+1:T−1 are used previously to find the estimate of the state xT−N+1|T−1 and are to be

used in the MHE problem when finding the estimates in the current window, the second

term in this cost function is used to ensure these measurements are not counted twice.

Γ(xk−N+1) = ‖xk−N+1 − xk−N+1|k−1‖2P−1
k−N+1|k−1

− ‖Y k−N+1
k−1 −ON−1xk−N+1‖2W−1

N−1

(2.52)

Using the state transition matrix Φi the backward Riccati equation is found below starting

at i = k − 1 and propagating backward until k = T −N + 1.

Pi|k−2 = Pi|i + Pi|iΦ
T
i P−1

i+1|k−2(Pi+1|k−2 −Pi+1|i)P
−1
i+1|kΦiPi|i (2.53)

The covariance at time step k can be found the same as in the filtering formulation.

The filtering formulation can induce oscillations into the system as initial errors in state estima-

tion are propagated through time [19]. The smoothing formulation can resolve these oscillations,

however Haseltine and Rawlings [20] states that in the case of local optima the smoothing for-

mulation can create a bias in state estimates, and that for global optimization a uniform prior
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with a longer horizon length is recommended. In this thesis the filtering formulation was imple-

mented with a suitable horizon length. This conclusion was made by comparing the performance

of each formulation in the to be seen reference scenarios, and noting the increased computation

time observed with the smoothing formulation.

2.7.1 Solving the MHE Optimization Problem

Lastly, to solve the MHE problem Vandersteen et al. [21] presents an iterative Gauss-Newton

method where Eq. (2.50) is linearized around the previous best estimate x̄i for i = k − N +

1, k − N + 2, · · · , k, and a new estimate xi is found by finding the deviation ∆xi from

this previous estimate, xi = x̄i + ∆xi. To begin, each term in Eq. (2.50) is evaluated at

x̄i, and partials are taken around the previous estimate. These terms are then separated

into matrices Bj and Aj respectively for each term in the MHE problem. As well, a term

∆X = [∆xTk−N+1,∆xTk−N+2, · · · ,∆xTk ]T is introduced to determine the deviation over the en-

tire window. Given an equality constraint the linearized cost function becomes

min
∆xk−N+1

‖AR∆X −BR‖2WR
+ ‖AQ∆X −BQ‖2WQ

+ ‖AA∆X −BA‖2P−1
k−N+1|k−N+1

(2.54)

subject to

Aeq∆X −Beq = 0 (2.55)

Where, for example

AQ =



∂f(x̄k−N+1,tk−N+1)
∂x̄k−N+1

1 0 · · · 0

0
∂f(x̄k−N+2,tk−N+2)

∂x̄k−N+2
1 · · · 0

...
...

. . . 0

0 0 · · · ∂f(x̄k−1,tk−1)
∂x̄k−1

1

 (2.56)

and

BQ =
[
[x̄k−N+2 − f(x̄k−N+1, tk−N+1)]T , [x̄k−N+3 − f(x̄k−N+2, tk−N+2)]T , · · · , [x̄k − f(x̄k−1, tk−1)]T

]T
(2.57)
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The Karush–Kuhn–Tucker (KKT) matrices are then formulated as

 =

 H ATeq

Aeq 000

 (2.58)

FFF =

 GGG
Beq

 (2.59)

where,

H = ATRWRAR +ATQWQAQ +ATAP−1
k−N+1|k−N+1AA (2.60)

GGG = ATRWRBR +ATQWQBQ +ATAP−1
k−N+1|k−N+1BA (2.61)

Lastly, the estimated deviations can be found, where in the presence of only equality constraints

requires only one matrix factorization. Here, Λ = [λT1 , λ
T
2 , · · · , λTN ] is a vector of Lagrange

multipliers. ∆X

Λ

 = −1FFF (2.62)

The deviation ∆X from the current estimates can then be found from Eq. (2.62) leading to the

new estimated state values. This processes is then repeated until a desirable state convergence or

a max number of iterations is had. The optimal estimate xk−N+1 at the last point in the window

is then saved and the estimation window is propagated to the next time step by propagating

the state xk and its covariance matrix Pk using Eq. (2.19) and Eq. (2.20). Finally, if k < N the

window is expanded by one time step but if k ≥ N the window is slid one time step forward.

2.8 Chapter Summary

In this chapter an overview of the various mathematical notations used through this thesis was

seen, as well, an overview of Van Loan’s procedure used to discretize a continuous system, and

an outline of each nonlinear state estimator. The key concepts of each algorithm is presented

below:
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• EKF: Applies the KF equations to a nonlinear system through linearizing the dynamic

and measurement models around an estimate of the current state and covariance. The

Jacobian matrix of the dynamic and measurement models is required.

• UKF: A set number of sigma points is propagated through the nonlinear system to better

approximate the true state and its covariance. The algorithm used requires the discrete

process noise covariance matrix found from Van Loan’s procedure.

• PF: A set of particles is used to approximate the posterior distribution without making

assumptions about the distribution. A bootstrap filter was implemented.

• FLS: A improved estimate of the state is found by using the EKF filtering equations but

augmenting the state matrix to include a delay in estimates. The Jacobian matrix of the

dynamic and measurement models is required.

• MHE: A weighted least squares optimization problem is solved over a sliding window of

N time steps. A term denoted as the arrival cost is used to partially summarize all data

that has left the window. The discrete process noise covariance matrix is required as a

weight in the optimization problem. As well, the method used to solve the weight least

squares problem requires the state transition matrix found from Van Loan’s procedure.
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Chapter 3

Hyperbolic Mars Approach

This chapter provides an overview of the hyperbolic Mars approach scenario that was used

to compare the EKF, UKF, PF, FLS and MHE to be used for orbit determination. The

scenario used observations of Mars and its moons to aid in state estimation. In previous work,

Enright et al. [22] studied the feasibility of using an EKF-based navigation system during a

hyperbolic Mars approach. The filter fused observations of Mars and its moons to provide

orbit determination. Although effective, the EKF often showed an initial divergence due both

the sensitive nature of the hyperbolic scenario and the EKF utilizing linearization’s that may

inadequately describe the dynamic and measurement models.

This work utilizes a previously defined framework derived in Enright et al. [22], but evaluates the

convergence and accuracy of various algorithms to perform nonlinear estimation. Other studies

have examined similar scenarios, Christian and Lightsey [23], used a EKF for autonomous

OpNav in a planetary flyby of Venus. Franzese et al. [24], explored using an EKF for the

LUMIO CubeSat mission. While, Paluszek et al. [25], implemented a UKF into a optical

navigation system for use in a wide variety of missions.

In this chapter, Section 3.1 to Section 3.3 provide an overview of the operational scenario, state

variables, and system dynamics. Section 3.4 overviews the measurements models used. While,

Section 3.5 presents the results from a series of Monte Carlo (MC) trials where the performance

of each state estimator was looked at. Refer to Enright et al. [22] for a more comprehensive

derivation of the reference frames, state variables, dynamic and measurement models.

19



3.1 Reference Mission

Figure 3.1 presents the essential orbital geometry for a spacecraft approaching Mars on a hy-

perbolic trajectory. The scenario starts when the satellite enters the sphere of influence (SOI)

of Mars, and begins on a planeto-centric hyperbolic trajectory. Table 3.1 defines a set of frames

that will be used within this chapter. The spacecraft’s trajectory was described in the inertial

Frame-P . It should be noted that this frame is fixed and based on the initial geometry of the

approach.

Table 3.1: Hyperbolic Trajectory Frame Identification

Frame Symbol Centre X-Axis Z-Axis

J2000Ecliptic E Solar System Barycentre VE projection into ecliptic Normal to ecliptic
Periapse P Mars Direction of periapse Angular momentum direction of S/C
Orbit O Spacecraft Outward radius Angular momentum direction of S/C
Body B Spacecraft Parallel to orbit normal Convenient direction for viewing
Sensor S Spacecraft Increasing columns Boresight
Target T Spacecraft Normal to boresight and planet vectors Towards Planet

Figure 3.1: Hyperbolic trajectory showing the periapse, body and orbit frame.

The rotation matrices describing the transformation between each frame are listed below. For

a hyperbolic trajectory the hyperbolic asymptote is found at an angle η∞ from the P1 axis,

with e being the eccentricity of the orbit. To ensure the spacecraft lies on the approach leg, the

negative solution was taken.

η∞ = − arccos(−1

e
) (3.1)
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It was assumed the scenario occurs at the aphelion of the heliocentric transfer ellipse, thus

ηSun = η∞ −
π

2
(3.2)

Here ηSun is the angle from the P1 axis to the direction vector of the Sun. This leads to the

rotation from Frame-E to Frame-P as

CPE ≡ C3(ηSun + π − αM )C1(π) (3.3)

Where, αM is the right ascension of Mars in Frame-E. The rotation from the periapse to

orbital frame COP is constructed from the position rP and velocity rP of the spacecraft. As

COP is a function of the spacecraft’s position and velocity it does not remain constant over

time. From below O1P is defined using the outward radius, and O3P the angular momentum of

the spacecraft.

COP =
[

O1P O2P O3P

]T
(3.4)

where,

O1P =
rP
r
, O3P =

r×PvP∥∥∥r×PvP

∥∥∥ and O2P = O×3PO1P
(3.5)

A mission dependent pointing rule was used to describe how the spacecraft was orientated within

its orbit. For this study CBO represents a Mars pointing rule that keeps the limb of Mars a

desired angle ξ off the center of the sensor boresight.

The angular radius of Mars, as seen from the spacecraft, is ρ. Thus,

CBO ≡ C1 (ρ− ξ) C2

(
−π

2

)
(3.6)

Lastly, looking at Figure 3.2 the rotation from the sensor to target frame can be found given

that Mars center is at an angle ρc from the sensor boresight and in an azimuthal direction θc.

CTS = C1 (ρc) C3 (θc) (3.7)
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Figure 3.2: Rotation from Frame-S to Frame-T .

3.2 State Variables

The spacecraft’s state is composed of the inertial position, rp, and velocity, vp, of the space-

craft, the sensor’s unknown mounting error, ψ, with respect to a desired orientation, and the

spacecraft,s attitude error, φ, with respect to a nominal reference orientation. Both φ and ψ

represent small angle error rotation vectors with rotation matrices C(φ) and C(ψ). This leads

to the 12× 1 state vector:

x =


rP

vP

ψ

φ

 (3.8)

The rotation from the body to sensor frame CSB is a combination of the reference orientation

C̄SB and sensor misalignment error.

