THE METHODOLOGY OF SYNTHESIS OF DYNAMICALLY
RECONFIGURABLE COMPUTING SYSTEMS WITH TEMPORAL

PARTITIONING OF HOMOGENEOUS RESOURCES

by
Valeri Kirischian
B.A.Sc. University of Toronto 2004

M.A.Sc. Ryerson University 2005

A dissertation
presented to Ryerson University
in partial fulfillment of the
requirements for the degreee of
Doctor of Philosophy
in the pfogram of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2010
PROPERTY OF->~—~

Copyright ©2010 Valeri Kirischian RYERSON UNIVERSITY LIGRARY

Author’s Declaration

I hereby declare that I am the sole author of this thesis.
I authorize Ryerson University to lend this thesis to other institutions or indi-

viduals for the purpose of scholarly research.

”

Signed:_ Date: Ma J(/ S/J 2010

—

Valeri Kirischian

I further authorize Ryerson University to reproduce this thesis by photocopy-
ing or by other means, in total or in part, at the request of other institutions or

individuals for the purpose of scholarly research.

May S 2010
77

Signed — Date:

Valeri Kirfschian

Acknowledgements

I would like to express my sincere gratitude to Dr. Vadim Geurkov Associate Professor of
Electrical and Computer Engineering, Ryerson University. He has been my supervisor since
the beginning of my graduate studies at Ryerson University. Dr. Vadim Geurkov provided
me with many helpful suggestions, important advice and constant encouragement during the
course of this work. My keen appreciation goes to Pil Woo Chun, Jamin Islam and Sergiy
Zhelnakov for their valuable assistance in the field.

I would like to acknowledge the financial support from the following organizations: the
National Science and Engineering Research Council (NSERC), the Ontario Centres of Ex-
cellence (CITO), Material and Manufacturing Ontario (MMO), MDA Space Missions, CMC
Microsystems, Unique Broadband Systems (UBS), Xilinx Corporation and the Department of
Electrical and Computer Engineering at Ryerson University for their financial support of this
work. I also want to thank Jim Koch, Jason Naughton, and Daniel Giannitelli for technical
support during my studies at Ryerson University.

I would like to express special thanks to my wife Irina and my son Ivan, who helped me to
concentrate on completing this dissertation and supported me during the course of this work.
Finally, my special appreciation goes to my parents who encouraged and supported me during

my studies in graduate school.

Abstract

The Methodology of Synthesis of Dynamically Reconfigurable Computing Systems with

Temporal Partitioning of Homogeneous Resources

Valeri Kirischian
Doctor of Philosophy
Electrical and Computer Engineering
Ryerson University 2010

The main motivation factors for the proposed research were the increase of cost-efficiency
of FPGA based systems and the simplification of the design process. The first factor is op-
timization of design in multi-paramet/ric constraint space. The second factor is the design
of reconfigurable systems based on higher level of abstraction in a form of macro-fuﬁctions
rather than conventional HDL primitives. Main goal of this work was to create a‘methodology
for automated cost-effecti\}e design synthesis of FPGA systems by utilizing temporal paﬁi-
tioning concept. Temporal partitioning' provides powerful mechanism that allows to design
cost-effective multi-parametrically optimized architectures: Another feature :)f these architec-
tures is the ability for run-time self-restoration from hardware faults. As fhe result of the pro-
posed research this methodology was created and éuccessfully verified on the first prototype of
Multi-mode Adaptive Reconfigurable Syétem (MARS) with embedded Temporal Partitioning

Mechanism (TPM). A special CAD software system was developed for automated application

programming, automated task segmentation, and further high-level synthesis of segment spe-
cific processors (SSPs). Several novel methodologies were proposed, developed, and verified
including: a methodology for creation of macro-operators (MOs) and associated set of opti-
mized virtual hardware components (VHCs); an automated task segmentation methodology
and synthesis of segment specific processors from the VHCs; methodology for integration of
fault tolerance mechanisms with the self-restoration capability. The latter mechanism made
possible the mitigation of transient and permanent hardware faults in run-time. The proof-of-
concept component of this research consists of implexhentation of the above methodologies
and mechanisms in the special software CAD system and veriﬁcétion on the experimental
setup based on the prototype of system with TPM (MARS platform). As the result, all the
developed methodologies and architectural solutions were tested and their effectiveness was

demonstrated.

Nomenclature

ACG Architecture Configuration Graph
ALU Arnthmetic Logic Unit

ASIC Application Specific Integrated Circuit
ASP Application Specific Processor

BISR Built-In-Self-Recovery

CAD Computer Aided Design

CF Compact Flash

CLB Conﬁguraﬁon Logic Block

CPLD Complex Programmable Logic Device
CPR Cost Performace Ratio

CRC Cyclic Redundancy Check

DAC Digital to Analog Converter

DDR Double Data Rate

DLP Data Leygl Parallelism

DRC Design Rule Check

DRCS Dynamically Reconfigurable Computing Systems
DSP Digital Signal Processing

EO Elementary Operator

ERSL Embedded Reconfigurable Systems Lab
FPGA Field Programmable Gate Array

FPOA Field Programmable Object Array

FPP Fast Passive Parallel

GUI Graphical User Interface

HDD Hard Disk Drive

HDL Hardware Description Language

ICAP Integrated Configuration Access Port
ILP Instruction Level Parallelism

IOB Input Output Block

IP Intellectual Property

LUT Look-up Table

LVDS Low Voltage Differential Signal

MAC Multiply Accumulate

MARS Multi-stream Adaptive Reconfigurable System

MIMD Multiple Instruction Multiple Data
MO Macro Operators

OTS Off-The-Shelf

PCB Printed Circuit Board

PLA Programmable Logic Array

PLD Programming Logic Device
PROM Programable Read Only Memory
RCS Reconfigurable Computing System
RF Register Files

ROCR Riverside On-Chip Router

RTR Run-Time-Reconfigurable

SEDR Single Event Dielectric Rupture
SEE Single Event Effects

SEL Single Event Latch-up

SET Single Event Transient

SEU Single Event Upset

SG Sequencing Graph

SIMD Single Instlluction Multiple Data

SPC Segment Partitioning Creator

SPM Segment Processing Module

SPR Spatial Partitioning of Resources
SRAM Static Random Access Memory
SSP Segment Specific Processor

TPM Temporal Partitioning Mechanism
TPR Temporal Partitioning of Resources
USB Universal Serial Bus

VHC Virtual Hardware Component
VLIW Very Large Instruction Word
VME Versa Modular Eurocard

VPR Versatile Place and Route

Contents

Acknowledgements
1 Introduction ‘ 1
L1 Introduction @ittt it 1
1.1.1 Applit;ation Aspect . . . L L e e e e e e e e e e 2
1.1.2 Miniaturization and Embedded Systems Aspect ee . 2
1.1.3 Technological Aspect ¢ v v ittt i ey 3
12 MOUIVAtON . . o v v v v vt et e e e e e e e 4
1.3 Objectives e e e e e e e e 5
1.4 Contributions e . 6
15 ThesisOrganization o v v v v v v it i e s e e e e e e 9
2 Architectures of Reconﬁgurable Computing Systems (RCS) 11
2.1 Correspondcnce Between Workload Specifics and RCS Architecture ..o 1
2.1.1 Workload Spemﬁcanon and Definition. 11
2.1.2 General Evolution of Computing Architectures 13
2.1..3~ ASIC and FPGA Static Stream Processors 16
2.2 Introduction: Concept and Benefits of RC’S R '. Cee e U ¥/
2.3 Deﬁnmon and Classification of RCS o e 18
2.3.1 Statlcally and Dynarmcally Reconﬁgurable RCS .. e 20

2.3.2 Fine Grain and Coarse Grain Architecturesof RCS 21

2.3.3 Resource Partitioning SchemesinRCS 23
233.1 TPMtoSPMcComparison . . v v v v v v v v v v n s v n o 26

2.4 Cyclically Reconfigurable Architecture with Macro-Block Processing Cores . 27
2.4.1 Temporal Partitioning as a Macro Operator Approach 28

2.5 Definition and Classification of Programmable Logic Devices 30
2.5.1 The Concept of Programmable Homogeneous Logic Resources . . . 31

2.5.2 Fine Grain PLDs - CPLD and FPGA Devices 32

2.5.3 Coarse Grain PLDs — Field Programmable Object Arrays 34

2.54 Run-time and Partially Reconfigurable PLDs 35

26 SUMMATY . . . L e e e e e e e e e e e e e e e e e e 37
Architectural Organization of Temporal Partitioning Mechanism 39
31 Imtroduction 39
32 LiteratureReview o oL, 40
3.2.1 Context Switch FPGA Architectures R 41

33

3.2.2 Partially Reconfigurable FPGAs Architectures that Utilize an Internal
Soft-core Controller. 43

3.2.3 Partially Reconﬁgurable FPGAs with Custom Confi guranon Controller 46

Architectural Orgamzatlon of Temporal Pamtlonmg Mechamsm e 48

3.3.1 [IP-core library - Configuration Memory Archltectures and Perfor-

Mance ANAlYSis . . « . o v v et e e L. 49
332 Architecture of Conﬁguration Memory Manager D . .' ... 51
333 Configuration Controller Architecture . ; T, ... 53
3.34 Configuration Interfaces Selectlon .» e .(53

3.3.5 Calculation of FPGA Reconﬂguratlon Txme e ' .‘ 56

-ii

3.4

3.3.6 Proposed Platform Architecture with Customr External Controller-

Scheduler forRun-Time TPM

3.3.7 Configuration Controller Architecture with IP-core Pre-fetching . . .

3.3.7.1 Configuration Controller Architecture with Paralleled
FLASH Memory Organization for IP-core Configuration

3.3.8 Hardware Overhead Cost in Temporal Partitioning Architecture Im-

plementation

Summary e e e e e e e e e e e e e e e e

4 Architecture to Hardware Faults Adaptation (Self-restoration)

4.1
42

43

Introduction e e
Methods of SEE MItigationo v v oo e e it e e
42.1 Mitigation of Transient Faults Using a Scrubbing Technique
422 Restoration From Permanent Faults SO
422.1 Restoration From Permanent Faults Without Functional
Degradation
4222 Restoration by Component Relocation in Spacial Partition-
mmgRCS e e

4223 Restoration from Permanent Faults with Functional Degra-- '
dation . . N
4.2.2.4 Restoration by Component Routing Constraint Variation . .
4.2.2.5 Restoration by Just-in-Time FPGA Compilation
Methods for Fault Diagnostic‘ and Fault Localization in SRAM Based FPGA

DeVICES . . i e e e e e e e e e e e e e e
43.1 SEU Diagnostic in Configuration SRAM
4.3.2 Off-line Diagnostics of Permanent Faults in Data-paths

4.3.3 On-line Diagnostics of Permanent Faults with TMR-approach .

il

65

4.4 The Method of Multi-level Mitigation of Transient and Permanent Hardware
Faultsin RCSwith TPM o ittt 88

4.4.1 Mitigation of SEU and Other Transient Faults by IP-core Scrubbing
and Functional DiagnosticCycle 90

4.4.2 Run-time Mitigation of Permanent Faults with/without Functional
Degradation o, 92

443 Complete Algorithm for Multi-level Protection Mechanfsm Embed-
dedtothe TPM i ittt e et 93

4.5 Cost-efficiency and Perfom;ance Comparison of the TMR Approach and
Multi-level Mitigation of Transient Faults in TPM Systems 95
4.5.1 Uninterrupted Mission Critical Systems 95
4.5.2 Critical Systems with Non-Real-time Control 96
4.5.3 TMR and TPM Approach Comparison Summary 9’7
46 Summary o 97
5 Task Segmentation and Efficiency of the TPM ' 101
5.1 Introduction e e e e e e e e 101
5.2 High-Level Synthesis of Application Specific Processors 103
5.3 The Concept of Task Segmentation~ 104
53.1 Cost-Effectivenessof TPM 107
532 Cost-Performance Ratio of RCS With TPM 11
5.3.2.1 CPR for Single Statically Configurable FPGAs 111

' 5.3.2.2 CPR for Non-pipelined and Pipelined architectures utilizing -

TPM . .. e R 113
5.3.23 Optimal Number of Partitions 121
53.24 Pipelined TPM Implementation Limitations “: 122
5.3.3 Automated Partitioning . . [.. ... L oL o ool o L, 122

5\

55 Summary e e e e e e e e e 124
Methodology for High-Level Synthesis and Optimization of VHCs 125
6.1 Introduction i e e 125
6.2 Correspondence Between MO and VHC 126
6.3 The Problem of VHC Synthesis and Optimization 134
6.4 Methodology of VHC Synthesis and Optimization 137

6.4.1 Multi-parametric Design Space Decomposition 138

6.4.2 Design Space Arrangement. e e e e e .. 140

6.4.2.1 Selection of a Set of Resources for an MO and their Local .

Arrangement e e e e e e e e e e e . 146

6.4.2.2 Mono-parametric Partial Arrangement of ACGs 142

6.4.3 VHC Architecture Selection on Partially Arranged ACG 148
6.4.3.1 . Identifyingthe Setof Varants 148;

6.5 Determination of the Pareto-set of Architectural Variants 150

6.5.1 Semantic Filtration of Architectural Variants for VHC generation . . 156

6.6 SUMMAIYt i v it et et e e e e e e e e e e e e 159
Methodology of Automated Assembly of Optimal VHCs into SSPs 161
7.0 INOUCHON © © o o o e e et e e e e e e RS 13|
7.2 Methodology of Segmentation of an Application Sequencing Graph 162

7.2.1 Division of an Algorithm into Segments e e e - 163

7.2.2 Algorithm Segmentation, Binding, and SSP Generation". . . 164
7.22.1 Automated = Dependency - Level Assignment Algé— |

- rithm/Level Division. e e e e e .. 164
723 ASAPLevel Assignment e e . 165

7.3 VHC Selection and Grouping Methodology 1638

7.4 Methodology of “Next” MO Selectionfor SSP 171
7.4.1 Precaution Regarding Deadlock in MO Segmentation 175
7.4.2 SSPsetGeneration Algorithm 176
7.43 Example of Segment Specific Processor Synthesis 178

7.4.4 Accounting for FPGA’s Embedded Specialized Hardware and VHC

componentbitwidth 185
TS Summaryot e e e e e e e 186
Implementation of the methodology of SSP synthesis and execution 187
8.1 Introduction @it i i it i e e e e e e e e 187

" 8.2 Implementation of SSP Synthesis and Optimization Methodologies in the
CADSYSIEIN & . vttt et e e e e e e s e e e e e e e e e e 188
8.2.1 Area Avoidance Implementation 0o ... 194

8.3 System Level Architecture to Accommodate TPM Based on SSP Processing . 195

8.3.1 Reconfigurable Field of Resources (RFR) e e 196
8.3.2 - SSP Configuration Mechanism on MARS Platform Design 197
83.3 MARS Temporal DataMemory N w202
8.3.4 Platform Data I/O Interfaces R IR 203
Experiments and Results ' | o ‘ Y iO?
91 Introductionc¢c.ouiuure.on. e e e e e 207
9.2 Experimental Setups <. Lo L e e e e 208
9.2.1 ¢ Stereo Image Capture Platform v oo e v e v nus 211
9.22 “Fast Track” Platform I 212
9.23 Results and Ve-n"ﬁcation of Workload 214

9.23.1 Sobel Edge Detection Core e e e e e 215

9.2.3.2 Image Histogram Calculation 216

923.3 ImageColourlIntensity 218

9.2.4 Results of Experimental Setup Verification 218

9.3 Experimental Quantitative Performance Characteristics 219

9.3.1 Experimental Workload: Highly Paralleled Stream Processors 219

932 LogicUtilizationt v i it ittt emn e 221

933 PowerConsumption reneen.. 222

; 934 TimingResults e e 225
9.3.5 Bitstream Compilation Timing 226

0.4 Analysis Of RESUIS « « « « o oo oo e e 226
94.1 Performance Analysisof RCSwithTPM 227

94.2 Cost Performance Analysis of Different FPGA Devices 228

9.4.3 Analysis of the Power Consumption [230

9.4.4 Analysis of Res‘ourcevUtiIi'zation '. c.. 232

94.5 Analysis of Compilation Process . e P 233

9.5 SUMMATY . . . v i ettt e et e et e e e e e e e e e e . 234
10 Summary 235
10.1 SummaryofResearch. o 235
102 Contributions v ittt e e e 237
103 Future Works e P 240
10.3.1 Integrated CADTool S 240

10.3.2 Segmentation in Real-Time Hardware Oé I 241

. 10.3.3 Fault Tolerance Verification & Testing24l

| 10.3.4 Extensive VHCand SSPlibrary: 242

vii

Bibliography 243

A Border Variant Search 259
B Power Consumption ‘ 263
C Resource Utilization 265

D Comparison of System design with Virtual Hardware Components utilizing TPM
to Standard-cell Approach 269

E Proposed Reconfigurable Device Architectures 271
E.1 Wide Configuration Bus Architecture Operating at High Configuration Clock

Speed e e 271

E.2 Internal Configuration Buffer with One Clock Cycle Upload. 272

- E3 Dual Context FPGA with Address and DataPinReuse 275
"EA4 Isolated Multi-Core FPGA Design with Common /O Imerface Ces c... 276
ES Proposed Remote SSP Generation on a Compilation “PC Fatm 277

E.6 Summary of Proposed Archltcctures .7 278 :

“viii

List of Tables

3.1
3.2
33

5.1

6.1

6.2
6.3
6.4

7.1

9.1
9.2
9.3

Memory Types Chart and their Characteristics 49
Bitstream Configuration Timings for Various FPGA Interfaces. 56
Reconfiguration Time for the Xilinx Virtex 4 FPGA Devices via Slave Serial

SelectMAP3Z MOE. .« o v v v e e e e e e, 58

Search e e e e 155
Testfor“rule”#1 e e 157
Testfor“rule” #3 L. e 157
Testfor“rule” #2 e 157
MOs and Corresponding VHC parameters 180

Logic Use in 4-LUTs per Each Device for Single, Dual, and Quad VHC SSPs 221
Logic Use in 4-LUTSs per Eachl Device for Single, Dual, and Quad VHC SSPs 22f
Power Consumption (Watt) of Single VHC SSP Core Operated at 50MHz,
100MHz, and 200MHZ T P . 223
Power C@ngumption of Dual VHC SSP Core Operated at S0MHz, IOOMHz,
and200MHz, 223

ix

9.5

9.6

9.7
9.8

Power Consumption of Quad VHC SSP Core Operated at S0MHz, 100MHz,
and200MHz e e e e e e e 224
Timing Operation Results for FPGAs Running SSP with Single, Dual, and
Quad VHGSs o e e e e e 225
SSP Cores Compilation Times for Single, Dual, and Quad VHC SSP Cores . 226
Cost in $USD per VHC for Single, Dual, and Quad VHC SSP Core Configu-

rations Across a Range of FPGADevices 229

List of Figures

2.1
22
2.3
24
2.5
2.6
2.7
2.8
.29

3.1
3.2
33
3.4

3.5
3.6

3.7

Correspondence Between Elementary Operations and Instructions 13
Classification of Computing Architectures 17
Workload Classification 17
RCS Architecture Classification 19
RCS Run-Time Resource Adaptation 21
Spatial and Temporal Partitioning of Resources 24
Largest Virtex 5 LX and FX devices Floor Plan Comparison 26
FPGA Switch Blocks Interconnections e 31
Field Programmable Object Array (FPOA) Architecture Diagram 34
Diagram of Mﬁlti-Context FPGA Configuration Cell 31 [46] .‘ 41
Temporal Partitioning System Uﬁlizing MicroBlaze Controller 44
Bus Macros Based Temporal Par:titioning Architecture [46]. 46

'Examples of Temporal Partitioning Architectures with Custom Embedded

Controller [1,81,99] . . J .. v v v oo ... e 47
FPGA Re-configuration Stages [83] e e e 56

" Architecture of Temporal Partitioning Platform with External CPLD Based

Controller/Scheduler 6l
Architecture of Temporal Partitioning Platform with Pipelined Organization

of Configuration/Execution Processes P X

3.8
3.9

4.1
4.2
43
4.4
4.5

4.6
4.7

4.8

49

5.1
52
53
5.4

5.5

5.6
5.7
5.8
59

Architecture of SRAM and FLASH Configuration Loader

Organization of Parallel Tile Configuration [89]

Platform Architecture for SEE Mitigation [24,92]
Recovering from SEDR Fault on Partially Re-configurable Device
Fault Recovery from Permanent Fault with Functional Degradation
Typical TMR Organization
TMR Implementations on a Single FPGA: with (A) External Voter (B) Inte-
gratedVoter e IR
Operation of the TPM with Fault Tolerance Mechanism
Sequential Reconfiguration Process for Permanent Fault Mitigation without
Fault LocationProcedure
Permanent Fault Mitigation with Incremental Recovery to the Maximum Pos-
siblePerformance L. R

Permanent Fault Mitigation Flow Chart with/without Diagnostic Procedure .

Sequencing Graph Example e
Task Algorithm Represented by VHCs Corresponding to MQS‘
Segmented and Scheduled Sequencing Graph e
Timing Comparison Between Non—pipeli;led singlc:: FPGA and Pipelined dual
FPGA Operationof TPM R P
Timing Comparison of Ideal Pipelined Implementation of TPM to a Non-
pipelined TPM Implementation | I I
Non-Pipelined TPM vs. Pipelined TPM ;Speed-up e e e e I
Video-stream Processing Task Processing Block Diagram . BRI

Xilinx Virtex 4 FPGA Device Costs in Relation to Logic Resources

Xilinx Virtex 5 FPGA Device Costs in Relation to Logic Resources

5.10 Altera Stratix III FPGA Device Costs in Relation to Logic Resources

-

xii

5.11 Cost Performance Ratio vs. Task Segmentation Granuldrity 121

6.1 Sequencing Graph (SG) for the MO Represented by Equation 6.2 127
6.2 Stage Divided Sequencing Graph for the MO Execution 128
6.3 Pipelined Implementation of SG from Figure 6.2 130

6.4 Scheduling and Binding Transformation of SG into VHC Configuration In-

cluding Single: Adder, Multiplier, and Comparator 131
6.5 Pipelined Implementation of SG fromFigure 64 131
6.6 Scheduling and Binding Transformation of SG into VHC Configuration using

Double Adder, Single Multiplier, and Single Comparator 132
6.7 Pipelined Implementation of SG froﬁ Figure 6.6 133
6.8 Design Space Aﬁﬁngemem . e 136
6.9 ACG Pruning by Pair of Para’meu;ic Constraints e . 139
6.10 Local Arrangement of Resource-R; Variants 141
6.11 Ascending Mono-Parametric Partial Arrangement 143
6.12 Descending Mono-Parametric Partial Arrangement18

| 6.13 Monotonic Ascending of Parametric Value Correspondiixg té VHC Variants 145
6.14 Mcrnotoni(; Increase of the Value of Parameter-P; with Several Local Extremes 146
6.15 Periodic Distortions on Monotonic Behavior of the Péfameter—ﬂ * 147
6.16 Determination of the Sub-set of the Architecture Variants that Satxsfy Spcmﬁ-
cation Constraint for One Performance Parameter P (A) < P""’ 149

6.17 Resources Sorted According tQ Different Performance Parameters , where K

iscriterionvalue. . .-. L. R "o e e 152
6.18 border VHC Variant Search Algorithm e ... 153
6.19 Example of ACG with Selected border Variantof VHC 154
6.20 VHC Variants Considered by the Search Aigorithnﬁ onACG 154
7.1 Correspondence Between MOjand associated VHCs .-, e 163

Xiii

7.2 LevelDependency Division. v . v v v v v i v i i i e 165

7.3 INustration of Level Assignment Algorithm Operation. 167
7.4 MO Level Assignment Algorithm Flow Chart 168
7.5 Task SG Representation by Level ArrangedMOs 169
7.6 Sub-ACG Tree withMOland MO2 Added 170
7.7 Sub-ACG Tree with Excluded Restriction Violated Branches 170

7.8 Case 1: Priority of Selection of Nodes with Dependencies on the Next Level . 172
79 Case 2: Partial Level InclusioninaSSP 172
7.10 SSP Composition from VHCs located on Consequent Levels of SG: a) without

Dependency in Case 3; b) with Full Dependency in Case 4. 173
7.11 SSP Composition from VHCs located on Consequent Levels of SG with par-

tial dependency: Case 5, Case 6,and Case 7 174
7.12 Case 8: &ea Avoidance MO o e 175
7.13 MODeadlockExample R 175
\7.14 Flow Chart of the SSP set Generation Algoritbm 176
7.15 Sub-ACG After Additi(_m of the First MO from the TaskSG R 180 .
7.16 Sub-ACG Tree aftér Addition of the MO3-Node#1 from Task SG 181
7.17 Sub-ACG Tree ﬁterAd&ﬁon of the MO,-Node#12 ‘. O £
7.18 Sub-ACG tree after Addition of the MO3-N(;de#5 e e 182
7.19 Sub-ACG tree after Addition‘of the MO2-Node#3n... 183
7.20 Final Segmented SG Implemex;tation on the Set of SSPs . c e - - 184
8.1 CAD Software operation flowchart e e e s 191
82 GUIApplication01...... ..., e e . 192

- 83 Communication Bus Structure Between: FPGA, CPLD, and Microcontroller . 201
8.4 Multi-stream Adaptive Reconfigurable System (MARS): (A) Block Diagram
(B) Component Placemento I 205

» L4

xiv

8.5

9.1
9.2
9.3
94

9.5

9.6
9.7

9.8
9.9

9.10
9.1
9.12

9.13

Al
A2
A3

Aggregated MARS Platforms for Parallel Processing 206

Experimental Setup Based on MARS Platform and Stereo-vision Capturing

Module e e e 209
Bayer Pattern of Stereo Camera and Readout Data Organization 211
“FastTrack” Stereo-VisionPlatform. 213

Photo of the Experimental Setup with MARS Platform, “FastTrack” Stereo-
Camera,and4LCDDisplays o ot i it e e . 214
Photo of the Original Captured Image and Image after Processing on Sobel
EdgeDetection SSPCore i it i e e 216
Photo of the histogram image processing SSPcore e e e e e e 217
Photo of the Original Captured Image and Image after Processing on Image
Intensity SSPCore e e e e e e e e e e e e e 218
Floor Plan for Post Place and Rout of XC4VLX80 with Quad VHC Core . . . 222
Quiescent (A) and Dynamic (B) Power Consumption (Watt) for a Single VHC

SSP Core Operated at 50MHz (Blue), 100MHz (Red), and 200MHz (Green) . 223
Quiescent (A) and Dynamic (B) Power Consumption forva Dual VHC SSP
Core Operated at SOMHz (Blue), 100MHz (Red), and 200MHz tGreen) ... 223
Quiescent (A) and Dynamic (B) Power Consurﬁption for a Quad VHC SSP

Core Operated at SOMHz (Blue), iOOMHz (Red), and 200MHz (Green) } e. . 224
Cost;E‘_ffectiv‘enéss per VHC of Different FPGA Deyvices with Single, Dual,

and Quad VHC SSP COres .y« v oo oo vt .. P 29
Power Consumption per VHC for Single, Dual, Quad VHC SSP Configurations 230

Example of ACG with Selected border Variant of VHC with 2 40 mW Limit

Restriction. P 259
Sequence of search for power consumption border variant with a 40 mW limit 260

Example of an ACG with Selected border Variant of VHC with a 225 CLB limit260

. XV

A4
AS

B.1

B2

B.3

B.4

C.1
C.2
C3
C4
(O

- E.l

E2

E3

Sequence of search area requirement witha225CLB 260
Logarithmic Comparison Between Number of Variants in Exhaustive ACG

Generation and border Variant Search Algoritbm 261

Quiescent (A) and Dynamic (B) Power Consumption for the Sobel image pro-
cessing SSP core. Core is opcratec‘i at SOMHz (Blue), 100MHz (Red), and
200MHz (Green) ¢ v i v i v it e it i e e e e _...263
Quiescent (A) and Dynamic (B) Power Consumption for the Video Output

SSP core. Core is operated at SOMHz (Blue), 100MHz (Red), and 200MHz

Quiescent (A) and Dynamic (B) Power Consumption for the Sobel image pro-
cessing SSP core. Core is operated at S0MHz (Blue), 100MHz (Red), and
200MHz (Green) with Integrated ChipScopePro. 264
Quiescent (A) and Dynamic (B) Power Consumption for the Video Output
SSP core Core Operated at SOMHz (Blue), 100MHz (Red), and 200MHz
(Green) with Integrated ChipScopePro e e e 264

Floor Plans after Place & Route for Single and Dual XC4VLX40 FPGA . . . 266
Floor Plans aftér Place & Route for Single and Dual XC4VLX60 FPGA . .- 266
Floor Plans after Place & ‘Route; for Single, Dual and Quad XCAVLX80 FPGA 267
Floor Plans after Place & Route fo} Single, Dual and Quad XC4VLX100 FPGA267

Floor Plans after Place & Route for Single, Dual and Quad XC4VLX16O FPGA268

Configuration SRAM Cell with Pre-fetch e te. . 273
Dual-context Configuration SRAM Cell Configuration e 275

Multi-core FPGA o e e e e e e e e e e e e e .. 277

xvi

Chapter 1

Introduction

1.1 Introduction

In the last decade some dramatic changes have occurred in the field of computer technology
and even computing paradigms. A major change was decreasing of size of the transistor from
0.25um in 1997 to 45nm in 2007. Decreasing of size of the transistor allowed for a larger
number of transistors to be placed on tor a single die. Hence, FPGAs increased frorh 7OM
transistors in 1997 to 2500M transistors in 2008. Another effect of transistor dimension re-
duction is the ability to increase clock frequency and therefore, to increase the performance of
CMOS-technology based digital circuits. These factors in turn affected computing platforms
based on these techﬁolagies. Several aspects .of computer technologies that were effected by
above changes, such as:

a) Architectural advancements (e.g. SoC)

- b) Miniaturization and portability of systems thgt weré previously largéf'standalone pro-

cessing systems, as in the case with handheld and embedded frocessing devices. .

¢) Application workload by requiring higher systems performance such as multiftz}sk

multi-mode data stream processing.

1.1.1 Application Aspect

Looking from the application workload point of view, the stream processing tasks became
most performance demanding in various sectors of the market. Increase in processing speed,
as well as, cost-effectiveness became the major focus of developments in areas of multi-media,
advanced robotics, flexible manufacturing, automotive, acrospace, and many others. The ar-
eas associated with the real-time video/image processing, broadcasﬁng, massive data-stream
execution for modeling and complex process simulation became the main applications for
high-performance computing systems. These advancements cultivated the emergencé of new
markets in high-performance computing such as: gaming, movie industry, and computational
biology. At the same time, it should be recognized that tradmonal approach of increase in
processing performance has met the physical barrier of the operatlon frequency This limit re-
quired parallelization of computation process and therefore the implementation of many new

architectures, as well as, concepts of task adaptive and reconfigurable computing paradigms.

1.1.2 Miniaturization and Embedded Systems Aspect

One of the major tendencies in evolution of computing systems is migration from large stand-
alone units towards the embedded systems. In many cases the embedded systems are also of a
small form factor and low power. This occurred in most arez;s of computer applications from
manufacturing lines to small hand-held consumer devices. Nowadays it is almost impossible to
find any complex system or product that does not contain one or several embedded platforms.
However, the embedded implementation of computing system has several very important dif-
ferences compared to the previous concept of stand-alone computers. These differences are as

follows:

R

1. Strict constraints on area, power consumption, life-time period and many other perfor-

mance parameters.

2. Application specific vs. general purpose orientation.
3. Shorter time-to-market and low-cost of volume manufacturing.

4. Orientation towards computation intensive applications: HDTV sets, digital cam-
corders, cell-phones, routers, DVB (Digital Video Broadcasting) systems, machine vi-

sion/surveillance/security systems, etc.

All of the above differences motivated the designers of embedded systems to utilize high-
performance RISC embedded microcontrollers, application specific accelerators based on
DSP processors, and ASICs. However, due to the rapid changes of industrial standards and re-
quirements, decrease in time-to-market requirements, and reduction in cost of reconfigurable
logic devices, companies started to move towards utilization of the FPGA devices for em-
bedded platforms. Typically this is true for the products with small or medium volumes of
production due to relatively high cost of FPGA devices compared to ASICs. In addition,
recent advancements in CMOS technology, and FPGA micro-architecture advancements val-

lowed more cost-effective application of reconfigurable systems.

1.1.3 Technological Aspect

In recent years the progress in process technologies has dramatrcally impacted the Field Pro-
grammable Gate Array (FPGA) development. It resulted in substantlal increase of FPGA’

number of system gates per device, as well as an increase in the speed of operation. Prev1ously,
a simple homogeneous FPGA’s on-chip structure moved towards a complex heterogeneous or-
ganization of on-chip architecture by inclusion of embedded hardware components, such as:
BlocinAM modules; multipliers, DSP elements, di gital clock managers, and PowerPC cores.
The above advances ailowed to implement a complex stream processing s‘y‘stems on the FPGA
based systems A typlcal use of FPGA device is still a replacement of an ASIC: an FPGA is
conﬁgured at the start-up time and its configuration never changes during the system opera-

tion. At the same time‘, the cost of such custom stream processors is relatively high. Reasons

"3

for that is high cost of the R&D stage, as well as, high cost of the large FPGA devices (e.g.
~$16,000 USD for one Xilinx Yirtex 5 XCV5LX330 FPGA device). Recently some FPGA
manufacturers have started to provide rapid configuration interfaces, as well as a capability
for partial configuration of their FPGAs. Due to these features it became possible to change
the functionality of an FPGA during the operation by the run-time reconfiguration from one
bitstream to another. This allowed the device to have a capability of run-time reconfiguration
of any part of on-chip architecture without suspension of the rest of the FPGA device. The
above novel options made possible multiple re-use of the same logic resources of the FPGA
for different parts of application algorithm in different periods of time. Therefore, these op-
tions allow to increase the cost-effectiveness of computing platform based on such type of

FPGA devices.

1.2 Motivation

All the above aspects of recent computing technology motivated several direction; of research.
One of the directions is R&D works in the area of run-time-reconﬁgurable (RTR) computing
systems. This area of research considers FPGA based systems that allow dynarmc adaptatmn
of the computing architecture to specifics of an algonthm(s) and a data structure of an ap-
phcanon (task). On the other hand, the system adaptauon can be initiated not only from the
extemal sources but also from internal ones, as well. That means, that the hardware faults
(on—chxp or on system level), along with a change in system level condmons (e g battery
level, overhcatmg, etc.) can trigger/request the archxtecmre adaptatxon In RTR computmg
systems it is assumed that all of the above changes could be compensated (Imtxgated) by the
| reconﬁguratlon of system or on-chlp arcmtecture If reconﬁguratmn can be automated the
computmg platform would becorne self-adaptablc to the workload and self-recoverable from

ca -

the hardware faults. At the same tune the development process of such systems should be

»

shortened and such system has to be cost-effective. This may be ﬁossible by utilization of vir-
tual hardware resources design approach similar to software object oriented design concept.
The virtual hardware components (VHCs) design methodology allows rapid composition of
application specific processors (ASPs) from smaller pre-built components. However, in this
case certain libraries of the VHCs should be provided, as well as, the associated CAD tools
for automated S);nthesis of ASP architectures. All the above would require hardware support
with system level architecture of RTR reconfigurable computing systems (RCS).

The dynamic composition of an ASP from VHCs can be performed in space (spatial par-
titioning of resources) and in timcﬁomain (temporal partitioning). Since the partitioning
of computing resources is a function of task algorithm segmentation and multi-parametric.
constraints, certain research work should address development of methodology of resource
optimization and resources partitioning in the multi-parametric design space.

Another important requirement of the high-performance embedded system that lately be-
came critical is the fault tolerance. The temporal partitioning presents a unique capability for
the fault tolerance to be performed at a run-time. Hence, research work in this area should
closely consider this aspect too.

All the above reasons are major motivation elements for the presented research work, and

therefore, dictate the associated objectives for research.

1.3 ijé)ctive‘s |

: e e - » h : ' 3 . .
The objective of this research can be summarized as follows:
B

1. Development of methods and procedures for gutomated high-level synthesis of virtual
application specific processors based on the pre-cgimpiled virtual hardware components
. (IP-cores). This includes the exploration of multi-parametric design space; the decision

. f« EETI T T . : . 3 . i - : L . . Y Lt

making procedures for selection of optimal processing architectures; scheduling and

binding of logic and routing resources in FPGA devices.

2. Research and development of partitioning mechanism and associated procedures for the
temporal distribution of on-chip computational and communication resources between
task segments. Development of the methodology for synthesis of the multi-parametric

optimized task segment specific processor (SSP) architecture.

3. Development of methodology of run-time reconfiguration (RTR) of stream processing

data path and investigation of the cost-effectiveness of RTR-architectures.

4. Development of methodology of run-time self-restoration of stream processing ASPs in

the cases of transient and temporal hardware faults.

5. Investigation of the system level organization of multi-stream parallel processing archi-
tectures and development of a prototype FPGA platform that can incorporate temporal

partitioning and self-restoration mechanisms.

1.4 Contributions

The main contribution to the presented research work is ’t.hé novel methodology for creation
of new class of run-time reconfigurable systems. These systems are based on dynamically
reconfigurable macro-processors with temporal partitioning (TPM) of Eémi)uting resources.
The methodology allows to develop the architecture of the above RCS and giesigg the set of
virtual hardware components optimized in multi-parametric design space to the set of macro-
operators. Overall contributions consist of "the theoretical and ;ﬁfoof—l;f-con::éi)t‘ édméonénts.
Theoretical components of research cbntribhtiox;é are: T

- i) A hovel 'met:hodology‘ for automated conversiionz o;f a macroédpefatgr pfesénted in a
form of sequencing graph to a set of optimized virtual hardware components. The developed

»

methodology allows a quick selection of close-to-optimum variax;t of VHC for a given macro-
operator and a set of parametric constraints. The proposed methodology was presented in the
paper “Multi-parametric optimization of the modular computer architecture” and published in
the International Journal for Technology Policy and Management (JTPM) in 2006 [51]. |

2) New methodology for automated task/algorithm segmentation with high-level synthesis
of Segment Specific Processors (SSPs). Methodology of the SSP synthesis involved opti-
mization in multi-parametric design space. Developed methodology provided the framework
for design of a CAD tool that would perform SSP synthesis and optimization according to
hardware and performance constrains. The proposed methodology was presented in the pa-
per: “Macro-programmable Reconfigurable stream processor for Collaborative Manufacturing
Systems”, published in December 2008 in the Journal of Intelligent manufacturing (JIM) [54].

3) Novel methodology for run-time hardware fault mitigation in partially reconfigurable
FPGA devices. This methodology allowed for development of the self-restoration procedures
for mitigation of both transient hardware faults and permanent hardware faults with and with-
out functional degradation. The advantage of the proposed approach is that only functional
diagnostic procedures can be involved in this process. The time and resources required for
fault location procedures can be eliminated. That provides the ability for run-time mitiga-
tion of both types of hardware faults. The proposed methodology was presented in the paper:
Multi-level Radiation Protection of Partially Reconfigurable Field Programmable Gate Array
Devices” and published in 2006 in the Journal of Spacecrafts and Rockets (JSR) [50].

4) The procedure for the evaluation of cost-effectiveness of FPGA based systems using
TPM. This procedure presents the analgrtical models and conditions to select the best suit-
able FPGA prior to design of RCS with TPM. This proceciure was presented in conferences
and published in conference proceedings: “Cost Effective Reconfigurable Architecture for

Stream Processing Applications” in proceedings of 21st Canadian Conference on Electrical

and Computer Engineering [52] and “Reconfigurable Macro-Processor Cost-Efficient Plat-
form for Rapid Prototyping” in proceedings of 17-th International Conference FAIM 2007
[53). ‘

5) Novel architecture of RCS for system support of the proposed TPM based on the run-
time reconfigurable FPGA devices. This architecture included all necessary components to
provide the framework for temporal partitioning of on-chip FPGA resources for synthesized
SSP cores. The architecture organization was presented in several conferences and published
in conference proceedings and journal publications [54, 56, 52, 53, 55, 58].

The proof-of-concept part of contribution consists of the following:

1) Implementation of RCS architecture and TPM on the prototype of Multi-mode Adaptive
Reconfigurable System (MARS) platform. The engineering design of embedded TPM was
successfully completed on the MARS platform and prototype was manufactured and tested.
For verification of TPM performance special SSP cores have ‘been developed and imple-
mented. These cores were associated with high-frame rate stereo-vision stream-processing al-
gorithms. The MARS platform was demonstrated on several conferences and exhibitions: Dis-
covery 2006, CMC Symposium 2006, SVAR 2007, SVAR 2008 with the first place awarded
for best design demo.

