
THE METHODOLOGY OF SYNTHESIS OF DYNAMICALLY

RECONFIGURABLE COMPUTING SYSTEMS WITH TEMPORAL

PARTITIONING OF HOMOGENEOUS RESOURCES

by

Valeri Kirischian

B.A.Sc. University of Toronto 2004

M.A.Sc. Ryerson University 2005

A dissertation

presented to Ryerson University

in partial fulfillment of the

requirements for the degreee of

Doctor of Philosophy

in the program of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2010

Copyright ©2010 Valeri Kirischian

PIWP£IIY OF->-­
RYEII~ON UNlVLtlS1TY LmftArW

Author's Declaration

I hereby declare that I am the sole author of this thesis.

I authorize Ryerson University to lend this thesis to other institutions or indi-

viduals for the purpose of scholarly research.

Signed:_ Date:
----,p"....-_.

Valeri Kirischian

I further authorize Ryerson University to reproduce this thesis by photocopy­

ing or by other means, in total or in part, at the request of other institutions or

individuals for the purpose of scholarly research.

Signed
, --~--------_/

ValeriKi~n

Date: t1 ay S) 2() /0

Acknowledgements

I would like to express my sincere gratitude to Dr. Vadim Geurkov Associate Professor of

Electrical and Computer Engineering, Ryerson University. He has been my supervisor since

the beginning of my graduate studies at Ryerson University. Dr. Vadim Geurkov provided

me with many helpful suggestions, important advice and constant encouragement during the

course of this work. My keen appreciation goes to Pil Woo Chun, Jamin Islam and Sergiy

Zhelnakov for their valuable assistance in the field.

I would like to acknowledge the financial support from the following organizations: the

National Science and Engineering Research Council (NSERC), the Ontario Centres of Ex­

cellence (CITO), Material and Manufacturing Ontario (MMO), MDA Space Missions, CMC

Microsystems, Unique Broadband Systems (UBS), Xilinx Corporation and the Department of

Electrical and Computer Engineering at Ryerson University for their financial support of this

work. I also want to thank Jim Koch, Jason Naughton, and Daniel Giannitelli for technical

support during my studies at Ryerson University.

I would like to express special thanks to my wife Irina and my son Ivan, who helped me to

concentrate on completing this dissertation and supported me during the course of this work.

Finally, my special appreciation goes to my parents who encouraged and supported me during

my studies in graduate school.

Abstract

The Methodology of Synthesis of Dynamically Reconfigurable Computing Systems with

Temporal Partitioning of Homogeneous Resources

Valeri Kirischian

Doctor of Philosophy

Electrical and Computer Engineering

Ryerson University 2010

The main motivation factors for the proposed research were the increase of cost-efficiency

of FPGA based systems and the simplification of the design process. The first factor is op­

timization of design in mUlti-parametric constraint space. The second factor is the design ,

of reconfigurable systems based on higher level of abstraction in a form of macro-functions
<

rather than conventional HDL primitives. Main goal of this work was to create a methodology

for automated cost-effective design synthesis of FPGA systems by utilizing temporal parti­

tioning concept. Temporal partitioning' provides powerful mechanism that allows to design

cost-effective multi-parametrically optimized architectures: Another feature of these architec­

tures is the ability for run-time self-restoration from hardware faults. As the result of the pro-

posed research this methodology was created and successfully verified on the first prototype of

Multi-mode Adaptive Reconfigurable System (MARS) with embedded Temporal Partitioning

Mechanism (TPM). A special CAD software system was developed for automated application

programming, automated task segmentation, and further high-level synthesis of segment spe­

cific processors (SSPs). Several novel methodologies were proposed, developed, and verified

including: a methodology for creation of macro-operators (MOs) and associated set of opti­

mized virtual hardware components (VHCs); an automated task segmentation methodology

and synthesis of segment specific processors from the VHCs; methodology for integration of

fault tolerance mechanisms with the self-restoration capability. The latter mechanism made

possible the mitigation of transient and permanent hardware faults in run-time. The proof-of­

concept component of this research consists of implementation of the above methodologies

and mechanisms in the special software CAD system and verification on the experimental

setup based on the prototype of system with TPM (MARS platform). As the result, all the

developed methodologies and architectural solutions were tested and their effectiveness was

demonstrated.

,/

Nomenclature

ACG Architecture Configuration Graph

ALU Arithmetic Logic Unit

ASIC Application Specific Integrated Circuit

ASP Application Specific Processor

BISR Built-In-Self-Recovery

CAD Computer Aided Design

CF Compact Flash

CLB Configuration Logic Block

CPLD Complex Programmable Logic Device

CPR Cost Performace Ratio
:~" .

CRC Cyclic Redundancy Check

DAC Digital to Analog Converter . ,

DDR Double Data Rate

DLP Data Level Parallelism
~, '

~ 1 '

,";'

DRC Design Rule Check

DRCS Dynamically Reconfigurable Computing Systems

DSP Digital Signal Processing

EO Elementary Operator

ERSL Embedded Reconfigurable Systems Lab

FPGA Field Programmable Gate Array

FPOA Field Programmable Object Array

FPP Fast Passive Parallel

GUI Graphical User Interface

HDD Hard Disk Drive

HDL Hardware Description Language

ICAP Integrated Configuration Access Port

ILP Instruction Level Parallelism

lOB Input Output Block

IP Intellectual Property

LUT Look-up Table

LVDS Low Voltage Differential Signal

MAC Multiply Accumulate

MARS Multi-stream Adaptive Reconfigurable System

MIMD Multiple Instruction Multiple Data

MO Macro Operators

ars Off-The-Shelf

PCB Printed Circuit Board

PLA Programmable Logic Array

PLD Programming Logic Device

PROM Programable Read Only Memory

RCS Reconfigurable Computing System

RF Register Files

ROCR Riverside On-Chip Router

RTR Run-Time-Reconfigurable

SEDR Single Event Dielectric Rupture

SEE Single Event Effects

SEL Single Event Latch-up

SET Single Event Transient

SEU Single Event Upset

sa Sequencing Graph

SIMD Single Instruction Multiple Data

SPC Segment Partitioning Creator

/

"

SPM Segment Processing Module

SPR Spatial Partitioning of Resources

SRAM Static Random Access Memory

SSP Segment Specific Processor

TPM Temporal Partitioning Mechanism

TPR Temporal Partitioning of Resources

USB Universal Serial Bus

VHC Virtual Hardware Component

VUW Very Large Instruction Word

VME Versa Modular Eurocard

VPR Versatile Place and Route

, I ~ ./ .. ' ..

Contents

Acknowledgements

1 Introduction

1.1 Introduction..

1

1

1.1.1 Application Aspect .. 2

1.1.2 Miniaturization and Embedded Systems Aspect .

1.1.3 Technological Aspect. . . . ; . .

1.2 Motivation.

1.3 Objectives.

1.4 Contributions .'. .

1.5 Thesis Organization

2 Architectures of Reconfigurable Computing Systems (RCS)

2.1 Correspondence Between Workload Specifics and RCS Architecture

2

3

4

5

6

9

11

11

2.1.1 Workload Specification and Definition. 11

2.1.2 General Evolution of Computing Architectures ',' 13

2.1.3 ASIC and FPGA Static Stream Processors 16

2.2 Introduction: Concept and Benefits of RC,S . ~ '. . .. 17

2.3 Definition and Classification of ReS 18

2.3.1 Statically and Dynamically Reconfigurable RCS 20

1

/

2.3.2 Fine Grain and Coarse Grain Architectures of RCS

2.3.3 Resource Partitioning Schemes in RCS

2.3.3.1 TPM to SPM comparison

21

23

26

2.4 Cyclically Reconfigurable Architecture with Macro-Block Processing Cores. 27

2.4.1 Temporal Partitioning as a Macro Operator Approach 28

2.5 Definition and Classification of Programmable Logic Devices 30

2.5.1 The Concept of Programmable Homogeneous Logic Resources .. 31

2.5.2 Fine Grain PLDs - CPLD and FPGA Devices 32

2.5.3 Coarse Grain PLDs - Field Programmable Object Arrays 34

2.5.4 Run-time and Partially Reconfigurable PLDs

2.6 Summary .

3 Architectural Organization of Temporal Partitioning Mechanism

3.1 Introduction

3.2 Literature Review.

35

37

39

39

40

3.2.1 Context Switch FPGA Architectures 41

3.2.2 Partially Reconfigurable FPGAs Architectures that Utilize an Internal

Soft -core Controller. .'. 43

3.2.3 Partially Reconfigurable FPGAs with Custom Configuration Controller 46

3.3 Architectural Organization of Te~poral Partitioning Mechanism . '. '. 48

3.3.1 IP-core library - Configuration Me~oryArchitectures and Perfor­

mance Analysis ~' ':'. .. 49
. .

3.3.2 Architecture of Configuration Memory Manager ~> : • • •• 51

3.3.3 Configuration Controller Architecture
, i

3.3.4 Configuration Interfaces Selection

3.3.5 Calculation' of FPGA Reconfiguration Time

53

53

56

3.3.6 Proposed Platform Architecture with Custom External Controller-

Scheduler for Run-Time TPM 58

3.3.7 Configuration Controller Architecture with IP-core Pre-fetching 62

3.3.7.1 Configuration Controller Architecture with Paralleled

FLASH Memory Organization for IP-core Configuration . 65

3.3.8 Hardware Overhead Cost in Temporal Partitioning Architecture Im-

plementation

3.4 Summary

4 Architecture to Hardware Faults Adaptation (Self-restoration)

4.1 Introduction.........

4.2 Methods of SEE Mitigation .

4.2.1 Mitigation of Transient Faults Using a Scrubbing Technique

4.2.2 Restoration From Permanent Faults' : . . . '. . .

66

70

73

73

74

75

77

4.2.2.1 Restoration From Permanent Faults Without Functional

Degradation ~. 78

4.2.2.2 Restoration by Component Relocation in Spacial Partition-

ing RCS : 79

4.2.2.3 Restoration from Permanent Faults with Functional Degra-

dation 80

4.2.2.4 Restoration by Component Routing Constraint Variation .• 82

4.2.2.5 Restoration ~y Just-in-Time FPGA Compilation 83

4.3 Methods for Fault Diagnostic and Fault Localization in SRAM Based FPGA

Devices .'. '. 84

4.3.1 SEU Diagnostic in Configuration SRAM 84

4.3.2 Off-line Diagnostics of Permanent Faults in Data-paths • . . 85

4.3.3 On-line Diagnostics of Permanent Faults with TMR-approach 86

iii

/

4.4 The Method of Multi-level Mitigation of Transient and Permanent Hardware

Faults in RCS with TPM .. 88

4.4.1 Mitigation of SEU and Other Transient Faults by IP-core Scrubbing

and Functional Diagnostic Cycle 90

4.4.2 Run-time Mitigation of Permanent Faults with/without Functional

Degradation 92

4.4.3 Complete Algorithm for Multi-level Protection Mechanism Embed-

ded to the TPM

4.5 Cost-efficiency and Performance Comparison of the TMR Approach and

Multi-level Mitigation of Transient Faults in TPM Systems

4.5.1 Uninterrupted Mission Critical Systems . . .

4.5.2 Critical Systems with Non-Real-time Control

4.5.3 TMR and TPM Approach Comparison Summary

4.6 Summary

5 Task Segmentation and Efficiency of the TPM

5.1 Introduction'

5.2 High-Level Synthesis of Application Specific Processors .

5.3 The Concept of Task Segmentation.

5.3.1 Cost-Effectiveness ofTPM .

5.3.2 Cost-Performance Ratio of RCS with TPM .

5.3.2.1 CPR for Single Statically Configurable FPGAs .

5.3.2.2 CPR for Non-pipelined and Pipelined architectures utilizing .

TPM
5.3.2.3 Optimal Number of Partitions

5.3.2.4 Pipelined TPM Implementation Limitations '~

5.3.3 Automated Partitioning.'.

iv

93

95

95

96

97

97

101

101

103

104

107

111

111

113

121

122

122

5.4 Architecture Optimization for ASP Based on Configurable Modules 123

5.5 Summary 124

6 Methodology for High-Level Synthesis and Optimization of VHCs 125

6.1 Introduction................................... 125

6.2 Correspondence Between MO and VHC 126

6.3 The Problem of VHC Synthesis and Optimization 134

6.4 Methodology of VHC Synthesis and Optimization. 137

6.4.1 Multi-parametric Design Space Decomposition " 138

6.4.2 Design Space Arrangement. ... '.' •. 140

6.4.2.1 Selection of a Set of Resources for an MO and their Local.

Arrangement '. '.' 140

6.4.2.2 Mono-parametric Partial Arrangement of ACGs 142

6.4.3 VHC Architecture Selection on Partially Arranged ACG 148

6.4.3.1 ' Identifying the Set of Variants. 148

6.5 Determination of the Pareto-set of Architectural Variants 150

6.5.1 Semantic Filtration of Architectural Variants for VHC generation .. 156

6.6 Summary .. • 159

7 Methodology of Automated Assembly of Optimal VHCs into SSPs 161

7.1 Introduction................................... 161

7.2 Methodology of Segmentation of an Application Sequencing Graph .. , .. 162

7.2.1 Division of an Algorithm into Segments'.' 163
"

7.2.2 Algorithm Segmentation, Binding, and SSP Generation ' .. '. 164

7.2.2.1 Automated. Dependency Level Assignment' ... Algo-

rithmlLevel Division , ' '. .. 164

7.2.3 ASAP Level Assignment . . . • . .. ~ 165

,/

7.3 VHC Selection and Grouping Methodology

7.4 Methodology of "Next" MO Selection for SSP

7.4.1 Precaution Regarding Deadlock in MO Segmentation

7.4.2 SSP set Generation Algorithm

7.4.3 Example of Segment Specific Processor Synthesis

7.4.4 Accounting for FPGA's Embedded Specialized Hardware and VHC

component bitwidth ..

7.5 Summary

8 Implementation of the methodology of SSP synthesis and execution

8.1 Introduction............".......... ~

8.2 Implementation of SSP Synthesis and Optimization Methodologies in the

CAD System ~.'.',...,......

8.2.1 Area Avoidance Implementation .. :~

168

171

175

176

178

185

186

187

187

188

194

8.3 System Level Architecture to Accommodate TPM Bas'ed on SSP Processing. 195

8.3.1 Reconfigurable Field of Resources (RFR) ' : . 196

8.3.2 .. SSP Configuration Mechanism on MARS Platform Design . . 197

8.3.3 MARS Temporal Data Memory • ! • • • • • • • •• 202

8.3.4 Platform Data I/O Interfaces-.

8.4 Summary

9 Experiments and Results

9.1 Introduction

9.2 Experimental Setups ' '

9.2.1' i Stereo Image Capture Platform •...... '

9.2,2

9.2.3

"Fast Track" Platform •.... '..

Results and Verification of Workload ...;.....

'vi

203

204

'. 207

207

208

211

212

214

9.2.3.1 Sobel Edge Detection Core 215

9.2.3.2 Image Histogram Calculation 216

9.2.3.3 Image Colour Intensity 218

9.2.4 Results of Experimental Setup Verification 218

9.3 Experimental Quantitative Performance Characteristics 219

9.3.1 Experimental Workload: Highly Paralleled Stream Processors 219

9.3.2 Logic Utilization .. 221

9.3.3 Power Consumption 222

9.3.4 Timing Results .. 225

9.3.5 Bitstream Compilation Timing . 226

9.4 Analysis of Results .. 226

9.4.1 Performance Analysis of RCS with TPM 227

9.4.2 Cost Performance Analysis of Different FPGA Devices. 228

9.4.3 Analysis of the Power Consumption 230

9.4.4 Analysis of Resource Utilization. 232

9.4.5 Analysis of Compilation Process. 233

9.5 Summary .. 234

10 Summary 235

10.1 Summary of Research. .. 235

10.2 Contributions .. 237

10.3 Future Works .. 240

-.

10.3.1 Integrated CAD Tool .":. 240

10.3.2 Segmentation in Real-Time Hardware OS 241

10.3.3 Fault Tolerance Verification & Testing'. 241

10.3.4 Extensive VHC and SSP library • ~ 242

VlI

./

Bibliography 243

A Border Variant Search 259

B Power Consumption 263

C Resource Utilization 265

D Comparison of System design with Virtual Hardware Components utilizing TPM

to Standard-cell Approach 269

E Proposed Reconfigurable Device Architectures 271

E.1 Wide Configuration Bus Architecture Operating at High Configuration Clock

Speed . 271

E.2 Internal Configuration Buffer with One Clock Cycle Upload. . 272

E.3 Dual Context FPGA with Address and Data Pin Reuse 275

E.4 Isolated Multi-Core FPGA Design with Common I/O Interface 276

E.5 Proposed Remote SSP Generation on a Compilation "PC Farm" 277
•

E.6 Summary of Proposed Architectures 278

, viii

List of Tables

3.1 Memory Types Chart and their Characteristics 49

3.2 Bitstream Configuration Timings for Various FPGA Interfaces. 56

3.3 Reconfiguration Time for the Xilinx Virtex 4 FPGA Devices via Slave Serial

SelectMAP32 Mode. 58

5.1 Lists of Xilinx Virtex 4 and Virtex 5 FPGA Costs 112

6.1 Effectiveness of Proposed Search Algorithm in Comparison to Exhaustive

Search

6.2 Test for "rule" #1

6.3 Test for "rule" #3

6.4 Test for "rule" #2

155

157

157

157

7.1 MOs and Corresponding VHC parameters 180

9.1 Logic Use in 4-LUTs per Each Device for Single, Dual, and Quad VHC SSPs 221

9.2 Logic Use in 4-LUTs per Each Device for Single, Dual, and Quad VHC SSPs 221

9.3 Power Consumption (Watt) of Single VHC SSP Core Operated at 50MHz.

100MHz, and 200MHz . '. 223

9.4 Power Consumption of Dual VHC SSP Core Operated at 50MHz, lOOMHz.

and200MHz -: " 223

ix

9.5 Power Consumption of Quad VHC SSP Core Operated at 50MHz, lOOMHz,

and 200MHz 224

9.6 Timing Operation Results for FPGAs Running SSP with Single, Dual, and

Quad VH Cs .. 225

9.7 SSP Cores Compilation Times for Single, Dual, and Quad VHC SSP Cores . 226

9.8 Cost in $USD per VHC for Single, Dual, and Quad VHC SSP Core Configu-

rations Across a Range of FPGA Devices 229

List of Figures

2.1 Correspondence Between Elementary Operations and Instructions 13

2.2 Classification of Computing Architectures

2.3 Workload Classification.

2.4 RCS Architecture Classification ..

2.5 RCS Run-Time Resource Adaptation.

2.6 Spatial and Temporal Partitioning of Resources

2.7 Largest Virtex 5 LX and FX devices Floor Plan Comparison

2.8 FPGA Switch Blocks Interconnections

2.9 Field Programmable Object Array (FPOA) Architecture Diagram ..

3.1 Diagram of Multi-Context FPGA Configuration Cell 3.1 [40]

3.2 Temporal Partitioning System Utilizing MicroBlaze Controller

3.3 Bus Macros Based Temporal Partitioning Architecture [46] ..

3.4 . Examples of Temporal Partitioning Architectures with Custom Embedded

Controller [1.81,99] .. : :

3.5 FPGA Re..:configuration Stages [83] •~..

17

17

19

21

24

26

31

34

41

44

46

47

56

3.6 . Architecture of Temporal Partitioning Platform with External CPLD Based

Controller/Scheduler '.'. . '. : . .. 61

3.7 Architecture of Temporal Partitioning Platform with Pipelined Organization

of ConfigurationlExecution Processes

/

3.8 Architecture of SRAM and FLASH Configuration Loader. 64

3.9 Organization of Parallel Tile Configuration [89J . . . 65

4.1 Platfonn Architecture for SEE Mitigation [24, 92] 77

4.2 Recovering from SEDR Fault on Partially Re-configurable Device . 78

4.3 Fault Recovery from Pennanent Fault with Functional Degradation. 81

4.4 Typical TMR Organization " . . 86

4.5 TMR Implementations on a Single FPGA: with (A) External Voter (B) Inte-

grated Voter . 87

4.6 Operation of the TPM with Fault Tolerance Mechanism 91

4.7 Sequential Reconfiguration Process for Pennanent Fault Mitigation without

Fault Location Procedure .. 92

4.8 Pennanent Fault Mitigation with Incremental Recovery to the Maximum Pos-

sible Perfonnance .. 93

4.9 Pennanent Fault Mitigation Flow Chart with/without Diagnostic Procedure . 94

5.1 Sequencing Graph Example ~ 103

5.2 Task Algorithm Represented by VHCs Corresponding to MOs, 106

5.3 Segmented and Scheduled Sequencing Graph -. . 107

5.4 Timing Comparison Between Non-pipelined single FPGA ~d Pipelined dual

FPGA Operation of TPM . . .- ',' 108

5.5 Timing Comparison of Ideal Pipelined Implementation of rPM to a Non-

pipelined TPM Implementation 109

5.6 Non-Pipelined TPM vs. Pipelined TPM Speed-up • • .. 110

5.7 Video-stream Processing Task Processing Block Diagram. 112

5.8 Xilinx Virtex 4 FPGA Device Costs in Relation to Logic Resources,. . . •. 118

5.9 Xilinx Virtex 5 FPGA Device Costs i~ Relation to Logic Resources 119

5.10 Altera Stratix ill FPGA Device Costs in Relation to Logic Resources. 119

XlI

5.11 Cost Performance Ratio vs. Task Segmentation Granuhirity 121

6.1 Sequencing Graph (SG) for the MO Represented by Equation 6.2. . . . 127

6.2 Stage Divided Sequencing Graph for the MO Execution

6.3 Pipelined Implementation of SG from Figure 6.2

6.4 Scheduling and Binding Transformation of SG into VHC Configuration In-

128

130

cluding Single: Adder, Multiplier, and Comparator 131

6.5 Pipelined Implementation of SG from Figure 6.4 131

6.6 Scheduling and Binding Transformation of SG into VHC Configuration using

Double Adder, Single Multiplier, and Single Comparator

6.7 Pipelined Implementation of SG from Figure 6.6

6.8 Design Space Arrangement

6.9 ACG Pruning by Pair of Parametric Constraints

6.10 Local Arrangement of Resource-Ri Variants ..

132

133

136

139

141

6.11 Ascending Mono-Parametric Partial Arrangement. 143

6.12 Descending Mono-Parametric Partial Arrangement '. . .. 143

6.13 Monotonic Ascending of Parametric Value Corresponding to VHC Variants . 145

6.14 Monotonic Incieas~ of the Value of Parameter-Ps with Several Local Extremes 146

6.15 Periodic Distortions on Monotonic Behavior of the Parameter-Ps 147

6.16 Determination of the Sub-set of the Architecture Variants that Satisfy Specifi-
t • .: • ,"

cation Constraint for One Performance Parameter Ps (A) < p!lm. .•..... 149

6.17 Resources Sorted According to Different Performance Parameters. where K

is criterion value. • . •,... 152

6.18 border VHC Variant Search Algorithm' 153

6.19 Example of ACG with Selected border Variant ofVHC , •. 154

6.20 VHC Variants Considered by the Search Algorithm on ACG 154

7.1 Correspondence Between MOland associated VHCs ' 163

Xlll

/

7.2 Level Dependency Division. ., 165

7.3 Illustration of Level Assignment Algorithm Operation. 167

7.4 MO Level Assignment Algorithm Flow Chart 168

7.5 Task SG Representation by Level Arranged MOs 169

7.6 Sub-ACGTreewithM01andM02Added 170

7.7 Sub-ACG Tree with Excluded Restriction Violated Branches 170

7.8 Case 1: Priority of Selection of Nodes with Dependencies on the Next Level. 172

7.9 Case 2: Partial Level Inclusion in a SSP 172

7.10 SSP Composition from VHCs located on Consequent Levels of SG: a) without

Dependency in Case 3; b) with Full Dependency in Case 4. 173

7.11 SSP Composition from VHCs located on Consequent Levels of SG with par-

tial dependency: Case 5, Case 6, and Case? 174

7.12 Case 8: Area Avoidance MO .. 175

7.13 MO Deadlock Example. .. 175

7.14 Flow Chart ofthe SSP set Generation Algorithm 176

7.15 Sub-ACG After Addition of the First MO from the Task SG. 180

7.16 Sub-ACG Tree after Addition ofthe M03-Node#1 from Task SG 181

7.17 Sub-ACGTreeafterAdditionoftheM02-Node#12 181

7.18 .Sub-ACG tree after Addition of the M03-Node#5

7.19 Sub-ACG tree after Addition of the M02-Node#3 • • • .. • • .. • '" t.. • ..

182

183

7.20 Final Segmented SG Implementation on the Set of SSPs <" 184
. ..

8.1 CAD Software operation flow chart ...•...... '.; ; . . • .. 191

8.2 GUI Application ~ • 192

8.3 Communication Bus Structure Between: FPGA; CPLD. and Microcontroller. 201

8.4 Multi-stream Adaptive Reconfigurable System (MARS): (A) Block Diagram

(B) Component Placement. '. 205
,,') . ~,,'

xiv

8.5 Aggregated MARS Platforms for Parallel Processing 206

9.1 Experimental Setup Based on MARS Platform and Stereo-vision Capturing

Module .. 209

9.2 Bayer Pattern of Stereo Camera and Readout Data Organization 211

9.3 "FastTrack" Stereo-Vision Platform. 213

9.4 Photo of the Experimental Setup with MARS Platform, "FastTrack" Stereo-

Camera, and 4 LCD Displays • . 214

9.5 Photo of the Original Captured Image and Image after Processing on Sobel

Edge Detection SSP Core. .. 216

9.6 Photo of the histogram image processing SSP core 217

9.7 Photo of the Original Captured Image and Image after Processing on Image

Intensity SSP Core 218

9.8 Floor Plan for Post Place and Rout of XC4VLX80 with Quad VHC Core. .. 222

9.9 Quiescent (A) and Dynamic (B) Power Consumption (Watt) for a Single VHC

SSP Core Operated at 50MHz (Blue), 100MHz (Red), and 200MHz (Green). 223

9.10 Quiescent (A) and Dynamic (B) Power Consumption for a Dual VHC SSP

Core Operated at 50MHz (Blue), 100MHz (Red), and 200MHz (Green) ... 223

9.11 Quiescent (A) and Dynamic (B) Power Consumption for a Quad VHC SSP

Core Operated at 50MHz (Blue), 100MHz (Red), and 200MHz (Green) . .. 224

9.12 Cost-Effectiveness per VHC of Different FPGA Devices with Single, Dual,

and Quad VHC SSP Cores . ~ .. 229

9.13 Power Consumption per VHC for Single, Dual, Quad VHC SSP Configurations 230

A.l Example of ACG with Selected border Variant of VHC with a 40 m W Limit

Restriction. • 259

A.2 Sequence of search for power consumption border variant with a 40 m W limit 260

A.3 Example of an ACG with Selected border Variant of VHC with a 225 CLB limit260

, xv

/

A.4 Sequence of search area requirement with a 225 CLB 260

A.5 Logarithmic Comparison Between Number of Variants in Exhaustive ACG

Generation and border Variant Search Algorithm ... 0 • • • • • • • • • •• 261

B.l Quiescent (A) and Dynamic (B) Power Consumption for the Sobel image pro­

cessing SSP core. Core is operated at 50MHz (Blue), 100MHz (Red), and

200MHz (Green) 0 • • • • • • • • • • • • •• 263

B.2 Quiescent (A) and Dynamic (B) Power Consumption for the Video Output

SSP core. Core is operated at 50MHz (Blue), 100MHz (Red), and 200MHz

(Green) . 0 0 • • • • • • • • • • • • • • 0 • 0 • • • • • • • • • • • • • • • •• 264

B.3 Quiescent (A) and Dynamic (B) Power Consumption for the Sobel image pro­

cessing SSP core. Core is operated at 50MHz (Blue), 100MHz (Red), and

200MHz (Green) with Integrated ChipScope Pro. 0 • • • • • 0 • 264

BA Quiescent (A) and Dynamic (B) Power Consumption for the Video Output

SSP core Core Operated at 50MHz (Blue), lOOMHz (Red), and 200MHz

(Green) with Integrated ChipS cope Pro 0 •••••••••••• •••••••• 264

C.I Floor Plans after Place & Route for Single and Dual XC4VLX40 FPGA 266

Co2 Floor Plans after Place & Route for Single and Dual XC4VLX60 FPGA 266
. .

C.3 Floor Plans after Place & Route for Single. Dual and Quad XC4VLX80 FPGA 267

CA Floor Plans after Place & Route for Single, Dual and Quad XC4VLXlOO FPGA267

C.5 Floor Plans after Place & Route for Single, Dual and Quad XC4VLX160 FPGA268

E.l Configuration SRAM Cell with Pre-fetch 273

E.2 Dual-context Configuration SRAM Cell Configuration . 0 0 • • • • • • • •• 275

E.3 Multi-core FPGA 277

xvi

Chapter 1

Introduction

1.1 Introduction

In the last decade some dramatic changes have occurred in the field of computer technology

and even computing paradigms. A major change was decreasing of size of the transistor from

0.25/lm in 1997 to 45nm in 2007. Decreasing of size of the transistor allowed for a larger

number of transistors to be placed on to a single die. Hence; FPGAs increased from 70M

transistors in 1997 to 2500M transistors in 2008. Another effect of transistor dimension re-

duction is the ability to increase clock frequency and therefore, to increase the performance of

CMOS-technology based digital circuits. These factors in turn affected computing platforms

based on these technologies. Several aspects of computer technologies that were effected by
,

above changes, such as: , 't'

a) Architectural advancements (e.g. SoC)

b) Miniaturization and portability of systems that were previously large standalone pro­

cessing systems, as in the case with handheld and embedded processing devices.

c) Application workload by requiring higher systems perfonnance such as multi~task
'-: .

multi-mode data stream processing.

1.1.1 Application Aspect

Looking from the application workload point of view, the stream processing tasks became

most performance demanding in various sectors of the market. Increase in processing speed,

as well as, cost-effectiveness became the major focus of developments in areas of multi-media,

advanced robotics, flexible manufacturing, automotive, aerospace, and many others. The ar­

eas associated with the real-time video/image processing, broadcasting, massive data-stream

execution for modeling and complex process simulation became the main applications for

high-performance computing systems. These advancements cultivated the emergence of new

markets in high-performance computing such as: gaming, movie industry, and computational

biology. At the same time, it should be recognized that traditional approach of increase in

processing performance has met the physical barrier of the operation frequency. This limit re-

quired parallelization of computation process and therefore the implementation of many new

architectures, as well as, concepts of task adaptive and reconfigurable computing paradigms.

1.1.2 Miniaturization and Embedded Systems Aspect

One of the major tendencies in evolution of computing systems is migration from large stand­

alone units towards the embedded systems. In many cases the embedded systems are also of a

small form factor and low power. This ocyu!fed in most areas 'of computer applications from

manufacturing lines to small hand-held consumer devices. Nowadays it is almost impossible to

find any complex system or product that does not contain one or several embedded platforms.

However, the embedded implementation of computing system has several very important dif­

ferences compared to the previous concept of stand-alone computers. These differences are as

follows:

1. Strict constraints on area, power consumption, life-time period and many other perfor-

mance parameters.

2

2. Application specific vs. general purpose orientation.

3. Shorter time-to-market and low-cost of volume manufacturing.

4. Orientation towards computation intensive applications: HDTV sets, digital cam-

corders, cell-phones, routers, DVB (Digital Video Broadcasting) systems, machine vi-

sionlsurveillance/security systems, etc.

All of the above differences motivated the designers of embedded systems to utilize high-

performance RISC embedded microcontrollers, application specific accelerators based on

DSP processors, and ASICs. However, due to the rapid changes of industrial standards and re-

quirements, decrease in time-to-market requirements, and reduction in cost of reconfigurable

logic devices, companies started to move towards utilization of the FPGA devices for em-

bedded platforms. Typically this is true for the products with small or medium volumes of

production due to relatively high cost of FPGA devices compared to ASICs. In addition,

recent advancements in CMOS technology, and FPGA micro-archite~ture advancements al­

lowed more cost-effective application of reconfigurable systems.

1.1.3 Technological Aspect

In recent years the progress in process technologies has dramatically impacted the Field Pro­

grammable Gate Array (FPGA) development. It resulted in substantial increase of FPGA's

number of system gates per device, as well as an increase in the speed of operation. Previously,

a simple homogeneous FPGA's on-chip structure moved towards a complex heterogeneous or':'

ganization of on-chip architecture by inclusion of embedded hardware components, such as:

BlockRAM modules, multipliers, DSP-elements, digital clock managers, and PowerPC cores.

The above advances allowed to implement a complex stream processing systems on the FPGA

b~se'dsyst~ms:_ A typical use of FPGA device is still a replacement of an ASIC: an FP~A is

configu~ed at the 'start~up time' and its configuration never changes during the ;ystem opera-
" ! • : _ .•

tion. At the same time-, the cost of such custom stream processors is relatively high. Reasons

/

for that is high cost of the R&D stage, as well as, high cost of the large FPGA devices (e.g.

",,$16,000 USD for one Xilinx Virtex 5 XCV5LX330 FPGA device). Recently some FPGA

manufacturers have started to provide rapid configuration interfaces, as well as a capability

for partial configuration of their FPGAs. Due to these features it became possible to change

the functionality of an FPGA during the operation by the run-time reconfiguration from one

bitstream to another. This allowed the device to have a capability of run-time reconfiguration

of any part of on-chip architecture without suspension of the rest of the FPGA device. The

above novel options made possible multiple re-use of the same logic resources of the FPGA

for different parts of application algorithm in different periods of time. Therefore, these op­

tions allow to increase the cost-effectiveness of computing platform based on such type of

FPGA devices.

1.2 Motivation

All the above aspects of recent computing technology motivated several directions of research.

One of the directions is R&D works in the area of run-time-reconfigurable (RTR) computing

systems. This area of research considers FPGA based systems that allow dynamic adaptation

of the computing architecture to specifics of an algorithm(s) and a data structure of an ap-
, <

plication (task). On the other hand, the system adaptation can be initiated not only from the

external sources but also from internal ones, as well. That means, that 'the hardware faults

(on-chip or on system level), along with a change in system level conditions (e.g. battery
.< •

level, overheating, etc.) can trigger/request the architecture adaptation. In RTR computing
. ~ . ~ .

,
systems it is assumed that all of the above changes could be compensated (mitigated) by the

f > / ~ :

reconfiguration of system or on-chip architecture. If reconfiguration can be automated, the
~" , : ,Ie •

com~uting platform would become self-adaptable to the workload, and self-r~coverable from

the hardware faults. At the same time the development process of such systems should be
. • , ,+., , . ~ ~ J ' ! .""

4

shortened and such system has to be cost-effective. This may be possible by utilization of vir­

tual hardware resources design approach similar to software object oriented design concept.

The virtual hardware components (VHCs) design methodology allows rapid composition of

application specific processors (ASPs) from smaller pre-built components. However, in this

case certain libraries of the VHCs should be provided, as well as, the associated CAD tools

for automated synthesis of ASP architectures. All the above would require hardware support

with system level architecture of RTR reconfigurable computing systems (RCS).

The dynamic composition of an ASP from VHCs can be performed in space (spatial par­

titioning of resources) and in time domain (temporal partitioning). Since the partitioning

of computing resources is a function of task algorithm segmentation and mUlti-parametric.

constraints, certain research work should address development of methodology of resource

optimization and resources partitioning in the mUlti-parametric design space.

Another important requirement of the high-performance embedded system that lately be­

came critical is the fault tolerance. The temporal partitioning presents a unique capability for

the fault tolerance to be performed at a run-time. Hence, research work in this area should

closely consider this aspect too.

All the above reasons are major motivation elements for the presented research work, and

therefore, dictate the associated objectives for research.

1.3 Objective,S

, . ," " " . I . .'

The objective of this research can be, summarized as follows:

\ '

1. Development of methods and procedures for automated high-level synthesis of virtual
,-I " , •

application specific processors based on the pre-compiled virtual hardware components
, , , , -' .

(IP-cores). This includes the exploration of mUlti-parametric design space; the decision
. .'; , . ,. " ; I

;)

5

./

making procedures for selection of optimal processing architectures; scheduling and

binding of logic and routing resources in FPGA devices.

2. Research and development of partitioning mechanism and associated procedures for the

temporal distribution of on-chip computational and communication resources between

task segments. Development of the methodology for synthesis of the multi-parametric

optimized task segment specific processor (SSP) architecture.

3. Development of methodology of run-time reconfiguration (RTR) of stream processing

data path and investigation of the cost-effectiveness of RTR-architectures.

4. Development of methodology of run-time self-restoration of stream processing ASPs in

the cases of transient and temporal hardware faults.

5. Investigation of the system level organization of multi-stream parallel processing archi­

tectures and development of a prototype FPGA platform that can incorporate temporal

partitioning and self-restoration mechanisms.

1.4 Contributions

The main contribution to the presented research work is the novel methodology for creation

of new class of run-time reconfigurable. systems. These systems are based on dynamically

reconfigurable macro-processors with temporal partitioning (TPM) of computing resources .

. The methodology allows to develop the architecture of the above ReS and design the set of
.'. ',,;:, /' !.

virtual hardware components optimized in multi-parametric design space to the set of macro-
.... ! ~ • i ~

operators. Overall contributions consist of the theoretical and proof-of-concept components.
, ,',

Theoretical components of research contributions are: "

j) A novel methodology for automated conversion' of a macro-operat~r presented in a

form of sequencing graph to a set of optimized virtual hardware components .. The developed

".

6

methodology allows a quick selection of close-to-optimum variant of VHC for a given macro­

operator and a set of parametric constraints. The proposed methodology was presented in the

paper "Multi-parametric optimization of the modular computer architecture" and published in

the International Journal for Technology Policy and Management (UTPM) in 2006 [51].

2) New methodology for automated task/algorithm segmentation with high-level synthesis

of Segment Specific Processors (SSPs). Methodology of the SSP synthesis involved opti-

mization in mUlti-parametric design space. Developed methodology provided the framework

for design of a CAD tool that would perform SSP synthesis and optimization according to

hardware and performance constrains. The proposed methodology was presented in the pa-

per: "Macro-programmable Reconfigurable stream processor for Collaborative Manufacturing

Systems", published in December 2008 in the Journal of Intelligent manufacturing (JIM) [54].

3) Novel methodology for run-time hardware fault mitigation in partially reconfigurable

FPGA devices. This methodology allowed for development of the self-restoration procedures

for mitigation of both transient hardware faults and permanent hardware faults with and with­

out functional degradation. The advantage of the proposed approach is that only functional

diagnostic procedures can be involved in this process. The time and resources required for

fault location procedures can be eliminated. That provides the ability for run-time mitiga-

tion of both types of hardware faults. The proposed methodology was presented in the paper:

Multi-level Radiation Protection of Partially Reconfigurable Field Programmable Gate Array

Devices" and published in 2006 in the Journal of Spacecrafts and Rockets (JSR) [50].

4) The procedure for the evaluation of cost-effectiveness of FPGA based systems using

TPM. This procedure presents the analytical models and conditions to select the best suit-
- .

able FPGA prior to design of RCS with TPM. This procedure was presented in conferences

and published in confe~ence proceedings: "Cost Effective Reconfigurable Architecture for

Stream Processing Applications" in proceedings of 21st Canadian Conference on Electrical

7

and Computer Engineering [52] and "Reconfigurable Macro-Processor Cost-Efficient Plat­

form for Rapid Prototyping" in proceedings of 17-th International Conference FAIM 2007

[53].

5) Novel architecture of RCS for system support of the proposed TPM based on the run­

time reconfigurable FPGA devices. This architecture included all necessary components to

provide the framework for temporal partitioning of on-chip FPGA resources for synthesized

SSP cores. The architecture organization was presented in several conferences and published

in conference proceedings and journal publications [54,56,52,53,55,58].

The proof-of-concept part of contribution consists of the following;

1) Implementation ofRCS architecture and TPM on the prototype of Multi-mode Adaptive

Reconfigurable System (MARS) platform. The engineering design of embedded TPM was

successfully completed on the MARS platform and prototype was manufactured and tested.

For verification of TPM performance special SSP cores have been developed and imple­

mented. These cores were associated with high-frame rate stereo-vision stream-processing al­

gorithms. The MARS platform was demonstrated on several conferences and exhibitions: Dis­

covery 2006, CMC Symposium 2006, SVAR 2007, SVAR 2008 with the first place awarded

for best design demo.

2) Implementation of methodology for automated task algorithm segmentation and asso­

ciated SSP synthesis in the special CAD system and further verification of its performance.

3) Creation of an experimental setup: test of firmware components (multi-core SSPs) and

further collection of experimental data regarding different performance characteristics. Anal­

ysis of the above results and proof-of-concept of the TPM approach for the considered area of

. application .

. Overall, the results of the research have been published in 3 journal and 9 conference

. publications and partially used in 3 R&D projects funded by Ontario Centres of Excellence

,.

8

(OCE), Centre of Information and Communication Technologies (CITO), Materials and man­

ufacturing of Ontario (MMO), MDA Space Missions, UBS Ltd. The research has been also

supported by NSERC, CMC Microsystems, and Xilinx Corporation.

1.5 Thesis Organization

The remainder of the thesis is organized as follows: Chapter 2 introduces processing archi­

tectures and continues on to classification of the reconfigurable computing systems wi~ the

focus on the FPGA devices that support temporal and spatial partitioning. Chapter 3 gives

an overview of the different recon~gurable architectures and describes the various approaches,

that are taken for the implementation of the temporal mechanism (TPM) in reconfigurable

computing systems (RCS). Proposal of the general approach of architecture for the TPM in

RCS is also given. Chapter 4 discusses the important topic of fault tolerance of RCS that are

based on FPGA devices. It gives an overview of existing solutions for the single event effects

mitigation and provides several proposals for mitigation methods on temporal partitioning sys­

tems. The novel algorithm for the mitigation the both transient and permanent hardware faults

is proposed and described in details. Chapter 5 introduces the notion of processing task seg­

mentation and virtual hardware components. This chapter focuses on the cost-effectiveness

aspect of the system design and provides methodology for evaluating cost-effectiveness of the

design. A cost-effective solution allows to achieve the desired performance with the minimal

possible system cost. Chapter 6 explains the essence of how macro-operators are created from

the elementary operations. It describes novel methodology for conversion of a_macro-operator

algorithm to a set of virtual hardware components. It also describes the decision making mech­

anism to optimize a VHC associated with a given macro-operator in the multi-parametric de­

sign space. It shows that the optimization process can be done in a relatively short time since

a small set of VHC variants is evaluated. Chapter 7 presents the methodology for creation of a

sequencing graph that describes a processing task from available macro-operators. Further, the

9

/

methodology of automatic segmentation and selection of corresponding VHCs is explained.

The algorithms and procedures for the synthesis of segment specific processors (SSP) are dis­

cussed in detail. This leads into the Chapter 8, which describes the CAD software that was

implemented on the basis of developed algorithms from previous chapters. The implemen­

tation of (MARS) is described in detail from the hardware aspect of the research. Chapter 9

describes the setup of experiments that were based on RCS with TPM. The verification pro­

cedure and results are provided, along with the proof of the proposed methodologies. Also

shown are: timing, power, resource utilization, compilation results, and the analysis of those

results with the resulting overall recommendations for the design of cost-effective RCS with

TPM. Chapter 10 summarizes the thesis, lists contributions, and suggests future work that can

be continued from this research.

10

Chapter 2

Architectures of Reconfigurable

Computing Systems (ReS)

2.1 Correspondence Between Workload Specifics and RCS

Architecture

It is well known that there is a certain correspondence between the workload components (e.g.

classes of tasks, their algorithms and data structure). and the architecture of a computing sys­

tem. These components have to be optimally adapted for this workload execution. Therefore.

in the section below the specifics of the workload and associated computing architectures will

be considered.

2.1.1 Workload Specification and Definition ..

, "

First, the definitions of workload, data structure and mode of operation have to be given since
- ,

in different contexts the workload can be interpreted in various ways.

Definition: The workload of a system is a task or a set of tasks that computing system has

to process.

~1l

/

Definition: Task is an infonnation object that consists of an algorithm and a data struc-

ture.

Definition: Data Structure is aformal representation of the data elements (operands) and

their dependencies.

Task can be algorithmically intensive or computationally intensive. Where algorithmically

intensive task performs multiple logical and arithmetic operations on small set of data, and

computationally intensive task preforms repetitive computation on large sets/streams of data

at a high speed.

Definition: Computation intensive workload is a data-stream dominated workload.

Definition: Mode of operation of a task is a combination of one of the possible variants of

the task algorithm and one of the possible data structures.

Therefore, if any changes appear in the algorithm andlor data structure of a task, the mode

of operation should be considered as different. Both an algorithm intensive task and a compu-

tation intensive task with associated workload may be Uni-modal or Multi-modal, as shown
-

in Figure 2.3. Multi-modal workload can also contain several different types of tasks to be

processed by the system.

Definition: Multi-modal task is a task which consists of two or more modes where only

one of the modes of operation can be active at a time. ,

As an example, we can consider a video processing algorithm , which perfoIl?s edge de­

tection. There are a couple of algorithms that can be employed for this purpose. Sobel

algorithm uses a 3x3 matrix sliding window were Robert Cross edge detector uses a 2x2

[27, 38]. These algorithms have different perfo~ance parameters and similarly require dif­

ferent amount of logic resources. Hence, even though a task requirement is to perform edge
- . ~ {

'. .
detection, the actual algorithm of the task can be different The processing operation of the

edge detection task is the same, but mode of operation is different based on the type of algo­

rithm used. Similarly, there could be several modes of the Sobel algorithm implementation.

12

Input Data Input Data
Instruction

Input Data Address Output Data Address

Output Data

Figure 2.1: Correspondence Between Elementary Operations and Instructions

Some variations perform operation at different speeds, hence requiring morelless resources.

This can be achieved by the parallel processing andlor pro~essing of the sliding window(s)

operation. Processing is performed proportionally to the number of the processing algorithms

in parallel. These variations of Sobel algorithm would also constitute as a mode of operation.,

First, however, we have to talk about how these tasks are actually computed on a process­

ing system. For that the purpose evolution and classification of computing architectures are

explained in the next section.

2.1.2 General Evolution of Computing Architectures

Presentation of an algorithm is typically done in a form of a sequence of elementary operations

(arithmetic & logic) where each operation is associated with some scalar data. This approach

resulted in Von-Newman architecture which operates with a set of arithmetic or logic opera-

tions presented as an instruction set, as shown in Figure 2.1.

This type of architecture presented great advantages, such as: relatively low hardware
-

'cost; simplification of programming; high flexibility in implementation of algorithms; lim-

itless complexity of implementation. At the same time. this architecture has disadvantages

-
which are mainly reflected in the performance. Due to the sequential nature of the algorithm

execution, scalar data representation, the number of operations per instruction, and the speed

, 1

/

of algorithm processing is significantly reduced. Over the years attempts for computational ac­

celeration have been made through the exploitation of data level (structure) parallelism (DLP)

and algorithm (instruction level) parallelism (ILP).

Algorithm parallelism involves execution of multiple independent instructions at the same

time. This approach was implemented in the Very Large Instruction Word (VLlW) and su-

perscalar architecture processors. VLIW processors improved processing speed by executing

different sub-steps of instructions in a pipeline. VLIW [21] approach has separate processing

units that can issue several instructions for execution simultaneously. VLIW has been also

considered as ILP. This approach allowed a dramatic simplification of control unit in VLIW

processor and thus, reduced its cost. Also, in some cases to utilize the CPU resources the

instructions were executed in a different order than they appeared initially in the user pro­

gram. VLIW processor executes instructions in paralleL Execution is based on a schedule

determined at the time of program compilation. The effectiveness of such architecture de-

pends mostly on the advancement of compilers and is identified by how well relevant user

code matched to the machine code. The main area where VLIW processors are cost-effective

is DSP applications [120]. Superscalar CPU architecture similar to VLIW executes more than

one instruction during a clock cycle by issuing several instruction to the idle processing units

on the CPU. In contrast to the VLIW architecture, superscalar architecture uses special CPU

hardware to dynamically check for data dependencies of issued instructions at a run-time. In
.

, addition, specific hardware blocks have to be integrated to perform dynamic instruction re-

arrangement, and branch prediction in order to load the appropriate instructions and to avoid

data and control hazards. This significantly increases the complexity of the CPU hardware.

There is another approach to improve CPU performance similar to ILP. This approach in­

volves data structure parallelism, which operates on execution of multiple independent data

elements at the same time. This approach was implemented in Vector and Array processor ar­

chitectures. This vector processor approach was also classified as Single Instruction Multiple

, 14

Data (SIMD) [26]. As the name states, the architecture had one instruction and multiple data

that was processed in parallel. This contrasts the scalar processors which handle only one ele­

ment at a time using mUltiple instructions. Such architecture is specifically useful in the cases

of image rendering and, therefore, is integrated in many conventional processors beginning

with x86 MMX series that supported enhanced graphics. Personal computer processors nowa-

days have many SIMD processors each executing short data vector instructions. A collection

of many SIMD operating in parallel are combined into Multiple Instruction Multiple Data

(MIMD) [42] processor architectures. The advantage in using SIMD is mainly to increase

processing power of the system if the data is available in parallel as a vector. The rendering

of video in video processors is ~ good example. However, there are disadvantages to this ap-'

proach as well, such as packing and unpacking data from SIMD registers. Also, there is a poor

support of compilers to implement more complex tasks [62]. When processor is required to
, '

perform operations on much shorter data vectors or if there is high inter-dependency in data

the performance of the processor drops significantly. In many cases this in turn requires a

programmer to try to adapt the program, and align the data, so that the SI¥D capability is

exploited. This becomes a very tedious and complicated task and it is not suited for many ap-
'. !

plications that do not operate with large arrays/vectors of data. The classification of computing

architecture is prese~t~d in Figure 2.2.

All of these architectures provide acceleration from one to two orders of magnitude in com-
! I '

parison to the first mentioned architecture. However, they also a higher hardware cost. The
} , ~'" ~. r <' ' '.

reason for the increased cost is the complexity of the processor design. as well as much larger
,

silicon area. The silicon area was reduced due to the advancement of process technologies

and diminishing transistor cost. Another aspect is the complication of programming, since
.;, t" " t -.::' •

a programmer has to be closely familiar with the processor architecture in order to achieve

relative improvement in performance. This is somewhat mitigated with the development of

highly advanced compilers and operating systems.

15

However, the sequential nature of algorithm processing is still the major factor which

limits acceleration of processor performance. For much higher performance and even more

parallel execution of algorithm high customization is needed. High degree of customization

can be achieved by implementing the task/algorithm in fixed architecture such as ASIC. This

is described for the next section in the case of stream processors.

2.1.3 ASIC and FPGA Static Stream Processors

Stream processor is a processor that performs the same type of algorithm operation on con-

stantly incoming homogeneous type/format of data. Such processing operation is typically

suited for applications requiring high performance where processing algorithm (mode of op­

eration) does not change. Stream processors are mostly used in video, audio, and gaming

applications where vast amount of data has to be processed in parallel at a high speed. The

processing is of the same mode of operation and does not change throughout the operation of

the system. Stream processor typically is implemented in ASIC form, where critical process­

ing operation is paralleled and pipelined to increase overall performance. In this scenario both
< y

parallel execution of algorithm and parallel data structure are exploited since they are built into

the hardware. The obvious downside of the ASIC implementation is its inability to support

various modes of operation. In order to support several modes of operation, they have tobe

included in the ASIC design. Another option is to use reconfigurable device such as FPGA.
,

A static configuration of a stream processor is uploaded to an FPGA device and it operates

. for the rest of active time. Typically, the advantage of using FPGA is the c~pability of future

upgrades in the scenario of changing mode of operation. In cas~ when mode of stream prO­

cessing has to be modified, it involves off-line bitstream recompilation and subsequent off-line

upload to the FPGA system.

'"
16

Instruction Based .-,.

"' ;",9>JllP.u.~tl,"lg ~~~~! ~~,ctLir,~~.~·;"
~_"'~'->';':~0"~wt:Ll'~~~{~r,t;~R#~:~7"",~'''_' _______ '""::;:;:::.. __ ~

Figure 2.2: Classification of Computing Architectures

Figure 2.3: Workload Classification

This naturally leads to the notion of an adaptive stream processor based on a reconfigurable

'. computing system (ReS). Next section introduces the Res and classifies different types of

reconfigurable systems.

2.2 Introduction: Concept and Benefits of RCS

The first reconfigurable computing systems were proposed in the 1960's [109]. However. in

practical implementations they have emerged only in past two decades. Initially ReS started

from the very basic systems that were capable of switching'betwetm the available resources

[35]. Already at that time ReS showed the great benefits of workload adaptive systems. In
reality, any variation in workload (e.g. changing in algorithm(s) or data structure) may cause

17

,/

degradation of cost-performance parameters of a computing system. Therefore, there would

always be some mechanism for workload/computing architecture adaptation. In conventional

instruction based computers the only way of the above adaptation is the optimization of the

program/data structure on certain platform architecture (e.g. processor architecture, mem-

ory structure and bus(es) organization). The concept of RCS is completely opposite to the

above approach and optimizes computing circuits/memory and communication resources to

the workload algorithm(s) and data structure(s). Conceptually, this approach allows reach-

ing much higher performance and cost-performance characteristics for a computing platform,

compared to the platforms with fixed architecture.

There are many different paths that were taken by the researchers around the world and

number of classes of RCS developed over the years [33]. These devices are classified in

several categories, and this chapter will address the main ones. This chapter will also describe

different types of RCS and trends of their development.

2.3 Definition and Classification of RCS

An architecture of the computing system can be described in three ~ain parts: Components -

(C); Links - (L) between components; procedures - (P) associated with components and their . '

links. In all computing systems some of the components of architecture are variable and some

are fixed. Basing on this classification it is possible to describe any type of computing system

according to flexibility of the above architectural parts.
, '

"I ,~ ,..:. '. '

Microprocessor architecture consists of Components that are fixed - (C), and links be-

tween the hardware components (I) that ~e fixed as well, however, the procedures associated

with the components are variable - (P). Therefore microprocessor architecture-(A) can be

described as a~ A = {C,L,.?}. If we have'a system that has all of the components same as the

microprocessor system, but the links are not-fixed (L), we can describe its as a course grain

18

Component
granularity

Resource
di stri buti on

Figure 2.4: RCS Architecture Classification

configurability system A = {C, L, p}. This type of system has fixed processing blocks, how-

ever links between them can be altered. This provides the flexibility of path interconnection,

for processing units, and increases the productivity of the system. This class of reconfigurable

architecture is described in detail in Section 2.5.3.