CSB = C (ψ) C̄SB (3.9)

The transformation of Frame-P to Frame-B is shown below. Here CBO refers to a reference

orientation that is found from the pointing rule and derived from the estimate state vector,

meaning CBO = CBO(x̂).

CBP = C (φ) C̄BP = C (φ) CBOCOP (3.10)

This means that the rotation from the periapse to the sensor frame is equal to

CSP = CSBCBP = C (ψ) C̄SBC (φ) C̄BP (3.11)
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3.3 System Dynamics

The spacecraft was assumed to undergo unpowered flight throughout the mission, thus accelera-

tions on the satellite are caused by the gravitational force of Mars and third body perturbations.

All accelerations were modeled in the periapse frame with the true spacecraft state modeled as:ṙp

v̇p

 =

 vp

−µMars

r3
rp + aDisturbance

 (3.12)

The modeled third body pertubations represent the gravitational forces caused by the Sun and

Jupiter. Here, ∆rDS is the vector from the disturbing body to the spacecraft, and ∆rDM is

from the disturbing body to Mars.

aDisturbance = −
∑

µDisturbing

(
∆rDS
∆r3

DS

− ∆rDM
∆r3

DM

)
(3.13)

For the test scenario, the truth simulation will include these third body disturbances, but the

onboard filter will assume a two body problem. A process noise wv with covariance Qv can be

used to partially remedy this worst case modeling error.

To avoid the need to explicitly model an attitude controller, it was assumed the spacecraft

could closely track a reference orientation, C̄BP , with a relatively small error described by φ.

The dynamics of the attitude error of the satellite were modeled as a first-order system driven

by random noise. Here, wφ represents a zero-mean Gaussian random variable with known

covariance Qφ.

φ̇ = −φ
τ

+ wφ (3.14)

Lastly, the mounting error remains constant over time, meaning ψ̇ = 0. In the MHE this

was considered an equality constraint. This leads to the continuous model to be used in the

navigation system

ẋ(t) = f (x, t) + w =


vP

−µMars

r3
rP

03×1

−φ
τ

+


03×3 03×3

I3×3 03×3

03×3 03×3

03×3 I3×3


 wv

wφ

 (3.15)

23



The dynamics Jacobian is then given by

F(x(t)) =
∂f

∂x

∣∣∣∣
x=x(t)

=


03×3 I3×3 03×3 03×3

µ
r3

(
3
r2

rP rTP − I3×3

)
03×3 03×3 03×3

03×3 03×3 03×3 03×3

03×3 03×3 03×3 − 1
τ I3×3

 (3.16)

and the continuous process noise covariance matrix is:

Q =


03×3 03×3 03×3 03×3

03×3 Qv 03×3 03×3

03×3 03×3 03×3 03×3

03×3 03×3 03×3 Qφ

 (3.17)

3.4 Measurement Models

The measurement models used were derived in Enright et al. [22], this section provides a brief

description of each measurement but refer to Appendix B for each measurement model. The

measurements are defined using z̃, and the estimated measurement as ẑ. During the approach

five measurements were considered:

1. The attitude of the spacecraft

2. The direction to Mars moons Phobos and Deimos

3. The displacement vector to Mars

4. The phase angle between the spacecraft, the Sun and Mars

5. The orientation of the terminator ellipse

The attitude of the spacecraft was defined using an attitude error pseudomeasurement, defined

as ∆, to represent an error rotation vector between the reference and actual attitude. The

direction vector, sS , to Mars moons can be found by their coordinates on the star trackers

detector plane. Figure 3.3 provides a basic visual representation of these measurements.

A pseduomeasurement was used to represent the displacement vector to Mars, rs, which can be

found from the size and position of the Mars disk in the field of view of the sensor, as seen in
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Figure 3.4. Due to the setup of the coordinate frames the displacement vector is simply defined

as the rotation of spacecrafts position into Frame-S, rS = −CSP rP .

The phase angle, χ, between the spacecraft, the Sun and Mars can in practice be found through

the illuminated fraction of Mars. Lastly, the terminator angle, β, is defined as the orientation

of the terminator ellipse on the image disk of Mars. These last two measurements can be seen

in Figure 3.5.

At each time step the availability of each measurement may change based on the state of the

spacecraft, and that of the targets. The measurement availability for the hyperbolic scenario is

seen in Figure 3.6. The availability of Phobos and Deimos depends on the scenario start date.

As well, the loss of the phase and terminator angles near periapse is caused by the Mars disk

in the FOV of the sensor becoming too large to obtain measurements.

S
3

Deimos

Phobos

𝚫

S
3

Figure 3.3: Attitude measurement, and Phobos and Deimos direction measurements.
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Figure 3.4: Mars displacement vector.
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Figure 3.5: The terminator and phase angles.
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Figure 3.6: Measurement availability for the hyperbolic Mars approach [22].
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3.5 Simulation Results

In this section each state estimator was compared using the hyperbolic Mars approach. Only

one trajectory was considered, where the parameters used to initialize the simulation, and the

spacecraft’s trajectory are outlined in Table 3.2. Assessing various trajectories may provide

better insight into the expected performance of each estimator, however without a specific

mission in mind it can be impossible to assess the performance over every possible trajectory.

However, a Monte Carlo (MC) simulation was used to assess the performance statistics of each

estimator over a wide range of initial state errors, where each trials initial state error was a

random variable described by the initial covariance matrix.

For the simulation each estimator was tuned by varying each tunable parameter over a series of

MC trials until improvements in state errors were no longer seen. From this method the UKF

was simulated using α = 1 and κ = 0, and the PF was initialized with 2000 particles. To find the

window length for the MHE and FLS a balance needs to be struck between improved estimates,

a longer delay, and increased computational time. This balance can be made by both tuning

the window length and measurement update time while staying within the limits of the sensor.

The limits include the time needed to capture and process the optical images. Through testing

a window length of 15 was chosen. Increasing the window length generally reduced errors from

a size of 1 to 15 but larger values yielded minimal additional improvements.

Table 3.2: Hyperbolic Trajectory Scenario Parameters

Scenario Start Date 2019 Jan 15 01:55:00 (UTC)
Initial Mars-Spacecraft Distance 571000 km
Initial Mars-Centric Speed 2.6694 km/s
Right Ascension of Sun (in P frame) −0.5236 rad
Initial Eccentricity 2.0
Initial Semi-Major Axis 6139.7612 km
Position uncertainty (1− σ), each axis 100 km
Velocity uncertainty (1− σ), each axis 0.1 km/s
Sensor mounting uncertainty, each axis 0.1 deg.
Attitude error uncertainty, each axis 1 deg.
Cross-axis attitude error (1− σ) 1× 10−3 deg.
Roll attitude error(1− σ) 1× 10−2 deg.
Measurement update time 400 s
Attitude error time constant, τ 600 s
Attitude error process noise Qφ = (10−8)I3×3 rad2/s2

Velocity process noise (estimator only) Qv = (10−16)I3×3 m2/s4

A single run trial was first performed to provide a basic performance analysis. For small errors

in initial state estimates the EKF, UKF, FLS, and MHE behaved similarly. The PF was able
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Figure 3.7: Hyperbolic orbit position error over single run.

to provide similar errors but the relative performance was inconsistent. As the initial state

error was increased a separation between filter performance can be seen. For example, given

an arbitrarily chosen initial state error of [−145 70 −20]T km in position, [0.18 0.2 −0.15]T

km/s in velocity, and an initial estimate of 0◦ for the attitude and sensor misalignment error

along each axis Figures 3.7 to 3.9 show the errors in position, velocity, and the angle errors

respectively. For the FLS and MHE the optimal estimate at the last point in the estimation

window is plotted.

An initial divergence is seen in position estimates before converging to the minimal value at

periapse. For this specific case the UKF provides the largest reduction in initial divergence

and periapse error. Followed by the FLS and MHE. This is not seen in the velocity estimates

where each estimator slowly converges over time. Here the UKF provides a lower initial error,

while the FLS and MHE achieve lower errors near periapse. The PF is able to provide errors

on par with the other estimators but the estimation errors are variable. Looking at the sensor

misalignment error the EKF, UKF, FLS, and MHE provide similar results for this single case.

While, the PF appears to exhibit erratic behavior. This is caused by the sensor misalignment

error being a constant value. Lastly, each estimator provides similar results in regards to the

attitude error, this is due to the dynamics being dominated by the process noise.

To better assess the system performance a MC simulation of 1000 trials was run to measure

the error statistics of each estimator over a wide range of initial state estimates. From the MC
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Figure 3.8: Hyperbolic orbit velocity error over single run.
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Figure 3.9: Hyperbolic orbit sensor misalignment and attitude error over a single run.
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simulation Figure 3.10 presents the mean position error over the entire simulation, Figure 3.11

the mean velocity error, and Figure 3.12 the mean sensor misalignment and attitude error. All

points represent the mean RSS error. Looking at the position estimates there is an initial diver-

gence in error due to both the sensitivity of the hyperbolic trajectory, and large measurement

noises due to the distance from Mars. The sensitive nature of the hyperbolic trajectory implies

that small changes in the initial conditions can lead to a very different final trajectory. After

the initial divergence, the state estimators slowly converge before a rapid convergence is seen as

the spacecraft enters a regime where the measurements improve significantly. Minimum errors

are then achieved around periapse.

Comparing each estimator, the MHE and FLS outperform both the EKF, UKF, and PF with

respect to the position error, reducing the initial divergence and improving the periapse error.

However, the MHE does provide a lower initial and periapse error than the FLS. The EKF

and UKF perform similarly, although the UKF does provide a lower error near periapse. The

reason for the similar performance at the beginning of the scenario is the sensitive nature of the

hyperbolic scenario combined with the initial error in state estimates, and large measurement

noises due to the distance from Mars. Lastly, the PF provides the highest estimation errors

across the entire time span. To ensure the maximum divergence results are not caused by a few

bad trials that skew the end result, Figure 3.13 presents the cumulative distribution function

(CDF) of the maximum errors seen throughout the MC trials. Again similar results are seen

for the EKF and UKF, and the MHE and FLS, where the latter two estimators are very likely

to achieve a lower divergence. The PF again provides the worst performance.