2) Implementation of methodology for automated task algoﬁthm éegmentation and asso-
ciated SSP synthesis in the special CAD system and further verification of its performance

3) Creation of an experimental setup, test of firmware components (multi-core SSPs) and
further collection of experimental data regarding different performance characteristics. Anal-
,ysis of the above results and proof-of-concept of the TPM approach for the considered area of

“application. | »
- Overall, the results of the résearch have been published in 3 journal and 9 confe£ence

- publications and partially used in 3 R&D projects funded by Ontario Centres of Excellence

(OCE), Centre of Information and Communication Technologies (CITO), Materials and man-
ufacturing of Ontario (MMO), MDA Space Missions, UBS Ltd. The research has bc;n also

supported by NSERC, CMC Microsystems, and Xilinx Corporation.

1.5 Thesis Organization

The remainder of the thesis is organized as follows: Chapter 2 introduces processing archi-
tectures and continues on to classification of the reconfigurable computing systems with the
focus on the FPGA devices that support temporal and spatial partitioning. Chapter 3 gives
an overview of the different reconfigurable architectures and describes the various approaches
that are taken for the implementation of the temporal mechanism (TPM) in reconfigurable
computing systems (RCS). Proposal of the general approach of architecture for the TPM in
RCS is also given. Chaptc; 4 discusses the important topic of fault tolerance of RCS that are
based on FPGA devices. It gives an overview of existing solutions for the single event effects
mitigation and provides several proposals for mitigation methods on temporal partitioning sys-
tems. The novel algorithm for the mitigation the both transient and permaneni hardware faults
is proposed and described in details. Chapter 5 introduces the notion of processing task seg-
mentation and virtual hardw}vlre components. This chaﬁter focuses oﬁ the cost-effectiveness
aspect of the system design and‘provides methodologsr for evaluating cost-effectiveness of the
design. A cost-effective solution allows to achieve the desired performance with the minimal
possible system cost. Chapter 6 explains the essence of how macro-operators are created from
the elementary operation;. It describes novel methodology for conversion of a macro-operator
algorithm to a set of virtual hafdware coniponcnts. It also describes the decision making mech-
anism to optimize a VHC associated with a given macro-operator in the multi-parametric de-
sign space. It shows that the optimization process can be done in a relatively short time since
a small set of VHC variants is evaluated. Chapter 7 presents the methodology for creation of a

sequencing graph that describes a processing task from available macro-operators. Further, the

9

methodology of automatic segmentation and selection of corresponding VHCs is explained.
The algorithms and procedures for the synthesis of segment specific processors (SSP) are dis-
cussed in detail. This leads into the Chapter 8, which describes the CAD software that was
implemented on the basis of developed algorithms from previous chapters. The implemen-
tation of (MARS) is described in detail from the hardware aspect of the research. Chapter 9
describes the setup of experiments that were based on RCS with TPM. The verification pro-
cedure and results are provided, along with the proof of the proposed methodologies. Also
shown are: timing, power, resource utilization, compilation results, and the analysis of those
results with the resulting overall recommendations for the design of cost-effective RCS with
TPM. Chapter 10 summarizes the thesis, lists contributions, and suggests future work that can

be continued from this research.

10

Chapter 2

Architectures of Reconfigurable

Computing Systems (RCS)

2.1 Correspondence Between Workload Specifics and RCS
Architecture

It is well known that there is a certain correspondence between the workload components (e.g.
classes of tasks, their algorithms and data structure), and the architecture of a computing sys-
tem. These components have to be optimally adapted for this workload execution. Therefore,
in the section below the specifics of the workload and associated computing architectures will

be considered.

2.1.1 'Workload Specification and Definition. B

3

First, the definitions of workload, data structure and mode of ;)peration have to be given since
in different contexts the workload can be interpreted in various ways.
Definition: The workload of a system is a task or a set of tasks that computing system has

o process.

11

Definition: Task is an information object that consists of an algorithm and a data struc-
ture.

Definition: Data Structure is a formal representation of the data elements (operands) and
their dependencies.

Task can be algorithmically intensive or computationally intensive. Where algorithmically
intensive task performs multiple logical and arithmetic operations on small set of data, and
computationally intensive task preforms repetitive computation on large sets/streams of data
at a high speed.

Definition: Computation intensive workload is a data-stream dominated workload.

Definition: Mode of operation of a task is a combination of one of the possible variants of
the task algorithm and one of the possible data structures.

Therefore, if any changes appear in the algorithm and/or data structure of a task, the mode
of operation should be considered as different. Both an algorithm intensive task and a compu-
tation intensive task with associated workload may be Uni-modal or Multi-modal, as shown
in Figure 2.3. Multi-modal workload can also contain several dif%érent type‘s of tasks to be
processed by the system. .) : e

Definition: Multi-modal task is a task which consists of two or more modes where only
one of the modes of operation can be active at a time. -

As an example, we can consider a video processing algorithm which performs edge de-
tection. There are a couple of algorithms that can be employed for this purpose. Sobel
algorithm uses a 3% 3 matrix sliding window were Robert Cross edge detector uses a 2x2
[27, 38]. These algorithms have different performance parameters and similarly require dif-

ferent amount of loglc resources. Hence, even though a task rcqmrement is to perform edge
‘}idete;tlon the actual algomhm of the task can be dlfferent. The processmg operauon of the
edge detection task is the same, but mode of operaﬁon is dxfferent based on the type of algo—

nthm used Smnlarly, there could be several modes of the Sobel algonthm 1mplementat10n

12

InputData InputData

QOutputData

Instruction

[C=> | Op-Code| Input Data Address| Output Data Address

Figure 2.1: Correspondence Between Elementary Operations and Instructions

Some variations perform operation at different speeds, hence requiring more/less resources.
This can be achieved by the parallel processing and/or processing of the sliding window(s)
operation. Processing is performed proportionally to the number of the processing algorithms
in parallel. These variations of Sobel algorithm would also constitute as a mode of operation..
First, however, we have to talk about how these tasks are actually computed on a process-
ing system. For that the purpose evolution and classification of computing architectures are

explained in the next section.

2.1.2 General Evolution of Computing Architectures

~

Presentation of an algorithm is typically done in a form of a sequence of elementary operations
(arithmetic & logic) where each operation is associated with some scalar data. This approach
resulted in Von-Newman architecture which operates with a set of arithmetic or logic opera-
tions presented as an instruction set, as shown in Figure 2.1.
This type of architecture presented great advantages, such as: relatively low hardware
- cost; simplification of programming; high flexibility in implementation of algorithms; lim-
itless complexity of implementation. At the same time, this architecture has disadvantages
which are mziinly reflected in the performance. Due to the :::equential nature of the algorithm

execution, scalar data representation, the number of operations per instruction, and the speed

13

of algorithm processing is significantly reduced. Over the years attempts for computational ac-
celeration have been made through the exploitation of data level (structure) parallelism (DLP)
and algorithm (instruction level) parallelisrﬁ (IL‘.P)‘.

Algorithm parallelism involves execution of multiple independent instructions at the same
time. This approach was implemented in the Very Large Instruction Word (VLIW) and su-
perscalar architecture processors. VLIW processors improved processing speed by executing
different sub-steps of instructions in a pipeline. VLIW [21] approach has separate processing
units that can issue several instructions for execution simultaneously. VLIW has been also
considered as ILP. This approach allowed a dramatic simplification of control unit in VLIW
processor and thus, reduced its cost. Also, in some cases to utilize the CPU resources the
instructions were executed in a different order than they appeared initially in the user pro-
gram. VLIW processor executes instructions in parailelQ Execution is based on a schedule
determined at the time of program compilation. The effectiveness of such architecture de-
pends mostly on the advancement of compilers and is identified by how well relevant user
code matched to the machine code. Thé main area where VLIW prbcessors are cost-effective
is DSP applications [120]. Superscalar CPU architecture similar to VLIW executes more than
one instruction during a clock cycle by issuing several instruction to the idle processing units
on the CPU. In contrast to the VLIW architecture, superscalar architecture uses special CPU
hardware to dynamically check for data dependencies of issued instructions at a run-time. In
_ addition, specific hardware blocks have to be integrated to perform dynamic instruction re-
arrangement and branch prediction in order to load the appropriate instructions and to avoid
data and control hazards. This significantly increases the complexity of the CPU hardware.

There is another approach to improve CPU performance similar to ILP. This approach in-
volves data structure parallelism, which operates on execution of multiple independent data
elements at the same time. This approach was implemented in Vector and Array processor ar-

chitectures. This vector processor approach was also classified as Single Instruction Multiple

14

Data (SIMD) [26]. As the name states, the architecture had one i.nstruction and multiple data
that was processed in parallel. This contrasts the scalar processors which handle only one ele-
ment at a time using multiple instructions. Such architecture is specifically useful in the cases
of image rendering and, therefore, is integrated in many conventional processors beginning
with x86 MMX series that supported enhanced graphics. Personal computer processors nowa-
days have many SIMD processors each executing short data vector instructions. A collection
of many SIMD operating in parallel are combined into Multiple Instruction Multiple Data
(MIMD) [42] processor architectures. The advantage in using SIMD is mainly to increase
processing power of the system if the data is available in parallel as a vector. The rendering
of video in video processors is a good example. However there are disadvantages to this ap--
proach as well, such as packmwg and unpacking data from SIMD reglsters Also, there is a poor
support of compilers to implement more complex tasks [§2]. When processor is required to
perform operations on‘ much shorter data vectors or if there is high inter-dependency in data
the perfqrmance'of the processor drops ‘s’igniﬁcant}y. In many cases this in turn requires a
programmer to try to adapt the program, and align the data, so that the SIMD capability is
exploited. This becqmes a very tedious and complicated task and it is not suited for many ap-
plications that do no;; operate with large arrays/vectors of data. The classification of computing
architectur;:‘is presented in Figure 2.2. ‘

All of these mthec@res provide acceleration from one to two orders qf Qmagnitude in com-
paﬁgén to the first meptioned arcﬁitecture. However, they also a higher pardwaxje g;)st: The
reascgn‘ fof the increa‘sed‘cost is the compllexity of the processor design, as well as much larger
siliﬁon area. The silicon area was reduced &ue to the advam;,ement of process technologies
and dimi“nishing trari§istor cost. ‘Another‘aspect is the corﬁplication of prggrammiﬁg, since
a programmer has to be closely familiar with the processor architecture in order to achleve

relative improvement in performance. This is somewhat mitigated with the development of

highly advanced compilers and operating systems.

15

However, the sequential nature of algorithm processing is sﬁll the major factor which
limits acceleration of processor performance. For much higher performance and even more
parallel execution of algorithm high customization is needed. High degree of customization
can be achieved by implementing the task/algorithm in fixed architecture such as ASIC. This

is described for the next section in the case of stream processors.

2.1.3 ASIC and FPGA Static Stream Processors

Stream processor is a processor that performs the same type of algorithm operation on con-
stantly incoming homogeneous type/format of data. Such processing operation is typically
suited for applicatibns requiring high pérformance where processing algorithm (mode of op-
eration) does nof change. Stream processors are mostly used in video, audio, and gaming
applications where vast amount of data has to be procjessed in parallel at a high speed. The
processing is of the same h{ode of operation and does not change throughout the éperation of
the system. Stream processor typically is implemented in ASIC fdnn, where critical process-
ing operation is paralleled and pipelined to increase overall performance. In this scenario both
paralle] execution of algorithm and parallel data structure are exploited since they are built into
the hardware. The obvious downside of the ASIC implcmcntatioh is its inability to suy;port
various modes of operation. In order to support several modes of 4oper“a'tion they have to be
included in the ASIC deSIgn Another optwn is to use reconﬁgurabie devxce such as FPGA
A static conﬁguraﬂon of a stream processor is uploaded to an FPGA dev1ce and it operates
for the rest of active time. Typically, the advantage of using FPGA is the capability of future
upgrades in the scéﬁario of changing mode of operatia;l In casé when modc: of stream pro-
cessmg has to be modified, it involves off-line bitstream recompllatlon and subsequent oﬁ-hne

upload to the FPGA system.

16

- InstructionBased -
. Computing Architecture .5,

Non-Parallel
o Instruction & Data ...,
— Processing *s -

DLp

o ILP Expllbita‘ﬁo":\ig .
‘ bu

Exploitétion‘ o

" Temporal
Cor ok T

- fungtional ;;
pipelines

~ WO!' kload y;f

RS

. Uni-mode ;-

R S R,

Figure 2.3: Workload Classification

This natura]ly leads to the notion of an adaptive stream processor based on a reconfi gurable
' cémputing system (RCS). Next section introduces the RCS and classifies different types of

reconfigurable systems.

2.2 Introductiqn: Concept and Benefits of RCS

The first reconfigurable computing systems were proposed i;h_ﬂle 1960’s .[109]. However, in
practical implementations they have emerged only in past two decades. Initially RCS started
from the very basic systems that were capable of switching between the available resources
[35]. Already at that time RCS showed the great benefits of workload adaptive systems. In

reality, any variation in workload (e.g. changing in algorithm(s) or data structure) may cause

17

degradation of cost-performance parameters of a computing systeﬁ. Therefore, there would
always be some mechanism for workload/computing architecture adaptation. In conventional
instruction based computers the only way of the above adaptation is the optimization of the
program/data structure on certain platform architecture (e.g. processor architecture, mem-
ory structure and bus(es) organization). The concept of RCS is completely opposite to the
above approach and optimizes computing circuits/memory and communication resources to
the workload algorithm(s) and data structure(s). Conceptually, this approach allows reach-
ing much higher performance and cost-performance characteristics for a computing platform,
compared to the platfonﬁs with fixed architecture.

There are many different paths that were taken by the researchers around the world and
number of classes of RCS developed over the years [33]. These devices are classified in
several categories, and this chapter will address the main ones. This chapter will also describe

different types of RCS and trends of their development.

2.3 Definition and Classification of RCS

An architecture of the computing system can be described in three main parts: Components -
(C); Links - (L) between components; procedures - (P) associated with components and their
links. In all computing systems some of the components of architecture are vaﬁable énd some
are fixed. Basing on this classification it is possible to describe any type of computing >syst‘ém
according to flexibility of the above architectural parts.) |
| Microprocessor architecture consists of Componenis that are "ﬁ;(ed - (O), and iiixks be-
tween the hardware components (L) that are fixed as well, hoﬁ/éver, the procedures associated
with the components are variable - (I”v) Therefore microproéessor architecture-(A) can be

described as a: A = {C, L, P}. If we have a system that has all of the components same as the

microprocessor system, but the links are not-fixed (L), we can describe its as a course grain

18

type

Fine grain
“architecture’

. Finegrain .
“architecture

Component
granularity

Resource
distribution

Figure 2.4: RCS Architecture Classification

configurability system A = {E,Z,F}. This type of system has fixed processing blocks, how-

ever links between them can be altered. This provides the flexibility of path interconnection
for processing units, and increases the productivity of the system. This class of reconfigurable

architecture is described in detail in Section 2.5.3.

A system where all components are variable thus can be fully recenﬁgurable, for ‘eXample,
PLD and FPGA devices: A = {C,L, P}. It allows full customization of the computing plat-
form. This approach allows to tailor the full structure of the system to the algorithrrr and data
structure that needs to be processed and, therefore, it allows to aclrieve the ilighest possible
processing acceleration. Section 2.5.2 describes these sort of devices in generatl.ﬁ

Reeonﬁguraele computing systems can be divided in several types based on the classiﬁ-
cation of the system and its function of operation as shown in Figure 2.4. First of all, recon-
ﬁgdrable systems are classified into statically and dynamically reconfigurable systems. The
distinction between these two types [46, 1, 99] is discu’ssed. in the next section. Reconﬁg«
urable systerrrs could be batsed on the ﬁrre grain or coarse grain architecture, which impacts
the ﬂe;(ibilit)t and thus perforntance of the system. Distinction between fine grained and coarse
grained architectures is explained~ further in the chapter. | o '.

Af'the same tlme dynamlcally reconﬁgurable systems for both ﬁne gram and [46 1, 99]
coarse-gram types can utilize Spatlal Partmomng ‘of Resources (SPR) as well as, Temporal

Pafutmnmg of Resources (TPR). SPR and TPR are be descnbed later in the chapter. '

19

2.3.1 Statically and Dynamically Reconfigurable RCS

As mentioned previously, one type of reconfigurable systems is a statically configurable sys-
tem. It is configured at the boot-up stage or at a hard reset of the system. The initial con-
figuration stays on the system until the next boot-up or restart. Such are the most common
systems that are used in the industry [75, 7]. The main advantage of such systems is the ca-
pability of future or remote upgrades, as well as, the ease of these upgrades. Start-up time for
these systems is relatively small (e.g. in the range from tens of milliseconds to unit seconds)
[59]. Which is acceptable for most of the applications. Static configurable systems are used
to address two main objectives: improving the performance and optimizing the utilization of
resource components [94] for one specific application with fixed algorithm and data structure.
Therefore, statically configured systems represent an ASIC type processor where the system
is tuned to preform only one specific task (e.g. MPEG-4 encoder). This leads into the efficient
utilization of resources, such as logic resources, as well as, power consumption. This system
can be tailored to use all .avail-able resources, and to operate at maximum clock speed [67].
On the other hand, such systems are not adaptable to dynamic change in application modes
of operation and/or peripheral interfaces. That is why, similarly to ASIC i;nplementation,ﬁ all
circuitry associated with all possible tasks/modes of operation must be included into a singie
FPGA design.

Another type of reconfigurable system is a dynamically reconfigurable system. Dynam-
ically Reconfigurable Computing Systems (DRCS) involve a processor that‘can) be feconﬁg-
ured [3] with a new configuration stream during the system’s operation. The néw coﬁﬁéuratiqn
stream changes its e_a.rchit_ecfure configuration at a run-time and adapfs the sy.stem toa _m':.v(v alp-
plicaﬁéﬁ/moae;/set of paramefers as shown in Figur;a 2.5.)

Consider an cxample situation where initially kCS was opera{ting witﬁ a pz_lrz/ﬂl;l inpﬁth c;f
two data ';;)qrce;, and two processing units which [;rbdl;ceq two parallel resu_lts; After somé
time a new requiremgﬁ} was introduced where a third data source to be procésséd was addégl,

E 4

20

Proc
init #1

Figure 2.5: RCS Run-Time Resource Adaptation

as shown in the middle of the Figure 2.5. At the same time, a new restriction was set that
only one output could be driven from the system. Therefore, a third processing unit was added
along with a selector of these outputs, as shown in the right most depiction of Figure 2.5. Such
adaptations are possible in both fine grained and coarse grained architectures, however, there

are distinct differences between these adaptations which are explained in the next section.

2.3.2 Fine Grain and Coarse Grain Architectures of RCS

Reconfigurable computing systems can have the fine grain and course grain architecture. or-
ganization. In the coarse grain architectures a reconfigurable system/device consists of large
components which have fixed architecture. These components are interconnected between
each other, and the connections can be reconfigured. It is possible to change the functionality
of these components by reprogramming. However. the actual hardware architecture of these
components is fixed. Such archrtectures canbe found in many references (e.g. Goldstein et al
[35]). Currently these systems drd not get to the mass market use due to several unresolved
1ssues The main issue of such system is associated w1th limited ﬂexrbrhty of component ar-
chrtecture In acase of new requrrements orifthe dev1ce/system needs to be used ina dlfferent)
apphcatlon the system utlhzmo course grain architecture mlght not be flexible enough to fully
optimize the component functlonahty to the new requirements [77] Coarse gram architec-
ture does present an advantage in some cases, such as when all the modules are known, and
specifications do not drastically change. In this case modules provide maximum performance

and operate faster than fully reconfigurable devices with fine grain architecture [77].

21

Fine grain architecture systems operate on a different notion, which involves very small
and simple operational blocks that are organized in a homogeneous manner. This homo-
geneous field of logic elements can be configured to perform primitive ALU operations.
Throughout the years there have been different variations of fine grain architectures [93].
Fine grain levels varied from the configuration of individual transistor up to large processing
hardware cores. The advantage of a fine grain architecture is the maximum possible flexibility
that is offered by these types of systems [11], and vice versa. However, very fine grain archi-
tectures present a problem of increased routing resources, configuration bitstream resources,
and associated configuration SRAM requirement. Another aspect that became quite signifi-
cant in the system development in the past several years is the FPGA design place & route
time. In fine grain architecture more routing resources have to be considered, and therefore,
it takes even longer time in design compilation. In initial development several architectures
have shown the optimal balance in granularity and became popular choice for fine grain device
manufacturers, such as 4-input Look-up-Tables (4-LUT) to 6 input Look-up-Tables (6-LUT)
configuration block architecture. As the IC process technology evolved over the years it be-
came possible to have a large number of fine grain conﬁgnrable blocks on reconﬁourable
devices which provide the users with capability to 1mp1ement complex processing systems.
These systems became comparable to ASICs in terms of performance and are more and more
preferred by companles due to the shorter time-to-market, as well as, vrrtually no re- sprn time
and associated NRE costs. However there are several additional trade-offs that have to be con-
srdered nowadays when deahng with the fine grain architectures [104] The 51mp1er the fine
grarn block is, the more complex the rounng for configuration and interconnection becomes.
Thus, there is more hardware overhead associated with links and conﬁguration memory vol-
. , . Al S

The comprornise can be found in Hybrid architectnres. Hybrid architectures ‘rnclude‘ fine

grain elements and application specific coarse grain homogeneous elements (e.g. in Xilinx

v 22

Virtex 5, Virtex 6 FPGAs) [118, 64, 121]. This approach has currently become the most
popular choice for reconfigurable devices. The next section presents the concept of resource

partitioning on the fine grain reconfigurable systems in details.

2.3.3 Resource Partitioning Schemes in RCS

The effectiveness of RCS depends on the effectiveness of architecture-to-workload optimiza-
tion. In other words, performance parameters of RCS are a function of distribution of archi-
tectural resources on workload segments. The resources can be partitioned in spatial and/or
iemporal domains. Thus, RCS can be classified as follows:

Definition: Sparial partitioning of resources assumes distﬁb;stion of workload segmerzts\
on computing resources “in space”- different sections of the reconfigurable components and
links. In other words an RCS with spatially partitioned resources at any time dedicate different
sectors of its architecture to certain algoﬁtkm segments.

The architecture can be dynamically modiﬁed'by reconfiguring one of the sections with
the new algorithm segment.

Definition: Temporal partitioning of resources is a division of tasks into smaller sub-tasks
or segments that are reusing same resources of the RCS device in the different time periods
(time slots).

These two classifications have been in the works for the past decade and provided capa-
bilitics of adaptable hardware. These capabilities allow to have a run-time adaptive hardware
with relatively low pbwer consumption, smaller size, and more. General operation Qf these

_approaches are shown in the Figure2.6. .

As shown in the Figure 2.6, ,spa.tial panitigming of resources reuse sections of reconfig-
‘urar}x)le resources of the RCS to load new segment(s) of the algorithm/task: This achieves
an adaptability of the RCS to a new algorithm/task. If system has to execute several algo-

rithms/tasks, it can replace them by each other when needed. In the example shown ix; Figure

23

Temporal Partitioning

Spatial Partitioning of Resources of Resources

gment #4 =&

- Segment #4 2

Dynamically reconfigurable hardware

Configuration cores representing segments of the algorithm
Figure 2.6: Spatial and Temporal Partitioning of Resources

2.6 segments #1 and #2 are replaced after completion of their execution with the segmentst #6
and #35 respectively. For example, a video processing algérithm that was using edge detec-
tion as part of its processing (e.g.. Segment #1) can be changéd to perform colour intensity
calculation instead, based on the request of a user or particular environment parameters.)
For temporal partitioning of resources, segments can occupy the whole area of reconfi g-
urable resources in the RCS, and then the segments are reloaded in specific sequence. Each
segment performs a part of the algorithm/task within a reqﬁred time slot. For example, a large
JPEG2000 encoding algorithm was subd1v1ded on Tler 1 encodmg and Tler 2 encodmg into
two different segments, and these segments can be processed sequennally one after the other
requiring smaller FPGA. * ' D o
A workload can consist of algorithmic and ccmp\;ta;iionaily inténsfve tasks, thcféforé, de-
pending on ‘theetly;‘)e of algorithm at hand, a fine- gpainéd ora Coafée;gfaiﬁéd architecture would
be preferable. If the workload contains both algbrithmiéally iniénsivc segments and cbmpw
tationally intensive segmems ‘then the hybrid RCS archltecture would be the most appropnate

¥

solutmn

©

24

Definition: Hybrid RCS architecture consists of both coarse grained and fine grained
components and can be flexible enough for the computationally in?ensive tasks that deal with
streams of data, as well as, capable of processing sequential algorithm intensive tasks.

Most of the modern high-end RCS devices such as Xilinx and Altera FPGAs contain the
fine-grain components [22, 118] such as CLBs and interconnection switches, along with
coarse grain components, such as PowerPC cores, embedded memory, and others. The pres-
ence of both fine-grain and coarse-grain components allows to maxirhize the performance of
the target application, as well as to minimize the time of implementation. The Task/Algorithm
elements that are highly parallel and can be pipelined are designed in the fine-grain reconfig-
urable area. This customization gives the maximum performance for the parallelized units."
At the same time, parts of the algorithm that require sequential processing and that are de-
pendent on the result of inter-processing are realized on coarse-grained components. Such
coarse-grained components are PowerPCs that are general purpose processors implemeﬁted
in a hardware core. Consequently, they perform at the maximum available speed. The advan-
tage of the hard processors like PowerPC in comparison to the soft-processors, such as: Nios
II, MicroBlaze, and LatticeMicro32, is that PowerPC type processors performance is much
higher since it does not incur routing delays through the switch network. It should be noted
that only the higher end FPGAs are equipped with hard core microprocessors. In additipri, the
:presenée of these microprocessors significantly impacts the cost of the device. By including
the hard ;:ore processors the valuaﬁle configuration logic area is occupied and, therefore, the
amount of configurable logic is much lower when PowerPC core is included. Comparison be-
tween the XC5VLX330 and XC5FX200 is shown in Figure 2.7. These FPGAs are the largest
in Xilinx Virtex 5 LX and FX families, and it can be seen tha~t the logic amount is si gnificantly
affected in FX family where two hardware cores of PowerPCs are f)laced. This is due to the

fact that hard core processors require a significant silicon area that instead could be devoted

for logic.

25

Figure 2.7: Largest Virtex 5 LX and FX devices Floor Plan Comparison

2331 TPM to SPM comparison

. As it was described in the previous sections, there are two approaches for the partitioning
of resources: temporal and spatial. This section briefly describes the pros and cons of the
spatial partitioning approach. The spatial partitioning focuses on the reuse of the FPGA fabric

- by replacing a module with a different one or with a set of modules that are performing a
different type of operation, and therefore, reuse the physicalfesoﬁrces." For this type of system
arcmiecture a much larger FPGA is required since it involves more units than in the tempor';xl
partitioning. The advantage of the spatial partitioning is that if a task requires resources ihat
fit into the FPGA it allows to run the whole data processing in parallel, and achieve 'la higher
spf:ed of processing. In addition, if a task assumes multi-modal operation, the system can
change a mode by reconfiguring épe}n of resources accordingly. ' ;

However, there are dis_advant?ééé to the spatial partitioning approach. Ifa pr;x;essing task
requires more physical resour;:es than the lafgest FPGA can provide, thck.Spatiial pafﬁtioning
approach might notbe cost-effeéti’ve. If the processing task does not fit into the se:lec;cci FPGA

the task either has to be divided into the additional FPGAs, or a part of FPGA will have to be

-~ * .

126

reloaded, essentially converting the system into a semi-temporal partitioning system. This fact
would also affect the design complexity of the system since a partially configurable design will
have to be implemented along with the temporal partitioning. A rapid temporal partitioning
reconfiguration module would have to be added as well. This aspect reduces the advantages
of the spatial partitioning approach and makes its applications tremendously limited. As was
discussed before, the spatial partitioning approach also uses more power, as well as reduces
the overall cost-performance of the system due to the use of a much larger device. As shown
in the experiments and results section of Chapter 9, the use of a small to a mid-sized FPGA
is more preferable in terms of the power and performance parameters. This is especially true
for the cases where a stream processing task requires a run-time mode change. The proposed”
TPM performs this change seamlessly compared to the spatial partitioning approach, which
requires suspending processing operation of a section of FPGA for a relatively long period of
time. .

On the other hand, if the performance requirements are very strict and assume reaching
the possible maximum speed of data execution, then there is no other choice except the spatial

partitioning of the FPGA resources on task segments.

2, 4 Cychcally Reconﬁgurable Architecture with Macro-

Block Processmg Cores

As the process technology shnmken from 220nm to 40nm in thc past 10-15 years, a dramatic
increase in number of logic cells from justa 1700 (in Xilinx Vlrtex-l in 1998) to 758000 (in
. Latest Xilinx Virtex-6 in 2010) occurred as a result (~ 445 times increase). Yet, the compu-
tational power of conventional computers has not evolved at such rate. This, unfortunately,
presents a'bféb]em which is intensifying with every new larger family of reconfigurable de-

vices. Since place and route is a NP-complete problem, larger FPGA takes even longer time

27

to compile. When initially the compilation required only a C(.)uple of minutes, nowadays the
compilation time for large and complex designs takes tens of hours. For this, a new approach
has to be devised to mitigate this growing problem. This approach is going to be introduced
in this section.

In addition to the compilation latency there are other issues that arise associated with the
design complexity and signal timing. As devices increase in size, the complexity of the design
is increased tremendously, and even more experienced designers than before are required.
The FPGA manufacturers are trying to solve this problem by creating CAD tools that allow
modular designs and capability of design planning and budgeting. However, such approaches
still do not solve the overall problem, and overall design complexity is very high. Due to
the large ICs, the signal latencies inside the FPGA fabric increased as well, which creates
a problem for synchronization of different modules. A different approach in system design
is the utilization of the temporal partitioning to provide a simplification of the design, better
timing results, and in the end a cost-effective solution.

Initially, the temporal partitioning approach was introduced to resolve the limitation of
available resources on a FPGA device. The same approach can be used to resolve timing and
complexity issues. Typically, temporal partitioning is used to divide the algorithm in parts,
which requires complex development, and in some cases it even incr}saseg the complexity of
the whole system. At the same time, if taking a different path instead of the division of the

algorithm/task, it can be composed from smaller sub-tasks.

2.4.1 Temporal Partitioning as a Macro Operator Approach
It is possible to use pre-defined modules to assemble the processing al gérithm. This approach
is similar to how one would construct a processing task/algorithm using MATLAB tool or an

object oriented programming language. The advantage of such approach is that a macro oper-

“ ator is an already pre-designed module, with particular parameters which can be chosentby the

z
-~

28

user. This simplifies and accelerates the system design tremendously, similarly as an object
oriented language simplifies and accelerates the development of the large scale applications.
Moreover, just as the object oriented programming changed the way software development is
conducted, the same is possible in case of Macro Operator use. This approach also presents
a cost-effective solution: the developer does not need to have any extensive knowledge of
embedded system design, and “assembles” the processing task/algorithm in the higher level
of abstraction. The idea behind the proposed research is that a CAD tool performs all of the
operations of optimal Macro Operator selection, division and compilation. In addition, by
performing resource binding, the CAD tool is capable of utilizing deep pipelining of the func-
tion specific data-paths. Since stream applications typically have large frames of structured"
data, such pipelining greatly improves the performance, while keeping the same frequency of
operation. To optimize the cost-effeetiveness of the whole design, the CAD tool performs the
selection of an optimal reconfi guroble device. The CAD tool accommoc-iates‘ the oe;fonnance
restrictions imposed by the user, and takes into an account the average cost of the ecripheral
components when makmg the suggestion of the reconfi gurable device. N

The approach and its advantages mentioned above present a motivation for this research
work. Hence, the objectxve of the research consists of developing three main parts: a method-
ology for Macro Operator creation and task/aléorithro segmentetiOn; methodo]ogy of hard-
ware design architecture with support of temporal oertitioning; a CAD software that imple-
ments the segmentation methodology and creates a userVinterfa‘l_ce for creation of cost-effective
applications utilizing temporal partmomng methodology |

The following chapters present an overview of other reconﬁgurable systems and ap-
proaches that were developed by other research groups. vThe methodolog1e§ of task/algorithm
segmentation, hardware development, and CAD \softwa‘re deyelopment are presented, as well.
The fr;ethodology of task/algorithm eegmentaﬁon eoyers the aspects of how‘gegmentation has

to be performed for the reconfigurable hardware systems that process tasks using temporal

29

partitioning mechanism. The methodology of creation of Macro Operators and their partic-
ular instances is developed as well. On the hardware side of the research, a methodology
of designing hardware architecture for temporal partitioning systems will be presented with
comparison to the existing approaches and systems. This methodology is closely linked to
the task/algorithm segmentation aspect since hardware can not be designed efficiently without
taking into consideration the processing task/algorithm. The CAD software implements the
above mentioned methodologies. The design of the CAD software is described, since it is a
vital interface component between the actual user and the final hardware. All of the above
methodologies are presented in the next several chapters with the references of dependency

links between these methodologies.

2.5 Definition and Classification of Programmable Logic
Devices

Over the past two decades there has been an increasiné demaﬁd for reprogrammable and re-
conﬁguraﬁle cbrhpﬁting devices. Makimoto’s wave [70], a prediction doné in early ‘nir;eties,
indicated that the most of the computing technologies would include field programxﬁability.
Various range of reconfigurable d;avices are systemétical]y.closing the gap between the ASICs
that are oriented for high performance of one dedicated application, and thé IMICTOProcessors
with high programmiﬁg ﬁe;iibility. " Industrial companies are startirig to ‘use rebonﬁgurable
- logic devices in their system designs .gi'nstead of ASICs due to several factors. For bexa\mple,
the time-to-market factof is one of the most important ﬂﬁngs in the competitive market. In
addition, for smaller companies a r;conﬁ gurabie device is the only solution in mafly cases as
the manufacturing cost of an ASIC devme can be s1mp1y not ﬁnancm]ly feasible. Customiza-
tion is one of the key aspects that also makes the reconﬁgurable devices much more attractwe

t.

In many instances customer rmght requlre a system w1th some mterface customlzatlon or
I . . kS

30

Figure 2.8: FPGA Switch Blocks Interconnections

other types of modifications for his system. When system is implemented in the ASIC, cus-
tomization involves either additional peripheral hardware or the inclusion of various popular
interfaces into the ASIC.

Over past the two decades programmable logic devices went through many stages of de-
velopment. Several different typés of reconfigurable arcﬁitéctures were developed and yet
others are still in development. I;ately manufacturers mostly concentrated on hybrid architec-
tures of processing and archltectures of communication buses. In this section dlfferent types
of reconfigurable devices will be covered, wnh the focus on those that are dlrectly apphcable

to this research.

2.5.1 The Concept of Programmable Homogeneous Logic Resources

The concept behind the programmable homogeneous logic devices is quite sunple and in-
volves elementary conﬁ gurable blocks. The whole idea behmd the homogeneous arcmtectures
| is the existence of 1d?pncal structure blocks, whlch can be programmed to act as pamcular
logic ‘elemént. ’These ﬁlogzks are organized in a homogeneous mam;er and can be configured
to simple logic eleménts (e.g. AﬁD, OR gates) as mentionea in Section 2.3.2: Reconﬁgurable
deyicés are formed as ﬁéld of simi;le confi gprable logic bloci;cs that are intercon;“xected between
eaci'l other by configurable bﬁ’ses and switch blocks ‘c\)f interconqeé:t_ior}x routing. As shown on

the Figure 2.8, the interconnection occurs by turning on the switches that are located between

the outputs of these elementary logic blocks and interconnection routing.

31

At this point there are several possibilities that have been selected for the interconnect-
ing switches, however, this will be discussed in the later sections. By interconnecting these
elements together a very flexible architecture can be created. However, with the benefit of flex-
ibility comes a disadvantage. This disadvantage is associated with the speed of operation of a
system. For example a 16x 16 multiplier implemented as a hardware core would have much
higher performance characteristics than the one programmed in the homogeneous structure.
This is mostly related to time for signal travel from one logic element to another.It takes much
longer to traverse through the routing and all the switches than through the hardware core form
which has direct connections. For this reason there was a shift in recent years from a purely
homogeneous structure to a combination structure of hybrid architectures. These architec-
tures involve homogeneous structures combined with some fixed hardware core blocks such
as multipliers, memory morlules, microprocessors and more. Over the years two major types
of devices have emerged from the research and development and dominate the reconfigurable
device market: Complex Programmable Logic Dev}ces (CPLD) and Field Programmable Gate

Arrays (FPGAs). These devices are described in detail in the next sections.

2.5.2 Fine Grain PLDs - CPLD and FPGA Devices

‘ !Fi‘ne grain CPLD and FPGA devices with homogeneous structure were the first ones to appear
in the mid-80’s from Xilinx, Actel, and Quicklogic compames In1t1ally, they evolved from

the Programmable Logic Arrays (PLA), and nowadays include much larger conﬁgurable logic
; modules. This allowed thcm to become not just a replacement for the hon-standard peripheral
logic ICs, but to be used as a main processmg component in the system design. There are
:consrderable differences between CPLDs and FPGAs. FPGAs are much larger dev1ces that
are orgamzed in the Configuration Loglc Blocks (CLB) based on Look—up-Tables whereas

'CPLDs are orgamzed in Macro Blocks based on the actual logrc elements. Due to their lower

cost and lower power consumption CPLDs are used mostly as srmple controllers/dnvers that
F4 - -

32

have vast amount of I/Os, and they can operate on high speeds (e.g. 500MHz). Commonly,
CPLDs do not require more than one voltage supply. They also support various /O standards
for the ease of chip-to-chip interfacing, thus making them an attractive solution for mobile and
power sensitive devices. Typically CPLD devices are used for interfacing or drivers with low
power consumption and low cost, and widely used in industry for that specific purpose in all
types of electronic devices.

As mentioned before, FPGAs are much larger devices organized in the homogeneous man-
ner and composed of CLBs, interconnecting routing, switch blocks and Input Output Blocks
(I0B). Lately FPGAs started to include the integrated hardware cores, such as: Block RAM,
Multipliers, DSP modules, and even PowerPC processors. Homogeneous structure of these |
new FPGAs gives a designer a flexibility of creating architecture of their custom processor,
at the same time allowing to use the integrated devices, such as hard core 18x 18 multipliers,
which deliver a result within one clock cycle. This in turn avoids bottlenecks by reducing
the processing time of such complex operations as multiplication. Similarly, embedding the
blocks of 1Kx 16 Block RAMSs all over the FPGA’s fabric provides the distributed memory
that can be used by the neighboring logic elements. This creates a local storage eliminating
the need for external temporary memory. Access time is also fasier to these blocks than the
distributed FPGA memory since it is located in localized blocks.. This in turn increases the
processing speed of the overall system. Embedding PowerPC cores allows a designer to of-
fload sequential pracessmg that often exxsts in the embedded systems and not implement it
in the FPGA’s logic block This is a better solution in some cases because the PowerPC 1s-
1mp1emented in the hardware core form and performs faster thah }he sohmon 1mplemented

usmg CLBs In the latest Virtex 4 and Vzrtex 5 famlhes there are up to two PowerPC cores

&
t

[118] that can be used and run in paraﬂel connected to the CLBs.