A system where all components are variable thus can be fully reconfigurable, for example,

PLD and FPGA devices: A = {e,L,p}. It allows full customization of the computing plat­

form. This approach allows to tailor the full structure of the system to the algorithm and data

structure that needs to be processed and, therefore, it allows to achieve the highest possible

processing acceleration. Section 2.5.2 describes these sort of devices in general:

Reconfigurable computing systems can be divided in several types based on the classifi­

cation of the system and its function of operation as shown in Figure 2.4. First of all, recon­

figurable systems are classified into statically and dynamically reconfigurable systems. The

distinction between these two types [46, 1, 99] is discussed in the next section. Reconfig-
• .' j

urable systems could be based on the fine grain or coarse grain architecture, which impacts

the fleXibility and thus performance of the system. Distinction between fine grained and coarse

grained architectures is explained further in the chapter.

At the same ti~e, dynamically reconfigurable systems for both fine-grain and '[46, 1, 99]

coarse~grain types can'utilize Spatial 'Partitioning 'of Resources (SPR), as well as, Temporal

Partitioning of Resources (TPR). SPR and TPR are be described later in the chapter. '

19

/

2.3.1 Statically and Dynamically Reconfigurable ReS

As mentioned previously, one type of reconfigurable systems is a statically configurable sys­

tem. It is configured at the boot-up stage or at a hard reset of the system. The initial con­

figuration stays on the system until the next boot-up or restart. Such are the most common

systems that are used in the industry [75, 7J. The main advantage of such systems is the ca­

pability of future or remote upgrades, as well as, the ease of these upgrades. Start-up time for

these systems is relatively small (e.g. in the range from tens of milliseconds to unit seconds)

[59]. Which is acceptable for most of the applications. Static configurable systems are used

to address two main objectives: improving the performance and optimizing the utilization of

resource components [94] for one specific application with fixed algorithm and data structure.

Therefore, statically configured systems represent an ASIC type processor where the system
, ~

is tuned to preform only one specific task (e.g. MPEG-4 encoder). This leads into the efficient

utilization of resources, such a~ logic resources, as well as, power consumption. This syste~

can be tailored to use all available resources, and to operate at maximum clock speed [67].
'. . -

On the other hand, such systems are not adaptable to dynamic change in applica~ion modes

of operation and/or peripheral interfaces. That is why, similarly to ASIC implementation, all

circuitry associated with all possible tasks/modes of operation must be included into a single

FPGA design.

Another type of reconfigurable system is a dynamically reconfigurable system. Dynam-
v,", \

ically Reconfigurable Computing Systems (DRCS) involve a processor that can be reconfig-
• I '.) .' ~ •

ured [3] with a new configuration stream during the system's operation. The new configuration
, . .

,,<' •

s:rea~ changes ~ts <:ITchitecture configuration at a ~n-time and adapts the system to a new ap­

plication/mode/set of parameters as shown in Figure 2.5.

Consider an example situation where initially RCS was operating with a parallel input of
< ,. • "

two data sources, and two processing units which produced two parallel results. After some
.J .. t ;

time a new requirement was introduced where a third data source to be processed was added,
.. .~ -.. ~ ~ ~

20

- .. 111!1!1!1!!~ - ..
IB .. l:nr::l

•• _.. ..III - _"IoWoIoIoIWI...-_
Figure 2.5: ReS Run-Time Resource Adaptation

as shown in the middle of the Figure 2.5. At the same time, a new restriction was set that

only one output could be driven from the system. Therefore, a third processing unit was added

along with a selector of these outputs, as shown in the right most depiction of Figure 2.5. Such

adaptations are possible in both fine grained and coarse grained architectures, however, there

are distinct differences between these adaptations which are explained in the next section.

2.3.2 Fine Grain and Coarse Grain Architectures of RCS

Reconfigurable computing systems can have the fine grain and course grain architecture or­

ganization. In the coarse grain architectures a reconfigurable system/device consists of large

components which have fixed architecture. These components are interconnected between

each other, and the connections can be reconfigured. It is possible to change the functionality

of these components by reprogramming. However, the actual hardware architecture of these

components is fixed. Such architectures can be found in many references (e.g. Goldstein et at

[35]). Currently these systems did not get to the mass market use due to several unresolved

issues. The main issue of such system is associated with limited flexibility of component ar-
. .

chitecture. In a case of new requirements or if the device/system needs to be ~sed in a different.

application, the system utilizing course grain architecture might not be flexible enough to fully

optimize the component functionality to the new requirements [77]. Coarse grain architec-
,

ture does present an advantage in some cases, such as when all the modules are known, and

specifications do not drastically change. In this case modules provide maximum performance

and operate faster than fully reconfigurable devices with fine grain architecture [77].

21

Fine grain architecture systems operate on a different notion, which involves very small

and simple operational blocks that are organized in a homogeneous manner. This homo­

geneous field of logic elements can be configured to perform primitive ALU operations.

Throughout the years there have been different variations of fine grain architectures [93].

Fine grain levels varied from the configuration of individual transistor up to large processing

hardware cores. The advantage of a fine grain architecture is the maximum possible flexibility

that is offered by these types of systems [11], and vice versa. However, very fine grain archi-

tectures present a problem of increased routing resources, configuration bitstream resources,

and associated configuration SRAM requirement. Another aspect that became quite signifi-

cant in the system development in the past several years is the FPGA design place & route

time. In fine grain architecture more routing resources have to be considered, and therefore,

it takes even longer time in design compilation. In initial development several architectures

have shown the optimal balance in granularity and became popular choice for fine grain device

manufacturers, such as 4-input Look-up-Tables (4-LUT) to 6 input Look-up-Tables (6-LUT)

configuration block architecture. As the IC process technology evolved over the years it be­

came possible to have a large number of fine grain configurable blocks on reconfigurable

devices which provide the users with capability to implement complex processing systems.

These systems became comparable to ASICs in terms of performance and are more and more
c "

preferred by companies due to the shorter time-to-market, as well as, virtually no re-spin time
, , .

'.: ' ,

and associated NRE costs. However, there are several additional trade-offs that have to be con-
'. ,

sidered nowadays when dealing with the fine grain architectures [104]. The simpler the fine
- .,

grain block is, the more complex the routing for configuration and interconnection becomes.
, ~ . ~' ' ..~

Thus, there is more hardware overhead associated with links and configuration memory vol-

ume.
.'., -,

The compromise can be found in Hybrid architectures. Hybrid architectures include fine
. - ,"

grain elements and application specific coarse grain homogeneous elements (e.g. in Xilinx

: 22

Virtex 5, Virtex 6 FPGAs) [118, 64, 121]. This approach has currently become the most

popular choice for reconfigurable devices. The next section presents the concept of resource

partitioning on the fine grain reconfigurable systems in details.

2.3.3 Resource Partitioning Schemes in ReS

The effectiveness of ReS depends on the effectiveness of architecture-to-workload optimiza­

tion. In other words, performance parameters of ReS are a function of distribution of archi-

tectural resources on workload segments. The resources can be partitioned in spatial andlor

temporal domains. Thus, ReS can be classified as follows:

Definition: Spatial panitioning of resources assumes distribution of workload segments

on computing resources "in space" - different sections of the reconfigurable components and

links. In other words an ReS with spatially partitioned resources at any time dedicate different

sectors of its architecture to cenain algorithm segments.

The architecture can be dynamically modified by reconfiguring one of the sections with

the new algorithm segment.

Definition: Temporal partitioning of resources is a division of tasks into smaller sub-tasks
,> ,(

or segments that are reusing same resources of th.e Res device in the different time periods

(time slots).

These two classifications have been in the ~orks for the past decade and provided capa-
. ,~ ,', '

bilities of adaptable hardware. These capabilities allow to have a run-time adaptive hardware
, . , ~ :" . ' ...

with relatively low power consumption,. smaller size, and more. General operation of these

"approaches are shown in the Figur~ ~.6.

As shown in the Figure 2.6, spatial partitioning of resources reuse sections of reconfig-
, • .'. I "

urable resources of the Res to load new segment(s) of the algorithm/task; This achieves

an adapta~ility of the ReS to a new algorithm/task. If system has to execute several algo­

rithms/tasks, it can replace them by each other when needed. In the example shown i~ Figure

23

./

Spatial Partitioning of Resources

Dynamically reconfigurable hardware

Temporal Partitioning
of Resources

Figure 2.6: Spatial and Temporal Partitioning of Resources

2.6 segments #1 and #2 are replaced after completion of their execution with the segments #6

and #5 respectively. For example, a video processing algorithm that was using edge detec­

tion as part of its processing (e.g .. Segment #1) can be changed to perform colour intensity

calculation instead, based on the request of a user or particular environment parameters.
J:

For temporal partitioning of resources, segments can occupy the whole area of reconfig­

urable resources in the RCS, and then the segments are reloaded in 'specific sequence. Each

segment performs a part of the algorithm/task within a required time slot. For example. a'large

JPEG2000 encoding algorithm was subdivided on Tier I enCOding' and Tier 2' encoding into

'two different segments, and these segments can be processed sequentially one after the other
" . ~ . ,

requiring smaller FPGA.
r ~ '.

.
A workload can consist of algorithmic and computationally intensive tasks, therefore, de-

pending on the'type of algorithm at hand, a fine-gr~ned or a coarse~grain~d architechire would

be preferable. If the workload conUi~s both algorith~cally inte~sive segments and c<?mpu­

tationally intensive segmen'ts then the hybrid RCS architecture woidd be the most appropriate .
solution.

, ,

24

Definition: Hybrid ReS architecture consists of both coarse grained and fine grained

components and can be flexible enough for the computationally intensive tasks that deal with

streams of data, as well as, capable of processing sequential algorithm intensive tasks.

Most of the modern high-end RCS devices such as Xilinx and Altera FPGAs contain the

fine-grain components [22, 118] such as CLBs and interconnection switches. along with

coarse grain components, such as PowerPC cores, embedded memory, and others. The pres­

ence of both fine-grain and coarse-grain components allows to maximize the performance of

the target application, as well as to minimize the time of implementation. The Task/Algorithm

elements that are highly parallel and can be pipelined are designed in the fine-grain reconfig­

urable area. This customization gives the maximum performance for the parallelized units. '

At the same time, parts of the algorithm that require sequential processing and that are de­

pendent on the result of inter-processing are realized on coarse-grained components. Such

coarse-grained components are PowerPCs that are general purpose processors implemented

in a hardware core. Consequently, they perform at the maximum available speed. The advan­

tage of the hard processors like PowerPC in comparison to the soft-processors. such as: Nios

II, MicroBlaze, and LatticeMicr032, is that PowerPC type processors performance is much

higher since it does not incur routing delays through the switch network. It should be noted

that only the higher end FPGAs are equipped with hard core microprocessors. In addition. the

presence of these microprocessors significantly impacts the cost of the device. By including

the hard core processors the valuable configuration logic area is occupied and, therefore, the

amount 'of configurable logic is much lo",:er when PowerPC core is included. Comparison be­

tween the XC5VLX330 and XC5FX200 is shown in Figure 2.7. These FPGAs are the largest

in Xilinx Virtex 5 LX and FX fanulies, and it can be se.en that the logic amount is significantly

affected in FX family where two hardware cores of PowerPCs are placed. This is due to the

fact that hard core processors require a significant silicon area that instead could be devoted

for logic.

25

Figure 2.7: Largest Virtex 5 LX and FX devi~es Floor Plan Comparison

2.3.3.1 TPl\I to SPM comparison

, As it was described in the previous sections, there are two approaches for the partitioning ,

of resources: temporal and spatial. This section briefly describes the pros and cons of,the

spatial partitioning approach. The spatial partitioning focuses on the reuse of the FPGA fabric

, by ~eplacing a module with a different one or with a set of modules that are performing a
.

different type of operation, and therefore, reuse the physical~esources. FDr this type 9f,system

architecture a much larger FPGA is required since it invDlves mDre units ~an in ~he tempDr'aJ.

partitiDning. The a~vantage .of the spatial partitioning is' that it a task requires re~,?urces that

fit intD the FPGA it allows t.o run the whole data processing in parallel, and achi~ye ,a higher

sp~ed .of processing. In addition, if a task assumes multi~m04a~.~peratiDn, the, system can
, .

change a mDde by recDnfiguring a part .of resDurces accDrdingly. '. .' . ~ , ... ' ,.

HDwever, there are disadvantages to the spatial partitiDning approach. If a pr~essing task
, .

requires mDre physical reSDurces than the largest FPGA can provide, the spatial partitiDning

apprDach might not be cost-effective. If the processing task dDes nDt fit into the selected FPGA

the task either has tD be divided into the additional FPGAs. Dr a part .of FPGA will have tD be

<26

reloaded, essentially converting the system into a semi-temporal partitioning system. This fact

would also affect the design complexity of the system since a partially configurable design will

have to be implemented along with the temporal partitioning. A rapid temporal partitioning

reconfiguration module would have to be added as well. This aspect reduces the advantages

of the spatial partitioning approach and makes its applications tremendously limited. As was

discussed before, the spatial partitioning approach also uses more power, as well as reduces

the overall cost-performance of the system due to the use of a much larger device. As shown

in the experiments and results section of Chapter 9, the use of a small to a mid-sized FPGA

is more preferable in terms of the power and performance parameters. This is especially true

for the cases where a stream processing task requires a run-time mode change. The proposed'

TPM performs this change seamlessly compared to the spatial partitioning approach, which

requires suspending processing operation of a section of FPGA for a relatively long period of

time. _

On the other hand, if the performance requirements are very strict and assume reaching

the possible maximum speed of data execution, then there is no other choice except the spatial

partitioning of the FPGA resources on task segments.

2.4 Cyclically' Reconfigurable Architecture with Macro-

Block Processing Cores
,

As the process technology shrunken from 220nm to 40nm in the past 10-15 years, a dramatic

increase in number oflogic cells from just a 1700 (in Xilinx Virtex-I in 1998) to 758000 (in

: Latest Xilinx Virtex-6 in 2010) occurred as a result ("" 445 times increase). Yet, the compu­

tational power 'of conventional computers has not evolved at such rate. This, unfortunately.

presents' a problem which is intensifying with every new larger family of reconfigurable de­

vices. Si~ce place and route is a NP-complete problem. larger FPGA takes even longer time

27

/

to compile. When initially the compilation required only a couple of minutes, nowadays the

compilation time for large and complex designs takes tens of hours. For this, a new approach

has to be devised to mitigate this growing problem. This approach is going to be introduced

in this section.

In addition to the compilation latency there are other issues that arise associated with the

design complexity and signal timing. As devices increase in size. the complexity of the design

is increased tremendously, and even more experienced designers than before are required.

The FPGA manufacturers are trying to solve this problem by creating CAD tools that allow

modular designs and capability of design planning and budgeting. However, such approaches

still do not solve the overall problem, and overall design complexity is very high. Due to

the large ICs, the signal latencies inside the FPGA fabric increased as well, which creates

a problem for synchronization of different modules. A different approach in system design

is the utilization of the temporal partitioning to provide a simplification of the design, better

timing results. and in the end a cost-effective solution.

Initially, the temporal partitioning approach was introduced to resolve the limitation of

available resources on a FPGA device. The same approach can be used to resolve timing and

complexity issues. Typically, temporal partitioning is used to divide the algorithm in parts,

which requires complex development, and in some cases it even increases the complexity of
:. ~ .' .' , ~.

the whole system. At the same time, if taking a different path instead of the division of the
, '.

algorithm/task, it can be composed from smaller sub-tasks.

2.4.1 ~emporal Partitioning as a Macro Operator Approach

It is possible to use pre-defined modules to assemble the processing algorithm. This approach

is similar to how one would construct a processing task/algorithm using MATLAB tool or an

object oriented programming language. The advantage of such approach is that a macro oper-

, ator is an already pre-designed module, with particular parameters which can be chosen by the

28

user. This simplifies and accelerates the system design tremendously, similarly as an object

oriented language simplifies and accelerates the development of the large scale applications.

Moreover, just as the object oriented programming changed the way software development is

conducted, the same is possible in case of Macro Operator use. This approach also presents

a cost-effective solution: the developer does not need to have any extensive knowledge of

embedded system design, and "assembles" the processing task/algorithm in the higher level

of abstraction. The idea behind the proposed research is that a CAD tool performs all of the

operations of optimal Macro Operator selection, division and compilation. In addition, by

performing resource binding, the CAD tool is capable of utilizing deep pipelining of the func­

tion specific data-paths. Since stream applications typically have large frames of structured'

data, such pipelining greatly improves the performance, while keeping the same frequency of

operation. To optimize the cost-effectiveness of the whole design, the CAD tool performs the
" ,

selection of an optimal reconfigurable device. The CAD tool accommodates the performance

restrictions imposed by the user, and takes into an account the average cost of the peripheral

components when making the suggestion of the reconfigurable device.

The approach and its advantages mentioned above present a motivation for this research

work. Hence, the objective of the research consists of developing three main parts: a method­

ology for Macro Operator creation ,and task/algorithm segmentation; methodology of hard­

ware design architecture with support of temporal partitioning; a CAD software that imple-

ments the segmentation methodology and creates a us~r interface for creation of cost-effective

applications utilizing temporal partitioning ~e~odology.
'.

The following chapters present an overview of other reconfigurable systems and ap-
. }.,. -. ~

proaches that were developed by other research groups. The methodologies of task/algorithm
" • ,1

segmentation, hardware development, and CAD software qevelopment are presented, as well.

The methodology of task/algorithm segmentation co~ers the aspects of how segmentation has

to be performed for the reconfigurable hardware systems that process tasks using temporal
• < , " ~: .' , .- ,

'29

partitioning mechanism. The methodology of creation of Macro Operators and their partic­

ular instances is developed as well. On the hardware side of the research, a methodology

of designing hardware architecture for temporal partitioning systems will be presented with

comparison to the existing approaches and systems. This methodology is closely linked to

the task/algorithm segmentation aspect since hardware can not be designed efficiently without

taking into consideration the processing task/algorithm. The CAD software implements the

above mentioned methodologies. The design of the CAD software is described, since it is a

vital interface component between the actual user and the final hardware. All of the above

methodologies are presented in the next several chapters with the references of dependency

links between these methodologies.

2.5 Definition and Classification of Programmable Logic

Devices

Over the past two decades there has been an increasing demand for reprogrammable and re­

configurable computing devices. Makimoto's wave [70], a prediction done in early nineties,

indicated that the most of the computing technologies would include field programmability.

Various range of reconfigurable devices are systematically closing the gap between the ASICs

that are oriented for high performance of one dedicated application, and the microprocessors

with high programming flexibility. ' Industrial companies are starti~g to use reconfigurable

logic devices in their system designs instead of ASICs due to several factors. For eXaInple,
,

the time-to-market factor is one of the most important things in the competitive market. In

addition, for smaller companies a reconfigurable device is the only solution in many cases 'as

the manufacturing cost of an ASIC device c~n be simply not financially feasible. Customiza-
, ., . . , .,

tion is one of the key aspects that also makes the reconfigurable devices much more attractive.
-' • - . " .-. - ~ • j .

In many instances customer might require a system with some interface customization or

,

30

Figure 2.8: FPGA Switch Blocks Interconnections

other types of modifications for his system. When system is implemented in the ASIC, cus­

tomization involves either additional peripheral hardware or the inclusion of various popular

interfaces into the ASIC.

Over past the two decades programmable logic devices went through many stages of de-,

velopment. Several different types of reconfigurable architectures were developed and yet

others are still in development. Lately manufactur~rs mostly concentrated on hybrid architec­

tures of processing and architectures of communication buses. In this section different types

of reconfigurable devices will be covered, with the focus on those that are directly applicable

to this research.

2.5.1 The Concept of Programmable Homogeneous Logic Resources

The concept behind the, programmable homogeneous logic devices, is quite simple, and i~­

volves elementary configurable blocks. The whole idea behind the homogeneous architectures
.' .

is the existence of identical structure blocks, which can be programmed to act as particular , ,

logic element. These blocks are organized in a homogeneous manner and can be configured
• 'i '

to simple logic elements (e.g. AND, OR gates) as mentioned in Section 2.3.2.' Reconfigurable

devices are formed as field of simple configurable logic blocks that are interconnected between
, ' ,

each other by configurable buses and switch blocks of interconnection routing. As shown on
'. . , , . ".

the Figure 2.8, the interconnection occurs by turning on the switches that are located between
, 1 ~ . !' '. \, !

the outputs of these elementary logic blocks and interconnection routing.
~,,:' ", -.1 - '. ~'~ ~.-:, .\: •

31

./

At this point there are several possibilities that have been selected for the interconnect­

ing switches, however, this will be discussed in the later sections. By interconnecting these

elements together a very flexible architecture can be created. However, with the benefit of flex­

ibility comes a disadvantage. This disadvantage is associated with the speed of operation of a

system. For example a 16x 16 multiplier implemented as a hardware core would have much

higher performance characteristics than the one programmed in the homogeneous structure.

This is mostly related to time for signal travel from one logic element to another.It takes much

longer to traverse through the routing and all the switches than through the hardware core form

which has direct connections. For this reason there was a shift in recent years from a purely

homogeneous structure to a combination structure of hybrid architectures. These architec-

tures involve homogeneous structures combined with some fixed hardware core blocks such

as multipliers, memory modules, microprocessors and more. Over the years two major types

of devices have emerged from the research and development and dominate the reconfigurable

device market: Complex Programmable Logic Devices (CPLD) and Field Programmable Gate

Arrays (FPGAs). These devices are described in detail in the next sections.

2.5.2 Fine Grain PLDs - CPLD and FPGA Devices

Fine grain CPLD and FPGA devices with homogeneous structure were the first ones to appear
\' '" - . ,

in the mid-80's from Xilinx, Actel, and Quicklogic companies: Initially, theyevolv~d from

the Programmable Logic Arrays (PLA), and nowadays include much larger configurable logic
'.,J ,

modules. This allowed them to become not just a replacement for the non~siandard peripheral

logic ICs, but to be used as a main processing component in the' system design. There ~e

considerable differences between CPLDs and FPGAs.' FPGAs are much larger devices that
• ' < :' '. ~. _ ,. ~ '.{ .~f " ; : ... ~' •

are organized in the Configuration Logic Blocks (CLB) based on Look-up-Tables, whereas

CPLDsare organized in Macro Blocks bas~d on the actual logic elements. Due to their lower
: • 'i . . • • , ' • _ '. ' ~ . .'. ;

cost and lower power consumption CPLDs are used mostly as simple controllers/drivers that

32

have vast amount of 1I0s, and they can operate on high speeds (e.g. 500MHz). Commonly,

CPLDs do not require more than one voltage supply. They also support various 110 standards

for the ease of chip-to-chip interfacing, thus making them an attractive solution for mobile and

power sensitive devices. Typically CPLD devices are used for interfacing or drivers with low

power consumption and low cost, and widely used in industry for that specific purpose in all

types of electronic devices.

As mentioned before, FPGAs are much larger devices organized in the homogeneous man­

ner and composed of CLBs, interconnecting routing, switch blocks and Input Output Blocks

(lOB). Lately FPGAs started to include the integrated hardware cores, such as: Block RAM,

Multipliers, DSP modu!es, and even PowerPC processors. Homogeneous structure of these

new FPGAs gives a designer a flexibility of creating architecture of their custom processor,

at the same time allowing to use the integrated devices, such as hard core 18 x 18 multipliers,

which deliver a result within one clock cycle. This in tum avoids bottlenecks by reducing

the processing time of such complex operations as multiplication. Similarly, embedding the

blocks of lKx 16 Block RAMs allover the FPGA's fabric provides the distributed memory

that can be used by the neighboring logic elements. This creates a local storage eliminating

the need for external temporary memory. Access time is also faster to these blocks than the

distributed FPGA memory since it is located in localized blocks. This in tum increases the

processing speed of the overall system ... Embedding PowerPC cores allows a designer to of­

fload sequential processing that often exists in the embedded systems and not implement it
.. ' ..

in the FPGA's logic block. This is a better solution in some cases because the PowerPC is , .

implemented in the hardware core form and performs fast~r than the s~lu~on implemented

using CLBs. In the latest Virtex 4 and Virtex 5 families there are up to two PowerPC cores , .

[118] ~at can be used and run in parallel connected to the CLBs.
. . .

..... - ." .. " :;.

33

>'

• RFOblKt
MACOb

AlUO

Figure 2.9: Field ProgrammablL Object Array (I-'POA) Architecture Diagram

2.5.3 Coarse Grain PLDs - Field Programmable Object Arrays

In very recent years some coarse grain devices have appeared in the marketplace. :-.uch as

Field Programmable Object Arrays (HJOA). They were created 10 fill in the gap between the

ASIC's and FPGAs. FPOAs are not u. er-programmable at the gate level. they are programmed

at the object level. Object types include several arithmetic logic units (AUls). register Illes

(Rh). and multiply/accumulate units (MAC's). each or which is programmable. The object

types are shown in the Figure 2.9. IC' implemented modules arc located in the devices on the

interconnection grid like in mexlem FPGA devices. For the effic ient processing and interfacing

34

the memory and I/O modules are arranged around the device perimeter. The modules are

overlaid with high speed routing that can be configured by the user. Due to its benefits this

approach is attractive to the space and aviation industry, and one of the reasons is radiation

hardened. Since large blocks are implemented in hardware cores, they require less SRAM to

hold the configuration data. The SRAM is susceptible to Single Event Upsets (SEUs) which

are caused by the cosmic radiation. Therefore, the less configuration SRAM there is, the less

is the probability of SEU and hence the occurrence of an error or a functional interrupt. At

the same time, in the case of space applications, the flexibility is needed, as well. Therefore,

FPOA fits applications where SEU is one of the major factors and where some flexibility

is required. The move from ASICs to FPOAs was initiated by the fact that companies which

used ASIC technology for implementation of their systems were forced into constantly making

modifications of their algorithms. When the development of the ASIC was halfway done, a

new change in the algorithm would be introduced which would cause the restart of the whole

process and obviously increase the R&D costs. The interconnection combination of highly

optimized ASICs produce a much more effective and modifiable solution. There is a trade-off

in the performance of FPOA devices, but in the instances where a change of algorithm does

not impact the architecture and is supported by the existing FPOA objects it is feasible to use

such devices. Unfortunately, in typical applications, designers need much wider flexibility,

and therefore FPOA suits only a very limited range of applications. In order to widen the

range, the FPOAs have to include either more objects, or these objects have to be generic in

their design. Both of these solutions compromise either the cost or performance of the end

system and, therefore, are less attractive for the most of syst~m designers.

2.5.4 Run-time and Partially Reconfigurable PLDs

The era of partially configurable devices started a while ago with the release of the first Xilinx

XC2064 family of FPGAs in 1985. This FPGA allowed to addressing and reconfiguration of

35

a single cell. It offered tremendous advantage because the device was capable of operation

even during the reconfiguration of its blocks. However, this family of devices had one major

flaw preventing it to be successful in the market. Besides the fact that XC2064 family did not

have a large amount of configuration blocks, it also lacked any type of firmware protection as

a consequence of configuration flexibility. Anyone could read the contents of the device back

to PC and decode the whole architecture and this would compromise the security of the IP­

cores. Obviously with such problems, the industry could not use this device in their products.

This device was mainly used in the research field where this flaw was not relevant. Later,

Xilinx Virtex (e.g. Virtex E, Virtex II, Virtex II Pro, Virtex 4, Virtex 5, and Virtex 6) families

also employed the capability for partial reconfiguration. Unfortunately, there is no software

support for design of dynamic partially reconfigurable architectures. so they are limited to

research labs.

As shown by many researches [102, 110, 60] dynamic reconfiguration is an extremely

powerful capability, since it allows the hardware to evolve based on the basis of the surround­

ing environment. This capability also permits a creation of fault tolerant systems, which can

recover from the hardware faults by a1igning the IP-cores in such a way as to avoid the dam­

aged regions. The design of systems that employ the partial configuration mechanism is quite

complex and requires highly experienced systems engineers; as well as a very good software

support. Due to that fact companies were not demanding the support for partial reconfigura­

tion, and temporal partitioning has not been the first priority of partially configurable device

manufacturers. Instead, device manufacturers were mostly concentrated on perfecting the cur­

rent devices with the modular design capabilities and the speed of operation with only minimal

support of the capabilities for partial configuration. Therefore, the most of the software tools

were improved in the area of modular design, such as recent Xilinx PlanAhead.

,

36

2.6 Summary

This chapter covered the notion of workload for computing systems and its classification. The

focus of this thesis work is on the computationally intensive multi-mode stream processing

architectures. This chapter provided literature overview of the processing architectures with

their classification. This led into the introduction of the concept of reconfigurable comput­

ing systems. Classification of different reconfigurable architectures was given, as well as the

distinction of fine and coarse grain architectures. Particular specifics of CPLD and FPGA de­

vices and their latest features and their benefits for various applications were described. This

overview continued the introduction of temporal and spatial partitioning concepts, since the

work in this thesis is focused on the temporal partitioning systems. The Notion of Macro­

operator processing was introduced and explained. Further chapters will provide the in-depth

explanation of the Macro-Operator (MO) creation, as well as hardware architecture require­

ments for the support of this methodology.

37

38

Chapter 3

Architectural Organization of Temporal

Partitioning Mechanism

3.1 Introduction

In recent years there were several developments made in the field of temporal partitioning

of FPGA resources. A large portion of the research [24, 28, 46, 85] describes the analysis

of task segmentation. However, not many works focused on the architecture organization of

temporal partitioning mechanisms and hardware support. The architecture organization for

temporal partitioning mechanism involves three main components: configuration controller,

configuration memory, and configuration memory manager.

This chapter is organized as follows: Section 3.2 covers different approaches in the field

of architectural organization for temporal partitioning systems. It covers the aspects of the

architecture organization and approaches that already tackled that issue. The rest of the chapter

provides an analysis of the main sources of the timing overhead, a qualitative approach in

estimation of required resources and the trade-offs in their selection. This chapter gives the

timing measurements per device and proposes an organization of the temporal partitioning

mechanism of FPGA resources (TPM). The architectural solutions that minimize or eliminate

39

the sources of timing overhead are discussed. Secondly, an architecture that is required for

support of temporal partitioning is proposed as a possible solution for minimization of the

hardware overhead. A trade-off scheme for estimation of performance and cost of the system

is discussed. Temporal partitioning gives a user a capability of having cost-effective solution,

where performance trade-off and cost is balanced.

3.2 Literature Review

Temporal partitioning techniques appeared in the past decade with the appearance of recon­

figurable devices that supported run-time reconfiguration. As defined in Chapter 2, temporal

partitioning assumes a division of tasks into segments to be executed on the computing sys­

tem that are configured one after the other. A processing system, where processor architecture

reconfigures during the task-execution, is called a run-time-reconfigurable computing system

(RTR CS). In the past decade many research groups worked on the architectural and task

partitioning solutions [107,48, 32, 43, 29, 10] and several approaches were proposed and

developed. These solutions can be classified as: i) approaches focused on the optimization of

task/algorithm segmentation; ii) approaches focused on the architectural support of Tempo­

ral Partitioning Mechanism (TPM). In this section the most interesting architectures that have

been developed are described along with their pros and cons.

Some research works concentrated on tools that can optimize task partitioning for appli­

cations such as Multimedia (e.g. [25, 12,95]), DSP and Digital Communication (e.g. [5]).

Others [25, 101, 108, 45] explored the theories behind the tasks segmentation, as well as

their use in different types of applications. Few researchers implemented the experimental

systems that used the temporal partitioning for the computation [41, 35], but utilized coarse

grain architectures. Consequently, they had much lower algorithm-to-architecture tuning ca­

pabilities. Several works discussed specific architectural details of FPGA based platforms

exploiting temporal partitioning, although emphasis was placed on software segmentation of

40

Configuration transistor

Figure 3.1: Diagram of Multi-Context FPGA Configuration Cell 3.1 [40]

tasks for later scheduling and processing [76]. Recently, there was a publication discussing

the technique of reducing the configuration time of the platform, however it did not analyze

the overall cost-effectiveness of the temporal partitioning. Overview of the architectures of

existing systems is organized in three subsections: Context switch FPGA architectures; and

partially reconfigurable FPGA architectures utilizing on-chip soft-core (e.g. MicroBlaze) con­

troller; Partially reconfigurable FPGAs with external custom configuration controllers.

3.2.1 Context Switch FPGA Architectures

One of the directions that was pursued by many researchers is context switching (e.g.

[37, 79]). It involves several configuration SRAM cells and ability to switch between the

configurations by selecting the corresponding configuration bit. There were several different

approaches taken in the area of context switching. However, all of them require an additional

configuration SRAM cells and an associated multiplexer, as shown in Figure 3.1 [40].

The additional memory essentially increases the size of the FPGA die. It doubles the

address and data buses, but requires highly parallel connectivity between the configuration

SRAM cells that can to switch simultaneously from one configuration to the other. Highly

parallel connectivity in turn increases the complexity of routing and adds the memory control

circuit mechanism which tremendously increases the cost of the FPGA. Also context switch­

ing FPGA is the limited number of possible context switches by particular FPGA device. The

advantage of the context switch FPGA is a very short transition time from one configuration

41

to another. Switch occurs within one or two clock cycles [97]. One more significant problem

that arises from the implementation of additional configuration memory plane on an FPGA

device is the increased power consumption [68, 18]. This is due to the fact that multiple

memory cells are drawing static power but are not providing any functionality at that moment.

There were several different approaches to mitigate the problem of power consumption and

the area increase by using Floating-Gate-MOS Functional Pass-Gate [40], as well as Decoder­

Based Multi-context interconnect structure [68]. However, these solutions are still limited to

only few possible contexts and are appropriate only for applications with limited configuration

variations. The multi-context FPGAs that support 2-4 configurations are suitable for applica­

tions that need to switch between existing configurations and do not involve the uploading

of configurations during the operation. In addition, these types of FPGAs are best suited for

small size applications, because larger multi-context FPGAs are significantly more expensive

[111]. Therefore, context switching is not cost-efficient in the solutions that are used for in­

dustrial applications and where cost is critical. The external configuration controller of the

multi-context FPGA is not discussed in detail by [97,68, 18]. However, it is assumed to be

a conventional configuration controller used in most of the FPGA devices. On the other hand,

the internal configuration controller can be considered as an array of multiplexers that perform

a selection of the configuration IP-core from the available SRAM cells. Configuration mem­

ory management also was not addressed in the [97,68, 18] papers regarding the multi-context

FPGAs, and therefore, cannot be evaluated in detail in this overview.

Hence the above analysis brings us to the realization that cost-effective solution can be

found by utilization of readily available FPGA devices. These devices are relatively low in

cost due to their mass production. In this case there are two main approaches used by the

researchers in temporal partitioning system. They involve using an off-the-shelf FPGA and

an external or internal configuration controller. The following sections talk about the schemes

42

typically employed by researchers utilizing temporal partitioning technique, and analyze the

pros and cons of these schemes.

3.2.2 Partially Reconfigurable FPGAs Architectures that Utilize an In­

ternal Soft-core Controller.

When considering using the conventional FPGAs in the temporal partitioning approach we

assume that the processing module is fully reconfigurable. In most real-time video-processing

applications such as: multimedia, machine vision, automotive, security, tele-medicine and

others, at least three main operations are required. These operations are: capturing of the raw

video-frames, the video-stream processing based on a particular algorithm, and outputting

the results in some manner that is custom to the application (e.g. coordinates, intensity, con­

verted/transformed image as a real-time video output, etc.).

The researchers have approached the architecture of temporal partitioning platforms from

different directions. One of the proposed architectures considers using a Xilinx MicroBlaze

soft-core processor [37]. MicroBlaze microprocessor acts as a configuration controller for

the system. Figure 3.2 shows how the system's architecture is designed. An FPGA device

is initially loaded with the configuration bitstream that includes architecture of MicroBlaze

microprocessor. The initial configuration might contain no processing modules or 110 IP­

cores in the Dynamic Reconfiguration Area. The consecutive processing IP-cores would be

loaded into the specific dynamic reconfiguration area. The MicroBlaze performs that actual -

operation of loading the IP-cores from the configuration storage memory to the designated

area. In this case configuration storage memory is an IP-core library which typically is a

non-volatile memory. The configuration memory is external to the reconfigurable device and

can be realized in a number of possible architectures, that are discussed and analyzed later in

the chapter. To load the bitstream MicroBlaze uses the Integrated Configuration Access Port

(ICAP) [119]. It is important to mention that MicroBlaze microprocessor and all connection

43

Q) ...
N 0 ~ V'>
CO V'>

0 (l! ... u
.~ e
~a..

U
ICAP F

Dynamic
Reconfiguration

Area

~
General

I/o

Figure 3.2: Temporal Partitioning System Utilizing MicroBlaze Controller

structure are fixed throughout the operation of the device. At the same time IP-cores are

required to be designed in a form of partial bitstreams avoiding the logic area of MicroBlaze

microprocessor. External interface between the peripheral devices and the IP-cores is done

over bus macros and can operate without involving of MicroBlaze microprocessor.

The advantage of using a MicroBlaze microprocessor is the ease of the system implemen-

tation since it is included in the Xilinx EDKJISE CAD tool [114]. In addition, a MicroBlaze

microprocessor has pre-built interfaces from the EDK package to peripheral devices such as

memory controllers, UART and Ethernet, CAN [78]. Therefore, integrating these common

interfaces into a MicroBlaze soft-core processor does not involve significant engineering time

investment. No special external hardware is needed for supporting the reconfiguration of the

FPGA except an external FLASH which stores the IP-core library. It is easier to incorporate

the interfaces in the design than to design and integrate them from scratch. Hence, a Mi-

croBlaze processor can also act as a configuration memory manager which can perform the

communication to the outside world through the available interfaces. This implementation

of the memory manager is capable of updating IP-cores, modifying configuration schedule,

and much more. In one of the papers [7], a MicroBlaze microprocessor is used in the CAN

interface in attempt to replace a significant number of the static microprocessors present in the

"
44

conventional car. So, instead of running all of the microprocessors at the same time even when

they are not used, a MicroBlaze microprocessor loads the required processor on demand. The

dynamic reconfiguration area shown in Figure 3.2 is subdivided further into several processors,

so and not one but four or more processors can be loaded on demand. Based on the current

conditions in the system, the requests are prioritized and lower priority processor request are

put in a queue [7].

However, the solution from [71 has disadvantages as welL First, the main drawback is the

FPGA fabric requirement. Because MicroBlaze is a generic soft-core processor implemented

in FPGA logic resources, it utilizes a significant amount of the valuable logic space of the

FPGA. In tum, by considering the cost of the required FPGA fabric for implementation soft­

controller translates into much higher overall costs than hard-core external processor if to be

used as a reconfiguration controller. At the same time, the creation of the IP-cores is much

more sophisticated, since they have to be designed as partial configuration bitstreams. Thus,

this will be possible only for latest Virtex Family FPGAs, since only these FPGAs support

partial configuration. Secondly, the soft-core MicroBlaze microprocessor is a sequential pro­

cessing element and operates on a much slower speed than a hard-core version of a compatible

microprocessor, therefore it cannot accommodate a rapid IP-core reconfiguration. MicroBlaze

can operate at the top speed of 200Mllz and requires three cycles per instruction, so the mem­

ory accesses can take up to 7 cycles [98]. Therefore, the actual speed of operation is less

than 30MlIz which is 3.3 times slower than the maximum speed of an ICAP operation. This

introduces an additional delay since it cannot reconfigure the partial IP-core modules at the

maximum speed supported by ICAP. At last, the area taken by the MicroBlaze microproces­

sor, Bus Macros and other servicing logic counts up to 10-20% of the FPGA and cannot be

utilized [46] as shown in Figure 3.3. Consequently the cost of the system is increased since a

larger FPGA has to be used.

45

Run -time I/O (e.g. CAN)

Module II • Controller

IJC ontroll.,

~ ~ ~ ~ (MicroBluel

8. 8. 8. 8.

l-~f~ c c c c
en en en en
a f\..) w

Bus Com 0 Bus Com' Bus Com 2 Bus Com 3

Q
D«ompr~nor..- Flash-

l , , , Arbiter
Unll lL.ZSSI memory

Bus-Macro .. ICAP

Figure 3.3 : Bus Macros Based Temporal Partit ioning Archi tccturc [461

A slightly di fferent path was taken by research groups wh ich implemented custom soft -

core reconfiguralion controller instead of using the MicroBlaze microprocessor, which is ex-

plained in the next section.

3.2.3 Partially Reconfigurab1e FPGAs with Custom Configuration Con-

troller

Often a cu tom configuration cont roller is des igned fo r the temporal partitioning archite ture.

As in the Section 3.2.2, t.he custom configuration controller i. loaded at the start-up stage of

operation and remains fo r the rest of the operat ion. A section 01" FPGA device i dedicated a a

dynamically reconfigurable area. This dynamically reconflgurable area is used for panial IP-

cores that are loaded inro FPGA th roughout the system's operation. This approach was used by

everal research groups [1 . 81, 99] and described in thei r publications . However, these paper.

con idered partially reconfigurable FPGA from Xilinx Inc. and used other methods or loading

t.he partial configuration bitslreams. These methods use internal configuration controller leAP

[99]. In some cases the reconfiguration a.rchitecture includes external Loaders based on CPLD

46

')Chr:Ju ef

l(i"""'d\J

I RI),).}tCuRWO

I R,'It",) " ,-, S .. l :"'Ir.:·1

(A)

• -k 1 .. - ·

::: j ;
! : t ... ~";- 10 10>10> 2-.

~~r:
l B "!

;: :. - T rI~kn _

c..

Oynamic
An's

(8)

Figure 3.4: Examples of Temporal Partitiuning Architectures with Custom Embedded Con­
troller [1, 81, 99]

and FLASH memory combination [I j. A cllstom controller performs the operations sllch

as scheduling JnJ timing of reconfiguration, task management, and communication with thL'

external memory [1]. These configurations are shown in the Figure 3.4.

In the Figure 3.4 one can see that simiiJrly to the organization described in the previ-

OllS section, a custom Configuration Memory Controller is implemented in the reconfigurable

fabric . The dynamic reconfigurable area is also used for the IP-cores. Similarly, as in the

previous section , these IP-corcs arc partial bitstreams and are specifically designed with con-

straints for a particular FPGA device. The confIguration memOlY is assumed to be an external

non-volatile memory, but, it is not di scussed in detail in these works [1 , 81 , 99]. The memory

management is performed by the same custom controller, and for this the design of interfaces

is needed. In the Figure 3.4 a configuration controller is implemented externally in a fonTI

of a CPLD device. The configuration memory for all of the IP-core bitstreams is stored on

FLASH memory and is interfaced to the CPLD only. The CPLD provides the bitstream to the

FPGA based on the requests from the Scheduler. The configuration memOlY manager in this

architecture is implemented as a custom controller, and peIforms all of the operations needed

for IP-core management. In this scenario the IP-core replacement is done by the CPLD de-

vice. Another option to update the IP-cores is to replace the FLASH card. In general , such

47

physical intervention is not desirable since typically embedded processing system is not easily

accessible after deployed in the field.

For both of these architectures temporal data memory usually is considered as an external

SRAM. Depending on the application the single or dual bank configuration is used for the stor­

age of intermediate and final results of TPM processing. The controllers communicate with

the integrated PowerPC cores that are embedded in some of the Xilinx Virtex FPGAs [99].

However, as with the MicroBlaze soft-core processor, the custom soft-core controllers occupy

FPGA's logic resources. Most importantly, they are again limited to the FPGA devices that

support partial configuration. Due to that fact, the design of the IP-cores is more complex and

limited in implementation 1. In order to overcome the limitations and create a generic support

for all types of FPGA devices the IP-core configuration memory manager and configuration

controller should be located outside of the FPGA.

3.3 Architectural Organization of Tenlporal Partitioning

Mechanism

As mentioned in the introduction and literature review sections, all of the major components

such as: i) configuration memory manager, ii) configuration controller, iii) configuration mem­

ory have to be analyzed and implemented for the TPM architecture. It is preferable that the

configuration controller along with the configuration memory manager is implemented as an

external device since both are relatively cheaper than an on-chip FPGA resources (e.g - $30).

This allows for the implementation of the TPM architecture on any off-the-shelf (OTS) re­

configurable device, without being tied to a specific family or manufacturer of reconfigurable

devices. In this section every component of the TPM architecture is discussed along with

quantitative analysis and possible architecture options.

48

Table 3.1: Memory Types Chart and their Characteristics

Memory Type Bandwidth I Read Latency I Capacity (MB) I Control Complexity I
Hard Disk Drive 3 x fb9 Bits/sec ,,-,10 ms 1.2 x 1013 Bits High

NOR FLASH 8 x lOlS Bits/sec 20ns 51.2 x 107 Bits Low
NAND FLASH 3.6 x lOlS Bits/sec 1.5 ms 51.2 x 1010 Bits Medium

DRAM 12.8 x 1O~ Bits/sec 20 ns 1.2 x 1013 Bits High
SRAM 6.4 x 109 Bits/sec 7 ns 72 x 106 Bits Low

3.3.1 IP-core library - Configuration Memory Architectures and Perfor-

mance Analysis

The configuration memory in temporal partitioning architecture essentially represents the IP­

core library which contains vast amounts of different variations of IP-cores. This library

should have capabilities of immediate on-the-fiy access to the stored IP-cores in order to

deliver them to the target reconfigurable device. This library should also be updatable and

therefore it should be on an erasable/rewritable type memory. When considering the configu-

ration memory interfaces one should assume that the configuration cores can be stored on any

type of memory. Memory could be volatile, like DRAM and SRAM or non-volatile, such as

hard drive, FLASH memory, or even a network device. The difference between the memories

lies not only in the type of memory and its maximum speed, but also in the initial access la­

tency, its maximum capacity, and control complexity. Differences can be found even within

the same type of memories, for example, NAND and NOR FLASH memories. Based on

similar technologies these memories differ in that the NAND FLASH can have large capacity,

whereas NOR FLASH has very fast access time. The choice of the memory mainly depends on

the system bandwidth requirements of configuration interface. The chart of different memory

solutions is given in Table 3.1.

Every memory type in the above table has some aspects that are desirable for various tem­

poral partitioning architectures. As seen in the table, there are several parameters that are

important for the target architecture. The hard disk drive (HDD) has the largest capacity, as

49

well as relatively high bandwidth, however, the initial latency and complexity of interfacing

are the main problematic issues. Typically, a hard drive requires a microprocessor or a spe­

cialized controller to utilize the full speed of the interface, therefore the implementation of it

in an embedded system is considered of a high complexity. DRAM is also of a large capac­

ity, but, similarly, requires a relatively complicated controller, and in addition, it is a volatile

memory. SRAM, on the other hand, is very simple in control, but it is also a volatile memory

that has a limited capacity. NOR FLASH memory is a non-volatile memory, with relatively

simple control which is similar to that of the SRAM, and with very low latency. The main

issue with NOR FLASH is its capacity which is currently limited to 512 MBits per single die.

NAND FLASH has comparable bandwidth to the NOR FLASH, and an ever growing memory

density, but it suffers from the initial readout latency.

From the above findings we can observe that each type of memory suites different type

of requirements, that can depend on the environment for which the system architecture is de­

signed. The purpose of a cost-effective design is to select a memory that is closely applicable

to the architectural requirements. At the same time, the design complexity and the future

migration to other designs has to be also considered as the part of the overall cost system eval­

uation. Hence, a if system is designed to be interfaced to a PC and the mode change can be

done slowly, a hard drive IP-core storage system would be most suited. On the other hand, if

the system has to be highly optimized in terms of power and speed with large storage capacity,

a NAND FLASH with pre-fetch SRAM memory would be more effective.

When a memory is selected, the memory management has to be considered. The mem­

ory manager has to be present to perform loading and updating of IP-cores to a non-volatile

memory. The memory manager is discussed in the following section.

50

3.3.2 Architecture of Configuration 1\lemory Manager

The configuration memory manager performs the following functions: schedules the reconfig­

urations, updates IP-core in the IP-core library. communicates with the external devices (e.g.

host computer, network server, etc ..) and, in most of cases, initiates the reconfigurations.

The configuration memory manager can be implemented in various ways. For example:

purely software running on a host PC, soft-core manager as described in the [1, 81, 99J, as

external microprocessor/microcontroller. Configuration memory manager can have different

types of interfaces to the outside world. Interfaces can be as simple as a serial communication,

or as complex as Ethernet or satellite interfaces with a connectivity to an IP-core Hbrary on a

remote server. There is also a possibility of hardware-software co-design where some aspects

of the configuration manager are implemented in hardware, such as interfacing, and some in

software, such as the order of the IP-core prediction. The complexity of the actual configura­

tion memory manager also varies with the system requirements. In some cases configuration

manager needs to cycle only through few IP-cores and, therefore, can be implemented even on

a small size logic device. When requirement is for a system that has to have various interfaces

and performs complex memory management operations, a much more complex processing

device has to be used. Moreover, the development of the firmware for that device is compli­

cated, and, as a result. the overall cost increases. Hence. the configuration memory manager

should closely reflect the overall system requirements.

Proposed configuration memory manager is flexible in supporting both temporal and spa-.

tial partitioning. The main difference of a partial bitstream from a full configuration bitstream

is in size. The configuration procedures are virtually identical. The partial configuration does

not require a reset of FPGA configuration memory, which, in most cases, is an assertion of

a reset input. The header information is included in all of the bitstreams that are produced

by CAD software, therefore configuration memory manager is greatly simplified. Since the

configuration memory manager performs the actual update of the IP-core library it also can

51

perform the memory use optimization, by reorganizing the IP-cores to utilize as much mem­

ory as possible. Keeping the database of the IP-cores simplifies the user configuration side

interface and makes it portable and independent of the specific user. This allows to change the

schedule of the temporal or spatial reconfiguration without any knowledge of where exactly

the particular IP-core is located in the storage memory and what size it is.

As was seen in the previously reviewed works [1, 81, 99, 46], the configuration mem­

ory manager was mostly present as a soft-core microprocessor on the FPGA fabric or was

not discussed at all. The main reason for integrating the configuration manager inside the

FPGA device was to avoid the use of an external controller and minimize the complexity of

the configuration memory manager by utilizing pre-built soft-core processor. However, as

was explained, the soft-core controller occupies valuable logic resources on the FPGA device,

complicates the IP-core design, but is supported by FPGA vendors. Design of the config­

uration memory manager is also possible in other types of architectures, however as in the

Section 3.3.1, the design closely depends on the overall system requirement. Several config­

uration memory manager architectures are given below in the order of increasing bandwidth

and complexity below:

• Software GUI with JTAG configuration interface

• Low cost rnicrocontroller with 1 or 8 bit configuration interface

• Combination of a rnicrocontroller with a high speed IP-core loader controller based on

a CPLDIFPGAI ASIC

• Microprocessor with a high speed IP-core loader interface and various complex com­

munication interfaces (e.g. Ethernet)

It is important to mention that the configuration memory manager does not necessarily include

the configuration controller. In some cases to increase the bandwidth of the configuration bus

an additional driver is added to achieve the desired configuration speed.

52

3.3.3 Configuration Controller Architecture

The purpose of a configuration controller is to perform the loading of the configuration bit­

stream from the IP-core library to the target reconfigurable device. There are various configu­

ration controller interfaces that can be employed and they can be as simple as a serial interface

running at low interface (e.g. KHz range) frequency, and as complex as a highly parallel and

high frequency (e.g. 32 bit running at 100MHz). The IP-core storage memory has several

options as well: integrated into configuration controller (e.g. Xilinx PROM), external mem­

ory module (e.g. FLASH memory IC), or removable (e.g. CF card, HDD, network) device.

The configuration controller typically has an interface to the configuration memory manager,

which issues commands to the configuration controller. Typical commands for the configura­

tion memory manager are: load IP-core from a particular slot/address, perform maintenance

on a particular slot/address. Maintenance can include erasing a particular slot/address on the

storage memory, as well as, write an incoming stream of data to a slot/address. The interfaces

of the configuration controller to the target FPGA device vary in bandwidth. It's important

to state that the performance of the external configuration controller is always designed to

match the FPGA's maximum configuration bandwidth. Hence, the external configuration con­

troller always operates with the maximum required performance and is in no way lower in

performance than previously described soft-controllers [46, 1,99]. Therefore, based on the

system architecture requirements an appropriate selection has to be made. The next section

talks about the comparison of configuration interfaces and about the actual steps of FPGA

reconfiguration.

3.3.4 Configuration Interfaces Selection

As mentioned earlier, specifications of the desired system dictate the complexity of the de­

sign. Depending on these requirements a temporal partitioning mechanism can be designed

with various configuration interfaces that have different configuration bandwidths. One of the

53

drawbacks of the temporal partitioning approach is the timing overhead that is introduced by

the reconfiguration time of an FPGA device. For high performance stream processing systems

such overhead becomes a significant problem and might result in a violation of the timing

restrictions. Hence, one of the objectives of the research was to minimize the configuration

timing overhead. In order to do that we have to analyze what is involved in the calculation of

reconfiguration time.

When we are considering minimization of configuration time overhead we first have to

describe general interfaces that are available for FPGA configuration. Most of the FPGA

manufacturers support several common types of configuration interfaces that can be utilized

by designers for particular applications. Based on the speed of these interfaces the calculation

of configuration times can be performed.

Most common interface includes serial configuration over two line interface, where one

line provides clock input and the other provides the data. Serial configuration is available

in different flavors. The proprietary protocols such as Xilinx Master-Serial and JTAG TAP

chain are common to most manufacturers. JTAG TAP chain operates at about 8MHz [34].

Proprietary serial configuration interfaces usually support much higher speed which in case of

Xilinx Master-Serial is 25MHz. For funy embedded solutions FPGA manufacturers provide

configuration PROMs that can support up to 8 different configuration bitstreams. Recently,

configuration PROMs were embedded directly in the FPGA les, such as Lattice XP and Xilinx

Spartan 3N FPGAs. This decreased the external component count, the cost and the size of the

overall system. It also provided an additional security against reverse engineering of IP-cores.

The speed of bitstream upload was not improved, however.

As FPGA devices increased in size so did the configuration bitstream, which in tum caused

longer configuration latency. Serial configuration would require tens of seconds and thus was

unfeasible for embedded products that needed to have reasonably fast start up times. Some

manufacturers began to increase the configuration bus width. Most common ones were 8

54

bit width operating at 50MHz. In case of Xilinx FPGAs this interface is called SelectMAP

and is usually interfaced with a microprocessor, or a combination of a microcontroller and

CPLD. The speed of this interface was also increased to about 50Mhz to allow rapid power­

to-operation start-up times and to cut the start-up times by the factor of 16. In the past couple

of years, with the release of latest Xilinx Virtex 4, Virtex 5 and newly announced Virtex 6

FPGAs, this interface was developed even more and bus width was increased to 32 bits, while

frequency was pushed to 100MHz of configuration clock. This fact benefited the approach

of temporal partitioning tremendously. since it has greatly reduced the configuration time of

FPGA. which, as mentioned before, is the main bottleneck in the implementation of temporal

partitioning.