In contrast, the velocity error does not exhibit an initial divergence, however an initial drop

in errors is had before a more consistent convergence to periapse. When comparing each filter

similar trends are seen as the position error. With the FLS and MHE improving on the esti-

mation error, benefits from the UKF compared to the EKF are seen near periapse and the PF

provides the highest estimation errors. Looking at the sensor misalignment the MHE produces

a lower error up to periapse, where the FLS overtakes it. The UKF has the worst initial esti-

mates before converging below the EKF near periapse. However, besides the PF each estimator

displays similar trends with minimal difference in error between them. This could be due to

the sensor misalignment being a constant. Lastly, all filters provided similar results in regards

to the attitude error, again this is due to the dynamics being dominated by the process noise.

To add, Table 3.3 presents statistics on key points throughout the trials. All errors represent

the RSS error across the trials. The mean errors are the average errors across the trials and each

time span. The maximum position error is the max RSS error across all trials and takes a look

at the reduction in initial divergence in position. The velocity, attitude and sensor misalignment
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Figure 3.10: Mean position error in MC trials.
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Figure 3.11: Mean velocity error in MC trials.
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Figure 3.12: Mean attitude and sensor misalignment errors in MC trials.
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Figure 3.13: CDF of maximum errors in MC trials.
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Table 3.3: Hyperbolic Trajectory Simulation Results

EKF UKF PF FLS MHE

Mean Position Error (km) 36.47 35.96 52.00 23.75 23.02
Mean Velocity Error (m/s) 3.89 3.88 6.60 2.61 2.03
Mean Psi Error (×10−5rad) 1.38 1.58 3.25 1.21 1.04
Mean Phi Error (×10−5 rad) 3.03 3.33 4.39 3.26 4.33
Mean Periapse Error (km) 0.22 0.22 0.34 0.19 0.13
Max Position Error (×103 km) 1.42 1.37 2.32 0.60 0.56

maximum error occurs at start of the simulation due to the initial state error and thus, provides

no information on estimator performance.

Looking at the table the EKF and UKF provide similar results, while, the PF provides the

highest errors for each category. The FLS and MHE improve the position and velocity in

the related categories, providing a reduction in initial divergence in position, and lowering the

periapse error. Looking at the sensor misalignment error again the FLS and MHE provide the

best results, with the PF providing the largest error followed by the UKF. With regards to the

attitude error no improvement is seen from the reference EKF.

It is evident that the PF estimates are not comparable with the other state estimators. It was

found that the PF was sensitive to the initial distribution, if no particles fall within “good”

regions the PF estimates were seen to diverge. More particles could be used to help mitigate

the problem but at the cost of a higher computation time. As well, from observing velocity

estimates it is thought that as velocity does not appear in the likelihood function these particles

slowly converge based on the propagated values of the position estimates rather then direct

information on how good the estimate is, leading to a slower convergence. Lastly, there is

difficulty estimating the sensor misalignment, as it is a constant value any variation in the

particles comes from the roughening step. It was found that this caused erratic behavior in the

estimates, seen in Figure 3.9, but the quality of the estimates is again dependent on the initial

distribution. Further tuning of the PF may improve estimates however.

Lastly, the mean computation time over the MC trials was looked at. Comparing the com-

putational time of each estimator relative to the EKF the UKF, PF, FLS and MHE required

approximately 3.3-, 67.7-, 4.1- and 8.0- times the computation time for this scenario. The

improved state estimates from the FLS and MHE thus come at the cost of an increased com-

putation time. As well, less particles could be used to improve the PF’s run time but if not

enough particles are used the filters performance severely degrades.
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3.6 Chapter Summary

In this chapter a hyperbolic Mars approach was used as a reference missions to compare the

EKF, UKF, PF, FLS, and MHE. This work used a previously derived scenario and measurement

models that can be found in Enright et al. [22]. In the scenario four state variables were

considered: the position and velocity of the spacecraft, the sensor’s unknown mounting error

with respect to a desired orientation, and the attitude error of the spacecraft with respect to a

nominal reference orientation. Looking at the dynamics of each state variables the spacecrafts

trajectory was modeled using gravitational pertubations from the Sun and Jupiter, while the

filter dynamics only consider a two body problem. The sensor misalignment error remains

constant over time, and the spacecrafts attitude error was modeled as a first order system driven

by random noise. In the simulation five previously derived OpNav observations were considered:

the attitude of the spacecraft, the direction to Mars moons Phobos and Deimos, the displacement

vector to Mars, the phase angle between the spacecraft, the Sun and Mars, and the orientation of

the terminator ellipse. A basic performance analysis of each state estimator was first performed

by looking at their performance over a single trial. A series of MC simulations was then used

to access each state estimators performance over a wide range of initial conditions. Looking

at the position and velocity estimates in the MC trials it was seen that the FLS and MHE

improved the mean RSS error over the entire time span. Improving on the initial divergence

and periapse error. The UKF had slight improvements over the EKF, while the PF had the

worst estimates. Besides the PF each state estimator converged to similar values with respect

to the sensor misalignment error, and each state estimator behaved similarly with respect to

the attitude error. The mean computation time for each state estimator with respect the EKF

was also looked at. It was seen that the improved estimates from the FLS and MHE come at

the cost of a higher computation time, with the FLS taking about half the time of the MHE.

Besides the EKF, the UKF had the quickest run time and the PF by far the worst, taking about

67.7 times longer than the EKF.
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Chapter 4

Elliptical Orbit around Mars

In this chapter two references scenarios are presented to compare each state estimator. Section

4.1 takes a look at an elliptical orbit around Mars using similar dynamic and measurements

models as seen in the previous chapter, therefore only deviations from what has already been

presented will be seen within this section. Section 4.2 then extends the framework of the elliptical

scenario to compare the performance of each estimator in timing an orbital maneuver to raise

the periapse of the spacecraft out of the Martian atmosphere after an aerocapture maneuver.

In each scenario a set of MC trials was used to assess the performance of the state estimators.

4.1 Elliptical Orbit

For this scenario a spacecraft was placed into an elliptical orbit around Mars, seen in Figure

4.1. Table 4.1 outlines the set of frames that were used for this scenario. Again the spacecraft’s

trajectory was described in Frame-P . Here Frame-P was considered an inertial frame located

at the origin of Mars with the P3 axis aligned with the planet’s spin axis, the P1 axis along the

equatorial plane in the direction of periapse and the P2 axis completes the right handed frame.

The P1 and P2 axes are arbitrary, just as long as the P3 axis is aligned with Mars spin axis.

Frames O, B, S, and T are defined the same as in the hyperbolic scenario. As well, the rotation

between each frame has been defined in Section 3.1.
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Figure 4.1: Elliptical trajectory showing the periapse and orbital frames.

Table 4.1: Elliptical Orbit Frame Identification

Frame Symbol Centre X-Axis Z-Axis

Mars inertial frame P Mars Along the equatorial plane and in the Mars spin axis
direction of periapse

Orbit (RTN) O Spacecraft Outward radius Angular momentum direction of
S/C in orbit

Body B Spacecraft Parallel to orbit normal Convenient direction for viewing
Sensor S Spacecraft Increasing columns Boresight
Target T Spacecraft Normal to boresight and Mars vector Towards Mars

4.1.1 System Dynamics

In this scenario the spacecraft was again assumed to undergo unpowered flight, with acceler-

ations on the satellite from gravitational perturbations due to Mars mass distribution. The

accelerations up to the fourth harmonic were used in the truth model, denoted as aJ2 , aJ3 , and

aJ4 . Therefore the true position and velocity were propagated asṙP

v̇P

 =

 vP

−µmars
r3

rP + aJ2 + aJ3 + aJ4

 (4.1)

Due to Mars not being a perfect sphere their are gravitational perturbations due to its actual

mass distribution. Using Mars zonal harmonics up to J4 these perturbations are seen below

and were derived in Schaub and Junkins [26]. Mars zonal harmonics shown in Table 4.2. The

distances rx, ry, and rz must be defined with respect to a frame where the z-axis is that of the
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spin axis, therefore they are defined with respect to Frame-P of the elliptical orbit.

aJ2 = −3

2

J2µMarsR
2
mars

r4


(1− 5( rzr )2) rxr

(1− 5( rzr )2)
ry
r

(3− 5( rzr )2) rzr

 (4.2)

aJ3 = −1

2

J3µMarsR
3
mars

r5


5(7( rzr )3 − 3( rzr )) rxr

5(7( rzr )3 − 3( rzr ))
ry
r

3(10( rzr )2 − 35
3 ( rzr )4 − 1)

 (4.3)

aJ4 = −5

8

J4µMarsR
4
mars

r6


(3− 42( rzr )2 + 63( rzr )4) rxr

(3− 42( rzr )2 + 63( rzr )4)
ry
r

−(15− 70( rzr )2 + 63( rzr )4) rzr

 (4.4)

Table 4.2: Mars Zonal Harmonic Coefficients [27]

Harmonics Value

J2 1.955 45×10−3

J3 3.144 98×10−5

J4 −1.537 74×10−5

In the navigation system only the perturbations due to the J2 term will be considered, and a

process noise will be added to account for the modeling error.

ẋ(t) = f (x, t) + w =


vP

−µMarsrP
r3

+ aJ2

03×1

−φ
τ

+


03×3 03×3

I3×3 03×3

03×3 03×3

03×3 I3×3


 wv

wφ

 (4.5)

The state Jacobian is then given by

F(x(t)) =
∂f

∂x

∣∣∣∣
x=x(t)

=


03×3 I3×3 03×3 03×3

µ
r3

(
3
r2

rP rTP − I3×3

)
+

∂aJ2
∂r 03×3 03×3 03×3

03×3 03×3 03×3 03×3

03×3 03×3 03×3 − 1
τ I3×3

 (4.6)
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where,
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(4.7)

Finally, the continuous process noise covariance matrix is equal to

Q =


03×3 03×3 03×3 03×3

03×3 Qv 03×3 03×3

03×3 03×3 03×3 03×3

03×3 03×3 03×3 Qφ

 (4.8)

4.1.2 Measurement Models

The measurement models used are the same as the hyperbolic scenario, refer to Section 3.4.