33

i I
!
o
2

A\VE |

|
TX datapath

AA

;

Figure 2.9: Field Programmable Object Array (FPOA) Architecture Diagram

I RF Object
3 MAC Object
3 ALU Object

2.5.3 Coarse Grain PLDs - Field Programmable Object Arrays

In very recent years some coarse grain devices have appeared in the marketplace, such as
Field Programmable Object Arrays (FPOA). They were created to fill in the gap between the
ASICs and FPGAs. FPOASs are not user-programmable at the gate level, they are programmed
at the object level. Object types include several arithmetic logic units (ALUS), register files
(RFs), and multiply/accumulate units (MACs), each of which is programmable. The object
types are shown in the Figure 2.9. IC implemented modules are located in the devices on the

interconnection grid like in modern FPGA devices. For the efficient processing and interfacing

34

the memory and I/O modules are arranged around the device perimeter. The modules are
overlaid with high speed routing that can be configured by the user. Due to its benefits this
approach is attractive to the space and aviation industry, and one of the reasons is radiation
hardened. Since large blocks are implemented in hardware cores, they require less SRAM to
hold the configuration data. The SRAM is susceptible to Single Event Upsets (SEUs) which
are caused by the cosmic radiation. Therefore, the less configuration SRAM there is, the less
is the probability of SEU and hence the occurrence of an error or a functional interrupt. At
the same time, in the case of space applications, the flexibility is needed, as well. Therefore,
FISOA fits applications where SEU is one of the major factors and where some ﬂexibility
is required. The move from ASICs to FPOAs was initiated by the fact that companies which \
used ASIC technology for implementation of their systemé were forced into constantly making
modifications of their algorithms. When the development of the ASIC was halfway done, a
new change in the algorithm would be introduced which would cause the restart of the whole
process and obviously increase the R&D costs. The interconnection combination of highly
optimized ASICs produce a much more effective and modifiable solution. There is a trade-off
in the performance of FPOA devices, but in the instances where a change of algorithm does
not impact the architecture and is supported by the existing FPOA objects it is feasible to use
such devices. Unfortunately, in typicaf applications, designers need much wider flexibility,
and therefore FPOA suits only a very limited range of applications. In order to widen the
range, the FPOAs have to include either more objects, or these objects have to be generic in
their design. Both of these solutions compromise either the cost or performance of the end

system and, therefore, are less attractive for the most of system designers. -

2.5.4_ Run-time and Partially Reconfigurable PLDs

The era of partially configurable devices started a while ago with the release of the first Xilinx

XC2064 family of FPGAs in 1985. This FPGA allowed to addressing and reconfiguration of

35

a single cell. It offered tremendouns advantage because the device was capable of operation
even during the reconfiguration of its blocks. However, this family of devices had one major
flaw preventing it to be successful in the market. Besides the fact that XC2064 family did not
have a large amount of configuration blocks, it also lacked any type of firmware protection as
a consequence of configuration flexibility. Anyone could read the contents of the device back
to PC and decode the whole architecture and this would compromise the security of the IP-
cores. Obviously with such problems, the industry could not use this device in their products.
This device was mainly used in the research field where this flaw was not relevant. Later,
Xilinx Virtex (e.g. Virtex E, Virtex I, Virtex II Pro, Virtex 4, Virtex 5, and Virtex 6) families
also employed the capability for partial reconfiguration. Unfortunately, there is no software
support for design of dynamic partially reconfigurable architectures, so they are limited to
research labs.

As shown by many researches [102, 110, 60] dynamic reconfiguration is an extremely
powerful capability, since it allows the hardware to evolve based on the basis of the surround-
ing environment. This capability also permits a creation of fault tolerant systems, which can
recover from the hardware faults by aligning the IP-cores in such a way as to avoid the dam-
aged regions. The design of systems that employ the partial configuration mechanism is quite
complex and requires highly experienced systems engineers, as well as a very good software
support. Due to that fact companies were not demanding the support for partial reconfigura-
tion, and temporal partitioning has not been the first priority of partially configurable device
manufacturers. Instead, device manufacturers were mostly concentrated on perfecting the cur-
rent devices with the modular design capabilities and the speed of operation with only minimal
support of the capabilities for partial configuration. Therefore, the most of the software tools

were improved in the area of modular design, such as recent Xilinx PlanAhead.

36

2.6 Summary

This chapter covered the notion of workload for computing systems and its classification. The
focus of this thesis work is on the computationally intensive multi-mode stream processing
architectures. This chapter provided literature overview of the processing architectures with
their classification. This led into the introduction of the concept of reconfigurable comput-
ing systems. Classification of different reconfigurable architectures was given, as well as the
distinction of fine and coarse grain architectures. Particular specifics of CPLD and FPGA de-
vices and their latest features and their benefits for various applications were described. This
overview continued the introduction of temporal and spatial partitioning concepts, since the
work in this thesis is focused on the temporal partitioning systems. The Notion of Macro-
operator processing was introduced and explained. Further chapters will provide the in-depth
explanation of the Macro-Operator (MO) creation, as well as hardware architecture require-

ments for the support of this methodology.

37

38

Chapter 3

Architectural Organization of Temporal

Partitioning Mechanism

3.1 Introduction

In recent years there were several developments made in the field of temporal partitioning
of FPGA resources. A large portion of the research [24, 28, 46, 85] describes the analysis
of task segmentation. However, not many works focused on the architecture organization of
temporal partitioning mechanisms and hardware support. The architecture organization for
temporal partitioning mechanism involves three main components: configuration controller,
configuration memory, and configuration memory manager.

This chapter is organized as follows: Section 3.2 covers different approaches in the field
of architectural organization for temporal partitioning systems. It covers the aspects of the
architecture organization and approaches that already tackled that issue. The rest of the chapter
provides an analysis of the main sources of the timing overhead, a qualitative approach in
cstima;tion of required resources and the trade-offs in their selection. This chapter gives the
timing measurements per device and proposes an organization of the temporal partitioning

mechanism of FPGA resources (TPM). The architectural solutions that minimize or eliminate

39

the sources of timing overhead are discussed. Secondly, an architecture that is required for
support of temporal partitioning is proposed as a possible solution for minimization of the
hardware overhead. A trade-off scheme for estimation of performance and cost of the system
is discussed. Temporal partitioning gives a user a capability of having cost-effective solution,

where performance trade-off and cost is balanced.

3.2 Literature Review

Temporal partitioning techniques appeared in the past decade with the appearance of recon-
figurable devices that supported run-time reconfiguration. As defined in Chapter 2, temporal
partitioning assumes a division of tasks into segments to be executed on the computing sys-
tem that are configured one after the other. A processing system, where processor architecture
reconfigures during the task-execution, is called a run-time-reconfigurable computing system
(RTR CS). In the past decade many research groups worked on the architectural and task
partitioning solutions [107, 48, 32, 43, 29, 10] and several approaches were proposed and
developed. These solutions can be classified as: i) approaches focused on the optimization of
task/algorithm segmentation; ii) approaches focused on the architectural support of Tempo-
ral Partitioning Mechanism (TPM). In this section the most interesting architectures that have
been developed are described along with their pros and cons.

Some research works concentrated on tools that can optimize task partitioning for appli-
cations such as Multimedia (e.g. [25, 12, 95]), DSP and Digital Communication (e.g. [5]).
Others (25, 101, 108, 45] explored the theories behind the tasks segmentation, as well as
their use in different types of applications. Few researchers implemented the experimental
systems that used the temporal partitioning for the computation [41, 35], but utilized coarse
grain architectures. Consequently, they had much lower algorithm-to-architecture tuning ca-
pabilities. Several works discussed specific architectural details of FPGA based platforms

exploiting temporal partitioning, although emphasis was placed on software segmentation of

40

Configuration SRAM

SRAM | | SRAM SRAM | | SRAM
Cell Cell Cell Cell

¢t [c2 [3 Jca

. Context Switch /

L Configuration transistor

IJ'\

Figure 3.1: Diagram of Multi-Context FPGA Configuration Cell 3.1 [40]

tasks for later scheduling and processing [76]. Recently, there was a publication discussing
the technique of reducing the configuration time of the platform, however it did not analyze
the overall cost-effectiveness of the temporal partitioning. Overview of the architectures of
existing systems is organized in three subsections: Context switch FPGA architectures; and
partially reconfigurable FPGA architectures utilizing on-chip soft-core (e.g. MicroBlaze) con-

troller; Partially reconfigurable FPGAs with external custom configuration controllers.

3.2.1 Context Switch FPGA Architectures

One of the directions that was pursued by many researchers is context switching (e.g.
[37, 79]). It involves several configuration SRAM cells and ability to switch between the
configurations by selecting the corresponding configuration bit. There were several different
approaches taken in the area of context switching. However, all of them require an additional
configuration SRAM cells and an associated multiplexer, as shown in Figure 3.1 [40].

The additional memory essentially increases the size of the FPGA die. It doubles the
address and data buses, but requires highly parallel connectivity between the configuration
SRAM cells that can to switch simultaneously from one configuration to the other. Highly
parallel connectivity in turn increases the complexity of routing and adds the memory control
circuit~ mechanism which tremendously increases the cost of the FPGA. Also context switch-
ing FPGA is the limited number of possible context switches by particular FPGA device. The

advantage of the context switch FPGA is a very short transition time from one configuration

41

to another. Switch occurs within one or two clock cycles [97]. One more significant problem
that arises from the implementation of additional configuration memory plane on an FPGA
device is the increased power consumption [68, 18]. This is due to the fact that multiple
memory cells are drawing static power but are not providing any functionality at that moment.
There were several different approaches to mitigate the problem of power consumption and
the area increase by using Floating-Gate-MOS Functional Pass-Gate [40], as well as Decoder-
Based Multi-context interconnect structure [68]. However, these solutions are still limited to
only few possible contexts and are appropriate only for applications with limited configuration
variations. The multi-context FPGAs that support 2-4 configurations are suitable for applica-
tions that need to switch between existing configurations and do not involve the uploading
of configurations during the operation. In addition, these types of FPGAs are best suited for
small size applications, because larger multi-context FPGAs are significantly more expensive
[111]. Therefore, context switching is not cost-efficient in the solutions that are used for in-
dustrial applications and where cost is critical. The external configuration controller of the
multi-context FPGA is not discussed in detail by [97, 68, 18]. However, it is assumed to be
a conventional configuration controller used in most of the FPGA devices. On the other hand,
the internal configuration controller can be considered as an array of multiplexers that perform
a selection of the configuration IP-core from the available SRAM cells. Configuration mem-
ory management also was not addressed in the [97, 68, 18] papers regarding the multi-context
FPGAs, and therefore, cannot be evaluated in detail in this overview.

Hence the above analysis brings us to the realization that cost-effective solution can be
found by utilization of readily available FPGA devices. These devices are relatively low in
cost due to their mass production. In this case there are two main approaches used by the
researchers in temporal partitioning system. They involve using an off-the-shelf FPGA and

an external or internal configuration controller. The following sections talk about the schemes

42

typically employed by researchers utilizing temporal partitioning technique, and analyze the

pros and cons of these schemes.

3.2.2 Partially Reconfigurable FPGAs Architectures that Utilize an In-

ternal Soft-core Controller.

When considering using the conventional FPGAs in the temporal partitioning approach we
assume that the processing module is fully reconfigurable. In most real-time video-processing
applications such as: multimedia, machine vision, automotive, security, tele-medicine and
others, at least three main operations are required. These operations are: capturing of the raw
video-frames, the video-stream processing based on a particular algorithm, and outputting
the results in some manner that is custom to the application (e.g. coordinates, intensity, con-
verted/transformed image as a real-time video output, etc.).

The researchers have approached the architecture of temporal partitioning platforms from
different directions. One of the proposed architectures considers using a Xilinx MicroBlaze
soft-core processor [37]. MicroBlaze microprocessor acts as a configuration controller for
the system. Figure 3.2 shows how the system’s architecture is designed. An FPGA device
is initially loaded with the configuration bitstream that includes architecture of MicroBlaze
microprocessor. The initial configuration might contain no processing modules or /O IP-
cores in the Dynamic Reconfiguration Area. The consecutive processing IP-cores would be
loaded into the specific dynamic reconfiguration area. The MicroBlaze performs that actual-
operation of loading the IP-cores from the configuration storage memory to the designated
area. In this case configuration storage memory is an IP-core library which typically is a
non-volatile memory. The configuration memory is external to the reconfigurable device and
can be realized in a number of possible architectures, that are discussed and analyzed later in
the chapter. To load the bitstream MicroBlaze uses the Integrated Configuration Access Port

(ICAP) [119]. It is important to mention that MicroBlaze microprocessor and all connection

43

MicroBlaze
Processor

Dynamic General
Reconfiguration <::> 1/0

Area

ICAP

N J

{ i
IP-Core
Library

Figure 3.2: Temporal Partitioning System Utilizing MicroBlaze Controller

SRAM O SRAM 1

structure are fixed throughout the operation of the device. At the same time IP-cores are
required to be designe;i in a form of partial bitstreams avoiding the logic area of MicroBlaze
microprocessor. External interface between the peripheral devices and the IP-cores is done
over bus macros and can operate without involving of MicroBlaze microprocessor.

The advantage of using a MicroBlaze microprocessor is the ease of the system implemen-
tation since it is included in the Xilinx EDK/ISE CAD tool [114]. In addition, a MicroBlaze
microprocessor has pre-built interfaces from the EDK package to peripheral devices such as
memory controllers, UART and Ethernet, CAN [78]. Therefore, integrating these common
interfaces into a MicroBlaze soft-core processor does not involve significant engineering time
investment. No special external hardware is needed for supporting the reconfiguration of the
FPGA except an external FLASH which stores the IP-core library. It is easier to incorporate
the interfaces in the design than to design and integrate them from scratch. Hence, a Mi-
croBlaze processor can also act as a configuration memory manager which can perform the
communication to the outside world through the available interfaces. This implementation
of the memory manager is capable of updating IP-cores, modifying configuration schedule,
and much more. In one of the papers [7], a MicroBlaze microprocessor is used in the CAN

interface in attempt to replace a significant number of the static microprocessors present in the
&

44

conventional car. So, instead of running all of the microprocessors at the same time even when
they are not used, a MicroBlaze microprocessor loads the required processor on demand. The
dynamic reconfiguration area shown in Figure 3.2 is subdivided further into several processors,
so and not one but four or more processors can be loaded on demand. Based on the current
conditions in the system, the requests are prioritized and lower priority processor request are
put in a queue [7].

However, the solution from [7] has disadvantages as well. First, the main drawback is the
FPGA fabric requirement. Because MicroBlaze is a generic soft-core processor implemented
in FPGA logic resources, it utilizes a significant amount of the valuable logic space of the
FPGA. In turn, by considering the cost of the required FPGA fabric for implementation soft-
controller translates into much higher overall costs than hard-core external processor if to be
used as a reconfiguration controller. At the same time, the creation of the IP-cores is much
more sophisticated, since they have to be designed as partial configuration bitstreams. Thus,
this will be possible only for latest Virtex Family FPGAs, since only these FPGAs support
partial configuration. Secondly, the soft-core MicroBlaze microprocessor is a sequential pro-
cessing element and operates on a much slower speed than a hard-core version of a compatible
microprocessor, therefore it cannot accommodate a rapid IP-core reconfiguration. MicroBlaze
can operate at the top speed of 200MHz and requires three cycles per instruction, so the mem-
ory accesses can take up to 7 cycles [98]. Therefore, the actual speed of operation is less
than 30M11z which is 3.3 times slower than the maximum speed of an ICAP operation. This
introduces an additional delay since it cannot reconfigure the partial IP-core modules at the
maximum speed supported by ICAP. At last, the area taken by the MicroBlaze microproces-
sor, Bus Macros and other servicing logic counts up to 10-20% of the FPGA and cannot be
utilized [46] as shown in Figure 3.3. Consequently the cost of the system is increased since a

larger FPGA has to be used.

45

' & Vlen-time 1/O (e.g. CAN})
Madule p——
Controller
_ L »
'§ ‘ g . - :; Boot-
& & = cpLD
BusCom0 BusCom1 BusCom2 BusCom3
| Flash-

R e

Bus-Macro et ~ ICAP
Figure 3.3: Bus Macros Based Temporal Partitioning Architecture [46]

A slightly different path was taken by research groups which implemented custom soft-
core reconfiguration controller instead of using the MicroBlaze microprocessor, which is ex-

plained in the next section.

3.2.3 Partially Reconfigurable FPGAs with Custom Configuration Con-

troller

Often a custom configuration controller is designed for the temporal partitioning architecture.
As in the Section 3.2.2, the custom configuration controller is loaded at the start-up stage of
operation and remains for the rest of the operation. A section of FPGA device is dedicated as a
dynamically reconfigurable area. This dynamically reconfigurable area is used for partial IP-
cores that are loaded into FPGA throughout the system’s operation. This approach was used by
several research groups [1, 81, 99] and described in their publications. However, these papers
considered partially reconfigurable FPGA from Xilinx Inc. and used other methods of loading
the partial configuration bitstreams. These methods use internal configuration controller ICAP

[99]. In some cases the reconfiguration architecture includes external loaders based on CPLD

46

- [;
e ik 1 Ay ‘ <
[& g ’;y
l J B 3 : l
Scheduer : 2 , gl &
BR Safgr—tTesk2 i Dyvnamic El 8 3 -
ICBarray . g2¥¢°- T =] =
RS 338 Area o . PoswerPC =
R _ ; . i &l 8 -~
2 = 3 B -
o - 1
— (askn e 54 e “ 4./.
L,] il SRAN & I — 3
- ‘ - i =
B Ty | z
= MR Bridge /
o

On=chip Peripheral Bus

> = E D
| . > 5 Fesh |3) . - i Conliguration Memory |
L CPLD ¥ B | | SRAMI | | SRAM2 - £ i Pl —
- Card Controller [ICAP

(A) (8)

._
Ny
«

mal

EX
Memaory

Figure 3.4: Examples of Temporal Partitioning Architectures with Custom Embedded Con-
troller [1, 81, 99]

and FLASH memory combination [l]. A custom controller performs the operations such
as scheduling and timing of reconfiguration, task management, and communication with the
external memory [1!. These configurations are shown in the Figure 3.4.

In the Figure 3.4 one can see that similurly to the organization described in the previ-
ous section, a custom Configuration Memory Controller is implemented in the reconfigurable
fabric. The dynamic reconfigurable area is also used for the IP-cores. Similarly, as in the
previous section, these IP-cores arc partial bitstreams and are specifically designed with con-
straints for a particular FPGA device. The configuration memory is assumed to be an external
non-volatile memory, but, it is not discussed in detail in these works [1, 81, 99]. The memory
management is performed by the same custom controller, and for this the design of interfaces
is needed. In the Figure 3.4 a configuration controller is implemented externally in a form
of a CPLD device. The configuration memory for all of the IP-core bitstreams is stored on
FLASH memory and is interfaced to the CPLD only. The CPLD provides the bitstream to the
FPGA based on the requests from the Scheduler. The configuration memory manager in this
architecture is implemented as a custom controller, and performs all of the operations needed
for IP-core management. In this scenario the IP-core replacement is done by the CPLD de-

vice. Another option to update the IP-cores is to replace the FLASH card. In general, such

47

physical intervention is not desirable since typically embedded processing system is not easily
accessible after deployed in the field.

For both of these architectures temporal data memory usually is considered as an external
SRAM. Depending on the application the single or dual bank configuration is used for the stor-
age of intermediate and final results of TPM processing. The controllers communicate with
the integrated PowerPC cores that are embedded in some of the Xilinx Virtex FPGAs [99].
However, as with the MicroBlaze soft-core processor, the custom soft-core controllers occupy
FPGA’s logic resources. Most importantly, they are again limited to the FPGA devices that
support partial configuration. Due to that fact, the design of the IP-cores is more complex and
limited in implementation t. In order to overcome the limitations and create a generic support
for all types of FPGA devices the IP-core configuration memory manager and configuration

controller should be located outside of the FPGA.

3.3 Architectural Organization of Temporal Partitioning
Mechanism

As mentioned in the introduction and literature review sections, all of the major components
such as: 1) configuration memory manager, ii) configuration controller, iii) configuration mem-
ory have to be analyzed and implemented for the TPM architecture. It is preferable that the
configuration controller along with the configuration memory manager is implemented as an
external device since both are relatively cheaper than an on-chip FPGA resources (e.g ~ $30).
This allows for the implementation of the TPM architecture on any off-the-shelf (OTS) re-
configurable device, without being tied to a specific family or manufacturer of reconfigurable
devices. In this section every component of the TPM architecture is discussed along with

quantitative analysis and possible architecture options.

48

Table 3.1: Memory Types Chart and their Characteristics

[Memory Type | Bandwidth | Read Latency | Capacity (MB) | Control Complexity |
Hard Disk Drive | 3 x 10° Bits/sec ~10 ms 1.2 x 10" Bits High
NOR FLASH 8 x 10° Bits/sec 20 ns 51.2 x 107 Bits Low
NAND FLASH | 3.6 x 10° Bits/sec 1.5 ms 51.2x 10" Bits Medium
DRAM 12.8 x 10° Bits/sec 20 ns 1.2 x 10" Bits High
SRAM 6.4 x 10° Bits/sec 7 ns 72 x 10° Bits Low

3.3.1 [IP-corelibrary - Configuration Memory Architectures and Perfor-
mance Analysis

The configuration memory in temporal partitioning architecture essentially represents the IP-
core library which contains vast amounts of different variations of IP-cores. This library
should have capabilities of immediate on-the-fly access to the stored IP-cores in order to
deliver them to the target reconfigurable device. This library should also be updatable and
therefore it should be on an erasable/rewritable type memory. When considering the configu-
ration memory interfaces one should assume that the configuration cores can be stored on any
type of memory. Memory could be volatile, like DRAM and SRAM or non-volatile, such as
hard drive, FLASH memory, or even a network device. The difference between the memories
lies not only in the type of memory and its maximum speed, but also in the initial access la-
tency, its maximum capacity, and control complexity. Differences can be found even within
the same type of memories, for example, NAND and NOR FLASH memories. Based on
similar technologies these memories differ in that the NAND FLASH can have large capacity,
whereas NOR FLASH has very fast access time. The choice of the memory mainly depends on
the system bandwidth requirements of configuration interface. The chart of different memory
solutions is given in Table 3.1.
Every memory type in the above table has some aspects that are desirable for various tem-

poral partitioning architectures. As seen in the table, there are several parameters that are

important for the target architecture. The hard disk drive (HDD) has the largest capacity, as

49

well as relatively high bandwidth, however, the initial latency and complexity of interfacing
are the main problematic issues. Typically, a hard drive requires a microprocessor or a spe-
cialized controller to utilize the full speed of the interface, therefore the implementation of it
in an embedded system is considered of a high complexity. DRAM is also of a large capac-
ity, but, similarly, requires a relatively complicated controller, and in addition, it is a volatile
memory. SRAM, on the other hand, is very simple in control, but it is also a volatile memory
that has a limited capacity. NOR FLASH memory is a non-volatile memory, with relatively
simple control which is similar to that of the SRAM, and with very low latency. The main
issue with NOR FLASH is its capacity which is currently limited to 512 MBits per single die.
NAND FLASH has comparable bandwidth to the NOR FLASH, and an ever growing memory
density, but it suffers from the initial readout latency.

From the above findings we can observe that each type of memory suites different type
of requirements, that can depend on the environment for which the system architecture is de-
signed. The purpose of a cost-effective design is to select a memory that is closely applicable
to the architectural requirements. At the same time, the design complexity and the future
migration to other designs has to be also considered as the part of the overall cost system eval-
uation. Hence, a if system is designed to be interfaced to a PC and the mode change can be
done slowly, a hard drive IP-core storage system would be most suited. On the other hand, if
the system has to be highly optimized in terms of power and speed with large storage capacity,
a NAND FLASH with pre-fetch SRAM memory would be more effective.

When a memory is selected, the memory management has to be considered. The mem-
ory manager has to be present to perform loading and updating of IP-cores to a non-volatile

memory. The memory manager is discussed in the following section.

50

3.3.2 Architecture of Configuration Memory Manager

The configuration memory manager performs the following functions: schedules the reconfig-
urations, updates IP-core in the IP-core library, communicates with the external devices (e.g.
host computer, network server, etc..) and, in most of cases, initiates the reconfigurations.

The configuration memory manager can be implemented in various ways. For example:
purely software running on a host PC, soft-core manager as described in the [1, 81, 99], as
external microprocessor/microcontroller. Configuration memory manager can have different
types of interfaces to the outside world. Interfaces can be as simple as a serial communication,
or as complex as Ethernet or satellite interfaces with a connectivity to an IP-core library on a
remote server. There is also a possibility of hardware-software co-design where some aspects
of the configuration manager are implemented in hardware, such as interfacing, and some in
software, such as the order of the IP-core prediction. The complexity of the actual configura-
tion memory manager also varies with the system requirements. In some cases configuration
manager needs to cycle only through few IP-cores and, therefore, can be implemented even on
a small size logic device. When requirement is for a system that has to have various interfaces
and performs complex memory management operations, a much more complex processing
device has to be used. Moreover, the development of the firmware for that device is compli-
cated, and, as a result, the overall cost increases. Hence, the configuration memory manager
should closely reflect the overall system requirements.

Proposed configuration memory manager is flexible in supporting both temporal and spa-.
tial partitioning. The main difference of a partial bitstream from a full configuration bitstream
is in size. The configuration procedures are virtually identical. The partial configuration does
not require a reset of FPGA configuration memory, which, in most cases, is an assertion of
a reset input. The header information is included in all of the bitstreams that are produced
by CAD software, therefore configuration memory manager is greatly simplified. Since the

configuration memory manager performs the actual update of the IP-core library it also can

51

perform the memory use optimization, by reorganizing the IP-cores to utilize as much mem-
ory as possible. Keeping the database of the IP-cores simplifies the user configuration side
interface and makes it portable and independent of the specific user. This allows to change the
schedule of the temporal or spatial reconfiguration without any knowledge of where exactly
the particular IP-core is located in the storage memory and what size it is.

As was seen in the previously reviewed works [1, 81, 99, 46], the configuration mem-
ory manager was mostly present as a soft-core microprocessor on the FPGA fabric or was
not discussed at all. The main reason for integrating the configuration manager inside the
FPGA device was to avoid the use of an external controller and minimize the complexity of
the configuration memory manager by utilizing pre-built soft-core processor. However, as
was explained, the soft-core controller occupies valuable logic resources on the FPGA device,
complicates the IP-core design, but is supported by FPGA vendors. Design of the config-
uration memory manager is also possible in other types of architectures, however as in the
Section 3.3.1, the design closely depends on the overall system requirement. Several config-
uration memory manager architectures are given below in the order of increasing bandwidth

and complexity below:
¢ Software GUI with JTAG configuration interface
¢ Low cost microcontroller with 1 or 8 bit configuration interface

¢ Combination of a microcontroller with a high speed IP-core loader controller based on

a CPLD/FPGA/ASIC

e Microprocessor with a high speed IP-core loader interface and various complex com-

munication interfaces (e.g. Ethernet)

It is important to mention that the configuration memory manager does not necessarily include
the configuration controller. In some cases to increase the bandwidth of the configuration bus

an additional driver is added to achieve the desired configuration speed.

52

3.3.3 Configuration Controller Architecture

The purpose of a configuration controller is to perform the loading of the configuration bit-
stream from the IP-core library to the target reconfigurable device. There are various configu-
ration controller interfaces that can be employed and they can be as simple as a serial interface
running at low interface (e.g. KHz range) frequency, and as complex as a highly parallel and
high frequency (e.g. 32 bit running at 100MHz). The IP-core storage memory has several
options as well: integrated into configuration controller (e.g. Xilinx PROM), external mem-
ory module (e.g. FLASH memory IC), or removable (e.g. CF card, HDD, network) device.
The configuration controller typically has an interface to the configuration memory manager,
which issues commands to the configuration controller. Typical commands for the configura-
tion memory manager are: load IP-core from a particular slot/address, perform maintenance
on a particular slot/address. Maintenance can include erasing a particular slot/address on the
storage memory, as well as, write an incoming stream of data to a slot/address. The interfaces
of the configuration controller to the target FPGA device vary in bandwidth. It’s important
to state that the performance of the external configuration controller is always designed to
match the FPGA’s maximum configuration bandwidth. Hence, the external configuration con-
troller always operates with the maximum required performance and is in no way lower in
performance than previously described soft-controllers [46, 1, 99]. Therefore, based on the
system architecture requirements an appropriate selection has to be made. The next section
talks about the comparison of configuration interfaces and about the actual steps of FPGA

reconfiguration.

3.3.4 Configuration Interfaces Selection

As mentioned earlier, specifications of the desired system dictate the complexity of the de-
sign. Depending on these requirements a temporal partitioning mechanism can be designed

with various configuration interfaces that have different configuration bandwidths. One of the

53

drawbacks of the temporal partitioning approach is the timing overhead that is introduced by
the reconfiguration time of an FPGA device. For high performance stream processing systems
such overhead becomes a significant problem and might result in a violation of the timing
restrictions. Hence, one of the objectives of the research was to minimize the configuration
timing overhead. In order to do that we have to analyze what is involved in the calculation of
reconfiguration time.

When we are considering minimization of configuration time overhead we first have to
describe general interfaces that are available for FPGA configuration. Most of the FPGA
manufacturers support several common types of configuration interfaces that can be utilized
by designers for particular applications. Based on the speed of these interfaces the calculation
of configuration times can be performed.

Most common interface includes serial configuration over two line interface, where one
line provides clock input and the other provides the data. Serial configuration is available
in different flavors. The proprietary protocols such as Xilinx Master-Serial and JTAG TAP
chain are common to most manufacturers. JTAG TAP chain operates at about 8MHz [34].
Proprietary serial configuration interfaces usually support much higher speed which in case of
Xilinx Master-Serial is 25MHz. For fully embedded solutions FPGA manufacturers provide
configuration PROMs that can support up to 8 different configuration bitstreams. Recently,
configuration PROMs were embedded directly in the FPGA ICs, such as Lattice XP and Xilinx
Spartan 3N FPGAs. This decreased the external component count, the cost and the size of the
overall system. It also provided an additional security against reverse engineering of IP-cores.
The speed of bitstream upload was not improved, however.

As FPGA devices increased in size so did the configuration bitstream, which in turn caused
longer configuration latency. Serial configuration would require tens of seconds and thus was
unfeasible for embedded products that needed to have reasonably fast start up times. Some

manufacturers began to increase the configuration bus width. Most common ones were 8

A

54

bit width operating at S0MHz. In case of Xilinx FPGAs this interface is called SelectMAP
and is usually interfaced with a microprocessor, or a combination of a microcontroller and
CPLD. The speed of this interface was also increased to about 50Mhz to allow rapid power-
to-operation start-up times and to cut the start-up times by the factor of 16. In the past couple
of years, with the release of latest Xilinx Virtex 4, Virtex 5 and newly announced Virtex 6
FPGA:s, this interface was developed even more and bus width was increased to 32 bits, while
frequency was pushed to 100MHz of configuration clock. This fact benefited the approach
of temporal partitioning tremendously, since it has greatly reduced the configuration time of
FPGA, which, as mentioned before, is the main bottleneck in the implementation of temporal
partitioning.

From the above described interfaces we can arrive at a general formula for calculation of

bitstream upload time:

S S

Tconf ighitstream WxF - chonfig (3.1)

where W is the bit width of the configuration bus, F is the frequency of the configuration
clock that is used to clock-in configuration data which results in configuration bandwidth,
BW_onig is the bandwidth of the configuration interface. Assuming S is the size of a bitstream
in bits, the time it takes to upload the actual bitstream information Teonfig, rream» 18 directly
related to the configuration bandwidth.

Table 3.2 shows the comparison between time requirements for configuration of different

interfaces for smallest FPGA in Virtex-4 Family XC4VLX15 which has bitstream size of

i

4,765,568 bits.

It is clear from Table 3.2 that the configuration interface plays a crucial role in the re-
duction of configuration time overhead. High clocking speed and highly parallel interface,

such as SelectMAP32, gives 400 fold time reduction in comparison to a conventional JTAG

55

Table 3.2: Bitstream Configuration Timings for Various FPGA Interfaces.

Interface JTAG at 8MHz | Scrial at 25MHz | Paralle] SelectMAP | Parallel
(8bit) at SOMHz SelectMAP32

(32bit) at 100MHz
{ Time Required | 595.69ms | 190.62ms | 11.91ms] 1.49ms
Steps
1 | 2 | 3 4 | 5 | 6 | 7 8
Dovice | Cear | ot b beviap | ead | Startup
Power-Up ; Coggxar;jm : Pins Synchtomzatm} Chack : Cmggﬁamﬁon ; CRC Check Sequence
i i | i i
Bitstream I
toading

Start Finish

Figure 3.5: FPGA Re-configuration Stages [83]

interface. Therefore, when considering configuration interface in architectures that employ
temporal partitioning, the largest configuration bus width, and the highest configuration speed
is preferred to minimize the bitstream configuration overhead.

At the same time, it is important to note that T;,, i consists of several latencies and not
Just Teonfigyuoream- Other time overheads have to be included in calculation of Teopfie. These

overheads are explained in the next section.

3.3.5 Calculation of FPGA Reconfiguration Time

When calculation time involved in an FPGA device reconﬁéuration we have to consider the
time for 8 latencies, as shown in the Figure 3.5.

The power up latency can be avoided since system is considered to be powered up already.
Nonetheless, it has been included as first latency and counted as Teonfigppye,_., fOr the sake
of completeness. The next two steps are associated with the reset of configuration memory
and FPGA responding with being ready to accept a new bitstream. PROGRAM signal has
to be asserted for at least Toonfigomrese (-8 Xilinx FPGAs 300ns) in order to initiate the

FPGA configuration memory reset [83]. Upon completion of the reset, the INIT signal will

56

be asserted to high with a typical time latency of Teonfig,y iqene, (€-8- Xilinx FPGAs 30045)
and the bitstream upload takes place.

Step 4 through step 7 take care of the bitstream configuration. The bitstream itself consists
of several sections, such as: synchronization, device ID check, CRC check, and the actual
configuration data upload. The procedure is fairly similar for all types of SRAM based FPGAs.
Teonfigpusrean Varies greatly depending on the size of an FPGA. As can be seen in example of
Xilinx Virtex 4, the series different devices in the same family vary greatly in configuration
data size, which reflects its logic size. Therefore, for a large device, such as XC4VLX200,
the bitstream is about 11 times larger than for XC4VLX15. We have to also consider the fact
that if a bitstream compression is utilized, then the size of a bitstream can be reduced. The
smaller bitstream size in turn decreases the time of bitstream upload. Upon completion of the
bitstream upload there is typically a delay of several clock cycles for FPGA start-up, but it
is negligible compared to all of the other steps in bitstream configuration (e.g. Xilinx Virtex

8cc x 10})1711 - = 80ns). In the Table 3.3 the reconfiguration times for Virtex 4 FPGA devices

are listed along with the total configuration FPGA off-line time which in this thesis is given

asd

;Q‘Oﬂ fig — YZ'Oﬂf ig power + T‘?‘—mf 18 memreset + T‘x’nf i8init tatency + IL""f i8pitstream (32)

This formula includes all the time requirements described previously. As it can be seen from
the Table 3.3, the reconfiguration times increase almost linearly with the size of the FPGA
device. For the temporal partitioning it has to be decided which FPGA is most suitable based
on how much configuration overhead can be tolerated. In the later section a selection scheme
will be presented on how FPGAs are chosen for a pal;ticular temporal partitioning

implementation.

57

Table 3.3: Reconfiguration Time for the Xilinx Virtex 4 FPGA Devices via Slave Serial Se-

lectMAP32 Mode.
| Devices | Bitstream Size in bits | Bitstream Configuration | Total FPGA configuration |
XC4VLXI15 4,765,568 1.489ms 1.789ms
XC4VLX25 7,819,904 2.444ms 2.744ms
XC4VLX40 12,259,712 3.831ms 4.131ms
XC4VLX60 17,717,632 5.537ms 5.83Tms
XC4VLXE0 23,291,008 7.278ms 7.578ms
XC4VLX100 30,711,680 9.597ms 9.897ms
XC4VLX160 40,347,008 12.608ms 12.908ms
XC4VLX200 51,367,808 16.052ms 16.352ms

3.3.6 Proposed Platform Architecture with Custom External Controller-

Scheduler for Run-Time TPM

Based on the proposed methodologies/approaches of different parts of the TPM in previous
‘sections a proposed methodology of overall architecture for temporal partitioning system is
given in this section. This section explains the architecture of configuration memory manager,
its configuration memory (IP-core library), and its configuration controller. First, however,
system requirements have to be stated since architecture of the TPM depends them. For this

work four main specifications are considered:
1. The fastest possible FPGA reconfiguration to minimize the downtime.
2. An interface to a PC for user interaction with the configuration manager

3. An ability of the IP-core library to be updated from a PC (e.g. Ethernet bridge, Bluetooth

bridge, serial port, etc.)

4. An ability to issue reconfiguration commands from 3 sources:

(a) FPGA device
(b) GUI software
(c) Physical\mput button

58

Based on these initial specification requirements the TPM architecture design was proposed
for the target platform described in this work [S8]. Overall architecture is shown in Figure
3.6.

The external configuration memory manager is designed by utilizing a microcontroller that
interfaces with a IP-core library and configuration manager. Its main functions are: i) schedul-
ing, ii) updating IP-cores, iii) communication with the instrumental PC over a USB protocol.
The microcontroller is a Microchip PIC18F8410 with 8-bit Harvard RISC architecture. It
was selected due to requirements of all of the above interfaces and its low cost. The micro-
controller is connected to the configuration controller and FPGA with a parallel interface. The
purpose of the interface to both the configuration controller and FPGA is to have the flexibility
of initiating reconfiguration based on a request from FPGA and to pass command information
to the configuration controller. The use of the microcontroller instead of much more powerful
microprocessor is to simplify the design, to make it portable and implementable on a much
smaller scale platform and on a smaller FPGA. Possible disadvantages are that for support of
high speed Ethernet protocol requires much more powerful microprocessor.

The configuration memory was selected to be a non-volatile NOR FLASH type memory
connected to the configuration controller only. This solution was selected because the NOR
FLASH memory has high pin-count of four FLASH modules and hence provides rapid upload
of a bitstream. To achieve the maximum bandwidth of reconfiguration it was needed to connect
four modules in parallel. Even though capacity of NOR FLASH is significantly smaller than
that of the NAND FLASH, NOR FLASH has the lowest initial latency for a non-volatile
memory and has an SRAM-like control architecture. Due to these reasons and considering the
scope of the work, NOR FLASH is a suitable type of memory for IP-core library.

The configuration controller delivers configuration bitstream at the maximum possible
bandwidth allowed by the reconfigurable device. The high pin-count was needed to inter-

face to four NOR FLASH modules mentioned previously. However, the memory operations

59

are not complex and, therefore, a CPLD device has enough logic resources for that purpose.
Similarly, as with the configuration memory manager, it has a dual parallel bus connected to
both FPGA device and configuration manager. Additionally, it has a 32-bit configuration bus
to the FPGA device, on which the actual configuration data is delivered. The main advantage
of the CPLD device is that it is a configurable logic device based on a non-volatile memory
operating from a single power source and that it can operate at high frequencies. This allows
for easily parallel implementation of configuration controller which can be highly portable
across different architectures and scalable for higher speed.

The great advantage of such implementation is an ability of designing platforms with any
type of FPGA device, independent of the partial configuration capability. More importantly,
temporal partitioning system can be designed for any FPGA device, which is controlled and
configured by the central scheduler. This also simplifies the generation of IP-cores since they
are designed with full use of resources and are not limited by area constraints. Since there
are no embedded controllers/schedulers on target FPGA, the design can be done without any
specific considerations.

There are different approaches that can be employed in design of a system with temporal
partitioning methodology using external configuration controller. Some can be a single-FPGA
and some can be multi-FPGA solutions. Figure 3.6 shows proposed general organization of a
system with single FPGA, which is similar to [46, 85, 107].

In this setup the configuration memory manager is connected to the configuration con-
troller, which in turn is connected with the IP-core library. Configuration manager has inter-
faces to the outside world which gives it capability to upload or update IP-cores. At the same
time, it is possible to change parameters of the configuration manager to adapt to different
environment conditions in real-time, as will be described in Section 8.2. The configuration

controller design has several variants of implementation and they are mentioned in Sections

60

IP-Core Stream
Buffer Input

@ Il Data Memory

_-——b Raw Data Bank 0

Configuration N Raw Data Bank 1

Controller v FPGA Temp Data Bank 0

i l <: Temp Data Bank 1

@ Cutput Data Bank 0

Configuration il Output Data Bank 1
Configuration Manager Stream
Memory @ @ @ Output

PC Ethernet 1/O

Figure 3.6: Architecture of Temporal Partitioning Platform with External CPLD Based Con-
troller/Scheduler

3.3.7 and 3.3.7.1. As for the scenario of the system with a single FPGA device implementa-
tion, the IP-cores are required to be designed to include the peripheral device control (such as
control of SRAM) as shown in the Figure 3.6. Even though this is an acceptable solution from
the stand point of overall cost, and resource utilization, it requires external hardware resources
which have to perform the service operations. These resources would have to be designed and
integrated into the target architecture and would require custom hardware.