From the above described interfaces we can arrive at a general fonnula for calculation of

bitstream upload time:

L /' con 19bitstream
s s

W X F BWcon/ig
(3.1)

where W is the bit width of the configuration bus, F is the frequency of the configuration

clock that is used to clock-in configuration data which results in configuration bandwidth,

BWcon/ig is the bandwidth of the configuration interface. Assuming S is the size of a bitstream

in bits, the time it takes to upload the actual bitstream infonnation 1'con/igbustream' is directly

related to the configuration bandwidth.

Table 3.2 shows the comparison between time requirements for configuration of different

interfaces for smallest FPGA in Virtex-4 Family XC4VLX15 which has bitstream size of

4,765.,568 bits.

It is clear from Table 3.2 that the configuration interface plays a crucial role in the re­

duction of configuration time overhead. High clocking speed and highly parallel interface,

such as SelectMAP32, gives 400 fold time reduction in comparison to a conventional JTAG

55

Table 3.2: Bitstream Configuration Timings for Various FPGA Interfaces.

Interface JTAGat 8MHz

I TIme Reqmred I 595.69ms

Start

Devioe
""'-'-Up

I 2 3

I Clear I ...
I C I' , I Sample M","e

on lQurat,oo Pins
I Memory I
I I

Serial at 25MHz

190.62ms

Step"

4

Synchronization I
I
I

DevioelD
Check

Parallel SelectMAP
(8bit) at 50MHz

11.91ms

6 7

load
I Configuration I CRe Checl<
I Data I
I I

1------ Bitstream
Loading

Figure 3.5: FPGA Re-configuration Stages [83]

Parallel
SelectMAP32
(32bit) at lOOMHz

8

Startup
Sequence

1.49ms

Finish

interface. Therefore, when considering configuration interface in architectures that employ

temporal partitioning, the largest configuration bus width, and the highest configuration speed

is preferred to minimize the bitstream configuration overhead.

At the same time, it is important to note that Tconjig consists of several latencies and not

just Tconjigbitstream' Other time overheads have to be included in calculation of Tconjig. These

overheads are explained in the next section.

3.3.5 Calculation of FPGA Reconfiguration Time

When calculation time involved in an FPGA device reconfiguration we have to consider the

time for 8 latencies, as shown in the Figure 3.5.

The power up latency can be avoided since system is considered to be powered up already.

Nonetheless, it has been included as first latency and counted as Tconjigpower_up for the sake

of completeness. The next two steps are associated with the reset of configuration memory

and FPGA responding with being ready to accept a new bitstream. PROGRAM signal has

to be asserted for at least Tconjigmwreset (e.g. Xilinx FPGAs 300ns) in order to initiate the

FPGA configuration memory reset [83]. Upon completion of the reset, the INIT signal will

56

be asserted to high with a typical time latency of 1'conjigjnitlatency (e.g. Xilinx FPGAs 300j.ls)

and the bitstream upload takes place.

Step 4 through step 7 take care of the bitstream configuration. The bitstream itself consists

of several sections, such as: synchronization, device ID check, CRC check, and the actual

configuration data upload. The procedure is fairly similar for all types of SRAM based FPGAs.

Tconjigbitstream varies greatly depen~ing on the size of an FPGA. As can be seen in example of

Xilinx Virtex 4, the series different devices in the same family vary greatly in configuration

data size, which reflects its logic size. Therefore, for a large device, such as XC4VLX200,

the bitstream is about 11 times larger than for XC4VLX15. We have to also consider the fact

that if a bitstream compression is utilized, then the size of a bitstream can be reduced. The

smaller bitstream size in tum decreases the time of bitstream upload. Upon completion of the

bitstream upload there is typically a delay of several clock cycles for FPGA start-up, but it

is negligible compared to all of the other steps in bitstream configuration (e.g. Xilinx Virtex

See x lrio~~z = 80ns). In the Table 3.3 the reconfiguration times for Virtex 4 FPGA devices

are listed along with the total configuration FPGA off-line time which in this thesis is given

as:

Tconjig - 1'conjigpower + 1'conjigmemreset + Tconjiginitlatency + 1'conjigbitsJream (3.2)

This formula includes all the time requirements described previously. As it can be seen from

the Table 3.3, the reconfiguration times increase almost linearly with the size of the FPGA

device. For the temporal partitioning it has to be decided which FPGA is most suitable based

on how much configuration overhead can be tolerated. In the later section a selection scheme

will be presented on how FPGAs are chosen for a particular temporal partitioning

implementation.

57

Table 3.3: Reconfiguration Time for the Xilinx Virtex 4 FPGA Devices via Slave Serial Se­
lectMAP32 Mode.

Devices I Bitstream Size in bits I Bitstream Configuration I Total FPGA configuration I
XC4VLX15 4,765,568 1.489ms 1.789ms
XC4VLX25 7,819,904 2.444ms 2.744ms
XC4VLX40 12,259,712 3.831ms 4.131ms
XC4VLX60 17,717,632 5.537ms 5.837ms
XC4VLX80 23,291,008 7.278ms 7.578ms
XC4VLXIOO 30,711,680 9.597ms 9.897ms
XC4VLX160 40,347,008 12.608ms 12.908ms
XC4VLX200 51,367,808 16.052ms 16.352ms

3.3.6 Proposed Platform Architecture with Custom External Controller-

Scheduler for Run-Time TPM

Based on the proposed methodologies/approaches of different parts of the TPM in previous

. sections a proposed methodology of overall architecture for temporal partitioning system is

given in this section. This section explains the architecture of configuration memory manager,

its configuration memory (IP-core library), and its configuration controller. First, however,

system requirements have to be stated since architecture of the TPM depends them. For this

work four main specifications are considered:

1. The fastest possible FPGA reconfiguration to minimize the downtime.

2. An interface to a PC for user interaction with the configuration manager

3. An ability of the IP-core library to be updated from a PC (e.g. Ethernet bridge, Bluetooth

bridge, serial port, etc.)

4. An ability to issue reconfiguration commands from 3 sources:

(a) FPGA device

(b) GUI software

(c) Physical 'input button

58

Based on these initial specification requirements the TPM architecture design was proposed

for the target platform described in this work (58]. Overall architecture is shown in Figure

3.6.

The external configuration memory manager is designed by utilizing a microcontroller that

interfaces with a IP-core library and configuration manager. Its main functions are: i) schedul­

ing, ii) updating IP-cores, iii) communication with the instrumental PC over a USB protocoL

The microcontroller is a Microchip PIC18F841O with 8-bit Harvard RISC architecture. It

was selected due to requirements of all of the above interfaces and its low cost. The micro­

controller is connected to the configuration controller and FPGA with a parallel interface. The

purpose of the interface to both the configuration controller and FPGA is to have the flexibility

of initiating reconfiguration based on a request from FPGA and to pass command information

to the configuration controller. The use of the microcontroller instead of much more powerful

microprocessor is to simplify the design, to make it portable and implementable on a much

smaller scale platform and on a smaller FPGA. Possible disadvantages are that for support of

high speed Ethernet protocol requires much more powerful microprocessor.

The configuration memory was selected to be a non-volatile NOR FLASH type memory

connected to the configuration controller only. This solution was selected because the NOR

FLASH memory has high pin-count of four FLASH modules and hence provides rapid upload

of a bitstream. To achieve the maximum bandwidth of reconfiguration it was needed to connect

four modules in parallel. Even though capacity of NOR FLASH is significantly smaller than

that of the NAND FLASH, NOR FLASH has the lowest initial latency for a non-volatile

memory and has an SRAM-like control architecture. Due to these reasons and considering the

scope of the work, NOR FLASH is a suitable type of memory for IP-core library.

The configuration controller delivers configuration bitstream at the maximum possible

bandwidth allowed by the reconfigurable device. The high pin-count was needed to inter­

face to four NOR FLASH modules mentioned previously. However, the memory operations

59

are not complex and, therefore, a CPLD device has enough logic resources for that purpose.

Similarly, as with the configuration memory manager, it has a dual parallel bus connected to

both FPGA device and configuration manager. Additionally, it has a 32-bit configuration bus

to the FPGA device, on which the actual configuration data is delivered. The main advantage

of the CPLD device is that it is a configurable logic device based on a non-volatile memory

operating from a single power source and that it can operate at high frequencies. This allows

for easily parallel implementation of configuration controller which can be highly portable

across different architectures and scalable for higher speed.

The great advantage of such implementation is an ability of designing platforms with any

type of FPGA device, independent of the partial configuration capability. More importantly,

temporal partitioning system can be designed for any FPGA device, which is controlled and

configured by the central scheduler. This also simplifies the generation of IP-cores since they

are designed with full use of resources and are not limited by area constraints. Since there

are no embedded controllers/schedulers on target FPGA, the design can be done without any

specific considerations.

There are different approaches that can be employed in design of a system with temporal

partitioning methodology using external configuration controller. Some can be a single-FPGA

and some can be multi-FPGA solutions. Figure 3.6 shows proposed general organization of a

system with single FPGA, which is similar to [46,85, 107].

In this setup the configuration memory manager is connected to the configuration con­

troller, which in tum is connected with the IP-core library. Configuration manager has inter­

faces to the outside world which gives it capability to upload or update IP-cores. At the same

time, it is possible to change parameters of the configuration manager to adapt to different

environment conditions in real-time, as will be described in Section 8.2. The configuration

controller design has several variants of implementation and they are mentioned in Sections

60

I P-Core Stream
Buffer Input

Data Memory

Raw Data Bank 0

Configuration Raw Data Bank 1

Controller FPGA
Temp Data BankO

Temp Data Bank 1

Output Data Bank 0

Configuration Output Data Bank 1

Configuration Manager Stream
Memory Output

PC Ethernet 110

Figure 3.6: Architecture of Temporal Partitioning Platform with External CPLD Based Con­
troller/Scheduler

3.3.7 and 3.3.7.1. As for the scenario of the system with a single FPGA device implementa-

tion, the IP-cores are required to be designed to include the peripheral device control (such as

control of SRAM) as shown in the Figure 3.6. Even though this is an acceptable solution from

the stand point of overall cost, and resource utilization, it requires external hardware resources

which have to perform the service operations. These resources would have to be designed and

integrated into the target architecture and would require custom hardware.

In the multi-FPGA setup which is shown in Figure 3.7, three FPGA units are used. This

architecture is general for any types of FPGA devices. This architecture involves two pro­

cessing FPGAs: one or many is/are dynamically reconfigured and one statically configured

FPGA. The statically configured FPGA device manages global inputs/outputs, as well as acts

as an interface to external memory modules. This is especially necessary for applications that

require un-interrupted control, such as video output, or constant control output. This statically

configured FPGA, as shown in Figure 3.7, also acts as a bridge between the processing FP­

GAs and memory modules. At the same time, requirements for this FPGA are minimal and

61

have to satisfy the bare minimum of interfacing. The other two FPGAs are run-time reconfig­

urable task Segment Processing Modules SPMl and SPM2. The IP-cores associated with task

segments are loaded there one after another according to the schedule by the configuration

loader/scheduler. One of SPMs is configured with next IP-core while the second performs the

processing of the current IP-core. This allows for elimination or reduction of reconfiguration

overhead and is described in detail in Section 3.3.8. As in the previous scenario, micropro­

cessor performs communication functions with other interfaces for IP-core update, schedule

modification and other maintenance tasks. In a scenario where three FPGAs are used the

pipelining technique for configuration/execution of IP-cores is employed. Here, reconfigura­

tion of one FPGA occurs when the other FPGA is preforming data processing and vice versa.

There are different approaches that were implemented by other researchers, such as RACE

[88], Firefly, RENCO [94] and other architectures that are similar to this approach in using

four to eight FPGAs. However, in the architectures approaches a separate PC was used to

perform all of the scheduling and loading in run-time. This dramatically increases the cost of

the system and may eliminate the advantage of cost-efficiency of TPM. Therefore, the only

solution with one FPGA (non-pipelined) and three FPGA (pipelined) devices were considered

in further research.

3.3.7 Configuration Controller Architecture with IP-core Pre-fetching

One of the design architectures of configuration controller could be simplified and made more

cost-effective if the frequency of reconfigurations is lowered. Even if a bitstream has to be

delivered to the target device at the maximum configuration bandwidth, with lower frequency

all highly paralleled FLASH modules can be replaced with a single SRAM buffer. It is impor­

tant to mention that over time the average bandwidth of IP-core to FPGA configuration should

be same or lower than bandwidth FLASH memory. Otherwise, IP-core library may become a

62

Stream Input
IP-Core
Buffer ,...---------, .----·-·----·----·Jl····~~~~~~ff~.~.

~ I Stream Buffer Input I i ,_ rJ'--_l===~ SPM l(FPGA #1)

Configuration
Controller

Configuration
Memory Configuration

Manager

J} tt u
PC Ethernet I/o

: ,JJ, i . : .
Data

C Data Memory I

Raw Data Bank 0

Raw Oat .. Sank 1

Figure 3.7: Architecture of Temporal Partitioning Platform with Pipelined Organization of
ConfigurationlExecution Processes

bottleneck in the TPM design:

BWFI.ASH > BWaverageconfig (3.3)

As in previous designs the configuration manager is realized as a microcon-

troller/microprocessor unit, which performs operation of IP-core management by uploading

them from external sources such as Internet and others. In addition, it keeps the schedule of

reloading IP-cores and performs the actual reconfiguration of the FPGA with the scheduled

IP-core. This configuration controller architecture involves a FLASH memory for the storage

of IP-cores [85]. It is well known that the readout speed of a FLASH memory module is

limited to about 25ns per memory access. Due to that, configuration itself will result in extra
-

overhead of latency. The current maximum configuration bus speed is 100MHz for Virtex

4, Virtex 5 and Virtex 6 devices. Considering that the SelectMAP32 configuration interface

for the Xilinx FPGAs is currently 32 bits, it is required to deliver bitstream data at 3.2Gbit

63

Figure 3.8: Architecture of SRAM and FLASH Configuration Loader

per second. As noted previously, a single FLASH chip would be able to deliver only at

25Xio 9 x 16bit = 640Mbitlsec maximum speed, as shown in the Table 3.1. This, however, is

not a difficult task for an SRAM memory which easily surpasses 100MHz. SRAM memories

are also available in 32 bit interface data buses. Therefore, a design which involves pre-fetch

scheduling can effectively decrease the configuration latency on FPGA. With constantly

revolving IP-cores it is possible to pre-load required IP-cores into the SRAM buffer. Based

on the schedule of configuration configuration controller can deliver the bitstreams at the

maximum speed, therefore minimizing the bottleneck of reconfiguration time on a FPGA.

Example of the loader architecture arrangement is shown on Figure 3.8.

For partially configurable devices configuration time would be even less since partial bit­

stream size would be a fraction of a full bitstream. Several pre-fetching techniques have been

developed to reduce the overall reconfiguration overhead by performing the scheduling recon­

figuration from the SRAM buffer in run-time [91]. In an example of an application where a

mid-sized FPGA is used which has a 4Mbit configuration bitstream, and utilizes a single IC

72Mbit SRAM, it is possible to keep 18 temporal IP-cores. These 18 IP-cores can be re-placed

on individual basis in a case of operation mode change. Again, this operation is possible if

the condition shown in equation 3.3 is satisfied. Overall cost calculation for this approach is

given in equation 3.10, which can be used for cost comparison to parallel FLASH approach.

There is also some research [89] on the same topic that concentrates on the increase of

the reconfiguration speed even further to minimize the configuration delay. The idea is to use

multiple homogeneous sections of FPGA, each with its own configuration SRAM that can be

accessed individually. Setup example of this approach is shown in Figure 3.9.

64

Tile 1
Tile 2
Tile 3
Tile 4

•
•

TileM

configuration
controller 1

configuration
controller 2

•
configuration
controller N

/ -------II' --___ _

I logic f¢i configuration SRAM' I

Figure 3.9: Organization of Parallel Tile Configuration [89]

This architecture provides parallel load of the configuration stream, which in tum speeds

up the whole system operation. Experimental results showed that by increasing the number of

SRAM modules and loading up to ten controllers in a single FPGA, it is possible to achieve a

40% improvement in configuration time. The disadvantage of this approach is that it requires

a design of different architecture of FPGA and would increase the cost of FPGA device due to

the complication of the configuration logic and SRAM memory.

3.3.7.1 Configuration Controller Architecture with Paralleled FLASH Memory Orga-

nization for IP-core Configuration

Another configuration controller architecture solution is to have a parallel FLASH organiza­

tion. This architecture provides simplified loading mechanism. hardware requirements and

implementation. The design also depends on the type of FLASH memory used, such as: NOR·

or NAND types and its data bus width. In order to design a parallel FLASH loader for any type

of FPGA device a configuration bandwidth should be known. Configuration bandwidth can be

calculated based on the maximum configuration clock frequency and configuration bus width.

FLASH readout bandwidth is calculated in the same manner. Based on the configuration band­

width of the FPGA's configuration bus and an average FLASH memory readout bandwidth.

the number of FLASH ICs can be estimated. These FLASH modules would have to be linked

65

in parallel with common addresslcontrollines. Equation that calculates the number of FLASH

ICs is as follows:

N _iBWconfigbusl
FLASHIC - BW

FLASH
(3.4)

Such configuration loader is obviously be much simpler in hardware requirements since it

only has to buffer the FLASH data and output the configuration data in configuration bus width

bits. A bridging device between the FLASH memory modules and the configuration bus could

be based on a low costilow power CPLDIFPGA device. In comparison, designing an IP-core

SRAM buffer would require more complex loader, and, thus would result in a much higher

cost of implementation. In later chapters a hardware example of such architecture design is

given along with the cost analysis for this overhead.

3.3.8 Hardware Overhead Cost in Temporal Partitioning Architecture

Implementation

Besides minimizing the configuration time overhead, the configuration hardware overhead

cost should be minimized. Since configuration hardware overhead is directly related to the

cost-performance ratio, it has to be addressed in order to maintain the effectiveness of the

temporal partitioning approach. In this section, several approaches associated with the hard-

ware overhead and their approximate costs, are considered. As mentioned in the previous

section, to minimize configuration time overhead we have to use widest possible configura-

tion bus operating at the maximum speed of available configuration clock. Therefore, as seen

in previous section, with the current SelectMAP32 interface it is desirable to have a configu-

ration loader that would have the interface and bandwidth close to the configurable device. In

case of proposed implementation that would be a 32bit data bus operating at 100MHz total­

ing to BWconfig = 32 x 100 x 106 = 3.2 X 109 bit/sec. At this point there are several possible

66

architectural organization possibilities and associated costs. It is important to note, that config­

uration controller has to be designed with a cost-effective approach in mind. Hence, if system

architecture requirements are lower than the maximum configuration bandwidth, then TPM

architecture should reflect that requirement and preferably not exceed it, in order to achieve

the optimal cost-effectiveness.

The overhead cost estimation and cost-efficiency can be found for architectures covered in

Sections 3.3.6, 3.3.7, 3.3.7.1. As previously discussed, a TPM architecture requires these ma-

jor components: configuration memory, configuration controller, and configuration memory

manager. Each of these parts should have minimal in cost while providing adequate perf or-

mance. This would decrease overall overhead cost and provide even better cost-performance

ratio for the whole system. Therefore, overall TPM overhead cost is calculated by:

CTPM = Cconjigmemory +Cconjigmemorymanager + CconjigconJrolier +CPCBarea (3.5)

Where CTPM is the cost of TPM hardware, Cconjigmemory is the cost of the configuration

memory, Cconjigcontroller is the cost of configuration controller, and CPCBarea is the cost of the

additional PCB area that is needed for the TPM hardware components. Every component can

have sub-components depending on the architecture. For an architecture with parallel FLASH

arrangement every TPM component should be estimated. As per equation 3.4:

BWconjigbus
Cconjigmemory = CFIASH IC X NFLASH ICs = CFIASH IC x Blf': (3.6)

FLASH

In this case the cost of Cconfigcontroller corresponds to the cost of inexpensive reconfig­

urable device that satisfies the pin-count need for the configuration memory and configuration

interface. CFLASHIC is the cost of the FLASH memory IC and NFLASHIC is the number of

the FLASH memories needed to achieve the maximum configuration bandwidth. Also con-

figuration controller contains enough configurable logic to support configuration controller

67

implementation. Typical cost of such devices is around $10-$15 USD in single unit quantity

from a wide range of distributors. The cost of configuration memory manager purely depends

on the complexity of operation and the number of interfaces required for the configuration

memory access from external sources. To provide feedback control memory manager has to

have a sufficient I/O for interconnection between configuration controller and reconfigurable

device. A typical implementation can be accommodated by a general purpose microcontroller

which typically costs <$10 USD. In a much more involved implementation with specific pre-

processing/compression implementations or a highly demanding processing task, a rnicropro-

cessor can be used that costs up to $50 USD. The last overhead cost that is considered for TPM

architecture is the overhead cost of additional PCB area needed by the TPM components. It is

an important factor which should not be overlooked, due to significant costs of "" $0.4 USD

cm2 for a 6-8 layer from most PCB manufacturers. In some scenarios due to area PCB con-

straints and overhead costs an even more expensive memory packages is favored. Hence, a

sample formula for parallel FLASH TPM architecture is:

BWconfigbus
CTPM =CFlASHIC X BW Cconfigmemorymanager+Cconfigcontroller+CPCBarea (3.7)

FLASH

Similarly to previous analysis, an architecture of pre-buffering has similar type of archi-

tectural, however, in this scenario Cmemory is modified to include costs of different type of

memories. In this architecture there are other parameters that have to be addressed as well:

Cconfigmemory CFlASH + CSRAM (3.8)

In the pre-buffering configuration bitstream transfers need to be considered. First a bit-

stream has to be pre-loaded to the pre-fetch SRAM memory and only then it can be pro-

grammed into the FPGA. Both of these transfer times have to be considered in the calculation

to identify the amount of needed FLASH modules, and the associated costs. As mentioned in

68

the previous example the bandwidth of FLASH memory has to satisfy an average bandwidth

of the bitstream configuration with an addition of SRAM bandwidth as shown in the equation

below:

C x rF x Sbitstream
FLASHIC BW

FLASH

F X Sbitstreaml

BWconfig
(3.9)

Here, F is the frequency of IP-core reconfigurations and S is the size of IP-core bitstream.

This equation can be used in estimation of feasibility of this architecture for particular appli-

cation, assuming that the frequency of reconfiguration, as well as, the type of reconfigurable

device is known.

The cost of SRAM CSRAM depends on the IP-core bitstream size since it has to accommo-

date at least one uncompressed IP-core. Hence, overall calculation of configuration memory

is:

r
F x Sbitslream F X Sbitstreaml

Cconfigmemory = CFLASHIC X BW + BW: . +CSRAM
FLASH config

(3.10)

Based on the Equation 3.1 0, the cost of configuration memory can be estimated. The esti­

mate can be used to access if this architecture would be feasible for a particular application.

For example. if the frequency of reconfigurations is 10 reconfigurations per second and the

size of IP-core bitstream is about 20Mbits, then using previous parameters for configuration

bandwidth. as well as memories bandwidth, we get:

r
10 x 20 X 106 lOx 20 x 1061

Cconfig memory = $15 x 3200 x 1 Q6 + 800 x 1 Q6 + $60 = $90

Component costs were obtained from various distributors (e.g. Digikey. Avnet, Mouser)

at the time of writing this chapter.

Besides the fact that from 8 FLASH ICs we have decreased to only 2 FLASH ICs, addi-

tional savings also come from the CPCB due to smaller area requirement.

69

This approach shows that if TPM system requires a minimum downtime, while having av­

erage configuration bandwidth lower than maximum system BWconjig, it is possible to exploit

the pre-fetching technique to achieve lower cost of the TPM architecture with additional PCB

area reduction. The evaluation of effectiveness of this approach is given by the Equation 3.10

which uses specification parameters of the system and available components.

3.4 Summary

This chapter introduced a hardware architectural organization of RCS with temporal parti­

tioning of computing resources. A thorough literature review of different architectures that

were designed for this purpose was presented. This chapter discussed different approaches

such as context switching which allows a rapid transition from one configuration to another

by SRAM cell multiplexing. It was shown that context switching architecture is limited to a

few configurations and is not flexible if the number of IP-cores exceeds the amount of context

cells present in a multi-context FPGA. Other reviewed architectures involved a configuration

controller. The main differences were in the location and type of the configuration controller.

Architectures involved an implementation of the configuration controller within the FPGA

fabric in a form of a generic soft-microprocessor or a customized controller. Other researcher

works involved an implementation of the controller on an external microprocessor. As the

result of this analysis, a novel approach for architecture organization of temporal partitioning

mechanism (TPM) was proposed. The proposed approach was described with the specifica­

tion of architecture and the explanation of why specific type of non-volatile memory has to be

used. Finally, the proposed pipelined and non-pipelined system architectures were described

with the methodology of configuration controller design. This architecture was published in

conference publications [58], [54], and journal publications [51]. Next chapter describes the

essential need and suitability of the temporal partitioning approach in fault tolerance designs.

It introduces various fault tolerance techniques used in the industry and shows how temporal

70

partitioning can greatly improve the survivability of devices in hostile environments and at the

same time decrease the design costs of the system.

71

72

Chapter 4

Architecture to Hardware Faults

Adaptation (Self-restoration)

4.1 Introduction

One of the major problems with FPGA based systems is their sensitivity to various radiation

effects. This is especially true for SRAM based FPGA devices. During the last decade that

was critical only for aerospace applications, nowadays, when 45nm CMOS technology be­

came the basis for FPGA production, it is important for many terrestrial applications as well.

Effects of the cosmic radiation on the electronics equipment is called Single Event Effect.

There are three main types of Single Event Effects (SEEs): Single Event Upset (SEU), Single

Event Transient (SET). and Single Event Dielectric Rupture (SEDR) [92J. SEU is the most

frequent effect and in most cases recoverable. SEU affects configuration memory cell that

keeps the value of a LUT in CLB or the state of interconnection switch transistor. Therefore,

the affected circuit may change its functionality. SEU occurs when SRAM cell is struck by

a charged particle, it then charges up and flips the value of its cell. SET could happen when

a voltage spike occurs, making the circuit produce incorrect result. SET is not as critical as

SEU and SEDR since the operation is just briefly altered and the device is not operational

73

only temporally. The worst case scenario is the SEDR fault, where, after being hit by an ion

particle, a dielectric destruction occurs. When dielectric, which isolates two charged conduct­

ing surfaces, is destroyed the planes are coupled. This is a hardware fault which can't be

repaired and thus poses the biggest threat to the space-borne electronic systems. This type of

fault can also occur because of thermal fatigue, oxide breakdown and electron-migration [28].

Due to these effects, the systems that were designed for aerospace industry often employ full

or partial triple redundancy. In addition, FPGAs that are used for aerospace applications are

radiation hardened to withstand a hit of a charged particle. However, such solutions signif­

icantly increase the cost, power parameters, and in some instances prevent the use of FPGA

based systems.

All of these SEEs pose a serious problem for use of FPGAs in space applications and

there are several approaches that have been taken to mitigate them. In following sections the

approaches are described, along with, their pros and cons. In addition, a methodology of fault

mitigation is proposed that uses of temporal partitioning. This chapter will show how temporal

partitioning can mitigate hardware faults with and without performance degradation.

4.2 Methods of SEE Mitigation

As it was mentioned above the space-borne systems are susceptible to SED, SET, and SEDR

hardware faults due to the charged particle bombardment (e.g. cosmic radiation, solar wind,

etc.). several researchers [122, 86] developed methods to mitigate transient faults. Mitigation

methods are divided on methods to mitigate transient, and permanent faults. Some mitigation

techniques allow recovery without functional degradation and some with functional degrada­

tion. Some mitigation techniques approach this problem from completely different angle by

performing the restoration by just-in-time compilation, orby component relocation [69,2,9].

Some of these approaches also perform recovery on very fine-grain level, and some on coarse

74

grain. All of these approaches are valid. however, their applicability strongly depends on the

system specification.

4.2.1 Mitigation of Transient Faults Using a Scrubbing Technique

As gate features shrink in size, the SEU faults are becoming more and more of a problem for

scaling transistors in ICs. As a gate of transistors decreases in size it becomes much easier

to flip the value of an SRAM cell (e.g. to charge up or to discharge the gate by a hit of a

charged particle). In addition, since there is an increased amount of logic/memory cells, the

probability that one of these cells will be hit by a charged particle is increased as well. Thus.

combined issues of decreasing size of transistors and increasing density of FPGAs make the

SEU a serious problem for FPGA based systems.

SEU does not physically damage the FPGA's die, so it is possible to repair this fault. There

are several techniques of repairing faults and they depend on the type of FPGA device at hand.

A very common approach currently used by the industry for SEU mitigation in FPGAs is the

scrubbing technique [24, 92]. Essentially scrubbing. is a periodic update of configuration

memory of the FPGA to keep the configuration SRAM cells in the required states. There are

several variations of how the scrubbing technique can be implemented. First of all, based on

the research from Rockett et al. [92] the reconfiguration of the FPGA has to occur at the rate

of ten times per fault occurrence. This assures that FPGA would potentially have a downtime

of not more than 10% of the probability of fault occurrence [14]. The advantage of using

the scrubbing technique is that it allows to repair the SEU faults without the time consuming

diagnostics, simply by reconfiguring the FPGA. When a non-partially configurable FPGA is

used, to mitigate the SEU fault it is needed to suspend device's operation and to reconfigure

the device with the same configuration. Reconfiguration would set the transistor affected by

SEU to the proper value. The advantage is that system can be restored without any physical

intervention such as IC replacement. The disadvantage, however, is that the entire device is

75

suspended from operation during the whole time of reconfiguration. For large FPGA devices

the reconfiguration time is measured in tens of milliseconds. In the case of triple redundancy

(TMR), where a processing unit is triplicated, full reconfiguration would not pose a problem.

The reason for that is that while one FPGA is suspended and the reconfiguration occurs, the

other two FPGAs are operating normally and whole repair of the SEU fault occurs seamlessly.

In the case of partially reconfigurable devices it would be possible to repair the SEU fault

by reconfiguring only the affected area and keep most of the device in operation, and without

interruption. Scrubbing would occur in cyclic operation by going through all of the sections of

FPGA. The only suspended regions of FPGA are going to be ones under reconfiguration and

operation would take only few hundreds of microseconds. It is important to mention that SEU

occurs only in reconfigurable devices where configuration memory is based on the SRAM

[44,8], and that full reconfiguration of the FPGA resets all of the internal registerslBlockRAM

memory which results in loss of data currently processed. It has to be noted that, since 80-

90% of configuration SRAM and area on the FPGA device is used up by the routing resources,

most of the SEU and SEDR faults effect the routing resources of the FPGA [36, 39].

Another scrubbing technique is to use an external special processor [24, 92] that runs a

special SEU mitigating engine, as shown in Figure 4.l.

The scrubbing technique, unfortunately, is not capable of recovering system from the

SEDR faults. When a SEDR fault occurs the affected SRAM cell will still be stuck-at-l

or stuck-at-O. Another problem associated with the scrubbing technique, is that it is not al­

ways possible to recover the BlockRAM contents if partial configuration is used [73] and full

system reconfiguration would be needed. Therefore, even though scrubbing is an effective

technique for recovering from SEU faults, it is not always sufficient for space-borne systems

and, therefore, this technique has to be expanded to accommodate the downfalls listed above.

Another solution offered by Xilinx is to implement radiation hardened Virtex II Q Pro,

Virtex 4Q Pro-V FPGAs, and latest SiRF FPGA that are built in a technological process that

76

Scruhhinr
1
\~--

Read"ock ~

Recontiguralinn :--

H-Core2

f<;, .. s;l\
L~)lIillg

Cill:uit V -'-r-
FPGA

Purging
Coruml
Engirw -'--

DSP
SEFl

Engine

1--(
~
LI..
,."

~
:>

Q..

~ ~
'-r--/
Slulusllntcrrupt

Signals

~~
ViI1~x-n

FPGA·

/ -:-..
1
i

I
Oulp uts

I

0
TMS

32()ClI713

Figure 4.1: Platfonn Architecture for SEE Mitigation [24, 92]

can withstand charged particle hits. Radiation hardened FPGAs guarantee SEE latch-up Im­

munity to LET> 100 MeV /mg - cm2 [115]. This solution provides an immunity to a single

event latch-up (SEL) for satellite~ located on low earth orbits (e.g. 3OO-5ookm altitude) at the

same time provides an alternative to fixed architectures FPGAs (e.g. Actel anti-fuse) [65].

4.2.2 Restoration From Permanent Faults

Pennanent faults can occur due to the thennal fatigue, electron migration, manufacturing de-

fect, as well as; SEDR and cause a pennanent latch-up, bridging or a pennanent open circuit

[106>'104]. As mentioned in the Section 4.2.1, if SEDR type fault occurs, scrubbing of the_

FPGA configuration SRAM is not sufficient since it is a physical hardware damage which

. can not be repaired by recharging SRAM cell gate. Hence; lots of research has addressed the

mitigation of pennanent faults, and several methods for different reconfigurable architectures

are presented in this section:

: ;

77

/

Hgure 4.2: Recovering J"rom SEDR fault on Partially Re-configurahle Device

4.2.2.1 Restoration From Permanent Faults Without Functional Degradation

SEDR faults damage the dev ice to the point where it can ' t be repaired by the means oj" scrub­

bing. Therefore, in many current systems a redundancy i. designed into the system. Oft en, a

double or triple redundancy i used, however, that significant ly impacts the power consump­

tion , the weight. and ulti mately cost of the system. This presents a problem fo r space-borne

system" as well a for any embedded, hand-held, and autonomous systems, because bot h

power and weioht parameter. are highly restricted [or these applicat ions. However, FPGA

systems an be configured to a oid the damaged regions of the configurable space. It is po. si­

ble to design and synthesize D)-cores that perform exactly the same [unction/algorithm wh ile

occupying different areas of r pOA. By dividing th 'POA int o ti les and then creating IP-cores

that are avoiding one tile at a ti me, the end re, ult is a set of IP-cores that can be selected to

avoid any sector in l~PGA. If a fault doe. 0ccur, and the tile that conrains the SEDR is iden­

tifi ed, FPOA i reconfigur d wit h IP-core that perfo rm~ same operat ion, and whil avo iding

the damaoed . ector [20]. Figure 4.2 show an example of how FPOA is adapted to avoid the

sector with a SEDR fault without affecting the operat ion of the device.

Initially fPC/A is loaded with the derault fP-core during the temporal panitioning. Any TP­

core can be e)ccted fo r proces ing, as ' hown in rigure 4.2. When a fault occurs. a diagnostic

method identifie the fault y sector and mark. as a damaged tile in the loader memory. Based

on this information all or the consequent reconfigurations or the FPGA would usc IV-cores

that avo id that rile. As for xample in Figure 4.2, it shows that initia lly an IP-core wi th an

78

unused SOO tile is loaded. When a SEDR occurs in S12 and system identifies that fault, the

replacement is performed. An IP-core with the same functionality is reloaded onto FPGA.

This implementation of IP-core avoids S12 tile, and therefore, after reconfiguration SEDR

fault is located in the unused area. Obviously, the question that arises from this technique

is the size of tiles in the IP-cores. The smaller the granularity of a tile size, the smaller the

"wasted" logic area on the FPGA. At the same time, small granularity increases the amount of

IP-cores that have to be generated to accommodate all of the sectors. In addition, all of these

IP-cores will have to be stored in the non-volatile IP-core library (e.g. FLASH memory).

Hence, there is a trade off which has to be considered in the design of such systems. As in the

case of scrubbing, the temporal data that was being processed by the FPGA is discarded and

has to be recomputed, since reconfiguration process resets all of the registerslBlockRAMs.

This is true for all of the restoration methods described in this chapter, however, typically it

does not cause a significant problem because the stream processing effects single data frame

or part thereof their of. In critical applications an IP-core can be designed to perform a context

save before performing restoration, but this requires a more complex IP-core design.

The techniques used in diagnostic and identification of the SEDR faults are covered in

the next sections. However, if system experiences a heavy bombardment of charged particles

another restoration mechanism should be employed, which is discussed later in the chapter.

4.2.2.2 Restoration by Component Relocation in Spacial Partitioning RCS

If a system is based on a partially reconfigurable FPGA, the restoration can be done by relo­

cation of components from the damaged area of the FPGA to an undamaged one. Initially the

diagnostics of FPGA have to be performed to identify the area with a hardware fault. and then

either scrubbing or partial scrubbing has to be applied. Also. as mentioned in the previous

sections a set of partial IP-cores occupying different areas on FPGA fabric should exist to

allow relocation of components. There are two ways to design the set of IP-cores.

79

The first approach involves a notion of "pluggable" component. Partial IP-cores are de­

signed with the unified interface to an internal standardized bus architecture. This bus contains

slots into which processing modules can be "plugged". If an error is detected in one of the

processing modules this processing module is "relocated". Relocation is done by removal

of the processing module from the current slot and uploading it into a vacant slot on FPGA

[7,96, 60, 105]. The operation of such relocation is same shown in Figure 4.2, except in spa­

tially partitioning case, Sl2 is a pluggable module which gets moved to the empty slot of SOO.

The benefits of such approach are tremendous as the system becomes very flexible and virtu­

ally indestructible. Unfortunately, the support for spatially reconfigurable hardware and tools

by FPGA vendors is very limited and currently is used only in the academic field [17,90].

Due to that reason it is not a feasible approach for the most designers in the industrial setting

at this time. The other possibility of component relocation is variation of the same IP-core.

4.2.2.3 Restoration from Permanent Faults with Functional Degradation

As mentioned earlier, a different recovery technique has to be used if multiple SEDRs are en­

countered. If multiple tiles are affected by SEDRs or if there is no IP-core with same perfor­

mance parameters that avoids the affected areas, a functional degradation has to be employed.

For this type of scenario several sectors have to be avoided, and therefore the algorithm cannot

fit in the remaining area. In order to keep the system operating one of the solutions is to avoid

a much larger section of FPGA. This, in effect, will decrease the performance of the system.

In some algorithms it is not possible to keep the same functionality and decrease the perfor­

mance. In those scenarios algorithm division will have to be performed. However, if it is

possible to keep functionality by decreasing performance, then multiple SEDR faults could be

mitigated. Overall operation of fault recovery with functional degradation is shown in Figure

4.3.

80

i-'igure 4.3: i-'au lt Recovery from Permanent Fau lt with Functional Degradat ion

When temporal part itioning is used a test IP-core i ~ loaded int o the FPGA and test vect ors

are !.!enerated by each ~ecti()n . Based on the re~u l ts. a faulty section is identi fi ed and an IP-core

with same funct iona lity but degraded performance is loaded into the FP(JA device. as shown

in the Figure 4.:1 . As ~hown. IP-Core 1.1 was replaced wit h an IP-Con: 1.2 which implements

similar algorithm with degraded performance and avoids the top right quadrant of the PPGA

rabric . Granulari ty of the tcst IP-core~ can be varied dependi ng on the recon figurab lc device.

avai lable variations o/" II)-cores. and types of test complexity. It would require creat ion and

synt hesis of the algorithm on reduced area. and therefore. pos~ib l y ~Iowcr speed. and/or Ies~

paral leled computation. Example of that would be a 32 x 32 multiplier that is dec reased in

complexity and div ided in several . tages of 16 x 16 mult iplication . The latency of proces. ing

is increased. and req uired area for this fP-core is decreased. New IP-core with a decreased area

wi ll be able to fl t into the target FPGA device. and it wi ll be operat ing at lower speed. The

scheduling of the II)-cores will have to be adjusted, as well. Similarly to Section 4.2.2 a deci­

sion will have to be made regarding which area to avoid in order to generate a . et of IP-cores

that are degraded in performance and strat gically placed in the FPGA dev ice. This method

allows the system to cont inue operation wi th lower performa nce even after a large portion of

it is permanently damaged . As it was done ror restoration without functional degradation. a

set orIP-cores is synthes ized that avoids several tiles of the FPGA. This library will have to be

carefully developed si nce. a' it can be predicted there is a very large number of combinations

of how the rp-con~s can be synthesized. I'PGA devices wi ll have to be strategically chosen fo r

the design to achieve the best trade off between th ncompass ing of the poss ible SEDR faults

81

and non-volatile memory use. The choice between the IP-cores within the same set is done by

an external configuration loader which will keep the parameters of damaged tiles. The choice

ofIP-cores and schedule ofreconfiguration is based on these parameters. An additional benefit

of this method is that area reduced IP-cores can be used for power reduction. Power reduction

is achieved by utilizing only some of the FPGA resources and, therefore, using less static and

dynamic power. Decrease in use of static power occurs because there are lower number of

transistors that leak power when not in use.

To repair the SEDR it is needed to identify the region/sector where the fault has occurred.

If the region is too big for an IP-core replacement without functional degradation then an

IP-core with reduced functionality of performance is chosen.

4.2.2.4 Restoration by Component Routing Constraint Variation

Another approach of system restoration from permanent faults is IP-core variations. During

the synthesis portion of the design, the generation of several IP-cores is performed. IP-cores

are generated with components restricted to different placements on the FPGA. Since 70-90%

of configuration SRAM is used for routing interconnect, hence large number of configuration

SRAM cells are not used in a design. Therefore, there is probability that a design with dif­

ferent placement & routing of the same components will not occupy the damaged cells of the

configuration SRAM. The number of variations is obviously restricted by the functionality of

IP-core, the type of routing, and resource utilization. The final number of IP-core variations is

specified by the user, and additional IP-core storage requirement will have to be considered by

the designer. As in Section 4.2.2.3, component yariation can be done by employing different

algorithms that perfonn similar functionality. This approach is more complex than the restora­

tion from SEDR with functionality degradation. It involves variation of different aspects of the

IP-core generation. Mostly, it is highly customized and requires user's specification of timing

82

and placement constraints. This depends on the critical regions of the circuit that are also iden­

tified by the user. These critical regions are constrained in different section of FPGA and are

synthesized in several IP-cores that could occupy whole FPGA, however its routing and place­

ment can be varied. The downside of this approach is that it requires extensive re-compilation

to obtain different variations. In addition, it will require a post reconfiguration testing to check

if the different variation of the IP-Core managed to ~void the damaged transistor/trace [2].

4.2.2.5 Restoration by Just-in-Time FPGA Compilation

Another restoration scheme that was proposed by several researchers [69, 7, 9] is a just­

in-time FPGA compilation. It operates on the notion of run-time recompilation of FPGA

configuration. If a fault was detected and identified in some region of the FPGA, an error is

reported to an external processor. This processor re-runs a routing algorithm that performs

the placement/routing of the FPGA avoiding the damaged area. The damaged area could be a

switch block or a logic block, or even an embedded hardware component, such as BlockRAM.

At the completion of the Place&Route operation the damaged FPGA is reconfigured with the

new IP-core. Riverside On-Chip Router (ROCR) was designed for simple FPGA configura­

tions [69,9]. Authors showed comparable results to Versatile Place and Route tool (VPR) in

terms of timing and much smaller memory requirement for an FPGAs of size of 67 x 67. For

larger FPGAs, that have much more complex structure and contain embedded hardware, such

as RAM Blocks, multipliers, PowerPCs, this approach is not feasible, because of the time it

takes to do the place and route of a complex FPGA circuit. Place and route is an NP-complete

problem and requires a heuristic approach for finding an optimal solution. Currently, to per­

form place and route for a comparable Virtex 4 FPGA, a PC system equipped with 2 GBs of

memory and dual CPU architecture operating at 3.4 GHz requires anywhere from 10 minutes

to over 6 hours, depending on the constraints that are applied to the design. This is assuming

that it would be an embedded microprocessor which would be used and operate much faster

83

than current desktop pes to perform place and route. This approach is suitable for systems that

can be taken offline for long periods of time to perform such a task. Therefore, this technique

is not acceptable for systems that are required to operate in real-time and to have a minimal

downtime and cost.

4.3 Methods for Fault Diagnostic and Fault Localization in

SRAM Based FPGA Devices

Equally important is the research of the fault detection and fault localization in the SRAM

based FPGAs. Previous section described various methods for fault are mitigated and briefly

mentioned some detection techniques. This section focuses on generic diagnostic techniques

and their applicability to the FPGA based systems.

4.3.1 SED Diagnostic in Configuration SRAM

Since the SEU effects SRAM cells, one of the simplest detection methods that is provided by

the FPGA manufacturing companies is the Readback operation. Xilinx FPGAs allow the read­

back procedure [15] while device is in operation. For such diagnostic, however, an external

processing device is needed. This device may be a microprocessor, that can perform readback,

verification, and full/partial configuration bitstream manipulation. Each IP-core should have

an accompanying bitstream mask to be stored on an external FLASH memory for the purposes

of comparison with the readback data. A scheduled readback may occur during the operation

of the system. If discrepancy is found, microprocessor will conduct FPGA re-configuration

procedure to mitigate the incurred fault. The re-configuration should be able to mitigate tran­

sient faults. However, in case of a permanent fault, another method should be utilized as was

discussed in the previous sections. It should be noted that the overhead introduced by the

diagnostic mechanism increases the cost and power consumption of the system.

84

It is important that readback operation is done in a specific manner. If the design is using

an embedded BlockRAM of FPGA, the readback will acquire erroneous bitstream and will

not correspond to the ma-;k bitstream [4, 15]. Therefore, if it is done in a run-time, only

configuration SRAM has to be considered for SEU repair. In addition, if rcpair operation

is required, only configuration SRAM will be reconfigured. Otherwise the inter-processing

data will be lost from the BlockRAM. Often, the scrubbing or reconfiguration is done 10-

50 times more frequently than the predicted fault rate. On the other hand, with readback

implementation, the scrubbing procedure can be initiated only in the case of real fault. The

advantage of this approach is power savings, and lower overall system downtime in contrast

to continuous scrubbing. However, the run-time full/partial reconfiguration is supported only

by Xilinx Virtex FPGA family [84]. If system implementation has to utilize different types

of FPGA devices that do not support readback, then a different approach should be used.

The same is true of a system that does not support real-time readout without interruption of

operation, in that case, system downtime is increased even more.

4.3.2 Off-line Diagnostics of Permanent Faults in Data-paths

A common practice is an offline diagnostics of faults [30, 106]. This type of diagnostic is

usually performed by taking the system off-line and either physically interfacing it to a test

platform or utilizing existing 110 port interfaces, such as JTAG. Over an available connection a

series of test vectors is provided to the system and the result is then compared to the expected

one. Data vectors are usually selected to cover the maximum amount of processing elements,

and to identify which ofthe clements produced the fault. Depending on the data-path specifics

the type of fault, can be: stuck-at-O, or stuck-at-l. In some instances faults are not easily de­

tectable because they are occluded and it requires enormous amount of test vectors to identify

every possible fault. Such testing requires substantial amount of time [74], as well as periph­

eral support to be able to operate while the main processing is disabled. Test vector storage

85

n tD.u_

Figure 4.4: Typical TMR Organil.ation

memory has to be integrated into the system, too. Finally it i. typically the human operator

that performs the testing, and ror this reason such such approach is suited for a narrow field or

reconfigurablc systems.

4.3.3 On-line Diagnostics of Permanent Faults with TMR-approach

A common approach to diagnostic of faults is a Triple Modular Redundancy (TMR) 1'r>71.

Thi~ approach dramatical ly improves the reliabil ity of the ~ystem, but triple!'! the u~e of area.

power consumption, cost. etc. There arc different methods of design u~ing the TMR: some

o/" them arc implemented on a singlc FPGA and some on mu lt iple. The main idea o/" TMR

approach is for system to have three ident ical processing units. re!'!ults rrom which now into

the voter that compares the results.

As !'!hown in the Figurc 4.4. FPGA #1. #2. and #3 arc provided with the same input and

their results are tran. mitled to the voter which !'! imply compares them and checks ror discrep­

ancies. If t he result for one o/" the ~y~tems is not complying with t he other two. a faulty system

is immediately ident illed. Most of system. that used 'I'M R, replicate the ~ame proces~ing unit

in three different FPGAs and use an external voter comparing the produced n:sult s (e .g. I'igure

86

Input Dlt. -
...

-
-
(a)

(b)

Ovlput Dot. -

Figur~ 4.5: TMR Implementations on a Single FPGA: with (A) External Voter (B) Integrat~d
Voter

4.4). There are several ariation. on this approach. such a<; replicating the function three times

within one FPGA 187]. As before. the result is outpulled to the external voter that performs

comparisons. Such implementation is shown in I :igure 4.5 (A) .

Similarly to the previou., approach. the voter can be integrated in the FPGA as part of]ogic.

a ... shown in Figure 4.5 (B). The down.,ide or the integrated voter approach is that if SEll occurs

in the voter. the correct result will not be known . Although. as the implementation of voter is

compact and occupies limited logic. hence. in some scenario~ it may be heneficial for system.

that arc constrained with peripheral components. Some deve lopment tools already include an

abil ity of automating the generation of TMR circuit of crit ical clements (e.g. Xilinx TMR

tool) [87.116] .

Nonet heless. some applications can not accommodate the costs and hardware overhead

associated with the TMR approach. For exampl . many of space-horne applicat ion. arc very

.,ensitivc to the total mass and power consumpt ion or the .,ystcm. Therefore. tripling hardware

resources fo r the proce.,sing system in some complex data-paths is not cost-e llective for space

87

applications L82]. On the other hand, some systems cannot afford the full triple replication

of the processing modules, and only mission critical parts of the design are triplicated. The

analysis of the mission critical parts has to be done prior to the design and be based on the

critical assessment of all the parts that can be effected by SEU. This way may save a signifi­

cant amount of FPGA fabric. In addition to saving the area on the FPGA, there are two other

benefits: saving of power, and a capability of increasing logic complexity by the saved space,

with almost the same TMR support [87]. Not all FPGAs have support for partial reconfigura­

tion, therefore, different diagnostic methods should be considered or a device has to be fully

reconfigured causing a system operation downtime. Most of the other methods cannot deliver

same processing speeds as TMR approach in some cases, but depending on the application

needs, other methods are suitable for the systems with SEU recovery requirement [82].

4.4 The Method of Multi-level Mitigation of Transient and

Permanent Hardware Faults in ReS with TPM

In this section novel method for self-restoration of RCS based on FPGAs with SRAM con­

figuration memory is proposed and discussed in details. This method has been developed

specifically for an RCS with embedded TPM and allows mitigation of:

1. Transient hardware faults (e.g. SEU, SET), discussed in Section 4.4.1

2. Permanent hardware faults (e.g. SEDR), discussed in Section 4.4.2

The method takes an advantage of the TPM nature, which a-,sumes cyclic reconfiguration

(with new IP-core) of the target FPGA device or an associated slot of FPGA device. This al­

lows minimization of on-line diagnostic procedures, since the new IP-core updates the content

of configuration memory of target FPGA device or its slot. The mitigation of SEU or other

transient fault occurs within one cycle time (period of processing of one block/frame/packet

88

of data). Therefore, if a fault does occur, only one data-frame will be invalidated. The pro­

posed method has been developed as a multi-level protection mechanism [50] to provide the

maximum flexibility in mitigation of all possible hardware faults in run-time or "close-to-run­

time". This flexibility, comes from the fact that in TPM the temporal data (between IP-cores)

is stored on external temporal data memory. However, the influence of SEU or other radia­

tion effects on the data-memory content (corruption of temporal data) was put out of scope

of this research. It was assumed that if any hardware fault has been determined within ith

cycle of data-processing, the associated results of ith data frame execution must be ignored

entirely. For most of DSP, video/image processing tasks, as well as multimedia applications,

this assumption is acceptable. But for some control tasks or specific computation tasks where

each data-vector is considered valuable, the above approach may not be suitable. The fol­

lowing assumptions also were also considered in the proposed multi-level run-time protection

mechanism [50]:

1. The probability of SEU and other transient faults is much higher than the probability of

permanent faults.

2. A permanent hardware fault is a fault which cannot be mitigated by the scrubbing proce­

dure. Therefore, if after a certain number of scrubbing procedures (e.g. re-configuration

of the same IP-core and cycle of functional diagnostic) the fault still exist, then the it is

assumed to be permanent.

3. A permanent fault can be mitigated by:

(a) restoration without functional degradation

(b) restoration with functional degradation of some performance parameters

All the above aspects of multi-level protection mechanism will be discussed in following sec­

tions, including the description of all stages of the proposed mitigation algorithm.

89

4.4.1 Mitigation of SED and Other Transient Faults by IP-core Scrub­

bing and Functional Diagnostic Cycle

When we are talking about temporal partitioning system it is assumed that FPGA device is

periodically reconfigured with the next processing sub-task (IP-core). This is a significant

benefit for system that has to be fault tolerant. On every cycle of reconfiguration, whole FPGA

is updated with a new IP-core. IP-core automatically mitigates all of the transient SEUs, this in

turn decreases the frequency of fault diagnostics that has to be performed. At the same time, a

permanent fault diagnostic IP-Core can be inserted between any sub-tasks, and perform testing

of FPGA device. The test IP-Core could have different granularity as shown in Figures 4.3 and

4.2, depending on the application requirements and upon the completion of the test it provides

the user/system with the fault results. The overall operation of the TPM with fault tolerance

mechanism is shown in Figure 4.6.

Initially, IP-corej is loaded into the FPGA and initial test is run on the IP-corej to identify

if the IP-core; is operating correctly. Considering that all the tests are passed, the processing

of data frame is followed by loading of IP-corei+l. If, however, a fault is identified, the

scrubbing (reconfiguration with the same IP-corej) procedure is initiated and the fault counter

is incremented. If the fault persists for several reconfigurations, it is identified as a permanent

fault and permanent fault mitigation procedure is required. As mentioned before, there are

two possible procedures mitigation with diagnostic, and without diagnostic. The choice of the

permanent mitigation method depends on:

1. Timing constraints for fault recovery

2. Granularity of IP-cores with degraded performance

3. Bitstream size of the FPGA, and consequently the time of reconfiguration

90

YES

restoration from
permanent
faults with
dia nostjc

Increment fault
counter

NO

Procedure of
restor ation from

permanent
faults without

dia nostic

NO

Initiate
processing on

data frame

Incrementto
next IP-COreitl

Figure 4.6: Operation of the TPM with Fault Tolerance Mechanism

91

•••

Figure 4.7: Sequential Reconfigu ration Process for Permanent Fault Mitigation without Fault
Locat ion Procedure

Next sections cover bot h of these procedures in closer detail. and describe their flow or opcr-

ation along with the fault tolerance mechanism shown in Figure 4.6.