As well, the pointing rule used to orientate the spacecraft was the same as in the hyperbolic

scenario, where the aim was to keep the limb of Mars a desired angle off the sensor boresight.

The five measurements considered were:

1. The attitude of the spacecraft

2. The direction to Mars moons Phobos and Deimos

3. The displacement vector to Mars

4. The phase angle between the spacecraft, the Sun and Mars

5. The orientation of the terminator ellipse

Although each measurement was initially considered during the simulation the availability of

the measurements was dependent on the orbit and time of the simulation. For example, given

two orbits both with an inclination of 75◦, periapsis of 300 km, and apoapsis of 10, 000 and

72, 000 km, Figures 4.2a and 4.2b show the measurement availability from a single trial. Further

parameters of the simulation can be seen in the next section, Section 4.1.3. Looking at Figure

4.2a due to how close the spacecraft is to Mars only the Mars displacement vector and attitude

measurements are seen. The Mars displacement vector is then lost near periapse due to the size

39



(a) Apoapsis of 10,000 km. (b) Apoapsis of 72,000 km.

Figure 4.2: Measurement availability for an elliptical orbit.

of Mars in the FOV of the sensor. The attitude measurements are lost after periapse due to

where the satellite was pointed, at this point the Sun falls within an exclusion angle of 35◦ off

the sensor boresight meaning all measurements are lost. The time of occurrence and duration of

being unavailable does differ from orbit to orbit due to the third body perturbations however.

Looking at Figure 4.2b as the apoapsis is increased more measurements become available. The

phase and terminator angles can be measured as the entire Mars disk is now in the FOV of the

sensor. As well, the displacement vector and attitude measurements are lost due to the same

reasons as in the previous orbit. Lastly, the availability of Phobos and Deimos depends on the

scenario start date and for the most part if the moons lie within the FOV of the sensor. The

direction measurements were not seen for the first simulation but changing the orbit parameters,

start time or simulation length results in some availability.

4.1.3 Simulation Results

For this scenario Table 4.3 provides an overview of the parameters used. A single run trial

was first looked at to provide a basic performance analysis. Given an arbitrarily chosen initial

state error of [0.8 21 11]T km in position, [0.011 0.012 −0.004]T km/s in velocity, and an

initial estimate of 0◦ for the attitude and sensor misalignment error along each axis Figure

4.3 presents the position error, Figure 4.4 the velocity error, and Figure 4.5 the attitude and

sensor misalignment errors over the single run. The y-axis shows the root sum square (RSS)

error, while the x-axis the number of orbits performed. The simulation spans just over three

orbits, where at the start of the simulation the spacecraft was initialized at periapse. As seen

in the previous section, near periapse no measurements are available and why an increase in

uncertainty can be seen at the start of the simulation and once an orbit is complete. Looking
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Table 4.3: Elliptical Orbit Scenario Parameters

Scenario Start Date 2019 Jan 15 01:55:00 (UTC)
Periapsis 300 km
Apoapsis 10, 000 km/s
Inclination 75 deg
RAAN 0 deg
Argument of Periapsis 0 deg
Position uncertainty (1− σ), each axis 10 km
Velocity uncertainty (1− σ), each axis 0.01 km/s
Sensor mounting uncertainty, each axis 0.1 deg.
Attitude error uncertainty, each axis 1 deg.
Cross-axis attitude error (1− σ) 1× 10−3 deg.
Roll attitude error(1− σ) 1× 10−2 deg.
Measurement update time 100s
Attitude error time constant, τ 600 s
Attitude error process noise Qφ = (10−8)I3×3 rad2/s2

Velocity process noise (estimator only) Qv = (3× 10−14)I3×3 m2/s4

at the position estimates each estimator converges to similar errors, this was observed for both

small and larger initial state errors. However, the MHE does provide the quickest convergence,

while the PF the worst. This was also observed for the velocity estimates. Regarding the sensor

misalignment errors for this case the FLS convergences to the lowest value, while the MHE,

EKF and UKF each converged to similar values at the end of the simulation, however this

result tended to be trial dependent. Similar to results seen in the hyperbolic trajectory the PF

provided the worst estimates due to the sensor misalignment error being a constant value. For

a constant value any variation in the estimates comes from the roughening step, this was seen

to cause erratic behavior in the estimates. Lastly, each estimator provided similar errors with

respect to the attitude error.
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Figure 4.3: Elliptical orbit position error over single run.
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Figure 4.4: Elliptical orbit velocity error over single run.
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Figure 4.5: Elliptical orbit velocity error over single run.

Next a MC simulation of 1000 trials was run, through experimentation 1000 trials was chosen as

it provided stable results. Over the MC trials Figure 4.6 looks at the mean position error, Figure

4.7 the mean velocity error, and Figure 4.8 the mean attitude and sensor misalignment error.

The relative performance of the estimators is similar to that seen in the hyperbolic scenario,

Section 3.5. The FLS and MHE provide the lowest errors, with the MHE providing the quickest

convergence. The EKF and UKF provide similar results with the UKF providing slightly lower

error along various points throughout the orbit. The PF then provides the highest estimation

errors.

Looking at the sensor misalignment errors the MHE provides a slightly lower error than the

other estimators, although besides the PF each estimator provides similar errors. All estimators

again provide similar results in regards to the attitude error. This was due to the dynamics

being dominated by the process noise. Finally, the PF provides poor results compared to the

other estimators for reasons that have been mentioned in Section 3.5.
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Figure 4.6: Elliptical orbit mean position error over MC trials.
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Figure 4.7: Elliptical orbit mean velocity error over MC trials.
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Figure 4.8: Elliptical orbit mean sensor misalignment and attitude error over MC trials.

The affect that the apoapsis distance has on the estimates can be further explored by looking

at two other orbits with the same initial conditions as found in Table 4.3 but with an apoapsis

altitude of 33, 000 and 72, 000 km. Again 1000 MC trials were run. Figure 4.9 presents the

mean position error over the MC trials, and Figure 4.10 the mean velocity error. Looking at

each figure the errors seen in each orbit are designated by the line marker, for example, the

diamond marker represents the errors from the orbit with an apoapsis of 33,000 km. To reduce

clutter only the EKF and MHE estimates are shown, the MHE provided the best estimates in

each case, and other than the PF the EKF the worst. Therefore, the performance of the UKF

and FLS for the larger orbits can be roughly extrapolated from the figures, where the trends

were similar to what has been previously seen in Figures 4.6 and 4.7. The sensor misalignment

and attitude errors are not shown as the results were comparable to Figure 4.8. Looking at

the magnitude of the position errors it can be seen that as the apoapsis altitude is increased

there becomes a larger error in position as apoapsis is approached. This is a similar trend as

seen in the hyperbolic trajectory and is caused by the spacecrafts increased distance from Mars

causing increased measurement noise. This trend is absent in the velocity estimates. In each

orbit the converged value is roughly the same. Although with a larger apoapsis the velocity

error converges faster with respect to its position in the orbit as there was more time for the

estimates to converge. Comparing the state estimators as the apoapsis is increased in regards

to the position estimates the performance of each estimator becomes more similar. This trend

is seen in the velocity estimates as well.
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Figure 4.9: Mean position error for varying apoapsis.

Lastly, the mean computation time over the MC trials can be looked at. Relative to the EKF

the UKF, PF, FLS and MHE took about 1.8-, 32.4-, 2.9- and 5.4- times the computation time.

The improved estimates from the FLS and MHE come at the cost of an increased computation

time. However, with the reduction in available measurements the computation cost is not as

high as in the hyperbolic scenario.
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Figure 4.10: Mean velocity error for varying apoapsis.

4.2 Orbital Maneuver Timing

This section provides a preliminary study on using autonomous OpNav for timing an orbital burn

maneuver. It was assumed that a spacecraft was placed into an elliptical orbit around Mars

by means of an aerocapture maneuver. The goal will then be to use autonomous OpNav to

time the apoapsis burn to raise the periapse out of the Martian atmosphere. Autonomous orbit

control is a well established technique with the UoSAT 12 being the first satellite to demonstrate

autonomous orbit control in an orbit around the Earth using GPS measurements in 1999 [28].

As well refer to Wertz [29] for a more in depth overview of the topic, here autonomous orbit

control was looked at to reduce costs in space missions. This study however examines the

performance of the five presented state estimators using a nanosatellite-class star tracker and

the previously derived optical measurement models for orbital maneuvers.

4.2.1 Reference Mission

Injection into an elliptical orbit from a hyperbolic approach trajectory around Mars can occur

by means of a retrograde burn or by use of an aerocapture. An aerocapture makes use of the

Martian atmosphere to slow the satellite, allowing orbit insertion to be near propellant less. An

aerocapture consists of four basic sequences:
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Estimate the time

to apoapsis (∆tap)

∆tap < ∆t

Propagate

to apoapsis

Perform burn (∆v)

no

yes

Figure 4.11: Flow chart used for estimating the time and magnitude of the orbital burn.

1. Hyperbolic approach trajectory

2. Atmospheric entry and exit, here the hyperbolic trajectory turns into an elliptical orbit

• Subsequent atmospheric passes will lower the apoapsis if required

3. Apoapsis burn to raise periapse out of the Martian atmosphere

4. If required a periapse burn to produce the desired orbit

Step 3 is the focus of this study as the actual aerocapture maneuver was not modeled but rather

it was assumed that the satellite could be placed into an elliptical orbit with the accuracies found

in a previous study. Austin et al. [30] looked at the feasibility of delivering a small satellite into

an elliptical orbit around Venus through an aerocapture, and provided the theoretical accuracy of

the maneuver. Even though this study looks at an elliptical orbit around Mars these accuracies

were assumed applicable. To add the atmospheric drag on the satellite was not modeled but

rather the dynamic equations and measurement models used can be found in Section 4.1 for an

elliptical orbit. The spacecraft was in the Martian atmosphere for a short period of time, thus

it was felt that modeling the atmospheric drag would not have an affect on the end performance

of each state estimator.

Once the satellite was placed into the elliptical orbit a small burn at apoapsis must occur to raise

the periapse and take the satellites trajectory out of Mars’ atmosphere. Figure 4.11 outlines

the approach used to time and perform the burn. Refer to Curtis [31] for the mathematical

equations used. The burn was modeled as an impulse maneuver.