In the multi-FPGA setup which is shown in Figure 3.7, three FPGA units are used. This
architecture is general for any types of FPGA devices. This architecture involves two pro-
cessing FPGAs: one or many is/are dynamically reconfigured and one statically configured
FPGA. The statically configured FPGA device manages global inputs/outputs, as well as acts
as an interface to external memory modules. This is especially necessary for applications that
requiré un-interrupted control, such as video output, or constant control output. This statically
configured FPGA, as shown in Figure 3.7, also acts as a bridge between the processing FP-

GAs and memory modules. At the same time, requirements for this FPGA are minimal and

61

have to satisfy the bare minimum of interfacing. The other two FPGAs are run-time reconfig-
urable task Segment Processing Modules SPM1 and SPM2. The IP-cores associated with task
segments are loaded there one after another according to the schedule by the configuration
loader/scheduler. One of SPMs is configured with next IP-core while the second performs the
processing of the current IP-core. This allows for elimination or reduction of reconfiguration
overhead and is described in detail in Section 3.3.8. As in the previous scenario, micropro-
cessor performs communication functions with other interfaces for IP-core update, schedule
modification and other maintenance tasks. In a scenario where three FPGAs are used the
pipelining technique for configuration/execution of IP-cores is employed. Here, reconfigura-
tion of one FPGA occurs when the other FPGA is preforming data processing and vice versa.
There are different approaches that were implemented by other researchers, such as RACE
[88], Firefly, RENCO [94] and other architectures that are similar to this approach in using
four to eight FPGAs. However, in the architectures approaches a separate PC was used to
perform all of the scheduling and loading in run-time. This dramatically increases the cost of
the system and may eliminate the advantage of cost-efficiency of TPM. Therefore, the only
solution with one FPGA (non-pipelined) and three FPGA (pipelined) devices were considered

in further research.

3.3.7 Configuration Controller Architecture with IP-core Pre-fetching

One of the design architectures of configuration controller could be simplified and made more
cost-effective if the frequency of reconfigurations is lowered. Even if a bitstream has to be
delivered to the target device at the maximum configuration bandwidth, with lower frequency
all highly paralleled FLASH modules can be replaced with a single SRAM buffer. It is impor-
tant to mention that over time the average bandwidth of IP-core to FPGA configuration should

be same or lower than bandwidth FLASH memory. Otherwise, IP-core library may become a

62

Stream input

IP-Core
Buffer | =0 eee———————— ceevnccaemmcnnnn il S. g?f‘l_c. .F _Fi(.}.é

+

Stream Buffer Input

ﬁ SPM1(FPGA #1) | | T ; Data Memory
e % :5:_)> i Raw Data Bank 0
Configuration Data :@ Raw Data Bank 1

Controller ———) E———— Memory Temp Data Bank0
SPMZ(FPGA #2) § Interface <'_—_—;——_‘— Temp Data Bank 1
@ E § Output Data Bank 0
E l,L § Output Data Bank 1
Configuration) i | Stream Buffer Output | |
Memory Configuration E '
Manager S @
Stream Output

PC Ethernet |/O

Figure 3.7: Architecture of Temporal Partitioning Platform with Pipelined Organization of
Configuration/Execution Processes

bottleneck in the TPM design:

BWFLASH > BWavemgeconfig (33)

As in previous designs the configuration manager is realized as a microcon-
troller/microprocessor unit, which performs operation of IP-core management by uploading
them from external sources such as Internet and others. In addition, it keeps the schedule of
reloading IP-cores and performs the actual reconfiguration of the FPGA with the scheduled”
IP-core. This configuration controller architecture involves a FLASH memory for the storage
of IP-cores [85]. It is well known that the readout speed of a FLASH memory module is
limited to about 25ns per memory access. Due to that, configuration itself will result in extra
overhead of latency. The current maximum configuration bus speed is 100MHz for Virtex
4, Virtex 5 and Virtex 6 devices. Considering that the SelectMAP32 configuration interface

for the Xilinx FPGAs is currently 32 bits, it is required to deliver bitstream data at 3.2Gbit

63

FORAM

Figure 3.8: Architecture of SRAM and FLASH Configuration Loader

per second. As noted previously, a single FLASH chip would be able to deliver only at
W x 16bit = 640Mbit/sec maximum speed, as shown in the Table 3.1. This, however, is
not a difficult task for an SRAM memory which easily surpasses 100MHz. SRAM memories
are also available in 32 bit interface data buses. Therefore, a design which involves pre-fetch
scheduling can effectively decrease the configuration latency on FPGA. With constantly
revolving IP-cores it is possible to pre-load required IP-cores into the SRAM buffer. Based
on the schedule of configuration configuration controller can deliver the bitstreams at the
maximum speed, therefore minimizing the bottleneck of reconfiguration time on a FPGA.
Example of the loader architecture arrangement is shown on Figure 3.8.

For partially configurable devices configuration time would be even less since partial bit-
stream size would be a fraction of a full bitstream. Several pre-fetching techniques have been
developed to reduce the overall reconfiguration overhead by performing the scheduling recon-
figuration from the SRAM buffer in run-time [91]. In an example of an application where a
mid-sized FPGA is used which has a 4Mbit configuration bitstream, and utilizes a single IC
72Mbit SRAM, it is possible to keep 18 temporal IP-cores. These 18 IP-cores can be re-placed
on individual basis in a case of operation mode change. Again, this operation is possible if
the condition shown in equation 3.3 is satisfied. Overall cost calculation for this approach is
given in equation 3.10, which can be used for cost comparison to parallel FLASH approach.

There is also some research [89] on the same topic that concentrates on the increase of
the reconfiguration speed even further to minimize the configuration delay. The idea is to use
multiple homogeneous sections of FPGA, each with its own configuration SRAM that can be

accessed individually. Setup example of this approach is shown in Figure 3.9.

64

o= Tilel (= configuration o 33

s 3= Tile 2 ‘;*80@ controller 1. ©|S §Z
i ey . ol O =

% 3= Tile3 (=3 Sy configuration || S §2%
24~ Tiled (=8a controller 2 X9~
@ é' 8 ® g Q 'Y 5. ey 3 8
ot PY -3 - - < 3 2 o) Q.

S ‘ o configuration e 30

= TileM = controller N 2’,.; 5 S

logic (4 configuration SRAM

Figure 3.9: Organization of Parallel Tile Configuration [89]

This architecture provides parallel load of the configuration stream, which in turn speeds
up the whole system operation. Experimental results showed that by increasing the number of
SRAM modules and loading up to ten controllers in a single FPGA, it is possible to achieve a
40% improvement in configuration time. The disadvantage of this approach is that it requires
a design of different architecture of FPGA and would increase the cost of FPGA device due to

the complication of the configuration logic and SRAM memory.

3.3.7.1 Configuration Controller Architecture with Paralleled FLASH Memory Orga-

nization for IP-core Configuration

Another configuration controller architecture solution is to have a parallel FLASH organiza-
tion. This architecture provides simplified loading mechanism, hardware requirements and
implementation. The design also depends on the type of FLASH memory used, such as: NOR-
or NAND types and its data bus width. In order to design a parallel FLASH loader for any type
of FPGA device a configuration bandwidth should be known. Configuration bandwidth can be
calculated based on the maximum configuration clock frequency and configuration bus width.
FLASH readout bandwidth is calculated in the same manner. Based on the configuration band-
width of the FPGA’s configuration bus and an average FLASH memory readout bandwidth,
the number of FLASH ICs can be estimated. These FLASH modules would have to be linked

65

in parallel with common address/control lines. Equation that calculates the number of FLASH

ICs is as follows:

34

BWcon figbus -‘
BWrpasH

Nrerasnic = [

Such configuration loader is obviously be much simpler in hardware requirements since it
only has to buffer the FLASH data and output the configuration data in configuration bus width
bits. A bridging device between the FLASH memory modules and the configuration bus could
be based on a low cost/low power CPLD/FPGA device. In comparison, designing an IP-core
SRAM buffer would require more complex loader, and, thus would result in a much higher
cost of implementation. In later chapters a hardware example of such architecture design is

given along with the cost analysis for this overhead.

3.3.8 Hardware Overhead Cost in Temporal Partitioning Architecture

Implementation

Besides minimizing the configuration time overhead, the configuration hardware overhead
cost should be minimized. Since configuration hardware overhead is directly related to the
cost-performance ratio, it has to be addressed in order to maintain the effectiveness of the
temporal partitioning approach. In this section, several approaches associated with the hard-
ware overhead and their approximate costs, are considered. As mentioned in the previous
section, to minimize configuration time overhead we have to use widest possible configura-
tion bus operating at the maximum speed of available configuration clock. Therefore, as seen
in previous section, with the current SelectMAP32 interface it is desirable to have a configu-
ration loader that would have the interface and bandwidth close to the configurable device. In
case of proposed implementation that would be a 32bit data bus operating at 100MHz total-

ing to BWeonfig = 32 x 100 x 10% = 3.2 x 10° bit/sec. At this point there are several possible

66

architectural organization possibilities and associated costs. It is important to note, that config-
uration controller has to be designed with a cost-effective approach in mind. Hence, if system
architecture requirements are lower than the maximum configuration bandwidth, then TPM
architecture should reflect that requirement and preferably not exceed it, in order to achieve
the optimal cost-effectiveness.

The overhead cost estimation and cost-efficiency can be found for architectures covered in
Sections 3.3.6, 3.3.7, 3.3.7.1. As previously discussed, a TPM architecture requires these ma-
jor components: configuration memory, configuration controller, and configuration memory
manager. Each of these parts should have minimal in cost while providing adequate perfor-
mance. This would decrease overall overhead cost and provide even better cost-performance

ratio for the whole system. Therefore, overall TPM overhead cost is calculated by:

Crem = Ceon figmemory +Ceon figmemorymanager +Ceon figcontroller +CpcBarea (3.5)

Where Crpy is the cost of TPM hardware, Ceon figmemory 1S the cost of the configuration
memory, Ceonfigcontroller 18 the cost of configuration controller, and Cpcparea 18 the cost of the
additional PCB area that is needed for the TPM hardware components. Every component can
have sub-components depending on the architecture. For an architecture with paralle] FLASH

arrangement every TPM component should be estimated. As per equation 3.4:

B Wcon figbus

3.6
BWrrasH (36)

Ceonfigmemory = Crrasuic X Nrprasuics = Crrasuic %

In this case the cost of Ceonfigcontrotter COrTEsponds to the cost of inexpensive reconfig-
urable device that satisfies the pin-count need for the configuration memory and configuration
interface. Crrasaic is the cost of the FLASH memory IC and Nrzaswc is the number of
the FLASH memories needed to achieve the maximum configuration bandwidth. Also con-

figuration controller contains enough configurable logic to support configuration controller

67

implementation. Typical cost of such devices is around $10-$15 USD in single unit quantity
from a wide range of distributors. The cost of configuration memory manager purely depends
on the complexity of operation and the number of interfaces required for the configuration
memory access from external sources. To provide feedback control memory manager has to
have a sufficient I/O for interconnection between configuration controller and reconfigurable
| device. A typical implementation can be accommodated by a general purpose microcontroller
which typically costs <$10 USD. In a much more involved implementation with specific pre-
processing/compression implementations or a highly demanding processing task, a micropro-
cessor can be used that costs up to $50 USD. The last overhead cost that is considered for TPM
architecture is the overhead cost of additional PCB area needed by the TPM components. It is
an important factor which should not be overlooked, due to significant costs of ~ $0.4 USD
em? for a 6-8 layer from most PCB manufacturers. In some scenarios due to area PCB con-
straints and overhead costs an even more expensive memory packages is favored. Hence, a

sample formula for parallel FLASH TPM architecture is:

BW_on fig bus

BWFLASH + Ccon fig memory manager + Ccon figcontroller + CPCBarea (3 .7)

Crpm = CrrasHIC %

Similarly to previous analysis, an architecture of pre-buffering has similar type of archi-
tectural, however, in this scenario Cpemory is modified to include costs of different type of

memories. In this architecture there are other parameters that have to be addressed as well:

Ceonfigmemory = CrrasH+Csram (3.8)

In the pre-buffering configuration bitstream transfers need to be considered. First a bit-
stream has to be pre-loaded to the pre-fetch SRAM memory and only then it can be pro-
grammed into the FPGA. Both of these transfer times have to be considered in the calculation

to identify the amount of needed FLASH modules, and the associated costs. As mentioned in

68

the previous example the bandwidth of FLASH memory has to satisfy an average bandwidth
of the bitstream configuration with an addition of SRAM bandwidth as shown in the equation

below:

Fx Sb:’tstream Fx Sbirstream“ (3 9)

Crrasy = Crrasuic X [
BWrrasH BWeongig

Here, F is the frequency of IP-core reconfigurations and S is the size of IP-core bitstream.
This equation can be used in estimation of feasibility of this architecture for particular appli-
cation, assuming that the frequency of reconfiguration, as well as, the type of reconfigurable
device is known.

The cost of SRAM Csrapy depends on the IP-core bitstream size since it has to accommo-

date at least one uncompressed IP-core. Hence, overall calculation of configuration memory

1s:

F X Spisstream | F X Sbimream.l
+ + Csram (3.10
BWrrasu BWeonfig)

Ceon figmemory = CrrasHIC X [
Based on the Equation 3.10, the cost of configuration memory can be estimated. The esti-
mate can be used to access if this architecture would be feasible for a particular application.
For example, if the frequency of reconfigurations is 10 reconfigurations per second and the

size of IP-core bitstream is about 20Mbits, then using previous parameters for configuration

bandwidth, as well as memories bandwidth, we get:

o = $15 10><20><106+10><20><106
con figmemory = 3200 x 10° 800 x 108

] +$60 = $90

Component costs were obtained from various distributors (e.g. Digikey, Avnet, Mouser)

at the time of writing this chapter.

Besides the fact that from 8 FLASH ICs we have decreased to only 2 FLASH ICs, addi-

tional savings also come from the Cpcp due to smaller area requirement.

69

This approach shows that if TPM system requires a minimum downtime, while having av-
erage configuration bandwidth lower than maximum system BWeonfig, it is possible to exploit
the pre-fetching technique to achieve lower cost of the TPM architecture with additional PCB
area reduction. The evaluation of effectiveness of this approach is given by the Equation 3.10

which uses specification parameters of the system and available components.

3.4 Summary

This chapter introduced a hardware architectural organization of RCS with temporal parti-
tioning of computing resources. A thorough literature review of different architectures that
were designed for this purpose was presented. This chapter discussed different approaches
such as context switching which allows a rapid transition from one configuration to another
by SRAM cell multiplexing. It was shown that context switching architecture is limited to a
few configurations and is not flexible if the number of IP-cores exceeds the amount of context
cells present in a multi-context FPGA. Other reviewed architectures involved a configuration
controller. The main differences were in the location and type of the configuration controller.
Architectures involved an implementation of the configuration controller within the FPGA
fabric in a form of a generic soft-microprocessor or a customized controller. Other researcher
works involved an implementation of the controller on an external microprocessor. As the
result of this analysis, a novel approach for architecture organization of temporal partitioning
mechanism (TPM) was proposed. The proposed approach was described with the specifica-
tion of architecture and the explanation of why specific type of non-volatile memory has to be
used. Finally, the proposed pipelined and non-pipelined system architectures were described
with the methodology of configuration controller design. This architecture was published in
conference publications [58], [54], and journal publications [51]. Next chapter describes the
essential need and suitability of the temporal partitioning approach in fault tolerance designs.

It introduces various fault tolerance techniques used in the industry and shows how temporal

70

partitioning can greatly improve the survivability of devices in hostile environments and at the

same time decrease the design costs of the system.

71

72

Chapter 4

Architecture to HardWare Faults

Adaptation (Self-restoration)

4.1 Introduction

One of the major problems with FPGA based systems is their sensitivity to various radiation
effects. This is especially true for SRAM based FPGA devices. During the last decade that
was critical only for aerospace applications, nowadays, when 45nm CMOS technology be-
came the basis for FPGA production, it is important for many terrestrial applications as well.
Effects of the cosmic radiation on the electronics equipment is called Single Event Effect.
There are three main types of Single Event Effects (SEEs): Single Event Upset (SEU), Single
Event Transient (SET), and Single Event Dielectric Rupture (SEDR) [92]. SEU is the most
frequent effect and in most cases recoverable. SEU affects configuration memory cell that
keeps the value of a LUT in CLB or the state of interconnection switch transistor. Therefore,
the affected circuit may change its functionality. SEU occurs when SRAM cell is struck by
a char;ged particle, it then charges up and flips the value of its cell. SET could happen when
a voltage spike occurs, making the circuit produce incorrect result. SET is not as critical as

SEU and SEDR since the operation is just briefly altered and the device is not operational

73

only temporally. The worst case scenario is the SEDR fault, where, after being hit by an ion
particle, a dielectric destruction occurs. When dielectric, which isolates two charged conduct-
ing surfaces, is destroyed the planes are coupled. This is a hardware fault which can’t be
repaired and thus poses the biggest threat to the space-borne electronic systems. This type of
fault can also occur because of thermal fatigue, oxide breakdown and electron-migration [28].
Due to these effects, the systems that were designed for aerospace industry often employ full
or partial triple redundancy. In addition, FPGAs that are used for aerospace applications are
radiation hardened to withstand a hit of a charged particle. However, such solutions signif-
icantly increase the cost, power parameters, and in some instances prevent the use of FPGA
based systems.

All of these SEEs pose a serious problem for use of FPGAs in space applications and
there are several approaches that have been taken to mitigate them. In following sections the
approaches are described, along with, their pros and cons. In addition, a methodology of fault
mitigation is proposed that uses of temporal partitioning. This chapter will show how temporal

partitioning can mitigate hardware faults with and without performance degradation.

4.2 Methods of SEE Mitigation

As it was mentioned above the space-borne systems are susceptible to SEU, SET, and SEDR
hardware faults due to the charged particlé bombardment (e.g. cosmic radiation, solar wind,
etc.). several researchers [122, 86] developed methods to mitigate transient faults. Mitigation
methods are divided on methods to mitigate transient, and permanent faults. Some mitigation
techniques allow recovery without functional degradation and some with functional degrada-
tion. Some mitigation techniques approach this problem from completely different angle by
performing the restoration by just-in-time compilation, or by component relocation [69, 2, 9].

Some of these approaches also perform recovery on very fine-grain level, and some on coarse

74

grain. All of these approaches are valid, however, their applicability strongly depends on the

system specification.

4.2.1 Mitigation of Transient Faults Using a Scrubbing Technique

As gate features shrink in size, the SEU faults are becoming more and more of a problem for
scaling transistors in ICs. As a gate of transistors decreases in size it becomes much easier
to flip the value of an SRAM cell (e.g. to charge up or to discharge the gate by a hit of a
charged particle). In addition, since there is an increased amount of logic/memory cells, the
probability that one of these cells will be hit by a charged particle is increased as well. Thus,
combined issues of decreasing size of transistors and increasing density of FPGAs make the
SEU a serious problem for FPGA based systems.

SEU does not physically damage the FPGA’s die, so it is possible to repair this fault. There
are several techniques of repairing faults and they depend on the type of FPGA device at hand.
A very common approach currently used by the industry for SEU mitigation in FPGAs is the
scrubbing technique [24, 92]. Essentially scrubbing, is a periodic update of configuration
memory of the FPGA to keep the configuration SRAM cells in the required states. There are
several variations of how the scrubbing technique can be implemented. First of all, based on
the research from Rockett et al. [92] the reconfiguration of the FPGA has to occur at the rate
of ten times per fault occurrence. This assures that FPGA would potentially have a downtime
of not more than 10% of the probability of fault occurrence [14]. The advantage of using
the scrubbing technique is that it allows to repair the SEU faults without the time consuming
diagnostics, simply by reconfiguring the FPGA. When a non-partially configurable FPGA is
used, to mitigate the SEU fault it is needed to suspend device’s operation and to reconfigure
the device with the same configuration. Reconfiguration would set the transistor affected by
SEU to the proper value. The advantage is that system can be restored without any physical

intervention such as IC replacement. The disadvantage, however, is that the entire device is

75

suspended from operation during the whole time of reconfiguration. For large FPGA devices
the reconfiguration time is measured in tens of milliseconds. In the case of triple redundancy
(TMR), where a processing unit is triplicated, full reconfiguration would not pose a problem.
The reason for that is that while one FPGA is suspended and the reconfiguration occurs, the
other two FPGAs are operating normally and whole repair of the SEU fault occurs seamlessly.
In the case of partially reconfigurable devices it would be possible to repair the SEU fault
by reconfiguring only the affected area and keep most of the device in operation, and without
interruption. Scrubbing would occur in cyclic operation by going through all of the sections of
FPGA. The only suspended regions of FPGA are going to be ones under reconfiguration and
operation would take only few hundreds of microseconds. It is important to mention that SEU
occurs only in reconfigurable devices where configuration memory is based on the SRAM
[44, 8], and that full reconfiguration of the FPGA resets all of the internal registers/BlockRAM
memory which results in loss of data currently processed. It has to be noted that, since 80-
90% of configuration SRAM and area on the FPGA device is used up by the routing resources,
most of the SEU and SEDR faults effect the routing resources of the FPGA [36, 39].

Another scrubbing technique is to use an external special processor [24, 92] that runs a
special SEU mitigating engine, as shown in Figure 4.1.

The scrubbing technique, unfortunately, is not capable of recovering system from the
SEDR faults. When a SEDR fault occurs the affected SRAM cell will still be stuck-at-1
or stuck-at-0. Another problem associated with the scrubbing technique, is that it is not al-
ways possible to recover the BlockRAM contents if partial configuration is used [73] and full
system reconfiguration would be needed. Therefore, even though scrubbing is an effective
technique for recovering from SEU faults, it is not always sufficient for space-borne systems
and, therefore, this technique has to be expanded to accommodate the downfalls listed above.

Another solution offered by Xilinx is to implement radiation hardened Virtex II Q Pro,

Virtex 4Q Pro-V FPGAs, and latest SiRF FPGA that are built in a technological process that

76

Status Signals
Polling L"——‘*J N Virtex-II

| Clreuit FPGA -
Scrubhing =— ptK_'A
1 Y
Readback -— EE <
— Control g
Raconfiguration ~=— i o
— Engine <
H
&
DspP

SEFI T™S
Engine \f“ 320C6713

Stutusv/Interrupt
Signals

H-Core2

Figure 4.1: Pialform Architecture for SEE Mitigation [24, 92]

can withstand charged particle hits. Radiation hardened FPGAs guarantee SEE latch-up Im-
munity to LET > 100 MeV /mg — cm? [115]. This solution provides an immunity to a single
event latch-up (SEL) for satellites located on low earth orbits (e.g. 300-500km altitude) at the

same time provides an alternative to fixed architectures FPGAs (e.g. Actel anti-fuse) [65].

4.2.2 Restoration From Permanent Faults

Permanent faults can occur due to the thermal fatigue, electron migration, manufacturing de-
fect, as well as, SEDR and cause a permanent latch-up, bridging or a permanent bpen circuit
[106,104]. As méntioneh in the Section 4.2.1, if SEDR type fault occurs, scrubbing of the_
FPGA configuration SRAM is not sufficient since it is a physical hardware damage which
‘can not be repaired by recharging SRAM cell gate. Hence, lots of research has addressed the
mitig‘ation of permanent faults, and several methods for different reconfigurable architectures

are presented in this section.

77

(I A N F RN NN aeaaEEaEEe saEsEEeass
S01 S02 S03
510 S11 S12 s13
S$21 522 S23 |
i
S§31 S32 S33 |

S20 S21 S22 Sa23

S30 S31 S32 S33

Figure 4.2: Recovering from SEDR Fault on Partially Re-configurable Device
4.2.2.1 Restoration From Permanent Faults Without Functional Degradation

SEDR faults damage the device to the point where it can’t be repaired by the means of scrub-
bing. Therefore, in many current systems a redundancy is designed into the system. Often, a
double or triple redundancy is used, however, that significantly impacts the power consump-
tion, the weight, and ultimately cost of the system. This presents a problem for space-borne
systems, as well as for any embedded, hand-held, and autonomous systems, because both
power and weight parameters are highly restricted for these applications. However, FPGA
systems can be configured to avoid the damaged regions of the configurable space. It is possi-
ble to design and synthesize IP-cores that perform exactly the same function/algorithm while
occupying different areas of FPGA. By dividing the FPGA into tiles and then creating IP-cores
that are avoiding one tile at a time, the end result is a set of IP-cores that can be selected to
avoid any sector in FPGA. If a fault does occur, and the tile that contains the SEDR 1is iden-
tified. FPGA is reconfigured with [P-core that performs same operation, and while avoiding
the damaged sector [20]. Figure 4.2 shows an example of how FPGA is adapted to avoid the
sector with a SEDR fault without affecting the operation of the device.

Initially FPGA is loaded with the default IP-core during the temporal partitioning. Any IP-
core can be selected for processing, as shown in Figure 4.2. When a fault occurs, a diagnostic
method identifies the faulty sector and marks as a damaged tile in the loader memory. Based
on this information all of the consequent reconfigurations of the FPGA would use IP-cores

that avoid that tile. As for example in Figure 4.2, it shows that initially an IP-core with an

78

unused SO0 tile is loaded. When a SEDR occurs in S12 and system identifies that fault, the
replacement is performed. An IP-core with the same functionality is reloaded onto FPGA.
This implementation of IP-core avoids S/2 tile, and therefore, after reconfiguration SEDR
fault is located in the unused area. Obviously, the question that arises from this technique
is the size of tiles in the IP-cores. The smaller the granularity of a tile size, the smaller the
“wasted” logic area on the FPGA. At the same time, small granularity increases the amount of
IP-cores that have to be generated to accommodate all of the sectors. In addition, all of these
IP-cores will have to be stored in the non-volatile IP-core library (e.g. FLLASH memory).
Hence, there is a trade off which has to be considered in the design of such systems. As in the
case of scrubbing, the temporal data that was being processed by the FPGA is discarded and
has to be recomputed, since reconfiguration process resets all of the registers/BlockRAMs.
This is true for all of the restoration methods described in this chapter, however, typically it
does not cause a significant problem because the stream processing effects single data frame
or part thereof their of. In critical applications an IP-core can be designed to perform a context
save before performing restoration, but this requires a more complex IP-core design.

The techniques used in diagnostic and identification of the SEDR faults are covered in
the next sections. However, if system experiences a heavy bombardment of charged particles

another restoration mechanism should be employed, which is discussed later in the chapter.

4.2.2.2 Restoration by Component Relocation in Spacial Partitioning RCS

If a system is based on a partially reconfigurable FPGA, the restoration can be done by relo-
cation of components from the damaged area of the FPGA to an undamaged one. Initially the
diagnostics of FPGA have to be performed to identify the area with a hardware fault, and then
either scrubbing or partial scrubbing has to be applied. Also, as mentioned in the previous
sections a set of partial IP-cores occupying different areas on FPGA fabric should exist to

allow relocation of components. There are two ways to design the set of IP-cores.

79

The first approach involves a notion of “pluggable” component. Partial IP-cores are de-
signed with the unified interface to an internal standardized bus architecture. This bus contains
slots into which processing modules can be “plugged”. If an error is detected in one of the
processing modules this processing module is “relocated”. Relocation is done by removal
of the processing module from the current slot and uploading it into a vacant slot on FPGA
{7, 96, 60, 105]. The operation of such relocation is same shown in Figure 4.2, except in spa-
tially partitioning case, S12 is a pluggable module which gets moved to the empty slot of S00.
The benefits of such approach are tremendous as the system becomes very flexible and virtu-
ally indestructible. Unfortunately, the support for spatially reconfigurable hardware and tools
by FPGA vendors is very limited and currently is used only in the academic field [17, 90].
Due to that reason it is not a feasible approach for the most designers in the industrial setting

at this time. The other possibility of component relocation is variation of the same IP-core.

4.2.2.3 Restoration from Permanent Faults with Functional Degradation

As mentioned earlier, a different recovery technique has to be used if multiple SEDRs are en-
countered. If multiple tiles are affected by SEDRs or if there is no IP-core with same perfor-
mance parameters that avoids the affected areas, a functional degradation has to be employed.
For this type of scenario several sectors have to be avoided, and therefore the algorithm cannot
fitin the remaining area. In order to keep the system operating one of the solutions is to avoid
a much larger section of FPGA. This, in effect, will decrease the performance of the system.
In some algorithms it is not possible to keep the same functionality and decrease the perfor-
mance. In those scenarios algorithm division will have to be performed. However, if it is
possible to keep functionality by decreasing performance, then multiple SEDR faults could be
mitigated. Overall operation of fault recovery with functional degradation is shown in Figure

4.3.

80

Diagnostic Diagnosti
IP-Core IP-Core
#1

Iigure 4.3: Fault Recovery from Permanent Fault with Functional Degradation

When temporal partitioning is used a test IP-core is loaded into the FPGA and test vectors
are generated by each section. Based on the results, a faulty section is identified and an IP-core
with same functionality but degraded performance is loaded into the FPGA device, as shown
in the Figure 4.3. As shown, [P-Core 1.1 was replaced with an IP-Core 1.2 which implements
similar algorithm with degraded performance and avoids the top right quadrant of the FPGA
fabric. Granularity of the test IP-cores can be varied depending on the reconfigurable device,
available variations of IP-cores, and types of test complexity. It would require creation and
synthesis of the algorithm on reduced area, and therefore, possibly slower speed, and/or less
paralleled computation. Example of that would be a 32 x 32 multiplier that 1s decreased in
complexity and divided in several stages of 16 x 16 multiplication. The latency of processing
is increased, and required area for this IP-core is decreased. New IP-core with a decreased arca
will be able to fit into the target FPGA device, and it will be operating at lower speed. The
scheduling of the IP-cores will have to be adjusted, as well. Similarly to Section 4.2.2 a deci-
sion will have to be made regarding which area to avoid in order to generate a set of IP-cores
that are degraded in performance and strategically placed in the FPGA device. This method
allows the system to continue operation with lower performance even after a large portion of
it is permanently damaged. As it was done for restoration without functional degradation, a
set of IP-cores is synthesized that avoids several tiles of the FPGA. This library will have to be
carefully developed since, as it can be predicted there is a very large number of combinations
of how the IP-cores can be synthesized. FPGA devices will have to be strategically chosen for

the design to achieve the best trade off between the encompassing of the possible SEDR faults

81

and non-volatile memory use. The choice between the IP-cores within the same set is done by
an external configuration loader which will keep the parameters of damaged tiles. The choice
of IP-cores and schedule of reconfiguration is based on these parameters. An additional benefit
of this method is that area reduced IP-cores can be used for power reduction. Power reduction
is achieved by utilizing only some of the FPGA resources and, therefore, using less static and
dynamic power. Decrease in use of static power occurs because there are lower number of
transistors that leak power when not in use.

To repair the SEDR it is needed to identify the region/sector where the fault has occurred.
If the region is too big for an IP-core replacement without functional degradation then an

1P-core with reduced functionality of performance is chosen.

4.2.2.4 Restoration by Component Routing Constraint Variation

Another approach of system restoration from permanent faults is IP-core variations. During
the synthesis portion of the design, the generation of several IP-cores is performed. IP-cores
are generated with components restricted to different placements on the FPGA. Since 70-90%
of configuration SRAM is used for routing interconnect, hence large number of configuration
SRAM cells are not used in a design. Therefore, there is probability that a design with dif-
ferent placement & routing of the same components will not occupy the damaged cells of the
configuration SRAM. The number of var_iations is obviously restricted by the functionality of
IP-core, the type of routing, and resource utilization. The final number of IP-core variations is
specified by the user, and additional IP-core storage requirement will have to be considered by
the designer. As in Section 4.2.2.3, component variation can be done by employing different
algorithms that perform similar functionality. This approach is more complex than the restora-
tion from SEDR with functionality degradation. It involves variation of different aspects of the

IP-core generation. Mostly, it is highly customized and requires user’s specification of timing

82

and placement constraints. This depends on the critical regions of the circuit that are also iden-
tified by the user. These critical regions are constrained in different section of FPGA and are
synthesized in several IP-cores that could occupy whole FPGA, however its routing and place-
ment can be varied. The downside of this approach is that it requires extensive re-compilation
to obtain different variations. In addition, it will require a post reconfiguration testing to check

if the different variation of the IP-Core managed to avoid the damaged transistor/trace [2].

4.2.2.5 Restoration by Just-in-Time FPGA Compilation

Another restoration scheme that was proposed by several researchers [69, 7, 9] is a just-
in-time FPGA compilation. It operates on the notion of run-time recompilation of FPGA
configuration. If a fault was detected and identified in some region of the FPGA, an error is
reported to an external processor. This processor re-runs a routing algorithm that performs
the placement/routing of the FPGA avoiding the damaged area. The damaged area could be a
switch block or a logic block, or even an embedded hardware component, such as BlockRAM.
At the completion of the Place&Route operation the damaged FPGA is reconfigured with the
new IP-core. Riverside On-Chip Router (ROCR) was designed for simple FPGA configura-
tions [69, 9]. Authors showed comparable results to Versatile Place and Route tool (VPR) in
terms of timing and much smaller memory requirement for an FPGAs of size of 67x67. For
larger FPGAs, that have much more complex structure and contain embedded hardware, such
as RAM Blocks, multipliers, PowerPCs, this approach is not feasible, because of the time it
takes to do the place and route of a complex FPGA circuit. Place and route is an NP-complete
problem and requires a heuristic approach for finding an optimal solution. Currently, to per-
form place and route for a comparable Virtex 4 FPGA, a PC system equipped with 2 GBs of
memory and dual CPU architecture operating at 3.4 GHz requires anywhere from 10 minutes
to over 6 hours, depending on the constraints that are applied to the design. This is assuming

that it would be an embedded microprocessor which would be used and operate much faster

83

than current desktop PCs to perform place and route. This approach is suitable for systems that
can be taken offline for long periods of time to perform such a task. Therefore, this technique
is not acceptable for systems that are required to operate in real-time and to have a minimal

downtime and cost.

4.3 Methods for Fault Diagnostic and Fault Localization in

SRAM Based FPGA Devices

Equally important is the research of the fault detection and fault localization in the SRAM
based FPGAs. Previous section described various methods for fault are mitigated and briefly
mentioned some detection techniques. This section focuses on generic diagnostic techniques

and their applicability to the FPGA based systems.

4.3.1 SEU Diagnostic in Configuration SRAM

Since the SEU effects SRAM cells, one of the simplest detection methods that is provided by
the FPGA manufacturing companies is the Readback operation. Xilinx FPGAs allow the read-
back procedure [15] while device is in operation. For such diagnostic, however, an external
processing device is needed. This device may be a microprocessor, that can perform readback,
verification, and full/partial configuration bitstream manipulation. Each IP-core should have
an accompanying bitstream mask to be stored on an external FLASH memory for the purposes
of comparison with the readback data. A scheduled readback may occur during the operation
of the system. If discrepancy is found, micropr(;cessor will conduct FPGA re-configuration
procedure to mitigate the incurred fault. The re-configuration should be able to mitigate tran-
sient faults. However, in case of a permanent fault, another method should be utilized as was
discussed in the previous sections. I’t should be noted that the overhead introduced by the

diagnostic mechanism increases the cost and power consumption of the system.

84

It is important that readback operation is done in a specific manner. If the design is using
an embedded BlockRAM of FPGA, the readback will acquire erroneous bitstream and will
not correspond to the mask bitstream [4, 15]. Therefore, if it is done in a run-time, only
configuration SRAM has to be considered for SEU repair. In addition, if repair operation
is required, only configuration SRAM will be reconfigured. Otherwise the inter-processing
data will be lost from the BlockRAM. Often, the scrubbing or reconfiguration is done 10-
50 times more frequently than the predicted fault rate. On the other hand, with readback
implementation, the scrubbing procedure can be initiated only in the case of real fault. The
advantage of this approach is power savings, and lower overall system downtime in contrast
to continuous scrubbing. However, the run-time full/partial reconfiguration is supported only
by Xilinx Virtex FPGA family [84]. If system implementation has to utilize different types
of FPGA devices that do not support readback, then a different approach should be used.
The same is true of a system that does not support real-time readout without interruption of

operation, in that case, system downtime is increased even more.

4.3.2 Off-line Diagnostics of Permanent Faults in Data-paths

A common practice is an offtine diagnostics of faults [30, 106]. This type of diagnostic is
usually performed by taking the system off-line and either physically interfacing it to a test
platform or utilizing existing I/O port interfaces, such as JTAG. Over an available connection a
series of test vectors is provided to the system and the result is then compared to the expected
one. Data vectors are usually selected to cover the maximum amount of processing elements,
and to identify which of the elements produced the fault, Depending on the data-path specifics
the type of fault, can be: stuck-at-0, or stuck-at-1. In some instances faults are not easily de-
tectable because they are occluded and it requires enormous amount of test vectors to identify
every possible fault. Such testing requires substantial amount of time [74], as well as periph-

eral support to be able to operate while the main processing is disabled. Test vector storage

85

Output Data
INpUt Data e

Figure 4.4: Typical TMR Organization

memory has to be integrated into the system, too. Finally it is typically the human operator
that performs the testing, and for this reason such such approach is suited for a narrow field of

reconfigurable systems.

4.3.3 On-line Diagnostics of Permanent Faults with TMR-approach

A common approach to diagnostic of faults is a Triple Modular Redundancy (TMR) [87].
This approach dramatically improves the reliability of the system, but triples the use of area,
power consumption, cost, etc. There are different methods of design using the TMR; some
of them are implemented on a single FPGA and some on multiple. The main idea of TMR
approach is for system to have three identical processing units, results from which flow into
the voter that compares the results.

As shown in the Figure 4.4, FPGA #1, #2, and #3 are provided with the same input and
their results are transmitted to the voter which simply compares them and checks for discrep-
ancies. If the result for one of the systems is not complying with the other two, a faulty system
is immediately identified. Most of systems that used TMR, replicate the same processing unit

in three different FPGAs and use an external voter comparing the produced results (e.g. Figure

86

?
.
X
¥
4
b=
€
<
=

(b)
Figure 4.5: TMR Implementations on a Single FPGA: with (A) External Voter (B) Integrated
Voter
4.4). There are several variations on this approach, such as replicating the function three times
within one FPGA [87]. As before, the result is outputted to the external voter that performs
comparisons. Such implementation is shown in Figure 4.5 (A).

Similarly to the previous approach, the voter can be integrated in the FPGA as part of logic,
as shown in Figure 4.5 (B). The downside of the integrated voter approach is that if SEU occurs
in the voter, the correct result will not be known. Although, as the implementation of voter is
compact and occupies limited logic, hence, in some scenarios it may be beneficial for systems
that are constrained with peripheral components. Some development tools already include an
ability of automating the generation of TMR circuit of critical elements (e.g. Xilinx TMR
tool) [87, 116].

Nonetheless, some applications can not accommodate the costs and hardware overhead
associated with the TMR approach. For example, many of space-borne applications are very
sensitive to the total mass and power consumption of the system. Therefore, tripling hardware

resources for the processing system in some complex data-paths is not cost-effective for space

87

applications [82]. On the other hand, some systems cannot afford the full triple replication
of the processing modules, and only mission critical parts of the design are triplicated. The
analysis of the mission critical parts has to be done prior to the design and be based on the
critical assessment of all the parts that can be effected by SEU. This way may save a signifi-
cant amount of FPGA fabric. In addition to saving the area on the FPGA, there are two other
benefits: saving of power, and a capability of increasing logic complexity by the saved space,
with almost the same TMR support [87]. Not all FPGAs have support for partial reconfigura-
tion, therefore, different diagnostic methods should be considered or a device has to be fully
reconfigured causing a system operation downtime. Most of the other methods cannot deliver
same processing speeds as TMR approach in some cases, but depending on the application

needs, other methods are suitable for the systems with SEU recovery requirement [82].

4.4 The Method of Multi-level Mitigation of Transient and
Permanent Hardware Faults in RCS with TPM

In this section novel method for self-restoration of RCS based on FPGAs with SRAM con-
figuration memory is proposed and discussed in details. This method has been developed

specifically for an RCS with embedded TPM and allows mitigation of:
1. Transient hardware faults (e.g. SEU, SET), discussed in Section 4.4.1
2. Permanent hardware faults (e.g. SEDR), discussed in Section 4.4.2

The method takes an advantage of the TPM nﬁture, which assumes cyclic reconfiguration
(with new IP-core) of the target FPGA device or an associated slot of FPGA device. This al-
lows minimization of on-line diagnostic procedures, since the new IP-core updates the content
of configuration memory of target FPGA device or its slot. The mitigation of SEU or other

transient fault occurs within one cycle time (period of processing of one block/frame/packet

88

of data). Therefore, if a fault does occur, only one data-frame will be invalidated. The pro-
posed method has been developed as a multi-level protection mechanism [50] to provide the
maximum flexibility in mitigation of all possible hardware faults in run-time or “close-to-run-
time”. This flexibility, comes from the fact that in TPM the temporal data (between IP-cores)
is stored on external temporal data memory. However, the influence of SEU or other radia-
tion effects on the data-memory content (corruption of temporal data) was put out of scope
of this research. It was assumed that if any hardware fault has been determined within #*
cycle of data-processing, the associated results of i data frame execution must be ignored
entirely. For most of DSP, video/image processing tasks, as well as multimedia applications,
this assumption is acceptable. But for some control tasks or specific computation tasks where
each data-vector is considered valuable, the above approach may not be suitable. The fol-
lowing assumptions also were also considered in the proposed multi-level run-time protection

mechanism [50]:

1. The probability of SEU and other transient faults is much higher than the probability of

permanent faults.