4.4.2 Run-time Mitigation of Permanent Faults with/without Functional

Degradation

Most or the fault mitigation methods mentioned fau lt location/diagnosis. Thi. diagnOSIs typ-

ieally invol ve, the loading of a speeifi test II)-Cores that would perform testing of various

section. of the recon figurable device to localize t he fault . In the proposed approach it is pos-

sible to resolve the SCOR fault by repeated reconfi guration without the need for diagnost ic

procedure.

In this approach, as in Section 4.2.2.l. it is assumed that there exist several IP-cores that

avoid differ nt ections of FPGA and perfoml same functiona uty while having same perfo r-

mance. as shown in Figure 4.7.

The idea is that the e IP-cores are configured one by one onto the FPGA device. On

the start up of each IP-core a self-check is performed by feedi ng test bench vectors to the

IP-core to identify if this core operatc ' propcrly and avoids the damaged region, similar to

the approach in ection 4.2.2. In many cases such approach i ben -ticial due to the fact that

exhaustive diagno tics can take much more time than several reconflgurations of the l-'PC,A

device [50J.

92

Figure 4.R: Permanent Faul! Mit igation with In Tement a.l Recovery to the Max imum Possible
Perfo rmance

Another benefit of such approach is that it can combine aU previously discussed methods

and provide a rapid fault recovery. Initially, an IP-core with degraded pcrfo rman e is loaded

into the FPCA and occupies half of rhe device. Thi. way wit hin a maximum of two confl gu-

rat ions t he system resumes operaLion. although with reduced performance. Th second half or

the device is occupied with a diagnost ic core. which identifies the quarter where fault i. found.

as shown in Figure 4.8. In the next reconfigurat ion three quart ers of the device are loaded with

the process ing core. and the remai ning quarter is loaded with the diagno tic IP-Core that per-

forms fu rther testing. This operation is repeated until the smaJ lest granularity is reached and

operation performance is restoreu to the max imum possib le operation level.

4.4.3 Complete Algorithm for Multi-level Protection Mechanism Em-

bedded to the TPl\t1

Ba. ed on the step. outl ined in previous section. the flow chart for rault mitigation i produ s.

as shown in f igure 4.9. Thi flow chart in Figure 4.9 i. a continuati on of the flow chart shown

in Figure 4.6. Th fault mitigation with a diagnost ic IP-corc i a "r cur ivc" operation where

the algorithm . elects first large port ion of FPGA for diagno. Lie <lnu Wi lh a rap id test identifies

which section contai n. the fault. Following that. a smaller section of FPGA i. scI 'cted for

diagnostic while the rest or FPGA i occupied wirh the larger sized TP-core. A ._hown, the

process is rep 'ated until the smalle t granularit y is rcached. This "divide and conquer" pro-

cedure allows to rapidly ret urn the system to operation , and aftcr 'cveral cycles to r lor iT

93

Load FPGA with IP-coret
with degraded

performance and
dia nostic IP-core

Run set of test vectors to

Load IP-coret with degraded
performance but avoiding the

another section of FPGA

YES Identify which half of diagnostic
IP-core passed the fault test
and expand that section of

FPGA for next IP-coret

Return to normal operation
with avoidance of

identified faulty section

YES

Load IP-coret with
degraded performance

avoiding a section of FPGA

Run set of test vectors to

Load IP-(;Orei with area
avoidance different from

previous attempts

Figure 4.9: Permanent Fault Mitigation Flow Chart with/without Diagnostic Procedure

performance with the return to normal operation with some area avoidance. The other method

is not recursive and involves reconfiguration with avoidance of different sections of the FPGA

based on the theory described in the previous section. As soon as the correct operation of the

IP-core is observed, the system returns to normal operation with avoidance of faulty section

of FPGA.

There is no exact answer which approach is beneficial prior to knowing the nature of pro­

cessing system. As discussed before, the main factors are the system timing and the complex-

ity of diagnostic, as well as the granularity of the area avoidance blocks, and the availability

of performance degraded IP-cores.

This section presented methodology of how the recovery mechanism has to be designed in

order to be able to mitigate SEU and SEDR faults with or without functional degradation.

94

4.5 Cost-efficiency and Performance Comparison of the

TMR Approach and Multi-level Mitigation of Transient

Faults in TPM Systems

There is always a big debate on which fault tolerance methodology to pursue in initial stages

of system design since there are several variations available. In this chapter different fault

tolerance methodologies were discussed, and the current section compares them in terms of

performance, application suitability, and outlines, their pros and cons. The comparison is

done based on division of different types of systems, since it greatly effects the type of fault

tolerance approach to be used.

4.5.1 Uninterrupted Mission Critical Systems

For some systems, such as space borne or medical life support systems, it is imperative not

to have any type of interruption in operation. An interruption in service can directly affect

the life of humans, be it on terrestrial applications, or on a space station. In those types of

scenarios reducing cost and, in effect power is not an option and TMR approach is necessary.

Moreover, as it was described in Section 4.3.3 a voter which is an ASIC or an anti-fuse FPGA,

would also need a backup to make sure that the voter itself does not become the critical part.

However. it should be noted that the critical systems that are necessary to be TMR-ed typically

are not of a large size and, therefore, it is possible to use TMR approach in a partial architec­

tural arrangement. The reason why the proposed methodology of fault mitigation is not fully

suitable is because no incorrect result is allowed. This comparison is only applicable to the

mitigation of the SEU and SET faults. The overall cost of the system would be calculated as

follows:

CTMRsystem = 3 x CProcFPGA + 2 x Cvoter CPCBarea (4.1)

95

Where CTMRsystem is the cost of the TMR system, CProcFPGA is the cost of the FPGA

involved in the data processing, Cvoter is the cost of voter, and CPCBarea is the cost of the

additional PCB area that is needed to support TMR approach.

On the other hand, if the TMR system incurs, a SEDR hardware fault in one of its process­

ing FPGAs, the TMR approach becomes useless, and system's perfonnance is downgraded

to a single FPGA processing without the TMR, while continuing to consume power of the

whole TMR system. The ideal solution in that case is to combine the proposed fault miti­

gation methodology and the TMR approach. Hence, if SEDR fault does occur in one of the

FPGAs, the proposed methodology diagnostic technique can be employed to repair it, and this

way the system can proceed with the TMR mode of operation. The overall cost of the system

would be:

CTMRsystem = 3 x CProcFPGA + 2 x Cvoter +CPCBarea + CTPMtowcoSI (4.2)

Where CTPMtowcosr is the cost of the TPM support hardware used to add the capability

of temporal partitioning to TMR system. The other variables are same as in the previous

equation.

This cost can be considered as a cost of hardware, as well as power consumption and

in both parameters the increase is not significant. The reason is that configuration manager

is not required to support high reconfiguration speed and can be based on a low cost/power

rnicrocontroller that loads configuration in a serial manner. Hence, the cost of such system

would increase on -$10 (based on the unit prices from the major part distributors). In regards

to power consumption the increase is less than 20-40m W in active operation.

4.5.2 Critical Systems with Non-Real-time Control

For the critical systems that can tolerate interruption in service TMR system becomes a much

less cost efficient solution. The proposed methodology can rapidly repair a fault within several

96

milli-seconds, so the interruption of service is short. On the other hand, the cost & power

savings are quite significant, when compared to CTMRsystem:

. CTPMsystem
RatlOTMR/TPM = C

TMRsystem

_3_X_C_P~_O_CF_P-=G_A_+_2_X_C_v_ot_er_+_C...:..P...:..C;;;.:Ba:::..:re;:;:.a_+_C---=--TP:....:M-'I~ow~c~ost 5'
~ times

CProcFPGA +CPCBarea +CTPM

(4.3)

Since the main contributing cost factor in FPGA based systems is the actual cost of the

FPGA, the overall cost mostly depends on the number of FPGAs present in the system. In

TMR system there are three processing FPGAs, one main voter and one backup voter (typi-

cally present in some mission critical designs) totaling 4-5 FPGAs. Whereas in TPM approach

there is one FPGA in the non-pipelined case and dual FPGA configuration in the pipe-lined

case, which results in 2 to 5 times more cost effective solution for the critical systems with

non-real-time controL

4.5.3 TMR and TPM Approach Comparison Summary

In conclusion to the comparison section, that there are advantages in use of the TMR approach

in mission critical systems with real-time control which do not allow any sort of service in-

terruption. However, the overall increase in cost for such systems varies from 2 to 5 times

depending on the complexity of the system. This increase also affects the overall power con­

sumption, since at high processing speed FPGA becomes the main consumer of power. In all

other cases the TMR approach is not cost effective and TPM approach of fault mitigation is a

much more preferable option.

4.6 .. Summary

In this chapter the main approaches and methods for mitigation of hardware faults in FPGA

based systems were presented, along with the major causes of these faults. It was found that

97

the major focus of R&D works is placed on mitigation of Single Event Upsets in the FPGA

devices with SRAM based configuration memory. Different approaches for SEU mitigation

have been discussed in details. However, in literature there are not many publications re­

garding mitigation of permanent hardware faults that can be caused by many other radiation

issues. Nevertheless, two approaches for mitigation of permanent hardware faults have been

discussed in this chapter. It was shown that in general case, the location of the hardware fault

has to be found using fault location procedures.

It was shown that mitigation of the permanent hardware fault could be done without time

and resource consuming fault location procedures. Furthermore, it was demonstrated that

by using only fault detection procedures and cyclic reconfiguration of target FPGA by the

TPM it is possible to mitigate all transient hardware faults, as well as permanent faults in

run-time. In a case of a transient fault, TPM cyclically reloads the same IP-core by the run­

time scrubbing procedure. In a case of a permanent fault, TPM cyclically loads different

IP-cores with the same functionality but having a different place-and-route topology to avoid

the damaged area. The topology of each IP-core is designed to avoid certain areas of the FPGA

(area avoidance concept). On the basis of the above concepts, the novel method for run-time

mitigation of both: transient and permanent hardware faults in FPGA systems with SRAM

configuration memory was proposed and developed. This is the first method that incorporates

fault mitigation procedures which can hierarchically call each other according to response of

FPGA until the moment when the system is fully recovered from the fault. This method has

been put on the basis for the Built-In-Self-Recovery (BISR) procedure to be embedded to the

developed TPM for partially reconfigurable FPGAs. The method was published in the Journal

for Spacecrafts and Rockets [50].

It is necessary to mention, however, that R&D of fault detection and fault location algo­

rithms and methods were out of the scope of this research. Only published methods for the

98

fault diagnostic and location have been considered for application. Next chapter will introduce

the developed methodology of task segmentation, as well as, the notion of virtual components.

99

100

Chapter 5

Task Segmentation and Efficiency of the

TPM

S.1 Introduction

When an algorithm has to be implemented on a system and it exceeds the size of the avail­

able FPGA device, there are two ways to resolve the situation. One is to choose an FPGA

with larger amount of logic resources or use multiple FPGA devices. The second option is

to process the algorithm/task by parts in different time slots. The latter, requires a method­

ology of algorithm/task division in appropriate segments. The first option mentioned above,

is typically used in the industry. Though this is a straight forward solution, it does not al­

ways translate into cost-efficient result. The reason for that is an overall increase in cost of

the processing platform. The cost increase is induced by an added FPGA device and all of

its peripheral components, as well as, higher power consumption, extended dimensions, and

weight of the system. During preliminary design of a multi-FPGA system, a highly parallel

bus(es) are designed to communicate between two or more FPGA devices. These buses are

fixed and, therefore, if requirements will change in the future, it would be more difficult, if not

101

impossible, to modify bus topology. The second option of task segmentation and is not yet

widely used in industry since it is an emerging technology.

This chapter will discuss the approach of the task segmentation and the creation of Seg­

ment Specific Processor (SSP). This approach provides an ability to implement tasks, which

require more resources than one FPGA can provide. By being able to reuse the hardware re­

sources in time domain, it is potentially possible to decrease required FPGA resources. This

approach allows to reduce weight, power consumption, as well as associated systems cost.

Another benefit of the temporal partitioning is the capability to mitigate of hardware faults

(e.g. SEU - Single Event Upsets) in run-time. Being embedded wi thing design of the system,

fault mitigation further decreases system's cost. It also increases system's reliability, and as

was shown in Chapter 4, does not require much of an additional hardware. Nonetheless there

are certain trade-offs associated with this approach of system design:

1. First, a trade-off comes from the timing overhead which is required for transition of the

FPGA system from one configuration to another. Timing overhead is associated with:

(a) Temporal data reading/writing procedures

(b) Switch from one IP-core to another

2. Second, there is a certain hardware overhead that is associated with the run-time recon­

figuration mechanism, as was discussed in Chapter 3.

3. Last, there is a problem in optimization of algorithm segmentation, which has to be

resolved and completed in a non-NP time.

These drawbacks have been analyzed and

assessed to maximize system's performance and cost-performance ratio. This chapter in­

troduces a methodology for task segmentation from the temporal partitioning point of view.

Also, this chapter provides the analysis and results for the cost-effectiveness of the segmenta­

tion approach.

102

a b c d e f

y

Figure 5.1: Sequencing Graph Example

5.2 High-Level Synthesis of Application Specific Processors

The development of the TPM methodology, which provides the most cost-effective data­

stream executions on the Res with temporal partitioning of FPGA resources, is a first aspect

of the task segmentation. A discussion of algorithm representation techniques that are used

already by different researchers is presented below.

Every algorithm/task can be described in various ways, such as: a text explanation, a

pseudo code, a connected graph or a data flow graph (DFG). One of the common ways of

describing an algorithm for execution on dedicated digital circuits is a connected sequencing

graph, as shown in Figure 5.1.

Sequencing graphs (SG) are widely used to represent algorithms and data dependencies

within the processing algorithm [48].

Definition: A Sequencing Graph ;s a collection of Vertexes and Edges that represent a

flow of data and operations of a stream processing algorithm in an acyclic manner.

Vertexes represent a data processing operators (e.g. Add, Divide, Shift, etc ...), and edges

represent data dependencies [88]. Elementary processing operators can be combined into

Macro Operators (MOs) that can include some proprietary processing elements, such as filters,

103

encoders, DSP operators, etc. Eventually, a flow of data reaches bottom of the graph, that is

an output of the system.

5.3 The Concept of Task Segmentation

In some applications it is absolutely necessary to have the whole system built on one chip due

to strict timing constraints and where the cost of the system is not a defining factor. However,

there many applications that are not as lime critical, on the other hand, are more cost sensitive

and need to take into account many other parameters (e.g. power, reliability, dimensions,

etc.) In those cases it may be more preferable to employ Temporal Partitioning Mechanism

(TPM). The TPM approach usually allows to increase the cost-performance characteristics of

the system.

In this context, the temporal partitioning is defined as:

Definition: Temporal Partitioning is a division of a task algorithm into segments that are

executed one after another in different time slots 011 all FPGA-based processing platform.

Definition: Run-Time-Reconfigurable (RTR) processor is a computing paradigm with ar­

chitecture that can reconfigure a part of or a whole architecture during the task execution.

The optimal segmentation of a task and the generation of series of configuration bitstreams

requires a development of an associated methodology. Typically, the operation of task division

is performed based on the reconfigurable device. A segment is populated with the task oper­

ations until the area constraint is reached, at which point the segment would be enclosed. All

of the temporary results for that segment would, be saved to an external memory. The external

memory is required since the memory embedded in FPGA gets reconfigured along with the

logic during reconfiguration. This procedure of segmentation would repeat until all parts of

the task are segmented.

The proposed segmentation approach presented in this section is quite different. Instead

of exactly forming hardware architecture, a task algorithm is initially assembled in a form of a

104

Sequencing Graph (SG) using predefined operators that describe the operation of the task and

its constrains. The predefined operators are called "Macro Operators" (MOs) because they

represent an overall description of an operation that is performed on single data frame. At the

same time MOs, do not specify exact implementation of the operation.

Definition: Macro Operator (MO) is a macro-function, which consists of a set of elemen­

tary functions/operators and can be represented in aform of a sequential graph of predefined

interconnection of Elementary Operators (EO).

The analogy of the MO in the already existing systems can be an algorithm function in­

cluded in MATLAB. A function receives a specific input and produces an output in a particular

format. User is not concerned with the implementation of the function and concentrates only

on invoking functions in sequence. The sequence performs the operation of data processing,

by passing results from one function an other. Similarly, in object oriented programming a

class can perform a particular function which can include a series of elementary operations.

The class can have many implementations of that function. Consider sorting an array, ex­

ample where a class Sort has several different implementations, of the sort function Bubble

Sort. The soft function can be invoked on an array and produce the index of the item in

question. The user in such operation simply performs the invocation of the sort procedure

and is not concerned with the actual implementation of the search function. Moreover, Sort

class implements one of the algorithms using elementary operation, such as: move, add, sub­

tract. Similarly, MOs are a~sembled from the elementary operators that form an algorithmic

implementation of the MO.

Every MO represents a particular macro-function which can have many variations of its

implementation in hardware. Variation of implementations are possible due to parallelism

found in some operations. These implementations can be represented in a form of MO­

optimized processing units called Virtual Hardware Components (VII C). Each VIIC varies

by operation and resource parameters, al) well as performance. Contradictory parameters are

105

a b c d e f

y

Figure 5.2: Ta~k Algorilhm Represemcd by Vlle::- ('orre~p()nding 10 MO::-

selecled 10 creale a wide range of varianls Ihal encapsulale limiling c()ndilion~ of thc::-e param­

eters.

Definition: VHC is all Application Specific Virtual Processor (ASVP) designed to imple­

ment a particlilar MO with a specific set ofconsTmints.

Since ::-ame sub-SCI of MOs can be combined imo segment::- that compose the algorilhm

SG. 4i."isociatcd VIICs can be combined into Segment SpecifIc Proccssors (SSP) as ~hown in

Figure 5.2.

Definition: SSP is a processor tllm is optimi::.ed for a particular recollfigurable device

based Oil The set of gil'en resfrictinl1 such as: lime. logic area. data frallsferred betwl'el1 seg­

ments and more.

In lurn. these SSPs arc synthcsi/cd into bitstreams and are loaded in ~equem;e on 10 the

target FPGA. ImeIl11Cdialc results Ihat are produ 'cd by the SSP::- arc passed bClweell I he re­

configurations by the means of storage in SRAM or SDRAM.

Generalion of these SSPs presents a chaJlenge in the design of temporal parlitioning. be­

cau~e it has to be done in an automated manner. Each of VIles has several parlicular prop­

enie~ such lli.: proces!'>ing cycles. rcquired logic. power con!'>umption. and special embedded

106

a b c d e

SSPi y

f
SSP#l

(rime Sot #1

Time S ot#2

Time Slot#3

Figure 5.3: Segmented and Scheduled Sequencing Graph

device~ (e.g. BlockRAM, Multipliers), etc . Comhination and indu~ion or VIIC~ into the seg-

ments. as well as, proper evaluation of resource ut ililation is the key to increase of the overall

performance. which. in turn, increases the cost-perronnance ratio (CPR) of the whole system.

As mentioned previously, the temporal partitioning of a task algorithm and corresponding

SSPs allow to reuse the same hardware resources. SSP; should be scheduled for respective

time slot according to the task SG, as shown in Figure 5.3.

This, however, introduces a reconriguration time overhead that ha. to be accounted for

in the task processing application. The details of reconfiguration delays where explained in

Chapter 3. mfect of thi~ overhead is to he considered in the actual task execution . In next

sections cost-effectiveness of the TPM architecture is examined for different scenarios Addi-

tionally. the optimal applications of the TPM architccture~ arc introduced .

5.3.1 Cost-Effectiveness of TPM

As descrihed in the previous section, the conliguration time overhead may be a bottleneck

in data processing with TPM . Thcrdore, the mitigation of this overhead is the major goal

in platform architecture design. The ana lysis of possihle archirectural solut ions is presented

below.

107

SSP'lEXE

Time

Figure 5.4: Timing C()mpari~on Between Non-pipdined single FPGA and Pipelined dual
FPGA Operation of TPM

One approach to mitigate tht' configurat ion time overhead is to introduce a "pipclined" dual

~ I o t or dual FPGA architecture by placing FPGAs in parallel and switching between them a~

a discus~ed in Section 3,3 .6. In an ideal ~cenario it i:-. possible to eliminate the recontiguration

overhead by "[etching" the next SSP; I configuration bitstream while executing SSP/. Thi~ is

pos. ibJe in case where the processing time T,'xt' of SSP,. is larger or equal It) the configuration

time T;,'ofl(iR of SSP;].

(5 .1)

If Tcoll j ig(SSPi) doe~n't meet the timing requirement~ and takes longer than proce~sing

time o[the previous ~egmenl. then a fraction of the configuration overhead i~ stiIJ going to

be present in the ~ystelll . A comparison between non-pipeline and pipelined operation is

shown in Figure 5.4 Figure 5.4 shows that in time period T3. while SSP2 is processing data

frame, a configuration overhead of SSP] is fu ll y hidden, since T;,'onj ig SSP3) Tw (SSP2).

Similar scenario occurs in the T2 and T4 time slots. In T5. however, we see that SSJ>4 finished

execution berore SSP5 completed configurat ion operat ion and in this ca.~e T,'(}lljig(SSPS) >

Te.re(SSP4). Ideally, such scenarios should be avoided to mai ntai n the maximum speedup,

The ideal . cenario of pipe-lined execut ion where T;,'(lIljig(SSPi I) Tp.\(.(SSPi) is shown

in Figure 5.5. Depending on the speedup ratio. as well as the ratio or increased cost or the

system, cost e tTectivene~s or the pipelined TPM ~ol ution ha. ... to be evaluated and compared to

the non-pipelined arch itecture. Techniques, such as hitstream compression, can he cmployed

108

Time ..

n T2 13 T4 TS T6 T7 T8 T9

Time
)

Time

I no ,)

Figure 5.5: Timing C()mpari~on or Ideal Pipclined Implementation orTPM to a Non-pipclined
TPM Implementation

to Illinimil.e the cfkct or configuration overhead. and it is possible to achieve c1o~c to double

-'pcedup with such approach. a~ ~hown in the following derivation:

Speed lip,,!, TI' I',.I TNI

Tc'()IIJi~ (JIwhrad 0

T'll'
TPM

T PI
TN.I

[;1 ,(7:.lr (SPli) I TCOll fi1((SPII I))

[;' I max {1~.\(' (SP/j). TcollJi~ (SP/j t)}

In ideal ca~e where hoth time peri()d~ are equal:

109

(5.2)

(5.3)

(5.4)

2.5----··--- --~.

g.1.5 -- --- ~ ~- ~~-- ------

2~~-_-

"0 '
w ' w '
Q.