Looking at Figure 4.11 the time to apoapsis was found by:
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1. The estimated eccentrcity vector was found as

– e = v̂P×h
µMars

− r̂P
r̂P

, where h = r̂P × v̂P

2. Find the estimated true anomaly as

– ν = arccos(e·r̂P
er̂P

)

3. The estimated eccentric anomaly is

– E = 2 arctan
tan ν

2√
1+e
1−e

4. Through Keplers equation the estimated mean anomaly is

– M = E − e sinE

5. The estimated orbital period is

– T = 2π
√

a3

µMars
, where a = 1

( 2
r̂P
−

v̂2
P

µMars
)

6. Lastly, the estimated time to apoapsis can be found as

– ∆tap = π−M
n , where n = 2π

T

While the magnitude of the burn was found by:

1. h =
√
µMarsr̂ap(1− e), where e =

r̂ap−rpe
r̂ap+rpe

2. ∆v = h
r̂ap
− vP

Undefined terms include ∆v as the magnitude of the performed burn, n is the mean motion

of the satellite, r̂ap is the estimated apoapsis or the distance from Mars that the spacecraft is

when the burn maneuver is performed, and rpe is the desired periapse. All bold letters refer to

a vector and non-bold letters the scalar magnitude, for example a = ||a||.

4.2.2 Simulation Results

To compare the performance of each estimator a Monte Carlo simulation of 2000 trials was run.

The parameters of the simulaton can be found in Table 4.4. As the FLS and MHE implement a

delay into the estimation process when finding the time to apoapsis and the burn magnitude the

first estimate in the estimation window was taken, or in other words from previous notations
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Table 4.4: Orbital Burn Scenario Parameters

Initial Periapsis 60 km
Target Periapsis 200 km
Inclination 0 deg
RAAN 0 deg
Argument of Periapsis 0 deg
Position uncertainty (1− σ), each axis 10 km
Velocity uncertainty (1− σ), each axis 0.01 km/s
Sensor mounting uncertainty, each axis 0.1 deg.
Attitude error uncertainty, each axis 1 deg.
Sensor FOV (half-angle) 7.5 deg.
Cross-axis attitude error (1− σ) 1× 10−3 deg.
Roll attitude error(1− σ) 1× 10−2 deg.
Measurement update time 100s
Attitude error time constant, τ 600 s
Attitude error process noise Qφ = (10−8)I3×3 rad2/s2

Velocity process noise (estimator only) Qv = (3× 10−14)I3×3 m2/s4

the estimate xk|k. It was also attempted to take the optimal estimate in the window, that is

xk−N+1|k, and propagate it forward to the current time step using the filter state propagation

equations but similar results were seen.

Four different orbits with varying apoapses were considered. These include an apoapsis altitude

of 5-, 10-, 15-, and 20 ×103 km, where the spacecraft was placed into this orbit with the apoapsis

accuracy found in Austin et al. [30]. From this paper the spacecraft was placed into an orbit

with an apoapsis error described in Table 4.5. Through experimentation it was found that the

magnitude of the standard deviation had little impact on the end errors.

Table 4.5: Apoapsis Error Standard Deviation [30]

Apoapsis (×103 km) Standard Deviation (km)

5 243
10 303
15 425
20 486

From the MC simulation Figure 4.12 presents the periapse error after the burn was performed

with respect to an intended trajectory. Here similar results between the EKF, UKF, FLS, and

MHE can be seen. The PF can provide lower errors but provides inconsistent results. Comparing

the errors at various orbits similar trends are observed but a reduction in errors as the orbit

gets larger is had. From previous results seen in Section 4.1.3 as the apoapsis is increased a
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reduction in velocity errors for the first orbit is seen. The increased apoapsis allows more time

for convergence, meaning the required ∆v can be more accurately found.

It was desired to perform the burn at apoapsis, Figure 4.13 presents the radial error between

the true apoapsis and where the burn was actually performed due to the state estimates. Here

near identical errors are seen between each filter. This is because even though the position

errors vary for each estimator, the results are close enough that the estimated time to apoapsis

is similar resulting in comparable errors. Comparing the errors for each apoapsis an increase in

errors is seen as the apoapsis increases due to increased measurement noises as the spacecraft

is further from Mars, resulting in less accurate estimates. This trend was observed in Section

4.1.3 and Section 3.5.

Even though each state estimator provided similar errros in Figure 4.13, Figure 4.14 presents

the radial error from each state estimator at the time the burn was performed. Here the

variation in estimates is seen. Again similar results are noted between the EKF, UKF, FLS,

and MHE, with the PF providing the worst errors. However, the errors are close enough to

place the spacecraft into similar orbits. The estimated errors are smaller than the apoapsis

error, meaning that the method used to calculate the burn, seen in Figure 4.11, has errors

associated and is not perfect. The equations used to find the time to apoapsis and ∆v do not

take into account the perturbations due to Mars mass distribution which are considered in the

simulation. Recalculating ∆tap at each time step was thought to reduce some of these errors

but the method is not perfect. This may also explain why the PF was able to provide better

results in Figure 4.12 at times. With the variation in PF estimates previously seen some of

the estimates may get “lucky” so to speak and provide velocity estimates that better place the

spacecraft into the desired orbit.

By looking at the errors from the MC trials the delay in state estimates does not impede on

orbital maneuvers, however provides no improvement either. With the FLS and MHE providing

errors that are almost imperceptible from the EKF and UKF. As well, the navigation framework

is accurate enough to be able to place a nanosatellite into a desired elliptical orbit with a high

degree of accuracy.
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Figure 4.12: Periapse error after burn.
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Figure 4.13: Apoapsis error at time of burn from spacecrafts true position.
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Figure 4.14: Apoapsis error at time of burn using filter estimates.
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4.3 Chapter Summary

In this chapter two reference scenarios were looked at. The first involved an elliptical orbit

around Mars. In this scenario the spacecrafts true trajectory includes Mars mass perturba-

tions up to J4, while the truth dynamics only include up to J2. The sensor misalignment error

remained constant over time and the spacecraft’s attitude error was modeled as a first order

system driven by random noise. Five OpNav observations were again considered for the ellip-

tical trajectory, the outline of each observations can be found in the previous chapter. The

availability of each measurement was also explored. For an apoapsis of 10, 000 km only really

the attitude of the spacecraft and displacement vector of Mars are observed but as the apoapsis

is increased more measurements become available. To compare each state estimator a single

run trial was first performed followed by a series of MC trials. From the trials it was seen

that the FLS and MHE improved the mean RSS position and velocity error. The UKF showed

slight benefits over the EKF, and the PF had the highest estimation errors. Besides the PF

each sensor showed similar performance in estimating the sensor misalignment error, and each

state estimator provided similar results when estimating the attitude error. When comparing

the run times with respect to the EKF the PF had the highest computational cost, followed by

the MHE, then the FLS and finally the UKF.

The second scenario compared each estimator in timing an orbital maneuver to raise the periapse

of the spacecraft out of the Martian atmosphere after an aerocapture maneuver. The same

scenario framework as the elliptical trajectory was used, this includes the frames of reference,

dynamic and measurement models. As well, the actual aerocapture was not modeled but rather

it was assumed that the spacecraft could be placed into an elliptical trajectory with the accuracy

seen in a previous study. A series of MC trials was used to assess the performance of each

state estimator. When looking at the estimation errors it was found that besides the PF each

estimator provides a similar periapse error after the burn was performed. As well, even with the

variation in estimates the burn was performed at roughly the same location. This means that

the delay is estimates does not have an affect on real time events but no improvement either.
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Chapter 5

Other Applications of Autonomous

Optical Navigation

In this chapter Section 5.1 first explores the performance of the EKF, UKF, FLS, and MHE

in estimating the mass of Mars through augmenting the state matrix with the gravitational

parameter. The PF was excluded due to poor estimates seen when estimating a constant value,

as seen in previous sections. Next, Section 5.2 outlines the final scenario in which each state

estimator was compared. Here the spacecraft was placed into a LEO, where the only observations

were of satellites in a geostationary orbit (GEO).

5.1 Planetary Mass Estimation

Parameter estimation of a system can be done by augmenting the state vector to provide es-

timates based on the dynamic, observation and estimate evolution over time. This section

provides a preliminary study on examining the effectiveness of planetary mass estimation using

horizon based OpNav. It is desired to estimate a bodies mass for both scientific reasons, and to

improve the dynamic models which in turn will improve future state estimates. A comparison

of the EKF, UKF, FLS, and MHE for estimation is also made. The mass of Mars was chosen

as it is well known but the same concepts can be applied to other planetary bodies, particularly

to small bodies.

A body’s mass can be found by observing the affect it has on a satellites trajectory or moon

that is within its gravitation pull. For example, the Swarm Flyby Gravimetry mission proposes

measuring a small body masses by observing the trajectory of a collection of probes around the
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body [32]. While, Rosenblatt et al. [33] estimated the masses of Phobos and Deimos by looking

at two years worth of tracking information of the Mars Express satellite. Another method is

that given any uncertainty in the mass estimate the state vector can be augmented with the

gravitational parameter to find improved estimates of µ from which the mass can be found

using µ = GM , where M refers to the mass of the planet, and G the gravitational constant

equal to 6.674× 10−11m3kg−1s−2 [31]. This method requires an initial estimate however. Due

to the potential magnitude of the mass value compared to the other states it was found that

directly augmenting the state vector with the mass lead to instability, and thus it was better to

estimate the gravitational parameter. Using the previously defined state vector the augmented

vector looks like

x =
[

rTP vTP ψT φT µ
]T

(5.1)

The EKF, UKF, FLS, and MHE will be compared using the previously defined elliptical orbit

with an apoapsis altitude of 10, 000 km and the hyperbolic trajectory around Mars to estimate

Mars mass. The PF algorithm used was excluded as it was found too have poor convergence

when estimating a constant, as seen in previous chapters when estimating the sensor misalign-

ment error. Estimating a constant can cause particle collapse to a single value due to resampling,

it was attempted to use the roughening step to provide variance to the particles but poor esti-

mates were still seen. Further tuning may resolve this issue however.