2. A permanent hardware fault is a fault which cannot be mitigated by the scrubbing proce-
dure. Therefore, if after a certain number of scrubbing procedures (e.g. re-configuration
of the same IP-core and cycle of functional diagnostic) the fault still exist, then the it is

assumed to be permanent.

3. A permanent fault can be mitigated by:

(a) restoration without functional degradation

(b) restoration with functional degradation of some performance parameters

All the above aspects of multi-level protection mechanism will be discussed in following sec-

tions, including the description of all stages of the proposed mitigation algorithm.

89

4.4.1 Mitigation of SEU and Other Transient Faults by IP-core Scrub-
bing and Functional Diagnostic Cycle

When we are talking about temporal partitioning system it is assumed that FPGA device is
periodically reconfigured with the next processing sub-task (IP-core). This is a significant
benefit for system that has to be fault tolerant. On every cycle of reconfiguration, whole FPGA
is updated with a new IP-core. IP-core automatically mitigates all of the transient SEUs, this in
turn decreases the frequency of fault diagnostics that has to be performed. At the same time, a
permanent fault diagnostic IP-Core can be inserted between any sub-tasks, and perform testing
of FPGA device. The test IP-Core could have different granularity as shown in Figures 4.3 and
4.2, depending on the application requirements and upon the completion of the test it provides
the user/system with the fault results. The overall operation of the TPM with fault tolerance

mechanism is shown in Figure 4.6.

Initially, IP-core; is loaded into the FPGA and initial test is run on the IP-core; to identify
if the IP-core; is operating correctly. Considering that all the tests are passed, the processing
of data frame is followed by loading of IP-core;,;. If, however, a fault is identified, the
scrubbing (reconfiguration with the same IP-core;) procedure is initiated and the fault counter
is incremented. If the fault persists for several reconfigurations, it is identified as a permanent
fault and permanent fault mitigation procedure is required. As mentioned before, there are
two possible procedures mitigation with diagnostic, and without diagnostic. The choice of the

permanent mitigation method depends on:
1. Timing constraints for fault recovery
2. Granularity of IP-cores with degraded performance

3. Bitstream size of the FPGA, and consequently the time of reconfiguration

90

Does counter
exceed
threshold?

Increment fault
counter

Doestiming
allow restoration
with diagnostic

Procedure of Procedure of

restoration from

restorationfrom

permanent permanent
faults with faults without
diagnostic diagnostic

Configure FPGA
with IP-corei

‘

Run a set of test vectorsto |
verify correct functional

operation

Was resulting
ector correct)

\.

Initiate

processing on
dataframe

h 4

7~

Incrementto
next IP-corent

Figure 4.6: Operation of the TPM with Fault Tolerance Mechanism

91

. IP-Core 1.1.3 IP-Core 1.1.7

IP-Core 1.1.2 [

[|
a
a
a
7 |
[
a
]
a a

Figure 4.7: Sequential Reconfiguration Process for Permanent Fault Mitigation without Fault
Location Procedure
Next sections cover both of these procedures in closer detail, and describe their flow ol oper-

ation along with the fault tolerance mechanism shown in Figure 4.6.

4.4.2 Run-time Mitigation of Permanent Faults with/without Functional

Degradation

Most of the fault mitigation methods mentioned fault location/diagnosis. This diagnosis typ-
ically involves the loading of a specific test IP-Cores that would perform testing of various
sections of the reconfigurable device to localize the fault. In the proposed approach it is pos-
sible to resolve the SEDR fault by repeated reconfiguration without the need for diagnostic
procedure.

In this approach, as in Section 4.2.2.1, it is assumed that there exist several IP-cores that
avoid different sections of FPGA and perform same functionality while having same perfor-
mance, as shown in Figure 4.7.

The idea is that these IP-cores are configured one by one onto the FPGA device. On
the start up of each IP-core a self-check is performed by feeding test bench vectors to the
[P-core to identify if this core operates properly and avoids the damaged region, similar to
the approach in Section 4.2.2. In many cases such approach is beneficial due to the fact that
exhaustive diagnostics can take much more time than several reconfigurations of the FPGA

device [50].

9%

i
- P |

CoreCore'
3 ¥4

Figure 4.8: Permanent Fault Mitigation with Incremental Recovery to the Maximum Possible
Performance

Another benefit of such approach is that it can combine all previously discussed methods
and provide a rapid fault recovery. Initially, an IP-core with degraded performance is loaded
into the FPGA and occupies half of the device. This way within a maximum of two configu-
rations the system resumes operation, although with reduced performance. The second half of
the device is occupied with a diagnostic core, which identifies the quarter where fault is found.
as shown in Figure 4.8. In the next reconfiguration three quarters of the device are loaded with
the processing core, and the remaining quarter is loaded with the diagnostic IP-Core that per-
forms further testing. This operation is repeated until the smallest granularity is reached and

operation performance is restored to the maximum possible operation level.

4.4.3 Complete Algorithm for Multi-level Protection Mechanism Em-

bedded to the TPM

Based on the steps outlined in previous section, the flow chart for fault mitigation is produces,
as shown in Figure 4.9. This flow chart in Figure 4.9 is a continuation of the flow chart shown
in Figure 4.6. The fault mitigation with a diagnostic IP-core is a “recursive” operation where
the algorithm selects first large portion of FPGA for diagnostic and with a rapid test identifies
which section contains the fault. Following that, a smaller section of FPGA is selected for
diagnostic while the rest of FPGA is occupied with the larger sized IP-core. As shown, the
process is repeated until the smallest granularity is reached. This “divide and conquer™ pro-

cedure allows to rapidly return the system to operation, and after several cycles to restore its

93

Start of restoration
from permanent faults
without diagnostics

Start of restoration
from permanent faults
with diagnostics

Load FPGA with IP-cores - v ~
with degraded NO Load iP-corer with
p.erformfance and degraded performance
diagnostic IP-core Was YES avoiding a section of FPGA
granularity b ‘ /
Run set of test vectors to lipitreached? (" Runset of test vectorsto |
verify correct functional verify correctfunctional 4=
operation L operation)

dentify which half of diagnostic
IP-core passed the fault test
and expand that section of
FPGA for next (P-corei

Was resulting
vector correct?

Was resulting
ector correct?

Load tP-cores with degraded Return to normal operation Load iP-core: witharea
performance but avoiding the with avoidance of avoidance different from
another section of FPGA identified faulty section previous attempts

Figure 4.9: Permanent Fault Mitigation Flow Chart with/without Diagnostic Procedure

performance with the return to normal operation with some area avoidance. The other method
is not recursive and involves reconfiguration with avoidance of different sections of the FPGA
based on the theory described in the previous section. As soon as the correct operation of the
IP-core is observed, the system returns to normal operation with avoidance of faulty section
of FPGA.

There is no exact answer which approach is beneficial prior to knowing the nature of pro-
cessing system. As discussed before, the main factors are the system timing and the complex-
ity of diagnostic, as well as the granularity of the area avoidance blocks, and the availability
of performance degraded IP-cores.

This section presented methodology of how the recovery mechanism has to be designed in

order to be able to mitigate SEU and SEDR faults with or without functional degradation.

94

4.5 Cost-efficiency and Performance Comparison of the
TMR Approach and Multi-level Mitigation of Transient

Faults in TPM Systems

There is always a big debate on which fault tolerance methodology to pursue in initial stages
of system design since there are several variations available. In this chapter different fault
tolerance methodologies were discussed, and the current section compares them in terms of
performance, application suitability, and outlines, their pros and cons. The comparison is
done based on division of different types of systems, since it greatly effects the type of fault

tolerance approach to be used.

4.5.1 Uninterrupted Mission Critical Systems

For some systems, such as space borne or medical life support systems, it is imperative not
to have any type of interruption in operation. An interruption in service can directly affect
the life of humans, be it on terrestrial applications, or on a space station. In those types of
scenarios reducing cost and, in effect power is not an option and TMR approach is necessary.
Moreover, as it was described in Section 4.3.3 a voter which is an ASIC or an anti-fuse FPGA,
would also need a backup to make sure that the voter itself does not become the critical part.
However, it should be noted that the critical systems that are necessary to be TMR-ed typically
are not of a large size and, therefore, it is possible to use TMR approach in a partial architec-
tural arrangement. The reason why the proposed methodology of fault mitigation is not fully
suitable is because no incorrect result is allowed. This comparison is only applicable to the
mitigation of the SEU and SET faults. The overall cost of the system would be calculated as

follows:

CTMRsystem = 3 X CprocrrPGa +2 X Cyorer +CpcBarea “.1

95

Where Crugsystem is the cost of the TMR system, Cprocrpca is the cost of the FPGA
involved in the data processing, Cyorer is the cost of voter, and Cpcparea 15 the cost of the
additional PCB area that is needed to support TMR approach.

On the other hand, if the TMR system incurs, a SEDR hardware fault in one of its process-
ing FPGAs, the TMR approach becomes useless, and system’s performance is downgraded
to a single FPGA processing without the TMR, while continuing to consume power of the
whole TMR system. The ideal solution in that case is to combine the proposed fault miti-
gation methodology and the TMR approach. Hence, if SEDR fault does occur in one of the
FPGAs, the proposed methodology diagnostic technique can be employed to repair it, and this
way the system can proceed with the TMR mode of operation. The overall cost of the system

would be:

CrmRsystem = 3 X CprocFPGa +2 X Cyoter + CPCByreq + CTPM gy con 4.2)

Where Crppy,,, ., 1S the cost of the TPM support hardware used to add the capability
of temporal partitioning to TMR system. The other variables are same as in the previous
equation.

This cost can be considered as a cost of hardware, as well as power consumption and
in both parameters the increase is not significant. The reason is that configuration manager
is not required to support high reconfiguration speed and can be based on a low cost/power
microcontroller that loads configuration in a serial manner. Hence, the cost of such system
would increase on ~$10 (based on the unit prices from the major part distributors). In regards

to power consumption the increase is less than 20-40mW in active operation.

4.5.2 Critical Systems with Non-Real-time Control

For the critical systems that can tolerate interruption in service TMR system becomes a much

less cost efficient solution. The proposed methodology can rapidly repair a fault within several

96

milli-seconds, so the interruption of service is short. On the other hand, the cost & power

savings are quite significant, when compared to Cryrsystem:

Cremsystem _ 3 X CprocFPGa +2 X Corer + CPCBoyey + CTPMypy oy Stimes
CTMRsystem Cprocrpca +CpcB,,,, +Crpu

Ratioryrirrm =
4.3)

Since the main contributing cost factor in FPGA based systems is the actual cost of the
FPGA, the overall cost mostly depends on the number of FPGAs present in the system. In
TMR system there are three processing FPGAs, one main voter and one backup voter (typi-
cally present in some mission critical designs) totaling 4-5 FPGAs. Whereas in TPM approach
there is one FPGA in the non-pipelined case and dual FPGA configuration in the pipe-lined
case, which results in 2 to 5 times more cost effective solution for the critical systems with

non-real-time control.

4.5.3 TMR and TPM Approach Comparison Summary

In conclusion to the comparison section, that there are advantages in use of the TMR approach
in mission critical systems with real-time control which do not allow any sort of service in-
terruption. However, the overall increase in cost for such systems varies from 2 to 5 times
depending on the complexity of the system. This increase also affects the overall power con-
sumption, since at high processing speed FPGA becomes the main consumer of power. In all
other cases the TMR approach is not cost effective and TPM approach of fault mitigation is a

much more preferable option.

4.6 Summary

In this chapter the main approaches and methods for mitigation of hardware faults in FPGA

based systems were presented, along with the major causes of these faults. It was found that

97

the major focus of R&D works is placed on mitigation of Single Event Upsets in the FPGA
devices with SRAM based configuration memory. Different approaches for SEU mitigation
have been discussed in details. However, in literature there are not many publications re-
garding mitigation of permanent hardware faults that can be caused by many other radiation
issues. Nevertheless, two approaches for mitigation of permanent hardware faults have been
discussed in this chapter. It was shown that in general case, the location of the hardware fault
has to be found using fault location procedures.

It was shown that mitigation of the permanent hardware fault could be done without time
and resource consuming fault location procedures. Furthermore, it was demonstrated that
by using only fault detection procedures and cyclic reconfiguration of target FPGA by the
TPM it is possible to mitigate all transient hardware faults, as well as permanent faults in
run-time. In a case of a transient fault, TPM cyclically reloads the same IP-core by the run-
time scrubbing procedure. In a case of a permanent fault, TPM cyclically loads different
IP-cores with the same functionality but having a different place-and-route topology to avoid
the damaged area. The topology of each IP-core is designed to avoid certain areas of the FPGA
(area avoidance concept). On the basis of the above concepts, the novel method for run-time
mitigation of both: transient and permanent hardware faults in FPGA systems with SRAM
configuration memory was proposed and developed. This is the first method that incorporates
fault mitigation procedures which can hierarchically call each other according to response of
FPGA until the moment when the system is fully recovered from the fault. This method has
been put on the basis for the Built-In-Self-Recovery (BISR) procedure to be embedded to the
developed TPM for partially reconfigurable FPGAs. The method was published in the Journal
for Spacecrafts and Rockets [50].

It is necessary to mention, however, that R&D of fault detection and fault location algo-

rithms and methods were out of the scope of this research. Only published methods for the

98

fanlt diagnostic and location have been considered for application. Next chapter will introduce

the developed methodology of task segmentation, as well as, the notion of virtual components.

99

100

Chapter 5

Task Segmentation and Efficiency of the
TPM

5.1 Introduction

When an algorithm has to be implemented on a system and it exceeds the size of the avail-
able FPGA device, there are two ways to resolve the situation. One is to choose an FPGA
with larger amount of logic resources or use multiple FPGA devices. The second option is
to process the algorithm/task by parts in different time slots. The latter, requires a method-
ology of algorithm/task division in appropriate segments. The first option mentioned above,
is typically used in the industry. Though this is a straight forward solution, it does not al-
ways translate into cost-efficient result. The reason for that is an overall increase in cost of
the processing platform. The cost increase is induced by an added FPGA device and all of
its peripheral components, as well as, higher power consumption, extended dimensions, and
weight of the system. During preliminary design of a multi-FPGA system, a highly parallel
bus(es) are designed to communicate between two or more FPGA devices. These buses are

fixed and, therefore, if requirements will change in the future, it would be more difficult, if not

101

impossible, to modify bus topology. The second option of task segmentation and is not yet
widely used in industry since it is an emerging technology.

This chapter will discuss the approach of the task segmentation and the creation of Seg-
ment Specific Processor (SSP). This approach provides an ability to implement tasks, which
require more resources than one FPGA can provide. By being able to reuse the hardware re-
sources in time domain, it is potentially possible to decrease required FPGA resources. This
approach allows to reduce weight, power consumption, as well as associated systems cost.
Another benefit of the temporal partitioning is the capability to mitigate of hardware faults
(e.g. SEU - Single Event Upsets) in run-time. Being embedded withing design of the system,
fault mitigation further decreases system’s cost. It also increases system’s reliability, and as
was shown in Chapter 4, does not require much of an additional hardware. Nonetheless there

are certain trade-offs associated with this approach of system design:

1. First, a trade-off comes from the timing overhead which is required for transition of the

FPGA system from one configuration to another. Timing overhead is associated with:

(a) Temporal data reading/writing procedures

(b) Switch from one IP-core to another

2. Second, there is a certain hardware overhead that is associated with the run-time recon-

figuration mechanism, as was discussed in Chapter 3.

3. Last, there is a problem in optimization of algorithm segmentation, which has to be

resolved and completed in a non-NP time.

These drawbacks have been analyzed and

assessed to maximize system’s performance and cost-performance ratio. This chapter in-
troduces a methodology for task segmentation from the temporal partitioning point of view.
Also, this chapter provides the analysis and results for the cost-effectiveness of the segmenta-

tion approach.

102

Figure 5.1: Sequencing Graph Example
5.2 High-Level Synthesis of Application Specific Processors

The development of the TPM methodology, which provides the most cost-effective data-
stream executions on the RCS with temporal partitioning of FPGA resources, is a first aspect
of the task segmentation. A discussion of algorithm representation techniques that are used
already by different researchers is presented below.

Every algorithm/task can be described in various ways, such as: a text explanation, a
pseudo code, a connected graph or a data flow graph (DFG). One of the common ways of
describing an algorithm for execution on dedicated digital circuits is a connected sequencing
graph, as shown in Figure 5.1.

Sequencing graphs (SG) are widely used to represent algorithms and data dependencies
within the processing algorithm [48].

Definition: A Sequencing Graph is a collection of Vertexes and Edges that represent a
flow of data and operations of a stream processing algorithm in an acyclic manner.

Vertexes represent a data processing operators {e.g. Add, Divide, Shift, etc...), and edges
represent data dependencies [88]. Elementary processing operators can be combined into

Macro Operators (MOs) that can include some proprietary processing elements, such as filters,

103

encoders, DSP operators, etc. Eventually, a flow of data reaches bottom of the graph, that is

an output of the system.

5.3 The Concept of Task Segmentation

In some applications it is absolutely necessary to have the whole system built on one chip due
to strict timing constraints and where the cost of the system is not a defining factor. However,
there many applications that are not as time critical, on the other hand, are more cost sensitive
and need to take into account many other parameters (e.g. power, reliability, dimensions,
etc.) In those cases it may be more preferable to employ Temporal Partitioning Mechanism
(TPM). The TPM approach usually allows to increase the cost-performance characteristics of
the system.

In this context, the temporal partitioning is defined as:

Definition: Temporal Partitioning is a division of a task algorithm into segments that are
executed one after another in different time slots on an FPGA-based processing platform.

Definition: Run-Time-Reconfigurable (RTR) processor is a computing paradigm with ar-
chitecture that can reconfigure a part of or a whole architecture during the task execution.

The optimal segmentation of a task and the generation of series of configuration bitstreams
requires a development of an associated methodology. Typically, the operation of task division
is performed based on the reconfigurable device. A segment is populated with the task oper-
ations until the area constraint is reached, at which point the segment would be enclosed. All
of the temporary results for that segment would be saved to an external memory. The external
memory is required since the memory embedded in FPGA gets reconfigured along with the
logic during reconfiguration. This procedure of segmentation would repeat until all parts of
the task are segmented.

The proposed segmentation approach presented in this section is quite different. Instead

of exactly forming hardware architecture, a task algorithm is initially assembled in a form of a

104

Sequencing Graph (SG) using predefined operators that describe the operation of the task and
its constrains. The predefined operators are called “Macro Operators” (MOs) because they
represent an overall description of an operation that is performed on single data frame. At the
same time MOs, do not specify exact implementation of the operation.

Definition: Macro Operator (MO) is a macro-function, which consists of a set of elemen-
tary functions/operators and can be represented in a form of a sequential graph of predefined
interconnection of Elementary Operators (EO).

The analogy of the MO in the alrcady existing systems can be an algorithm function in-
cluded in MATLAB. A function receives a specific input and produces an output in a particular
format. User is not concerned with the implementation of the function and concentrates only
on invoking functions in sequence. The sequence performs the operation of data processing,
by passing results from one function an other. Similarly, in object oriented programming a
class can perform a particular function which can include a series of elementary operations.
The class can have many implementations of that function. Consider sorting an array, ex-
ample where a class Sort has several different implementations, of the sort function Bubble
Sort. The soft function can be invoked on an array and produce the index of the item in
question. The user in such operation simply performs the invocation of the sort procedure
and is not concerned with the actual implementation of the search function. Moreover, Sort
class implements one of the algorithms using elementary operation, such as: move, add, sub-
tract. Similarly, MOs are assembled from the elementary operators that form an algorithmic
implementation of the MO.

Every MO represents a particular macro-function which can have many variations of its
implementation in hardware. Variation of implementations are possible due to parallelism
found in some operations. These implementations can be represented in a form of MO-
optimized processing units called Virtual Hardware Components (VHC). Each VHC varies

by operation and resource parameters, as well as performance. Contradictory parameters are

105

Figure 5.2: Task Algorithm Represented by VHCs Corresponding to MOs

selected to create a wide range of variants that encapsulate limiting conditions of these param-
eters.

Definition: VHC is an Application Specific Virtual Processor (ASVP) designed to imple-
ment a particular MO with a specific set of constraints.

Since same sub-set of MOs can be combined into segments that compose the algorithm
SG, associated VHCs can be combined into Segment Specific Processors (SSP) as shown in
Figure 5.2.

Definition: SSP is a processor that is optimized for a particular reconfigurable device
based on the set of given restriction such as: time, logic area, data transferred between seg-
ments and more.

In turn, these SSPs are synthesized into bitstreams and are loaded in sequence on to the
target FPGA. Intermediate results that are produced by the SSPs are passed between the re-
configurations by the means of storage in SRAM or SDRAM.

Generation of these SSPs presents a challenge in the design of temporal partitioning, be-
cause it has to be done in an automated manner. Each of VHCs has several particular prop-

erties such as: processing cycles, required logic, power consumption, and special embedded

106

SSP#1
' ffTime Slot #1

Time Slot #2

Time Slot #3

Figure 5.3: Segmented and Scheduled Sequencing Graph

devices (e.g. BlockRAM, Multipliers), etc. Combination and inclusion of VHCs into the seg-
ments, as well as, proper evaluation of resource utilization is the key to increase of the overall
performance, which, in turn, increases the cost-performance ratio (CPR) of the whole system,

As mentioned previously, the temporal partitioning of a task algorithm and corresponding
SSPs allow to reuse the same hardware resources. SSP; should be scheduled for respective
time slot according to the task SG, as shown in Figure 5.3.

This, however, introduces a reconfiguration time overhead that has to be accounted for
in the task processing application. The details of reconfiguration delays where explained in
Chapter 3. Effect of this overhead is to be considered in the actual task execution. In next
sections cost-effectiveness of the TPM architecture is examined for different scenarios Addi-

tionally, the optimal applications of the TPM architectures are introduced.

5.3.1 Cost-Effectiveness of TPM

As described in the previous section, the configuration time overhead may be a bottleneck
in data processing with TPM. Therefore, the mitigation of this overhead is the major goal
in platform architecture design. The analysis of possible architectural solutions is presented

below.

107

>

ST T | ssew2 | sseaz | sseen | | ssppa | sseaa | sspas Ti
co me

Pt l 5SP#1 EXE hoh J = 1‘5‘] 5P @3 EXE ‘ =4 e l e

[ssPm1r | 3 EV T R T [et [sspas |

L coue] SSP @1 EXE L SSP A3 EXE ssPas CONF J S -
-----u-n--’ ssPaz | | SSP#2 S5P&4 | #4 T|me

[cow | | oe | cow _T-.
| | | j T T 2

Figure 5.4: Timing Comparison Between Non-pipelined single FPGA and Pipelined dual
FPGA Operation of TPM

One approach to mitigate the configuration time overhead is to introduce a “pipelined” dual
slot or dual FPGA architecture by placing FPGAs in parallel and switching between them as
a discussed in Section 3.3.6. In an ideal scenario it is possible to eliminate the reconfiguration
overhead by “fetching™ the next SSP; . | configuration bitstream while executing SSP;. This is
possible in case where the processing time 7., of SSP; is larger or equal to the configuration

time T.pnfig OF SSP; 1.

z'()n_/ig(SSPL l) < Te.\'e‘(SSPi) (5.1)

If Teonfig(SSP;) doesn’t meet the timing requirements and takes longer than processing
time of the previous segment, then a fraction of the configuration overhead is still going to
be present in the system. A comparison between non-pipeline and pipelined operation is
shown in Figure 5.4 Figure 5.4 shows that in time period 73, while SSP2 is processing data
frame, a configuration overhead of SSP3 is fully hidden, since 7., fjg (SSP3) = T (SSP2).
Similar scenario occurs in the 72 and 74 time slots. In 75, however, we see that SSP4 finished
execution before SSP5 completed configuration operation and in this case T fiq (SSPS) >
T..e(SSP4). Ideally, such scenarios should be avoided to maintain the maximum speedup.

The ideal scenario of pipe-lined execution where Ti.gp rig(SSP,i 1) = Toxe(SSP;) is shown
in Figure 5.5. Depending on the speedup ratio, as well as the ratio of increased cost of the
system, cost effectiveness of the pipelined TPM solution has to be evaluated and compared to

the non-pipelined architecture. Techniques, such as bitstream compression, can be employed

108

sspa1 J ssee1 | ssea2 J s5P 82 l 55083 55Pu3 | ssewa | sseea | sseas J %85 | Time
i CONF EXE CONF EXE CONF EXE s - EXE & EXE ‘>
sm"]“ ssPe1 | sSsPe3 | sspas 5P 45 55PAS
CONF EXE CONF EXE CONF EXE
55P 2 S5P8 2 S5P a4 55P &4 &
....... ool cow e o e Time
| N A T (R (S - N A) R A vl e e T T 1 IJ)

Figure 5.5: Timing Comparison of Ideal Pipelined Implementation of TPM to a Non-pipelined
TPM Implementation

to minimize the effect of configuration overhead, and it is possible to achieve close to double

speedup with such approach, as shown in the following derivation:

Trunfig overhead n'(rn_[i‘q (SSP1 +1) 7 T('.t‘t’ (SSP,) (5 2)

if Teonfig(SSPii1) < Texe(SSF;) then (5.3)

Teon fig overhead 0

— TT,‘,II;M ,"'7,1 (Tvxe (SPII) + T;‘()nfig (SPII‘ l))
P Pup-TPM/pi-TPM TTPIIW " max {E_‘P(SPI,-) s Xeonfig (5Pl 1)}

In ideal case where both time periods are equal:

When Texe (SSP1) = Tcnnfi,i.' (SSP:s1) = Thimesior 53

109

5

[« B e s
=
b
X
'3
L3,
3]

0.5

4

0 LIS J A S S M S B SR S N S B SRt S | T LN St A St 1 St B A S S |

T I LI R P T B I PN I P I P I I B I I]
R R AR B R TRt R

Processing time of an IP-core on a mid-range Xilinx Virtex 8
FPGA with re-configuration speed of 4 ms

Figure 5.6: Non-Pipelined TPM vs. Pipelined TPM Speed-up

n
fol (Y;imeslat + T;imeslot) _nXx (T!imesiot + T;imesfot) _
Z?_—_l max (I;fmeslory Eimeslot) n X max (T;imesim s T;imest'ol)

Tiimestot + Tvimestor =2 (5.5)

Speedupreumrfrpypt =

Tu’mesfot

As expected, the maximum speedup is achieved when configuration time is equal to the
processing time. In all other cases the speedup is less than double for the case of a dual-slot
architecture [52]. Figure 5.6 shows the speedup vs. the percentage of configuration overhead.

In Figure 5.6 Y axis represents the speédup of pipelined architecture versus non-pipelined
is generated based on equation 5.5. X axis represent the variable execution time 7. (SSF)
that varies from 25045 to 10.75ms. Considering that configuration time T fi¢ is constant and
equal to 4sms, it can be scen, that the speedup factor of 2 is reached when T, (SSF;) = 4ms.
At all the other times there is less than 2x speedup either due to configuration overhead, or
execution overhead. At the same time, the cost of the system which increases with the added
hardware. This introduces the notion of the Cost Performance Ratio (CPR) which is explained

in the next section.

110

5.3.2 Cost-Performance Ratio of RCS with TPM

Cost-performance ratio can be defined as a performance parametric value per cost of the sys-

tem
Per formance parametervalue

CPR =
Costof system

(5.6)

In general, performance parameter value can be measured as, cycle time, latency of the
response (response time), dynamic power consumption, reliability, and other factors that are
critical to a particular system specifications. Cost, on the other hand, is most often associ-
ated with the cost of system production and associated development costs. This section will
compare CPRs of with different architectures, such as: statically configurable, dynamically
reconfigurable systems using non-pipelined TPM, and dynamically reconfigurable systems

using pipelined TPM.

5.3.2.1 CPR for Single Statically Configurable FPGAs

Most of the processing systems that are designed nowadays are implemented using statically
configurable FPGAs. In these systems whole data processing circuits are loaded at the start-up
and are not modified throughout the operation of the system. The cost of production of the

statically configurable system in a general case can be estimated by:

Csza:z’csys:em =C processing unit + Cperi pheral components + Cpcb (5*7)

Where Cprocessing unit is the cost of the FPGA, Cperipheral componens 18 the cost of peripheral
components needed for the platform, and Cpp is the cost of a printed circuit board and its
assembling, debugging, and packaging operations. The cost of FPGA should include costs
of all required processing elements and IP-cores needed for the application operation. Due

to that fact this FPGA is needed to be substantially large. Therefore, large FPGAs would be

111

Table 5.1: Lists of Xilinx Virtex 4 and Virtex 5 FPGA Costs

| Virtex 4 FPGA Device | Cost (USD) | Cost/ 1K 4-LUTs |

XC4VLX15 $238 $16
XC4VLX25 $330 $13
XC4VLX40 $570 $14
XC4VLX60 $1100 $18
XC4VLX80 $1357 $17
XC4VLX100 $2605 $26
XC4VLX160 $5625 $35
XC4VLX200 $7563 $37

| Virtex 5 FPGA Device | Cost (USD) | Cost/ 1K 4-LUTs |

XC5VLX30 $250 $8
XC5VLX50 $452 $9
XC5VLXS85 $1066 $13
XC5VLX110 $1512 $14
XC5VLX155 $2171 $14
XC5VLX220 $3661 $17
XC5VLX330 $8731 $26

Figure 5.7: Video-stream Processing Task Processing Block Diagram

non-proportionally higher in cost than smaliler sized models,' as shown in Table 5.1. Non-
proportional increase of cost effects the CPR of the system as it is shown further in cost-
performance comparison.

. To illustrate the concept of cost-performance increase consider a video-stream processing
system that runs 5 sub-tasks. These sub-tasks dépend on each others input, as shown in Figure
5.7. It is also known that each sub-task requires 2ms for each processing data, to produce
temporal/partial result. All of these processing sub-tasks fit on FPGA device XC4VLX200

which is the largest in the Virtex 4 family. From the initial conditions the frame processing

112

performance of a statically configured stream processing platform can be calculated:

1sec 1sec

=100fps

where PRaricsysiem 1S processing performance of the static system. From this calculation the
performance PRyasicsysem Of the statically configured platform is 100f ps. At the same time,

the cost of a platform based on the statically configured XC4VLX200 is:

Css = Cpu+ Cpe + Cpep = $7563 + $200 + $100 = $7863

Costs of the FPGA and peripheral components are taken from the average list costs from
major parts distributors and PCB manufacturers. By knowing PRggicsystem and the overall

cost Cys the approximate CPR of such system can be estimated:

PR;; _ 100fps

CPR,, = =
BTG $7863

= 0.0127 frames/$

For this example the peak performance is not required, but the, designer must take into
consideration constraints of other performance parameters. For instance, if for the above
example video-processing system constraint is 30fps, then frame execution period cannot

exceed 33ms. This may allow utilization of a much cheaper FPGA when TPM is employed.

5.3.2.2 CPR for Non-pipelined and Pipelined architectures utilizing TPM

In previous case of statically configured FPGA, the frame processing time was equal to 10ms,
considering all 5 stages. Therefore, if TPM is used, it may be possible to reuse smaller FPGA.
When the whole task is subdivided into several sub-tasks and all of them executed one after
another within the restricted time the overall system cost can be decreased. Equation 5.8
shows the calculation to be done to verify if particular TPM architecture is acceptable for

the application. This is a proposed general equation for calculation of any stream processing

113

system that is implemented in TPM architecture.

n

Z (E:onfig(SSPi) + Texe (SS‘DI)) < nycle (3.8)

i=1

Equation 5.8 performs summation of configuration and processing times for every sub-
task. This sum has to be less or equal to the Tyye testriction. Ty restriction is time pe-
riod between the incoming data frames. For this example the data frames are image frames
arriving at 30fps = 33ms period from a CMOS sensor. This equation is targeted for a non-
pipelined implementation of TPM architecture, since configuration and execution times are
always added together. In addition, it is assumed that the task can be split into 5 parts and
executed in sequence on FPGA device. This results in 5 times smaller logic resources of
FPGA that could be utilized. In the above example (see Table 5.1), instead of XC4VLX200
(cost: $7563) it may be possible to use XC4VLX40 (cost: $571). XC4VLX40 also has Topnf
reconfiguration time of 4.13ms which is much smaller than that of XC4VLX200. Based on
these values the non-pipelined TPM architecture can be evaluated to see if it is sufficient for

the processing task:

5 :
Z (2ms+4.13ms) =15x6.13ms = 30.65ms < 33ms

i=1

As seen from the calculation, the timing requirement for this frame processing is successfully

met. At the same time, the CPR calculation shows:

CPR™P.. = PRYpy - Y1 (Teonsig(SSPi1) + Texe (SSP)) _
TPM C?';M Cprocessingunit +C peripheral components +Crpm +Crca
1
30.65ms
=Y. 5.9
$5701 5200+ 51004 5120 ~ O3 rames/S (59)

114

Thus, from this simplified example one can see that CPR}'p,, is about 3 times higher than
the CPRss, where the overall cost drops from $7863 to just $990, which is about 8 times less.

The reconfiguration components that deliver bitstreams after every sub-task is computed
should be included in the cost of a TPM system. The cost of the hardware or RCS with TPM
is calculated based on the Equation 3.7 from Chapter 3.

A pipelined architecture can be analyzed in the same manner on non-pipelined TPM ar-
chitecture. In calculation of the system hardware overhead, the four main costs associated
with it as it was done for C7%,, back in Equation 3.7. For the pipelined case, the cost of the
FPGA device Cp, and cost of peripheral components for that device Cpy pc are added. For
generalized expression of more then one processing device the number of processing units is
parametrized by Np,,. Since every FPGA has associated peripheral components, they also have
to be accounted for in cost calculation and denoted as Cpy pc. The overhead equation is shown

below:

!
C; PM = L peripheral components +Crpm~+Cpc+N, processing units X (Cprocessing unit + Cpu periph comp)
(5.10)

For the pipelined case, in contrast to non-pipelined the time calculation is considered to be
maximum value out of Tyon fig (SSPit1) and Tpze (SSE;). Therefore, by keeping all the conditions

from the previous non-pipelined example:

n

Tcycle > Zmax(Tconfig(SSPHI),nxe(SSH)) =
i=1

5 5

Z max(4.1ms,2ms) = E4.1ms =20.5ms (5.11)

i=1

As shown, pipelining performance of the system is increased:

115

PRPL — Unit Time _ lsec
TPM YT X (Toonsig(SSPis1), Tene (SSP) | 20.5m5

=48fps (5.12)
If we calculate CPR based on these values we will observe that CPR is increased to:

!
_PRgPM:

CPRY:, = (5.13)
Cyi

1sec
Y2 MAX (Teonfig(SSPit1), Texe (SSP))

Cperi pheral components +Crpy + CPCB +N, processing units X (Cprocessing unit + Cprocessing unit peripheral com ponents)

lsec
Y3 4.1ms

= $150+ 5100 + $100 2 x (3570 + $50)

=0.03fps/$

where Ny, is number of processing units used on the platform. There are 2 FPGAs in this
example. Obtained CPR result is the same as in the previous non-pipelined TPM. This is
not surprising, since our requirements are ~1.5 times lower than performance obtained with
pipelined solution.

The, requirement of the processing system is 30f ps allows for further increase in divisions
of the algorithm to sub-tasks and, therefore for a, potential selection of a smaller device. If
processing algorithm is divided into 8 segments (provided algorithm is divisible onto 8 seg-
ments) an FPGA device of even smaller size can be selected, such as XC4VLX25. Again,
to satisfy the Ty, restriction the calculation has to be redone. In this case though, the con-
figuration time for the FPGA is 2.7ms, according to the Table 3.3. T, restriction is still
satisfied, since time required for reconfiguration is 2.744ms and, therefore, for 8 divisions
Teyete > Y51 2.744 = 22ms. On the other hand, CPR is increased, since the cost of a smaller
FPGA device is lower
PREpyy

pl
CT PM

i

1
CPRypy = (5.14)

116

1sec
Y Max(Toon i (5SPir1), Texe (SSF))) _
Cpe +Crpm + Cpcg + Npu X (Cpu + Cpu pe)

1sec
Z?:! 2.744ms

$150+$100 + $100 +2 x ($330 + $50)

=0.041fps/$

This result is a 0.011 fps/$ improvement from the 5 sub-task division scenario. In addi-
tion, the above result shows that CPR is increased as Toonfig = Texe is getting closer to config-
uration time.

When comparing different architectures of TPM organizations between each other, CPR
comparison formula should be used, since it is the true indicator of solution efficiency. For 8

and 5 task divisions CPR ratio gives:

CPRgaiy _ 0.041
CPRsgi, 0.03

Ratiocpg = 1.36 (5.15)

If task divisions can be balanced even more to achieve Toonfig(SSP11) = Toxe(SSP), a
higher CPR can be achieved.

These results might give an impression that increasing division of algorithm indefinitely
always increases CPR of the system, but it is not true, and there is a limit of division which is
optimal for a system. One of the reasons why CPR does not increase indefinitely is the actual
process of division. There are always constraints and some of them do not permit the division
of a task. A more apparent factor is the increase of Np,s. From the above equation a balanced
implementation produces a CPR increase. There is strong dependence of the percentage cost
of FPGA device to the cost of the whole system. Increasing the number of FPGAs devices
on RCS does not give a linear increase in CPR. When designing a processing system, where
cost-effectiveness is important, the system has to be evaluated based on the above equation,
and not solely by the performance increase.

As seen from the example, employing TPM can result in significant cost savings as CPR of

the system is increased. The reason for the increase in CPR is due to the non-linear relationship

117

$8,000

$7,000

$6,000
$5,000

54,000

$3,000

$2,000 135
$]EO//
51,000 w s S

XCAVIX1S XCAVIX2S XCAVIXAD XCAVIXE0 XCAVIXSD XCAVIX180 XCAVIX160 XCAVIX200

S0

Figure 5.8: Xilinx Virtex 4 FPGA Device Costs in Relation to Logic Resources

of size of FPGA and its price. Table 5.1 contains the costs of latest Virtex 4, and Virtex 5 FPGA
families, as well as their costs per 1K logic cells. Figure 5.8 depicts the non-linear relationship
of increasing logic and cost. The key advantage is to use the reconfigurable devices in the
range where cost and size of the device increasing linearly, up to XC4VLX80 FPGA.

From the Figure 5.8 it can be seen that Virtex 4 family has exponentially higher costs
for their largest devices in comparison to their mid-range ones such as XC4VLX40 and
XCVLX80. As with the Xilinx Virtex 5 devices, as well as Altera Stratix III family, and
this trend is true for most of FPGA vendors and their FPGA families. Graphs representing
device-cost relation are shown in Figure 5.9 and Figure 5.10.

This is not too surprising, since yield on larger sized dies is much smaller than on smaller
sized dies. The overall cost of manufacturing is, therefore, disproportionally higher [72].

Yield is calculated as a function of an average number of defects (D) per unit area (A).

Y = f(A,D) (5.16)

Since defects are uniformly distributed across an IC die, the increase in the area of IC will

be directly proportional to the probability of defects that the IC can receive.

118

Cost (USD)

10000

8000

5000

4000

2000

/

/

_~

—

XC5VIX30

XC5VIXS0 XCSVLXBS XCSVDX110 XOSVIX155 XC5VIX220 XC5VLX330

Figure 5.9: Xilinx Virtex 5 FPGA Device Costs in Relation to Logic Resources

Cost (USD)

124300

10000

8000

6000

4000

2000

/

S

-

.-—-——-—uﬂ‘""—"“"

EP35ES0D

EP3SE50 EP35L3110 EP35L150 EP3S5L200 EP35L340

Figure 5.10: Altera Stratix III FPGA Device Costs in Relation to Logic Resources

PROPERTY OF -

119 RYERSON URIVERSITY LIBRARY

From the graph a range of devices that are in near linear range can be identified and by
utilizing them instead of larger FPGAs, the CPR can be increased.

Selection of the FPGA device for TPM approach depends on several constraints. If those
restrictions are not met, a larger device has to be selected, and TPM approach is not suitable
for that particular system implementation. First, the size of the device put a restriction on the

number of divisions of the algorithm

DSy
N, div

DS part

.17
BWconf

= I'DSpart-l 2';:onf =

DSpgy = max {DSdng}

Where DSy, is the size of a reconfigurable device needed for implementation of all sub-
tasks of the processing application on one device, Ny;, is the number of balanced divisions
of the task, and DSy, is the size of the closest fitting FPGA device to be used for the TPM
architecture. When device is selected it has to satisfy Equation 5.8. If restriction is not met, a
number of divisions has to be adjusted. A larger/smaller device has to be selected accordingly
and again re-evaluated by Equation 5.8. This selection can be automated with a CAD software
that would perform the balancing operation and provide user with several solutions from which
the most suitable one can be selected.