11\ 1 i-: ---
, ,
,

": I""""", ,,1 ~-'~m~~~'c-,-. ~ .•
~~~~~~~~~~~~~~~~~~~~~~ 
~~yyyyyy~~~~~~\.~~~o/o/~~ 

Processing time of an IP-core on a mid-range Xilinx Virtex 5 
FPGA with re-configuration speed of 4 ms 

Figure 5.6: Non-Pipelined TPM vs. Pipelined TPM Speed-up 

Il X (Ttime slot + T,imeslot) 

n x max (T,imeslot, T,imeslot) 

T,imes/ot + T,imes[ot 

T,jmesio/ 
2 (5.5) 

As expected, the maximum speedup is achieved when configuration time is equal to the 

processing time. In all other cases the speedup is less than double for the case of a dual-slot 

architecture [52]. Figure 5.6 shows the speedup vs. the percentage of configuration overhead. 

In Figure 5.6 Y axis represents the speedup of pipe lin cd architecture versus non-pipelined 

is generated based on equation 5.5. X axis represent the variable execution time Texe(SSP;) 

that varies from 250j1s to 1O.75ms. Considering that configuration time I't'on!ig is constant and 

equal to 4ms, it can be seen, that the speedup factor of 2 is reached when Texe(SSP;) 4ms. 

At all the other times there is less than 2x speedup either due to configuration overhead, or 

execution overhead. At the same time, the cost of the system which increases with the added 

hardware. This introduces the notion of the Cost Performance Ratio (CPR) which is explained 

in the next section. 

110 



5.3.2 Cost-Performance Ratio of ReS with TPM 

Cost-perfonnance ratio can be defined as a perfonnance parametric value per cost of the sys-

tern 

CPR = Performance parameter value 
Cost of system 

(5.6) 

In general, perfonnance parameter value can be measured as, cycle time, latency of the 

response (response time), dynamic power consumption, reliability, and other factors that are 

critical to a particular system specifications. Cost, on the other hand, is most often associ­

ated with the cost of system production and associated development costs. This section will 

compare CPRs of with different architectures, such as: statically configurable, dynamically 

reconfigurable systems using non-pipelined TPM, and dynamically reconfigurable systems 

using pipelined TPM. 

5.3.2.1 CPR for Single Statically Configurable FPGAs 

Most of the processing systems that are designed nowadays are implemented using statically 

configurable FPGAs. In these systems whole data processing circuits are loaded at the start-up 

and are not modified throughout the operation of the system. The cost of production of the 

statically configurable system in a general case can be estimated by: 

Cstaticsystem = Cprocessingunit +Cperipheralcomponents +Cpcb (5.7) 

Where Cprocessingunit is the cost of the FPGA, Cperipheralcomponents is the cost of peripheral 

components needed for the platfonn, and Cpcb is the cost of a printed circuit board and its 

assembling, debugging, and packaging operations. The cost of FPGA should include costs 

of all required processing elements and IP-cores needed for the application operation. Due 

to that fact this FPGA is needed to be substantially large. Therefore, large FPGAs would be 

111 



Table 5.1: Lists of Xilinx Virtex 4 and Virtex 5 FPGA Costs 

I Virtex 4 FPGA Device I Cost (USD) I Cost / lK 4-LUTs I 
XC4VLX15 $238 $16 
XC4VLX25 $330 $13 
XC4VLX40 $570 $14 
XC4VLX60 $1100 $18 
XC4VLX80 $1357 $17 
XC4VLX100 $2605 $26 
XC4VLX160 $5625 $35 
XC4VLX200 $7563 $37 

I Virtex 5 FPGA Device I Cost (USD) I Cost / 1K 4-LUTs I 
XC5VLX30 
XC5VLX50 
XC5VLX85 

XC5VLX110 
XC5VLX155 
XC5VLX220 
XC5VLX330 

:,' -\. '10tr:':" 
:, '~f;t1;:iIti ; 

$250 
$452 
$1066 
$1512 
$2171 
$3661 
$8731 

, "'~~l!f"c -
\~f.r(?l€i, 

$8 
$9 
$13 
$14 
$14 
$17 
$26 

Figure 5.7: Video-stream Processing Task Processing Block Diagram 

non-proportionally higher in cost than smaIler sized models, as shown in Table 5.1. Non­

proportional increase of cost effects the CPR of the system as it is shown further in cost-

performance comparison. 

- To illustrate the concept of cost-performance increase consider a video-stream processing 

system that runs 5 sub-tasks. These sub-tasks depend on each others input, as shown in Figure 

5.7. It is also known that each sub-task requires 2ms for each processing data, to produce 

temporal/partial result. All of these processing sub-tasks fit on FPGA device XC4VLX200 

which is the largest in the Virtex 4 family. From the initial conditions the frame processing 

112 



performance of a statically configured stream processing platform can be calculated: 

P RStatic system 
lsec 1 sec 

5 = lOOjps 
Li==:12ms 

where PRstaticsystem is processing performance of the static system. From this calculation the 

performance PRstaticsystem of the statically configured platform is lOOjps. At the same time, 

the cost of a platform based on the statically configured XC4VLX200 is: 

Css Cpu+Cpc Cpcb=$7563+$200+$lOO $7863 

Costs of the FPGA and peripheral components are taken from the average list costs from 

major parts distributors and PCB manufacturers. By knowing PRstaticsystem and the overall 

cost Css the approximate CPR of such system can be estimated: 

PRss lOOjps 
CPRss = C

ss 
= $7863 = O.OI27jramesJ$ 

For this example the peak performance is not required, but the, designer must take into 

consideration constraints of other performance parameters. For instance, if for the above 

example video-processing system constraint is 30jps, then frame execution period cannot 

exceed 33ms. This may allow utilization of a much cheaper FPGA when TPM is employed. 

5.3.2.2 CPR for Non-pipelined and Pipelined architectures utilizing TPM 

In previous case of statically configured FPGA, the frame processing time was equal to 1 Oms, 

considering ailS stages. Therefore, if TPM is used, it may be possible to reuse smaller FPGA. 

When the whole task is subdivided into several sub-tasks and all of them executed one after 

another within the restricted time the overall system cost can be decreased. Equation 5.8 

shows the calculation to be done to verify if particular TPM architecture is acceptable for 

the application. This is a proposed general equation for calculation of any stream processing 

113 



system that is implemented in TPM architecture. 

n 

L (Tcon/ig(SS?j) + Texe(SS?j)) :::; Tcycle (5.8) 
i=1 

Equation 5.8 performs summation of configuration and processing times for every sub-

task. This sum has to be less or equal to the Tcycle restriction. Tcycle restriction is time pe­

riod between the incoming data frames. For this example the data frames are image frames 

arriving at 30/ps => 33ms period from a CMOS sensor. This equation is targeted for a non-

pipelined implementation of TPM architecture, since configuration and execution times are 

always added together. In addition, it is assumed that the task can be split into 5 parts and 

executed in sequence on FPGA device. This results in 5 times smaller logic resources of 

FPGA that could be utilized. In the above example (see Table 5.1), instead of XC4VLX200 

(cost: $7563) it may be possible to use XC4VLX40 (cost: $571). XC4VLX40 also has Tcon/ 

reconfiguration time of 4.13ms which is much smaller than that of XC4VLX200. Based on 

these values the non-pipelined TPM architecture can be evaluated to see if it is sufficient for 

the processing task: 

5 

L (2ms+4.13ms) 
i=1 

5 x 6.13ms = 30.65ms < 33ms 

As seen from the calculation, the timing requirement for this frame processing is successfully 

met. At the same time, the CPR calculation shows: 

cp,nllP _ PR"fpM _ Ei=1 (Tcon/ig(SS?j+l) + Texe(SS?j)) 
IlTPM - P - -

C;;PM Cprocessingunit + Cperipheralcomponents + CTPM +CPCB 
1 

30.65ms - 0 033/ /$ 
$570+$200+$100+$120 -. rames 

(5.9) 

114 



Thus, from this simplified example one can see that CPitfpM is about 3 times higher than 

the CPRss, where the overall cost drops from $7863 to just $990, which is about 8 times less. 

The reconfiguration components that deliver bitstreams after every sub-task is computed 

should be included in the cost of a TPM system. The cost of the hardware or RCS with TPM 

is calculated based on the Equation 3.7 from Chapter 3. 

A pipelined architecture can be analyzed in the same manner on non-pipelined TPM ar-

chitecture. In calculation of the system hardware overhead, the four main costs associated 

with it as it was done for ~~M back in Equation 3.7. For the pipelined case, the cost of the 

FPGA device Cpu and cost of peripheral components for that device Cpupc are added. For 

generalized expression of more then one processing device the number of processing units is 

parametrized by Npu. Since every FPGA has associated peripheral components, they also have 

to be accounted for in cost calculation and denoted as Cpupc. The overhead equation is shown 

below: 

Cr;.~M = C peripheral components + CT PM + CpeB + Nprocessing units X (C processing unit + Cpu periphcomp) 

(5.10) 

For the pipelined case, in contrast to non-pipelined the time calculation is considered to be 

maximum value out of Tconfig(SSI1+1) and Texe (SSI1). Therefore, by keeping all the conditions 

from the previous non-pipelined example: 

n 

Tcycle 2: L max(Tconfig(SSI1+t}, Texe (SSI1)) = 
;=1 

5 5 
Lmax(4.1ms,2ms) = L 4.1ms = 20.5ms (5.11) 
i=1 i=1 

As shown, pipelining performance of the system is increased: 

115 



PRP1 _ Unit Time _ lsec - 48/ 
TPM- 5 - - ps 

Li=l max(Tconfig(SS~+l)' 1'exe(SS~) 20.5ms 
(S.12) 

If we calculate CPR based on these values we will observe that CPR is increased to: 

CPRPI - PR~~M 
TPM-

Cpl 
(S.13) 

lsec 
[1=1 MAX(Tconfig(SSP;+d,Texe(SSP;)) 

----------------------------~--~~~--~--~~~-------------------------= 
C peripheral components + CT PM + C PCB + N processing units X (C processing unit C processing unit peripheral components) 

lsec 

- $IS0+$100+::o6~m; X ($S70+ $SO) = 0.03/ps/$ 

where Npu is number of processing units used on the platform. There are 2 FPGAs in this 

example. Obtained CPR result is the same as in the previous non-pipelined TPM. This is 

not surprising, since our requirements are rv I.S times lower than performance obtained with 

pipelined solution. 

The, requirement of the processing system is 30/ ps allows for further increase in divisions 

of the algorithm to sub-tasks and, therefore for a, potential selection of a smaller device. If 

processing algorithm is divided into 8 segments ( provided algorithm is divisible onto 8 seg­

ments) an FPGA device of even smaller size can be selected, such as XC4VLX2S. Again, 

to satisfy the Tcycle restriction the calculation has to be redone. In this case though, the con­

figuration time for the FPGA is 2.7ms, according to the Table 3.3. Tcycle restriction is still 

satisfied, since time required for reconfiguration is 2.744ms and, therefore, for 8 divisions 

Tcycle > Lf=12.744 = 22ms. On the other hand, CPR is increased, since the cost of a smaller 

FPGA device is lower 

P pI 
pi R TPM 

CPRTPM = pI = 
CTPM 

116 

(S.14) 



tsec 

L~=l 2.744ms 

$150+$100 $100+2 x ($330+$50) =0.041jps/$ 

This result is a 0.011jps/$ improvement from the 5 sub-task division scenario. In addi-

tion, the above result shows that CPR is increased as Tcon/ig ~ Texe is getting closer to config-

uration time. 

When comparing different architectures of TPM organizations between each other, CPR 

comparison formula should be used, since it is the true indicator of solution efficiency. For 8 

and 5 task divisions CPR ratio gives: 

R · CPRSdiv 0.041 1 36 atzocPR = = -- = . 
CPRSdiv 0.03 

(5.15) 

If task divisions can be balanced even more to achieve Tcon/ig(SS~+d ~ Texe(SS~), a 

higher CPR can be achieved. 

These results might give an impression that increasing division of algorithm indefinitely 

always increases CPR of the system, but it is not true, and there is a limit of division which is 

optimal for a system. One of the reasons why CPR does not increase indefinitely is the actual 

process of division. There are always constraints and some of them do not permit the division 

of a task. A more apparent factor is the increase of Npus. From the above equation a balanced 

implementation produces a CPR increase. There is strong dependence of the percentage cost 

of FPGA device to the cost of the whole system. Increasing the number of FPGAs devices 

on RCS does not give a linear increase in CPR. When designing a processing system, where 

cost-effectiveness is important, the system has to be evaluated based on the above equation, 

and not solely by the performance increase. 

As seen from the example, employing TPM can result in significant cost savings as CPR of 

the system is increased. The reason for the increase in CPR is due to the non-linear relationship 

117 



$8,000 

$7,000 

$6,000 

$5,000 

$4,000 

$3,000 

$2,000 

$1,000 

$0 
$238 $330 

XC4Vl.X15 XC4Vl.X25 XC4Vl.X40 XC4Vl.X60 XC4Vl.X80 XC4Vt.X100 XC4Vl.X160 XC4Vl.X200 

Figure 5.S: Xilinx Virtex 4 FPGA Device Costs in Relation to Logic Resources 

of size of FPGA and its price. Table 5.1 contains the costs of latest Virtex 4, and Virtex 5 FPGA 

families, as well as their costs per 1K logic cells. Figure 5.S depicts the non-linear relationship 

of increasing logic and cost. The key advantage is to use the reconfigurable devices in the 

range where cost and size of the device increasing linearly, up to XC4VLXSO FPGA. 

From the Figure 5.S it can be seen that Virtex 4 family has exponentially higher costs 

for their largest devices in comparison to their mid-range ones such as XC4VLX40 and 

XCVLXSO. As with the Xilinx Virtex 5 devices, as well as Altera Stratix III family, and 

this trend is true for most of FPGA vendors and their FPGA families. Graphs representing 

device-cost relation are shown in Figure 5.9 and Figure 5.1 O. 

This is not too surprising, since yield on larger sized dies is much smaller than on smaller 

sized dies. The overall cost of manufacturing is, therefore, disproportionally higher [72]. 

Yield is calculated as a function of an average ~umber of defects (D) per unit area (A). 

Y=!(A,D) (5.16) 

Since defects are uniformly distributed across an IC die, the increase in the area of IC will 

be directly proportional to the probability of defects that the IC can receive. 

lIS 



10000 

8000 

0' 6000 
\II 

2-... ... 
8 4000 

2000 

0 

XCSVLX30 XCSVLXSO XCSVLX85 XCSVLXll0 XCSVLX155 XCSVLX220 XCSVLX330 

Figure 5.9: Xilinx Virtex 5 FPGA Device Costs in Relation to Logic Resources 

12000 

10000 

8000 

0' 
\II 

2- 6000 .. ... 
8 

4000 

2000 

0 

EP3SE50 EP3SESO EP3SL1l0 EP3SL150 EP3SL200 EP3SL340 

Figure 5.10: Altera Stratix III FPGA Device Costs in Relation to Logic Resources 

119 

PROPERTY OF· 
RYERiON W.uV~5lTY L.1eAARY1 



From the graph a range of devices that are in near linear range can be identified and by 

utilizing them instead of larger FPGAs, the CPR can be increased. 

Selection of the FPGA device for TPM approach depends on several constraints. If those 

restrictions are not met, a larger device has to be selected, and TPM approach is not suitable 

for that particular system implementation. First, the size of the device put a restriction on the 

number of divisions of the algorithm 

DSpart r DS part l Tconf = BW. 
conf 

DS part = max {DSdivj} 

(5.17) 

Where DS full is the size of a reconfigurable device needed for implementation of all sub­

tasks of the processing application on one device, Ndiv is the number of balanced divisions 

of the task, and DSpart is the size of the closest fitting FPGA device to be used for the TPM 

architecture. When device is selected it has to satisfy Equation 5.8. If restriction is not met, a 

number of divisions has to be adjusted. A larger/smaller device has to be selected accordingly 

and again re-evaluated by Equation 5.8. This selection can be automated with a CAD software 

that would perform the balancing operation and provide user with several solutions from which 

the most suitable one can be selected. 

Additional benefit that is obtained by implementing the design on a smaller size FPGA 

is an ability to do module design by parts, and thus not to worry about overall timing. This 

fact is currently a growing problem on large FPGAs for developers, since a combination of 

separately designed modules leads to timing problems [100]. These timing issues further 

complicate the design and makes the final system even more costly. Another important reason 

why TPM approach is beneficial for implementation of embedded systems is a smaller latency 

and, therefore a higher operation speed. Utilizing smaller sized FPGA makes internal routing 

120 



a:: 
0.. 
U 

3 r 
2 

1 

o 

• N-P TPM • PL TPM Static 

- ,-

-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Number of Segments - K 

Figure 5.11: Co~t Performancc Ratio v:-,. Ta~k Segmentation Granularity 

shorter. which allows signab to travel fa:-,ter from pad to pad and makes the critical delay 

~horter overall. 

5.3.2.3 Optimal Number of Partitions 

When analYling ~ystcm design using tcmporal partitioning approach there i~ a factor of divi-

~ion of algorithm into :-,egment~. which ha~ an optimal region where it i~ most cost-effective. 

When too many divi~ion~ of an algorithm ar introduced. a reconfiguration overhead would 

cause processing stall even in pipelined form. Configuration overhead involves reading previ-

ow,ly processed temporal data and writing newly procc~sed data. Figure 5.1 1 shows that with 

more than ~ reconngurat ions. the CPR of the sy~tem drops. 

In order to guarantee that the proccs~ing of an algorithm would be completed within the 

'fe'yeIl' time maximum numher of divi~ions has to be calculated by following formula for non-

pipelined TPM approach: 

l Te'l'de J 
'fe'(lIljig I Te.\l' 

(5 .18 ) 

Similarly. for pipclined TPM approach: 

l Tn-de J 
max ('fe'olljig' Tele ) 

(5.19) 

121 



Where D~~:, and D~~v are the number of divisions for non-pipelined architecture and divi­

sions for pipelined architecture respectively. 

5.3.2.4 Pipelined TPM Implementation Limitations 

From the pipelined TPM architecture and results in the previous sections it can be extrapolated 

that system can have Npu > 2. This can potentially mitigate issues related to 1'c:onfig(SSPi+ 1) > 

Texe(SSI1). However, the overhead costs of configuration controller interface, switching logic. 

PCB area, PCB routing complexity, and actual FPGAs would become much more dominant, 

and make CPR much lower. At the same time, there will have to be a re-design and an increase 

in bandwidth for configuration controller, since multiple AlGAs will have to be configured at 

the same time. The automated scheduling and timing of the configuration bitstreams, which 

is handled by the configuration manager, would be greatly increased in complexity. Similarly, 

the costs associated with software/firmware development are tremendously increased due to 

the configuration manager complexity. All these factors would effect CPR of the system and 

CPR would decrease. Therefore, in this research only Npu = 2 was considered. 

5.3.3 Automated Partitioning 

Traditionally, the task of algorithm partitioning and creation of IP-cores was done manually 

by the designer. However, this requires a lot of effort, as well as highly experienced engineers. 

Designer usually performs the division of an algorithm into segments, as well as the generation 

of reconfigurable cores from those segments. The transfer of temporary data between the cores 

has to be analyzed and accounted for as well. Such a task was doable when FPGA devices 

were small in logic size [88], such as an early XC4QOO Family. Current Virtex 4, Virtex 5, 

and Virtex 6 FPGAs are too large for manual implementation and CAD tool with automated 

partitioning is necessary. An automated partitioning capability would provide a much faster 

segmentation of an algorithm in close to optimal fashion. Automated partitioning tool would 

122 



bind the segments based on two conditions: meeting the FPGA device size requirements and 

being able to find the VHC that corresponds to that requirement. 

The next chapter discusses the technique developed for close to optimal algorithm seg­

mentation and binding of resources to meet the system constraints. 

5.4 Architecture Optimization for ASP Based on Config­

urable Modules 

Processing platforms can perform different types of processing. Considering media applica­

tions such as Image, Video, and other digital signal processing where there is a constant stream 

of data, a stream processing. Stream processing is: processing of a constantly incoming data 

using the same algorithm/procedure, where procedure, as well as the format of data doesn't 

change throughout the operation of the system. Stream processing allows for faster and more 

efficient execution by sacrificing the flexibility of algorithm modification. Stream processing 

is well suited for applications that share three main characteristics: data locality, data paral­

lelism, and computational intensity. In addition, if the processed data is used once or twice 

and then discarded or saved in storage, it is possible to process the constantly incoming data 

in a sort of a pipeline. After a pipeline frame fill-up latency, the system produces a result 

with a period MAX(TMO(i». Where MAX(TMO(i)) is the maximum delay of a largest MO 

component of the IP-core. This provides tremendous speedup for any type of processing, es­

pecially if many pipeline stages are present At the same time, if it is possible to acquire input 

data in more parallel fashion, where more than one data is available, parallel processing can 

be done and several stream processing algorithms working at the same time. This increases 

the speedup of the processing system even more. The exact factor of performance increase 

would -roughly depend on processing algorithm multiples. Following chapters will show the 

optimal uses of proposed research and how it compares in cost-efficiency to the non-TPM 

123 



approach. It will also address limitations of the proposed approach and ways of overcoming 

these limitations. 

5.5 Summary 

This chapter presented the concept of task segmentation and the process of tasks execution on 

a reconfigurable system. The main focus of the chapter was to convey the idea of balancing 

the requirement for the system to achieve most cost-efficient design solution. These require­

ments also impact other aspects of design, such as power consumption and speed of operation. 

Notion of cost-effectiveness of RCS with TPM was introduces with evaluation of system's 

cost performance ratio while taking in account cost of the systems components and overall 

performance. It was shown that hardware architecture a components should be closely related 

to the system requirements to achieve cost-effective solution. The methodology for evalua­

tion of cost-effectiveness of RCS with TPM, described in this chapter, was presented on the 

Canadian Conference of Electrical and Computer Engineering [52]. This research was used 

in further methodologies and segment specific processor synthesis. Next chapter will describe 

the methodology behind creation of the high level Macro Operators (MO) and corresponding 

Virtual Hardware Components (VHCs). 

124 



Chapter 6 

Methodology for High-Level Synthesis 

and Optimization of VHCs 

6.1 Introduction 

In the previous chapter a notion of TPM architecture was introduced. General overview of the 

TPM approach and the concepts of MOs, VHCs, and SSPs, was presented. Chapter 5 also 

described the limitations of the TPM architectures and the conditions where this approach 

is most applicable. An idea of cost-effectiveness was introduced, that is used to match the 

architectural design to the system requirements and minimizing the overall cost of the system. 

The core of the this research is synthesis of the optimal SSPs from VHCs. 

This problem consists of two parts: 

1. High level synthesis and optimization of VHCs in a multi-parametric design space. 

2. Compilation (combining) of an SSP from a set of optimized VHCs. 

This chapter focuses on a methodology of high level synthesis of VHCs according to MOs, 

the methodologies of SSP compilation is discussed in the next chapter. 

125 



The problem is divided into two parts: given a particular algorithm, how to create a set of 

VHC that correspond to an MO, amI how to find VHCs so that all of the system requirements 

are met (e.g. timing, area). Decision making mechanism is similar for both parts, however, 

selection process is different. The reason is because VHC synthesis is based on elementary 

operators and the SSP compilation uses macro-operators (MOs) to perform architecture se­

lection process. The analogy can be made with the software development, where one uses 

elementary programming functions to create various complex functions. In tum, the complex 

functions are used to implement an application that performs a particular task. 

Therefore, a methodology for VHC synthesis from the elementary operators has to be 

developed first. The main focus of this chapter is description of methodology for MO analysis 

and generation of the associated set of VHCs according to the set of parametric constraints. 

6.2 Correspondence Between MO and VHC 

As was discussed in the previous chapter, an MO, is a mathematical representation of a func­

tion used within a task. A VHC is an implemented instance of an MO. In this section the 

correspondence between MO structure and architecture of VHCs will be discussed with influ­

ence of parametric constraints in mind. 

First of all, for each MOj,i = 1,2, ... n, it is possible to find a set of VHCj,j j = 1,2, ... k, 

where each of VHCj,j is optimized for the set of parametric constraints Ps, s = 1,2, ... p. For 

example for the MOj -"Matrix Multiplication", the set of parameters (e.g. PJ-"execution 

time"-Texe; P2-"logic resources"-Rlog ; P3-"Power consumption"-W, etc ... ) may be assigned. 

Therefore, for certain requirements and constraints of the above parameters different VHCj,j 

126 



Operation ~,~ ~te~~,cY ~ 
~"'*r,.g-· v--:-:- '" "" ... 'A'~':" ~,,< ""~"" - r-

0 lOns 

8 2 ns 

0 4 ns 

(B) 

Figure 6.1: Sequencing Graph (SG) for the MO Represented by Equation 6.2 

architectures can be synthesized: 

For MOjand {Texe < Texelimt; min {Rlog}; Win < Wint} 1 -+ VHC;,l 

For MOjand {Texe < Texelim2; min {Rlog}; Win < WinJ2 -+ VHQ,2 
(6.1) 

The above derivation shows that for a single MOj it is possible to have j number of VHCs. 

Each VHC;,j has a variation by one or more parametric constraints. Each parameter can have 

different limitations that can not be exceeded (e.g. Texelimr Wjnj) for each version of VHC. 

Performance parameters contradict to each other. For example, an amount of logic used for 

implementation of the algorithm is inversely proportional to the processing time. To illustrate 

this fact, consider an example from Figure 6.1. Figure 6.1 (A). represents the Sequencing 

Graph (SG) implementation of the MO, which is based on the Equation 6.2. 

Y = max {[ (a + b) x (c + d) + max { (c + d) , (e + j)} 1 , 

[min { (c + d) , (e + j)} + (e + j) x (g + h) l} 

127 

(6.2) 



(A) {B} 

Figure 6.2: Stage Divided Sequencing Graph for the MO Execution 

As it can be seen from the Figure 6.2 (A) the MO algorithm consists of 10 elementary 

operations: six additions, two multiplications, and two comparisons. Based on the avail-

ability of the associated operators (e.g. adders, multipliers, comparators. etc.) operator's 

use can be achieved by binding and scheduling procedures [79]. Variations of VHC imple-

mentation can be generated from combinations of resource binding and scheduling. If all 

of these resources are available at the same time, the processing latency for a single set of 

data (aj,bj,cj,dj , ej,/i,gj,hi) will be minimal. However, in case of the stream processing ap-

plications the cycle time is reduced to close to the execution time of the slowest elementary 

operator (e.g. multiplier). Considering an example above, the latency of the algorithm can be 

calculated. Since the nodes of the SG depend on each other, the MO is divided in four stages. 

as shown in Figure 6.2 (B). 

The formula for latency calculation has to consider all of the stages of the MO. A general 

formula is given by: 

m 

1iatency = L'rj i = 1,2, ... ,t 
i=1 

'rj = max {'v' texe E 'rj} 

128 

(6.3) 

(6.4) 



Where m is the number of stages in the SG and 'C'i is the latency of the particular stage. The 

latency of each 'C'j is found by determining the operation with the maximum execution time -

le.xe, since it becomes the bottleneck of the processing stage. Therefore, the total latency of the 

MO from Figure 6.1 (B) is equal to: 

Ttatency 'C'1 + 'C'2 'C'3 'C'4 2ns + IOns + 2ns + 4ns = 18 ns 

If a large set of data (e.g. ai,bj,cj,dj,e, k 106 sets) is computed sequentially in a non-

pipelined fashion where Ttatency T~~, it would take: 

Texe k x T:fe 18 x 106 = 18ms 

If, however, the algorithm is implemented in a fully pipelined data-path, the cycle time per 

data set (a;,bj , ••• ,gi, hi for each iI, 2, ... ,k) over a large amount of data may be decreased. 

It should be noted that for fully pipelined implementation there is a much higher requirement 

for logic resources, as illustrated later. Equation for cycle time calculation is: 

(6.5) 

Where cycle time of fully pipe lined implementation is equal to the largest latency of the 

stage in a pipeline. Equation 6.6 reflects the pipeline speedup for the large sets of data on the 

pipelined data-path. 

Texe = Ttatency + T/:'~le x (k - 1) (6.6) 

where k is the number of data sets and Tlx~ (of fully pipelined data-path) shows the execution 

time per one data set. Below is the calculation of the execution time using Equation 6.6, when 

a fully pipelined data-path is utilized for the SO in Figure 6.2 (B). Here, k 106 data sets: 

129 



(ompl 
Compl 

"'ulll 
MultI 
Add6 
Add5 

Latency - 18 cc 

5n~3 

5SlS6 
S3 ~4 
51052 

Next output - 10 cc 

Ml'( l 

Ml'(1 

14·1>4 
c4~ 

04.14 

52 53 
S~56 

S 54 
SI cS2 

Next output - 10 cc .. 

"'1,(1 
tJl2-(1 

.~b5 

o-lIS 
~S.15 

!a ;u.~ 

S~~6 

53.54 
51.52 

Fi gure 6.3 : Pipelincd Implementation of SCI rrom Figure 6.2 

~'\(' 1Imemy I T:'~. x (k - I ) I Rlls t ( I (/ ' - I ) x I OtiS I OOO(X)Rlls ~ IOms 

5llS3 
55 56 

53i<54 
SI >Q2 

Ml'C! 

"'2· (1 
a5-0b5 
o-II!> 

A,:- 'an be seen from the result. it almost cuts in hall' the total execution time 7~re when 

["ully pipclined architecture used on large sets of data. however. it docs come with an addi-

tiona I hardware cost. Figure 6.3 ~hows the detaikd resource utilil.at ion based on the ,:-chedulc 

of pipelined data-path implementation. This schedule ~how~ that the initial pipeline lill-up 

latency and subsequent pipelinc outputs correspond to the e4uation ealculation~. 

The previous case was an extreme one where such amount of resources wali available that 

permittcd to create a fully pipelined impiementation . In other case:-.. only limited amount of 

resource,:- is available. so binding and scheduling come into effect. The [ollowing two cases 

illustrate the methodology of operation. 

In first scenario let us consider that only one adder (A). one multiplier (M). and one COnl-

parator (C) are available ror operation at any given time. Based on the dependency of the se-

quential graph in Figure 6.1. we can bind and schedule SG as shown in Figure 6.4. Since only 

one instance of resource (L'.g. A. M. and C) is avai lable at a time. elementary arithmetic/logic 

operations (e.g. additions. multiplication. comparison) are bounded by the resource repre-

. ented by the dolted line. A it is seen in Figure 6.4. every bounded resource is scheduled 

only once per proces~ing stage . This result in seven stages execution process . Latency for 

130 



A 

(A) (B) 

1"1 

1"2 

1"5 

Figure 6.4: Scheduling and Binding Tran~formation of SG into VUC Configuration Including 
Single: Adder. Multiplier. and Comparator 

• Cycle - 30 cc 

"'1 

39 40 4~ .3 14 4~ 46 

Figure 6.5: Pipelined Implementation of SG from Figure 6.4 

thb implementation or the algorithm is calculated by Equation 6.3, same way a~ the ~um or 

latencie~ for all the ~tages wa" computed . The overall latency i:-, equal to : 

'hll enC\ 211s I 2ns I lOlls I 41ls I I On ~ 2115 I 4ns 3.tns 

The cycle time is lc~s than latency as hefore. Ilowcver, it i~ much higher than in previou:-, 

implementation due to limitation in resources. Figure 6.4 illustrates the schedule of resources 

after the binding operation. 

The ~chedule latency is now equal 10 34ns, and cycle time is 21105 less, since . tage~ 'l"1 with 

'l"7 can he overlapped. lienee. equat ion for calculation of 10(, data sets. considering ~'\"cle time 

131 



Al a, b, c, d, 

'" 
"(5 

y 

(A) (8) 

Figure 6.6: Scheduling and Hinding Transformation or SG into VIIC Configuration w.,ing 
Double Adder. Single Multiplier. and Single Comparator 

or overlapped 'TI and 'T7. is : 

T eJ.'(' hUI'IlC\' ~~ (max { 'T I • 'T7} I 'Tl t 'T3 I 'T4 I 'T5 I 'T6 ) x (k - 1 ) 

34 -j (max {2.4} I 2 t I () I 4 I 10 I 2) x (106 
- I) 320(){){){)2Ils ~ 32ms 

In some applications (e.g. real-time high speed image process ing) this execution time may not 

be acceptable, and an increase in resources may be requi red. 

Now consider a case where two adJers are available. There are one mult iplier and one 

comparator as in previous case. A difrerent binding and scheduling re. ults in this case. A I 

and A2 repre. ent the two adders in Figure 6.6. Each or these adders bind three '"add" opera-

tors. Si nce these adders operate in parallel . they can be scheduled in th same time slot (e.g . 

'TI l 'Tl. · · · 'Til) ' This allows to decrease the overall number or ti me slots . tages to S. The overaJ l 

lat 'n 'y is 

'Itu/l'Ile.\' '2ns I lOlls I IOns I 211s I 411s 2XIls 

The data throughput. as in previous case. is slightly lower than the latency. since 'TI and T5 can 

be overlapped in cyc les (sec Figure 6.6). In this case: 

132 



Cycle - 26 cc 

51.52 5J.54."'1 CI."'2 Ml .SJ.54 

I-igun.: 6.7: Pipelined Implementation of SCi from Figure 6.0 

~'.\ e harney I (max ('rl. 'rs ) I 'r} f r_~ I 'r4 ) x (k - I) 

"'2.0 
5HSJ 

53>54 

2~ , (max(2 .4) I 10 , 10 I 2) x (IC/'-I) 200{XXX)2ns ~ 20Il1s 

The ~chedule ~howing the re~ource Ulili/at ion.latency and cycle time of the scheduled SCi 

is shown in Figure 6.6 (3). 

The above example~ delllonstrate three diffL:re nt VIIC impl 'mcntation~ for the ~ame MO 

hut with varying performance and resource requirclllents . From th ' ahove ccc ' e~ there are rwo 

po~sible extremes can be identified as : 

a) non-pipelincd data-path. with a . inQIc resource for each type of opcration. Thi. is the 

~ I ()wes t and cheapest design ~olutio n. 

h) I-'ully pipclined data-path, with individual re~ources available for every operation. It i~ 

the ra<; test and the most e pen~ivc ~olution for Vile implementation. 

Between these extremes there are VIIC\ with different latencie~ and cycle time~. a ~hO\vn 

in Figure 0.6. VII(\ pre~ented in the above case~ and a-. well a~ others. <.:feall: a de~ign space 

of 11(\. associated with the MO. Each VIIC implementati on is an element (point) in thL 

design spa ' '. 

In most real life cascs the number of pos~ible variant. · of VlIe implementation (dc~ign 

~pace siLc) is vcr ext ' nsive (e.g. from 103 tolO lO ariants). It i ~ ohvious. that with these 

numhers the proc ' ss of high-lev I synthesi. nf 11(': and sets or paramctric "onstraint. mu. t 

b' au\oma tL:d. By automat ing the pro ss or resource bi n ling and s 'hcduling it i. possible to 

133 



generate a large variety of VIICs. That variety produces the complete design evaluation space 

for further selection procedure. The selection procedure should result in optimal or c1ose-to­

optimal VIIC architecture. The following section of the chapter will describe all aspects of the 

novel methodology which allows rapid selection of near-optimal variant of VI Ie architecture 

for a given SG of the MO and a set of parametric constraints. 

6.3 The Problem ofVHC Synthesis and Optimization 

The synthesis of optimum set of Viles from elementary operators, corresponding to partic­

ular MO, is essentially an optimization problem. Such problem is NP-complete, especially 

for cases with multi-parametric optimization. There can be hundreds of nodes in an SG for a 

given MO and an enormous set of various combinations of resource binding and scheduling. 

Thus, it may require exponentially growing amount of calculations to perform the exhaustive 

search of all the variants of VIles in the design space. These calculations have to estimate the 

processing time, power consumption, area of logic resources, and other performance parame­

ters. 

Selection of the optimal set of VIles for corresponding MOs may be done using different 

approaches, as presented in {29, 47, 103]. One of these approaches is to use the Pareto 

point set, where every VIle variant has a Pareto point [79].' Pareto points, therefore, can be 

considered a~ trade-off points in the system design space. 

In the past several years various heuristics were proposed by researchers, however, they 

mostly considered small sets of MOs. In cases of large sets of MOs, the calculations may 

become unmanageable due to exponential increase in number of the calculations. In addition, 

most of researchers have not consider the multi-parametric restrictions [47] [103]. If only 

one restricted parameter is considered, the optimization is done only in relation to that pa­

rameter. This, would not be feasible in real designs where many parameters typically have to 

be considered, such as: latency, area, power consumption. The, conventional methods do not 

134 



have capabilities and flexibility to optimize an algorithm implementation with more than one 

restricted parameter. To utilize several parameters in optimization the inverse related parame­

ters may be chosen to identify cross boundaries. 

A "Spacewalker" method was proposed by [103] for design space exploration. It makes 

use of he information from the previous point of the design space to minimize the search area. 

However, this creates a problem of having local extremes as a solution in final selection on 

the design space. Selection of local extremes eliminates all other branches and can lead to 

missing the global minimum or maximum of the parameter in question. In this case a genetic 

algorithm search would be more applicable, that search as more than just neighboring nodes 

[61]. 

In other papers [47] an automated selection of VLIW architecture was performed by de­

composing system architecture to sub-systems. It is possible to reduce the number of variants 

to be estimated by the decomposition of hierarchical design. However, complex models as­

sociated with VLIW architecture specifics make method very computationally intensive and 

difficult in implementation for other types of architectural synthesis and optimization. 

In general, the effectiveness of any method based on heuristics always depends on quality 

of these heuristics and their orientation for a certain application. In the case, where MO spe­

cific data-path circuits have to be designed, the formal method will have non-NP complexity_ 

This method must provide the maximum possible reduction of numbers of VHC variants to be 

evaluated. At the same time this method in should result the near-optimum solution and avoid 

the local extremes of the performance parameters in the design space. Therefore, a different 

approach based on the design space arrangement has been selected by [49]. This approach 

proposes a partial arrangement of the design evaluation space as a methodology to minimize 

the number of variants needed for selection of the close-to-global optimum. The method 

assumes representation of the design space in a form of a decision tree called Architecture 

Configuration Graph - ACG. An example of such ACG is shown in Figure 6.8. 

135 



· .........•.....•.........•...... 

Figure 6.8: Design Space Arrangement 

Each node on ACG resents a resource type. Resources in this example can be various 

arithmeticllogic operators (e.g. RI-"Adder", R2-"Multiplier, etc.). Each resource can have 

several variations of implementation. Variants of resource implementation are represented 

by the edges associated with certain nodes. For example, RI,l is "Adder" available in one 

instance. Whereas R1,ml is the "adder" available in 6 units of adders. Therefore, all pos­

sible configuration of the VHC; for certain MOi can be represented by the ACG terminals: 

AI"A2,. .. ,Az. For example, the Al configuration represents the path from the root (Rl.l) to 

the Rn (e.g. R2.1). In this case Al means that there are minimum resources available for the 

data-path: one adder, one multiplier and one comparator. This variant is similar to the example 

discussed in Section 6.2, Figure 6.6 (B). On the other hand, the architecture configuration Az 

represents the VHC variant with the maximum possible resources available for the data-path: 

6 adders, 2 multipliers and 2 comparators. This is the previously considered example of fully 

pipelined data-path, shown in Figure 6.2 (B). 

All variants (AI ,A2, .. A z) of a resource can be arranged in ascending order by one of 

the performance parameter and/or by descending order for the contradictory parameter [51] . 
. 

Such parameter pairs could be execution time and data rate, power consumption or dissipation, 

etc. An ideally monotonic arrangement of performance parameters allows to find the global 

extreme located in case of ascending order at the very right terminallleaf the graph (e.g. Az) 

or vice versa. Nonetheless, the above methodology, though being able to reduce the number 

136 



of variants to be evaluated for finding close-to-optimal architecture, has one, but important 

limitation: it is mono-parametric. In other words, it allows finding the optimal variant for 

one performance parameter satisfying the constraint of another contradictory parameter (e.g. 

variant with highest data execution rate and certain logic resources available). Real design 

process usually coincides more than two parameters. Therefore, an extension of this method 

is needed for the design process that requires with mUlti-parametric design optimization. Thus, 

the goal of the further research is to develop a methodology for selection of a close-to-optimal 

variant of VHC in a mUlti-parametric design space while evaluating the minimum number of 

possible variants. 

6.4 Methodology of VB C Synthesis and Optimization 

An appropriate method for high-level synthesis and optimization of VHC architecture should 

provide: 

1. A solution for general multi-stage, algorithm specific data-paths. 

2. Minimization of number of variants to be evaluated for finding the optimal configuration 

ofVHC. 

3. Close-to-global extreme solutions (avoiding local extremes) for each performance pa­

rameter. 

4. Pareto-optimal variant of VHC configuration in multi parametric design space. 

The next section describes all aspects of the developed novel methodology of selection of 

close-to-optimal variant of VHC in the multi-parametric design space. 

137 



6.4.1 l\1ulti-parametric Design Space Decomposition 

The first step for the VHC synthesis procedure is determination of performance parameters 

and their constrains. These parameters are used to create the design sub-spaces that are used 

to select optimal variants (Pareto-points) for each of the parameters. Let performance pa­

rameters be denoted as PSt where s 1, 2 ... p, and assume that there are constrains for each 

Ps -+ PSlim ' It is possible to find many pairs of inversely proportional performance parameters 

(e.g. processing latency and amount of logic resources). For example, if a designer needs to 

reduce the processing time latency, then the amount ofhardwarellogic has to be increased. The 

decrease in processing time may also be inversely proportional to power consumption. These 

types of parameters can be chosen for selection of the design space represented by ACG. At 

the same time, these parameters have corresponding constrains, Psum ' Design constraints limit 

the design space and, consequently, decrease size of the ACG. However, with the addition of 

third parameter (e.g. hardware area), the architecture design space becomes three-dimensional 

and complicates the problem of selection. The third parameter can be inversely related to the 

speed of computation, and close to linearly proportional to the power consumption. Hence, 

design space selection problem becomes a double two-parameter design sub-space selection 

problem. Where it has Power vs. Time and Area vs. Time, instead of three parameter design 

space selection problem. It is less computationally intensive, to solve two two-dimensional 

problems instead of one three dimensional. It is also known that n3 » n2 + n2 for n > 2. Thus, 

selection of the inversely related parameters should be done by the designer. Designer also has 

to determine the initial restriction specification of parametric constrains, PS/im for s 0,1"", p. 

Later these constrains will be used in narrowing design space by pruning of ACG. 

After the number of restriction parameters is selected according to all of the constraints, a 

reduction of the ACG can be performed, As it has been shown in [49], ACG can be pruned by 

arranging the ACG in a descending/acceding manner and applying m-airy search procedure. 

The Figure 6.9 illustrates this process. 

138 



""-- .... 

I , , , , , , , , 
\ 

\ 

I 
I 

ii' 
• I 
: .-

--':" 

: ·············t·· Pam · . · . · . · . · . 

~~--------~----~·#A ....................... AR Az 

(A) Pl(A»Pt 10m 

P2 I , 
I 

I 
" I 

U 
I' 

, , 
" 

, , , 
:,. .... ---, 

AL ........................ Az #A 

Figur~ 6.9: ACe; Pruning by Pair of Parametric Constraints 

Figure 6.9 (A) show:-- the design ~pace represent~d by ACG(PI ) arranged in a!-.cending or-

der by the performance parameter PI (e.g. "Power Consumption"). The bottom part of this 

figure presel1t~ the diagram or rising value of the parameter PI according to the number of ar-

chitectural variants A I.A2 . ... ,k. As it can be seen from this figure. thc paramctric constraints 

Pllim allow to cut from fun her con~idcration some part of architectural variant:-- (from AR to 

AJ. Similarly. Figure 6.9 (8) demonstrates how the constraint for the performance parameter 

p:. (e.g. "cxecution time"') can cut out (prune the ACG) another pan of arch itectural variants 

(from A I to Ad. Continuing this proce:--s for all other parameters PI' where s 1.2, .. .. p , 

result in a set of architectura l variants which satisfy all parametric constraint:--. After that the 

optimilation procedure for finding the optimal variant of vile architecture can be applied. 

Therefore . the ilrst :--tep of the proposed methodology is to get mono-dimensional design space 

arranged for each performance parameter. Thus, the procedure for rapid arrangemcnt or ACC) 

for each paramt:ter needs 10 be developed. 

The arrangement of ACG graph includcs scveral steps and is described in dctail in thc next 

:--ection. 

139 



6.4.2 Design Space Arrangement 

As was shown in Section 6.4.1, there can be up to Z mono-parametric design sub-spaces. Each 

of the design sub-spaces can be arranged in order of increase or decrease of the value associ­

ated with performance parameter-Pt. where i = 1,2, ... , p. As, was stated in [49] this arrange­

ment allows for a dramatic reduction of the number of variants to be evaluated for selection 

for the best variant of VHC. In this consideration the boundary variant, VHCbound. means that 

this variant satisfies the parametric constraint (e.g. Ps(Aboarder) < PsUm ) and the value of the 

performance parameter Ps of this variant is the closest to constraint (e.g. Ps(Aboard) ~ PsUm ). In 

other words the next variant of VHC on the design space represented by ACG does not satisfy 

the constraint (e.g. Ps(Aboard+d > PsJjm ). In the example considered in Section 6.4.1, Figure 

6.9 variants Ar-l and Al+l are border variants. Therefore, the set of border variants Aboard 

. for s = 1,2, "" p represents the trade-off points in the Pareto-optimal design evaluation space 

[79]. 

Arrangement procedure for the ACG is divided into two sub-procedures: local arrange­

ment of the resource variants, and hierarchical arrangement of all resources. First we will talk 

about the local arrangement of resources included in ACG is discussed. 

6.4.2.1 Selection of a Set of ~esources for an MO and their Local Arrangement 

The first step in arranging the resources is to group all of the common resources/elementary 

operations and create sorted sub-trees in ACG. The sub-ACG trees are arranged by the number 

of allowed resources, going from minimum on the left of the graph to maximum on the right. . 

The number of resources (e.g. adders, multipliers, etc.) can be listed ascending order. As 

can be seen in Figure 6.1 that there are: six addition operations, two multiplications, and two 

comparisons. Therefore, locally arranged sub-ACG tr~s are arranged in ascending order as 

shown in Figure 6.17. 

140 



Figure 6.10: Local Arrangement of Resource-Ri Variants 

Now it is possible to create an ACG on the basis of the above sub-trees using any possible 

combination of resource variants. Each combination in tum produces a particular variant of 

the VHC with the corresponding performance parameters. In VHC variants, where parallelism 

is utilized and the maximum amount of resources is used, the timing parameter would result in 

higher processing speed. On the other hand, if the minimum amount of resources is used, the 

area parameter will be minimized, but, timing will significantly increase since several stages 

of calculation will have to be implemented. So, a single resource can have different variations 

of implementation with different performance parameters caused by its internal structure. 

As an example. a higher bit-width adder (e.g. 16 bit adder vs. 8 bit adder) would require 

more powerllogic/area than a lower bit-width adder. 

It is always possible to arrange resources so that Ps(Rj,j) < P;(Ri,j+I), where i = 1 .. n is a 

resource number and j = 1 .. mi, is an index of resource variant implementation, as shown in 

Figure 6.10. 

Mter arranging sub-ACGs. they have to be combined in a hierarchical tree representing 

the whole ACG. ACG represents the set of all possible VHC variant (design evaluation space) 

and should be arranged according to Ps. s = 1,2, ... ,p. 

~141 



6.4.2.2 Mono-parametric Partial Arrangement or ACGs 

consider a case when the value of the cost function associated with perfonnance parameter 

Ps, where s = 1,2, ... ,p. increases proportionally to the number of the architectural variant 

1. The value of the cost function reaches the global minimum atAt: Ps(Al) = min {Ps(Ak)} 

where k = 1,2, ... ,p. 

2. The value of the cost function reaches the global maximum atA4: Ps(Az) max {Ps (Ak)} 

where k = 1,2, ... ,p. 

3. There are one or more variants of ArT where: 

Ps (AI) < Ps (Ai::n <"!,s (AiX1T) 

& 

& 

(6.7) 

This case shows that a local maximum that ca~ occur in resource arrangement as illustrated in 

Figure 6.11. 

Similarly, in a case when the cost function decreases proportionally to number of variants 

At, ... ,Az and: 

1. The global maximum is at A 1. 
~ r , .. 

2. Ps (Ak) reaches the global minimum at Az: 

Ps(Az) = min{Ps (Ai)}, s = 1,2, ... ,p, k = 1,2, ... ,z 

.. 
142 



i--....... ----_-"'_.....i"""-_'"--_'"-_____ ..J.,. Resource 

A,. ........... A..-l At. At'1 At.:r ............ A. number' 

Figure 6.11: Ascending Mono-Parametric Partial Arrangement 

Al •• • • • • • • • • • A..-l At. At.. At.z • • • • • • • • • • • 
, ~ 

Figure 6.12: Descending Mono-Parametric Partial Arrangement 

3. There may be local extremes of the cost-function Ps(Ak),k = 1,2, ... ,z at one or more 

variants Ak:l1r where: 

(6.8) 

& 

This case of local minimum is shown in Figure 6.12. 

143 



In both of the above cases the ACG was partially arranged according to the value of pa-

rameter Ps, s = 1,2, ... , p. In the real design practice, evaluating the design space by partially 

arranged ACG, is the most realistic scenario. 

Therefore, the assumption taken for this methodology is that in real design practice the 

optimal variant of VHC architecture should satisfy all parametric restrictions (e.g. power 

consumption is less than the specified limit) and one of the parameters should reach a value 

close to global optimum (e.g. highest data processing rate). 

In most cases it is acceptable if the value of the parameter to be optimized is close to 

optimal but not reaching it. However, it is not acceptable if the selected as optimal variant of 

architecture will provide the local extreme of the parameter to be optimized. 

The approach described in [79] has been used for performing ACG partial arrangement by 

one parameter. This approach states that the most monotonic arrangement of ACG terminals 

can be reached by the following procedures: 

1. Local arrangement of each sub-tree (bush) of ACG associated with corresponded re-

source: Rl, ... ,Rp. This procedure has been discussed already in Section 6.4.2.1 

2. Hierarchical arrangement of the sub-trees on the leafs of the ACG. In [79] the criterion 

proposed: 

K(Rj) -
IPsma.t (R;) - Psmin (Rj)1 

mj-l 
(6.9) 

where mj is the number of variants for a particular Rj resource. Criterion calculation has to 

be done at the resource when it is placed on a root of the ACG graph and the hierarchical 

placement of other resources has to be adjusted accordingly. In the Equation 6.9 Psmax (Rj) 

is the global maximum of Rs, which is reached in A 1 variants of architecture (in the case of 

descending ,order) or in Az variants (in case the of ascending order). The Psmjn (Rj) parameter 

is the value of Ps reached in a so-called critical variant of architecnire. This variant assumes 

144 



p~ I i 

p.I", t-- ---t----------------------------
p .tAmt) T-- --­

I ! IA 

Figure 6.13: Monotonic Ascending of Parametric Value Corresponding to VIIC Variants 

a utilization of a minimum of Ri resources (e.g. one adder unit for R}) and maximum re­

sources of all other resources [57,51]. An example of the critical variant for the Rl (adder), 

represented is the ACG arranged in ascending order by Ps is shown in Figure 6.13. 

For example, as shown in this figure, the criterion for hierarchical arrangement of the 

resource Rl is equal to: 

IPsnJ{U (A,J - Psmiff (Acrit (R.») I 
8-1 

(6.10) 

where ml = 8, because there are 8 branche.1) in the hierarchical level of R2. As one can 

see, the criterion K (Ri) is the average gradient of the value of the Ps from one variant of Rl 

implementation to another. Therefore, in a general case: 

\ , 

145 



Increase of parameter value 

Figure 6.14: Monotonic Increase of the Value ofParameter-Ps with Several Local Extremes 

for i = 1,2, ... ,n, j = 1,2, ... ,m; and s = 1,2, ... ,p. In other words, the criterion Ks (Ri) 

shows the influence of variation of Ri resources on the performance parameters Ps. 

Thus, the resource with a higher criterion value should be located on the higher level of 

ACG than the resources with a lower criterion value of the same parameter. If Ks (Ri) > 

Ks (R,), where i,r = 1,2, ... ,n and i f= r, then the resource Rj should be located on a higher 

level on the ACG than resource R,. 

As stated in [49] and [16] ifthe above arrangement procedures is performed by traversing 

through variants A 1 to Az from left to right, Ps would increase or decrease most monotonically. 

The most monotonic increas~ or decrease of the value of Ps means that divisions of Ps in local 

extremes are minimal compared with other orders of hierarchical ACG arrangement. The left 

most and right most terminals of ACG represent global extremes. A general picture of the 

behavior of the most monotonic increase of Ps on the optimally hierarchically arranged ACG 

is shown in Figure 6.15. 



Figure 6.15: Periodic Distortions on Monotonic Behavior of the Parameter-Ps 

In contrast, the behavior of Ps on the ACG with non optimal hierarchical arrangement is 

shown in Figure 6,15. 

To sum up, the steps for creation of a partially arranged ACG for any performance param-
1. 

eter Ps, s = 1,2, "" p, are: 

1) Identify and evaluate the performance for variant A 1> with minimum resource require­

ment. and Az, with maximum resource requ~rement. This is a min-max analysis and will 

require validation of two architectural variants. 

2) Conduct a hierarchical arrangement of resource R;, iI, 2, "" n. This procedure will 

require a validation of n - architectural (critical) variants Acritical (Ri), each of the resources 

fjnli~ (R;) for i = 1,2" .. , n. Thus, for each performance parameter the(2 n) variants of archi­

tecture should be evaluated. In every resource evaluation case lowest performance branch is 

selected, while largest performance branches are selected for all.of the remaining resources. 

This-result is subtracted from the overall max result and divided by total number of branches 

for the resource in question, as shown in equation 6.1O~ Therefore, the total amount of v~iant 

147 



evaluations for all design space is equal to p x (2 + n), where p is the number of performance 

parameters of Ps, s = 1,2, ... ,p. 

In the example of the MO discussed in Section 6.2, Figure 6.1, three resources: R 1-Adder, 

R2- Multiplier, and R3-Comparator, are considered. 

Assuming that the selection of the optimum variant of VIIC has to be done considering 4 

performance parameters, only 4 x (2 + 3) = 24 variants of VUC architecture configurations 

need to be evaluated. Even for very large design spaces associated with complex MO algo­

rithms the number of variants to be evaluated for a near optimal arrangement of ACG (Ps) is 

still not that large. Assume that an MO algorithm requires 16 types of resources and each re­

source can be implemented in 8 possible variants. Also, there are 4 parametric constraints. In 

this case, the exhaustive search, needed for fully monotonic arrangement of the design space, 

will require: 

Nvariantexhastive = 4 X 168
:::::: 4.5 X 1015 variants 

In contrast, the partial arrangement of ACG by each performance parameter will require 

(2 + 16) '18 variants of VIIC architecture. a total of and 4 x 18 72 variants for all per­

formance constraints. Obviously, 72 variants of VIIC can be evaluated very fast. 

6.4.3 VHC Architecture Selection on Partially Arranged ACG' 

When the procedure of decomposition of ACG to ACGs(Ps) is complete, and partial arrange­

ment of each ACG(Ps) is done, a selection of prioritized parameters has to be performed based 
, , 

on the priority of Ps, where s = 1,2 ... , p. Parameters with higher priority will be consider~d in 

selection before the ones with lower priority in descending order. 

6.4.3.1 Identifying the Set of Variants 

To find an architectural variant which, s~tisfies the plim for every parameter Ps, s = 1,2, ... , p a 
_ ~ ,'" .' j " ~ • t 

search procedure should be conducted on the partially arranged ACG(Ps). Search procedure 

148 



.,."".------ ....... 
........ ... ... ... ... ... .. ... .. ... ... ... 

... .. .. .. 
\ 

\ 
\ , 
I , 

""'--- __ '-_J// 
P..,. 

------.-----._--- ----- ~--

At ••. A2 A10 ••• A. ••••••••••••••• At. •••••••••••• , At·.. A. 

Figure 6.16: Determination of the Sub-set of the Architecture Variants that Satisfy Specifica­
tion Constraint for One Performance Parameter Ps (A) ~ pJim. 

identifies the boundary variants on the ACG(Ps) graph. Thus, the set of variants is identified 

such that plim > Ps(Rj). (Vj3R) or Pfim < Ps(Rj), {vj3R) depending on the requirements. 

Definition: Border variant of architecture - Ab is an architecture variant for which the 

performance param~ter value Ps(Ab) is close to the requested limit - Pfim > Ps(Ab) or plim < 

Identification of the border variant - Ab on the arranged ACG(Ps) allows further pruning 
, -

of ACG(Ps) as shown in Figure 6,,16. In Figure 6.16, all the variants to the right hand side 
, ' 

of the Ab. are an accepted set of design space. and Ab is the fi~t variant that is accepted as, 

a one satisfying plim restrictions. The border variant Ab for the parametric constraint Ps - Ab 

can be found on the ~anged ACG(Ps ) using binary type search procedure. In each step of 

this procedure the set of variants is divided in 2 parts side half and the value of performance 

parame~er for the, middle variant is calculated. This pro~edure is described in detail in later 

section. 

149 

/ 



6.5 Determination of the Pareto-set of Architectural Vari-

ants 

When architectural variants are considered for the implementation of temporal partitioning 

system, a traditional approach is to create an ACG selection tree similar to the one in Figure 

6.13. Typically, after creation of this tree it is pruned by eliminating variants that violate 

the user defined parameters, as shown in the Figure 6.16. This is a valid approach, and in 

many cases it provides a visual representation of the ACG tree and the region of allowed 

variants. It becomes much more complicated when more than two performance parameters 

are used. This approach also has a problem with using a large number or resources each 

having many variations of implementation. As mentioned before, the number of variants can 

become exponentially large: 
n 

NYHC = II mj 

i=1 

(6.11) 

where NYHC is the number of VHCs (leafs) generated from the ACG, and m is the 

number of variants for a particular resource for all i resources present in the design where 

i = 1,2, ... , n. Hence, the previous example with 16 resources each having only 8 variants, 

results in 2.8 x 1014 variants which is an enormous number of calculations for any type of 

memory. In addition, in o~der to optimize optimize for eac~ parameter, an arrangement of 

restriction parameters has to be done based on the criterion of the resource. Therefore, the 

number of possible variants grows to: 

,P .. 

NYHGotaJ = ENYHC,j= 1,2, ... ,p 
i=l 

;: ". 

(6.12) 

At the end, to generate such selection trees, and to store them, an enormou~ processing power 

and amount of memory are required .. 

, ' 150 



Resources should be arranged in a descending order based <?D the criterion value, as was 

done before. However, in the propose approach there is no need for the creation of full ACG 

tree. In this section an algorithm and example are presented which explain the methodology 

behind the run-time resource selection. 

This algorithm operates on a very limited memory and performs an order of magnitude 

less processing operations to identify the variants. First step is to identify all of the resources 

that are used in the implementation of the MO. Designer also needs to identify restriction 

parameters and their initial values. Later on, these parameters are varied to create several 

variants of VHCs corresponding to the same MO. Each resource has several implementations 

and each implementation has different performance parameters. These implementations of 

resources have to be arranged in ascending/descending order for each restriction parameter, 

as shown in Figure 6.17. In this methodology the sub-trees are used only for look-up and 

therefore there is no need to arrange them hierarchically in fully formed ACG tree. It is, 

important to note, that sorting has to start with a parameter of a highest priority. Since all of 

the other parameters on average would be monotonically increasing or decreasing, the rest of 

them will be sorted in ascending/descending manner, as shown in Figure 6.17. 

At the same time, the rate of increase of performance parameters is different for different 

types of resources. Hence, as mentioned in the previous section, a criterion value has to be 
! 

calculated for each parameter of every resource. This is done in order'to obtain a monotonic 

arrangement of the ACG without having any local extremes. It is needed to find the criterion 

of each resource for every single restriction parameter, as was shown in Figure 6.15. Whe~ 
, . ' 

criterion value is calculated for every resource, an evaluation of border variants can com­

mence, with subsequent creation of a VHC set.' Border variants are identifi~d based on the 

initial restriction for the pafamet~r that was provided by the ~ser or by the system specifica­

tion/lirllitation. The main advanbge of this procedure is that instead of exhaustively generating 

all of the possible combination of resources and then performing search for a border variant, 



~
1 

R Rl.2 
1, 

1 2 

5mW 2mW 7mW 6mW 4mW 40mW 30mW 20mW 10mW 
1(=3 1<=1.5 1(=10 

1c.c. 2c.c. 

K=l 

(~t 
~R<b 

3c.c. 6c.c. 8c.c. 10c.c. 20c.c. 40c.c. SOc.c. 
1(=2.5 1<=13 

5ClB 2CLB 300ClB 200ClB 100ClB 25CLB 20CLB 15CLB 10CLB 
1<:3 K=100 1<=5 

Figure 6.17: Resources Sorted According to Different Performance Parameters, where K is 
criterion value 

only a few selected calculations have to be performed. Hence, instead of NVHC operations, as 

by Equation 6.11, at most: 

n 

NVHCboarder = I,10g2 mi 