5.1.1 Simulation Results

Using the scenario parameters for the hyperbolic and elliptical scenario defined in Chapter 3 and

Chapter 4 two Monte Carlo simulations of 500 trials were run to estimate Mars mass. Figure

5.1, and Figure 5.2 present the fractional error, Eq. (5.2), over the simulation for the hyperbolic

and elliptical trajectory respectively. In the hyperbolic scenario a initial uncertainty (1− σ) of

1 × 104 km3/s2 was used to initialize the gravitational parameter in the MC trials. While, for

the elliptical scenario a uncertainty of 5×104 km3/s2 was used. It was found that the hyperbolic

scenario was more tolerant to initial errors in estimating the gravitational parameter, this may

be due to the fact that the state estimators had more time to converge before Mars gravitational

force had a large affect on the trajectory compared to the elliptical orbit. This is noted in Figure

5.1 with the lack of convergence for the first few hours of the simulation. It should be noted

that for the elliptical orbit the simulation was initialized at periapse, and every time periapse is

reached no measurements are available. This is the reason for the zero change or odd behavior

in estimating the gravitation parameter. Lastly, the hyperbolic trajectory spans about 58 hours,
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while the elliptical trajectory spans about 34 hours.

Fractional Error =
|µEstimated − µTrue|

µTrue
(5.2)

Comparing each estimator slight differences can be seen, such as the MHE providing a slightly

quicker convergence in the hyperbolic trajectory, however each estimator provides a similar

performance. One cause of the similar performance is the fact that the gravitational parameter

does not appear in the measurement sensitivity matrix. In the MC trials the estimators are able

to provide an accuracy up to about ±1 km3/s2 when estimating the gravitational parameter

in these scenarios. This accuracy was found to be appropriate when looking to provide orbital

determination, with errors on par with those seen in Chapter 3 and Chapter 4.
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Figure 5.1: Hyperbolic orbit mean fractional mass error.
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Figure 5.2: Elliptical orbit mean fractional mass error.

5.2 Geostationay Observations

Fesq et al. [34] describes using the ASTERIA CubeSat to explore using Autonav for orbit

determination by passively observing objects in space. One potential set of objects mentioned

are satellites in a geostationary orbit (GEO). This section provides a preliminary study on using

only observations of GEO satellites for orbit determination through OpNav. This study also

provides another scenario to compare the performance of the EKF, UKF, PF, FLS and MHE.

GEO is a geosynchronous circular orbit above Earth’s equator with an altitude around 35,786

km. This orbit currently has more then 400 satellites each placed within slots. These slots are

two degrees of longitude with each satellite operating within a box of 0.1 degrees of longitude

[35]. This positioning means that pointing a camera towards GEO will likely observe multiple

satellites. As the locations of these satellites are well known, the spacecraft’s position and

velocity could potentially be found through observing these satellites. The algorithms used to

identify each satellite was not looked at but rather it was assumed that the positions of each

satellite could accurately be determined.

Many previous studies have looked at many other forms of observations to provide autonomous

OpNav in various planetary Earth orbits. For example, Straub and Christian [36] explored

using observed coastlines for orbit determination and an EKF was used for state estimation.
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Table 5.1: Earth Orbit Frame Identification

Frame Symbol Centre X-Axis Z-Axis

Inertial E Earth Along equatorial plane Along spin axis
Orbital O Spacecraft Angular momentum direction of S/C Outward radius
Sensor S Spacecraft Increasing columns Boresight

As well, orbit determination through landmark tracking has been heavily researched, such as

by Kau [37] or Schlee and Toda [38] where an EKF was used in both studies.

In this chapter, Section 5.2.1 provides an overview of the scenario, reference frames and state

variables, Section 5.2.2 and Section 5.2.3 provide an overview of the dynamic and measurement

models used, and Section 5.2.4 provides the results from a set of MC trials.

5.2.1 Reference Mission

The spacecraft was placed into a planetary orbit around the Earth where two orbits were

considered, a equatorial and a sun-synchronous orbit. Table 5.1 outlines the set of frames that

will be used throughout this section.

Looking at the table Frame-E represents an inertial frame with its center located at the center of

mass of the Earth, its E3 axis aligned with the spin axis, and the E1 axis pointing in an arbitrary

direction along the equatorial plane. Frame-E is where the spacecrafts Cartesian position rE

and velocity vE are defined within. The spacecraft’s orientation is defined with respect to an

orbital frame denoted O with its origin located at the spacecraft. The O3 axis points in the

direction of the outward radius, and the O1 axis in the direction of angular momentum of the

spacecraft. The rotation from Frame-E to Frame-O is then found as

COE =
[

E1O E2O E3O

]T
(5.3)

where

E1O =
r×EvE∥∥∥r×EvE

∥∥∥ , E3O =
rE
‖rE‖

and E2O
= E×3OE1O

(5.4)

A sensor frame denoted as S is used to define where the sensor, and inherently the spacecraft,

is pointing. The S3 axis points along the boresight of the sensor, and the S1 axis in the

direction of increasing columns. A pointing rule was used to determine how the spacecraft

was orientated throughout the mission. It was assumed that the spacecraft was always able to
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GEO

Pointing RuleS/C Orbit

Figure 5.3: Pointing rule used to point spacecraft at point along GEO with same azimuth
angle.

point at a place along the geosynchronous orbit with a high degree of accuracy. This means

that the attitude determination and control system (ADCS) is able to perfectly follow a desired

attitude. In actuality there would be some attitude error, however, as it is a preliminary study

on examining the feasibility of using satellites in GEO for orbit determination it is thought to

be an appropriate assumption. If this assumption is not made then in the case of initial state

errors the observations may be lost and the state estimates do not converge as the satellite

is unable to reorientate itself without measurements. The pointing rule involves pointing the

satellite at a point along the GEO with roughly the azimuth angle. This is illustrated in Figure

5.3.

For both orbits the rotation between Frame-E and the desired orientation of Frame-S can be

directly found by using an axis angle rotation of the form θ = θa. The axis of rotation a is in

the direction perpendicular to the point on the GEO from the spacecraft in Frame-E and the

E3 axis. Where, gE is the location of this point in Frame-E.

a =
(gE − rE)×E3∥∥gE − rE)×E3

∥∥ (5.5)

Then the desired rotation angle can be described by the angle between both vectors

θ = arccos(
(gE − rE) · E3∥∥(gE − rE)

∥∥ ‖E3‖
) (5.6)

The rotation matrix can then be found using Rodrigues formula.

CSE = cos θI3×3 + (1− cos θ)aaT − sin θa× (5.7)
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Lastly, the state matrix can be composed. As only the spacecrafts position and velocity are to

be estimated this matrix is

x =

rE

vE

 (5.8)

5.2.2 System Dynamics

The spacecraft was assumed to undergo unpowered flight throughout its orbit, where the only

accelerations acting on the spacecraft are those caused by the gravitational force of the Earth.

The true position and velocity are propagated usingṙE

v̇E

 =

 vP

−µEarth
r3

rE + aJ2

 (5.9)

Here, aJ2 is used to model the perturbations caused by the oblateness of the Earth modeled up

to the J2 zonal harmonic, for the Earth J2 = 0.00108263. A common simplified model for these

perturbations is seen below [31].

aJ2 = −3

2

J2µEarthR
2
Earth

r4


(1− 5( r3r )2) r1r

(1− 5( r3r )2) r2r

(3− 5( r3r )2) r3r

 (5.10)

In the onboard estimator only a two body problem was considered. A process noise wv with

covariance Qv is added to partially account for the modeling error. The dynamic model used

in the estimators is then

ẋ(t) = f
(
x(t), t

)
+ w =

 vP

−µEarthrP
r3

+

 03×1

wv

 (5.11)

With the full process noise covariance matrix equal to

Q =

03×3 03×3

03×3 Qv

 (5.12)
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5.2.3 Measurement Model

A set of m satellites in GEO were uniformly distributed around the Earth and simulated for

observation. In this study it was assumed the position of each satellite within the FOV of the

sensor could accurately be determined. The position of each satellite m in Frame-E is known

and denoted as sE,m. The position of each satellite with respect to the spacecraft in the sensor

frame can then be found as

sS,m = CSE(sE,m − rE) (5.13)

For observations a pinhole camera model was used, where the image frame axes align with S1

and S2. Given the locations of each satellite with respect to the spacecraft in Frame-S the

measurement model can be found in Eq. (5.14), where the measurements are scaled in terms of

pixels given the sensor pixel dimension δpix. Here j refers to each observed satellite in view of

the sensor.

z̃j =
f

δpix

 sS,j,1/sS,j,3

sS,j,2/sS,j,3

+ νz (5.14)

Here, f refers to the focal length of the sensor, and νz is the measurement noise. The measure-

ment noise covariance matrix is based on how accurately the location of each satellite in the

sensors field of view can be determined. For this study each satellite is considered a point source

with a coordinate uncertainty of σz = 0.2 pixels. The measurement noise covariance matrix is

seen below. Here r is the total number of measurements.

Rz,k = σ2
zI2r×2r (5.15)

The measurement sensitivity matrix can then be found by applying the chain rule to Eq. (5.14).

Hj =
∂zj
∂sS,j

∂sS,j
∂rE

(5.16)

where,

∂zj
∂sS,j

=
f

δpix

 1
sS,j,3

0 − sS,j,1
s2S,j,3

0 1
sS,j,3

− sS,j,2
s2S,j,3

 (5.17)

∂sS,j
∂rE

= −CSE

[
I3×3 03×3

]
(5.18)
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Table 5.2: Earth Orbit Scenario Parameters

Equatorial Orbit Sun-Synchronous Orbit

Initial Inclination 0◦ 98◦

Altitude 800 km 800 km
Starting Position [7717.81 0 0]Tkm [7717.81 0 0]Tkm
Position uncertainty (1− σ), each axis 5 km 5 km
Velocity uncertainty (1− σ), each axis 0.01 km/s 0.01 km/s
Measurement update time 100 s 100 s
Velocity process noise (estimator only) Qv = 1× (10−5)I3×3 km2/s4 Qv = 1× (10−5)I3×3 km2/s4

5.2.4 Simulation Results

For both the equatorial and sun-synchronous orbit a Monte Carlo simulation of 1000 trials was

run. Table 5.2 outlines the parameters for each trial, with the initial state error being derived

from the initial covariance matrix. For this simulation a set of 200 satellites in GEO with

slightly varying orbital parameters were simulated, leading to on average 7.3 satellites observed

per time step. This number was somewhat arbitrarily chosen, and in actuality more satellites

would probably be observed. However, as a rather ideal scenario is already made this may

not be fully forthcoming of the potential results. As well, increasing the number of observed

satellites was seen to have little impact on the current results. The UKF was initialized with

α = 1 and κ = 0, the PF with 2000 particles, and the MHE and FLS with a window length of

15.