Additional benefit that is obtained by implementing the design on a smaller size FPGA
is an ability to do module design by parts, and thus not to worry about overall timing. This
fact is currently a growing problem on large FPGAs for developers, since a combination of
separately designed modules leads to timing problems [100]. These timing issues further
complicate the design and makes the final system even more costly. Another important reason
why TPM approach is beneficial for implementation of embedded systems is a smaller latency

and, therefore a higher operation speed. Utilizing smaller sized FPGA makes internal routing

120

EN-PTPM EPLTPM M Static

2

Jll

0 - -
Hoe ot 0 B ol e w200k 0Tl R BS

Number of Segments - K

CPR

i | T

#0 41 AR 45 38 15 A8

Figure 5.11: Cost Performance Ratio vs. Task Segmentation Granularity

shorter, which allows signals to travel faster from pad to pad and makes the critical delay

shorter overall.

5.3.2.3 Optimal Number of Partitions

When analyzing system design using temporal partitioning approach there is a factor of divi-
sion of algorithm into segments, which has an optimal region where it is most cost-effective.
When too many divisions of an algorithm are introduced, a reconfiguration overhead would
cause processing stall even in pipelined form. Configuration overhead involves reading previ-
ously processed temporal data and writing newly processed data. Figure 5.11 shows that with
more than 8 reconfigurations, the CPR of the system drops.

In order to guarantee that the processing of an algorithm would be completed within the
Teyele time maximum number of divisions has to be calculated by following formula for non-

pipelined TPM approach:

T Ve
DY — [—C“’E—J (5.18)
Teon fig t Texe
Similarly, for pipelined TPM approach:
Teyer
D2 = [2 J (5.19)
> max(nanfigv Texe)

121

Where D}F and Df,’f.v are the number of divisions for non-pipelined architecture and divi-

sions for pipelined architecture respectively.

5.3.2.4 Pipelined TPM Implementation Limitations

From the pipelined TPM architecture and results in the previous sections it can be extrapolated
that system can have N, > 2. This can potentially mitigate issues related to Toonfig (SSPi11) >
Toxe(SSP;). However, the overhead costs of configuration controller interface, switching logic,
PCB area, PCB routing complexity, and actual FPGAs would become much more dominant,
and make CPR much lower. At the same time, there will have to be a re-design and an increase
in bandwidth for configuration controller, since multiple FPGAs will have to be configured at
the same time. The automated scheduling and timing of the configuration bitstreams, which
is handled by the configuration manager, would be greatly increased in complexity. Similarly,
the costs associated with software/firmware development are tremendously increased due to
the configuration manager complexity. All these factors would effect CPR of the system and

CPR would decrease. Therefore, in this research only N, = 2 was considered.

5.3.3 Automated Partitioning

Traditionally, the task of algorithm partitioning and creation of IP-cores was done manually
by the designer. However, this requires a lot of effort, as well a.s highly experienced engineers.
Designer usually performs the division of an algorithm into segments, as well as the generation
of reconfigurable cores from those segments. The transfer of temporary data between the cores
has to be analyzed and accounted for as well. Such a task was doable when FPGA devices
were small in logic size [88], such as an eafly XC4000 Family. Current Virtex 4, Virtex 5,
and Virtex 6 FPGAs are too large for manual implementation and CAD tool with automated
partitioning is necessary. An automated partitioning capability would provide a much faster

segmentation of an algorithm in close to optimal fashion. Automated partitioning tool would

122

bind the segments based on two conditions: meeting the FPGA device size requirements and
being able to find the VHC that corresponds to that requirement.
The next chapter discusses the technique developed for close to optimal algorithm seg-

mentation and binding of resources to meet the system constraints.

5.4 Architecture Optimization for ASP Based on Config-
urable Modules

Processing platforms can perform different types of processing. Considering media applica-
tions such as Image, Video, and other digital signal processing where there is a constant stream
of data, a stream processing. Stream processing is: processing of a constantly incoming data
using the same algorithm/procedure, where procedure, as well as the format of data doesn’t
change throughout the operation of the system. Stream processing allows for faster and more
efficient execution by sacrificing the flexibility of algorithm modification. Stream processing
is well suited for applications that share three main characteristics: data locality, data paral-
lelism, and computational intensity. In addition, if the processed data is used once or twice
and then discarded or saved in storage, it is possible to process the constantly incoming data
in a sort of a pipeline. After a pipeline frame fill-up latency, the system produces a result
with a period MAX(Tyo(i)). Where MAX (Tyo(i)) is the maximum delay of a largest MO
component of the IP-core. This provides tremendous speedup for any type of processing, es-
pecially if many pipeline stages are present. At the same time, if it is possible to acquire input
data in more parallel fashion, where more than one data is available, parallel processing can
be done and several stream processing algorithms working at the same time. This increases
the speedup of the processing system even more. The exact factor of performance increase
would roughly depend on processing algorithm multiples. Following chapters will show the

optimal uses of proposed research and how it compares in cost-efficiency to the non-TPM

123

approach. It will also address limitations of the proposed approach and ways of overcoming

these limitations.

5.5 Summary

This chapter presented the concept of task segmentation and the process of tasks execution on
a reconfigurable system. The main focus of the chapter was to convey the idea of balancing
the requirement for the system to achieve most cost-efficient design solution. These require-
ments also impact other aspects of design, such as power consumption and speed of operation.
Notion of cost-effectiveness of RCS with TPM was introduces with evaluation of system’s
cost performance ratio while taking in account cost of the systems components and overall
performance. It was shown that hardware architecture a components should be closely related
to the system requirements to achieve cost-effective solution. The methodology for evalua-
tion of cost-effectiveness of RCS with TPM, described in this chapter, was presented on the
Canadian Conference of Electrical and Computer Engineering [52]. This research was used
in further methodologies and segment specific processor synthesis. Next chapter will describe
the methodology behind creation of the high level Macro Operators (MO) and corresponding

Virtual Hardware Components (VHCs).

124

Chapter 6

Methodology for High-Level Synthesis

and Optimization of VHCs

6.1 Introduction

In the previous chapter a notion of TPM architecture was introduced. General overview of the
TPM approach and the concepts of MOs, VHCs, and SSPs, was presented. Chapter 5 also
described the limitations of the TPM architectures and the conditions where this approach
is most applicable. An idea of cost-effectiveness was introduced, that is used to match the
architectural design to the system requirements and minimizing the overall cost of the system.
The core of the this research is synthesis of the optimal SSPs from VHCs.

This problem consists of two parts:
1. High level synthesis and optimization of VHCs in a multi-parametric design space.
2. Compilation (combining) of an SSP from a set of optimized VHCs.

This chapter focuses on a methodology of high level synthesis of VHCs according to MOs,

the methodologies of SSP compilation is discussed in the next chapter.

125

The problem is divided into two parts: given a particular algorithm, how to create a set of
VHC that correspond to an MO, and how to find VHCs so that all of the system requirements
are met (e.g. timing, area). Decision making mechanism is similar for both parts, however,
selection process is different. The reason is because VHC synthesis is based on elementary
operators and the SSP compilation uses macro-operators (MOs) to perform architecture se-
lection process. The analogy can be made with the software development, where one uses
elementary programming functions to create various complex functions. In turn, the complex
functions are used to implement an application that performs a particular task.

Therefore, a methodology for VHC synthesis from the elementary operators has to be
developed first. The main focus of this chapter is description of methodology for MO analysis

and generation of the associated set of VHCs according to the set of parametric constraints.

6.2 Correspondence Between MO and VHC

As was discussed in the previous chapter, an MO, is a mathematical representation of a func-
tion used within a task. A VHC is an implemented instance of an MO. In this section the
correspondence between MO structure and architecture of VHCs will be discussed with influ-
ence of parametric constraints in mind.

First of all, for each MO;,i = 1,2,...n, it is possible to find a set of VHC; ; j =1,2,...k,
where each of VHC,; ; is optimized for the set of parametric constraints P, s = 1,2,...p. For
example for the MO; -“Matrix Multiplicaﬁon”, the set of parameters (e.g. Pj—‘“execution
time”-Teye; P, —*logic resources™Ry,g; P —“Power consumption”-W, etc...) may be assigned.

Therefore, for certain requirements and constraints of the above parameters different VHC, ;

126

(B)
Figure 6.1: Sequencing Graph (SG) for the MO Represented by Equation 6.2

architectures can be synthesized:

For MO;and {Exe < Toxey;,y » MiN {R;Og} W < an1}1 —VHC;,
For MO;and {Texe < Texeypps IR {R,og} Wi < W}nz}z —VHC;, 61
For MO;and {Tyxe < Texeyy, ;s min {Riog } ; Win < Win, };— VHC;

The above derivation shows that for a single MO; it is possible to have j number of VHCs.
Each VHC,; ; has a variation by one or more parametric constraints. Each parameter can have
different limitations that can not be exceeded (e.g. Texey,, » Win ;) for each version of VHC.
Performance parameters contradict to each other. For example, an amount of logic used for
implementation of the algorithm is inversely proportional to the processing time. To illustrate
this fact, consider an example from Figure 6.1. Figure 6.1 (A), represents the Sequencing

Graph (SG) implementation of the MO, which is based on the Equation 6.2.

Y =max{[(a+b) x (c+d)+max{(c+d),(e+f)}], (6.2)

[min{(c+d),(e+f)}+(e+f) x(g+h)]}

127

aibi cdi eifi ia hi

Figure 6.2: Stage Divided Sequencing Graph for the MO Execution

As it can be seen from the Figure 6.2 (A) the MO algorithm consists of 10 elementary
operations: six additions, two multiplications, and two comparisons. Based on the avail-
ability of the associated operators (e.g. adders, multipliers, comparators, etc.) operator’s
use can be achieved by binding and scheduling procedures [79]. Variations of VHC imple-
mentation can be generated from combinations of resource binding and scheduling. If all
of these resources are available at the same time, the processing latency for a single set of
data (a;, b;, ¢;,di, €, fi, 8i,hi) will be minimal. However, in case of the stream processing ap-
plications the cycle time is reduced to close to the execution time of the slowest elementary
operator (e.g. multiplier). Considering an example above, the latency of the algorithm can be
calculated. Since the nodes of the SG depend on each other, the MO is divided in four stages,
as shown in Figure 6.2 (B).

The formula for latency calculation has to consider all of the stages of the MO. A general

formula is given by:

m
nwencyzzfi i=1,2,...,t (6.3)

=1

7; = max{Vtee € 7} (6.4)

128

Where m is the number of stages in the SG and 7 is the latency of the particular stage. The
latency of each 7; is found by determining the operation with the maximum execution time -
texe, SiNCE it becomes the bottleneck of the processing stage. Therefore, the total latency of the

MO from Figure 6.1 (B) is equal to:

Tiatency = T1 + T2+ T3+ 174 = 2ns + 10ns 4+ 2ns + 4ns = 18ns

If a large set of data (e.g. a;,b;,ci,d;ye, k = 10° sets) is computed sequentially in a non-

pipelined fashion where Tjuency = Tere, it would take:
Tove =k X TT2 = 18 x 10° = 18ms

If, however, the algorithm is implemented in a fully pipelined data-path, the cycle time per
data set (a;, by, ..., i, h; for each i = 1,2, ...,k) over a large amount of data may be decreased.
It should be noted that for fully pipelined implementation there is a much higher requirement

for logic resources, as illustrated later. Equation for cycle time calculation is:

7

cycle

=max (V17; € MO) (6.5)

Where cycle time of fully pipelined implementation is equal to the largest latency of the
stage in a pipeline. Equation 6.6 reflects the pipeline speedup for the large sets of data on the
pipelined data-path.

x (k—1) (6.6)

Al
Tove = T;alenry + T!

cycle

where k is the number of data sets and Teﬁf,_, (of fully pipelined data-path) shows the execution
time per one data set. Below is the calculation of the execution time using Equation 6.6, when

a fully pipelined data-path is utilized for the SG in Figure 6.2 (B). Here, k = 106 data sets:

129

Latency - 18 cc ~__ Nextoutput-10cc _ Nextoutput - 10cc

“ >4 >

Comp2 52283 §2283 51283 52263 S2253
Comp1 S2283 85256 55256 S5256 55286
Mult2 $3x84 $3x54 §3x84 §3x54 §3x54
Multl S e T L e S$1x82 §1x82 51x82 S1E2.
Add6 Im = M1+C1 M1+C1 M1+C1 M1+C1

adds | | | | ‘M2+C1 M2+C1 M2+C1 M2+C1

Add4 [alebl a2+62 a3+b3 2d+bd aS+bs aS+b5

Add3 [cledl| c2edd | -3 -8 L3 5445

Add2 a2 23413 4414 5415 5415
[Add1 |gishl g2+h2 n ga+hd g5+h5 g5+hs

Time [1]2[3]4[5 [6]7 89 [10[31[12[13 [14[15[16]17 [38[15]20[21 [22[23[24 [25[26]27 2823 [30[31[32[33 [34 [35[36]37 [38 [[an[a1 [42]43[aa a5 [as]

Figure 6.3: Pipelined Implementation of SG from Figure 6.2

Texe = Tiatency 1 Tt’fi X (k—1) = 18ns + (10° = 1) x 10ns = 1000008ns =~ 10ms

As can be seen from the result, it almost cuts in half the total execution time 7., when
fully pipelined architecture used on large sets of data, however, it does come with an addi-
tional hardware cost. Figure 6.3 shows the detailed resource utilization based on the schedule
of pipelined data-path implementation. This schedule shows that the initial pipeline fill-up
latency and subsequent pipeline outputs correspond to the equation calculations.

The previous case was an extreme one where such amount of resources was available that
permitted to create a fully pipelined impiementation. In other cases. only limited amount of
resources is available, so binding and scheduling come into effect. The following two cases
illustrate the methodology of operation.

In first scenario let us consider that only one adder (A), one multiplier (M), and one com-
parator (C) are available for operation at any given time. Based on the dependency of the se-
quential graph in Figure 6.1, we can bind and schedule SG as shown in Figure 6.4. Since only
one instance of resource (e.g. A, M, and C) is available at a time, elementary arithmetic/logic
operations (e.g. additions, multiplication, comparison) are bounded by the resource repre-
sented by the dotted line. As it is seen in Figure 6.4, every bounded resource is scheduled

only once per processing stage. This results in seven stages execution process. Latency for

130

ab ad e fi qa hi

ai bi cad e fi g hi

T

(A) (B)
Figure 6.4: Scheduling and Binding Transformation of SG into VHC Configuration Including
Single: Adder, Multiplier. and Comparator

" Cycle-30cc ”
51 52 $3.m1 54.C1 S5M2 S6 €2.,51,52 M1
s e o e feinSes,
it e R iy P S
e i ' e
Time 3 7 1112 1415 17 22 27|28 (28 3 40 CRIEE)

Figure 6.5: Pipelined Implementation of SG from Figure 6.4

this implementation of the algorithm is calculated by Equation 6.3, same way as the sum of

latencies for all the stages was computed. The overall latency is equal to:

Tiatency = 2ns + 2ns + 10ns + dns + 10ns + 2ns + 4ns = 34ns

The cycle time is less than latency as before. However, it is much higher than in previous
implementation due to limitation in resources. Figure 6.4 illustrates the schedule of resources
after the binding operation.

The schedule latency is now equal to 34ns, and cycle time is 2ns less, since stages 7 with

77 can be overlapped. Hence, equation for calculation of 10° data sets, considering Teyele time

131

ai bi cdi e fi gi hi A1 a b cidi e fi gi hi Az

-]
HL v
‘:\') Ta
M — |/ Ta
Ts
Y Y
(A) (B)

Figure 6.6: Scheduling and Binding Transformation of SG into VHC Configuration using
Double Adder, Single Multiplier, and Single Comparator

of overlapped 7; and 77, is:

Tere = Tiatency +{max {T1, B} + B+ B+ T+ 75+ %) X (k—1)

344 (max {2,4} 424+ 10-+4 410+ 2) x (10°~ 1) = 3200000205 = 32ms

In some applications (e.g. real-time high speed image processing) this execution time may not
be acceptable, and an increase in resources may be required.

Now consider a case where two adders are available. There are one multiplier and one
comparator as in previous case. A different binding and scheduling results in this case.Al
and A2 represent the two adders in Figure 6.6. Each of these adders bind three “add™ opera-
tors. Since these adders operate in parallel, they can be scheduled in the same time slot (e.g.
T1,T2,... Tp). This allows to decrease the overall number of time slots stages to 5. The overall
latency is

Tiarency = 2ns + 10ns + 10ns + 2ns + 4ns = 28ns

The data throughput, as in previous case, is slightly lower than the latency, since 7; and 75 can

be overlapped in cycles (see Figure 6.6). In this case:

Cycle- 26 cc

51,52 $3,58 M1 cLm2 $556 (251852 M1, 53,54 M2,C2
Comp 52253 55286 52253
Mult 51:82 53+54 51252 $3x54
Add2 |alsbl el«fl M1eCl a2eb2 22412
Addl |cledl gishl M2+Cl e q2en2
Time |1 [2[3[4[S[6]7 B[[10]11[12[i3 [18[15]16]17 [15[15]20 21 [22[23 24 [25 [26]27 [25]25 [30 31 [32[33 |34 |35 |36 |37 [38 [39 [%0 |41 [42 [3[#4 &5 45

Figure 6.7: Pipelined Implementation of SG from Figure 6.6

Texe Tlul('nr_\' { (max (TI- T5)+ T+ 73 4 T4) X (I\— l)

28 + (max (2.4) + 10 4 10 +2) x (106—1) 2600000215 ~ 26ms

The schedule showing the resource utilization, latency and cycle time of the scheduled SG
is shown in Figure 6.6 (B).

The above examples demonstrate three different VHC implementations for the same MO
but with varying performance and resource requirements. From the above cases there are two
possible extremes can be identified as:

a) non-pipelined data-path, with a single resource for each type of operation. This is the
slowest and cheapest design solution.

b) Fully pipelined data-path, with individual resources available for every operation. It is
the fastest and the most expensive solution for VHC implementation.

Between these extremes there are VHCs with different latencies and cycle times, as shown
in Figure 6.6. VHCs presented in the above cases and as well as others, create a design space
of VHCs, associated with the MO. Each VHC implementation is an element (point) in this
design space.

In most real life cases the number of possible variants of VHC implementation (design
space size) is very extensive (e.g. from 10° t010' variants). It is obvious, that with these
numbers the process of high-level synthesis of VHCs and sets of parametric constraints must

be automated. By automating the process of resource binding and scheduling it is possible to

133

generate a large variety of VHCs. That variety produces the complete design evaluation space
for further selection procedure. The selection procedure should result in optimal or close-to-
optimal VHC architecture. The following section of the chapter will describe all aspects of the
novel methodology which allows rapid selection of near-optimal variant of VIIC architecture

for a given SG of the MO and a set of parametric constraints.

6.3 The Problem of VHC Synthesis and Optimization

The synthesis of optimum set of VHCs from elementary operators, corresponding to partic-
ular MO, is essentially an optimization problem. Such problem is NP-complete, especially
for cases with multi-parametric optimization. There can be hundreds of nodes in an SG for a
given MO and an enormous set of various combinations of resource binding and scheduling.
Thus, it may require exponentially growing amount of calculations to perform the exhaustive
search of all the variants of VHCs in the design space. These calculations have to estimate the
processing time, power consumption, area of logic resources, and other performance parame-
ters.

Selection of the optimal set of VHCs for corresponding MOs may be done using ditferent
approaches, as presented in {29, 47, 103]. One of these approaches is to use the Pareto
point set, where every VHC variant has a Pareto point [79].- Pareto points, therefore, can be
considered as trade-off points in the system design space.

In the past several years various heufistics were proposed by researchers, however, they
mostly considered small sets of MOs. In cases of large sets of MOs, the calculations may
become unmanageable due to exponential increase in number of the calculations. In addition,
most of researchers have not consider the multi-parametric restrictions [47] [103]. If only
one restricted parameter is considered, the optimization is done only in relation to that pa-
rameter. This, would not be feasible in real designs where many parameters typically have to

be considered, such as: latency, area, power consumption. The, conventional methods do not

134

have capabilities and flexibility to optimize an algorithm implementation with more than one
restricted parameter. To utilize several parameters in optimization the inverse related parame-
ters may be chosen to identify cross boundaries.

A “Spacewalker” method was proposed by [103] for design space exploration. It makes
use of he information from the previous point of the design space to minimize the search area.
However, this creates a problem of having local extremes as a solution in final selection on
the design space. Selection of local extremes eliminates all other branches and can lead to
missing the global minimum or maximum of the parameter in question. In this case a genetic
algorithm search would be more applicable, that search as more than just neighboring nodes
[61].

In other papers [47] an automated selection of VLIW architecture was performed by de-
composing system architecture to sub-systems. It is possible to reduce the number of variants
to be estimated by the decomposition of hierarchical design. However, complex models as-
sociated with VLIW architecture specifics make method very computationally intensive and
difficult in implementation for other types of architectural synthesis and optimization.

In general, the effectiveness of any method based on heuristics always depends on quality
of these heuristics and their orientation for a certain application. In the case, where MO spe-
cific data-path circuits have to be designed, the formal method will have non-NP complexity.
This method must provide the maximum possible reduction of numbers of VHC variants to be
evaluated. At the same time this method in should result the near-optimum solution and avoid
the local extremes of the performance parameters in the design space. Therefore, a different
approach based on the design space arrangement has been selected by [49]. This approach
proposes a partial arrangement of the design evaluation space as a methodology to minimize
the number of variants needed for selection of the close-to-global optimum. The method
assumes representation of the design space in a form of a decision tree called Architecture

Configuration Graph - ACG. An example of such ACG is shown in Figure 6.8.

135

RL @ Rl,mt

Ria

@ @ susssssnnnswns| R RZ.mz

1 LYy 2 Alo . a (XSRS NNSRERE A AR A A RAR R

Figure 6.8: Design Space Arrangement

Each node on ACG resents a resource type. Resources in this example can be various
arithmetic/logic operators (e.g. R1-”Adder”, R2-"Multiplier, etc.). Each resource can have
several variations of implementation. Variants of resource implementation are represented
by the edges associated with certain nodes. For example, Ry is “Adder” available in one
instance. Whereas Ry, is the “adder” available in 6 units of adders. Therefore, all pos-
sible configuration of the VHC; for certain MO; can be represented by the ACG terminals:
Ay,Az,...,Az. For example, the Ay configuration represents the path from the root (R 1) to
the R, (e.g. Ry.1). In this case A; means that there are minimum resources available for the
data-path: one adder, one multiplier and one comparator. This variant is similar to the example
discussed in Section 6.2, Figure 6.6 (B). On the other hand, the architecture configuration A,
represents the VHC variant with the maximum possible resources available for the data-path:
6 adders, 2 multipliers and 2 comparators. This is the previously considered example of fully
pipelined data-path, shown in Figure 6.2 (B).

All variants (A;,A3,...A;) of a resource can be arranged in ascending order by one of
the performance parameter and/or by descending order for the contradictory parameter [S1].
Such parameter pairs could be execution time and data rate, power consumption or dissipation,
etc. An ideally monotonic arrangement of performance parameters allows to find the global
extreme located in case of ascending order at the very right terminal/leaf the graph (e.g. Az)

or vice versa. Nonetheless, the above methodology, though being able to reduce the number

136

of variants to be evaluated for finding close-to-optimal architecture, has one, but important
limitation: it is mono-parametric. In other words, it allows finding the optimal variant for
one performance parameter satisfying the constraint of another contradictory parameter (e.g.
variant with highest data execution rate and certain logic resources available). Real design
process usually coincides more than two parameters. Therefore, an extension of this method
is needed for the design process that requires with multi-parametric design optimization. Thus,
the goal of the further research is to develop a methodology for selection of a close-to-optimal
variant of VHC in a multi-parametric design space while evaluating the minimum number of

possible variants.

6.4 Methodology of VHC Synthesis and Optimization

An appropriate method for high-level synthesis and optimization of VHC architecture should

provide:
1. A solution for general multi-stage, algorithm specific data-paths.

2. Minimization of number of variants to be evaluated for finding the optimal configuration

of VHC.

3. Close-to-global extreme solutions (avoiding local extremes) for each performance pa-

rameter.
4. Pareto-optimal variant of VHC configuration in multi parametric design space.

The next section describes all aspects of the developed novel methodology of selection of

close-to-optimal variant of VHC in the multi-parametric design space.

137

6.4.1 Multi-parametric Design Space Decomposition

The first step for the VHC synthesis procedure is determination of performance parameters
and their constrains. These parameters are used to create the design sub-spaces that are used
to select optimal variants (Pareto-points) for each of the parameters. Let performance pa-
rameters be denoted as P;, where s = 1,2...p, and assume that there are constrains for each
Py — P, . Itis possible to find many pairs of inversely proportional performance parameters
(e.g. processing latency and amount of logic resources). For example, if a designer needs to
reduce the processing time latency, then the amount of hardware/logic has to be increased. The
decrease in processing time may also be inversely proportional to power consumption. These
types of parameters can be chosen for selection of the design space represented by ACG. At
the same time, these parameters have corresponding constrains, Fs,,, . Design constraints limit
the design space and, consequently, decrease size of the ACG. However, with the addition of
third parameter (e.g. hardware area), the architecture design space becomes three-dimensional
and complicates the problem of selection. The third parameter can be inversely related to the
speed of computation, and close to linearly proportional to the power consumption. Hence,
design space selection problem becomes a double two-parameter design sub-space selection
problem. Where it has Power vs. Time and Area vs. Time, instead of three parameter design
space selection problem. It is less computationally intensive, to solve two two-dimensional
problems instead of one three dimensional. It is also known that 3 > n?+n? for n > 2. Thus,
selection of the inversely related parameters should be done by the designer. Designer also has
to determine the initial restriction specification of parametric constrains, P, fors=0,1,...,p.
Later these constrains will be used in narrowing design space by pruning of ACG.

After the number of restriction parameters is selected according to all of the constraints, a
reduction of the ACG can be performed. As it has been shown in [49], ACG can be pruned by
arranging the ACG in a descending/acceding manner and applying m-airy search procedure.

The Figure 6.9 illustrates this process.

138

(A) Pi(A)>P1 im (B) P2(A)<P2im

Figure 6.9: ACG Pruning by Pair of Parametric Constraints

Figure 6.9 (A) shows the design space represented by ACG(P)) arranged in ascending or-
der by the performance parameter P; (e.g. “Power Consumption™). The bottom part of this
figure presents the diagram of rising value of the parameter P according to the number of ar-
chitectural variants Aj, A3, ...,A.. As it can be seen from this figure, the parametric constraints
Py im allow to cut from further consideration some part of architectural variants (from Ag to
A.). Similarly, Figure 6.9 (B) demonstrates how the constraint for the performance parameter
P> (e.g. “execution time™) can cut out (prune the ACG) another part of architectural variants
(from A; to Az). Continuing this process for all other parameters P, where s — 1.2,.... p,
result in a set of architectural variants which satisfy all parametric constraints. After that the
optimization procedure for finding the optimal variant of VHC architecture can be applied.
Therefore, the first step of the proposed methodology is to get mono-dimensional design space
arranged for each performance parameter. Thus, the procedure for rapid arrangement of ACG
for each parameter needs to be developed.

The arrangement of ACG graph includes several steps and is described in detail in the next

section.

139

6.4.2 Design Space Arrangement

As was shown in Section 6.4.1, there can be up to Z mono-parametric design sub-spaces. Each
of the design sub-spaces can be arranged in order of increase ér decrease of the value associ-
ated with performance parameter-P, where i = 1,2,..., p. As was stated in [49] this arrange-
ment allows for a dramatic reduction of the number of variants to be evaluated for selection
for the best variant of VHC. In this consideration the boundary variant, VHCp,,»4, means that
this variant satisfies the parametric constraint (€.g. Ps(Apoarder) < Py,,,) and the value of the
performance parameter P; of this variant is the closest to constraint (€.g. Ps(Apoara) = Fs,,,)- In
other words the next variant of VHC on the design space represented by ACG does not satisfy
the constraint (e.8. Pi(Apoara+1) > Py;,,)- In the example considered in Section 6.4.1, Figure
6.9 variants A,_; and A, are border variants. Therefore, the set of border variants A},
for s = 1,2,..., p represents the trade-off points in the Pareto-optimal design evaluation space
[79].

Arrangement procedure for the ACG is divided into two sub-procedures: local arrange-
ment of the resource variants, and hierarchical arrangement of all resources. First we will talk

about the local arrangement of resources included in ACG is discussed. . -

6.4.2.1 Selection of a Set of Resources for an MO and their Local Arrangement

The first step in arranging the resources is to group all of the common resources/elementary
operations and create sorted sub-trees in ACG. The sub-ACG trees are arranged by the number
of allowed resources, going from minimum on the left of the graph to maximum on the right. .
The number of resources (e.g. adders, multipliers, etc.) can be listed ascending order. As
can be seen in Figure 6.1 that there are: six addition operations, two multiplications, and two
comparisons. Therefore, locally arranged sub-ACG trees are arranged in ascending order as

shown in Figure 6.17.

140

Power Consumption {mw)

Resource
Ris Riz Rizs Ris Ris Rus Rir Ris Ruis Ry Pumber

Figure 6.10: Local Arrangement of Resource-R; Variants

Now it is possible to create an ACG on the basis of the above sub-trees using any possible
combination of resource variants. Each combination in turn produces a particular variant of
the VHC with the corresponding performance parameters. In VHC variants, where parallelism
is utilized and the maximum amount of resources is used, the timing parameter would result in
higher processing speed. On the other hand, if the minimum amount of resources is used, the
area parameter will be minimized, but, timing will significantly increase since several stages
of calculation will have to be implemented. So, a single resource can have different variations
of implementation with different performance parameters caused by its internal structure.

As an example, a higher bit-width adder (e.g. 16 bit adder vs. 8 bit adder) would require
more power/logic/area than a lower bit-width adder.

It is always possible to arrange resources so that Ps(R; ;) < Pi(Rij+1), wherei=1..nis a
resource number and j = 1..m;, is an index of resource variant implementation, as shown in
Figure 6.10.

After arranging sub-ACGs, they have to be combined in a hierarchical tree representing
the whole ACG. ACG represents the set of all possible VHC variant (deéi gn evaluation space)

and should be arra:igcd according to P, s = 1,2,...,p.

"141

6.4.2.2 Mono-parametric Partial Arrangement of ACGs

consider a case when the value of the cost function associated with performance parameter
Py, where s = 1,2,..., p, increases proportionally to the number of the architectural variant

A1 Az, Az

1. The value of the cost function reaches the global minimum at A, : Py(A;) = min {P;(4;)}

wherek=1,2,...,p.

2. The value of the cost function reaches the global maximum atA;: P(A;) = max {P;(A¢)}

where k= 1,2,...,p.
3. There are one or more variants of AS"" where:
P.(A1) < P (AFZ1) < B (AT™)
&
P (A7) > P, (A5 . 67)

&

Py {A}Z”") <F(Ar)

This case shows that a local maximum that can occur in resource arrangement as illustrated in
Figure 6.11.
Similarly, in a case when the cost function decreases proportionally to number of variants

Ayy...,A; and:
1. The global maximum is at A,.
2. P;{A4) reaches the global minimum at A;:
K(AZ) = min {F; (Ai)} 3§ = 1;2)"'3?: k=1,2,...,2

142

E;
|
\
/
|

L
N Resource

Ay sessssnvnns A, AL AL A eesssesesss Aim;mber

Figure 6.11: Ascending Mono-Parametric Partial Arrangement |

SSNENERRENS

Performance Level

Resource -
Ay savnnrsnnns By A Ay Ay sesassssses A‘“umbe‘

Figure 6.12: Descending Mono-Parametric Partial Arrangement

3. There may be local extremes of the cost-function P (A;),k = 1,2,...,z at one or more

variants Af"" where:

P, (A1) > B (A1) > B (AF™) > B (A) 6.8)
&
P (AFE1) > B (A7)

This case of local minimum is shown in Figure 6.12. . I,

£

143

In both of the above cases the ACG was partially arranged according to the value of pa-
rametér P, s=1,2,...,p. In the real design practice, evaluating the design space by partially
arranged ACG, is the most realistic scenario.

Therefore, the assumption taken for this methodology is that in real design practice the
optimal variant of VHC architecture should satisfy all parametric restrictions (e.g. power
consumption is less than the specified limit) and one of the parameters should reach a value
close to global optimum (e.g. highest data processing rate).

In most cases it is acceptable if the value of the parameter to be optimized is close to
optimal but not reaching it. However, it is not acceptable if the selected as optimal variant of
architecture will provide the local extreme of the parameter to be optimized.

The approach described in [79] has been used for performing ACG partial arrangement by
one parameter. This approach states that the most monotonic arrangement of ACG terminals

can be reached by the following procedures:

1. Local arrangement of each sub-tree (bush) of ACG associated with corresponded re-

source: Ry,...,Rp. This procedure has been discussed already in Section 6.4.2.1

2. Hierarchical arrangement of the sub-trees on the leafs of the ACG. In [79] the criterion

proposed:

|Psma.\' (Rl) — Psmin (R’)l

KR) = —
(]

6.9)

where m; is the nurﬁber of variants for a particula)r R; resource. Criterion calculation l}as to
be done at the resource when it is placed on a root of the ACG graph and the hierarchical
placement of other resources has to be adjusted accordingly. In the Equation 6.9 P (R;)
is the global maximum of R, which is reached in Alz variants of architecture (in the case of

descending order) or in A, variants (in case the of ascending order). The P, (R;) parameter

min

is the value of P, reached in a so-called critical variant of architecture. This variant assumes

144

Pi
P,(A) $-
PlAce)
A
J #A
Ay A, AL(RD) A,

Figure 6.13: Monotonic Ascending of Parametric Value Corresponding to VHC Variants

a utilization of a minimum of R; resources (e.g. one adder unit for Ry) and maximum re-
sources of all other resources [57, 51]. An example of the critical variant for the R; (adder),
represented is the ACG arranged in ascending order by F; is shown in Figure 6.13.

For example, as shown in this figure, the criterion for hierarchical arrangement of the

resource Ry is equal to:

- mym (A,.-;) =P (Am? (R Im (6.10)

K(R;)]

where m; = 8, because there are 8 branches in the hierarchical level of R;. As one can
see, the criterion K (R;) is the average gradient of the value of the P from one variant of Ry

implementation to another. Therefore, in a general case:

K (R) = £ P (A (Rija) — R (A (R:)))]|

e mi— 1

145

RS.O

RL‘ R},ﬁ A .7

S @A R & ®
cYolorolcrolclorerolo)o

S10J010IGI0I010INI0ININI00I0ICN010101010]01010

Rl,i

P,

PlA)

Ps(Acﬂt)”"" EA SO — i
ST TN -
Ay Ay A(RY) AL Apy N AL AL, A

Distortion of monotonic
increase of parametervalue

Figure 6.14: Monotonic Increase of the Value of Parameter-F; with Several Local Extremes

fori=1,2,..,n, j=1,2,...,m; and s = 1,2,..., p. In other words, the criterion K (R;)
shows the influence of variation of R; resources on the performance parameters .

Thus, the resource with a higher criterion value should be located on the higher level of
ACG than the resources with a lower criterion value of the same parameter. If K (R;) >
K;(R,), where i,r = 1,2,...,n and i # r, then the resource R; should be located on a higher
level on the ACG than resource R,.

As stated in [49] and [16] if the above arrangement procedures is performed by traversing
through variants Ay to Az from left to right, P; would increase or decrease most monotonically.
The most monotonic increase or decrease of the value of £; means that diviSions of P in local
éxtremes are minimal compared with other orders of hierarchical ACG arféhgement. The left
most and right most terminals of ACG represent global extremes. A general picture of the
behavior of the most monotonic increase of F; on the optimally’ hierarchicallyyananged ACG

is shown in Figure 6.15.

146

(%)

Ria Ris
R Rus™~Bir

oo ool oIRo
olololololololololorolo

1
Ad
:E\
H L s ! p k] H #A

Distortions of the monotonic increase of P,

Figure 6.15: Periodic Distortions on Monotonic Behavior of the Parameter-P;

In contrast, the behavior of P on the ACG with non optimal hierarchical arrangement is
shown in Figure 6.15. .
To sum up, the steps for creation of a partially arranged ACG for any performance param-
eter A, s =1,2,...,p, are: ' |
1) Identify and evaluate the performance for variant A, with minimum resource require-
ment, and A;, with maximum resource requirement. This is a min-max analysis and will
require validation of two architectural variants.
2) Conduct a hierarchical arrangement of resource R;, i = 1,2, ...,n. This procedure will
require a validation of » - architectural (critical) variants Acpiicat (Ri), €ach qf the resources
Piin (R;) fori =1,2,...,n. Thus, for each performance parameter thé(Z + n) variants of archi-
tecture should be evaluated. In every resource evaluatia*n’ cése lowest peﬁo&ﬁanc& branch is
selected, while largest performance branches are selected for fall‘c‘;f the remaix}ing resources.

This result is subtracted from the overall max result and divided by total number of branches

for the resource in question, as shown in equation 6.10. Therefore, the total amount of variant

147

evaluations for all design space is equal to p X (2 +n), where p is the number of performance
parameters of P, s =1,2,...,p

In the example of the MO discussed in Section 6.2, Figure 6.1, three resources: R1—Adder,
R2— Multiplier, and R3—Comparator, are considered. |

Assuming that the selection of the optimum variant of VHC Has to be done considering 4
performance parameters, only 4 X (2 + 3) = 24 variants of VHC architecture configurations
need to be evaluated. Even for very large design spaces associated with complex MO algo-
rithms the number of variants to be evaluated for a near optimal arrangement of ACG (B) is
still not that large. Assume that an MO algorithm requires 16 types of resources and each re-
source can be implemented in 8 possible variants. Also, there are 4 parametric constraints. In
this case, the exhaustive search, needed for fully monotonic arrangement of the design space,
will require: |

Noariant e = 4 % 168 = 4.5 x 10'° variants

In contrast, the partial arrangement of ACG by each performance parameter will require
(24 16) = 18 variants of VIIC architecture, a total of and 4 x 18 = 72 variants for all per-

formance constraints. Obviously, 72 variants of VHC can be evaluated very fast.

6.4.3 VHC Architecture Selection on Partially Arrange;i ACG

When the procedure of decomposition of ACG to ACGs(P) is complete, and partial arrange-
ment of eac)h ACG(P,) is done, a selection of prioritized parameters has to be performed based
on the priority of F;, where s = 1,2..., p. Parameters with higher priority will be considered in

selection before the ones with lower priority in descending order.

6.4.3.1 Identifying the Set of Variants

To find an archltcctural vanant whlch satlsﬁes the Plim for cvery parameter P, s = 1,2, ..., pa

search procedure should be conducted on the partially arranged ACG(F;). Search procedure

148

- -
- -

\
-

Al vee A2 | Aw | Ay ssrenssunnnsesin

P{MQC)

Prm
. SR S S .. _ AL

Ay A A A, ssssssessssases Ay sessrsnasier Ay A
Figure 6.16: Determination of the Sub-set of the Architecture Variants that Satisfy Specifica-
tion Constraint for One Performance Parameter P (4) < Ps""".
identifies the boundary variants on the ACG(%;) graph Thus, the set of variants is identified
such that Pl™ > P,(R;), (Vj3R) or P""‘ < P(R)), (V 73R) depending on the requxrements
Definition: Border variant of archuecture Ap is an archstecture variant for w}nch the
performance parameter value P;(A;,) is close to the requested limit - P,I"m > P,(Ap) or Pim <
Ps(Ap). | | ” o
" 'Identification of the border variant - A on the arranged ACG(P;) allows further pruning
of ACG(IT;) as shown in Figure 6..16. In Figure 6.16, all the raﬁants to thé right hand side
of the A, are an accepted set of design space, and A is the first variant that is accep.ted as
.a one satisfying P"m restrictions. The border variant A, for the parametric constraint P - A,
. can be found on the arranged ACG(PS) using binary type search procedure. In each step of
this procedure the set of variants is divided in 2 parts side half and the value of performance
parameter for the middle variant is calculated. This procedure is described in detail in later

section, ,

149

6.5 Determination of the Pareto-set of Architectural Vari-
ants

When architectural variants are considered for the implementation of temporal partitioning
system, a traditional approach is to create an ACG selection tree similar to the one in Figure
6.13. Typically, after creation of this tree it is pruned by eliminating variants that violate
the user defined parameters, as shown in the Figure 6.16. This is a valid approach, and in
many cases it provides a visual representation of the ACG tree and the region of allowed
variants. It becomes much more complicated when more than two performance parameters
are used. This approach also has a problem with usrng a large number or resources each
having many variations of implementation. As mentioned before, the number of variants can
become exporxentialiy large:

. ,
Nvuc =] [mi 6.11)

i=1

where Nyyc is the number of VHCS (leafs) generated from the ACG, and m is the
number of variants for a particular resource for all i resources present in the design where
i=12,.,n Hence the previous example wrth 16 resources each having only 8 variants,
results in 2.8 x 10'* variants which is an enormous number of calculations for any type of
memory. In addition, in order to opurmze optmnze for each parameter an arrangement of
restriction parameters has to be done based on the criterion of the resource. Therefore, the

number of possible variants grows to:

NVHG =):ch,;—l 2,. " . (612
=1 . : . T

At the end, to generate such selection trees, and to store them, an enormous processing power

and amount of memory are required..