;=1 

(6.13) 

operations need to be performed to find the border variant. Where m is the number of variations 

for resource i. The . algorithm for border variant search is shown in the Figure' 6.1,8. The 

complexity of this algorithm is O(nlog2n). 
, ' 

An example of the actual border variant search is shown in Figure 6.19. In this example, 

there are three resources, each having different variations of parameters, as was shown in . , , 

Figure 6.17. The border variant that is being searched for is based on the execution time 
" ' "" " , 

• i,." ; ~::,. ' , • 

parameter with a limit of maximum 50 clock cycles. As described in the algorithm, a criterion 

was calculated for all of these parameters and it was found that R3 has the highest criterion and 
, ' , 

R 1 has the lowest, hence the hierarchical arrangement in Figure 6.19. Figure 6.19 shows the 
, : " f ~', ';,;' .. ' • ~ ~~,,. " • 

graphical representation of the the full ACG tree if it would be generated and then exhaustively 

152 



::n 
{)"Q 
!:: 
ca 
9" ..-
~ 
g-
eL 
('l) .., 
53 ..... (j 

UI 

[ W 

Pl ::; .... 
til 
G 

8 ::r 
> 

ciQ 
0 o. 
~ 

Initialize aU of the resources 
Obtain all afthe restriction parameters 

Select highest priority restriction parameter end locally 
arrange all of the resource variants in ascending order. 

Calculate criterion value for each 
resource and each parameter. 

Select highest priority parameter 
Select resource with highest criterion value • 

Select middle branch between allowed 
branches of the resource 

Save branch value to temporary result 

Select next resource with highest priority parameter 
and select left most branch in case of search for right 
most variant, or select right most branch in case of 

search for left most lIariant. 
Add branch value to the temporary result. 

NO 

YES 

Fix branch of the resource 
highest in hierarchy that 

was not fixed yet. 

Modify low branch limit to 
previous middle branch for 

resource highest in the 
hierarchy that was no fixed yet. 

YES 

NO 

Go back to the previous pa th 
andfix branch of the 

resource highest in hierarchy 
that was not fixed yet. 

Modify high branch limit to 
previous middle branch for 

resource highest in the 
hierarchy that was no fixed yet. 

Boardervariant found. 

Start over again from the 
resource with non·fixed level 

Record branch path of the boarder. 

,/ 



Figure 6.19: Example of ACG with Selected border Variant of VHC 

# Result Path Fixed < .. >,. 

1 44et R3,3-R2.1 ... Rl,1 - > 

2 S4<:c R3,4-R2.1-Rl,l . < 

3 47cc R3,3-R2,2 .... Rl,l R3,3 > 

4 46cc R3,3-R2.3 .... Rl,l ~3.3;R2,3 > 

5 SOee R3,3-R2.3 .... Rl.2 ~3,3;R2,3 -

Figure 6.20: VHC Variants Considered by the Search Algorithm on ACG 

searched. In this example, bold edges show the search paths that algorithm took, and double 

bold edges show the path of border variant 18. As can be seen, only 5 attempts out of 24 
e , 

variants were needed to find the actual border variant was found, and a n'ew rule of «) R3,3 -+ 

, Rz 3 -+ Rl 2 was added to the list of rules. ' This ~le indicates 'that path of branches to the 
': ' ~. -. 

, ' 

right of this branch are going invalid for variant selection. The usage of these rules will be 
, ' 

demonstrated later in the chapter. 
. , , 
\ 

, , 

Figure 6.20 shows the sequence of algorithms operation and the branches that were se· 
: : .. ; : < 

leeted before reaching the border variant. As it can be seen from the Figure 6.20, since the 
, 

. border variant in question was to be maximized or, in other words. to be located as right as 

possible, all of the non· fixed branches froIll the left were initially }n ~he resource. Such case 

154 



Table 6.1: Effectiveness of Proposed Search Algorithm in Comparison to Exhaustive Search 

" 
' Total 

80undary 
,', Operations 

Total # Resources Possible Additions Comparisons for 
Variants 

Searches " sele«ions 
Operatiors 

1 a.OE+OO 4 4 8 '3 15 

2 OAE+Ol 7 I 14 14 4 32 
3 UE+02 10 I 30 20 5 55 
4 4.1E+03 13 52 26 6 84 
5 3.3E+04 16 SO 32 1 119 
6 2.6E+05 19 114 38 8 160 
1 2.1E+06 22 154 44 9 207 
8 1.7E+07 25 200 SO 10 260 
9 1.3E+08 28 252 56 11 319 
10 l.1E+OO 31 310 62 U 384 

11 8.6E+09 34 374 68 13 455 
12 6.9E+10 37 444 74 14 532 
13 S.5E+ll 40 520 SO 15 615 
14 4.4E+12 43 602 86 16 704 
15 3.SE+13 46 690 92 17 799 
16 2.8E+14 49 784 sa 18 900 

is shown in #1 and #2 searches. where branches of resource R3 were searched. However. in 

the search #3 the resource branch R3,3 became fixed. and R2 was the resource in question. 

hence only most left variant Rl was selected. Figure 6.20 shows that only 5 variants had to be 

calculated in contrast to 24 calculations of full ACG in Figure 6.19. As mentioned before, the 

effectiveness of this technique dramatically increases as the number of resources increases. 

Table 6.1 shows the number of calculations needed for the exhaustive ACG tree generation 

compared of the boundary search algorithm. In this table, resources increase linearly from 1 

to 16 while every resource has 8 implementations. 

As can be seen, even for 16 resources with 8 implementations each. the total number of 

variants grows to 2 x 1014• By implementing the boundary search only 49 searches are needed 

to find the boundary variant, and create a restriction rule. When all of the border variants were 

identified, as shown in Figures A.2 and A.4. of the Appendix set of border variants "rules" 

were recorded, to be used in the next step of VHC set generation: 

155 



6.5.1 Semantic Filtration of Architectural Variants for VHC generation 

Semantic filtering is based on logic comparison of the generated variants to the border variants 

"rules" that were detennined for each parameters constraint. Semantic filtering uses border 

variant path, as well as a range (e.g. (» ,(::;» to identify if the branch path of variant in ques-

tion violates the "rules". It is also important to note that in many cases semantic filtering allows 

to identify if a variant passes or violates the rule without traversing through the whole path. 

Semantic filtering is performed in the sequence of the rule, where (--t) indicates sequence 

order of the resource variants. For example, if rule is given by { (::;) R2,2 -+ R3,3 --t R3,3}, the 

first branch that to be compared is R2,2 and variants under test have to be less or equal to the 

branch path, hence the (::;) sign. In a case where a variant under test contains a branch that 

exceeds R2,2 (e.g. R2,3), then the rest of branches are not checked and the variant is discarded. 

If a variant under test contains a branch that is less than RZ,2 (e.g. R2,t). then the variant is 

automatically excepted without checking the rest of the branches. In the scenario where a 

branch is equal to the one in the rule (e.g. R2,2) then next branch in sequence is tested with the 

same method, which in the above example is R3,3.· 

To obtain variations of VHCs corresponding to the same MO, one of the restriction pa-

rameters has to be modified and the border variant has to be found again for this parameter. 

Following this procedure, a semantic test has to be performed, as described above. If none 

of the "rules" are violated. then this variant is accepted and added to VHC list. Suppose, that 

the rules obtained from example in the previous section are: 1 : {(2:) R2,2 -+ R3,Z -+ Rl,l}, 

2: {(» R3,2 -+ Rt,l -+ RZ,3}, 3 : {( <) R3,3 -+ -??2,3 -t RI,2}, with the initial restrictions of . . 

225 CLBs, 40mW. and 50 c.c. The operation of Y'HC selection procedure can now be illus­

trated. If we want to find weather border variant (2) for 40mW power consumption is valid 

for all of the parameters we have to check it with both remaining "rules'" Checking with the 

first rule reveals that since variant (2) has a branch of RZ,3. it is automatically excepted by rule 

#1 because it is larger than R2,Z' No further comparisons haveto be made. since if the top 

156 



Table 6.2: Test for "rule" # 1 

I Condition I Branch under test I Result I 

RZ,2 ;:::: R2,3 Pass 

R3,22: - -
RI,1 ;:::: - -

Table 6.3: Test for "rule" #3 

I Condition I Branch under test I Result I 

R3,3 ::; R32 Pass 
R2,3 ::; - -
RI,Z < - -

of the hierarchy is satisfied, then the rest of the branches are satisfied. When checking with 

rule #3, conditions are also satisfied, since R3,2 is smaller than R3,3. Hence, the variant corre-. 

sponding to the branch R3,Z -+ RI,I -+ RZ,3 is accepted to the VHC list. The last step before 

adding the VHC to the set of chosen VHCs is to calculate the rest of perfonnance parameters 

that correspond to the selected branch. In branch scenario these parameters are 29c.c. and 

125CLB. 

To illustrate the failure effect we can try to check if the border variant #1 can be used as 

. one of the VHCs in the WC set. Following the procedure shown in the above tables, we test 

variant #1 under "rule" 2 : {(;::::) R3,2 -+ RI,t -+ RZ,3} and the result is a failure of the variant 

. at the last branch test, and the in exclusion of this variant from the final VHC set. At this point, 

the restriction for a parameter is modified by a predefined step, and the procedure is repeated. 

In turn, this allows to obtain a broad range of VHCs that have variations by each of the re­

striction parameters .. The result is a set of VHC variants for a particular MO where for each 

Table 6.4: Test for "rule" #2 

I Condition I Branch under test I Result 

R3,Z ::; R3Z Check Next , 
RI,1 ::; RI,1 Check Next 
RZ,3 ::; RZ2 Fail , 

157 



parameter there is a maximum and minimum value, as well as intermediate variants. Depend-

ing on the scenario this allows to have optimization by any of performance parameters. This 

is especially important in a temporal partitioning architecture where area/power/processing 

speed is restricted and strongly depends on a reconfigurable device used in a target system. 

When the border variants are determined for all parametric constrains, then the design 

space can be reduced by exclusion of variants restricted by all parametric constraints. The 

result is the Pareto-optimal set of variants of architectures that can be used for VHC selection, 

which is described in the next chapter. 

At the same time, resulting Pareto-point set cannot be pruned to the point of being empty. 

If all leaves are removed, the system would not have any variants to choose from. If such case 

does occur user will have to either: 

1. Select a larger device, therefore, increasing amount of logic per device. 

5· • 

2. Ease the design parametric constrains. 

Easing constrains though is a much more problematic solution since it is usually linked to 

modification of other sub-systems or, in many cases, is not possible at all due to the specifi-

cation parameters. This is especially true if the overall system is real-time critical and does 

not have an option of longer delays, or excessive power use. If Pareto-set with many variants 

is requested, then the most optimal, with highest value of performance parameter, should be 

selected. Selection should be made based on the performance parameter with highest priority . 

. Best performance does not necessarily constitute the fastest operation. Best performance can 

also be the lowest power consumption or the smallest area requirement. 

Similarly, this approach is applicable in power sensitive systems ,where power restriction 

might change and a different VHC would be needed. These generated VHCs associated to a 
,~, 1 

particular MO are used in SSP generation in later chapters. , . 

'158 



6.6 Sumnlary 

The focus of this chapter was on description of novel methodology developed for creating 

macro-operator (MO), and subsequent generation of Virtual Hardware Components that cor­

respond to the given MO. This chapter presented a methodology of resource binding and 

described how binding effects the overall scheduling of resources. Methodology of VHC syn­

thesis was presented, together with the procedures of VHC variant generation. It was shown 

how the generated VHCs have to be arranged in order to provide an efficient method of select­

ing the optimal variant. Methodology for creation, arrangement and pruning of Architecture 

Configuration Graph (ACG) was described in detail. For that pmpose the non-exhaustive bor­

der variant selection algorithm was developed and implemented. The extension of this the 

methodology for selection of an optimal variant of VHC in multi-parametric design space is 

presented. It was shown that the proposed methodology provides the means of finding an op­

timal variant of VHC for a particular MO by evaluating minimal variants and, therefore, can 

be perfonned in minimum time. Methodologies described in this chapter were published in 

journal [51] and conference publications [57], [58]. 

159 

/ 



160 



Chapter 7 

Methodology of Automated Assenlbly of 

Optimal VHCs into SSPs 

7.1 Introduction 

As described in the Chapter 6, an application task is presented in a fonn of SG which is assem­

bled from MOs. MOs, in tum, are assembled from elementary operators (E08). Each MO is 

associated with the a set ofVHCs, which can process data according to the MO algorithm with 

different perfonnance parameters. This chapter presents a novel methodology of task segmen~ 

tation, and selection of optimal VHCs for further synthesis of Segment Specific Processors 

(SSP). It covers all of the steps required of creation of temporally processed application, and 

give some examples for the proposed approach. The task segmentation methodology includes: 

. automated level dependency arrangement, scheduling,· and resource binding. The implemen~ 

tation of binding based on multi-parametric restrictions is also covered. 

This chapter considers the works that have been tackling the issue of algorithm segmenta~ 

tion, as well as, the advantages and pitfalls of those approaches. In addition, it compares the 

proposed methodologies to the existing ones. The proposed approach was implemented in a 

fonn of CAD software. Resulting segmented algorithms were executed on the reconfigurable 

161 

./ 



hardware platfonn that was developed in Embedded Reconfigurable Systems Lab (ERSL) at 

Ryerson University. Hardware and software implementations are described in detail in the 

next two chapters. 

7.2 Methodology of Segmentation of an Application Se-

quencing Graph 

In order to take advantage of the temporal partitioning approach, an application task has to 

be processed in segments on reconfigurable platfonn. As shown in Chapter 5, for each task 

segment an associated Segment Specific Processor (SSP) should be synthesized. Creation of 

the optimized set of SSPs requires a proper SG segmentation methodology. 

As was described in Chapter 6, MOs are created along with the sets of corresponding 

VHCs. With these MOs an application task algorithm can be fonned, as shown in the Figure 

7.2. The concept of temporal partitioning assumes that the outcome is a set of configuration 

bitstreams corresponding to the synthesized SSPs. These bitstreams are loaded in sequence 

one after the other onto the target FPGA based on a schedule. The actual combination of the 

MOs into segments requires an optimal (cost-effective) segmentation of the application's SG 
. . 

to be carried out automatically. 

The optimization of resources has to include the optimization of memory transfers between 

the segments. For every segment the configuration system will have a time overhead of saving 

the temporal data to an external SRAM memory. The temporal data readback operation has to 

be perfonned at the point of the start-up of the next SSP core. If a large amount of temporal 

data needs to be transferred between segments, the time overhead increases and impacts the 

overall perfonnance. As was explained inChapte.r~, 'Icon/ig consists of Tread, Twrite. and 

1'con/igbistream' Increasing the Tread and Twrite parameters increases the Tconjig, and as a result, 

the CPR of this approach is_ reduced. Therefore, one of goals is decrease of the. temporal 

.162 



(a) Processing Latency (b) Power Consumption (c) Area Requirements 

Figure 7.1: Correspondence Between MOland associated VHCs 

data transfer overhead. For that, the methodology of actual algorithm segmentation should be 

discussed first. 

7.2.1 Division of an Algorithm into Segments 

The most common approach for division of algorithms into segments is based on area re­

striction [76, 88, 29. 13J. The novelty of the proposed approach is consideration of mUltiple 

parametric constraints (performance parameters). TI?s is much more realistic and practical 

approach. However, the implementation of this approach is much more complicated. 

Every macro operator (MO) has several associated VHCs. Each of these VHCs have 

various performance parameters to satisfy different parametric constraints. VHCs are added 

one after another into the SSP as sembi y until one of the restrictions for the segment is violated. 

Different combination of VHCs can be selected for SSP in order to fit into an FPGA device. If 

none of the VHCs associated with an MO satisfy the restriction, the MO is moved to the next 

segment and/or the user is notified that this MO cannot be inserted into the current segment. 

In a scenario where all VHCs associated with MO are larger than given FPGA. a larger FPGA 

device has to be used for implementation of this SSP. . 

Since every MO is associated with several VHCs, selection of an appropriate VHC for SSP 

based on several parameters should be considered. Such parameters could be: timing, latency, 

power consumption, as shown in Figure 7.1. 

163 



Figure 7.l(A) shows four versions of VHC corresponding to a single MO, arranged by 

delay times. The delay times vary from 2 to 20 clock cycles. Figure 7.1 (B)(C) similarly show, 

power consumption, and areallogic parameters associated with VHCs. Other parameters can 

be considered as well, if necessary. Multi-parametric constraints can be applied in optimal 

SSP selection similarly to the optimal VHC generation [54]. 

7.2.2 Algorithm Segmentation, Binding, and SSP Generation 

Synthesis of a set of SSP cores and their schedules involves several steps: 

1. Assignment of dependency levels for all of the MOs in the algorithm. 

2. Creation of sub-Architecture Configuration Graphs (ACGs) by selecting MOs. 

3. Selection of the optimal VHC variants from sub-ACGs and assembly of SSP sets, based 

on given constraints. 

4. Selection of a particular SSP set for final bitstream generation based on the parameter 
. . 

priority. 

The above steps are discussed in the following subsections and are implemented in the CAD 

tool software. CAD tool is described in Section 8.2 of Chapter 8. This section will concentrate 

on methodology of algorithm segmentation and SSP generation. 

·7.2.2.1 Automated Dependency Level Assignment AlgorithmlLevel Division 

First operation'that is required for synthesis of the optimal SSP set is a proper level division 

based on ASAP scheduling algorithm. 

Definition: Dependency Level Division is the MO execution arrangement where MOs of 

the same level have exactly the same start time. 

,164 



Level 0 

Levell 

Level 2 

Level 3 

Level 4 

levelS 

Level 6 

Figure 7.2: Level Dependency Division 

Level division has to be done by means of precedence-relation. In Figure 7.2 the segments 

MOl and M02 are not interdependent and thus can be placed on the same level. 

In a case of incorrect level assignment a dependence would be formed and an MO would 

be waiting for the input from the previous MO. This would create a deadlock. Such example 

is shown by M09, where it receives input from M07 and M08. If placed on the same level 

M09 would be waiting for the input from M08, and M07. Therefore, M09 would not be 

able to proceed with processing until result is received. On the other hand, if dependent MOs 

are included into the same segment, the overall memory transaction overhead (read and write) 

could be reduced. For purpose of providing balanced level assignment the special algorithm 

was proposed and developed. . , J! ' 

7.2.3 ASAP Level Assignment 

In AS.AP level assignment [79] MOs are assigned a level, as soon as all of the predecessor 
\"' . . 

parent nodes are processed. In this section the assignment of levels to MOs is discussed. 

165 



The first step in level division algorithm is identification of primary inputs to the system. 

The goal is to identify the MOs of the task processing algorithm that are first to acquire the 

inputs to the system. The MOs that have only primary inputs are called primary MOs. Since 

primary MOs have no inputs from any other MOs they are dependent only on the primary 

inputs. Therefore, they are assigned to the first level. To schedule the rest of MOs similar 

approach be used, as is shown in Figure 7.3(B) where output of the primary MOs is an input 

to the child MO. However, as it can be seen in Figure 7.3(C) being an immediate descendant 

of a primary or parent MOs does not guarantee being on the consecutive level from the parent 

MO. This is due to the fact that since an MO can have multiple inputs from different parent 

MOs, it might have a dependency on an MO from lower level in the hierarchy. To archive 

a proper level dependency arrangement an extra step has to be added to the automatic level 

arrangement algorithm. This step involves marking the output edges with the same level as the 

source MO. This way by checking the incoming edges it is possible to immediately identify 

the levels of the parent MO. If one of the incoming edges is unmarked it indicates that MO 

in question is at least two levels lower than any of the incoming edges. Haying at least one 

unassigned incoming edge gives uncertainty of which level has to be assigned. At this point 

level assignment for this particular MO has to be postponed until all of the incoming edges 

are assigned a level. 

Non-primary MOs are assigned levels based on the maximum level of the incoming edges 

plus one, considering that all of the incoming edges are marked with some, level. This guar­

antees that child node will always be at least one level lower than any of its parent nodes. By 

traversing through the SG this procedure would eventually mark all of the nodes and edges 

with their appropriate dependency levels. The algorithm in action is shown in Figure 7.3, 

where progression of the level assignment is illustrated. 
)1 '-l /\'. 

In Figure 7.3(A) that first primary inputs are assigned level 0 and in Figure 1:3(B) nodes 
, " . ~. 

and their output edges are assigned the numb~r of maximum input edge level plus one. Figure 

166 



2 2 

(a) (h) (C ) (d) 

J-igure 7.3: Il lustration of Leve l Assignment Algori th m Operat il n 

7 .]((' ) shows the dl)t ted circ le around the node that docs not have all of its input edges marked 

with a level. hence. it is not assigned at this point. As it is seen. red coi llured parent node is 

not assigned a part icular level and that is why it is unccnain whic h level should be a.<.,signed 

to the circ led node . In the last step all of the nodes and edges arc assigned (0 the appropriate 

leve ls as shown in Figure 7.] (D). 

Level assignment algorit hm's Ilow chart is shown in h gure 7.4. 

The algnrit hm can be sunll nari l.ed in 4 steps : 

I . G lohal inputs/edges arc assigned level O. Lc\"el(Ein(i)) () 

2 . MOs are assigned the level cqual to maximum level value of all the incnmi ng edges plus 

one. L(, I'el(Nodl'(i) MAX(Le l'el (Ein(i)) f I 

3. Edges outgoing frnm an MO Illldc arc assigned the Ic" ' I number of the node 

Le l'e/ (Eolll (i) ) Le l'e/(MO(i) ) 

4. Any or the wrmi nating nodcs arc l1Ia rked accord ingly, so they will nut be cons idered in 

the nex t iteration of the algorith m. 

At the complet ion or the algori thm based on the Ilow shown in the Figure 7.4 all of the 

MOs and edges are ass igned a particu lar Ievcl. Thl' ()verall compJcxity of th is algorithm is 

O(1l10J.: l ll ) . 

167 



Identify primary nodes, that haw 
inputs only from primary inputs 

and assign lj!WJ Q 

From the pr~vlously numbered 
edgeuelect all nodes that do not 
have! eny unnumbered Incoming 
~d 4! end us! n level number 

Notify user and 
walt until corrected 

YES 

Figure 7.4: MO Level Assignment Algorithm How Chart 

The second step of VHC selection and grouping of VHCs is carried out after level assign-. 
ment 

7.3 VHC Selection and Grouping Methodology 

In this section a methodology of decision making in task sequencing graph segmentation is 

discussed. Numerous cases are considered when performing segmentation of a sequencing 

graph of connected MOs and selection of appropriate VHCs. 

Each particular MO w~ assigned with a level dependency number (e.g. Figure 7.5 (B» 

and re-arranged into a level dependent SO (e.g. Figure 7.5 (C». At this point all of the MOs are 

arranged so that parent MOs are located on the level above the children MOs. The Selection 

process starts from the top level (e.g. Levell) where MOs receive only primary inputs from 

the system, as shown in Figure 7.5 (C). Segmentation algorithm begins by adding MOs on the 

168 



o 
o 0 

III • 

( tl) Markell SCI 

, 
\ 

12 

III 
T 

(C) I . L~\'e l Arrangcct S(~ 

rigure 7. '5: Ta~k SCI Representation by Levd Arranged MOs 

L..wI 1 

I.e • 

!lrst level of the arranged graph to a sub-ACe; tree ror the purpose of optimal VIIC select ion. 

a~ ~hown in Figun.: 7.0 . Similar to the approa 'h dc~c ribcd in Chapter 6 it i ~ pos~ib lc to find 

an optimal ~elect i \ln of VIIC variant /"or the as~ ()ciat ed MO~ by forming a sub-ACe; s lection 

trce. Each MO is a. ... sociatcd with the set or possible VIICs. This set l) f Vile.} is rormed 

according 10 spccillc perf ormance paramelers. as shown in Chapter n. 

By P 'rfnrmiJll! simple border valiant scarch. lhe limil s or accept able VII('s arc ident ifi ed. 

based on the reslriction parameters of Ihe sy~wm. For example . a~ shown in Figure 7.0. a 

limi l of 2 ()( 'I . B~ wa~ imposed by the sys1Cm spec ilicat ilHl. and th ' rdnr '. Ihe hranc hes exceed-

ing that limil arc mark 'd wit h a doll ed line. Subseyuenl MOi 1 is added to every branch or 

Ihe parent MOi . where every branch corres ponds to the availahle ve rsions l)(' Viles for that 

MO i 1. Branch carries the in format ion of pcrforlllance parameters which arc used for calcula-

tion Mthe rest riction parameter violation . JrtllL' re ar ' VIIC~ Ihat satisfy restric tion pa ramet er~ 

an additional MO can hc added 10 the suh-ACCI In:e. Upon addilinn or a new M(\ 1 which 

was sdectcd from the same hierarchy lew l nf the level arranged graph. a re-calculation or the 

l ot) 



Figure 7.6: Sub-ACG Tree with MOl and M02 Added 

Figure 7.7: Sub-ACG Tree with Excluded Restriction Violated Branches 

criterion K has to be performed. Calculation of criterion was described earlier in the Chapter 

6. In order to avoid local extrema MOs have to be arranged, so that MOs with the higher 

criterion would be on a higher hierarchical level in a sub-ACG tree. Branches that did not 

meet the restriction parameters in the previous step are cut out (pruned) from the expansion, 

as shown in Figure 7.7. 

By excluding the above VIlCs the sub-ACG tree is reduced to only a few brunches, and 

this speeds up the consecutive sub-ACG border searches. Following the addition of a new 

MOi+2 a new border search is performed and the sub-ACG tree is reduced further. If at least 

one combination of VIIC variants was identified, then a new MOi+3 may be selected, and the 

procedure of re-creation and limitation of sub-ACG tree as described above is repeated. border 

170 



variant search algorithm is the same as the one described in the Chapter 6, Section 6.5. This 

is due to the fact that instead of EOs (as in VHC selection) there are VHCs that form the SSP. 

In a case where none of VHC combination variants satisfy the restriction parameters, con­

figuration of sub-ACG tree is rolled back to the previous successful arrangement. When a 

sub-ACG tree is completed and a set of VHC variant configurations is created, these config­

urations form the SSP set [54]. These SSPs can now be synthesized into SSP configuration 

bitstreams with associated parameters. Such example is shown in Figure 7.7, where combi­

nations of VIlCs satisfy the restriction parameters and span variants #1 to #8. The right most 

variant has smallest latency and the left most one occupies the least amount of spacellogic. 

So far, the selection of MOs to be added to a sub-ACG was done without mention of the 

methodology behind it. The following section presents the methodology of MO selection in 

the process of creation of SSPs. 

7.4 Methodology of "Next" MO Selection for SSP 

Creating sets of SSPS by the method outlined in the previous section is done in several steps. 

When adding a consecutive MO to the sub-ACG certain selection rules have to be followed to 

achieve optimal results. First and the most straight forward way of adding MOs is to select 

them from the same dependency level. The simplest solution is to group all of the MOs from 

same level to create a set of n SSPs corresponding to n levels. However, such approach is not 

possible because either all MOs from same level do not satisfy all the restrictions or a lot of 

logic resources are be un-utilized. Below, with the help of several scenarios, the methodology 

of MO selection is described. 

In Case I, depicted in Figure 7.8, selection starts from addition to sub-tree of all of the 

MO~ on the same dependency level. Priority, however, is given to the MOs that have dependent 

nodes on the next level. This is done to minimize the probability of dependent nodes being 

moved to the next SSP, which in tum would stall the processing of the dependent nodes. From 

171 



\ 
12 Lftel 1 

1\ 1 
(a) Initial Sd~c ti () 11 (b) Fi llal SSP Sl'k ctiol1 

rigur~ 7.R: Cas~ I: Prinrity of Sc\ectinn of Nodes wit h Dependencies on the Next Levd 

---, '~" I \ 
I I 

; I 
I 

, 

Figure 7.9: Case 2: Pafl ial Levd Jnclusion in a SSP 

the example 01" the algorith m in Figure 7.5 such nod's are: 2.3.4. 5.6. 7 .~ . 0. 10.14.15. 16. 

and 17. 

If not all or the MOs from the same level li t int o the SS~. :-.0 those that do not arc placed 

in the consecut ive SSPi I . For the Case I. as wel l as all of the other cases . the totallugic area 

is equal to the sum uf logic areas llccup ied by each vIle in the SSP:... 

A 

SS~""" L VHC}ar,''' : (VVHCj 3SS~ ) 
} I 

(7.1 ) 

(7 .2) 

Process ing latency in this case is ca lculated hy adding up the maximum latcncit.:s from all 

VHCs p r~sen t in SSPi . Since in Case 1 none of the VI ICs depend nn each llther. the process ing 

is don~ in parallel, and the lat ency is not aggregat ed. Time re4ui r~d for proces:-,i ng of the input 

depends on the vIle that r 'quires the longest propagation dt.:l ay. 

In Case 2 ucmonstrate:-. partial leve l inclusilln or VI I(,s. It is similar tll the previou!'> case 

with the exception or a poss ihility of n::- iteralilln of sub-i\C'Gs creatilln. hgur~ 7.9 shows a 

situatillI1 where there is only partial inclu:-.ion of t h~ lL:vc\ in one SS P. 

172 



, 

'f-j' I 
\ , ... , - -- -

I~ - ~ 

\ i,l 14 \ .. 1 
~l 

... 
I , 

I 5 I 

"-- --- -,' 

( a ) (b) 

Figure 7.1 0: SSP Comp()~iti()n fro m VllCs located on Cnn~elj uc nt Le vcl ~ of SCI : a) wi thout 
Dependency in Case 3: h) with Full Dependency in Ca~c 4. 

The re- iterat illn can potentially ident ify a di fferent combi nat ion of MOs that could provide 

morc opt imal result. 11owever. a t hre~h() l d or reiterat ions has to be set. in order to avoid 

exhau~t ive ~earche~ and slnw ly down the overall segmcntation process . 

When MO~ from nne depe ndency level have heen exhau~ted. and none or the restrict ions 

have hcen reached. Ca~es 2. 3 or 4 are assumed. a~ shown in Figures 7.1 () (A) and 7. I 0 (B). 

First choice or select ion fro m t he co n~ecut ivc dependency level Li I is a select ion of MOs 

that arc not depended on the MO from Li • assuming that these MOs are included in the samc 

SSP as ~h()wn in Ca~e 3. Same as for Case 1. the latency i ~ calculated by taking the maximum 

lat ency out of alll)f the MOs latcnL' ie~ in that SSP inst 'ad or summation of lat encies in ca.'>e of 

pre~encc of depende ncies. Case J. howeve r. dn not occur as freq uently as Case 4 where the re 

is depl' ndency on at Iea.'> t onc of the MOs from the next leve l. For t his case processing latency 

has to be ca lculatl'd hy summi ng the latencil' !'> of dcp 'nde nt MOs: 

(7.3 ) 

when~ R; and Rj are intn -depended MOs 10cLltl'd on the consecutive kve ls. If there aI" mul­

tiple dependencies . as ~ hown by Ca.T 4. the ma imum latl'ncy of all of these dependencies 

should be considcn.:d in the latency calcu lation. If the tim ing rcstr i ·tinn is sat isfied for Case 

4 and log ic/an'a is still available. then annthl' r MO can be added to the sub-ACG tree. This 

MO could also be frnIll the L; I level. that is not r 'I ated In the MOs in Case 4. as shown in 

173 



'lA' -~ ---- '5:.--

f __ ~~~6_~~ 
6 I 

--iJ 
(cl ('a ~L' 7 

hgun.: 7.11 : SSP Compo:-. ition i"rom VllCs locat ed on Consequent Levels or SC; wit h partial 
dependency : Case 5, Case 6. and Case 7 

Case .'i , depicted in Figure 7. 11 (A ). This is also very simi lar tn Ca:-.e) . whe re M02 -Node#14 

nn level Li provides inpUl lo MO., -Nmk # 15 and MO I-Node#lfi on Ie el L/ I. At the same 

time, MO I-Node#1 3 is independent from all other MOs in this particular SSP and should he 

considered separately for timing const raint. Therd ore, ti ming calculation i"or this scenarlo is: 

(7.4) 

where Ro is a resource on level Li ur Li 1 which is not relat ed tn Ri and Rj . An expanded 

versioll oi" Case 6 is where eycn mure MOs an: added i"rom Li [. In Case 7 new MO cre-

Node#4H M03 -Nodc#7. At the same tin e, Ihese pai rs or MOs arc dependent Oil each nther. 

Si milar to the Case 6, the time res tricti on i:-. compan..:d to the maximum lime of two sets o/" 

dependencies: 

7o S1'" max {VDc pel/del/t MO i } (7 .5 ) 

At last, a case where design should exclude specilic area of t he device from heing used for 

faul t tolerance applications . is considered . At this point eve ry level 01" dependency graph is 

populated with an MO that contains part icular an.:a constraint. In the process 01" 'iSP creation 

every SSP is fi rst populated with a '·dummy" MO node. The rest of MOs arc added aner to 

174 



hgure 7. 12: Case R: Area Avoidance MO 

Figure 7. I 3: MO Deadlock Example 

create an SSP, as shown in Case 8. "Dummy" MOs in every SSP contain a parameter which 

specifics the area that MO llccupies, thus preventi ng other MOs from being placed in the fault 

section of the reconflgurablc device . 

7.4.1 Precaution Regarding Deadlock in MO Segmentation 

An addit ional rule check has to be performed on con:-.ecutivc segments which should be cho:-.en 

in a way thai they will not have bidirectio nal dependency nn each othe r. If two segments are 

interdependent it creates a deadlock :-. ituatinn . Therct'ore. a segme nt :-.hl)u ld contain Mo. from 

salllc or cnnsel'utive leve ls. Ol herwi:-.c. the segment:-. will be wait ing for inputs from other 

:-.egments inddl nit ·Iy. An example llf this is shown in rigurc 7.13 . 

In th i:-. example. MOJ which bclnngs to SSP; I depends on the processed data from M02 

that hellln gS to SSp;. as shown hy the red arrow. At the same timc. M05 which belongs to 

SSPi. and depends on proce:-.scd data from MOJ. :-. hown by the hlue arrow. Therc!'orc . even 

175 



Cl~ar all lists 
Inltlallz! area restrlctlon parameters 1 

Reset CUrfl.'llt INeI 

Figure 7.14: Flow Chart of the SSP set Generation Algorithm 

though the right segment is loaded first, because it depends on the input from the left segment, 

it will not be able to produce result since it is waiting for ,the input from M03.<-

7.4.2 SSP set Generation Algorithm 

From the cases described in previous section an algorithm can be formed that performs gener-

ation of SSP sets. Its full flow-chart is presented in the Figure 7.14. 

For algorithm to operate it requires a user to reset all parameters and initialize global 

area/logic constraints, as well as to specify if fault tolerance has to be built into the design. 
- . 

In addition,lor all of the MOs that are used in the algorithm there must be at least one VUC 

176 . 



implementation that can fit the target device. The algorithm it is of iterative nature and operates 

until all of the MOs are segmented and SSP sets are generated. 

Algorithm starts with initializing parameters and checking if fault tolerance is required, 

which is set by condition #2. If condition #2 is true, then·a dummy MO is added which 

avoids the specified area. Condition #3 at that time checks if there are any MOs left that were 

not attempted to be fitted into the sub-ACG graph. If condition #3 is satisfied, the algorithm 

proceeds to the actual procedure of selecting most suited MOs for sub-ACG. In the steps 7 to 

13 the actual selection is performed. If condition #3 is not satisfied, then a subsequent check 

#4 is made. It identifies if there are any MOs left on the current level that were not added 

to the sub-ACG. If there are some unused MOs remaining on the level, that means that they, 

did not satisfy constraints and moving up to the next dependency level is not allowed. At this 

point SSP set is finalized in operation #16 and sub-ACG is cleared. When all of the MOs are 

used from same level a currenClevel can be incremented by operation #5 and selecting MOs 

can be continued, provided that there are MOs remaining. 

Condition #7 identifies if the current level being explored is different from the ones that 

were added to sub-ACG previously. This condition indicates if selection proceeded to the next 

level and that there are possibilities of having dependencies between MOs in the sub-ACG 

tree. It should be avoided because latencies of dependent nodes have to ~e added together for 

timing calculation. Hence, condition #9 checks if there are MOs that can be selected that are 

not depended on the MOs that are present in the current sub-ACG tree. If there are no such 

MOs then lowest combined latency should be selected. 

At a point when MO is selected, two additional checks #12 and #13 are done to make 

sure that the MO satisfies the area restriction; and does not create a deadlock. If both of these 

conditions are satisfied, then MO is added to the sub-ACG tree and operation is repeated by . , 

proceeding to condition #3. 

177 



On every addition of the MO to an sub-ACG graph, the MO is added as a single leaf of 

the tree. Following the MO addition, each of the VHCs are expanded as new leaves of the 

sub-ACG tree. New leaves contain area parameter summation of previous VHCs, as well as, 

other parameters (e.g. time, power, etc ... ). If these parameters violate initial restrictions they 

are discarded and not expanded in the further additions of MO. In the worst possible scenario 

of this algorithm every MO would be expanded with all of its possible variants and algorithm's 

complexity would therefore be O(n2). However, due to the nature of the algorithm, sizes of 

VHCs and limited number of variants that are available for each MO the overall number of 

calculations is not exhaustive. 

Based on this algorithm a Windows application was created with a OUI interface that 

performs all of the above steps in order to create a set of SSPs and their schedules. This 

application is described in detail in the next chapter. Next section has an example to illustrate 

the operation of the algorithm. It illustrates creation of a segmented set of VHCs based on an 

initially given SO. 

7.4.3 Example of Segment Specific Processor Synthesis 

This section presents an example to show how the above algorithm creates a set of SSPs. 

Creation of a first set of SSPs is shown, as well as a the final result of algorithm segmentation 

based on the initial restriction parameters. -

In this example a processing task is used that was mentioned previously in Figure 7.S (A). 
- . 

For this particular example constraint of 20 CLBs, and, 20 clock cycles was assumed, where 
. . 

CLBs the are area of the device, and clock cycles represent maximum permitted latency. To 
t .,' :. ~ _ • 

illustrate the operation of the automatic VHC selection and SSP generation this example will . , 

traverse the algorithn:l through seyeral stages. 
. " 

The procedure for assembling VHCs into SSPs consists of the following: 

178 



1. ASAP level dependency algorithm is executed to assign an appropriate dependency level 

to each MO. 

2. MOs are added to the sub-ACG graphs with their corresponding VHCs. A set of VHCs 

that satisfies user's constraints is selected and grouped into SSPs. 

3. SSPs who's performance parameters are closest to the specified restrictions are selected 

for bitstream generation. A structure file is created with specification of the temporal 

data locations on the external SRAM memory. 

4. Bitstreams along with the structure files are composed into a scheduled temporal parti-

tioning system. 

The level dependency algorithm was described in Section 7.2.3 and the level assignment is 

shown in Figure 7.5. All MOs are assigned a dependency level, and then re-arranged to form 

a level arranged task, as was done in Section 7.2.2.1. At this point the SG is ready for the 

segmentation. The VHCs that are available for the selection need to determine first. From the 

task which is described by the Figure 7.5four different MOs can be identified. 

Table 7.1 shows the 4 MOs and associated set ofVHCs for each MO with the performance 
.' . 

parameters. These parameters are used in creating SSPs for this example. 

The first step of segmentation is to create of the sub-ACG graph. as was mentioned in 

Section 7.3. To start the creation of sub-ACG. an MO has to be selected from the SG. Based 

on the methodology described in Section 7.4, MOs are selected from the top level, proceeding 

to the consecutive levels. Also, selection priority is given to the MOs that has dep~ndent MOs 

on the next leveL From the case 1, shown in Figure 7.8, M.03-Node#2 is selected as the first 

one to be added to the ACG tree. This results in the three branches. since M03 has three 

versions of VHCs as shown in Table 7.1. The sub-ACG resulting after addition of the MO is 
, . ~ . 

shown in Figure ?.15. 

.; 179 



Table 7.1: MOs and C'nrrespond ing vile parameters 

MO i I Vile j I Logic requirement (C LHs) I Latency (clock cycles) I 
~ 

MO l VIIC' I.l 

• MO l VIIC 1.2 
MO l VIle I..' 
MO l VllC lA 

M02 VIIC2. 1 

MOl VIICl.1 
MOl VBC2.3 

M03 VIl e 3.l • M03 VIIC3.2 
M03 VHC3.3 

I 

I M0 4 1 VI IC:_+' 1 
I 

• M04 VllCu 

12/4 

22 

16 
x 
l 

X 
4 
2 

12 

10 
f) 

35 
17 

10/6 6/1l 

2 

5 
12 
20 

2 

X 
If) 

4 
f) 

12 

7 
IS 

Hgure 7.15: Sub-ACG A rter Addit ion of the First MO from the Task SG 

Next MO to be added is either M03-Node#1 or M01-Node# 12. M03-Node#1 is selected. 

since it has dependent nodes on level 3, where M02-Nodc# 12 has dependcot nodes on Icve l 6 . 

Since the criterion for both of these MOs i. the same, the t ree is simply expanded by adding 

M03 -Node#1 to every s ingle child of MO}-Node#2. The re:-.ulting sub-AC(; tree is shown 

in the Figure 7.16. As seen in the l-'igurc 7.16. several children of the resulting sub-ACG an~ 

coloured gray. The rcason for that is the violation of res triction parameters . As stated earlier 

in the chapter. violated leaves and branches arc discarded, and thus decrease the amount of 

calculation when needed to add a new MO to the sub-ACG . Note that criterion did not need 

to be compared fo r these nodes, since they belong to the same MO. Because there an.' several 

leaves that do not violate restriction parameters. sub-ACG graph can be expanded further by 

addition or another MO. The last remaining MO on the Level I is M01-Node#12. Criterion for 

both MOl and MO." is the same, thererore, the suh-ACG tree docs not have tll he re-onkred. 

IXO 



"2 

12/4 10/6 6/12 

G@L4J 1 110/61 1 16/121 

12/4 10/6 6/ 12 12/4 10/6 6/12 1214 10,6 6/12 

124/41 122/61 118/121 12i/61 120/61 116/121 118/121 116/121 112/121 

h gurc 7.16: Suh-ACG Trce ancr Addition or the M03-Node#1 from Task SG 

12/4 

12/4 10/6 6/12 12/4 

12 118/121 122/61 
812 2/16 

4/8 

2 

10/6 6/12 

1 110/61 

10/6 6/12 12/4 10/6 6/12 

12 116/121 12 118/121 12 ~16/1 2 1 12 112/121 

8n 2/16 
4/8 

an 2/16 an 2116 
4 ~/a 

I\gure 7.17: Sub-ACG Tree aft er Addit ion of the M02-Node#12 

As in the prev ioll:- :-tep. MO~ -Nodc#1 2 is added to every non-violated child and the resul ting 

in sub-ACG graph shnwn in Figure 7. 17. 

Similarly to the previoll:- case. a", with auuit ion or MO.,-Node# 1 then: tl r' :-OIl1C leaves 

thaI un not meet restriction parametcrs. These hranchcs arc removeu anu not expanucu in the 

fun her MO additions. At this point all or the MOs fmm the Lewl I are auded to the sllh-

ACG. however. there arc leaves that can hc exptlnued even !"unher. Therdore. select ion is 

moved to th' next level. Since both MO", on I.e vel 2 are equally uepcnued on MO on I.e vel 

I any of them can he picked at ranuolll. MO.~ -Nodl'#5 WtlS selected and added to all or thc 

non-violated leaves or "'llh-AC '(, tree it result s in J-"igure 7 . 1~. It is important to not e that 

IXI 



1 

12/4 
10/6 

1 112/41 

12/4 6112 
10/6 12/4 10/6 

6/12 

124/41122/61 12 118/121 122/6 11 20/61 12 i16/121 12 118/121 

2/16 
4/8 4/8 

2116 
8/2 

2/16 
418 

6/12 

6/ll 
12/4 

10/6 

12 
1
16/12

1 12112/121 
8/2 8/2 

2/16 4Jg2/16 4/8 

[i] SmJ [iJ [iJ ~ rl 

1214 10/66112 12/4 10/ 6 6/12 12/4 10/6 6/12 121"10,16 6112 

rigure 7. I~ : Sub-J\Ce; tree a ft er J\ddi tion of the MO) -Node#5 

since MO)-Nodc#:" is dependcn t on thc input from M03 -Nodc#2. the time latency parametLf 

is added for total latency calcu lation. In previous MO addit ions only the max imum value or 

all of the MOs where taken. since they were located on the same dependency level and were 

executed simultaneously. 

J\rter insel1 ion of M03 -Node#:" none of the leaves sat isfy all of the conditions which leads 

to removal of MO) -N ode#5 from the sur -J\CG graph . J\ssuming there are MOs remaining nn 

that level. an attempt should be made 1(' try to fit remaining MOs. In casc or the task from 

Figure 7.5 . it can be seen that M0 2-Node#3 is one that is remaining on the levcl 2. J\l"ter 

addition of the M02-Node#3 to the suh-J\CG graph it is found that there are two leaves that 

satisfy all of the restriction parameters . New arrangement of the suh-J\CG graph is shown in 

the ]:igure 7.19 . 

Ewn though there arc variants that can he expanded even more. in this scheme it is not 

allowed. since nunc of the unused MOs is present on the Level 2. J\l so. because there is 

at least one MO that did not fit to suh-J\Ce; tree. the selection of the next MO from the 

consecutive level is not allowed either. Theoretically. it is possihLe to inscn another MO from 

lX2 



12/4 
10/6 6/12 

112/41 [10/61 16/121 

12/~ 6/12 6/12 10/66/12 
12/11 10/6 

12/4 
10/6 

124/411 22/61 12 118/121122/61120/61 12 116/121 12 118/121 12 116/121 12 112/121 
8/2 8/2 8/1 

2{16 2/16 2/16 2/16 4/8 2/16 
8/2 11/8 8/2 4/8 4/8 4/8 

[iJ~ ~ 3 ~ [i] 3 ~ lliJ 3 ~ 3 ~ 
8/2 4/8 2/16 8/1 4/8 2/16 

4/8 2/16 

Figure 7.19: Sub-ACCi tree after Addit ion of the M02-Node#:1 

the next level. however. this create~ a large pool of variations and can lead to an exhaustive 

search . Therefore. proceeding to the next level. is not allowed until all ( f the MOs on the 

current leve l arc used up . At this point there are two SSPs that can be selected from the four 

added MOs. By trave rs ing th rough the branches or . ub-ACG tree shown in figure 7. 19 it 

can he secn that SSPI.l is composed of V HC.". 3- ·ode#2. V HC.u-Nod '#1. V HC2.2-Node# 12. 

V HC2.2 -Node#J. The resulting Area i~ 20 CLBs and Latency is 20 Cc. By the same procedure 

SSPI.2 is compo:-.ed nf VHC.u- lode#2. VHC.u -Node#I. VHC2. :,-Node# 12. VHC? 2-1 ode#3. 

with result ing Area nr 18 and Latellcy of 20. At thi:-. point sets or Vi les corresponding to MO~ 

have he 'n identifkd and selected for SSP:-. . Depending on the priorit y of the perforllla nce 

parameters. one vcr:-.ion of the SSP can he selected for the final hitstrcam generat ion. In the 

case of th is example it is the area parameter. and therefore. SSP!.? is the right most possib le 

variant. h )lluwing samc procedure of MO sdect ion based Oil the methndnlogy outlined in the 

Sect ion 7.4 the rest or the SSPs are generated. The resu lting segment at ion of the Task intn 

SS Ps is shown in the hgure 7.20 (1\). hgure 7.20 (B ) shows the SSP re-arranged MOs uf the 

Task. 

183 



P1 

P5----~" 
p,------~~~~JV 

7----..... 

• 
, 

, 18 , 

"t'" 
(a) 

L.wai 1 

I loftel 4 

lwei II 

t 

, 
:l l , 

SSP l_ 
, 

SSP4 l _ 

, 
SP7 l __ _ 

,----- I 
• 18 , 

l------t---------
(h) 

hgure 7.20 : hnal Scgml'ntcJ SCI Implementation un the Sct of SSPs 



This example showed the process of creation of SSP set using the sub-ACG tree. Since 

sub-ACG tree allows for rapid VHC selection, various SSPs can be selected based on the 

restriction parameter priority. 

7.4.4 Accounting for FPGA's Embedded Specialized Hardware and 

VHC component bitwidth 

Most of the high end FPGAs that are used in the industry (e.g. Xilinx Virtex. Altera Stratix 

families) include embedded hardware (e.g. DSP slices, embedded memory blocks). These 

hardware blocks greatly improve utilization of the FPGA resources and allow for much more 

cost effective design. The CAD software can also benefit the design by utilizing embedded 

specialized hardware resources (e.g. DSP blocks, hardware multipliers). If a target device is 

specified prior to the implementation of an SG, then CAD software can estimate the amount 

of resources that can be mapped to the embedded hardware during place and route procedure. 

This would allow to utilize more of the FPGA resources in much more cost-efficient manner. 

Another aspect of the SG segmentation that comes up is the datapath bitwidth of the al: 

gorithmltask and how it translates from the description in terms of MOs to implementation in 

VHCs. In any datapath of the algorithm each connection between the MOs has a particular 

bitwidth depending on the application. In the example shown in previous section the over­

all operation of the algorithm was demonstrated and avoided the use of embedded hardware. 

However, in the case of the VHC selection this aspect is considered. Following the same selec­

tion algorithm VHCs that do not satisfy the datapath width requirement are pruned and VHC 

variant search list is reduced. The specification of the datap,,:th width is done by the parameter 

specification of the MO, similarly how the connectivity of the MO is specified. In turn, when 

VHCs are being generated one of the parameters which is used for generation of the VHCs is 

datapath bitwidth. 

185 



7.5 Summary 

This chapter covers the proposed novel methodology for synthesis of a set of Segment Spe­

cific Processor (SSPs) optimized in multi-parametric design space for a given task. The task 

segmentation procedure is discussed in detail, as well as the actual SSP synthesis and opti­

mization process. This process is described with all major steps which included identification 

of dependencies between macro-operators in the task algorithm, associated segmentation, and 

selection of near optimal set of VHCs for each segment specific processor. Depending on the 

parametric constraints, segmentation may vary resulting in different SSP compositions. This 

chapter also presented the algorithm for creating SSPs that was implemented in GUI appli­

cation described in Chapter 8. For illustration of the proposed methodology a step by step 

example of a task segmentation was shown with full task segmentation arrangement which 

resulted in 8 SSPs. The next chapter will focus on the architecture design and implementation 

of the software, hardware, and firmware components of the temporal partitioning mechanism. 

': ~.: I ' 



Chapter 8 

Implementation of the methodology of 

SSP synthesis and execution 

8.1 Introduction 

The previous chapters described various methodologies for creation of the MOs, VHCs, and 

SSPs. The purpose of this thesis was not only to propose methodologies and architectures. but 

also to implement and test all of the described methodologies and architectures in a complete 

RCS which incorporates TPM. Implementation encapsulates several aspects including soft­

ware, hardware, and firmware development. Implementation of CAD software is described 
--

in the next section, followed by the system implementation of the proposed architecture, and 

concluded with proposed reconfigurable device on-chip architectures. Therefore, the imple­

mentation part of thesis covers all levels of design ofRCS with TPM from the top level (CAD) 

to the level of system and on-chip architectures . 

. 187 



8.2 Implementation of SSP Synthesis and Optimization 

Methodologies in the CAD System 

As mentioned in the introduction, one of the aspects of the research was to design the CAD 

software that would implement the methodologies of VHC and SSP generation. Since the 

methodology of task segmentation requires many computational steps, as it was described 

in Chapters 6 and 7, operation of task segmentation and SSP generation cannot be done ef­

ficiently by the user alone. A CAD support is definitely needed for the user. Therefo~e, a 

Segment Partitioning Creator (SPC) CAD software was created in Visual Studio.NET envi­

ronment. It provides the user with the GUr for creation (programming) of the task algorithm in 

a fDIm of Sequencing Graph (SG). User is required to create an SG of the task from an existing 

set of MOs and interconnect them according to dependencies in task operation. Specification 

of system performance parameters such as: width, timing restrictions and other constraints 

should be specified by the user. CAD tool is then performs the proper selection of component 

instances that were chosen for processing the algorithm. Selection is performed based on the 
. . 

set of mUlti-parametric restrictions that were specified by the user. 

The CAD tool automatically conducts level dependency division of the SG, based on the 

algorithm described in Chapter 7. After completion of the level division the CAD tool per-

forms segmentation of the architecture by the algorithm. CAD tool allows optimization of one 

of the most critical parameters (e.g. area, latency, cycle time and power) as specified by the 

user, while keeping the other parameters within the restriction range. It can also perform bus 
, ' . . 

width modification/replacement, if higher performance is needed, or if area has to be mini-

mized. The restrictions are tied to the reconfigurable device specifics and can include area 

avoidanc~, power consumption and execution. time limits, and more. 

Though not in current implementation, CAD tool should be able to estimate and suggest 

a optimal device for a target design. It should also be able to suggest a range of optimal 

188 



reconfigurable devices based on different variations of parameters that can potentially change 

in the future. 

When final selection of VHCs is done the CAD tool generates a broad spectrum of SSPs, 

where each SSP is responsible for a particular variant of conditions, such as speed of process-

ing, area requirement, power consumption, latency, and other parameters. The user is also 

capable of selecting the number of variants that should be generated and the parameters to be 

optimized. Another factor that has to be considered, is the generation of time SSP bitstream 

set. Since each segment fonns an SSP IP-core, a set of SSP cores need to be synthesized for 

each of the variations of the task algorithm. Therefore, if an algorithm has K segments, each 

having Ni variations, where i = 1,2, "', k, for the algorithm implementation there are r.~1 N;, 

SSPs that have to be generated into the bitstreams. Adding fault tolerance capability to avoid 

different sections of FPGA increases, the number of generated as welL The main factor is 

the granularity of the sections G. which defines how many different combinations of FPGA 

sections have to be avoided. Therefore, if fault recovery is added as one of the restrictions, 

. then number of generated SSP cores increases up to Nssp = G x r.~l N;. Due to that fact, it is 

crucial for the CAD tool to estimate and eliminate the variations that do not satisfy the given 

restrictions. For example, the compilation of a single SSP core requires Tfof:p ~ 300 -1- 600 

seconds [63] for XCVI 000 FPGA, and the total compilation time is given by; 

K 

1'comp - Tc~S:p x G x 1: N; 
.. ' i:::::l 

(8.1) 

The total compilation time for SSP generation can be estimated with the following approxi-

mate data: 

. " • Number of task segments and associated SSPs, K = 8; 

• Number or'possible variations of each SSP, Ni = 4; 

• Granularity of sections ofFPGA area, G = 4 (4 quadrants); 
." •• 7' -, 

189 



• Approximate time for compilation of one SSP to be accommodated in 1 M system gates, 

FPGA T~S:p = 300s (according to [63] for the Xilinx Virtex XCV 1000) 

In this case: 

Tc~~~l = 4 x 8 x 4 x 300sec = 38400sec = 1O.6hours 

This would allow RCS to work in Nf 48 216 = 65536 possible modes, and restore the 

functionality for each of the modes, in case if one of 4 quadrants in the FPGA logic/routing 

area would get a permanent hardware fault. The transient faults can be mitigated by scrubbing 

procedures as described in Chapter 4. Therefore, the automated generation of the required set 

of SSPs for a task partitioned in 8 segments could be done within one business day. 

The benefit in the use of the SSP approach capability of future modifications. If a particular 

MO, such as FIR filter, requires a modification, only the VHC for that particular MO would be 

modified. The only SSPs that need to be fe-synthesized are the ones containing the modified 

VHCs. This in tum brings a dramatic reduction of the re-design time for any modifications, 

compared to the time for HDL reprogrimming and re-synthesis for the whole design. Another 

advantage of the SSP set. as mentioned previously. is that it allows a run-time adaptation, since 

all of the SSP bitstreams are stored on the non-volatile FLASH memory. 

To minimize the time for SSP generation, the CAD tool first performs estimation of vari­

ants. Actual generation of the set of SSPs occurs only in the case when estimated processing 

times of the algorithm match the restrictions imposed by the user and existing/s~lected hard­

ware. Since placement and routing requires most amount of time in SSP generation, the 
- , 

- . 
estimator plays the crucial role in filtering out the unfeasible variants .. 

When the generation of SSPs is complete, the user is provided with a set of directories. 

each containing a set of SSPs in form of bitstreams. Along with a schedule of configurations 
-. ' 

and a global file that specifies which set of SSPs to use in a case of parameter changes. Such 
~ . ": 

parameters can be power reduction, time requirement modification. restricted area, etc. The 
, 

sets of SSPs are then stored on a non-volatile memory and used based on the schedule~ Figure 

190 



1 

8 

NotIfy User .nd 
, "NU! ORe report , 

10 

11 

12 

Perform IIIVIII 
division. Re-order 

'vaph on worlcspac:e 

Perftlnn Task Segmentation 
based on glwn constraint 

parameters and genef'ate ssp. ' 
" "sis for every segment ,;,"/' 

Upload bitstreams set t:g 

RASH memO!)' on target 
14 platform. Upload schedule on 

'.~. conflguratlonloader' '." 

Figure 8.1: CAD Software operation flow chart 

8.1 shows all steps of the CAD software operation. A number beside an operation refers to 

the operation's order in the schedule. 

The sequence of software operation is as follows: 

1. The SPC softwar~ is initiated by the user ~n a PC. 

2. As it loads, the SPC software searches for the configuration the file mos.mo, which con-
, . 

tains a library of existing Mas. This library specifies the name of an MO, its description 

and its associated icon. Configuration file also contains all the IDs and locations of all 

VHCs that implement each MO .. 

, 3: Co~figuration file i~ parsed and Mas are populated into the MO TO!,l box. 

191 



Controls 

Buttons 

Area/Time 
Restriction 

, -.JIIIIl..I) 

Figure 8.2: GUI Application 

MO 
Libr ary 

Work ing 
Panel 

4. Every MO is ch~ckcd if it has at leasl one VHC, and if it docs no~, it is ;emoved fr()[;) 

the tool box. At this stage, however. VIlCs are not loaded to conserve the operating 

memory resources. 

5. User is presented with the GUI that allows user to drag the MOs from the Tool box to 

the Working panel. 

6. An SG is created by the user either from scratch on empty work space, or by loading a 

previously saved SO and modifying it in any way needed. MOs can be interconnected as they 

are added, or they can be connected after all MOs are added. At this stage SPC software loads 

the VHCs associated with the added MOs into an internal list. SPC application creates a tree· 

like linked list of Node objects, where every node has a reference to MO type and incoming 

and outgoing nodes. 

7. When the SO of the task is completed, Design Rule Check (DRC) performed to ensure 

that no erroneous connections are present. SPC checks that aU of the inputs are present to 

every MO requiring an input. Inputs could be: external input 10 the system; input from some 

other MO; input of a constant value. Also SPC checks for at least one output from the system. 

192 



8. If DRC fails then user is presented with an error report. 

9. Application continues on perfonning Level Division/Segmentation/SSP generation, that 

can be run separately. The advantage of separate invocation is that user can modify the SG if 

Level division or Segmentation error is identified, or some other modification has to be done. 

Level Division of the SG is perfonned based on the method described in Section 7.2.3. After 

the execution of this stage every MO node is assigned with the specific level. SPC application 

also re-arranges the SG based on the levels giving the user much clearer view of how the MOs 

are organized in the dependency manner. 

10. Constraint Parameter Specification is done at this step where user inputs the restriction 

parameters according to the procedures described in Chapter 7. It is also possible for system to 

automatically select restriction parameters based on the initial con~traints of a reconfigurable 

device specified at the initialization of the project. 

11. Segmentation and SSP generation is the key component in the SPC application .. It 
.J 

implements the segmentation methodology described in Section 7.4. An MO is selected based 

on the methodology shown in Section 7.4, and added to a sub-ACG tree. The sub-ACG trees 

are represented with a heap data structure. The leafs of the sub-ACG node represent the VHC 

variants of the MO with the corresponding perfonnance parameters, as was described in the 

Section 7.4.2. Every new added MO creates a new level ofVHC combinations on the sub-ACG 

tree. At the same time, two temporary lists are created that hold the current and previous level 

ofVHC node sets in the ascending order. The temporary list for previous level is used to recall 

the last successful level in the case that none of the leafs of the current level list satisfy the 

restriction. Latest level that satisfies the restriction contains the combination of VHC variants. 

These variants are stored as SSPs in the final SSP list. Each 'of the SSPs contains the infonna-
'. 

tion such as: specific VHC version, interconnection of VHCs, total area/power/latency. and 

VHC file location. When all of the VHCs are selected for the MOs presented in the SG, and 
.. >:' 

the segmentation of these VHCs is completed user is presented with the list of possible SSPs 
• ~ " .. : .! 

193 



for each segment. There is a list of SSPs due to the fact that each segment can have several 

combinations of VHCs that satisfy the imposed constraints, as shown in Figure 7.19. The 

software segmentation operation is based on the flow chart shown in Figure 7.14. 

12. SSP Selection for bitstream generation is done based on the parameter priority. This 

step can be done together with the previous one, or initiated later by the user. The option of 

later execution is provided for the user's additional flexibility. Before the bitstreams are gen-

erated a report with lists of SSPs is presented to the user and the user can modify restrictions 

or priorities to better fit the system's requirements. The SSP selection is initiated as the SPC 

application goes through the list of SSPs in each segment and selects the SSP that is closest 

to the constraint of highest priority. If two SSPs have the same parameter for a particular 

constraint, then they are compared by the constraint of the lower priority. 