Figure 5.4 and Figure 5.5 present the mean RSS error in position and velocity for the equatorial

orbit in the MC trials. Here the MHE provides the lowest estimation error, followed by the

FLS. However, unlike in previous sections the PF provides errors that are better than both the

EKF and UKF, and equivalent to the FLS with respect to the velocity estimates. This is unlike

what has been seen in previous sections and may be due to either the simplified simulation or

its framework. Further tuning of the PF may further improve the results. Lastly, the UKF

improves estimates compared to the EKF.

Figure 5.6 and Figure 5.7 presents the mean RSS position and velocity error for the sun-

synchronous orbit respectively. In the position errors there are large oscillations due to the

two body forces. There is then the smaller oscillations due to the J2 accelerations on the space-

craft. The larger oscillations occur every quarter of an orbit, while the small ones are seen in

between. These oscillations can also be seen in the velocity estimates and the high frequency of

them is caused by the J2 accelerations. To add a large dip in position estimates is seen when the

spacecraft is furthest from the equatorial plane. This is thought to be caused by a decrease in

the speed of the spacecraft. Comparing each estimator similar results are seen in the equatorial
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orbit. However in this case the EKF, UKF, and PF appear to provide estimates that are similar,

especially in position. This is unlike in the equatorial orbit where a clear variation in estimates

was seen.

Looking at the magnitude of the errors produced by each estimator it can be seen that they

are not low enough to provide precise orbit determination, and are not comparable to other

methods of orbit determination. For example, Battistini [39] showed that through GPS onboard

a Cubesat the autonomous orbit determination system was able to achieve errors in position

and velocity < 1 m and < 1 cm/s respectively. However, satellites in GEO could serve as

another form of observation. Some of the estimation error does lie in only considering a two-

body problem in the onboard estimator, adding the J2 accelerations to the filter dynamic model

still do not produce errors low enough to be comparable with other methods however.

Finally, the computation time of each estimator was compared to the reference EKF. Here

the UKF, PF, FLS, and MHE took roughly 2.2-, 37.0-, 1.3-, and 4.1- times that of the EKF.

Improved estimates from the MHE come at a higher computational cost. The FLS provides

errors close to the MHE but with a large reduction in computation time. The PF has by far the

highest run time. Fewer particles could be used to reduce it but at the cost of higher estimation

errors.
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Figure 5.4: Equatorial orbit mean position error.
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Figure 5.5: Equatorial orbit mean velocity error.
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Figure 5.6: Sun-synchronous orbit mean position error.
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Figure 5.7: Sun-synchronous orbit mean velocity error.
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5.3 Chapter Summary

In this chapter the first section explored estimating the mass of Mars by augmenting the state

matrix with the gravitational parameter. The PF was excluded due to poor results seen when

estimating a constant. Both the hyperbolic and elliptical orbit were simulated, where a series of

MC trials was run to assess the performance of the EKF, UKF, FLS and MHE. Each estimator

displayed a similar performance when estimating Mars mass, with only slight differences seen

in the mean fractional mass error between each estimator. The accuracy seen was also found to

be appropratite for orbital determination, with errors similar to those found in Chapter 3 and

Chapter 4 for the hyperbolic and elliptical trajectory.

The next section placed the spacecraft into a LEO, where satellites in GEO were used as

observations. In this scenario the spacecrafts state only included its position and velocity, with

the true dynamics including Earth’s J2 term and the filter dynamics only considering a two

body problem. For the observation model a pin-hole camera model was used. A series of

MC trials was run to assess the performance of each state estimator. In the simulation two

orbits were considered: an equatorial orbit, and a sun-synchronous orbit. In the equatorial

orbit the MHE provided the lowest estimation errors, followed by the FLS. The PF provides

equivalent estimation errors as the UKF in regards to the position estimates and improvements

when estimating the velocity. Finally, the EKF had the highest estimation errors. In the syn-

synchronous orbit the MHE again provided the best estimation errors followed by the FLS. The

UKF and PF both provided improvements over the EKF, however the estimation errors were

closer than in the equatorial orbit. When looking at the magnitude of the errors it was seen that

they are not low enough to provide precise orbit determination, falling short of other methods

to perform the same task.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis compared several nonlinear state estimators to perform autonomous OpNav using

nanosatellite class instruments. The state estimators included: an extended Kalman filter as a

reference solution, an unscented Kalman filter, a particle filter, a fixed-lag smoother, and moving

horizon estimation. To gauge the performance and convergence properties of each estimator

three reference trajectories were considered: a hyperbolic approach and elliptical orbit around

Mars using observations of Mars and its moons, and a LEO using observations of only satellites

in a GEO. Two further studies were applied to the Mars trajectories. The first looked at timing

an orbital maneuver to raise the periapse of a small satellite out of the Martian atmosphere after

an aerocapture maneuver. The other involved estimating the mass of Mars through augmenting

the state matrix with Mars gravitational parameter. MC simulations were then used to validate

the results.

Conclusions can be drawn when directly comparing each estimator. In general when purely

looking at orbit determination adding a delay into the estimation process can improve the

results, this was especially seen when looking at the position and velocity estimates for the

hyperbolic Mars approach and both LEO scenarios. Table 6.1 shows the mean RSS position

and velocity errors from both Mars and LEO trajectories in the MC trials. Here the MHE and

FLS have the lowest errors, with the MHE having slightly better results. Slight improvements

were seen in the elliptical trajectory from implementing the MHE and FLS but as the apoapsis

was increased these improvements grew smaller. To add the UKF provided better if not similar

results with respect to the reference EKF in the Mars orbits, while lower errors were seen in

both LEO scenarios.
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Table 6.1: Mean RSS Errors in Position and Velocity for each Trajectory

Hyperbolic Trajectory Elliptical Trajectory LEO

Pos. (km) Vel. (m/s) Pos. (km) Vel. (m/s) Pos. (km) Vel. (m/s)

EKF 36.47 3.89 0.85 0.67 2.21 6.23
UKF 35.96 3.88 0.84 0.67 1.81 5.35
PF 52.00 6.60 1.64 1.17 1.79 4.93
FLS 23.75 2.61 0.55 0.48 1.27 3.98
MHE 23.02 2.03 0.31 0.21 1.08 2.42

The PF provided poor results in both the hyperbolic and elliptical Mars trajectories. The PF

provided poor results for a few reason, for one it was found sensitive to the initial distribution,

if no particles fell within “good” regions the PF estimates were seen to diverge. As well,

the velocity estimates did not appear in the likelihood function which may have lead to a

slower convergence as there was no direct information on how good the estimate was. Lastly,

there was difficulting in estimating a constant. Any variation in the estimates came from the

roughening step which was seen to cause erratic behavior. This was seen in estimating the

sensor misalignment error and why the PF was excluded when the estimators were compared

for estimating the mass of Mars. The PF did perform well in the LEO simulation albeit.

Producing lower errors than the UKF and EKF, and results similar to the FLS in the equatorial

Earth orbit. While, in the Sun-synchronous orbit the PF provided estimates similar to the

UKF. The reason for the improved performance in the LEO may have been due to its simpler

framework and no constant state variables.

It should be noted the effect that the delay in state estimates may have in practice. This was

explored in Section 4.2 where each state estimator was compared for timing an orbital maneuver.

Here it was seen that the results from the FLS and MHE were comparable to the EKF and

UKF, meaning the delay has little impact on orbital maneuvers, however no improvement either.

Lastly, when estimating the mass of Mars slight improvements on the time to convergence were

seen through the MHE but each estimator converged to similar values. Again it should be noted

that the PF was excluded for this trial.

The mean computational time of each estimator relative to the EKF can be seen in Table 6.2.

It can be noted that to achieve the benefits of the MHE in each case an increased computation

time is needed, almost double the time of both the UKF and FLS. The FLS can provided

similar errors in the Mars orbits and slightly higher errors in the LEO’s but with a reduced

computational cost. For small satellites the available computational power can be a limiting

factor making this an important statistic. It should be noted that these times are also dependent

on the measurement and dynamic models used and are not the same for each case.
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Table 6.2: Mean Computation Time Relative to EKF

Mars Trajectories LEO

UKF 2.6 2.1
PF 50.1 37.0
FLS 3.5 1.3
MHE 6.7 4.1

Without a specific mission in mind it can be difficult to assess how each state estimator will

perform, and if the increased computational burden is warranted. However, the conducted

studies showed an improvement in state estimation compared to the conventional EKF through

other methods of nonlinear estimation. These results could be applied to other mission scenarios,

sensors and measurements to further enable nanosatellite instruments and missions.

6.2 Future Work

This section looks a possible future directions that this research could take. To begin, in regards

to state estimation future work would involve exploring the effect the horizon length for the MHE

and FLS has on estimates. Studies were performed to find an optimal window length however a

more in depth analysis could be made. To add improving the overall computational performance

of the MHE, and PF could be looked at. An effort was made into making efficient code, however

it is felt it could be improved. For example, for the MHE better sparsity management could

futher improve the computational performance. As well, different forms of the arrival cost could

be considered in the MHE to further improve estimates. Lastly, as noted in the previous sections

high estimation errors were seen from the PF state estimates, further effort could go into tuning

the PF to try and improve estimates or finding better ways or strategies to estimate the sensor

misalignment constant, consequently this would also look at parameter estimation.

For each orbit further disturbances could be included to better look at the expected performance

of each estimator in practice. Just looking at examples of disturbances with a magnitude that

may disturb the spacecrafts trajectory in each orbit, solar radiation pressure could be added

to the hyperbolic trajectory. While, for the elliptical trajectory around Mars gravitational

perturbations due to the Sun and Jupiter and lastly, for the LEO perturbations due to the

Moon and Sun could be considered.