.. 150

Resources should be arranged in a descending order based on the criterion value, as was
done before. However, in the propose approach there is no need for the creation of full ACG
tree. In this section an algorithm and example are presented which explain the methodology
behind the run-time resource selection.

This algorithm operates on a very limited memory and performs an order of magnitude
less processing operations to identify the variants. First step is to identify all of the resources
that are used in the implementation of the MO. Designer also needs to identify restriction
parameters and their initial values. Later on, these parameters are varied to create several
variants of VHCs corresponding to the same MO. Each resource has several implementations
and each implementation has different performance parameters. These implementations of
resources have to be arranged in Jascending/descendjng order for each restriction parameter,
as shown in Figure 6.17. In this methodology the sub-trees are used only for look-up and
therefore there is no need to arrange them hierarchically in fully formed ACG tree. It is
important to note, that sorting has to start with a parameter of a highest priority. Since all of
the other parameters on average would be monotonically increasing or decreasing, the rest of
them will be sorted in ascending/descending manner, as shown in Figure 6.17.

At the same time, the rate of increase of performance parameters is different for different‘
types“of resources. Hence, as mentioned in the previous section, a criterion value has to be
calculated 4f0r each parameter of every resource. This is done in order to obtain a monotonic
arrangement of the ACG without having any local extremes. It is needed to find the criterion
of each resource for every single restriction parameter, as was show_n in Figure 6.15. When
criterion value is calculated for every resource, an evaluation of border variants can com-
mence, with subsequent creation of a ‘VHC set. Border variants are identified based on the
initial restriction for the pa}zimetér that was provided by the user or by the system specifica-
tion/limitation. The main advantage of this procedure is that instead of exhaﬁstively generating
all of the possible czovmbinationy of resources and then performing search for a border variant,

i

151

K=3 K=1.5 K=10

3c.c. 6o 8cc 10c.c. 20c.c. 40¢.c. Shc.c

SCLB 2CIB 300CLB 200CLB 100018 25CLB 20018 15CLB 10CLB
K=3 K=100 K=5

Figure 6.17: Resources Sorted According to Different Performance Parameters , where K is
criterion value
only a few selected calculations have to be performed. Hence, instead of Ny g operations, as

by Equation 6.11, at most:

n
NyHCyoraer = 3 1085 m; (6.13)
i=1

operations need to be performed to find the border variant. Where m is the number of vaciations
for resource i. The‘algorithm for border variant search is shown in thc Figure 6.1(8. The
complexity of this algorithm is O(nlogan).

An example of the actual border variant search is shown in Figure 6.19.3 In this example,
there are three resources, each having different variations of parameters, zismwas shown in
Figure 6.17. The border variant that is bemg searched for is based on the executlon txme
parameter with a lmnt of maximum 50 clock cycles As (;cscnbed in the algomhm a cnterxon
was calculated for all of these parameters and it was found that R3 has the h1 ghest criterion and

R1 has the lowest hence the luerarchlcal arrangement in Flgure 6. 19 Fxgure 6 19 shows the

graphxcal rcpresentatlon of the thc full ACG tree if it would be generated and thcn exhausnvely

152

[j

Initialize all of the resources
Obtain all of the restriction parameters

v

Result satisfies
parameter
restriction?

YES NO

Result violates
parameter

restriction?

Select highest priority restriction parameter and locally
arrange all of the resource variants in ascending order.

81°9 2un3ry

*
-

eST

Did previous variant
violate restriction?

Did previous variant
satisfy restriction?

Calculate criterion value for each
resource and each parameter,

v

Select highest priority parameter
Select resource with highest criterion value,

v

Select middle branch between allowed
branches of the resource
Save branch value to temporary result

Go back to the previous path
andfix branch of the
resource highestin hierarchy
that was not fixed yet.

Fix branch of the resource
highest in hierarchy that
was not fixed yet,

Modify low branch limit to

Modify high branch limit to
previous middle branch for

previous middle branch for

unpo§[y Yoreag jueLes DHA 19p10q

resource highest in the
hierarchy that was no fixed yet.

resource highest in the
“ hierarchy that was no fixed yet.
Select next resource with highest priority parameter
and select left most branch in case of searchfor right
most variant, or select right most branch in case of

search for left most variant.
Add branch value to the temporary result,

Are there any resources in
the hierarchy with non-fixed
branches?

YES

Boardervariant found.
Record branch path of the boarder.
Were all resources used? <
Start over again from the
resource with non-fixed leve!

: J Finish_

Ry Ry =) Ryy E Ra3 l Rus

Ryaf Ryg Rya| Roa| Ryy Rag Bugl Rog Rigl RyglRys| Ryz| Red Ryd Rys| Rya Ruof RydRia| Ryl Red Ryd Rig| Ryd

1010101010100 OXDISESIOEDIONOIVEOIOXDIDEDIDED
Figure 6.19: Example of ACG with Selected border Variant of VHC

Result Path Fixed (<>
44cc (R3,3-R2,1-+R1,1 - >
54¢¢ (R3,4-+R2,1-R1,1 - <
R3,3+R2,2-+RL1| R33 >
45¢c |R3,3-R2,3-R1,1R3,3;R2,3| >
50cc |R3,3-R2,3-R1L2R3,3;R23| =

miafwlowlisiael]l
£
i
o
~

b

Figure 6.20: VHC Variants Considered by the Search Algorithm on ACG

searched. In this example, bold edges show the search paths that algorithm took, and double
bold edges show the path of border variant 18. As can be seen, only 5 attempts out of 24
" variants were needed to find the actual border variant was found, and a new rule of (K)R33—

' Ry3 - Ry 2 was added to the list of rules. This rule indicates ‘that path of branches to the

. right of this branch are gomg mvahd for vanant selection. The usage of these rules will be

i demonstrated later in the chapter g’ ‘ }

. ¥ ¥ B
% . I N wgr

Flgure 6.20 shows the sequence of algonthms operatlon and the branches that were se-
lected before reachmg the border vanant As it can be seen from the Fxgure 6.20, since the
. border variant in question was to be maximized or, in other words, to be located as right as

possuble, all of the non-fixed branches from the left were initially i in @he resource. Such case

154

Table 6.1: Effectiveness of Proposed Search Algorithm in Comparison to Exhaustive Search

. o |- Totat . . Cperations | |
Resources| Possibie. 2:‘%’2 Agditions Comparisons pefor Op;?:;i;m
Variants selections
1 B.0E+00 4 4 8 3 15
2 6.4E+01 7 14 14 4 32
3 S 1E+02 10 30 20 5 55
4 4.1E+03 13 52 28 6 B84
5 3.3E+04 16 80 32 7 119
B 2 6E+05 19 114 8 160
7 2.18+06 22 154 44 9 207
8 1.7E+07 25 200 50 10 260
9 1.3E+08 28 252 56 11 319
10 1.1E+08 31 310 62 12 384
11 B8E+09 34 374 68 13 455
12 6.9E+10 37 443 74 14 532
13 5.5E+11 40 520 BO 15 615
14 4 4E+12 43 602 &6 15 704
15 3.5E+13 45 690 92 17 799
16 2.8E+14 49 784 88 18 200

is shown in #1 and #2 searches, where branches of resource R3 were searched. However, in
the search #3 the resource branch R33 became fixed, and R, was the resource in question,
hence only most left variant Ry was selected. Figure 6.20 shows that only 5 variants had to be
calculated in contrast to 24 calculations of full ACG in Figure 6.19. As mentioned before, the
effectiveness of this technique dramatically increases as the number of resources increases.
Table 6.1 shows the number of calculations needed for the exhaustive ACG tree generation
compared of the boundary search algorithm. In this table, resources increase linearly from 1
to 16 while every resource has 8 implementations.

As can be seen, even for 16 resources with 8 implementations each, the total number of
variants grows to 2 X 1014, By implementing the boundary search only 49 searches are needed
to find the boundary variant, and create a restriction rule. When all of the border variants were
identified, as shown in Figures A.2 and A4, of the Appenziix set of border variants “rules”

were recorded, to be used in the next step of VHC set generation.

‘

155

6.5.1 Semantic Filtration of Architectural Variants for VHC generation

Semantic filtering is based on logic comparison of the generated variants to the border variants
“rules” that were determined for each parameters constraint. Semantic filtering uses border
variant path, as well as a range (e.g. (>),(<)) to identify if the branch path of variant in ques-
tion violates the “rules”. It is also important to note that in many cases semantic filtering allows
to identify if a variant passes or violates the rule without traversing through the whole path.
Semantic filtering is performed in the sequence of the rule, where (—) indicates sequence
order of the resource variants. For example, if rule is given by {(<)Rz2 — R33 — Ra3}, the
first branch that to be compared is R; > and variants under test have to be less or equal to the
branch path, hence the (<) sign. In a case where a variant under test contains a branch that
exceeds Ry 2 (e.g. R 3), then the rest of branches are not checked and the variant is discarded.
If a variant under test contains a branch that is less than Ry 2 (e.g. Rz,1), then the variant is
automatically excepted without checking the rest of the branches. In the scenario where a
branch is equal to the one in the rule (¢.g. Ry 2) then next branch in sequence is tested with the
same method, which in the above example is R3 3. -

To obtain variations of VHCs corresponding to the same MO, one of the restriction pa-
rameters has to be modified and the border variant has to be found again for this parameter.
Following this procedure, a semantic test has to be performed, as described above. If none
of the “rules” are violated, then this variant is accepted and added to VHC list. Suppose, that
the rules obtained from example in the previous section are: 1 : {(2) Ra2 —R32— Ry },
2: {(Z)R32— Ri,1 = Ra3}, 3: {(<) R33 = Rp3 — Ry 2}, with the initial restrictions of
225 CLBs, 40mW, and 50 c.c. The operation of VHC selection procedure can now be illus-
trated. If we want to find weather border variant (2) for 40mW power consumption is valid
for all of the parameters we have to check it with both remaining “rules”. Checking with the
first rule reveals that since variant (2) has a branch of R 3, it is automatically excepted by rule

#1 because it is larger than Rz . No further comparisons have to be made, since if the top

156

Table 6.2: Test for “rule” #1

| Condition | Branch under test | Result |
Ry > R Pass
R3z > - -
Ri1 2 - -

Table 6.3: Test for “rule” #3

| Condition | Branch under test | Result |
R33 < R3, Pass
Ry3 < - -
Rip < - -

of the hierarchy is satisfied, then the rest of the branches are satisﬁed.‘ When checking with
rule #3, conditions are also satisfied, since R3 7 is smaller than R3 3. Hence, the variant corre-.
sponding to the branch R3 2 — Ry 1 — Ry 3 is accepted to the VHC list. The last stép before
adding the VHC to the set of chosen VHCs is to calculate the rest of performance parameters
that correspond to the selected branch. In branch scenario these parameters are 29c.c. and
125CLB.
To illustrate the failure effect we can try to check if the border variant #1 can be used as
“one of the VHCs in the VHC set. Following the procedure shown in the above tables, we test
variant #1 under “rule” 2 ; {(2) R32— Ry — Rz;;} and the result is a failure of the variant
-at the last branch test, and the in exclusion of this variant from the final VHC set. At this point,
the restriction for a parameter is modified by a predefined step, and the procedure is repeated.
In turn, this allows to obtain a broad range of VHCs that have variations by each of the re-

striction parameters. The result is a set of VHC variants for a particular MO where for each

Table 6.4: Test for “rule” #2 A

| Condition | Branch under test | Result |

R37 < ’ R32 Check Next
- Ri1 < R Check Next
Rz < Ry Fail

157

parameter there is a maximum and minimum value, as well as intermediate variants. Depend-
ing on the scenario this allows to have optimization by any of performance parameters. This
is especially important in a temporal partitioning architecture where area/power/processing
speed is restricted and strongly depends on a reconfigurable device used in a target system.

When the border variants are determined for all parametric constrains, then the design
space can be reduced by exclusion of variants restricted by all parametric constraints. The
result is the Pareto-optimal set of variants of architectures that can be used for VHC selection,
which is described in the next chapter.

At the same time, resulting Pareto-point set cannot be pruned to the point of being empty.
If all leaves are removed, the system would not have any variants to choose from. If such case

does occur user will have to either:
1. Select a larger device, therefore, increasing amount of logic per device. .
2. Ease the design parametric constrains.

Easing constrains though is a much more problematic solution since it is usually linked to
modification of other sub-systems or, in many cases, is not possible at all due to the specifi-
cation parameters. This is especially true if the overall system is real-time critical and does
not have an option of longer delays, or excessive power use. If Pareto-set with many variants
is requested, then the most optimal, with highest value of performance parameter, should be
selected. Selection should be made based on the performance parameter with highest priority.
- Best performance does not necessarily constitute the fastest operation. Best performance can
also be the lowest power consumption or the smallest area requirement.
Similarly, this approach is applicable in power sensitive systems 'wl;ere power restriction
might change and a different VHC WOl;id be needed. ’Thése genefatéd VHC:s associated to a

particular MO are used in SSP géneration in later chapters. - B

158

6.6 Summary

The focus of this chapter was on description of novel methodology developed for creating
macro-operator (MO), and subsequent generation of Virtual Hardware Components that cor-
respond to the given MO. This chapter presented a methodology of resource binding and
described how binding effects the overall scheduling of resources. Methodology of VHC syn-
thesis was presented, together with the procedures of VHC variant generation. It was shown
how the generated VHCs have to be arranged in order to provide an efficient method of select-
ing the optimal variant. Methodology for creation, arrangement and pruning of Architecture
Configuration Graph (ACG) was described in detail. For that purpose the non-exhaustive bor-
der variant selection algorithm was developed and implemented. The extension of this the’
methodology for selection of an optimal variant of VHC in multi-parametric design space is
presented. It was shown that the proposed methodology provides the means of finding an op-
timal variant of VHC for a particular MO by evaluating minimal variants and, therefore, can
be performed in minimum time. Methodologies described in this chapter were published in

journal [51] and conference publications [57], [58].

159

160

Chapter 7

Methodology of Automated Assembly of
Optimal VHCs into SSPs

7.1 Introduction

As described in the Chapter 6, an application task is presented in a form of SG which is assem-
bled from MOS. MOs, in turn, are assembled from elementary operators (EOs). Each MO is
associated with the a set of VHCs, which can process data according to the MO algoritﬁm with
different performance parameters. This chapter presents a novel methodology of task segmen-
tation, and selection of optimal VHCs for further synthesis of Segment Specific Processors
(SSP). It covers all of the steps required of creation of temporally processed application, and
give some examples for the proposed approach. The task segmentation methodology includes:
" automated level dependency arrangement, ‘scheduling, and resource binding. The implemen-
tation of binding based on multi-parametric restrictions is also covered.
This chapter considers the works that have been tackliné the issue of algorithm segmenta-
tion, as well as, the advantages and pitfalls of those approaches. In addition, it compares the
proﬁc:sed methodologies to the existing ones. The proposed approach was implemented in a

form of CAD software. Resulting segmented algorithms were executed on the reconfigurable

161

hardware platform that was developed in Embedded Reconfigurable Systems Lab (ERSL) at
Ryerson University. Hardware and software implementations are described in detail in the

next two chapters.

7.2 Methodology of Segmentation of an Application Se-
quencing Graph

In order to take advantage of the temporal partitioning approach, an application task has to
be processed in segments on reconfigurable platform. As shown in Chapter 5, for each task
segment an associated Segment Specific Processor (SSP) should be synthesized. Creation of
the optimized set of SSPs requires a proper SG segmentation methodology.

As was described in Chapter 6, MOs are created along with the sets of corresponding
VHCs. With these MOs an application task algorithm can be formed, a‘s shown in the Figure
7.2. The concept of temporal partitioning assumes that the outcome is a set of configuration
bitstreams corresponding to the synthesized SSPs. These bitstreams are loaded in sequence
one after the other onto the target FPGA based on a schedule. The actual combination of the
MOs into segments requires an optimal (cost-effective) segmentation of the application’s SG
to be carried out automatically.

The optimization of resources has to include the optimization of memory transfers between
the segments. For every segment the configuration system will have a time overhead of saving
the temporal data to an external SRAM memory. The temporal data readback operation has to
be performed at the point of t.he start-up of the next SSP core. If a large amount of temporal
data needs to be transferred between segments, the time overhead increases and impacts the
overall performance. As was explgined in Chapter 6, Teonfig consists of Thpaq, Twrire, and
Teonfigsisrean InCTEASING the Trpeq and Tyrire parameters increases the Teonfig, and as a result,

* the CPR of this approach is :educéd. Therefore, one of goals is decrease of the temporal

.162

(a) Processing Latency (b) Power Consumption (c) Area Requirements

Figure 7.1: Correspondence Between MO;and associated VHCs

data transfer overhead. For that, the methodology of actual algorithm segmentation should be

discussed first.

7.2.1 Division of an Algorithm into Segments

The most common approach for division of algoritlllms into segments is based on area re-
striction [76, 88, 29, 13]. The novelty of the proposed approach is consideration of multiple
parametric constraints (performance parameters). This is much more realistic and practical
approach. However, the implementation of this approach is much more complicated.

Every macro operator (MO) has several associated VHCs. Each of these VHCS have
various performance parameters to satisfy different parametnc constraints. VHCs are added
one after another into the SSP assembly until one of the restrictions for the segment is violated.
Different combination of VHCs can be selected for SSP in order to fit into an FPGA device. If
none of the VHCs associated with an MO satisfy the restriction, the MO is moved to the next
segment and/or the user is notified that this MO cannot be inserted into the current segment.
In a scenario where all VHCs associated with MO are larger than given FPGA, a larger FPGA
device has to be used for implementation of this SSP. -

Since every MO is associated with several VHCs, sclectién of an appropriate VHC for SSP
based on several parameters should be considered. Such parameters could be: timing, latency,

power consumption, as shown in Figure 7.1.

163

Figure 7.1(A) shows four versions of VHC corresponding to a single MO, arranged by
delay times. The delay times vary from 2 to 20 clock cycles. Figure 7.1(B)(C) similarly show,
power consumption, and area/logic parameters associated with VHCs. Other parameters can
be considered as well, if necessary. Multi-parametric constraints can be applied in optimal

SSP selection similarly to the optimal VHC generation [54].

7.2.2 Algorithm Segmentation, Binding, and SSP Generation

Synthesis of a set of SSP cores and their schedules involves several steps:

1. Assignment of dependency levels for all of the MOs in the algorithm.
2. Creation of sub-Architecture Configuration Graphs (ACGs) by selecting MOs.

3. Selection of the optimal VHC variants from sub-ACGs and assembly of SSP sets, based

on given constraints.

4. Selection of a particular SSP set for final bitstream generation based on the parameter

priority.

The above steps are discussed in the following subsections and are implemented in the CAD
tool software. CAD tool is described in Section 8.2 of Chapter 8. This section will concentrate

on methodology of algorithm segmentation and SSP generation.

-7.2.2.1 Automated Depenﬂency Level Assignment Algorithm/Level Division

First operation that is required for synthesis of the optimal SSP set is a proper level division
based on ASAP scheduling algorithm.
Definition: Dependency Level Division is the MO execution arrangement where MOs of

the same level have exactly the same start time.

1164

|| || tevel© I I

mo1 mo2 Level1 mo1 Mo2
Mo Level2 Mo
Mot EEOD T Level3 Mot T
Mos l Level 4 Mos J | Mos ‘L
Const § Const - .

moz Levels Mos
Level &
£ v

Figure 7.2: Level Dependency Division

Level division has to be done by means of precedence-relation. In Figure 7.2 the segments
MO1 and MO?2 are not interdependent and thus can be placed on the same level.

In a case of incorrect level assignment a dependence would be formed and an MO would
be waiting for the input from the previous MO. This would create a deadlock. Such example
is shown by MO9, where it receives input from MO7 and MOS. If placed on the same level
MG9 Wouldkbe ‘waiting for the input from MO8, and MO7. Theref(;re, MO9 would not be
able to proceed with processing until result is received. On the other hand, if dependent MOs
are included into the same segment, the overall memory transaction overhead (read and write)
could be reduced. For purpose of providing balanced level assignment the special algorithm

was proposed and developed. = -

7.2.3 . ASAP Level Assignment

In ASAP level assignment [79] MOs are assigned a level, as soon as all of the predecessor

PR AN + . »
parent nodes are processed. In this section the assignment of levels to MOs is discussed.
AR N :

165

The first step in level division algorithm is identification of primary inputs to the system.
The géal is to identify the MOs of the task processing algorithm that are first to acquire the
inputs to the system. The MOs that have only primary inputs are called primary MOs. Since
primary MOs have no inputs from any other MOs they are dependent only on the primary
inputs. Therefore, they are assigned to the first level. To schedule the rest of MOs similar
approach be used, as is shown in Figure 7.3(B) where output of the primary MOs is an input
to the child MO. However, as it can be seen in Figure 7.3(C) being an immediate descendant
of a primary or parent MOs does not guarantee being on the consecutive level from the parent
MO. This is due to the fact that since an MO can have multiple inputs from different parent
MOs, it might have a dependency on an MO from lower level in the hierarchy. To archive
a proper level dependency arrangement an extra step has to be added to the automatic level
arrangement algorithm. This step involves marking the output edges with the same level as the
source MO. This way by checking the incoming edges it is possible t(.) immediately identify
the levels of the parent MO. If one of the incoming edges is unmarked it indicates that MO
in question is at least two levels lower than any of the incoming edges. Having at least one
unassigned incoming edge gives uncertainty of which level has to be assigned. At this point
level assignment for this particular MO has to be postponed until all of the incoming edges
are assigned a level.

Non-primary MOs are assigned levels based on the maximum level of the incoming edges
plus one, considering that all of the incoming edges are marked with some level. This guar-
antees that child node will always be at least one level lower than any of its parent nodf?s. By
traversing through the SG tﬁis procedure would eventually mark all of the nodes and edges
with their appropriate dependency levels. The algorithm in action is shown in Figure 7.3,

where progression of the level asmgnmcnt is 1llustrated

:,‘,
17y 4

In Figure 7.3(A) that first primary mputs are assxgned level 0 and in Flgure 7 3(B) nodes

and their output edges are assigned the number of maximum mput edge Ievel plus one. Flgure

166

O¢ \LO O\L \LO

it

Figure 7.3: Hlustration of Level Assignment Algorithm Operation

(c) (d)

7.3(C) shows the dotted circle around the node that does not have all of its input edges marked
with a level. hence, it is not assigned at this point. As it is seen, red coloured parent node is
not assigned a particular level and that is why it is uncertain which level should be assigned
to the circled node. In the last step all of the nodes and edges are assigned to the appropriate
levels as shown in Figure 7.3(D).

Level assignment algorithm’s flow chart is shown in Figure 7.4.

The algorithm can be summarized in 4 steps:

1. Global inputs/edges are assigned level (). Level(Ej (i) — 0
2. MOs are assigned the level equal to maximum level value of all the incoming edges plus

one. Level(Node(i)) — MAX (Level (Ein(i)) + 1

3. Edges outgoing from an MO node are assigned the level number of the node

Level (Epy (i) — Level (MO(i))

4. Any of the terminating nodes are marked accordingly, so they will not be considered in

the next iteration ol the algorithm.

At the completion of the algorithm based on the flow shown in the Figure 7.4 all of the
MOs and edges are assigned a particular level. The overall complexity of this algorithm is

O(nlogan).

167

Notfy user and
wait until corrected

tdertify primary inputs and
assign level 0

v

{dertify primary nodes, that have
inputs only from primary inputs
and assign Level 0

&

Mark terminating
nodes

Outgoing edges are assigned with
the level of their source node

v

[increment level nomber

v

From the previously nambered
edges select all nodes that do not
have any unaumbered incoming
edees, and assign Level number

DFG Level division is complete

Figure 7.4: MO Level Assignment Algorithm Flow Chart

graph of connected MOs and selection of appropriate VHCs.

168

The second step of VHC selection and grouping of VHCs is carried out after level assign-

7.3 VHC Selection and Grouping Methodology

In this section a methodology of decision making in task sequencing graph segmentation is

discussed. Numerous cases are considered when performing segmentation of a sequencing

Each particular MO was assigned with a level dependency number (e.g. Figure 7.5 (B))
and re-arranged into a level dependent SG (e.g. Figure 7.5 (C)). At this point all'(')f the MOs are
arranged so that parent MOs are located on the level above the children MOs. The Selection
process starts from the top level (e.g. Level 1) wheré MOs receive only primary inputs from

the system, as shown in Figure 7.5 (C). Segmentation algorithm begins by adding MOs on the

. . e
L 12 @ Level 1
o @ @ o |
_’, \ @‘ 1, \1 0 LR i 4 \ y
N Y ¥ A / 1 ¥ 4
, i . ' NE Tt . N /
N 2 N ¥ \
| 6 3 | 6 \\ 6 Level §
| 1 0 | 3 A L N | /
\ \ X 2 \ Ty 3
&\ ee v \ee i
g S \ \, 47 \ \ e /
/ <\ \ s/ 3 \a O] U ¥ Y v
i Ay 1 7 A AR \ / A\ ’ p /
r A ; VA / ! Lavel §
5 : 5 a ." ‘\ N b ’/
\ e RN 5\ o / s \ "4 Level 6
\ \ 4 e \ A 5 T ‘ ' 4 P ’

e ¥ ., 8 s

V< L P— ¥ Lovel 9

(a) Original SG of the Task (b) Marked SG (c) Level Arranged SG

Figure 7.5: Task SG Representation by Level Arranged MOs

first level of the arranged graph to a sub-ACG tree for the purpose of optimal VHC selection,
as shown in Figure 7.6. Similar to the approach described in Chapter 6 it is possible to find
an optimal selection of VHC variant for the associated MOs by forming a sub-ACG selection
tree. Each MO is associated with the set of possible VHCs. This set of VHC; ; is formed
according to specific performance parameters, as shown in Chapter 6.

By performing simple border variant search. the limits ol acceptable VICs are identified.,
based on the restriction parameters of the system. For example, as shown in Figure 7.6, a
limit of 20CL.Bs was imposed by the system specification. and therefore. the branches exceed-
ing that limit are marked with a dotted line. Subsequent MO; | is added to every branch of
the parent MO;. where every branch corresponds to the available versions of VHCs for that
MO; 1. Branch carries the information of performance paramelters which are used for calcula-
tion of the restriction parameter violation. 1f there are VHCs that satisfy restriction paramelters
an additional MO can be added to the sub-ACG tree. Upon addition of a new MO; | which

was selected from the same hierarchy level of the level arranged graph, a re-calculation of the

169

Tt Q20BsRec
SCIBS/Sce ™ T en,

»
s
&
.

B

e 2
Py
~n
-
)
=
e
~

4]8
bl e B B R Bl Bl [B I R K IR A A
wd O et O [ed N[et N (et N[e N e N (et 0N et N (e 0N e N (e N
= 3| (32 IE|IN I g v oI Ip| |30 | |3E W (3 o3I I (I Ip| (W
U LI U0 WO Q[U] U QI QA U W DD W
L X XN L I TN ENE T E ENEEXEETEIL
> > | 2> > D> (> | D> S| > > > >

SSP1 || $5P2 || S5P3 || SSP4 || SSPS || S5P6 || SSP7 || SSPB || SSP9 |{SSP10|(SSP11|[SSP12
SCLB (|| 7CLB ||10CLB||10CLB|(12CLB| [16CLE ||18CLB| |20CLB| 24CLB| |24CLB| |26CLB| |30CLB
20cc||20¢c || 20¢ce || 16¢cc|| $2cc || 12cc |[16¢cc|| Bcc | 5¢c¢ || 16¢cc || Bee || 2¢cc

Figure 7.6: Sub-ACG Tree with MO1 and MO2 Added

........... 22CLBs/2ce
BLLBS/SCL ™ = e
i
2/18 . 82
4
o el et N (e Aoy) (N o0) o o
ed o] (o4 o] et N[|ed | |ed 0| (e N | | [ed o
33| 3w I[| I3 o3m| (3 w3 ([I |W W
S EEEEEEEEEE
- s - g e - = N =

SSP1 || SSP2 || SSP3 || SSP4 || SSPS || S5P6 || SSP? || 55P8
SCLB || 7CLB |[10CLB||10CLB||12CLB| 16CLB|(18CLB| |20CL
20¢ec || 20¢e || 20¢cc || 16¢c || 12cc || 12¢cc || 46¢ce|| Bee

Figure 7.7: Sub-ACG Tree with Excluded Restriction Violated Branches

criterion K has to be performed. Calculation of criterion was described earlier in the Chapter
6. In order to avoid local extrema MOs have to be arranged, so thaf MOs with the higher
criterion would be on a higher hierarchical level in a sub-ACG tree. Branches that did not
meet the restriction parameters in the previous step are cut out (pruned) from the expansion,
as shown in Figure 7.7.

By excluding the above VHCs the sub-ACG tree is reduced to only a few brunches, and
this speeds up the consecutive sub-ACG border searches. Following the addition of a new
MO, 2 a new border search is performed and the sub-ACG tree is reduced further. If at least
one combination of VHC variants was identified, then a new MO; ;3 may be selected, and the

procedure of re-creation and limitation of sub-ACG tree as described above is repeated. border

170

varlant scarch algorithm is the same as the one described in the ‘Chaptcr 6, Section 6.5. This
is due to the fact that instead of EOs (as in VHC selection) there are VHCs that form the SSP.
In a case where none of VHC combination variants satisfy the restriction parameters, con-
figuration of sub-ACG tree is rolled back to the previous successful arrangement. When a
sub-ACG tree is completed and a set of VHC variant configurations is created, these config-
urations form the SSP set [54]. These SSPs can now be synthesized into SSP configuration
bitstreams with associated parameters. Such example is shown in Figure 7.7, where combi-
nations of VIICs satisfy the restriction parameters and span variants #1 to #8. The right most
variant has smallest latency and the left most one occupies the least amount of space/logic.
So far, the selection of MOs to be added to a sub-ACG was done without mention of the
methodology behind it. The following section presents the methodology of MO selection in

the process of creation of SSPs,

7.4 Methodology of “Next” MO Selection for SSP

Creating sets of SSPs by the method outlined in the previous section is done in several steps.
When adding a consecutive MO to the sub-ACG certain selection rules have to be followed to
achieve optimal results. First and the most straight forward way of adding MOs is to select
them from the same dependency level. The simplest solution is to group all of the MOs from
same level to create a set of n SSPs corresponding to n levels. However, such approach is not
possible because either all MOs from same level do not satisfy all the restrictions or a lot of
logic resources are be un-utilized. Below, with the help of several scenarios, the methodology
of MO selection is described.

In Case 1, depicted in Figure 7.8, selection starts from addition to sub-tree of all of the
MOs on the same dependency level. Priority, however, is given to the MOs that have dependent
nodes on the next level. This is done to minimize the probability of dependent nodes being

moved to the next SSP, which in turn would stall the processing of the dependent nodes. From

171

\ \ £~
12 @ (@' Level 1 \ L
\\ g5t A % T T et
\ f 3 @ Level 2 (\12 @)
L Y : N y-4--4"3

v Il

(a) Initial Selection (b) Final SSP Selection

Figure 7.8: Case 1: Priority of Selection of Nodes with Dependencies on the Next Level

Figure 7.9: Case 2: Partial Level Inclusion in a SSP

the example of the algorithm in Figure 7.5 such nodes are: 2, 3. 4.5, 6.7, 8,9, 10, 14, 15. 16,
and 17.

If not all of the MOs from the same level fit into the SSP, so those that do not are placed
in the consecutive SSP;. ;. For the Case 1, as well as all of the other cases. the total logic area

is equal to the sum of logic areas occupied by each VHC in the SSPs.

SSPieney = Max{VHC;,,,..} (j=1,....k; VWHC; 3SSF) 7.1)
K

SSPyne = Y. VHC,, ., i (YW HC; ISSF) (7.2)
J=l

Processing latency in this case is calculated by adding up the maximum latencies from all
VHCs present in SSP;. Since in Case 1 none of the VHCs depend on each other, the processing
is done in parallel, and the latency is not aggregated. Time required for processing of the input
depends on the VHC that requires the longest propagation delay.

In Case 2 demonstrates partial level inclusion of VHCs. It is similar to the previous case
with the exception of a possibility of re-iteration of sub-ACGs creation. Iligure 7.9 shows a

situation where there is only partial inclusion of the level in one SSP,

(a) (b)

Figure 7.10: SSP Composition from VHCs located on Consequent Levels of SG: a) without
Dependency in Case 3; b) with Full Dependency in Case 4.

The re-iteration can potentially identify a different combination of MOs that could provide
more optimal result. However, a threshold of reiterations has to be set, in order to avoid
exhaustive searches and slowly down the overall segmentation process.

When MOs from one dependency level have been exhausted, and none of the restrictions
have been reached, Cases 2, 3 or 4 are assumed. as shown in Figures 7.10 (A) and 7.10 (B).

First choice of selection from the consecutive dependency level L; . is a selection of MOs
that are not depended on the MO from L;, assuming that these MOs are included in the same
SSP as shown in Case 3. Same as for Case 1, the latency is calculated by taking the maximum
latency out of all of the MOs latencies in that SSP instead of summation of latencies in case of
presence of dependencies. Case 3, however. do not occur as frequently as Case 4 where there
is dependency on at least one of the MOs from the next level. For this case processing latency
has to be calculated by summing the latencies of dependent MOs:

EVEC et =100 11 WRCENLEC 85T

latency Jlatency

SSP; max {VHC,

latency

(L3

where R; and R; are inter-depended MOs located on the consecutive levels. If there are mul-
tiple dependencies, as shown by Case 4, the maximum latency of all of these dependencies
should be considered in the latency calculation. If the timing restriction is satisfied for Case
4 and logic/area is still available, then another MO can be added to the sub-ACG tree. This

MO could also be from the L; . level. that is not related to the MOs in Case 4, as shown in

173

(a) Case 5 (b) Case 6 (¢) Case 7

Figure 7.11: SSP Composition from VHCs located on Consequent Levels of SG with partial
dependency: Case 5, Case 6, and Case 7

Case 5, depicted in Figure 7.11 (A). This is also very similar to Case 5, where M O2-Node#14
on level L; provides input to MO3-Node#15 and MO(-Node#16 on level L;, . At the same
time, MO;-Node#13 is independent from all other MOs in this particular SSP and should be

considered separately for timing constraint. Therefore, timing calculation for this scenario is:

Tsse, MAX {Tg, MAX {Tg, | Tg, } } (7.4)

where R, is a resource on level L; or L; | which is not related to R; and R;. An expanded
version of Case 6 is where even more MOs are added from L;. ;. In Case 7 new MO cre-
ates second dependency between the L; and ;. ;: MO;-Node#6>MO4-Node#8 and MO, -
Node#4+ M O3-Node#7. At the same time, these pairs of MOs are dependent on each other.
Similar to the Case 6, the time restriction is compared to the maximum time of (wo sets of

dependencies:

Tssp, — max {YDependent MO;} (7.5)

At last, a case where design should exclude specific area of the device from being used for
fault tolerance applications, is considered. At this point every level ol dependency graph is
populated with an MO that contains particular area constraint. In the process ol SSP creation

every SSP is first populated with a “dummy”™ MO node. The rest of MOs are added after to

174

Figure 7.13: MO Deadlock Example

create an SSP, as shown in Case 8. “Dummy”™ MOs in every SSP contain a parameter which
specifies the area that MO occupies, thus preventing other MOs from being placed in the fault

section of the reconfigurable device.

7.4.1 Precaution Regarding Deadlock in MO Segmentation

An additional rule check has to be performed on consecutive segments which should be chosen
in a way that they will not have bidirectional dependency on each other. If two segments are
interdependent it creates a deadlock situation. Therefore, a segment should contain MOs from
same or consecutive levels. Otherwise, the segments will be waiting for inputs from other
segments indefinitely. An example of this is shown in Figure 7.13.

In this example, MO3 which belongs to SSP,. | depends on the processed data from MO?2
that belongs to SSF;, as shown by the red arrow. At the same time, MOS which belongs to

SSP. and depends on processed data from MO3, shown by the blue arrow. Therefore, even

173

Clear all llsts
@ initialize aree restriction parameters | 1
Reset current level

Generatelist of
55Ps bosedon
16 | variants in sub-AG

is current level
sameas all 6f MOs in
rrent sub-ACG

NO

Arethere any

areas to avoid? YES

YES

Arethere any
unused MOs without
parent nodas in this

Add Dummy
MO

15

Select MO from
current fevel that
has most
children nodes

Any un-attempted
MOs left on
current level?

NO without

parent nodes

All MOs used from
current level?

with fowest 11

latency

Can MO be added by
area restriction?

Does it exceed
maximum number
of levels?

YES

Does this MO create a
deadiock?

17

Add MO to
sub-ACG 14

Figure 7.14: Flow Chart of the SSP set Generation Algorithm

though the right segment is loaded first, because it depends on the input from the left segment,

it will not be able to produce result since it is waiting for the input from MO3.

7.4.2 SSP set Generation Algorithm

From the cases described in previous section an algorithm can be formed that performs gener-
ation of SSP sets. Its full flow-chart is presented iﬁ the Figure 7.14.

For algorithm to operate it requires a user to reset all parameters and initialize global
area/logic constraints, as well as to specify if fault tolerance has to be built into the design,

In addition, for all of the MOs that are used in the algorithm there must be at least one VHC

176

implementation that can fit the target device. The algorithm it is of iterative nature and operates
until all of the MOs are segmented and SSP sets are generated.

Algorithm starts with initializing parameters and checking if fault tolerance is required,
which is set by‘condition #2. 1If condition #2 is true, then-a dummy MO is added which
avoids the specified area. Condition #3 at that time checks if there are any MOs left that were
not attempted to be fitted into the sub-ACG graph. If condition #3 is satisfied, the algorithm
proceeds to the actual procedure of selecting most suited MOs for sub-ACG. In the steps 7 to
13 the actual selection is performed. If condition #3 is not satisfied, then a subsequent check
#4 is made. It identifies if there are any MOs left on the current level that were not added
to the sub-ACG. If there are some unused MOs remaining on the level, that means that they,
did not satisfy constraints and moving up to the next dependency level is not allowed. At this
point SSP set is finalized in operation #16 and sub-ACG is cleared. When all of the MOs are
used from same level a current_level can be incremented by operation #5 and selecting MOs
can be continued, provided that there are MOs remaining.

Condition #7 identifies if the current level being explored is different from the ones that
were added to sub-ACG previously. This condition indicates if selection proceeded to the next
level and that there are possibilities of having dependencies bctwe;en MOs in the sub-ACG
tree. It should be avoided because latencies of dependent nodes have to be added together fbr
timing calculation. Hence, condition #9 checks. if there are MOs that can be :selected that are
not depended on the MOs that are present in the current sub-ACG) tree. If there are no such
MOs then lowest combined latency should be selected. |

At ;a point when MO is selected, two additional checks #12 and #13 are done to make
sure that the MO satisfies the area restriction, and does not éiéate a de}idlock. If both of these
conditions are satisfied, fflen MO is added to the\'sub-ACG tree and operatioﬁ is repeated by

proceeding to condition #3.

177

On every addition of the MO to an sub-ACG graph, the MO is added as a single leaf of
the tree. Following the MO addition, each of the VHCs are expanded as new leaves of the
sub-ACG tree. New leaves contain area parameter summation of previous VHCs, as well as,
other parameters (e.g. time, power, etc...). If these parameters violate initial restrictions they
are discarded and not expanded in the further additions of MO. In the worst possible scenario
of this algorithm every MO would be expanded with all of its possible variants and algorithm’s
complexity would therefore be O(n?). However, due to the nature of the algorithm, sizes of
VHCs and limited number of variants that are available for each MO the overall number of
calculations is not exhaustive.

Based on this algorithm a Windows application was created with a GUI interface that
performs all of the above steps in order to create a set of SSPs and their schedules. This
application is described in detail in the next chapter. Next section has an example to illustrate
the operation of the algorithm. It illustrates creation of a segmented set of VHCs based on an

initially given SG.