13. When SSPs are selected, each of them is compiled into a loadable configuration bit­

stream. This is done by invoking the design suite, such as Xilinx ISE 11, or Altera Quartus 

II. The design suite performs the synthesis, translation, mapping, and place and route of the 

combined VHC modules. 

14. The result of the operation is a set of bitstreams with a configuration file of the sched­

ule for reconfiguration. Bitstreams are then uploaded to the non-volatile memory on the target 

platform. Configuration file is uploaded to the Configuration SchedulerlLoader for later e~e-

cution. 

8.2.1 Area Avoidance Implementation 

In case of mitigation of permanent hardware faults, an SSP has to be designed to avoid a spe­

cific area on a reconfigurable device, as it was described in Chapter 4 and Chapter 7. For this 
i. c • 

purpose a specialized "dummy" MO is inserted into' every level of the level divided graph. 

When SSPs are assembled, each of them contains the VHC corresponding to the "dummy" 
'" i 

MO. "Dummy" MO essentially represents a setting in the constraint file that directs Xilinx 

, 194 



ISE compiler to avoid the specified area during the place and route'operation. In the CAD soft-

ware an algorithm that performs optimal selection ofVHC treats the area-avoidance "dummy" 

VHC as a automatic selection with highest priority. In this case CAD tool does not replace 

the VHC. As it can be estimated, number of VHC variants with an associated MO is equal to 

number of all possible area avoidance restrictions. As mentioned in previous chapters, FPGA 

can be divided into several tiles, therefore, VHC parameter contains the specification of the 

granularity of n x n tiles and which particular tile it is. It is important to mention that an SSP 

can contain several different areas to avoid. Thus, with an adequate fault detection mecha­

nism, it is possible to have reconfigurable device to continue to function with more than one 

permanent hardware fault. 

The first version of the above CAD software application provides the user with all of the 

features discussed in this section and is to be expanded further in the later sections. 

8.3 System Level Architecture to Acconlmodate TPM Based 

on SSP Processing 

Another major aspect of the research is the design and implementation of the hardware plat­

form that would be able to execute the generated set of sSPs. This, however, involves a design 

of several different sub-systems each playing its own important role in the TPM operation. 

The intent of the platform design is to implement and test most of the research aspects of this 

wo~k. Platform ~as to be able to process the tasks which can have multiple modes of operation 

and to have a capability for rapid adaptation to a different mode [53, 55}. Hence. the platform 

is called Multi-mode Adaptive Reconfigurable System (MARS). This section describes the 

platform architecture and the associated hardware design solutions. 

195 

/ 



8.3.1 Reconfigurable Field of Resources (RFR) 

In the Section 3.3.6 two approaches of reconfigurable device architecture were described, 

which included single FPGA device and triple FPGA device configurations. In the triple con-

figuration one FPGA performs the memory management and interfacing functions and the 

other two are used for SSP processing, and reconfiguration respectively in order to "hide" 

the reconfiguration overhead. In the MARS platform, different research concepts were imple-

mented: 

1. Temporal and partial reconfigurations. 

2. Rapid system reconfiguration/adaptation. 

3. Use of SSP library resources. 

4. Processing streaming applications. 

5. Self-reconfiguration for fault recovery. 

A single partially configurable FPGA was selected for the implementation: FPGA selected 

had to have: rapid configuration interfaces, on-chip configuration controller and all the neces­

sary computing resources for stream processing of task implementation: As was explained in 

Chapter 3, Xilinx Virtex 4 family was chos~n with FFl148 ball grid array pack~ge. This was 

an ideal choice for the platform since five different types of devices in a Virt~x 4 family could 

be used (from 4 million to 16 million system gates). Larger device also contained impressive 
~ , ' ,. 

amount of embedded hardware such as: 152064 configurable logic cells; ~ Mbits of integrated 

memory; 96 DSP slices; and 12 clock managers. This family C?f FPGA device has support 

for SelectMAP32. which currently provides the highest available configuration bus bandwidth 
- ' ,,,. '< " • 

(3.2 Gbit/sec). On the MARS platform XC4VLX160 and XC4VLX80 were used, and testing 

of the partial and temporal configuration methodologies was conducted. 
, ' 

, . 
196 



,I 

8.3.2 SSP Configuration l\lechanism on MARS Platform Design 

Based on the research aspects described in Chapter 5, highly parallel configuration interface 

was used to perform rapid configuration. To verify the temporal partitioning in run-time adap­

tation, several configuration options were explored. To provide support for architectural exper­

iments three configuration interfaces were included in the design: JTAG, Serial SelectMAP, 

and Parallel SelectMap32. These interfaces can be compared by their performance use in dif­

ferent architectural approaches. In order to accommodate the Parallel SelectMAP32 interface, 

a specialized loader had to be developed. IEEE1149.1 (JTAG) is the first configuration inter­

face that is common to all [118,66,22] FPGA and ASIC manufacturers. It is used for the 

testing of internal modules. such as memory integrity, and other sub-systems. In an FPGA 

device it is used for communication with an on-board controller, that uploads a bitstream to 

the device. In addition. it is used for communication with soft-processors such as MicroBlaze, 

NiOS, ChipScope Pro [113]. In addition to JTAG, a proprietary serial configuration interface 

is present in most of the FPGAs. Historically, loading configuration over ITAG to an FPGA 

device was done from a designer's PC, however. this has lately changed. 

In recent years most of industriaVcommercial platforms manufacturers began to include 

the bitstream loaders that are capable of loading configuration bitstreams from an external 

FLASH memory card [112, 6]. This made field upgrades as easy as switching/replacing a 

memory card. Loaders, such as SystemACE from Xilinx [112], allow to implement com­

pletely stand-alone solutions with simple upgrade option of a CompactFlash card. SystemACE 

acts as a PC replacement, since it configures FPGA JTAG interface [117], and essentially im: 

plements whole ITAG protocol on a chip. However, the maximum speed of configuration is 

limited by the off-the-shelf memory. Cup-ently highest speed of CompactFlash memory Sys­

temACE is limited to 30 Mbitlsec, uploading configuration of a Viitex 4 Xilinx FPGA would 

'take up to 2 seconds [112]. Hence, such solution is suitable for systems that do not require 

rapid start-up or reconfiguration times. There are other configuration options available that are 

197 



proprietary to the FPGA vendor (Xilinx-SelectMAP, Lattice-sysConfig, Altera- Fast Passive 

Parallel configuration port (FPP». 

The MARS platform uses Xilinx Virtex 4 FPGA withs a serial SelectMAP configuration 

interface. The interface includes a data signal DO, a clock signal, and several control signals 

such as chip enable. The advantage of this interface in comparison to JTAG is that it can be 

used in embedded systems. In this case a designer can create a custom configuration header 

operating at higher speed than JTAG provides and not worry about supporting JTAG protocol. 

Loader can be implemented as ASIC, there are some available from Xilinx XC04S. At the 

same time, it can be implemented on microcontroller/microprocessor with a FLASH memory 

or directly on an FPGA soft processor. MARS platform design was implemented with a 

combination of a microcontroller and a CPLD to allow a rapid data readout from the SSP 

library memory. This approach is mostly used in embedded solutions and is not designed for 

a PC-to-platform configurations, so it is well suited for MARS platform. 

Lately there was an advancement in high speed configuration interfaces in several famili~s 

of high-end FPGAs [83]. This was driven by the customer demand of because of the ever 

increasing size of configuration bitstreams. Due to large bitstream sizes the start-up time for 

some FPGAs reached several seconds. A Parallel configuration interface with the 8 bit and 

recently 32 bit bus was introduced by Xilinx. In addition, the configuration clock speed was 

increased from 25 MHz to 100MHz. As mentioned in Chapter 5 increasing configuration 

speed to 3.2 Gbit/s, is extremely beneficial for a system that has to support rapid reconfig­

uration or adaptation. This was one of the key requirements for MARS platform, so ,~t was 

included in the design. Parallel SelectMAP32 configuration interface has same control and 

protocol of operation ~s Serial. SelectMAP. Instead of single DO data line there are 3~ (DO­

D31) data lines, which transmit data in pcu:allel. Hence, by using same setup, as was done 
t' - • • ~ , '-

for a Serial SelectMAP, and programming the configurationi~aderlscheduler to output 32 bit 

words instead of 1 bit word, the maximum performance could be achieved., . 
• - > • ~ ~ ~ " , 

198 



With the three interfaces MARS platform can be configured with the standard JTAG in-

terface, and a proprietary slow speed interface, proprietary high speed interface. The per­

formance and comparison of effectiveness of these configuration interfaces can be compared 

between each other and other existing platforms. 

The configuration loader and scheduler was chosen as suggested in Chapter 5. It involves a 

combination of the FLASH memory, CPLD, and microcontroller with various interfaces. Sim-

plified architecture block diagram is shown in Figure 8.3. Since SelectMAP32 was chosen due 

to its bandwidth, the FLASH memory modules had to be organized in a way to accommodate 

3.2 Gbit/sec bandwidth. For that purpose four 16 bit width NOR-FLASH memory modules, 

with capability of 50MHz operation ~ere chosen. At the point of a rapid reconfiguration 64 

bits of data are read in parallel at 50MHz of the FLASH modules. This information is pack­

aged into 32 bit words and sent over the SelectMAP32 parallel configuration bus at twice the 

speed. As mentioned previously. CPLD is used fo~ two main reas~ns: repetitive operation at 

high speed, and vast number of flexible 110 assignment. First of all,16 bits of data, 26 bits of 

address, and 5 control lines where needed in order to connect to four FLASH modules. For the 

actual SelectMAP32 interface there are 32 data and 5 control lines. Microcontroller to CPLD 

parallel bus required additional 1 0 lines. Overall configuration device needed total of 111 110 

lines. The only types of the rec~nfigurable devices that allowed such 110 count were, CPLDs 

and FPGAs. At the time of MARS development CPLD was the only configurable device that 

operated on a single supply of 3.3V, and contained large number of 110 pins and did not require 

external loader. The reason for the 3.3V constraint was requirement of design portability. The 

portability means that the same loader can be integrated on different platforms with various 
, . 

families of FPGAs without a need for additional voltage regulation and loader redesign. Most 

of small sized FPGAs at that time required additional 3.3V and 1.5V or 1.2V voltage sources 

for auxiliary and core powers respectively. In addition, all SRAM based FPGAs required an 

external loader and associated peripherals. 

199 



Some microprocessors and microcontrollers that have the required pin count may seem to 

qualify as candidates for the configuration loader. However, when 100MHz of configuration 

frequency is taken in consideration, microcontrollers simply cannot keep up with the MIPS 

limitation. On the other hand, microcontroller plays an essential role as a configuration mem-

ory manager. Since CPW is significantly limited in the amount of logic in comparison to an 

FPGA, it can only perform simple repetitive operations. So, in MARS the requests from the 

FPGA, core updates from PC, and scheduling are handled by the microcontroller. Microcon­

troller is based on the Microchip PIC18F8XXX microcontroller family. It interfaces to CPLD 

over the parallel bus and peripheral interfaces, such as USB, dual RS232, SPI, parallel inter-

faces, and button switches for direct user input. Microcontroller also provides a user with a 

very flexible and simple implementation of desired controller operations. This is because the 

microcontroller programming can be done in embedded C or assembly language. 

The microcontroller in the MARS platform implementation involves several functions: 

1. Downloading SSPs in a form of bitstreams over CPLD from a PC to a predefined 

FLASH memory virtual slot. 

2. Storage and execution of a reconfiguration schedule. 

3. Initiation of reconfiguration by requesting CPLD to configure a specific' core residing in 

one of the FLASH memory virtual slots . 

. . 4. Providing user with feedback of current operation for monitoring purposes. 

To provide the flexibility of application development a parallel communication bus was in­

. eluded between the FPGA, CPLD, and microcontroller devices, as shown in Figure 8.3, where 
. . 

8 bits are data and 2 bits are for handshaking and control. This device interconnection pro-
<I 

vides flexibility in scheduler operation. A schedule of SSP configurations can be uploaded to 

the microcontroller by a request from a PC/external source; or directly by a request of FPGA. 

The way TPM typically operates in MARS is as follows: 

. 
200 



Segment 

Specific 
Processor 
Library 

I 
I 

Periphera l ....... 
devices 

Communication 

Data Bus (COB) 

10 

hgure X.3: Communicat ion Bus Structure Between: FPGA. (,PLD, and Microcnntro ller 

I. Microcontro llcr issues a signal for the reconfigurat ion to the CPLD and the starti ng 

memory address of the SSP core. 

'1 Reconfigura t inn signal causes CPI.D to heg in FPG re-configurat ion proceclure and 

follow th . schedule or contro l operations listed in Chapter 3. 

CPLD reads an SSP hitstream from the I·LASII memory hegi nning from the address 

recdved hy the microcontrul lcr unti l the end or the hit stream. 

4. Processing cor' r't rieves temporal data fmrn the temporal data memory (SRAM ) and 

after processing , it writ es a new set of data. 

5. Based either on the timing schedule, or signaling from the I·V(;A the microcontrnllcr 

fetches an address or t he next SSP hitstream in the schedule l}ueue to t hc cpr .D. and the 

ope rat ion repeats again. 

MARS architecture allows for dynamic operation not only hy the programmcd schedule . hut 

also hy a request or the rcconfigurahlc device itsel r [56 ]. The hus hetween the CPU) and 

FP(;A bus allows ror direct request or a particular SSP hitstrealll. Such bitstream could 

2() 1 



be a fault tolerance IP-core which checks integrity of the FPGA before/after SSP a recon-

figuration. Since it is a repetitive operation, it is not required to be done by a microcon­

troller/microprocessor and, therefore, is done in the background without placing extra load on 

the microprocessor. This speeds up the processing of a segmented task even more. 

The power consumption measurement was performed to account for total power consump­

tion. In continuous reconfiguration operation total power consumption was in 66mW, which 

is an insignificant amount comparing to the FPGA requirement, as shown in the results sec­

tion of Chapter 9. Power consumption can be lowered further by decreasing the frequency of 

configuration and by using low power configuration manager and configuration controller. 

The other part of the configuration memory manager that was developed is the software 

application, as was mentioned in Section 8.2. 

8.3.3 MARS Temporal Data Memory 

The temporal partitioning it involves sequential reconfiguration of the FPGA device with the 

temporal data stored on the temporal data memory. Best suited memory for this task is SRAM. 

due to its rapid access time and control simplicity. Mter reconfiguration the processing core 

rapidly retrieves the stored data and proceeds with further processing. At every stage of pro­

cessing the data being processed is placed into predefined memory spaces. For this purpose 

dual 72 Mb SRAM memory banks (CY7CI472) were included in the design. Since this plat-

form is used in the development of multi-modal stream processing applications, it would also 

use this SRAM memory for frame buffering, hence, the dual bank configuration and this par-" 

. ticular memory size. Since acquisition of video frames occurs simultaneously with their pro­

cessing and the output of the processed images, the buffering of the video stream had to be 

implemented. The SRAM modules were implemented with separate address and data buses. 
- ~ < I i 

One SRAM chip saves the data from the image sensor, while the other processes a previously 
t ; ~~ : ~ l ' 

saved frame. On the completion of the image capture/processing the banks switch operation. 
. . ,~'" . 

,202 



For a larger and longer term storage of processed data two 256Mb SDRAM 

(MT46V64M4) modules was included, also were in dual bank configuration. Organiza­

tion of these memories is shown in block diagram in Figure 8.4. 

The remaining sub-systems of MARS platform are various interfaces that are needed for 

interconnection to the input and output devices, discussed in the next section. 

8.3.4 Platform Data 110 Interfaces 

MARS platform is designed for stream processing applications, hence, it requires several dif­

ferent types of interfaces. These interfaces and peripherals include: LVDS 400MHz 16-bit 

interface, 400Mbit serializer with coaxial interface. VME bus interface, 4 SVGA output ports~ 

USB, RS232, LEDs, push-buttons, and other service interfaces. ' 

The processing platform was specialized for video-stream applications, so the video input 

and outputs were required. For video output a standard video digital to analog converter (DAC) 

was selects. ADV7125 DAC supported up to 330 MSPS which allows to display a TrueHD 

at 120!ps. To perform a parallel processing of a number of video stn::ams. four DACs were 

included in the design. 

Next chapter talks about the "Fast Track" project which involved development of the high-

speed stereo image acquisition system. For this purpose a special interface was designed for 

MARS platform. The overall block diagram and an actual photo of the platform is shown in 

Figure 8.4. 

Due to the nature of the' stream processing, two types of high-speed interfaces were in­

cluded: a 400 Mbitls serializer/deserializer and a high speed low voltage differential (LVDS) 

interface. The interfaces are used for input of a stream of data either from a local input over 

LVDS interface or from a remote location connected over a coaxial cable to the serializer. As 

.203 



it will be described in the experimental section of Chapter 9, a stereo-camera module was de­

signed with the LVDS interface. Stereo-camera operates at 200 fps and provides a high speed 

stream of video frames which are processed by the algorithms running on the FPGA device. 

Communication over USB and RS232 is performed using the microcontroller that was in-

terfaced to the FPGA device as welL Microcontroller communicates to well known interfaces 

and does not need a special core to be designed for FPGA device. USB interface is used for 

communication with the PC from which SSP bitstream and schedule is uploaded. This in­

terface is also used for download of temporal and final data for verification purposes. VME 

interface is mostly used for the connection to the expansion board, as well as interconnection 

with the other MARS platforms over the VME bus. 

MARS platform was specifically designed to be rack mountable, as shown in Figure 8.5, 

to have an aggregating capability for joint parallel processing. 

8.4 Summary 

One of the novel ideas behind the research is the configuration loader/scheduler which per­

forms all of the SSP core management and re-configuration of the FPGA device. This archi­

tecture was specifically developed for the temporal partitioning operation. 

After completion of the hardware and ~oftware implementation of the MARS platform 

with'support for temporal partitioning, several architectural modifications became apparent. 

Appendix, ?1 proposes a number of different approaches to increase the efficiency, as well as 

to decrease the ,cost of systems with te~poral partitioning support. 

This chapter focused on the implementation of all previously proposed and developed 
, ' /' . " 

methodologies in software, hardware, and firmware. The implementation of CAD tool for 
" ..,- • ! • 

task algorithm segmentation and synthesis of SSP set with associated SPC GUI software was 

described. This chapter also described in detail the hardware architecture for the temporal 

'204 



I VuE I Hi,h Speed LVOS St,,,m 
~:.::,r:....-.J '--_--,~ Bus Camera Interface Input 

Dual72Mb 

<r-- - > SRAM Bank 
SSP Loader <C:: ============~> 

CPLD 
FPGA Xilinx 

Virtex4 

co:~~~.~~on ' ,er. ~XC4V;'ro ~ ~ > 
NOR FLASH IlController DAC DAC DAC DAC 

Dual72Mb 
SRAM Bank 

CY7C1472 

High Speed 

LVDS Camera 

int erface 

Dual 256 b 
SDRAM Bank 

M T46V16M16 

VM E Bus 

F JIC1{;.841{r 
~ ~ ~ SVGA SVGA SVGA SVGA 

GPIO & RS23 Strea m Output 

LED 2 
12C USB 

Quad 
VGA 

FPGA Xilinx 

Virtex 4 
XC4VLX160 

400M b J 
S~ria l i ze r 

(hI 

GPIO & 

RS232 

CY7C1472 

Dual256Mb 
SDRAM Bank 

MT46V16M16 

XC95 288 

Interfaci ng 

IlCont ro ller 
PIC18F8410 
(f (" 'od(') 

Conf iguration 

NOR FLASH 
~ .. -----

GPIO& 

J'igun: R.4: Mu ll i-st ream Adaptive Reconligurahlt: System (MA RS): (A) Block Diagram (B ) 
Compolll'llt PJacement 

20.'i 



hgun.' ~ . ) : Aggregatcd MARS Platforms for Parallel Processing 

pal1itioning ReS that executc~ SSPs. All ekmenh of the Multi-stream Adaptive Recon fi g­

urab le System (MARS ) werc Ji scus~eJ with the reasoni ng for their selection. The wnrk nn 

development of the TPM platform was presented in ~cVL'ral con k rcnces [52. )61. a workshop 

1551. and in a journal paper 154 1. 

Next chapter conccntrates on th . experimental aspect or the research. It describes the 

experi mental ~e rups or the MARS plat rorm wiTh ot her plat forms lhal were developed in ERSt. 

It provides a detaikJ explanation of conducted experiments anJ analysis ll(" aCl-luired resul t. 

206 



Chapter 9 

Experiments and Results 

9.1 Introduction 

This chapter presents the experimental component of this research work. First, the experi­

mental setup is described. This experimental setup is based on the MARS platform and a 

special set of multi-video capturing and pre-processing platforms (stereo-vision high-frame 

rate cameras). The architecture organization of Multi-Mode Adaptive Reconfigurable system 

(MARS) has been described up to the component level in Chapter 8. The video capturing on 

a p~e-processing platform organization is presented in this chapter. The next stage. after the 

experimental setup is performance verification. For this stage special video-processing VHCs 

have been designed, integrated, and tested in operation with MARS platform. The verification 

procedures. as well as the algorithm implemented in the above VHCs is described in detail in 

this chapter. 

The last component of experimental work is the analysis of perforinance and cost-
. . 

performance characteristics, that have been obtained on the basis of the experimental multi­

core.. (multi-VHC) segment-specific, processors (SSPs). These SSPs. were designed for the 

above analysis only and are not associated with any specific application. The experiments 

were done with the goal to analyze the following parameters: 

207 



1. Resource utilization. 

2. Power consumption. 

3. Data-execution timing parameters. 

4. Bitstream compilation timing. 

5. Cost-performance analysis. 

All of the above experiments were conducted for the MARS platform based on the Xilinx 

Virtex 4 FPGA family. The choice for this FPGA family was based on the fact that it provides 

the highest bandwidth of configuration bus, an ability for partial configuration, and spans 

across the devices of the same package. 

9.2 Experimental Setups 

Experiments for temporal partitioning mechanism (TPM) included several different steps. 

This section describes the experimental setup and the experiments performed. First and fore­

most, the experiments had to be performed to test TPM methodology on a hardware platform 

with temporal partitioning support of FPGA resources. As described in Chapter 8, Section 

8.3.2 MARS platform was designed specifi~ally for this pmpose. With the support of 3.2 
. , 

Gbit/sec bitstream upload bandwidth, programmable configuration memory manager was par-

ticularly suited for temporal partitioning experiments. 

In order to visually illustrate the idea of the experiments few image processing tasks were 

selected. The selection of video-stream processing applications' was also motivated by the 
, , • < .. 

R&D project associated with the development of the next generation of space-borne niachine-
, ! , " 

vision platforms. This project is called "FastTrack High-FraIne Rate Stereo~Vision Sensor" 

'and wa~ funded by MDA Space Missions and Ontario'Centres of Excelience (OCE). It was 
, 

conducted in cooperation with the research groups from Queen's University (object tracking 

. 
'208 



Instrumenta 
t ion PC w ith 

Xilinx ISE 

Suite and 
full libra ry of 

VH Cs and 

SSPs 

LCD LlD LCD LCD 
Monitor Monitor Monitor Monitor 

/'1 "2 "3 " 1\ 

MARS 
Platform 

Video Output Ports 

! 
LVDS 

Xilinx Virtex 4 ++ I/O 
FPGA Port 

XC4VLX160 

• • Stereo 
Cam~ra 

Figure 9.1: Experimental Setup Based on MARS Plat form ami Ster n-vis ion Capturi ng Mod­
ule 

algorit hms) and lJn i ve r~ity nf Tnrnnto O D-vis ion algorit hms) . The goal of the project wa~ 

to create an FP(;A based multi-mode 3D machine vision platform thai wou lLi be able to prn-

cess multiple (3 and more) video ~t rcams with relatively high frame rate capabilit y (up to 20() 

fran K'S pe r second). Therefore, the ~t ere () camera which was Llevdorcd as a part of Ihe ' 'l'ast-

Track" project was used for the high speed image capturing and was attacheLi to the LYDS I/O 

port of the MARS platform . Detailed descript ion or the 'T astTrack"' platform is given in the 

next subsccl inn. " owe er, in accordance wit h Research Collaborat ion Agrecment and associ-

aleU DA. il was not possible to utilize the deVl' lop 'd sCQ.ment speci fi c processors (TP-cores 

or 3D vis ion and objcc t tracking algorithms) in this thesis without a writt cn permission from 

all of the abow organizations. Therefore, some relat ively simple-video prucessing algori thms 

have been used (in a form of IP-cnres) for tesl and verification purposes. These algorithms 

and their implcmcnt at ions arc also described in the fnll owi ng subsections. The owrall ~e l up 

of the experimental platfnrm and peripherals is shnwll in thl' hgure 9. 1. 

The overall structure nf experiment consists of capturing steren iIllage~ , followed by prn-

cessing. Processing algorithms consisted of Sobel edge detection. colour intensit y. ima Qc 



inversion and image histogram generation. Following the processing. the results of the pro· 

cessing are displayed on 4 video outputs simultaneously. 

In order to test temporal partitioning setup each of the processing cores designed into 

separate SSPs from VHCs. VHCs consisted of the algorithms mentioned above with several 

variations each. Variations included area avoidance, levels of algorithm parallelism, video 

display ordering. and image resolution. Following subsections describe each of the algorithms 

and their variations in detail. 

The second set of experiments concentrated on the aspect of performance evaluation and 

cost-effectiveness of an RCS employing TPM. For this purpose a different set of tools were 

used that performed timing & power estimation, while covering a broad range of FPGA de­

vices. Based on the obtained results the cost-performance analysis was done and cost-per-Iogic 

evaluation was performed for devices to identify the most cost-effective solutions for TPM. 

For these experiments a highly parallel VHC stream processing component was designed. 

It involved a highly parallel input of two 128 bit vectors that underwent several mathematical 

manipulations (e.g. multiplication, addition/subtraction. bit shift) and an output from the sys­

tem. All operations were pipelined, and after the initial delay produced a result on every clock 

cycle. This VHC was used in parallel with other VHCs to form an SSP that was compiled 

and tested for various devices. For these experiments, besides the MARS platform which ran 

some of the generated SSPS, the Xilinx XPower Analyzer was used for 'power calculation on 

a broad range of different devices and frequencies. Xilinx ISB Timing Analyzer was 'used for 

obtaining the result of time analysis for the experiments. 

Next subsections present details of the experimental setup and the experiments t~at were 

conducted throughout the research work. 

210 



Row 0 Col O Came ra 0 Row 0 Col O Camera 1 ROw OCol l CameraO Row OCol l Camera l ... { Row 479 Col 639 Came ral } 

Figun: 9.2: Bayer Patt ern of Stereo Camera and Readout Dat a Organizat ion 

9.2.1 Stereo Image Capture Platform 

Stereo image capture plat form that was used in experiment s is shllwn in I-'igure 9.3 . It was 

devel oped in ERSL lah and was part of the --r astTrack" project. It is capabIc or taking stereo 

images at 5 illS intervals (20() fps ) by a system request, or hy providi ng constant stream of 

images alon g with the sy nchroni;;ation signals (e.g. slave/master modes). Resolution of a 

sing le image is 640 x 4~() pixels. Each pixe l hal; R hit colour dept h arranged in a Bayer pattern 

format as shown in FiQ.ure 9.2 . Dat a provided to the MARS plat form from two cameras is 

arranged in a form of row and column address ing with an out put of two hy tes per address . 

Each hyre reprL'sents a pixel val ue from the two image sensors. The data from huth sensors 

is saved simultaneously into one of the SRAM banks. Upon cllmpIction of capturing the 

SRAM hank contains two images which arc used hy the consecutive processing SSP cores. 

At the fin al step of the capt ure the SSP cor ' is signaling to the cnntiguration manager to 

reconfigure the IVGA with the next SSP. At this point FPGA is reconfigured with the ncx t 

SSP corc in the schedule with the knowledge ur the image location in SRAM. Seve ra l ditlcrent 

SS Ps were created that ditler in the image locat ion on SRAM hanks. in case or different 

IIlL'IllOIY cnnti gurations. 

21 I 



9.2.2 "Fast Track" Platform 

One of the application of MARS platform was a project related to space application. "Fast 

Track" project involved tracking objects at speeds of 200 fps. The requirement was to create 

a fully embedded platform, which would perform run-time tracking of objects. This project 

was done based on the requirements presented by the MDA Space Missions, which provided 

funding for the project along with the Ontario Centres of Excellence. 

Throughout the development of the project three versions of the "FastTrack" platform 

were decided and they are described briefly in this section. In order to visually track objects 

it was devised to use stereo image approach. Stereo images are used to extract disparity 

information and, then, to provide the depth information about the surrounding environment. 

This information is passed to the object extraction module which identifies the object based 

on the original model. This information about the object identity is sent to the object tracking 

algorithm which performs prediction and tracking of the object. For this purpose, all of the 

"FastTrack" platforms include a pair of image sensors. 

First platform was developed as a prototype and utilized only 30jps image sensors. This 

in tum allowed to use only one LVDS interface. In order to transfer both image streams of 

data over 8 bit data bus, these streams were multiplexed. MUltiplexing was done at twice the 

speed of operation with the overall bandwidth of: 

8bits/pixel x 640pixeis x 480lines x 30jps x 2images = 147.456Mbits/sec 

Transfer data is' in the raw format and represents an image in Bayer pattern. Similar for-
. . . 

mat is also present in both consequent versions. The second and third ve~ion of the "Fast­

Track" platforms include image sensors with 200jps performance, which translates into a 

much higher bandwidth of: 

8bits/ pixel x 640pixels x 480lines x 200jps x 2images = 983.04Mbits/ ~ec 

212 



Figure 9.1: "raqTrack" Sterco-Yi~i()n Platrorm. 

This required to e pand the communication hus to I () data hi t:-.. and to a ~econd LY[)S 

inr erface to the MARS platfo rm. h)r t h i ~ purposc an expansion card wa:, huill and au achcd to 

the YME expansion bus. The final ver~ion of the platform. which i~ shown in Figure 9.3.was 

capable of capturing Siereo images al "-' 200fps and synchrnnously upload Ihem In the MARS 

platform 1191. The advantage of using MARS plat form is in its capahilit y of run-time m de 

adaplat ion. 

Since MARS :-.upports hOlh spatial and lemporal part ition ing and recontiguration. it pro­

vides a unique opponunity to change modes or opl'ralion as soon a~ :-.y:-.lem would detect re­

quirement for such chanl.!,c. Con:-.idering Ihe Space application. , image pmcc~ s ing algori thm 

requirements can change rapid ly based on the light exposure. So the :-.yst em can be imple­

ment ed to use the temporal pan itioning . Opnation of temporal part ilioning perfomls captur' 

of :-.everal rrames at 200fps. and then rcconfigure~ to perform process ing operation . Process­

ing could be done in nne or several cores. The numher of processing cores most ly depends 

on the comple ity of processing at a panicular instance or time. Scheduling and processing 

con~s can vary during the system operation. Based on these capahilities the MARS platform 

presented a unique opportunity for development or systems fo r Space application wit h vari­

ous capahilities, as shown by 'Ta~ tTrack" project. One of the imponant factors why MARS 

2)] 



Edge 

Detection 

Left 
Image 

Right 

Image 

Image 

Inte nsity 

Figure 9.4-: Photo or the Experimental Setup wi th MARS Platform. "1'astTrack" Stereo­
Camera. and -+ LCD Displays 

platfo rm archi tecture is especially benellcial [or "Fa.'I t Track" project is the rault to le rance. 

Because the target platrorm is oriented for Space application the 'Ikcts of co!'> mic rad iatiun 

mu~t be considered . As it was mentio ned in Chapter 4, fau\[ to lerance can be ach icved by 

loading a te!'>t SSP into an FPGA to veri fy it. int egrity. I·or the experiment s in this work the 

images rcceived fro m the ''Fast Track" sterco camera werc pa!'>sed down to several image/vid '0 

process ing algorithms . The complctt.: ex cri ment al setup is shown in FiQure 9.4. In tht.: next 

three subsections the:--e algori thms are de . .;cribed in morc det ail . 

9.2.3 Results and Verification of Workload 

As was mentioned in Section 9.2 a special set of SSPs had to he desiQned for verificat ion of 

the ahove e perimental setup. This workload should test the complete system includin!.!. : 

• IliQh-framc rate capturing component. 

• Multi-channel parallel video-output pan . 

• Video-processing component. 

214 



These components were deployed on MARS platform with run-time TPM. For this purposes 

the following algorithms have been selected due to their suitability for testing and verification 

of all above mentioned components of the experimental setup: 

1. Sobel Edge detection algorithm 

2. Image histogram calculation procedure 

3. Image colour intensity calculation procedure 

The above algorithms and procedures are associated with real-time stream processing and, 

therefore, easily can demonstrate correct performance of all components of the above experi: 

mental setup. 

In the following subsections the descriptions of these algorithms are given, as well as the 

results of their implementation on the MARS platform. 

9.2.3.1 Sobel Edge Detection Core 

One of the image processing cores that was designed for the test experiment was the Sobel 

< edge detection algorithm. It operates on the images that were saved by the stereo image 

capture SSP core. Based on the algorithm described in [31], a 3 x 3 matrix of data is taken 

aoo aOt a02 1 0 -1 

from an image and each of the alO all al2 matrices is multiplied by 2 0 -2 , 

121 

and 0 0 0 , which results in the following equation: 

-I -2.-1 

{.; 't 

S. = aoo+2 x alO +a2o - a02 - 2 x a12 -a22 

S2 = aoo + 2 x aOt + a02 - a20 - 2 x a2l - a22 

R= lSI +S21 

215 

1 0 -1 

(9.1) 



I' igun~ 0.5: Photo of the Original Captured Image al1lllmage aner ProcL'ssi ng on Sobel Fdge 
DetL'Cl ion SSP Core 

In the third line of equat ion 9.1 the parlial sums 51 and 52 arc added togelhL'r and thL' ah-

solute values of the answer is saved into a new image. This operation is done over the whole 

image. BecausL' it operates with sterL'O images. the processi ng algorithm is duplicated and. 

therefore. allows processing in parallel. This SSP was implement ed in sL' veraJ variat ions by 

calculat ing Sobel edge detect ion algorithm on images in parallel. and in snies. The fi rst vari-

ation obviously provides lower latL'Ilcy. while the second saves area. and could he generated 

for a smaller size logic device. Upon comp letion of the process ing. a request is sent to the 

loader/scheduler ror the next SSP. hgurc 9.5 shows the resu lt migina lly captured image and 

the image processed with the Sobel algorit hm. 

9.2.3.2 Image Histogram Calculation 

One or the algo rithms that was designed for image processing was a run-time histogram cal-

culation. llistogram calculation is used in ITIany digital caITIeras nowadays and performs a 

function of displaying a graph of the light intensity distribution. This algorithm requires three 

steps. which have to he done in sequence. due to the algorithm's sequential nature. It is needed 

to go through the whole image and record the intensity of every pixel to thc intensity array 

counter. Since pixel intensities arc Ilxed to Rbit rcsolution there arc 256 intensity levels. The 

216 



h gure 9.6: Photo of the his togram image processing SSP core 

next step of operation is to scale the histogram to adapt the results to the screen. Since the 

resolution of the . creen is 640 x 4RO, the vertical histogram value had (0 he adjusted to 4RO 

pixels. Therefore. the overall fannula of transformation of each intensit y level is : 

Current intellsit r ----- --' - x 4RO 
MAX illtC'lIsily coll flte r 

Modified illtellsity /e ve / (9.2) 

At the completion of calculation there arc 256 cells , each representing a \evel of the in-

tensit y. These levels have to he represented in the form of a graph which is done by the next 

step, Since then: arc only 256 \cve\s and the maximum horilontal resolution is fi40 pixels. 

each bar repn;sent ing a single level is stretched to 2 pixe ls in widt h. The tinal image is formed 

as a series nfvert ical white hars and stored to the SRA M as an image. This is done so that the 

vidl:o display core would he ahle to read it as a video frame without any additional processing. 

Example o/" this image processing can he segment ed even more and these three steps can he 

saved in three separate SSP cores. Figure 9.0 shows the result of histogram image processing 

or the nrigi nal image from the previous t1gure. 

As in previous SSP cores. the fo llowin!2 st ep is to request reconflguration wit h the next 

SSP core from the configuration loader/scheduler. 

217 



rigun.' 9.7: Photo of th~ Origina l Captured I mag~ and I Illag~ ancr Proc ~ssing on Image Inten­
sity SSP Core 

9.2.3.3 Image Colour Intensity 

Th~ pU'l)ose of image colour in t~nsi ty algorithm is to disp lay t h~ intensi ty of an ima~l.' by 

diffe rent colour representation . Algorithm scans an image and ba ... ed on Ihl.' in tl.' ns ily or each 

pixel, ass igns an appropriate cnluUf. Thc image data is rl.' ad rrom the SRAM bank that was 

assigncd as a source location. Art er pixel is read it is compared to th~ lonk-up table and a 

new value from the look-up table is sawd into the correspondi ng imagc locatl.'d at a dirrcrent 

SRA M bank location . h gurl.' 9.7 shows thl.' originally capt ured image and the imag~ processed 

with the image intensity algorit hm. 

9.2.4 Results of Experimental Setup Verification 

The purpnsl.' of the experiments was to veriry the methodology of t ~mporal panit ioning ror 

a stream processing application and perform the powcr and timin~ analys is. Temporally par-

tit ioned SSP~ described in the pr~vious sections w~rc executed on Ihe MA RS platrorm. All 

ur the SSPs pl.'rformed on the images captured in run-time hy Ihl.' "TastTrack" sten:o-camcra. 

21R 



This image data was used by SSPs to perfonn data processing and temporal storage of pro­

cessed data. Final SSP core has displays the processed images on 4 video outputs simultane­

ously. Whole operation takes about"" 11 Oms and upon completion is ready for next cycle. 

Therefore, the verification stage has been successfully completed including verification of 

the proper functionality of TPM deployed on the MARS platform, The obtained performance 

parameters were registered and included in the Appendix B. Since these SSP cores were ori-

ented only for functional verification, they did not occupy a substantial area of the FPGA de­

vice to provide perfonnance measurements. Therefore, specific workload components (SSPs) 

based on highly paralleled stream processing elements have been developed and implemented 

to obtain the quantitative parametric characteristics of the multi-stream processing platform 

(MARS) with TPM. 

9.3 Experimental Quantitative Performance Characteris-

tics 

The results obtained from experimentation on highly paralleled VHC stream processing core 

are organized in a form of tables and graphs in several sections, and are used in the analysis 

section. These sections are: Logic Utilization, Power consumption, Timing results, and Bit-

stream compilation timing. These results are from experiments conducted on large SSPs that 

were assembled from the VHCs described below. 

9.3.1 Experimental Workload: Highly Paralleled Stream Processors 

t : I' .,. 

As was mentioned in introduction to this chapter, stream processing VHC was designed to 
. . . '- ~ , 

perfonn parallel computation on two 128 bit data vectors. Since the design is highly parallel, 
, 

it requires a significant amount of logic aI?-d routing resources. Due to that, it is ideal.for 

testing the resource utilization. power consumption, and timing on various FPGA devices of 



Virtex 4 LX family. The reason why LX family was selected for the MARS platform was that 

FPGAs of LX family have mostly homogeneous micro-architecture (consists of configurable 

logic and do not contain any of the embedded PowerPC hard cores and many DSP slices). 

The test involved joining several of the VHC cores in parallel into two and four of 

these VHC to form the associated SSPs. These SSPs were generated into bitstreams for 

XC4VLX40, XC4VLX60, XC4VLX80, XC4VLXlOO, XC4VLX160 devices with a pack-

age size of FFl148. Since results can vary for the same FPGA size with a different number of 

available liDs, the analysis was done on the same package of the FPGA devices to keep fair 

evaluation. The experiments were not conducted on XC4VLX25 and lower devices for the 

reason that the VHC (even as a single unit) in SSP could not be generated for this device due 

to the lack of sufficient logic. 

In addition, power analysis was conducted for all of the generated cores by the Xilinx 

XPower Analyzer. For every single SSP core the performance analysis was done based on 

three operating frequencies: 50MHz, lOOMHz, and 200MHz. Power reading was recorded as 

a quiescent power, dynamic power, and total power. For the analysis of cost-performance the 

timing results were obtained from Xilinx ISE Timing Analyzer. Results consisted of worst 

case data-path delays, as well as, worst clock to destination latencies. 

To compare utilization of logic resources, they were recorded and presented in analysis 

section. Captures of post-routed diagrams were obtained using Xilinx FPGA Editor image 

and attached in the Appendix B of the thesis. The place and route times were also recorded 

and their quantitative analysis confirmed the currently growing problem of increasing of bit­

stream compilation times as the size of FPGA increases. These findings further support the 

use of TPM approach. It should be noted that because all of the SSP core compilations were 
; '\ , ~','::: .' . 
performed on the same PC, they can be compared together. PC specifications were: Intel Core . . : :", : 

2 Duo E6600 2.4 GHz processor. 4GB ~. All comp~lations were done using Xilinx ISE 
, ~"< • .' , ' 

'.220 



Table 9.1: Logic Use in 4-LUTs per Each Device for Single, Dual, and Quad VHC SSPs 

I XC4VlX4Q I XC4VlX60 t XC4VlX80 I xC4VlX1OO t XC4VlXl60 Average! logic PerVHC 

Table 9.2: Logic Use in 4-LUTs per Each Device for Single, Dual, and Quad VHC SSPs 

xC4VlX40 I xC4VLX60 I XC4VlX80 I XC4VlXl00 I XC4VLXl60 I Average I Signals PerVHC 

Single VHC ~SP _ .. ~3Z!i~~3~6~33(t~;, •• ; .. ~39~~330"~3~.:"~;;'; •. ,,,,;.,63~8~,,,,, 
Dual VHC SSP 34641 34815 l4861 35026 14107 34824 17412 
Quad VHC SSP -tinit'f~Ciin't~9i535"';':=""'9im~91893 ':"~91668~229i7~ 

Design Suite 10.1 with all the latest service packs applied. Next sections present the results of 

the experiments and then presents the discussion of these results. 

9.3.2 Logic Utilization 

In first series of experiments with SSPs that incorporated Single, Dual and Quad VIICs are 

described in previous section. The amount of logic and signals (routing resources) utilization, 

have been recorded post place & route. Results are shown in Tables 9.1, 9.2. 

In these tables the number of 4-LUTs and signals used were almost the same across all 

devices for the same type of SSP. However, when the average is divided by the number of 

VIICs inside an SSp, the resulting number is not the same and it is increasing. It should be 

n'oted that for a single VIIC configuration the resource and signal use is disproportion ally 

smaller in comparison to Dual and Quad implementations. This fact is due to the use of . , 

embedded DSP slices first, prior to use of logic resources, which do not require much of 

routing or any of extra logic. In Quad VHC configuration XC4VLX40 and XC4VLX60, the 

devices did not have sufficient amount of logic and signal resources to be able to fit such an 

221 



Figure 9K Floor Plan for Pust Place and Rout or XC4VI.XXO with Quad VIIC Core 

SSP. therefore results were not obtainl'd . A':-o can be seen fmm FPCiA l100r plan in Figure 9. X. 

Quad VIIC SSP cnre occupied alIlln':-ot the ent i n~ XC4VLX XO device. 

Floor plan" or all the other Cll mbinati()n~ nl' Single. Dual, Quad vIle SSP cores are in­

cluded in the Appendi x B for rekrence . 

9.3.3 Power Consumption 

The next ':-ocri e':-o or experiments wen: fncu':-oed on the power consumption data I'm the same 

':-oet or SS P':-o . The power consuIllptinn was divided onto l}uiescent (" tatic ) and dynamic power. 

Power clln :-. umption wa:-. computed fnr three different rrel}uelll'ies: i) 50MIII.. ii) J()OMII!.. and 

iii) 2(X)MIL-: . 

The TabiL'':-o 9. 3. 9.<-\.. and ~ . 5 present the results ohtained after running the power analY ':-o is 

tool Xilinx XPmwr. Results consi':-.ted or l}uiescent power. dynamic power. and total power. 

As in the previous section. the experiments were conducted on the SSP cnntaining Single. 

Onuhlc. and Quad VIIC SSP cores. 

222 



Tahk 9. l: Power Consumption (Watt) or Single- VIIC SSP Corc Operated at .')OMII/. 
I O()MII/. and 200M II/. 

Qu iescent Power Dynamic Power Total Power 
D~YIc.e 

:iOM1i. lOOMIi. ZOOM Ii. 50MHr 100M .... 200MHz ~~"1 Ii. 200Mlir 

XCAVLX40 0S84 o &S5 08S0 1&50 3270 I; soc 2 BA 3.92S 7380 

XC4VLXEiO 0670 0775 1130 1690 B40 661::1 .360 4115 719C 

XCAIII..XlIC 0770 0910 1400 1690 3.3~ 6610 2460 • 24! 8010 

XC4VLX:OO 0.922 1278 1875 1727 3390 6 '00 2 ~q 4668 8.S7S 

XC4VLXlEiO l.lil 1.419 2.490 1.148 30409 f. . III Z.871 '.828 9.2D2 

J I , 

J' , 7000 

L , , ... • 
I , 

II , 11 I 

-= ) I 

" I 

(AI (BI 

Fi gu re 9.9: Quiescent (A) and Dynamic (H) Power Consumption (Wall ) I'm a Single vile 
SSP Core Operated at .')OMII / 03I uL'). I OOMII /. (RL'd ). and 200MII/. (Gre-en) 

Tah le- 9.4: Powcr Consumption of Dual VIIC SSP Core Opcrated at :'IOMII/.. IOOMII/. and 
200MII / 

Quiescent Power Dynamic Power Tota l Power 
o VIce 

5OMf<z lOOMf<r ZOOMlir 50MHr 100II,4 .... 200MHr ~1Hr 100M". 200MH. 

Xt.4VlX4O 0594 061;3 om 1922 3807 7560 2516 4490 8550 
XC4Vl X60 0680 0805 1242 18'10 3730 • 410 2570 53 8652 
l\C4VLX1IO 0791 0.966 1587 1931 3.80B 7 540 722 4774 9127 
XC'VLXlOO 09017 1199 1985 1 -5 3.859 7 62; ] 912 5058 9612 
XC4VLXl60 1158 1527 2490 193 386i 7610 3140 ';3 10100 

l ew» 

1 ')( I 

l(l()O 

=::::;:::::::::;...~--=--

(A) (81 

Hgure 9.10: Quiescent (A) and Dynamic (Ii) Power Consumption for a Dual vile SSP Con.: 
Operated at .')OMII/ (H11lI:). lOOMII/. (Red). and 200M II/. ((,rcen ) 



Tank SIS Power Consumpt ion oi" Quad vile SSP Cort; Opt;rated at SOMIII.. IOOMIII.. and 
100MII /. 

Quiescent Power ' Dynamic Po er 
Devlc.e 

X(4VLX40 

XC4VLX60 

XC4VLXSO 

XC411LXlOO 

X(4vLXI60 

I, I 

J 'lOt, 

.> f(ll! 

! 5O(l 

t (lOt, 

0.' I 

50MHr 

Can't Fit 

(In'H,t 

0 .854 

1.034 

1.289 

x " VlX J 

lOOMttr 200M~'1 

C .. n 't FII r .n'tF.I 

C. n tf t CI~ tFlt 

1.163 1.587 

1.4lI9 1.985 

1.992 2490 

fA) 

SOMHI 1000ttr lOOMIl: 

Can'IF.t (an',F" r~"'tF,' 

Ca~ tf,t Cln tf t CI~ t ,t 

2.687 5.311 10.530 

2.717 5.3~ 10.600 

2.770 5.433 10.730 

1. 00U 

1 ~' 000 

'. • I 

J .CXJO 

l'.~ 

Totat Power 

50Mtl: lOOMtil 200Mtu 

("n' tF,t (~ntt Fit Cl n 't fit 

CartFlt (In'tF,t CI"lflt 

3.S41 6. 75 12 ll7 

3.751 6.843 12.585 

~ .059 7.425 13.220 

), \ .. l) 100 )(( .tVl 11. 1M) 

fBI 

Figure 9.11: Quit;scent (A) and Dynamic (B) Powt;r ('nnsumption i"or a Quad VIIC SSP Cnre 
Operated at 50M IIz (Blue). I OOM IL!. (Red). and 200MIII. (G fL'l~n) 

Frnm the obtained re'>uit :-o the Ii gurt;s depicting the power use per devict; were ggnerated . 

Dynamic powcr consumption across all or the SSP cores on the same freljucncy ha e been 

determined . Ilowever. in the case or ljuit;scent powe r. a steady increase i"or tht; same operating 

cores was observed. As descrihed in Ch::tpter X. tht; power consumption oi" the configurat ion 

mt;mory manager was not included. This ':-0 due tn the i"actthat its cont ribution fo r all dcvices is 

very small (maximum llf 66mW in continuous recontiguration) and dot;s not impact the ovnall 

result oi" powe r consumption. Power consumption oi" configuration memory manager and 

configuration co III roller was mcasured din.:ctly on MARS platform in cnntinu()us operation. 

As in previous case of power consumpt ion in Quad VUC configuration. XC4 V LX40 and 

XC4VLX60 dcvices did not have sunicicnt amoul1l of logic and signal resources to he ahlc to 

fit :-ouch an SSP. thercfore rt;sults were nnt ohtained. 

224 



Table 9.6: Timing Operation Results for FPGAs Running SSP with Single, Dual, and Quad 
VHCs 

Single VliC SSP 

DualVHCSSP 

Clock to I Max Freq 
Destination Ins) . (MHz) 

Clock to I Max Freq 
ination (ns) (MHz) 

«~,;". 2!2 , .,-, .. ~12.2?~ 
29.253 139.08 

~------------------------~ 
XC4VLXSO I Max Delay I Clock to I 

(ns} Destination (ns) 

Single VHC SSP 1~~~'~<>-~~;:u:;.;..z,.~'-!.:."'~..;i;,;~~;',"'~"'Y:;>"':"';; 
Dual VHC SSP 
Quad VHCSSP ~"'R"ir.2"'~~~'4-C::'E"'lt~-;:"1"i,~-"~ 

XC4VLX100 I MilxDelay I Clock to I 
(ns) Destination ens) 

Max Freq 
(MHz) 

Singh: VHC SSP .":. 735 :"'j:"" :,.28..l4;.o,7-..ri ....... ~ 

Dual VHCSSP 7.42 29.4 

QuadVHCSSP 

XC4VLX160 

Single VHe SSP 

Oual VHC SSP 

QuadVHCSSP 

~----~------------------~ 

1 
Max Delay I Clock to Max Freq 

(ns) Destination (ns) (MHz) 

9.3.4 Timing Results 

The goal of next series of measurements was to determine the variations of timing parameters 

when running the same set of SSPs on all FPGA devices from Xilinx Virtex -4 LX family. The 

following timing parameters were estimated: 

1. Maximum delay of data (from pad-to-pad). 

2. Clock-to-destination timing. 

3. Maximum processing frequency which can be reached of a device executing a given 

" SSP-core. 

Table 9.6 shows the timing pararrieters for SSP cores including Single. Dual, and Quad VHC 

cores. 

225 



Table 9.7: SSP Cores Compilation Times for Single, Dual. and Quad VHC SSP Cores 

XC4VLX160 Compilation time 
(min) 

Single VHC SSP ",:,'~' a.s, ",' C 

~:;'i~$..x._~~"It~"'*~ ... 

Dual VHC SSP 24.5 

Quad VHC SSP ~..,,~~~: 58.4 • ...• -" 

From the results it can be seen that as the logic resources increase, the delay also increases. 

This, in turn, decreases the maximum operating frequency for the associated SSP. At the same 

time, the increase in clock-ta-destination delay is even more drastic. 

9.3.5 Bitstream Compilation Timing 

In Table 9.7 the timing of SSP core compilations is shown. These timing results were obtained 

from compilation of all of the above SSP cores on the PC with configuration mentioned in 

Section 9.3. 

9.4 Analysis of Results 

The overall assessment of RCS performance with TPM is discussed in this section. An anal­

ysis is done to determine the devices and size of SSP cores. that are most effective. Cost­

performance analysis demonstrate which devices are most cost-efficient for the cost sensitive 

applications utilizing TPM. Power consumpti~n analysis addresses the suitability of particular 
. . 

.devices used in TPM for different types of applications. The subsection on resource utiliza-

tion talks about the real overall utilization of resources by large designs, and problems that 
. . . 

arise with FPGAs growing ever more in logic size. Finally, the compilation process of SSPs 

, is discussed with the analysis of how the size of a monolith design greatly impacts the design 
_: :, . ! , ~ . J" ~.' ,- : 

time. 

" 226 



9.4.1 Performance Analysis of ReS with TPM 

For the perfonnance analysis of RCS, the results from Table 9.6 were used. First observation 

that can be made from Table 9.6 is a decrease of processing speed of in a case of increase in 

size of an FPGA device. As was shown in the results section, the larger FPOA devices used 

on the same SSP core, the longer is the maximum signal-to-signal delay, which reduces the 

frequency of operation from 143.68MHz to 122.55MHz on a dual VHC SSP core (over 17% 

decrease). This effect is intensified further for all of the devices when design becomes more 

complex. This is most apparent for the large devices (e.g. XC4VLX160) where from Single 

to Quad VHC SSP core frequency of operation drops from 132.63MHz to 115.47MHz. The 

same effect is observed in c1ock-to-destination node timing, where latency increases with the 

use of a larger device and increases even more with a larger design on a large device, as was 

shown increasing from 25.95ns to 34.3ns (over %32 increase). This is expected, since with a 

larger design it takes more routing lines to get to all of the resources. 

Hence, due to these reasons, utilizing a smaller FPGA device with the use of TPM ap­

proach allows acceleration of the associated SSP execution. To compare the perfonnances 

of small and large FPOA; one can calculate processing bandwidth of two data packets 10Bit 

each 'with the dual VHC SSP core running on a XC4VLX40 and quad VHC SSP core running 

on XC4VLX160. respectively:. 

230 

TjrameDUal-XC4Vl.X40 = 2 x 128 x 143.68 x 106 = 29.1ms 

230 " . 
TjrameQuad-XC4VLXUlJ = 4 x 128 x 115.47 x 1()6 = 18.2ms 

. 29.1 . 
Speedup = 18.2 = 1.59tlmes 

227 



Even though number of VHCs in SSP core was doubled, the real performance increased only 

1.59 times. At the same time, the cost of the target FPGA increased from $570 for XC4 VLX40 

to $5625 for XC4VLX160 which is close to 10 times cost increase. One can see that simply 

doubling the number of smaller FPGAs can increase the cost-effectiveness by more than 6 

times in comparison to using a larger FPGA: 

C
D f . TjrameQuad_XC4VLXI60 x CXC4VLX160 18.2 x 5625 6 17 

ost rer ormancemcrease = Tframe = 29.1 = . 
DualixC4Vl.X40 X 2 X CXC4VLX40 """"2 x 2 x 570 

. (9.3) 

By the same token dividing a large design into several smaller designs and processing 

them with the notion of TPM, greatly benefits the cost-performance of a system. An obvious 

argument for this solution is that a design can be constrained to a particular area of a large 

device in order to achieve similar performance results as in smaller devices: However, this 

is not possible in most cases due to physical I/O restrictions of the device. In general, the 
, , , 

performance on the critical path delay can be optimized. However, when a large design is fitted 

into a large FPGA consuming 85-90% of available resources complexity of routing doesn't . : " 

often allow reaching the same level of performance as for smaller designs in smaller FPGAs. 

Reduction of resource utilization in a large FPGA drops the cost-~fficiency for such designs, 

as was discussed in previous chapters. 

All aspects of the design should be evaluated, not only the IP-core synthesis, and the 

following sections explore that approach. 

, . 
9.4.2 Cost Performance Analysis of Differerit FPGA Devices 

In Chapter 5 the cost-performance ratio was discussed and evaluation of the cost of IK 4-

,Ll!fs per each device was don~, as shown ,in Table 5.1. ,When it comes down to the actual 

228 



Tahle 9.X : ('ost in $lJSD per vIle fo r Single, Dual. and Quad vIle SSP Core Configurati ons 
Across a Range of I·VGA Devices 

XC4VLX40 I XC4VLX60 I XC4VLX80 XC4VLXlOO XC4VLX160 

Single VHC SSP 19.80 25.45 24.04 36.76 49.49 

Dual VHC SSP 134.67 181.09 170.84 263. 12 349.93 

Quad VHC SSP No Data No Data 243.84 373.97 503.10 

600 XI 

500 00 

40000 

~ - !>on,,_ 
:;; 300 00 
0 - Dual u 

20000 Quod 

10000 

0 00 

X(4v\'~40 XC4V\.X60 X( 4vt.)(SO ~C"v\'Xl00 XC4 160 

h gure 9.12 : Cost- Effectiveness per VIIC of Dirrcrent FP( ,A Devic 's wi th Single. Dual. and 
Quad VIIC SS P Cores 

l!va luat ion nf the cost of thl! vI le in dilkrl!nt confi gurat ions on a whok range or devices it 

L' aluat es in $N IIC cnre. as shown in Tahle 0X 

For beller visual rcpr 'sentat io n, t he cost s are plotl ed on a graph. sh()wn nn l-'igure 9.1 2. 

The data in the tahle anu graph show that the most optimal and cost -clrect ive d vice. on 

which Dual and Quau YHC SSPs can be generated. is XC4V r.XRO since it the minimal cost 

pCI' Vile. Th is cost is lower than that or XC4V/.X6() and occurs on the graph at a poi nt just 

berme the cost per I K 4-U I,], goes up signi ficantly. As was mentioneu in other sections. it 

should he noted that the results fnr a single VllC SSP should not he taken in account. since 

in the heginning or place and route DSP slices of devicL' arc used, and logic resources arc not 

utililed significantly. Due to that reason. one Dual and Quad VI IC SSP core configurat ions 

have heen considercu. 

The anal sis or cost-e1lcctivcness nf llbtaineu results now proves 4uantitatively what was 

propOSl!U in Chapter 5. Results veri fy that utilil.ation or a . mailer tkvice IIIay he nwre L'ost-

crfective ir it is cnnsiden:d in $ pL'f I K 4- U ITs nr in $ per Vile. 

220 



6 

5 

...--' • 
!4 

___ L~_ • ... 
J9 __ Sinai'" 

• 
__ Dual 

• • • • .......OUad 
2 .. 

iii • 
1 

0 

XC4\1lX4Q XC4\1lX60 XC4VL)(8Q XC4VLX100 XC4VLXl60 

Figure 9.13: Power Consumption per VHC for Single, Dual, Quad VHC SSP Configurations 

9.4.3 Analysis of the Power Consumption 

Power consumption results have to be considered as one of the very important factors in the 

evaluation of system architecture. For the analysis of power performance Tables 9.3,9.4,9.5 

and Graphs 9.9, 9.10,9.11 are used and will be referred to in this section. The results of the 

Figures 9.9(B), 9.1O(B), 9.11(B) show that dynamic power consumption is the same across all 

of the devices with the same number of VIICs per SSP. This fact holds at different frequen-

cies of operation. If two functions utilize similar amount of resources the power consumption 

would be similar. However, the quiescent power (as seen in Figures 9.9(A), 9.10(A), 9.11(A)) 

increases linearly with the size of device. This can be explained with- the fact that a larger 

device contains more logic and, thus, more static power drains in comparison to a smaller 

FPGA device. It should also be noted, that the increase of quiescent power is relatively in­

significant and is measured around 10% for most of the scenarios going from single to quad 

- VHC SSP core. ,These results also reveal that overall power use per VHC drops as more VHCs 

are packed into an SSP. This _ is an expected result, since initial power drain of the device is 

spread over the VHCs that occupy FPGA device. This aspect of power consumption is shown 

in Figure 9.13 .. 

, 230 



The Figure 9.13 also shows that power consumption per VHC for Single VHC per SSP is 

different from Dual VHC per SSP configuration. This effect is greatly diminished when Quad 

VHC SSP. This leads into the conclusion that there is a balance between power per VHC and 

size of the device. Because a mid-range FPGA device, such as XC4VLXSO is tightly packed 

as shown in Figure 9.S, it can utilize most resources and, therefore, minimize the power use 

per VHC. All of these outcomes comply with the measurements done on the temporal video 

processing cores. Results of these measurements are attached in the Appendix B of this thesis. 

To summarize the power analysis, several conclusions are drawn regarding the device se-

lection: 

1. Design of the same size ran on different sized FPGAs use the same amount of dynamic 

power, however, devices of smaller size use much less quiescent power. 

2. Smaller devices have much smaller increase of quiescent power with the increase of 

frequency of operation (e.g. 0.S9W to 0.99 W for XC4VLX40) in comparison with 

large devices (e.g. 1.1SW to 2.49W for XC4VLXl60). This can be attributed to the 

fact that on larger device more logic is leaking static power. This further enforces the 

advantage of smaller FPGA devices with TPM architecture. 

Hence, for power critical solutions smaller devices may be a better choice. On the other 

hand, power effectiveness of smaller or medium devices strongly depends on the number of 

VHCs per SSP loaded to FPG~: In other words. if SSP occupies most of FPGA resources and 

contains as much functionality as possible, the power effectiveness will reach its maxinium. 

This is another motivation factor for development of the CAD tool which ~lows optimization 

of SSP architecture. This CAD tool (described in Chapter 7) allows to select and pack the 

SSP to utilize FPC!A device as much as possible while balancing the power consumption by 

distributing different types of VHC across different segments: 

231 



9.4.4 Analysis of Resource Utilization 

One of the important factors to be considered in evaluation of effectiveness is the resource uti-

lization of the system. For this analysis the data acquired from compilation of single, double, 

and quad VHC SSP, presented in Tables 9.1, and 9.2 was used. As it was demonstrated in 

the Section 9.4.1, the larger the design the lower is the performance. The same is true for the 

resource utilization. By examining complex designs of Dual VHC SSP and Quad VHC SSP 

an interesting fact is revealed: resource usage per VHC core is not the same. As shown in the 

tables both required 4-LUTs and number of signals per VHC increases as the design becomes 

more complex. Furthermore, if evaluation is conducted on a cost-per-VHC basis, the results 

become even more advantageous for the TPM approach and a smaller FPGA. By using lK 

4-LUT costs from the Table 5.1 following comparison of VHC costs can be made: 

CYHCDuorXC4YLX40 = 9.969KLUT x $18/KLUT = $179.42perVHC 

CYHCDuol-XC4YLX160 = 9.969KLUT x $35/KWT = $348.91perVHC 

Cy HCQuad-XC4Y LX 160 = 14.367 K LUT x 35K LUT = $502.85 per V HC 

In the case of dual VHC SSP, implemented on XC4VLX40. the cost is $179.42 per VHC . . , 

core, and when the ~esign is placed on the XC4VLXI60, the overall cost almost doubles due 

. to higher per 4-LUT cost of the larger FPGA. On the ~ther hand, when the quad VHC SSP is 

used, the cost per VHC g~es up to. $502.85 per VHC. Overall, these results show that for c~st 

sensitive applications can ~e produced a lo~er total cost by exploiting smaller or mid-range 

devices from the same FPGA fa~~y. 

232 



9.4.5 Analysis of Compilation Process 