The parameter estimation simulation performed in Chapter 5 could be extended to observe the

performance with regards to smaller bodies, such as planets or asteroids, which would more

likely want to be estimated using a small satellite.
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Lastly, in Chapter 5 a more simplistic simulation was performed. Further work could go into a

more in depth analysis of the scenario. As well, further observations could be added into the

scenario to consider the affect that observations of satellites in GEO may have as a secondary

observation.
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Appendix A

Moving Horizon Estimation

Extensions

In this section the undefined terms in the smoothing formulation of the arrival cost seen in Eq.

(2.52) are presented. Partial derivatives of the describe dynamic and measurement models are

defined as

Fk =
∂f

∂xk
, Gk =

∂f

∂ωk
, Hk =

∂h

∂xk
(A.1)

The rest of these terms were derived in V. Rao et al. [19]. While they will be represented using

the notations seen in Tenny and Rawlings [40].

Y T−N+1
T−1 =



ỹT−N+1

ỹT−N+2

ỹT−N+3

...

ỹT−1


(A.2)

ON−1 =



HT−N+1

HT−N+2FT−N+1

HT−N+3FT−N+2FT−N+1

...

HT−1FT−2FT−3 · · ·FT−N+1


(A.3)
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WN−1 = R +MQMT (A.4)

where, for i, j ≤ T − 1

Mi,j =


0 if j ≥ i

HiGi if j = i− 1

HiFi−1Fi−2 · · ·Fj+1Gj otherwise

(A.5)

R =


RT−N+1 0 · · · 0

0 RT−N+2
. . .

...
...

. . . 0

0 0 · · · RT−1

 (A.6)

Q =


QT−N+1 0 · · · 0

0 QT−N+2
. . .

...
...

. . . 0

0 0 · · · QT−1

 (A.7)

The term WN−1 may be a rather extensive but say for example T = 4 and N = 4 then

W3 =


R1 0 0

0 H2G1Q1G
T
1 HT

2 + R2 H2G1Q1G
T
1 FT

2 HT
3

0 H3F2G1Q1G
T
1 HT

2 H2G1Q1G
T
1 FT

2 HT
3 + H3G2Q2G

T
2 HT

3 + R3

 (A.8)
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Appendix B

Mars Measurement Models

A overview of each measurement model is outlined below, refer to Enright et al. [22] for a more

in depth derivation. To begin, the measurement sensitivity matrix for each measurement is the

partial derivative of the measurement model with respect to each state variable.

Hj =
[

∂hj
∂rP

∂hj
∂vP

∂hj
∂ψ1

· · · ∂hj
∂φ

]
(B.1)

Combining each measurement the final matrix becomes

Hk =


H1

H2

...

 (B.2)

B.1 Attitude Measurements

In practice a star tracker can provide an estimate of the attitude of a spacecraft by matching

visible stars in the field of view (FOV) of the sensor against their position in a star catalog. For

this thesis an attitude error pseudomeasurement, ∆, was used to represent the first-order error

rotation vector between the reference and actual attitude. The ideal ∆ vector can be found by

solving for ∆ and then taking the RHS matrix elements:(
I−∆×

)
= C (ψ) C

(
C̄SBφ

)
≈
(
I3×3 −ψ×

)
C (φS) (B.3)
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To account for the star tracker accuracy a zero mean Gaussian noise ν∆ is added to this ideal

value to produce the noisy attitude error pseudomeasurment.

z̃∆ = ∆ + ν∆ (B.4)

To find the estimated pseudomeasurment ∆̂ the estimated attitude, φ̂, and sensor misalignment,

ψ̂, error are used, where ∆̂ is solved for and the RHS matrix elements are taken.(
I− ∆̂

×)
≈
(
I3×3 − ψ̂

×)
C
(
φ̂S

)
(B.5)

To find the partials of the measurement model the pseudomeasurment can be approximated as

a function of the sensor misalignment error and the attitude error rotated into the sensor frame.

Therefore, it can be shown that

∆ ≈ ψ + φS = ψ + C̄SBφ (B.6)

Leading to
∂∆

∂ψ
= I3×3 (B.7)

∂∆

∂φ
= C̄SB (B.8)

The attitude error covariance matrix can be seen below, with σbs representing the error in the

cross-boresight direction, and σroll the roll error.

R∆ =


σ2

bs 0 0

0 σ2
bs 0

0 0 σ2
roll

 (B.9)

B.2 Direction Measurements

The direction vector of Phobos and Deimos can be found by their coordinates on the star tracker

detector plane. This measurement was modeled by first finding the true displacement vector sS

between the spacecraft and each moon, where ρP is the target’s position. JPL’s SPICE toolbox

was used for all ephemeris calculations [41]. The true displacement vector can be modeled as

sS = CSP (ρP − rP ) (B.10)
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Plugging in the state estimates leads to estimated displacement vector ŝS .

ŝS ≡ ĈSP (ρP − r̂P ) (B.11)

Assuming a pinhole model for the camera the direction measurements z̃ can be seen below.

With the estimated direction measurement ẑ found by using ŝS .

z̃S =
f

δpix

 sS,x/sS,z

sS,y/sS,z

+ νz (B.12)

The nonzero partials derivatives can be seen as

∂zS
∂rP

= − ∂z

∂sS
CSP (B.13)

∂zS
∂ψ

=
∂z

∂sS

∂sS
∂ψ

(B.14)

∂zS
∂φ

= −∂zS
∂sS

CSB
∂sB
∂φ

(B.15)

For each moon, Phobos and Deimos, the direction measurements depend on the star trackers

ability to estimate the centroid of each moon.

Rmoon = σ2
moonI2×2 (B.16)

The value σmoon is approximated using Figure B.1 which shows how the Sinclair Interplane-

tary ST-16RT star tracker centroid error varies with brightness, the photometric brightness of

planetary bodies

V = V (1, 0) + 2.5 log10

(
r2r2

Sun

P (χ)

)
(B.17)

and from Lester et al. [42] the phase function

P (χ) =
2

3

[(
1− χ

π

)
cosχ+

1

π
sinχ

]
(B.18)

From above V (1, 0) is the tabulated visual magnitude at opposition and a distance of 1 au, for

each moon the values VPhobos (1, 0) = 11.8 and VDeimos (1, 0) = 12.89 were used [43]. As well,

rSun is the distance between Mars and the Sun, and r is the estimated distance from Mars.

76



-1 0 1 2 3 4 5 6

Visual Magnitude

10-2

10-1

100

101

1
-

 C
e

n
tr

o
id

 E
rr

o
r 

(p
ix

e
ls

)

Figure B.1: Approximate relationship between visual magnitude and centroid error for the
ST-16RT [22].

B.3 Position Measurements

The Mars displacement vector represents a pseudomeasurement that is derived from the size

and position of the Mars disk in the field of view of the sensor. Enright et al. [22] provides a

full overview on estimating the displacement vector from the dector-plane observations, however

written in terms of the filter state the pseudomeasurement is simply a rotation of the spacecrafts

position into Frame-S. The noisey pseudomeasurement is

z̃M = −CSP rP + νr (B.19)

With the estimated Mars vector being

zM = −ĈSP r̂P (B.20)

with partials
∂zM
∂rP

= −CSP (B.21)

∂zM
∂ψ

= −∂rS
∂ψ

(B.22)

∂zM
∂φ

= −CSB
∂rB
∂φ

(B.23)
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The Mars position covariance matrix was developed by Hikes et al. [44]. The covariance matrix

can be seen as

RM = R


4

2ξ−sin(2ξ) 0 0

0 ξ
D

√
r2−r2M sin ξ

DrM

0

√
r2−r2M sin ξ

DrM

(r2−r2M)(2ξ+sin(2ξ))
4Dr2M

 (B.24)

where,

R =
σ2

pixr
4δpixξ

Nlimbf2
(
r2 − r2

M

) (B.25)

and

D =
ξ

4

(
2ξ + sin (2ξ)

)
− sin2 ξ (B.26)

Rs is originally in terms of a frame aligned with cusp and limb directions but can be brought

into the S-frame for use in the filter.

RM,S = CSTC3 (β) RsC
T
3 (β) CTS (B.27)

Further terms include δpix as the pixel spacing, f the focal length of star tracker, ξ the half-width

angle of the illuminated limb, Nlimb the number of points extracted from the limb curve and

found as Nlimb = 2ξ
kδpix

, rM is the radius of Mars, and σpix is the terminator noise parameter.

B.4 Phase Angle Measurements

The illuminated fraction of Mars can be used to find the phase angle χ between the spacecraft,

the Sun and Mars [45]. Written in terms of state variables

z̃χ = arccos

(
rTPρSun,P

rPRSun,P

)
+ νχ (B.28)

The partial derivative can be taken as

∂zχ
∂rP

= −

(
ρTsun,P

r3 sinχ

)(
r2I3×3 − rP rTP

)
(B.29)

The covariance matrix for the phase angle measurements is described in the next section.

78



0 1 2 3 4 5

Range (km) 10
5

10
-4

10
-3

10
-2

10
-1

1
-

 E
rr

o
r 

(R
a
d
ia

n
)

Figure B.2: Measurement errors for phase and terminator angles [22].

B.5 Terminator Measurements

The terminator angle β is defined as the orientation of the terminator ellipse on the imaged

disk of Mars in the field of view of the sensor. The major axis of the terminator ellipse is

perpendicular to the plane that contains the spacecraft, Sun and Mars, and thus must point in

the direction

κP = −r×PρSun,P (B.30)

The observed terminator angle β is caused by the projection of this direction vector into the

T -Frame. While, the estimated terminator angle β̂ is simply found using the estimated state

vector.

z̃β = atan(
κT,y
κT,x

) + νβ (B.31)

where,

κT = CTSCSPκP (B.32)

The partial derivative is rather extensive, therefore refer to Enright et al. [22] for its derivation.

Lastly, the covariance matrix for the phase Rχ and terminator Rβ measurements were found

from an empirical method by generating interpolants to estimate the measurement errors under

various conditions. Simulated images were generated, then analyzed and error statistics were

found from the estimates of the phase and terminator angles to generate these interpolants.

Figure B.2 shows the 1− σ measurement errors used for both the phase and terminator angles

found from the empirical method.
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