Last but not least compilation time of the designs should be looked at, since it is becoming a 

more and more pressing issue for most of the companies in the industry. Compilation times in 

Table 9.7 show the alarming tendency, of compilation time increasing almost proportionally 

with the amount of resources used. By taking the amount of 4-LUTs utilized for the Dual or 

Quad VHC SSP core and the time it takes to perform place and route can be computed: 

. 24.5min min 
Tlme!LUTDualVHCSSP = 19.2KLUT = 1.25 KLUT 

. 58.4min min 
Tlme!LUTQuadVHCSSP= 57.37KWT = l.02KWT 

With a large design occupying whole 160K 4-LUTs of XC4VLX160 it will require 

160min 2h40min of compilation time for a single core of a completely unconstrained design. 

If constraints are present, this time can increase 5-10 times depending on how many cycles of 

re-routing have to be performed. With the latest Virtex-6 XC6VLX760 offering 759K 6-LUTs 

the compilation time would increase to at least"" 760min = 12h30min, which is not a reason-

able time for a "rapid" digital design. Hence, the cost of overall system increases even higher 

due to the cost of the place and route time of the design. This also supports TPM approach 

which stresses utilization of smaller devices of size where recompilation has to be done only 

on, the single segment component and not on the whole design. This way, if a design th~t 

was divided into 10 segments processed on TPM platform, requires a modification in one of 

the segments, it would need only tenth of the compilation time in comparison to a monolith 

design. Therefore, the further tendency of increasing the on-chip FPGA resources keeping 

methodology of monolithic (ASIC-type) design will dramatically increase instrumentation re-

sources and cost. 

233 



9.5 Summary 

This chapter presented the set of experiments that were designed for the verification of the 

TPM, as well as quantitative evaluation of the FPGA devices with different configurations of 

VHCs in SSP cores. TPM operation was verified with several video processing cores operating 

on captured stereo images. The successful tests prove that not only three or four but many more 

processing cores can be requested by the embedded system itself, hence, giving the system the 

capability of run-time architecture-to-task adaptation. Results of tests of multiple VHCs on 

SSP core showed an overwhelming support for use of small to mid-size FPGAs with utilization 

of TPM approach. Benefits of utilization of small to mid-size devices were shown in power 

consumption, specifically in quiescent power, speed of processing. and resource utilization. 

At last. the analysis of place and route time showed, that when large designs are used the 

modificationlrecompilation task cannot be performed as fast and effective as it can be done on 

mid-size FPGAs. 

Described experiments demonstrated and proved the effectiveness of temporal partitioning 

of run-time reconfigurable computing resources using small/mid-size FPGA devices. 

" \ 

234 



Chapter 10 

Summary 

10.1 Summary of Research 

Recent changes in the area of high-performance computing systems and their application are 

the major motivation for the research of dynamically reconfigurable and adaptive computers. 

The proposed r~search focuses on one of the most promising directions in this area of research 
-

- dynamically reconfigurable systems with temporal partitioning of homogeneous logic, rout-

ing, and memory resources.' The approach of temporal partitioning of FPGA resources is not 
, , ,: ~ 

new. However, previously the main advantage of this approach was considered to be an ability 

to execute tasks that required much more computing resources than an FPGA device could 

provide. This approach was motivated by limited resources that FPGA vendors provided a 

decade ago. Nowadays" the advances in process technologies allowed to increase on-chip 

FPGA resources by many orders of magnitude, so now other aspects of temporal partitioning 

can be exploited. Major aspects are potential virtualization of computing resources and dy-
, , 

narnic synthesis of processing data-paths by large macro-operators, associated with hardware 

implementations that form processing algorithms. The first aspect of virtualization of com­

puting resources is similar to virtualization of memory in conventional computers. It became 
" 

possible because of homogeneous nature of logic and routing resources in FPGA devices, 

235 



making possible the utilization of the same logic and routing resources mUltiple times. The 

dynamic synthesis of data-paths potentially can provide the system with very high flexibility. 

The flexibility means run-time adaptation of computing architecture to different changes in 

task algorithm (e.g. change for the mode of operation), as well as rapid recovery from the 

hardware faults. All these aspects, as well as the understanding of changes in the field and 

potential benefits of novel technologies have motivated this research. 

It was clear from the beginning that there are several problems that must be solved before 

getting a first working prototype which can utilize the concept of virtualization of comput­

ing resources with the existing FPGA technology. Solving these problems became the main 

objective of the proposed research. First of all, there was a need for a methodology for high­

level (architectural) synthesis of virtual hardware components that became the component 

basis for data stream processing, according to complex functions - macro-operators (MOs). 

Addressing this issue would allow to compose of application specific processors (ASPs) from 

pre-compiled hardware modules, and to program using macro-functions. However. the real 

life constraints, of logic resources, power, timing and area significantly complicate the ASP 

synthesis. It is necessary to consider multiple constraints to optimize the requested perfor-

mance parameters and to do that in relatively short time. Another problem is the sensitivity of 

SRAM based FPGA devices to radiation effects and frequent hidden manufacturing defects. 

The mechanism of fault identification and mitigation was considered from the aspect of 

run-time reconfiguration of FPGA with modification of ASP architecture. The CAD software 
. , 

provides an ability to do task programming using the macro-functions similar to object ori­

ented programming in high-level graphical form. This software part would contain certain 

CAD support 'to conduct proper segmentatio~ of programmed task algorithm and perform 

synthesis of segment ~pe~i,fic processor (SSP). whi~e being optimi~ed in m,e above mentioned 

mUlti-parametric constraint space. Both had to be implemented in a form of platform prototype . . 
~ -. ",. n" • ~ .' '. ,: 

and associated CAD tool and verified. The self-restoration mechanism which would provide 
: • • ~ ·1 

- ~; ~. ~ 

I 
. 236 



mitigation from transient and permanent hardware faults in platform FPGA also expected to 

be developed and embedded to the above platform prototype. 

As the result of the research presented in this thesis, all of the above problems have been 

successfully solved and the methodology for synthesis and design of cost-effective dynami­

cally reconfigurable computing systems with temporal partitioning of computing resources has 

been completely developed and tested. The main contributions of this research can be divided 

in theoretical and proof-of-concept contributions as described in detail in the next section. 

10.2 Contributions 

Contributions of this work are described on a per chapter basis. Since Chapters 1 and 2 

introduced the computing architectures and reconfigurable computing, the contributions begin 

with the introduction of architectural organization in Chapter 3. 

Chapter 3 proposed a novel approach to the design of TPM architecture, including ar­

chitectural organization of pipelined and non-pipelined architectures for support of the TPM 

mechanism. The methodology of architectural design of a configuration controller also was 

proposed and developed. The architecture ofTPM has been presented and published in several 

conferences and journal publications [58], [51], [54]. 

Chapter 4 covers the fault tolerance aspect of the reconfigurable systems .and proposed 

novel mitigation algorithm, that allows run-time recovery from transient and permanent faults. 

Two novel methods for run-time mitigation faults in FPGA systems with SRAM configuration 

memory were proposed and developed. Both methods utilize the concept of area avoidance. 

The first,method operates on the response from the previous diagnostic IP-core. It performs 

scrubbing or loads ,an JP-core from the library that performs similar operation and avoids the 

faulty area. The second method provides a recovery from pen:nanent faults with or without 

functional degradation by sequential reconfiguration of a set of IP-cores. These methods were 

published in the Journal for Spacecrafts and Rockets [50]. 

237 



Task segmentation was introduced in Chapter 5. The notion of cost-effectiveness of RCS 

with TPM was presented with methodology of its evaluation based on system components. 

This chapter also showed that design of a TPM system has to be balanced and reflect the per-

formance requirements in order to achieve the most cost-effective architecture. Methodology 

for evaluation of cost-effectiveness of RCS with TPM was presented in the conference and 

published in conference proceedings [52]. 

Chapter 6 presented a novel methodology of creation of Virtual Hardware Components 

(VHCs) from Macro-Operators that were in tum composed of elementary operators. Ma­

jor contribution of this chapter was development of the method for generation of a VHC set 

from an Architecture Configuration Graph (ACG) and ACG pruning. Creation of the VHC 

set is done by variation in resource binding and scheduling, which produced a diversity of 

VHCs with different performance parameters. By identification of mUlti-parametric restric­

tions. ACG tree is pruned to result in a limited set of VHCs associated with the same macro­

operator. It was shown that set of VHCs that were arranged in ascending or descending order 

for each parameter provide an efficient method of selection the optimal variant. Methodolo­

gies described in this chapter were published in journal and conference publications [51], 

[57], [58]. 

Chapter 7 proposed a novel methodology for synthesis of a set of Segment Specific Proces­

sors (SSPs). The methodology involved generation of SSPs optimized over several parameters 

of a given algorithm/task. Task segmentation is main steps were covered, such as: assignment 

of dependency rehition to each of the MOs in the sequencing graph representing a task, MO 

selection'methodology and creation of sub-ACG graphs 'which'~esult in the composition of 

SSPs. Depending on the parametric constraints, segmentation ~ay vary resulting in different 

SSP compOsitions. All of the proposed alg~rithms from this ~hapter 'were implemented in the 

GUI application that performed automatic segmentation of the created sequencing graph: 
, . 

-
238 



Chapter 8 presented contribution of hardware and software implementation towards this 

work. Hardware and software were specifically developed, implemented and debugged for 

verification of the methodologies in this work. Chapter 8 described in detail all components 

of the Multi-stream Adaptive Reconfigurable System (MARS) and the reasons why they were 

selected for implementation. The implementation of the CAD tool for task algorithm segmen­

tation and synthesis of SSP set is described with associated SPC GUI software. This chapter 

also described in detail the hardware architecture for the temporal partitioning of RCS that 

executes SSPs and its building blocks. Implementing of TPM platform and associated de­

veloped software were presented in several workshops (SVAR 2007,2008). and published in 

conference and journal publications [52.56], [55], [54]. 

Chapter 9 deal with experimental portion of this research. Specific experimental setup 

was developed for the series of experiments and for the verification of the TPM. Quantita­

tive evaluation of the FPGA devices with different configurations of VHCs in SSP cores was 

done. This chapter also presented analysis of the obtained results, and based on the analy-

sis concluded with recommendations for the design of TPM architectures. Experiments have 

proven the methodologies and concepts. Results of multiple VHCs on SSP IP-core revealed 

an ~verwhelming 'support for the use of smaller'to mid-sized FPGAs with utili~ationof TPM 

approach. Benefits of using smaller to mid-sized FPGAs were in power consumption, specifi­

cally in quiescent power, as well as, in speed of processing, and resource utilization. 

Overall, the obtained results have proved the proposed methodology and allowed to de­

velop a new class of reconfigurable computing systems that can provide several benefits based 

on utilization of computing resource virtualization such as: 

1. Flexible computing architecture that can satisfy multiple parametric requirements. 

2: Capability for automatic restoration from hardware faults and. thus. a longer life-time 

for a system. , , 1 

239 



3. Acceleration in application programming by using macro-functions instead of regular 

HDL programming. 

4. Maximization of cost-performance parameters. 

5. Application flexibility, such as multi-modal and multi-task workload instead of ASIC­

type uni-task applications. 

Nonetheless, there are some further research components which can improve and extend func-

tionality of the proposed class of RCS. 

10.3 Future Works 

As was summarized in this chapter, substantial amount of research for this thesis lead to sev-

era! ever more expandable fields that can be researched. designed, and implemented. Some of 

the areas of future work is described in this closing section. There are four main areas: 

1. Development of an integrated CAD tooL ' 

2. Incorporation of the segmentation mechanism with the run-time VHC selection in a 
, ;. 

real-time hardware OS. 

3. Fault tolerance testing in real conditions of energized particles and further verification 

of the proposed methodologies. 

< • 

4. Automation and creation of an extensive VHC and SSP library. 

Following subsections describe this work in more detail. 
,,' 

10.3.1" Integrated CAD Tool 

The developect CAD tool. that was 'presented in Chapter 8, provides a user with a capability of 

design estimation and selection of the appropriate VHCs for SSPs. This tool can be expanded 



to be a much more integrated tool for design of systems with TPM architecture. The a fully 

integrated tool would be used to create full design of SSPs with further compilation into the 

bitstreams with the options similar to the Xilinx ISE Design Suite. Altera Quartus II. and 

other designer suites. In addition, the CAD tool could have a capability of generating different 

types of library files suited for many options of configuration controller architectures. Also, 

this CAD tool should include an expert VHC creator that would allow user to generate several 

VHCs with different performance by providing only one version of VHDL or Verilog code. 

The CAD software would perform all of the remaining operations to create variance of VHCs 

that are constrained within the given parameters. This would allow such CAD tool to evolve 

and aggregate as do object classes in object oriented design. 

10.3.2 Segmentation in Real-Time Hardware OS 

Methods for task segmentation and SSP selection were designed in a way that they can be 

adapted to any computing platform. This platform is typically assumed to be a user's PC, 

however. with the current availability of powerful embedded processors segmentation can be 

executed on these processors. This would give a unique opportunity of creating self-adaptable 

hardware systems that. based on the given processing algorithm skeleton. can perform all of 

the SSP selection operations. With an availability of the extensive SSP libraries which are 

stored on a non-volatile memory, real-time hardware OS would be able to create and modify 

a configuration schedule of the TPM platform. This is also very effective for fault tolerance 

systems and would give the TPM a capability of constant self-recovery, and thus make it 

virtually indestructible. 

10.3.3 Fault Tolerance Verification & Testing 

One aspect of this work that was not field tested is the hardware fault mitigation. In order 

to verify the SEE mitigation operation, the platform with the TPM support has to be tested 

241 

/ 



at proton and ion irradiation facility. Such facility can provide bombardment of the platform 

by proton or ion particles with specified fluence and dosage, as was described in the paper by 

David Hiemstra et al. [44]. Series of such tests would be able to provide a valuable insight into 

how TPM self-recovery mechanism performs. By identifying failure trends, the granularity of 

the area avoidance could be better tuned and, hence, allow for more optimal design from the 

stand point of fault recovery and overall performance. Also, further work can be done in the 

area of SEE mitigation for terrestrial applications, since the future FPGA devices with an even 

smaller scale of the process technology. would encounter SEU on the terrestrial level. 

10.3.4 Extensive VHC and SSP library 

One of the very important requirements for the TPM architecture is a library of pre-built VHC 

modules. Since VHCs are the essential building block of the SSPs the extensive library of 

VHCs provides a greater flexibility of architecture design, and an optimal task-to-architecture 

adaptation. Such library could be created with the general support of common processing 

functions that are used in the industry. A model for the initial library can be MA1LAB pack­

age, who' s initial library of functions can be Mexpanded by the user or by purchasing specialized 

packages. In addition. the creation of the automated VHC generator fro~ the algorithm rep­

resentation would give users a tool for rapid creation of custom VHCs for their specialized 

needs. 

t. " 

, . 

242 



Bibliography 

[1] N. Abel, L. Kessal, and D. Demigny. Design flexibility using FPGA dynamical re~ 

configuration. ICIP'04. International Conference on Image Processing, 4:2821-2824, 

October 2004. 

[2] M. Abramovici, J.M. Emmert, and C.B. Stroud. Roving STARs: an integrated ap­

proach to on~line testing, diagnosis, and fault tolerance for FPGAs in adaptive comput­

ing systems. Proceedings of The Third NASA/DoD Workshop on Evolvable Hardware, 

(7):73-92, July 2001. 

[3] M. Aksit and Z. Choukair. Dynamic, adaptive and reconfigurable systems overview 

and prospective vision. In Proceedings of23rd International Conference O1i Distributed 

Computing Systems Workshops, pages 84-89, May 2003. 

[4] M. Alderighi, F. Casini, S. D'Angelo, M. Mancini, A. Marmo, S. Pastore, and G.R. 

Sechi. A Tool for Injecting SEU-like Faults into the Configuration Control Mechanism 

of Xilinx Virtex FPGAs. Proceedings of 18th IEEE International Symposium 'on Defect 

and Fault Tolerance in VLSI Systems, pages 71-78, Nov. 2003. 

[5] A. Alsolaim, J. Becker, M. Glesner, and J. Starzyk. Architecture and application of a 

'"" dynamically reconfigurable hardware array for future mobile communication systems. 

IEEE Symposium on Field-Programmable Custom Computing Machines, pages 205-

214,2000. 

243 

/ 



[6] Altera. Using the Nios II Configuration Controller Reference Designs, March 2009. 

[7] J. Becker, M. Hubner, G. Hettich, R. Constapel, J. Eisenmann, and J. Luka. Dynamic 

and Partial FPGA Exploitation. Proceedings of the IEEE, 95(2):438-452, Feb 2007. 

[8] M. Berg. Fault tolerance implementation within SRAM, based FPGA designs based 

upon the increased level of single event upset susceptibility. In IOLTS 2006. 12th IEEE 

International On-Line Testing Symposium, page 3, 2006. 

[9] Etienne Bergeron, Marc Feeley, and Jean Pierre David. Hardware JIT Compilation for 

Off-the-Shelf Dynamically Reconfigurable FPGAs. Compiler Construction, 4959: 178-

192, April 2008. 

[10] Christophe Bobda. Synthesis of Dataflow Graphs for Reconfigurable Systems using 

Temporal Partitioning and Temporal Placement. Master's thesis, University of Pader-

born, 2003. 

[11] K. Bondalapati and V.K. Prasanna. Reconfigurable computing systems. Proceedings of 

the IEEE, 90(7):1201-1217, Ju12002. 

[12] M. Borgatti, A. Capello, U. Rossi, J.-L. Lambert, I. Moussa, F. Fummi, and 

G. Pravadelli. An integrated design and verification methodology for reconfigurable .. , 

multimedia systems. Proceedings of Design, Automation and Test in Europe, 3:266-

271, March 2005. 
. i '. 

[13] Paulo S. Brand, Nascimento, and Manoel Eusebio'de lima. Temporal partitioning for 

image processing based on time-space complexity in reconfigurable architectures. In 
* , • .'_. " {. .;., ,; " , 

. DATE '06: Proceedings of the conference on Design, Automation and Test in Europe, 
, . - . ",' , . ' ; -~ -. ~ ..:' 

pages 375-380, 3001 Leuven, Belgium, Belgium, 2006: European Design and Automa-
~ »' -, ' • , ~ , ~ ': ' 

tion Association. 

244 



[14] Brendan Bridgford, Carl Cannichael, and Chen Wei Tseng. Correcting Single-Event 

Upsets in Virtex-II Platform FPGA Configuration Memory. February 2007. 

[15] C. Carmichael. Vlrtex FPGA series configuration and readback. Xilinx Inc., 2.8 edition, 

March 2005. 

[16] C. Chantrapomchai, E.M. Sha, and X.S. Hu. Efficient design exploration based on 

module utility selection. IEEE Transactions on Computer-Aided Design of Integrated 

Circuits and Systems, 19(1):19-29, Jan 2000. 

[17] Sumanta Chaudhuri, Jean-Luc Danger, Sylvain Guilley, and Philippe Hoogvorst. FASE: 

An Open Run-Time Reconfigurable FPGA Architecture for Tamper-Resistant and Se-

cure Embedded Systems. In ReConFig 2006. IEEE International Conference on Re­

configurable Computing and FPGA's, pages 1-9, Sept. 2006. 

[18J Weisheng Chong, S. Ogata, M. Hariyarna, and M. Kameyarna. Architecture of a Multi­

Context FPGA Using Reconfigurable Context Memory. Proceedings of 19th IEEE 

International Parallel and Distributed Processing Symposium, page 144a, April 2005. 

[19] Pil Woo Chun, Jamin Islam, Valeri Kirischian, and Lev Kirischian. Implementing a 
. , 

cost-effective run-time reconfigurable system for stream applications. In ICEE 2008. 

Second International Conference on Electrical Engineering, pages 1-5, March 2008. 

, I 

[20J Pill Woo Chun. Valeri Kirischian. Sergei Zhelnakov, and Lev Kirischian. Reconfig-

urable Multiprocessor with Self-optimizing, Self-assembling, and Self-restoring Micro-
. . 

architecture. In WARFP2005 Proceedings of Workshop on Architecture Research using 

FPGA Platform, February 2005.-

.- . 
[21] RP. Colwell, RP. Nix, J.1. O'Donnell. D.B. Papworth. and P.K. ~odman. A VLIW 

architecture for a trace scheduling compiler. IEEE Transactions on Computers, 

37(8):967-979, Aug 1988. 

245 

/ 



[22] Altera Corporation. Stratix II Device Handbook. Altera Inc., 3 edition, May 2005. 

[23] V. Correia and A. Reis. Advanced technology mapping for standard-cell generators. In 

Integrated Circuits and Systems Design, 2004. SBCCI2004. 17th Symposium on, pages 

254-259. Sept. 2004. 

[24] D.R. Czajkowski. P.K. Samudrala, and M.P. Pagey. SEU mitigation for reconfigurable 

FPGAs. IEEE Aerospace Conference, page 7, March 2006. 

[25] A. Dasu and S. Panchanathan. Reconfigurable media processing. Proceedings of Inter-

national Conference on Infonnation Technology: Coding and Computing, pages 300-

304, Apr. 2001. 

[26] A. Dasu and S. Panchanathan. A survey of media processing approaches. IEEE Trans­

actions on Circuits and Systemsfor Video Technology, 12(8):633-645, Aug 2002. 

[27] E. Davies. Machine Vision: Theory. Algorithms and Practicalities. Academic Press, 

1990. 

[28] R.F. DeMara and Kening Zhang. Autonomous FPGA fault handling through competi­

tive runtime reconfiguration. Proceedings of2005 NASAlDoD Conference on Evolvable 

Hardware. pages 1 09-116. July 2005. 

(29] Paulo Sergio B. do Nascimento, Manoel E. de Lima, Stelita M. da Silva, and Jordana L. 

Seixas. Mapping of image processing systems to FPGA computer based on temporal 
,. 

partiti()ning and design space exploration. In SBCCI. '06: Proceedings of the 19th 

annual S)mposium on Integrated circuits and systems design. pages 50-55. 2006. . . 

. . 
(30] A. Doumar and H. Ito. Detecting. diagnosing. and tolerating faults in SRAM-based 

. .:"" ,~ !~ .,.. f: ~, 

field programmable gate arrays: a survey. IEEE Transactions on Very Large Scale 
. , . ... ;. ; - ... 

Integration (VLSI) Systems. 11(3):386-405. June 2003. 

246 



[31] Peter E. Hart Duda, Richard O. Pattern classification and scene analysis. John Wiley­

Sons, 1973. 

[32] Michalis D. Galanis, Gregory Dimitroulakos, and Costas E. Goutis. Partitioning 

Methodology for Heterogeneous Reconfigurable Functional Units. The Journal of Su­

percomputing. 38:17-34, October 2006. 

[33] Maya Gokhale and Paul S. Graham. Reconfigurable Computing: Accelerating Compu­

tation With Field-Programmable Gate Arrays. Birkhauser,2006. 

[34] Kim Golblatt. The Express Configuration of SpartanXL FPGAs. Xilinx Inc., 1.0 edition. 

November 1998. 

[35] S.C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe. and R.R. Taylor. 

PipeRench: a reconfigurable architecture and compiler. Computer, 33(4):70-77, Apr 

2000. 

[36J S. Golshan and E. Bozorgzadeh. Single-event-upset (SEU) awareness in FPGA routing. 

In DAC '07: Proceedings of the 44th annual Design Automation Conference, pages 

330-333, New York, NY. USA, 2007. ACM. 

[37] I. Gonzalez. S. Lopez-Buedo, and RJ. Gomez-Arribas. Implementation of secure appli­

cations in self-reconfigurable systems. Microprocessors and Microsystems, May 2007. 

[38] Rafael C. Gonzalez, Richard E. Woods, and Steven L. Eddins. Digital Image Processing 

using Matlab. Prentice Hall, 2004. 

[39] P. Graham,~. Caffrey, J. Zimmerman, D. E. Johnson, P. Sundararajan, and C. Patter­

son. Consequences and Categories of SRAM FPGA Configuration SEUs. In Military 

and Aerospace Applications of Programmable Logic Devices, 2003. 

247 

/ 



[40] Masanori Hariyama and Michitaka Kameyama. A Multi-Context FPGA Using a 

Floating-Gate-MOS Functional Pass-Gate and Its CAD Environment. Circuits and Sys-

tems, 2006. APCCAS 2006. IEEE Asia Pacific Conference on, pages 1803-1806, Dec. 

2006. 

[411 R Hartenstein. A decade of reconfigurable computing: a visionary retrospective. Pro­

ceedings of Design, Automation and Test in Europe, Conference and Exhibition, pages 

642-649,2001. 

[42] PJ. Hatcher, M.J. Quinn. AJ. Lapadula. B.K. Seevers, RJ. Anderson. and R.R Jones. 

Data-parallel programming on MIMD computers. IEEE Transactions on Parallel and 

Distributed Systems. 2(3):377-383, Jul1991. 

[43] Bruce Hendrickson and Tamara G. Ko~da. Graph partitioning models for paranel com­

puting. Parallel Computing, 26:1519-1534. November. 2000. 

[44] David M. Hiemstra. rayez Chayab. and Zaeem Mohammed. Single Event Upset Char­

acterization of the Virtex-4 Field Programmable Gate Array Using Proton Irradiation. 

IEEE Radiation Effects Data Workshop, pages 105-108, July 2006 . 

. [45] RD. Hudson, D.I. Lehn, and P.M. Athanas. A run-time reconfigurable engine for im­

age intetpolation. Proceedings of IEEE Symposium o~ FPGAs for Custom Computing 

Machines, pages 88-95, Apr 1998. 

, [46] Michael Huebner, Tobias Becker, and Juergen Becker. Real-time LlTf-based network 
_. 

topologies for dynamic and partial FPGA ~elf-reconfiguration. In SBc,CI '04: Pro­

ceedings ofth~ 17th symposium on Integrated cirCuits and system design. pages 28-32, 

248 



[47] V. Kathail, S. Aditya, R. Schreiber, B. Ramakrishna Rau. D.C. Cronquist, and 

M. Sivaraman. PICO: automatically designing custom computers. Computer, 35(9);39-

47, Sep 2002. 

[48] K.M. Kavi, B.P. Buckles, and U.N. Bhat. A Formal Definition of Data Flow Graph 

Models. IEEE Transactions on Computers. C-35(11):940-948, Nov. 1986. 

[49] L. Kirischian. Optimization of parallel task execution on the adaptive reconfigurable 

group organized computing system. PARELEC 2000, Proceedings of International 

Conference on Parallel Computing in Electrical Engineering, pages 100-105,2000. 

[50] Lev Kirischian, Vadim Geurkov, Valeri Kirischian, Jacob Kleiman, and Irina Terterian. 

Multilevel Radiation Protection of Partially Reconfigurable Field Programmable Gate 

Array Devices. Journal of Spacecraft and Rockets, 43:523-529, 2006. 

[51] Lev Kirischian, Vadim Geurkov. Valeri Kirischian. and Irina Terterian. Multi-

parametric optimisation of the modular computer architecture. International Journal 

of Technology, Policy and Management, 6:327-346, 2006. 

[52] V. Kirischian, V. Geurkov. and L. Kirischian. Cost effective reconfigurable architec­

ture for stream processing applications. In CCECE 2008. Canadian Conference on 

Electrical and Computer Engineering. pages 541-546. May 2008. 

'. i 

[53] Valeri Kirischian, Vadim Geurkov, Pill Woo Chun. and Lev Kirischian. Reconfigurable 

Macro-processor - Cost-efficient Platform for Rapid Prototyping. In FAIM2007: Flexi­

ble Automation and Intelligent Manufacturing. volume 2,'pages 781-788. June 2007. 

[54] Valeri Kirischian, Vadim Geurkov, Pill Woo Chun, and Lev Kirischian. Macro­

-, . programmable reconfigurable stream processor for' collaborative manufacturing sys­

tems. Journal of Intelligent MClnufacturing, 19:723-734,2008. 

249 

/ 



y=m 

[55] Valeri Kirischian. Vadim Geurkov, and Lev Kirischian. A Cost Efficient Reconfigurable 

Video Processing Platform for Machine Vision. In Seventh International Workshop on 

Advanced Manufacturing Technologies - ATM2007, page 44, June 2007. 

[56J Valeri Kirischian, Vadim Geurkov. and Lev Kirischian. A multi-mode video-stream 

processor with cyclically reconfigurable architecture. In CF '08: Proceedings of the 

5th conference on Computing Frontiers, pages 105-106, 2008. 

[57] Valeri Kirischian. Irina Terterian, and Lev Kirischian. Optimization of Architecture 

Selection in the Multi-parametric Design Space. In 17-th International Conference on 

Systems Research, Infomatics & Cybernetics: InterSymp-2005, volume 4. pages 30-35, 

August 2005. 

[58] Valeri Kirischian, Sergei Zhelnakov, Pill Woo Chun, Lev Kirischian, and Vadim 

Geurkov. Uniform Reconfigurable Processing Module for Design and Manufacturing 

. Integrati~n. In Fifth International Workshop on Advanced Manufacturing Technologies 

- ATM2005, pages 77-82, May 2005. 

[59] D. Koch, C. Beckhoff, and J. Teich. Bitstream Decompression for High Speed FPGA 
.Ii .,! 

Configuration from Slow Memories. ICFPT 2007. International Conference on Field­

Programmable Technology, pages 161::168, Dec. 2007. 

[60] Y.E. Krasteva, ~.B. !im~no, E. de la Torre, and T. Riesgo. Straight method for realloca­

, tion of complex cores by dynamic reconfiguration in Virtex II FPGAs. RSP 2005. The 

16th IEEE International Workshop on Rapid System Prototyping, pages 77-83, June 

2005. 

[61] V. Krishnan and S. Katkoori. A genetic algorithm for the design space exploration of . ~ ~ 

datapaths during high-level sy~thesis. IEEE ~~ans,!ctions on Evolutionary Computa­

tion, 10(3):213-229, June 2006. 



[62] Alexei Kudriavtsev and Peter Kogge. Generation of permutations for SIMD proces­

sors. In LCTES '05: Proceedings of the 2005 ACM SIGPIANISIGBED conference on 

Languages, compilers, and tools for embedded systems, pages 147-156,2005. 

[63] Dhananjay Kulkarni, Walid A. Najjar, Robert Rinker, and Fadi J. Kurdahi. Compile­

time area estimation for LUT-based FPGAs. ACM Transactions on Automation of Elec­

tron Systems, 11(1):104-122,2006. 

[64] Ian Kuon and Jonathan Rose. Measuring the gap between FPGAs and ASICs. In 

FPGA '06: Proceedings of the 2006 ACMISIGDA 14th international symposium on 

Field Programmable Gate Arrays, pages 21-30, 2006. 

[65] Marco Lanuzza. Paolo Zicari. Fabio Frustaci, Stefania Perri, and Pasquale Corsonello. 

An Efficient and Low-Cost Design Methodology to Improve SRAM-Based FPGA Ro­

bustness in Space and Avionics Applications. Reconfigurable Computing: Architec­

tures, Tools and Applications. 545312009:74-84, 2009. 

[66] Lattice Inc. Lattice ispTRACY Usage Guide, tn1054 edition, February 2006. 

[67] O. Lehtoranta, E. Salminen, A. Kulmala, M. Hannikainen, and T.D. Hamalainen. A par­

allel MPEG-4 encoder for FPGA based multiprocessor SoC. International Conference 

on Field Programmable Logic and Applications, pages 380-385, Aug. 2005. 

[68] A. Lodi. L. Ciccarelli, A. Cappelli, F. Carnpi, and M. Toma. Decoder-based mul~i­

context interconnect architecture. Proceedings of IEEE Computer Society Annual Sym­

posium on VLSI, pages 231-233, Sept. 2003. 

[69] R. Lyseckya, F. Vahid, and S.X. Tan. Dynamic FPGA routing for just-in-time FPGA 

compilation. Proceedings of 41st Design Automation Conference. pages 954-959, 

2004. 

251 



[70] T. Makimoto. The hot decade of field programmable technologies. Proceedings of2002 

IEEE International Conference on Field-Programmable Technology, pages 3-6, Dec. 

2002. 

[71] V. Manohararajah, S.D. Brown, and Z.G. Vranesic. Heuristics for area minimization 

in lut-based fpga technology mapping. Computer-Aided Design of Integrated Circuits 

and Systems. IEEE Transactions on, 25( 11 ):2331-2340, Nov. 2006. 

[72] Gary S. May and Simon M. Sze. Fundamentals of Semiconductor Fabrication. John 

Wiley & Sons. Inc., 2003. 

[73] Michael Wirthlin D. Eric Johnson Nathaniel Rollins Maya Gokhale, Paul Graham. Dy-

namic reconfiguration for management of radiation-induced faults in FPGAs. Intema-

tional Journal of Embedded Systems, 2:28-38, 2006. 

[74] S. Toutounchi M.B. Tahoori. S. Mitra and E.J. McCluskey. Fault Grading FPGA Inter­

connect Test Configurations. International Test Conference. pages 608-617, 2003. 

[75] E.J. Mcdonald. Runtime FPGA partial reconfiguration. IEEE Aerospace and Electronic 

Systems Magazine. 23(7):10-15, July 2008. 

[76] F. Mehdipour. M.S. Zamani, H.R. Ah~adifar, M. Sedighi, and K. Murakami. Reducing 
'" '" " 

reconfiguration time of reconfigurable computing systems in integrated temporal parti-
, 

tioning and physical design framework. IPDPS 2006. 20th International Parallel and 

Distributed Processing Symposium, page 8, 25-29 April 2006. 

[77] B. Mei, A. Lambrechts, J.Y. Mignolet, D. Verkest, and R. Lauwereins. Architecture 

exploration for a reconfigurable architecture template. ' IEEE Design and Test of Com-

puters, 22(2):90-101, April 2005. 

252 



[78] S. Merchant, G.D. Peterson, and D. Bouldin. Improving embedded systems education: 

laboratory enhancements using programmable systems on chip. (MSE '05). Proceed­

ings of 2005 IEEE International Conference on Microelectronic Systems Education, 

pages 5-6, June 2005. 

[79] Giovani De Micheli. Synthesis and Optimization of Digital Circuits. McGrow-Hill, 

1994. 

[80J Alan Mishchenko, Satrajit Chatterjee, and Robert Brayton. Improvements to tech­

nology mapping for LUT-based FPGAs. In FPGA '06: Proceedings of the 2006 

ACMISIGDA 14th international symposium on Field programmable gate arrays, pages 

41-49, New York, NY. USA, 2006. ACM. 

[81] Abdellatif Mtibaa, Bouraoui Ouni, and Mohamed Abid. An efficient list scheduling 

algorithm for time placement problem. Hardware/Software System on Chip Co-design: 

Approach and Application, 33(44):285-298, July 2007. 

[82] PL. Murray and D. VanBuren. Single Event Effect Mitigation in ReConfigurable Com­

puters for Space Applications. IEEE Aerospace Conference, pages 1-7, March 2005. 

[83J Mark Ng and Mike Peattie. Using a Microprocessor to Configure Xilinx FPGAs via 

Slave Serial or SelectMAP Mode. Xilinx Inc., 1.5 edition, December 2007. 

, ., 

[84] K. PauIsson, M. Hubner, G. Auer, M. Dreschmann, L. Chen, and J. Becker. Imple-

mentation of a Virtual Internal Configuration Access Port (lCAP) for Enabling Partial 

Self-Reconfiguration on Xilinx Spartan III FPGAs~ In FPL 2007. International Con­

ference on Field Programmable Logic and Applications, pages 351-356, Aug. 2007. 

[85] K. PauIsson, M. HUbner, and J. Becker. C?n-line optimizatiot.'l of FPGA power­

dissipation by exploiting run-time adaption of communication primitives. In SBCCI 

253 

/ 



'06: Proceedings of the 19th annual symposium on Integrated circuits and systems 

design, pages 173-178, 2006. 

[86] R. Perez. Methods for Spacecraft Avionics Protection Against Space Radiation in the 

Form of Single-Event Transients. IEEE Transactions on Electromagnetic Compatibil­

ity, 50(3):455-465, Aug. 2008. 

[87] Brian Pratt, Michael Caffrey, Paul Graham, Keith Morgan. and Michael Wirthlin. Im­

proving FPGA Design Robustness with Partial TMR. 44th Annual., IEEE International 

Reliability Physics Symposium Proceedings, pages 226-232. March 2006. 

[88] K.M.G. Puma and D. Bhatia. Temporal partitioning and scheduling data flow graphs 

for reconfigurable computers. IEEE Transactions on Computers, 48(6):579-590, June 

1999. 

[89] Yang Qu, Juha-Pekka Soininen, and Jari Nurmi. A parallel configuration model for 

reducing the run-time reconfiguration overhead. In DATE '06: Proceedings of the 

conference on Design, Automation and Test in Europe, pages 965-969, 3001 Leuven, 

Belgium, Belgium, 2006. European Design and Automation Association. 

[90] A. D. George R. Hymel and H. Lam:' Evaluating Partial Reconfiguration for Embed­

ded FPGA Applications. In Proceedings of High-Performance Embedded Computing 

. Workshop, Sept. 2007. 

[91] J. Resano, D. Mozos, D. Verkest, and F. Catthoor. A reconfigurable manager for dy­

, , naI?ically reconfigurable hardware. IEEE Design & Test of Computers, 22(5):452-460, 

Oct. 2005. .' 

[92] L. Rockett, D. Patel, S. Danziger, B. Cronquist, and J.1. Wang. Radiation Hardened 

FPGA Technology for Space Applications. 2007 IEEE Aerospace Conference, pages 

1-7, March 2007. 

254 



[93] J. Rose and S. Brown. Flexibility of interconnection structures for field-programmable 

gate arrays. IEEE Journal of Solid-State Circuits, 26(3):277-282, Mar 1991. 

[94] E. Sanchez, M. Sipper, J.-O. Haenni, J.L. Beuchat, A. Stauffer, and A. Perez-Uribe. 

Static and dynamic configurable systems. IEEE Transactions on Computers, (6):556-

564, June 1999. 

[95] P. Schumacher, M. Mattavelli, A. Chirila-Rus, and R. Tumey. A Virtual Socket Frame­

work for Rapid Emulation of Video and Multimedia Designs. ICME 2005. IEEE Inter­

national Conference on Multimedia and Expo, pages 872-875, July 2005. 

[96] P. Sedcole. B. Blodget. T. Becker, J. Anderson, and P. Lysaght. Modular dynamic recon-

figuration in Virtex FPGAs. IEEE Proceedings of Computers and Digital Techniques, 

153(3):157-164, May 2006. 

[97] D. Seto and M. W3:tanabe. Reconfiguration performance analysis of a dynamic optically 

reconfigurable gate array aIchitecture.ICFPT 2007. International Conference on Field-

Programmable Technology, pages 265-268. Dec. 2007. 

[98] Nikunj Shroff. Memory Hierarchy for Microblaze and PowerPC based Systems. Mas­

ter's thesis, Indian Institute of Technology Delhi, May 200~. 

[99] Miguel L. Silva and Joao Canas Ferreira. Support for partial run-time reconfiguration 

of platform FPGAs. Journal of Systems Architecture, 52:709-726, December 2006. _ 

[100] D.P. Singh, V. Manohararajah, and S.D. Brown. Two-stage physical synthesis for FP-
. ,. 

GAs. Proceedings of the IEEE 2005 Custom Integrated Circuits Conference, pages 

171-178, Sept. 2005. . 

., " 

[101] H. Singh, Ming-Hau Lee, Guangming Lu, F.J. Kurdahi, N. Bagherzadeh, and E.M . 

. Chaves Filho. MorphoSys: an integrated reconfigurable system for data-parallel and 

255 

/ 



computation-intensive applications. IEEE Transactions on Computers, 49(5):465-481, 

May 2000. 

[102] Gerard I.M. Smit, Andre B.J. Kokkeler, Pascal T. Wolkotte, and Marcel D. van de 

Burgwal. Multi-core architectures and streaming applications. Proceedings of the 2008 

international workshop on System level interconnect prediction, pages 35-42, 2008. 

[103] G Snider. Spacewalker: Automated Design Space Exploration for Embedded Computer 

Systems. HP Laboratories Palo Alto HPL-200I-220, (1), september 2001. 

[104] Suresh Srinivasan, Prasanth Mangalagiri, Yuan Xie, N. Vijaykrishnan, and Karthik 

Sarpatwari. FLAW: FPGA lifetime awareness. DAC '06: Proceedings of the 43rd 

annual Design Automation Conference, pages 630-635, 2006. 

[105] C. Steiger, H. Walder, and M. Platzner. Operating systems for reconfigurable embedded 

platforms: online scheduling of real-time tasks. IEEE Transactions on Computers, 

53(11):1393-1407, Nov. 2004. 

[106] E. Stott, P. Sedcole, and P. Cheung. Fault tolerant methods for reliability in FPGAs. In 

FPL 2008. International Conference on Field Programmable Logic and Applications, 

pages 415-420, Sept. 2008. 

[107] I. Taniguchi, K. Veda, K. Sakanushi, Y. Takeuchi, and M. Imai. Task Partitioning 

Oriented Architecture Exploration Method for Dynamic ReconfigurabIe Architectures . 

. 2006 IFIP International ~onference on Very .Large Scale Integration, pages 290-295, 

Oct. 2006. 

[108] C. Tanougast, Y. Berviller. P. Brunet, and S. Weber. Automated RTR temporal partition-

ing for reconfigurable embedded real-time system design. Proceedings of International 
~ -." .. ~ ~ ~ 

J'.arallei and Distributed Processing Symposium, page~. 22-26 April 2003. 
"'" • ~ k I ~ 'it • {. 

256 



[109] R. Tessier and W. Burleson. Reconfigurable Computing for Digital Signal Processing: 

A Survey. The Journal ofVLSI Signal Processing. 28:7-27, May 200l. 

[110] Andres Upegui and Eduardo Sanchez. Evolving Hardware by Dynamically Reconfig­

uring Xilinx FPGAs. Evolvable Systems: From Biology to Hardware, 3637:56-65. 

2005. 

[111] Nikolaos S. Voros and Konstantinos Masselos. System Level Design of Reconfigurable 

Systems-on-Chip. Springer, 2005. 

[112] Xilinx Inc. Xilinx Configuration Solutions, 1.1 edition, May 2006. 

[113] Xilinx Inc. ChipScope Pro Software and Cores User Guide. v9.1.01 edition, 2007. 

[114] Xilinx Inc. Embedded System Tools Reference Manual, 10.1 edition. February 2008. 

[115] XiHnx Inc. Radiation-Tolerant Virtex-4 QPro-V Family Overview, 1.2 edition. Decem-

ber 2008. 

[116] Xilinx Inc. Single-Event Upset Mitigation for Xilinx FPGA Block Memories, 1.1 edi-

tion, March 2008. 

[117] Xilinx Inc. System ACE CompactFlash Solution, 2.0 edition. October 2008. 

[118] Xilinx Inc. Virtex-5 FPGA User Guide. 4.2 edition, May 2008. 

[119] Xilinx Inc. Virtex-5 FPGA Configuration User Guide, 3.6 edition, February 2009. 

[120] Hui-Jae You. Sun-Tae Chung, and Souhwan Jung. Optimization of SAD Algorithm on 

VLIW DSP. Engineering and Technology World Academy of Science. 27:1307-1314, 

- February 2008. 

[121] Chi Wai Yu, Julien Lamoureux. Steven J.E. Wilton, Philip H.W. Leong, and Wayne 

Luk. The Coarse-Grained I Fine-Grained Logic Interface in FPGAs with Embedded 

257 



Floating-Point Arithmetic Units. 4th Southern Conference on Programmable Logic. 

pages 63-68, March 2008. 

[122] Hamid R. Zarandi and Seyed Ghassem Miremadi. Dependability evaluation of Al­

tera FPGA-based embedded systems subjected to SEUs. Microelectronics Reliability, 

47:461-470,2007. 



Appendix A 

Border Variant Search 

This is an example of the border variant search for a VHC with a limitation of 40m W. based on 

the resources shown in Figure 6.17. The comparison of Figures A.l and A.2 shows that after 

only 5 iterations of the algorithm the border variant of the VHC was found. By identifying the 

border variant, the rule R3,2 -+ RI, 1 -+ R2,3 is determined which is used in the subsequent 

searches of the VHC variants based on other parameters. 

A border variant search for the VHC with a limitation of 225CLB is shown in the Figure 

A.3. Similarly as with the power parameter comparison of Figures A.3 and AA shows that 

after 6 iterations of the algorithm the border variant of the VHC was found. A new rule is 

identified to be R2, 2 -+ R3, 2 -+ RI, 1. 

Figure A.I: Example of ACG with Selected border Variant of VHC with a 40 mW Limit 
Restriction " . 

259 

/ 



• Result Path r ..... c,>,_ 

124mW R].3-Rl.2-R2.3 . 
236mW R3,3-1\1,2-R2.3 · > 

346mW R3.3-1\1.2-I\U · " 
43SmW R3.2-Rl,l-l\2.3 ~3.2;1\1,1 > 

S41mW R3.2-1\1.1-1\2.2 ~3.2;1l1,1 • 

Figure A.2: Sequence of search for power consumption border variant with a 40 m W limit 

Figure A.3: Example of an ACG with Selected border Variant of VHC with a 225 CLB limit 

• -- Pail. - ~>,. 

1 212CLBs R2.2-R3, .... R1,2 • 
2 312ClBs R2,3-R3,4-R1,2 . .. 
3 217CLB. R2,2-I\3,I-Rl,2 1\2.2 • 
4 mCLBs R2.2-1\3.2-R1,2 1\2.2 > 

5 232CLBs R2.2-1\3.1-R1,2 1l2,2 c 

6 22.5ClBs 1\2.2-R3,2-1l1,1 R2.2;R3.2 · 

Figure A.4: Sequence of search area requirement with a 225 CLB 

260 



1 _ .2,) 

1 ')( - 18 

~ lot·16 

~ 
1')(.1. 

1 ot- l~ 

~ lot .. 1? 

i 1!J£..o 

~ lOf .. 06 
() 

C .a 1 D(+Q.I 

1 2 S • 5 1 • 9 ') 11 12 11 U 15 16 17 I~ 19 2:1 

I igure AS: Logarithmic COIllpari"on Hetween I 'ulllber of Variant" in Lxhau"tive AC(j (jcn­
cration and horder Variant "iearch Algorithm 

I-igure AS "how" the compari"on of elTcctivenc"" of thi" algorithrrL It ho ....... in Ingarith-

mic "calc. the number of opcration .... rCljuired for horder variant "earch hy l'xhaU',tivc (hlue) 

methoJ and prop(hcd non-exhau"tivc (red) mcthod_ 



262 



Appendix B 

Power Consumption 

I "oL\owing figures show complete power calculations that were done by the Xilinx XPower ca]-

culator for t he expe riments a descrihed in Chapter (} Figure 13 .1 shows the power consumpt ion 

or the dilTcrent FPGAs at three dill erent frequenc ies of operat ion. f rom these graphs it is ap-

paren t that stati c power inc r 'ases with the si/e of th 'de ice and the dy namic power increa. 'Cs 

with the frequency o\" operat io n and it i ~ consistent across all of the de ices. This trend is con-

stant across all of the experiments wit h various types or implementat ions. Implement at ions 

varied in usc of HlockRAM modules. outputli nput hlocks and amount of ut ili ;:ed logic. The 

only except ion was XC4VI .x40 in the experiment wit h int egrated ChipScopc Pro shown in 

Figures B.] and 13 .4, who 's power consumption was higher than that of larger de ices. and 

can he att rihuted to the internal architecture o\" the ChipScope Pro. 

\' 

J-"ig ure H.I: Quiescent (A) and Dy namic (H) Power Consumption for the Sobl'l image pro­
cess ing SS P core. Cnre is operated at .'iOMII / (Blue ), 100MII;: (Red). and 200MII;: (Green) 

26] 



01 

.. 
" .. 
11 

1 ,. 

l-'i gure 8.1: Quicscent (A) and Dynamic (B) Power Consumpt ion for the Vidco Output SSP 
corc. <. \ )rc is operated at SOMIII (Blue). I ()OMII/. (Red), and 200M III. (Grcm) 

,. 
" 
12 

Figure B.3 : Quicscent (A) and Dynamic (B ) Powcr Consumptilln for the Sobel image pro­
ccssing SSP core. Core is operated at SOMll l (Blue). 100M I I/. (Red ), and 200M II/. (Cl reen ) 
wit h Integrated ChipScope Pro . 

I. 

1 4 

" 
o. ~ 
06 

O. 

02 
~---------

Figure 8.4: Quiescent (A) and Dynamic (8) Power Consumption for the Video Output SSP 
core Core 0plTated at SOMIlI. (81U1.:). 100M II /. (Red), and 200MII/. (nrl'Cn) with Integ ratcu 
<. 'hipScopc Pro 

264 



/ 

Appendix C 

Resource Utilization 

Figures C.1.C.2.C.3,CA,C.5 show the resource consumption of a single, dual, and in case of 

large FPGAs quad VIIC cores. Experiments are described in Chapter 9 and these figures are 

included for completeness, in order to show the fioor plans of the FPGA devices after place 

and route procedure. 

265 



Figure ('. 1: Floor Plans an n Place & Route for Single anLi Dual XC4VLX40 1 ''PGA 

Figure C.2: Floor Plans aft er Placl: & Route for Single anLi Dual XC4VLXoO FPClA 

266 



Figure C.3: 1:loor Plans aft er Place & Rout t..: fur Single. Dual anJ QuaJ XC4VIXSO FPGA 

Figure ('.4: l100r Plans after Place & Rout e for Singl ' . Dual and Quad XC4VLX IO() FPGA 

267 



Figure ('.5 : Floor Plans artcr Place & Rnu\c for S ingle . Dual amI Quad XC4VLX 160 I-VGA 

26X 



;. 

AppendixD 

Comparison of Systenl design with 

Virtual Hardware Components utilizing 

TPM to Standard-cell Approach 

Chapter 7 talked about the MOs and VHCs, corresponding to them that get selected by the 

CAD software to form the SSP cores. This methodology of conversion of SO to VHCs and 

segmenting them into SSPs in some ways can be compared to the mapping technology of the 

standard-cell approach. 

Standard-cell design technique uses parts of the design that have been created ahead of 

time or, possibly, used in other designs. The collection of cells is called cell library. Each cell 

has detailed specification of its characteristics (such as: schematic/diagram, description. logic 

area, delay, HDL code), which is used by a designer or a CAD software in system design. 

Technology mapping performs three main steps on an SO: decomposition. matching, and 

covering. The decomposition step transforms the initial ~O into several smaller trees which 

are further segmented [23]. Technology mapping may focus on number of dimensions of the 

design space, such as: cost, performance. area, power. Area also can be used as a simple 

measure of cell's costs which is optimized depending on the restriction requirement. 

269 

/ 



There are several significant differences between TPM approach and standard-cell ap-

proach: 

1) The first major difference is the actual concept of temporal partitioning which is the 

driving factor in algorithm segmentation. 

2) The standard-cell approach is dealing with spatial partitioning of logic resources. The 

selection of the cells from the library is based on the algorithm which is described as the 

low level synthesis form of the logic operations. The logic operators are grouped and trans­

formed into the equivalent operations that exist in the cell library [80; 71]. On the contrary, 

the proposed approach is oriented towards high-level synthesis of SSP architecture where SSP 

is created from large macro operators (MOs). These MOs are later associated with the VHC 

implementations of MOs. 

3) VHC selection is based on several factors associated and optimized for a particular seg-

ment and its performance parametric restrictions. Standard-cell approach is oriented towards 

the fine grain implementation. In spatial partitioning, the design is restricted to the size of 

FPGA, unlike the temporal partitioning where the size of the FPGA is not a hard restriction, 

and is mostly constrained by the timing requirements. 

Together with many approaches oriented towards utilization of pre-compiled components 
, . 

collected in libraries, the standard cell approach seems to be similar to the proposed method-

ology of SSP synthesis in a way of automation of algorithm segmentati~n and IP-core gen-
.;: ,f 

eration. However, the type of segmentation is conceptually different and addresses different 

aspects of automated design, hence the two approaches cannot be objectivel; ~oinpared.· 

'270 



AppendixE 

Proposed Reconfigurable Device 

Architectures 

Based on the conducted research work one of the greatest influences on system performance is 

the bitstream configuration bandwidth. This is important both for single and multiple FPGAs 

system designs. An increase in configuration interface bandwidth allows to use of smaller 

granularity of task divisions in multiple FPGAs system designs, and for smaller downtime in 

single FPGA system designs. There are several design approaches that significantly impact 

the overall configuration bandwidth. This section will cover them briefly, and describe pros 

and cons of these approaches. 

! ' 

E.l Wide Configuration Bus Architecture Operating at 

High Configuration Clock Speed 
, " 

As was described in previous chapters, currently the maximum bitstream configuration band-

width is limited to 3.2Gbitlsec. In addition, this bandwidth i~ only available in Xilinx Virtex 

4, 5, and 6 families. None of the other FPGA vendors provide such high configuration speeds. 

: 271 



Since bandwidth is linearly proportional to the bus width and clock speed, doubling either 

of these parameters will double the configuration bandwidth. Therefore, most designs of the 

future FPGAs that are aimed to support temporal partitioning should strive to increase the 

number of configuration interface pins and increase configuration frequency. 

In addition, DDR configuration memory should be explored as a possible alternative to 

SRAM. Latest DDR3·1600 memory that operates at 200MHz can provide a bandwidth of up 

to 12800MB/sec = 102.4Gbitlsec. Due to its capacity and significantly lower price such mem-

ory could be much more cost-effective for TPM solutions. However, because control of DDR 

memory is typically challenging. implementing DDR controller directly in the FPGA con fig-

uration controller would be an ideal solution. This would provide a 30 times speedup over 

the currently existing solution and allow to configure FPGA device in orders of microseconds 

instead of milliseconds. 

E.2 Internal Configuration Buffer with One Clock Cycle 

Upload. 

Another proposal for configuration SRAM architecture is to create an internal pre-fetch buffer. 

Pre-fetch buffer represents a pre-fetch SRAM cell which is placed right before the configu­

ration cell. The idea behind a pre-fetch SRAM cell is to be able to update its contents using 

same address bus lines without drastically changing/complicating the FPGA routing. The only 
1 t" ..... ' 

other component present is a pass transistor or tri-state buffer. This transistor or tri-state buffer 

is connected to!l global enable line organized in a form of a clock tree. A global enable line 

, allows to enable all of the pass transistors or tri-state buffers to transfer values of the pre-fetch 
., :/ I., t '. 

SRAM cell to the configuration SRAM cel1. The purpose of having a global enable line in 
.. ~ ~ -

a clock tree-like fashion is to have a close to one cycle simultaneous switch to a pre-fetched 

1272 



To FPGA cOnfigUrationitran~istor 
Transfer Ena ble 

Word line 

Pass Transistor '-------1~----_+-, 

BITline BIT line 

Figure E.1: Configuration SRAM Cell with Pre-fetch 

configuration. The illustration of the sample schematic of an SRAM cell with pre-fetch is 
< ' 

shown in Figure E.1. 

The key difference of this architecture, in comparison'to the multi-context FPGAs men­

tioned in Section 3.2.1, is the actual ,switch between the configurations. In multi-context 

FPGAs input of the configuration transistor is switched from one SRAM cell to the other. In 

the configuration SRAM cell with a pre-fetch however, by enabling Transfer Enable line, the 

contents of the pre-fetch SRAM cell are transferred to the configuration SRAM cell. Transfer­

ring of the pre-fetched value to the configuration SRAM overwrites the configuration value, 
, ' , 

where in the context switch FPGAs configuration SRAM cells are multiplexed. Advantage 

of this architecture in comparison to the multiplexed one is, the amount of logic and routing. . , 

In this' configuration there is an increase in transistors, but only by an additional pre-fetch 
" ' ii ' " 

SRAM cell. In multiplexed configuration of an SRAM cell and a multiplexer are required. 

Considering only two configuration contexts are used in multi-context FPGA transistor for 

pre-fetch drops to 12 transistors in comparison of 16 for the multiplexed. Most importantly, 

the -multi-context FPGA requires much more routing resources for the additional addressing 

273 



and data lines to the second SRAM cell. The pre-fetch configuration, on the other hand, does 

not require any additional addressing and data lines. Since pre-fetch SRAM cell is located on 

the same address/data lines, its own value is updated over the address and data lines of the con­

figuration SRAM. This gives two modes of operation: the straight through and pre-fetched. In 

straight through, configuration SRAM obtains a value directly during the configuration cycle, 

like a traditional FPGA. For that a pass transistor is turned on and both pre-fetch SRAM and 

configuration SRAM get the same value. During the pre-fetched mode, which configuration 

SRAM cell is not affected since the pass transistor is turned off, and the pre-fetch SRAM cell 

gets a value update over the common address and data lines. After completion of the pre-fetch 

SRAM load, data can be transferred to configuration SRAM at any point simultaneously by 

setting the Transfer Enable line. 

The overall number of transistors increases from 6 to 12 per configuration SRAM cell . 

. However, since the new pre-fetched SRAM cell does not require any other control connections, 

, its implementation on silicon does not complicate the FPGA design. This approach allows an 

FPGA device to continue operation while the' next SSP bitstream is preloaded to the pre-
, . 

fetch SRAM. At the same time, no addition of the address lines are needed and the only 

architectural modification required is the modification of the configuration SRAM to a pre­

fetched configuration SRAM cell, as shown in the Figure E.I. It also has to be mentioned that 

, sizing of the pre-fetch SRAM cell is also required in order to be able to transfer a value to the 

configuration SRAM cell. In a case of two identically sized SRAM cells transferring value 

from one to the other will not be possible. Therefore, four transistors in the pre-fetch SRAM 

will have to be 3-4 times larger in area, depending on the process technology. 

There is also a slightly different approach, which builds on the pre-fetch and context switch 
" . 

. , " 

idea to produce a more elegant solution. This approach is discussed in the next section. 

274 



=~:i'!.'. ~r-~---J--I r --- - - -

SAAMO ~ : 

~iJ- _LAIIlI- ___ , 
! ~ ~-

, t-+ -"'--:--;_'1 
I ~~ -( ~ --I--'I,"" ---'f 

~ '"1 'I 
SRA~l ~: ___ ~ .-__ ...... !_J 

I-sIT line BIT line 

Figure E.2: Dual-context Configuration SRAM Cell Configuration 

E.3 Dual Context FPGA with Address and Data Pin Reuse 

Similar to the previous approach, this architecture does not require modificatio~ of the routing 

resources, and there are no additional address or data lines. The only additional SRAM se­

lection line needed. It is organized similar to clock tree architecture, as mentioned in Section 

E.l. In this configuration both SRAM cells are connected to the same address and data lines. 

The difference is that there is an additional pass transistor which is activated in complement 

between the SRAMO and SRAMI cells. At the same time SRAM selection line sets the mul-

tiplexer to output either of the SRAM cells to the configuration transistor. Note that while one 

SRAM cell is enabled for writing the other is used as a configuration SRAM. This operation 

is mutually exclusive, therefore, when new configuration is written to the SRAMO cell the 

SRAM 1 is not disturbed, and vice versa. Schematic of this setup is provided in the Figure E.2. 

There are several advantages of this configuration compound to the one presented in the 

Figure E.l. Even though this 'configuration requires 20 transistors per single configuration 

memory cell in comparison to 12 in the previous proposal, it actually might take less area 

depending on the technology used. Transistors in previous configuration pre-fetch SRAM 

cell have to be four times larger in area. This is neces-sary to be able to change the value 

of the configuration SRAM cell. Therefore, considering that 4 transistors from the previ­

ousconfiguration require four times the area, the overall area would roughly be equivalent to 

275 



(16 - 4) + 4 x 4 = 24 transistors. However, both approaches achieve the same objective of 

minimizing the impact on routing by addition of only single Enable/Select line, while provid­

ing capability of upload of a new SSP without interruption of device operation. These two 

approaches remove the need for the second FPGA (e.g. Figure 3.7) and signal switching pe­

ripherals. Therefore, if included in the architecture design, it would simplify the overall design 

of the temporal partitioning systems. This approach allows to hide the configuration overhead, 

as was discussed in Section 3.3.8. 

E.4 Isolated Multi-Core FPGA Design with Common I/O 

Interface 

There are FPGA devices that are capable of partial re-configuration, as was mentioned in 

previous chapters. The partially configurable FPGAs allow to reconfigure a frame or a tile of 

an FPGA device, without interrupting the operation of the remaining cores. However, support 

for the partial design currently lacking and there are tight restrictions on development of partial 

cores. In case of temporal partitioning, division of an FPGA even in half would allow for the 

configuration of one half of the FPGA ~hi1e the second one is processing. For the multi-core 

FPGA two identical cores are included in_ a single device and multiplexed to the same I/O pins, 

as shown in Figure E.3. Their configurati<?n is performed independently and development of 

the IP-core can be done without any dependence on the other core. By including even more 

cores it is possible to achieve a much more flexible architecture of interconnected independent 

FPGA cores. This, however, increases the overall size of the FPGA device and would only be 
, 

applicable for a specific type of application. 

Therefore. by including support for either a simple division of the FPGA in half, or multi­

core FPGA implementation temporal partitioning mechanism will be wt:ll supported . 

. ' 

276 



Figure E.3: Multi-core FPGA 

E.5 Proposed Remote SSP Generation on a Compilation 

"PC Farm" 

A task of SSP synthesis of a set of VHCs, into a final configuration bitstream requires a 

substantial amount of time. The reason for that is the large amount of logic on recent of 

FPGAs and the number of iterations taken by the development CAD tool for place and route 

of a given circuit. To address this issue, there is a possibility to create a dedicated "PC Farm", 

which would perform the actual task of bitstream generation. There are several advantages 

of such approach. First of all, "PC Farm" can be specifically tuned for the task of running 

synthesis. place & route. This can be achieved by dedicating a series of machines with multi­

core processors and adequate amount of RAM. A user would be able to send a request from a 

remote workstation over a web interface. "PC Farm" would respond with the current status of 

the request, and sets of generated bitstream files. 

The other advantage of such system is that it allows the true reuse of SSPs. Since all of 
,. ~-

the previously generated SSP bitstre~ instances are stored on the "P~ Farm" servers, ,these 

SSPs can be reused. If a particular combination of vnc~' is requ~sted and if it already exists 

as a compiled SSP bitstream on the server, user will get an advantage of an immediate. reply 
,~ ,j' • 

with a set of bitstreams. This aspect can tremendously increase the productivity and cut down 

277 



development time. In off-peak: hours common types of requested combinations of VHCs can 

be compiled and stored for possible future use. Overtime, as more users generate various 

SSPs, this system would become even more efficient. 

Regarding the storage space, currently, as a single hard drive can exceed 2TB in size, it is 

possible to store about 500000 bitstrearns of the largest FPGA device on one drive. Therefore, 

a single storage rack of 16 hard drives can store about 8 million bitstream SSP cores. Vari­

ous data management techniques can be employed for the previously compiled bitstreams to 

optimize the space used. This aspect is not discussed here, since this is not the focus of this 

section. 

Another advantage of PC Farm is that the synthesis and place & route software is not run 

on the user side, therefore, user can continue development without interruption of bitstream 

compilation. Also, "PC Farm" development tools are always up-to-date, optimized and main­

tained. Hence, the user will not be concerned with such routine tasks. Last but not least, user's 

PC only requires to be able to run SPC GUI, and therefore, can be significantly inexpensive. 

Such approach would benefit users in accelerating development by performing compilations 
, , 

off-site and by reuse of SSP bitstreams. In addition, "PC Farm" will guarantee up-to-date 
, 

software and minimal resource requirement on user's side. 

E.6 SummB:ry of Proposed Architectures 

.. . 
In this section several architectures were proposed and described including: increasing bit-

width of the configuration bus along with the clock speed; utilizing a configuration pre-load 

buffer with a single cycle upload. FPGA vendors can increase the speed of configuration by 

. employing any of th~s~ proposed approaches. At the saIne time, the combination of several of 

these approaches at various degree of complexity can increase the bandwidth further. By the 

use of these approaches temporal partitioning systems would become easy to integrate into 

278 



designs, thus providing more cost-effective and adaptive solutions for ever more increasing 

processing demands. 

279 

/ 