7.4.3 Example of Segment Specific Processor Synthesis

This section presents an example to show how the above algonthm creates a set of SSPs
Creation of a first set of SSPs is shown, as well as a the final resu!t of algonthm segmentatlon
based on the 1mt1e1 resmctlon parameters. -

In this example a processing task is used that was mentioned previously m Figure 7.5 (A).
For this particular example constraint of 20 CLBs, and, 20 clock cycles was assumed where
CLBs the are area of the devnce and clock cycles represent maxxmum permxtted latency To
illustrate the operatlon of the automatxc VHC selecuon and SSP generatlon this example will
:traverse the algonthm through several stages | | ‘ e

The procedure for assembling VHCs into SSPs consists of the fol]owmg

178

1. ASAP level dependency algorithm is executed to assign an appropriate dependency level

to each MO.

2. MOs are added to the sub-ACG graphs with their corresponding VHCs. A set of VHCs

that satisfies user’s constraints is selected and grouped into SSPs.

3. SSPs who’s performance parameters are closest to the specified restrictions are selected
for bitstream generation. A structure file is created with specification of the temporal

data locations on the external SRAM memory.

4. Bitstreams along with the structure files are composed into a scheduled temporal parti-

tioning system.

The level dependency algorithm was described in Section 7.2.3 and the level assignment is
shown in Figure 7.5. All MOs are assigned a dependency level, and then re-arranged to form
a level arranged task, as was done in Section 7.2.2.1. At this point the SG is ready for the
segmentation. The VHCs that are available for the selection need to determine first. From the
task which is described by the Figure 7.5four different MOs can be identified.

Table 7.1 shows the 4 MOs and associated set of VHC; for each MO with the perfor;nance
parameters. These parameters are used in creating SSPs for this example.

A Thevﬁrst step of segmentation is to create of the sub-ACG graph, as was mentioned in
Section 7.3. To start the creation of sub-ACG, an MO has to be selected from the SG. Based
on the methodology described in Section 7.4, MOs are selected from the top level, proceeding
to the consecutive levels. Also, selection priority is given to the MOs that has dependent MOs
on the néxt level. From the case 1, shown in Figure 7.8, MO3-Node#2 is selected as the first
onci to be added to the ACG tree. This results in the three branches, since MOj3 has three
versions of VHCs as shown in Table 7.1. The sub-ACG resulting after addition of the MO is

shown in Figure 7.15.

179

Table 7.1: MOs and Corresponding VHC parameters

L—[W)I m, ; IT)gicircquircmch((—‘LB._ﬂ)
5)]

l.alcncr)_fick)ckfcyckﬂ

MO; | VHC 22 e
@® | MO, | VHC,,| 16 o 5
MO, | VHC; 3 1'% bate e e
MO; | VIIC, 4 3 20
[TMO; [VHC2 g 7)
MO, | VHC; 4 R Y
MO, | VIG5 T i 16
MO; | VHC; 12 A T N P AT |
@ | MO; | VHC: 5 ean R
MO; | VHC: 3 G 12
MO, | VHCy o B 7
® | MO, | VHC,; 17 - 15
@
12/4 10/6 6/12
1274 10/6] [e12]

Figure 7.15: Sub-ACG After Addition of the First MO from the Task SG

Next MO to be added is either MO3-Node#1 or MO>-Node#12. MO3-Node#1 is selected,
since it has dependent nodes on level 3, where MO,-Node#12 has dependent nodes on level 6.
Since the criterion for both of these MOs is the same, the tree is simply expanded by adding
MO3-Node#1 1o every single child of MO3-Node#2. The resulting sub-ACG tree is shown
in the Figure 7.16. As seen in the Figure 7.16, several children of the resulting sub-ACG are
coloured gray. The reason for that is the violation of restriction parameters. As stated earlier
in the chapter, violated leaves and branches are discarded, and thus decrease the amount of
calculation when needed to add a new MO to the sub-ACG. Note that criterion did not need
10 be compared for these nodes, since they belong to the same MO. Because there are several
leaves that do not violate restriction parameters, sub-ACG graph can be expanded [urther by
addition of another MO. The last remaining MO on the Level 1 is MO>-Node#12. Criterion for

both MO, and MOs is the same, therefore, the sub-ACG tree does not have to be re-ordered.

180

@

12/4 10/6 6/12
@2 @ 10/6 @ 6/12
12/4 106 912 12/4° 196 @ 6/12 12/4° e 612

[22/6] Roje] [1e/12 18/12 16/12

Figure 7.16: Sub-ACG Tree after Addition of the MO3-Node#1 from Task SG

12/4 10/6 6/12
@2/ @ o 6/12
124/ s Y12 12/4/ 1006 ¥/12 12/4° g6 612

A 2E 12 wfiefia ()] (2] (2

8/ | 16 82 216 82 la;e 82 |26 B8R | 2h6
afe a8 Al a2t aJ8

¢
~

N N (=] =Ry o2
| [||| ||| =
Nl ey sall=s | IS 15
o oo ? =-NIR=] -NER-4
~ || Nl | =N =

Figure 7.17: Sub-ACG Tree after Addition of the M O;-Node#12

As in the previous step, MO>-Node#12 is added to every non-violated child and the resulting
in sub-ACG graph shown in Figure 7.17.

Similarly to the previous case. as with addition of MO3-Node#1 there are some leaves
that do not meet restriction parameters. These branches are removed and not expanded in the
further MO additions. At this point all of the MOs from the Level 1 are added to the sub-
ACG, however, there are leaves that can be expanded even further. Therelore, selection is
moved to the next level. Since both MOs on Level 2 are equally depended on MO on Level
I any of them can be picked at random. MO;-Node#5 was selected and added to all of the

non-violated leaves of sub-ACG tree it results in Figure 7.18. It is important to note that

181

®

12/4
. 10/6 6/12
@7 @k @ =
12/4 "
6/12 . 6/12 6/12
10/6 12/4 10/6 b .
10/6
[2a/a|[22/8] (12)[18/12] [22/8][20/6) (12)16/12] (12)[18/12] (12)[16/22 12 [12/12
: 8/2 8/2 8/2
2/16 2/16 2/16 2/16 4/8 216
8/2 4/8 8/2 4/8 v 4@ ' 4/8
=||= = = =z HE = = o =
=~ = ~ ~ A5=N ~ ~ ~ 5 o
| E 2 @ EEE B @ (5 OF OF
12/4 =119
12/410/6 6/12 12/4 10/6 6/12 12/410/6 6/12 Mo/ 6/12

Figure 7.18: Sub-ACG tree after Addition of the M Oz-Node#5

since M O3-Node#5 is dependent on the input from M O3-Node#2, the time latency parameter

1s added for total latency calculation. In previous MO additions only the maximum value of

all of the MOs where taken, since they were located on the same dependency level and were
executed simultaneously.

After insertion of MO3z-Node#5 none of the leaves satisty all of the conditions which leads
to removal of MO3-Node#5 from the sub-ACG graph. Assuming there are MOs remaining on
that level. an attermpt should be made (o try to fit remaining MOs. In case of the task from
Figure 7.5, it can be seen that MO;-Node#3 is one that is remaining on the level 2. After
addition of the MO,-Node#3 to the sub-ACG graph it is found that there are two leaves that
satisfy all ol the restriction parameters. New arrangement of the sub-ACG graph is shown in
the Figure 7.19.

liven though there are variants that can be expanded even more, in this scheme it is not
allowed, since none of the unused MOs is present on the Level 2. Also, because there is
at least one MO that did not fit to sub-ACG tree, the selection of the next MO from the

consecutive level is not allowed either. Theoretically. it is possible to insert another MO from

182

H =&

12/4
10/6 6/12 @ -
@12/4 @ 10/6 -
12/4]
10/66/12 12/4 106 |\ 812 12/4 fos

10/6

2374 [22/8] (12)[13/12] [22/8][20/6) (12 12 12 12
8/2

/ 8/2 8/2
2/16 2/16 2/16 2/16
4 4/8

8/2 4/8 8/2 4/8 /8 /

™| [v} ~ Vo) ¥ [~ d
g H = SO S

) E‘ = | o 3 : S S 3
~ o~ N o~ o r y

/8 2/16

4
: g D
i
— —
8/2 4/8 /16

8/2 4/8 2/16 8/2 4[8 2/16

H

Figure 7.19: Sub-ACG tree after Addition of the MO>-Node#3

0/1
18/16
18/16
20/12

the next level, however, this creates a large pool of variations and can lead to an exhaustive
scarch. Therefore, proceeding to the next level, is not allowed until all of the MOs on the
current level are used up. At this point there are (wo SSPs that can be selected from the four
added MOs. By traversing through the branches of sub-ACG tree shown in Figure 7.19 it
can be seen that SSP; | is composed of VHC3 3-Node#2, VHC; 3-Node#1. VHC, 2-Node#12,
VHC,>-Node#3. The resulting Area is 20 CLLBs and Latency is 20 CC. By the same procedure
SSPy 7 is composed of VHC3 3-Node#2, VHCy 3-Node#1, VHC; 3-Node#12, VHC; 2-Node#3,
with resulting Area of 18 and Latency of 20. At this point sets ol VHC's corresponding to MOs
have been identified and selected for SSPs. Depending on the priority ol the performance
paramelers. one version of the SSP can be selected for the final bitstream generation. In the
case of this example it is the arca parameter. and therefore, SSP; 2 is the right most possible
variant. Following same procedure of MO selection based on the methodology outlined in the
Section 7.4 the rest of the SSPs are generated. The resulting segmentation of the Task into
SSPs is shown in the Figure 7.20 (A). Figure 7.20 (B) shows the SSP re-arranged MOs of the

Task.

(a) (b)

Iligure 7.20: Final Segmented SG Implementation on the Set ol SSPs

184

This example showed the process of creation of SSP set using the sub-ACG tree. Since
sub-ACG tree allows for rapid VHC selection, various SSPs can be selected based on the

restriction parameter priority.

7.4.4 Accounting for FPGA’s Embedded Specialized Hardware and

VHC component bitwidth

Most of the high end FPGAs that are used in the industry (e.g. Xilinx Virtex, Altera Stratix
families) include embedded hardware (e.g. DSP slices, embedded memory blocks). These
hardware blocks greatly improve utilization of the FPGA resources and allow for much more
cost effective design. The CAD software can also benefit the design by utilizing embedded
specialized hardware resources (e.g. DSP blocks, hardware multipliers). If a target device is
specified prior to the implementation of an SG, then CAD software can estimate the amount
of resources that can be mapped to the embedded hardware during place and route procedure.
This would allow to utilize more of the FPGA resources in much more cost-efficient manner.

Another aspect of the SG segmentation that comes up is the datapath bitwidth of the al-
gorithm/task and how it translates from the description in terms of MOs to implementation in
VHCs. In any datapath of the algorithm each connection between the MOs has a particular
bitwidth depending on the application. In the example shown in previous section the over-
all operation of the algorithm was demonstrated and avoided the use of embedded hardware.
However, in the case of the VHC selection this aspect is considered. Following the same selec-
tion algorithm VHCs that do not satisfy the datapath width requirement are pruned and VHC
variant search list is reduced. The specification of the datapath width is done by the parameter
specification of the MO, similarly how the connectivity of the MO is specified. In turn, when

VHCs are being generated one of the parameters which is used for generation of the VHCs is

datapath bitwidth.

185

7.5 Summary

This chapter covers the proposed novel methodology for synthesis of a set of Segment Spe-
cific Processor (SSPs) optimized in multi-parametric design space for a given task. The task
segmentation procedure is discussed in detail, as well as the actual SSP synthesis and opti-
mization process. This process is described with all major steps which included identification
of dependencies between macro-operators in the task algorithm, associated segmentation, and
selection of near optimal set of VHCs for each segment specific processor. Depending on the
parametric constraints, segmentation may vary resulting in different SSP compositions. This
chapter also presented the algorithm for creating SSPs that was implemented in GUI appli-
cation described in Chapter 8. For illustration of the proposed methodology a step by step
example of a task segmentation was shown with full task segmentation arrangement which
resulted in 8 SSPs. The next chapter will focus on the architecture design and implementation

of the software, hardware, and firmware components of the temporal partitioning mechanism.

186

Chapter 8

TImplementation of the methodology of

SSP synthesis and execution

8.1 Introduction

The previous chépterg described various met.hodologies for creation of the MOs, VHCs‘, and
SSPs. The purpose of this thesis was not only to propose methodologies and architectures, but
also to implement and test all of the described methodologies and architectures in a complete
RCS which incorpofateg TPM. Implementation encapsﬁlates several aspects including soft-
ware, ﬁardware, and firmware development. Implementation of CAD software is described
in the next section, followed by the éyster;l implementation of the proposed architecture, and
concluded with proposed rcconﬁgurable dev1ce on-chip archltectures Therefore, the imple-
| mentation part of thesns covers all levels of desxgn of RCS with TPM from the top level (CAD)

to the level of system and on- Chlp archxtectures

187

8.2 Implementation of SSP Synthesis and Optimization

Methodologies in the CAD System

As mentioned in the introduction, one of the aspects of the research was to design the CAD
software that would implement the methodologies of VHC and SSP generation. Since the
methodology of task segmentation requires many computational steps, as it was described
in Chapters 6 and 7, operation of task segmentation and SSP generation cannot be done ef-
ficiently by the Suse:r alone. A CAD support is definitely needed for the user. Therefore, a
Segment Partitioning Creator (SPC) CAD software was created in Visuéil Studio.NET envi-
ronment. It provides the user with the GUI for creation (programming) of the task algorithm in
a form of Sequencing Graph (SG). User is required to create an SG of the task from an existing
set of MOs and interconnect them according to dependencies in task operation. Specification
of system performance parameters such as: width, timing restrictions and other constraints
should be specified by the user. CAD tool is then performs the proper selection of component
instances that were chosen for brocessing the algorithm. Selection is performed based on the
set of multi-parametric restrictions that were specified by the user.

The CAD tool automatically conducts level dependency division of the SG, based on the
algorithm described in Chapter 7. After completic;n of the Ieve} division the CAD tool per-
forms segmentation of the architecture by the algorithrﬁ. CAD tool allows optinﬁzation o'f one
of thé most criticél parameters (e.g. area, latency, cycgle time and power) as specified by the
user, while keepingi ’d}e other parameters within the restriction range. I; c‘an also perform bus
width modification/replacement, if higher perfonﬁanqé is néeded; or if éréa im‘st to be mlm-
mized. The restrictions are tied to the reconfigurable device ‘speciﬁcs a‘ndican include area
avoidance, power consumption and execution time limits, and more.

Though not in current implementation, CAD tool should be able to estimate and suggest

a optimal device for a target design. It should also be able to suggest a range of optimal

183

reconfigurable devices based on different variations of parameters that can potentially change
in the future.

When final selection of VHCs is done the CAD tool generates a broad spectrum of SSPs,
where each SSP is responsible for a particular variant of conditions, such as speed of process-
ing, area requirement, power consumption, latency, and other parameters. The user is also
capable of selecting the number of variants that should be generated and the parameters to be
optimized. Another factor that has to be considered, is the generation of time SSP bitstream
set. Since each segment forms an SSP IP-core, a set of SSP cores need to be synthesized for
each of the variations of the task algorithm. Therefore, if an algorithm has K segments, each
having N; variations, where i = 1,2,...,k, for the algorithm implementation there are Zﬁil N;
SSPs that have to be generated into the bitstreams. Adding fault tolerance capability to avoid
different sections of FPGA increases, the number of generated as well. The main factor is
the granularity of the sections G, which defines how many different combinations of FPGA
sections have to be avoided. Therefore, if fault recovery is added as one of the restrictions,

_then number of generated SSP cores increases up to Ngsp = G X Z{il N;. Due to that fact, it is
crucial for the CAD tool to estimate and eliminate the variations that do not satisfy the given
restrictions. For example, the compilation of a single’ SSP core requires 7}%%, = 300 — 600

seconds [63] for XCV1000 FPGA, and the total compilation time is given by:

t . K B .
Tomp = Tomp*xGx Y Ni ®.1)
< Ox L :

The total con)lpi‘lation time for SSP generation can be estimated with the following approxi-

mate data:

... o Number of task segments and associated SSPs, K = 8;

pr

) l\fumber of ‘\possible variations of each SSP, N; = 4;

.. Gram;larity of sections of FPGA area, G = 4 (4 quadrants);

189

e Approximate time for compilation of one SSP to be accommodated in 1M system gates,

FPGA Eﬁﬁ’p = 300s (according to [63] for the Xilinx Virtex XCV1000)

In this case :

TTotal . 4 % 8 x 4 x 300sec = 38400 sec = 10.6hours

comp

This would allow RCS to work in NX = 4% =216 = 65536 possible modes, and restore the
functionality for each of the modes, in case if one of 4 quadrants in the FPGA logic/routing
area would get a permanent hardware fault. The transient faults can be mitigated by scrubbing
procedures as described in Chapter 4. Therefore, the automated generaﬁon of the required set
of SSPs for a task partitioned in 8 segments could be done within one business day.

The benefit in the use of the SSP approach capability of future modifications. If a particular
MO, such as FIR filter, requires a modification, only the VHC for that particular MO would be
modified. The only SSPs that need to be re-synthesized are the ones céntaining the modified
VHCs. This in turn brings a dramatic reduction of the re-design time for any modifications,
compared to the time for HDL reprogramming and re-synthesis for the whole design. Another
advantage of the SSP set, as mentioned previously, is that it allows a run-time adaptation, since
all of the SSP bitstreams are stored on the non-volatilg: FLASH memory.

To minimize the time for SSP generation, the CAD tool first performs estimation of vari-
ants. Actual generation of the set of SSPs occurs only in the case when estimated processing
times of the algorithm match the restrictions imposed by the user and existing/selected hard-
ware. Since placement and routing requires most amount of time in SSP geperation, the
estimator plays the c;ucial role in filtering out the unfeasible variants. : |

‘When the generation of SSPs is complete, the user is provided with a set of directorfeé,
each containing a set of SSPs in form of bitsgreams. Along with a schedule of configurations
and a global file that specifies which set of SSPs to use in a case of parameter changes. Such
parameters can be power reduction, time reql‘.lircmen't modiﬁcétion, restl;i;:ted ql;':a, (;tc. The

sets of SSPs are then stored on a non-volatile memory and used based on the schedule. Figure

190

¥
Perform level
g | division. Re-order

graph on workspace

Load next MO in
the fist

Load MOs
configuration file

Y

Constraint parameters
10 are specifiedby the

(s there at
least one VHC

.. user or tha system .

of MO list

for thi
eac or this MO?
Y
Perform Task Segmentation)
based on given constraint
SPC applicationis u parameters and generate SSP -

toaded - listsfor every segment ;.)

User creates 5G

Perform Selectionof asingle)
6| fomemptyor 12| SSP per segment based on the
loaded workspace - constraintpriority - -

DRC is executed
onthe 5G graph

- Generate configuration
. bitstreams for S5Ps

: 7

Upload bitstreams setto)
Notify User and]

. FLASH memory on target
.. create DRC report platform , Upload schedule on

e mﬂgw‘ﬁm’mﬁg‘- ERRSE

14

Figure 8.1: CAD Software operation flow chart

8.1 shows all steps of the CAD software operation. A number beside an operation refers to
the operation’s order in the schedule.

The sequence of software operation is as follows:
1. The SPC software is initiated by the user on a PC.

2. Asit loads, the SPC software searches for the configuration the file mos.mo, which con-
tains a library of existing'MOs. This library specifies the name of an MO, its description
and its associated icon. Configuration file also contains all the IDs and locations of all

VHCs that implement each MO. -

i

~ 3: Configuration file is parsed and MOs are populated into the MO Tool box.

191

s
Nie | [

MO
Library
Status Working
Window R s Panel
Node ey
Paosition A y
Node | Sy s
Dependency e FT,T‘
Settings [~ . Mhisd 5
x]

Controls —_—
Buttons

Area/Time _ ———
Restriction

Figure 8.2: GUI Application

4. Every MO is checked 1 it has at lcast one VHC, and it it does not, it is removed from
the tool box. At this stage, however, VIICs are not loaded to conserve the operating

memory resources.

5. User 1s presented with the GUI that allows user to drag the MOs from the Tool box (o

the Working panel.

6. An SG is created by the user either {rom scratch on empty work space, or by loading a
previously saved SG and modifying it in any way nceded. MOs can be interconnected as they
are added, or they can be connected after all MOs are added. At this stage SPC software loads
the VHC's associated with the added MOs into an internal list. SPC application creates a tree-
like linked list of Node objects, where every node has a reference to MO type and incoming
and outgoing nodes.

7. When the SG of the task is completed, Design Rule Check (DRC) performed to ensure
that no erroncous connections are present. SPC checks that all of the inputs are present (o
every MO requiring an input. Inputs could be: external input to the system; input from some

other MO; input of a constant value. Also SPC checks for at least one output from the system.

92

8. If DRC fails then user is presented with an error report.

9. Application continues on performing Level Division/Segmentation/SSP generation, that
can be run separately. The advantage of separate invocation is that user can modify the SG if
Level division or Segmentation error is identified, or some other modification has to be done.
Level Division of the SG is performed based on the method described in Section 7.2.3. After
the execution of this stage every MO node is assigned with the specific level. SPC application
also re-arranges the SG based on the levels giving the user much clearer view of how the MOs
are organized in the dependency manner.

10. Constraint Parameter Specification is done at this step where user inputs the restriction

_parameters according to the procedures described in Chapter 7. It is also possible for system to
automatically select restriction parameters based on the initial constraints of a reconfigurable
device specified at the initialization of the project.

11. Segmentation and SSP generation is the key component in the SPC application. It
implements the segmentation methodology described in Section 7.4. An MO is selected based
on the methodology shown in Section 7.4, and added to a sub-ACG tree. The sub-ACG trees
are represented with a heap data structure. The leafs of the sub-ACG node represent the VHC
variants of the MO with the corresponding performance parameters, as was described in the
Section 7.4.2. Every new added MO creates a new level of VHC combinations on the sub-ACG
tree. At the same time, two temporary lists are created that hold the current and previous level
of VHC node sets in the ascending order. The temporary list for previous level is used to recall
the last successful level in the case that none of the leafs of the current level list satisfy the
restriction. Latest level that satisfies the restriction contains the combination of VHC variants.
The;c variants are stored as SSPs in the final SSP list. Eaéh‘of the SSPs coﬁtains the informa-
ﬁon such as: spe;:iﬁc VHC version, intérconﬂection of VHCs, total area/powet/latency, and
'VHC file location. ‘When all ‘of the VHCs arc; selected for the MOs presented in the SG, and

the ségméﬂtation of these VHCs is completed user is presenfed with the list of possible SSPs

193

for each segment. There is a list of SSPs due to the fact that each segment can have several
combinations of VHCs that satisfy the imposed constraints, as shown in Figure 7.19. The
software segmentation operation is based on the flow chart shown in Figure 7.14.

12. SSP Selection for bitstream generation is done based on the parameter priority. This
step can be done together with the previous one, or initiated later by the user. The option of
later execution is provided for the user’s additional flexibility. Before the bitstreams are gen-
erated a report with lists of SSPs is presented to the user and the user can modify restrictions
or priorities to better fit the system’s requirements. The SSP selection is initiated as the SPC
application goes through the list of SSPs in each segment and selects the SSP that is closest
to the constraint of highest priority. If two SSPs have the same parameter for a particular
constraint, then they are compared by the constraint of the lower pﬂority.

13. When SSPs are selected, each of them is compiled into a loadable configuration bit-
stream. This is done by invoking the design suite, such as Xilinx ISE 11, or Altera Quann§
II. The design suite performs the synthesis, translation, mapping, and place and route of the
combined VHC modules. Y

14. The result of the operation is a set of bitstreams with a configuration file of thé sched-
ule for reconfiguration. Bitstreams are then uploaded to the non-volatile memory on the target
platform. Configuration file is uploaded to the Configuration Scheduler/Loader for later exe-

cution.

8.2.1 Area Avoidance Implementation

fn casé of mitig;ation of permanent hardware faults, an SSP‘has to be designed to avoid a spe-
! cific area on a reconfigurable device, as it was described in Chapter 4 and Chépter 7. For this
:;urpose a specialized “dummy” MO is inserted into every level of thé le;fcl divided graph.
Wh'eniSSPs are assembled, each of them contains the VHCI corresponding to the “dummy”

n

MO. “Dummy” MO essentially represents a setting in the constraint file that directs Xilinx

194

ISE compiler to avoid the specified area during the place and route operation. In the CAD soft-
ware an algorithm that performs optimal selection of VHC treats the area-avoidance “dummy”
VHC as a automatic selection with highest priority. In this case CAD tool does not réplace
the VHC. As it can be estimated, number of VHC variants with an associated MO is equal to
number of all possible area avoidance restrictions. As mentioned in previous chapters, FPGA
can be divided into several tiles, therefore, VHC parameter contains the specification of the
granularity of n x n tiles and which particular tile it is. It is important to mention that an SSP
can contain several different areas to avoid. Thus, with an adequate fault detection mecha-
nism, it is possible to have reconfigurable device to continue to function with more than one
permanent hardware fault.

The first version of the above CAD software application provides the user with all of the

features discussed in this section and is to be expanded further in the later sections.

8.3 System Level Architecture to Accommodate TPM Based
on SSP Processing

Another major aspect of the research is the design and implementation of the hardware plat-
form that would be able to execute the generated set of SSPs. This, however, involves a design
of sevéral different sub-systems each playing its own important role in the TPM operation.
The intent of the platform design is to implement and test most of the research as?ecfs of this
work. Platform was to be able to process the tasks which can have multiple modes of operation)
and to have a capabiiity for rapid adaptation to a different mode [53, 55]. Hence, the platform
is called Multi-mode Adaptive Reconfigurable System {mS), This section éescribes the

platfo}m architecture and the associated hardware design solutions.

~.

195

8.3.1 Reconfigurable Field of Resources (RFR)

In the Section 3.3.6 two approaches of reconfigurable device architecture were described,
which included single FPGA device and triple FPGA device configurations. In the triple con-
figuration one FPGA performs the memory management and interfacing functions and the
other two are used for SSP processing, and reconfiguration respectively in order to “hide”
the reconfiguration overhead. In the MARS platform, differeni research concepts were imple-

mented:
1. Temporal and partial reconfigurations.
" 2. Rapid system reconfiguration/adaptation.
3. Use of SSP library resources.
4. Processing streaming applications. -
5. Self-reconﬁguratioﬁ for fault recovery.

A single partially configurable FPGA was selected forﬂthe'implementation'.’ FPGA selected
had to have: rapid configuration interfaces, on-chip configuration controller and all the neces-
sary computing resources for &eam processing of task implementation: As was explained in
Chapter 3, Xilinx Virtex 4 family was chosen with FF1148 bail grid array package. This wés
an idezﬂ choice for the platform since five different types of devices in a Virtex 4 family c;)uld
be used (from 4Wmi11i0n to 16 million system gates). Larger dévice ‘also coniained impressive
a:mount of ernbedded hardware such as: 152064 configurable logic cells; 5 Mbits of integrated
~memory; 96 DSP slices; and 12 clock managers. This farmly of FPGA device has support
for SelectMAP32 which currently provides thc hi ghest available configuration bus bandwidth
3.2 Gblt/sec) On the MARS platform XC4VLX160 and XC4VLX80 were used, and testing

of the partial and temporal confi guranon methodologles was conducted

o

196

8.3.2 SSP Configuration Mechanism on MARS Platform Design

Based on the research aspects described in Chapter 5, highly parallel configuration interface
was used to perform rapid configuration. To verify the temporal partitioning in run-time adap-
tation, several configuration options were explored. To provide support for architectural exper-
iments three configuration interfaces were included in the design: JTAG, Serial SelectMAP,
and Paralle]l SelectMap32. These interfaces can be compared by their performance use in dif-
ferent architectural approaches. In order to accommodate the Parallel SelectMAP32 interface,
a specialized loader had to be developed. IEEE1149.1 (JTAG) is the first configuration inter-
face that is common to all [118, 66, 22] FPGA and ASIC manufacturers. It is used for the
testing of internal modules, such as memory integrity, and other sub-systems. In an FPGA
device it is used for communication with an on-board controller, that uploads a bitstream to
the device. In addition, it is used for communication with soft-processors such as MicroBlaze,
NiOS, ChipScope Pro [113]. In addition to JTAG, a proprietary serial configuration interface
is present in most of the FPGAs. Historically, loading configuration over JTAG to an FPGA
device was done from a designer’s PC, however, this has lately changed.

In recent years most of industrial/commercial platforms rﬁanufacturers began to include
the bitstream loaders that are capable of loading configuration bitstreams from an external
FLASH memory card [112, 6]. This made field upgrades as easy as switching/replacing a
memory card. Loaders, such as SystemACE from Xilinx [112], allow to implement com-
pletely stand-alone solutions with simple upgrade option of a CompactFlash card. SystemACE
acts as a PC replacement, since it configures FPGA JTAG interface [117], and essentially im-
plements whole JTAG protocol on a chip. However, the maximum speed of configuration is
limited by the off-the-shelf memory. Currently highest Spee;d of CompactFlash memory Sys-
temACE is limited to 30 Mbit/sec, uploading (;onﬁ guration of a Virtex 4 Xilinx FPGA would
"takc;p to 2 seconds [112]. Hence, such solution is suitable for systems that do not require

rapid start-up or reconfiguration times. There are other configuration options available that are

197

proprietary to the FPGA vendor (Xilinx-SelectMAP, Lattice-sysConfig, Altera- Fast Passive
Parallel configuration port (FPP)).

The MARS platform uses Xilinx Virtex 4 FPGA withs a serial SelectMAP configuration
interface. The interface includes a data signal DO, a clock signal, and several control signals
such as chip enable. The advantage of this interface in comparison to JTAG is that it can be
used in embedded systems. In this case a designer can create a custom configuration header
operating at higher speed than JTAG provides and not worry about supporting JTAG protocol.
Loader can be implemented as ASIC, there are some available from Xilinx XC04S. At the
same time, it can be implemented on microcontroller/microprocessor with a FLASH memory
or directly on an FPGA soft processor. MARS platform design was implemented with a
combination of a microcontroller and a CPLD to allow a rapid data readout from the SSP
library memory. This approach is mostly used in embedded solutions and is not designed for
a PC-to-platform configurations, so it is well suited for MARS platforﬁn.

Lately there was an advancement in high speed configuration interfaces in several families
of high-end FPGAs [83]. This was driven by the customer demand of because of the ever
increasing size of configuration bitstreams. Due to large bitstream sizes the start-up time for
some FPGAs reached several seconds. A Parallel configuration interface with the 8 bit and
recently 32 bit bus was introduced by Xilinx. In addition, the configuration clock speed was
increased from 25 MHz to 100MHz. As mentioned in Chapter 5 increasing configuration
speed to 3.2 Gbit/s, is extremely beneficial for a system that has to support rapid reconfig-
uration or adaptation. This was one of the key requirements for MARS platform, so it was
included in the desién. Parallel SelectMAP32 configuration interface has same control and
protocol of operation as Sepial SelectMAP. Instead of singlé DO data line there are 32 (DO-
D31) data lines, which transmit data in parallel. Hence, by using same setup, as was done
for a Serial SelectMAP, and programming the configuration .ilcga(zierischedulér to output 32 bit

words instead of 1 bit word, the méximum performance could be achieved. .

198

With the three interfaces MARS platform can be configured with the standard JTAG in-
terface, and a proprietary slow speed interface, proprietary high speed interface. The per-
formance and comparison of effectiveness of these configuration interfaces can be compared
between each other and other existing platforms.

The configuration loader and scheduler was chosen as suggested in Chapter 5. It involves a
combination of the FLASH memory, CPLD, and microcontroller with varipus interfaces. Sim-
plified architecture block diagram is shown in Figure 8.3. Since SelectMAP32 was chosen due
to its bandwidth, the FLASH memory modules had to be organized in a way to accommodate
3.2 Gbit/sec bandwidth. For that purpose four 16 bit width NOR-FLASH memory modules,
with capability of 50MHz operation were chosen. At the point of a rapid reconfiguration 64
bits of data are read in parallel at 5S0MHz of the FLASH modules. This information is pack-
aged into 32 bit words and sent over the SelectMAP32 parallel configuration bus at twice the
speed. As mentioned previously, CPLD is used for two main reasons: repetitive operation at
high speed, and vast number of flexible I/O assignment. First of all,16 bits of data, 26 bits of
address, and 5 control lines where needed i‘n ordér to connect to four FLASH modules. For the
actual SelectMAP32 interface therc are 32 data and 5 control lines. Microcontroller to CPLD
parallel bus required additional 10 iines. Overall configuration device needed total of 111 I/O
lines. The only types of the reconfigurable devices that allowed such I/O count were CPLDs
and FPGAs. At thé time of MARS development CPLD was the only configurable device that
operated on a single supply of 3.3V, and contained large fxumber of /O pins and'did not require
external loader. The reason for the 3.3V constraint was requirement of design portability. The
portability means that the same loader can be integrated‘on different platforms with various
families of FPGAs without a need for additional voltage regulation and loader redesign. Most
of small sized FPGAs at that time required additional 3.3V and 1.5V or 1.2V voltage sources
for auxiliary and core powers respectively. In addition, gll SRAM based FPGAs required an

external loader and associated peripherals.

199

Some microprocessors and microcontrollers that have the required pin count may seem to
qualify as candidates for the configuration loader. However, when 100MHz of configuration
frequency is taken in consideration, microcontrollers simply cannot keep up with the MIPS
limitation. On the other hand, microcontroller plays an essential role as a configuration mem-
ory manager. Since CPLD is significantly limited in the amount of logic in comparison to an
FPGA, it can only perform simple repetitive operations. So, in MARS the requests from the
FPGA, core updates from PC, and scheduling are handled by the microcontroller. Microcon-
troller is based on the Microchip PIC18F8XXX microcontroller family. It interfaces to CPLD
over the parallel bus and peripheral interfaces, such as USB, dual RS232, SPI, parallel inter-
faces, and button switches for direct user input. Microcontroller also provides a user with a
very flexible and simple implementation of desired controller oﬁerations. This is because the
microcontroller programming can be done in embedded C or assembly language.

The microcontroller in the MARS platform implementation involves several functions:

1. Downloading SSPs in a form of bitstreams over CPLD from a PC to a predefined

FLASH memory virtual slot.
2. Storage and execution of a reconfiguration schedule.

3. Initiation of reconfiguration by requesting CPLD to configure a specific core residing in

one of the FLASH memory virtual slots.
.. 4. Providing user with feedback of current operation for monitoring purposes.

To provide the flexibility of application development a parallel communication bus was in-
" cluded between the FPGA, CPLD, and microcontroller devices, as shown in Figure 8.3, where
8 bits are data and 2 bits are for handshaking and control. This device interconnection pro-
vides flexibility in scheduler operation. A schedule of SSP configurations can be uploaded to
the microcontroller by a request from a PC/faxtemal source, or directly by a request of FPGA.

The way TPM typically operates in MARS is as follows:

200

SelectMAP,

.................... 32 10 (CDB) Communication

1

i Data Bus (CDB)
:

! Segment

| Specific F10

E Processor

! Library

i

1

)

Peripheral
devices

Iigure 8.3: Communication Bus Structure Between: FPGA, CPLD, and Microcontroller

1. Microcontroller issues a signal for the reconfiguration to the CPLD and the starting

memory address of the SSP core.

o

Reconfiguration signal causes CPLD to begin FPGA re-configuration procedure and

follow the schedule of control operations listed in Chapter 3.

3. CPLD reads an SSP bitstream from the FILASH memory beginning from the address

received by the microcontroller until the end ol the bitstream.

4. Processing core retrieves temporal data [rom the temporal data memory (SRAM) and

aller processing, it writes a new set of data.

5. Based either on the timing schedule, or signaling from the FPGA the microcontroller
fetches an address of the next SSP bitstream in the schedule queue to the CPLD, and the

operation repeats again.

MARS architecture allows for dynamic operation not only by the programmed schedule. but
also by a request of the reconfigurable device itself [56]. The bus between the CPLD and

IFPGA bus allows for direct request of a particular SSP bitstream. Such bitstream could

201

be a fault tolerance IP-core which checks integrity of the FPGA before/after SSP a recon-
figuration. Since it is a repetitive operation, it is not required to be done by a microcon-
troller/microprocessor and, therefore, is done in the background without placing extra load on
the microprocessor. This speeds up the processing of a segmented task even more.

The power consumption measurement was performed to account for total power consump-
tion. In continuous reconfiguration operation total power consumption was in 66mW, which
is an insignificant amount comparing to the FPGA requirement, as shown in the results sec-
tion of Chapter 9. Power consumption can be lowered further by decreasing the frequency of
configuration and by using low power configuration manager and configuration controller.

The other part of the configuration memory manager that was developed is the software

application, as was mentioned in Section 8.2.

8.3.3 MARS Temporal Data Memory

The temporal partitioning it involves sequential reconfiguration of the FPGA device with the
temporal data stored on the temporal data memory. Best suited memory for this task is SRAM,
due to its rapid access time and control simplicity. After reconfiguration the processing core
rapidly retrieves the stored data and proceeds with further processing. At every stage of pro-
cessing the data being processed is placed into predefined memory spaces. For this purpose
dual 72 Mb SRAM memory banks (CY7C1472) were included in theidesign‘ Since this plat-
form is used in the development of multi»mo;ial stream processing applications, it would also
use this SRAM memory for frame buffering, hence, the dual bank configuration and this par-
" ticular memory size. Since acquisition of video frames occurs simultaneously with their pro-

cessing and the output of the processed images, the buffering of the video stream had to be
‘ hnplqrqcntgd. The SRAM mgdules were implemenged with separate address and data buses.
. Qng SRAM f:hip saves the data from the image sensor, while the other process;es a previously

saved frame. On the completion of the image capture/processing the banks switch operation.

0202

For a larger and longer term storage of processed data two 256Mb SDRAM
(MT46V64M4) modules was included, also were in dual bank configuration. Organiza-
tion of these memories is shown in block diagram in Figure 8.4.

The remaining sub-systems of MARS platform are various interfaces that are needed for

interconnection to the input and output devices, discussed in the next section.

8.3.4 Platform Data I/O Interfaces

MARS platform is designed for stream processing applications, hence, it requires several dif-
ferent types of interfaces. These interfaces and peripherals include: LVDS 400MHz 16-bit
interface, 400Mbit serializer with coaxial interface, VME bus interface, 4 SVGA output ports,
USB, RS232, LEDs, push-buttons, and other service interfaces. .

The processing platform was specialized for video-stream applications, so the video input
and outputs were required. For video output a standard video digital to analog converter (DAC)
was selects. ADV7125 DAC supported up to 330 MSPS which allows to display a TrueHD
at 120f ps. To perform a parallel processing of a number of video streams, four DACs were
included in the design.

Next chapter talks about the “Fast Track” project which involved development of the high-
speed stereo image acquisition system. For this purpose a special interface was designed for
MARS platform. The overall block diagram and an actual photo of the platform is shown in
Figure 8.4.

Due to the nature of the stream processing, two types of high-speed interfaées were in-
cluded: a 400 Mbit/s serializer/deserializer and a high speed low vbltage differential (LVDS)
interface. The interfaces are used for input of a stream of data either from a local input over

LVDS interface or from a remote location connected over a coaxial cable to the serializer. As

203

it will be described in the experimental section of Chapter 9, a stereo-camera module was de-
signed with the LVDS interface. Stereo-camera operates at 200 fps and provides a high speed
stream of video frames which are processed by the algorithms running on the FPGA device.

Communication over USB and RS232 is performed using the microcontroller that was in-
terfaced to the FPGA device as well. Microcontroller communicates to well known interfaces
and does not need a special core to be designed for FPGA device. USB interface is used for
communication with the PC from which SSP bitstream and schedule is uploaded. This in-
terface is also used for download of temporal and final data for verification purposes. VME
interface is mostly used for the connection to the expansion board, as well as interconnection
with the other MARS platforms over the VME bus.

MARS platform was specifically designed to be rack mountable, as shown in Figure 8.5,

to have an aggregating capability for joint parallel processing.

8.4 Summary

One of the novel ideas behind the research is the configuration loader/scheduler which per-
forms all of the SSP core management and re-configuration of the FPGA device. This archi-
tecture was specifically developed for the temporal partitioning operation.

After completion of the hardware and software implementation of the MARS platform
with support for teﬁlporal partitioning, several architectural modifications became apparent.
' Appendix’ ?2 proposes a number of different approaches to increase the efficiency, as well as
to decrease the cost ;>f systems with temporal partitioning support. "

This chapter focused on the implementaﬁon of all previously proposed and developed
methodologies in software, hardware, and firmware. The imi)lementation of CAD tool for

task algorithm segmentation and synthesis of SSP set with associated SPC GUI software was

described. This chapter also described in detail the hardware architecture for the temporal

204

|GPIO& | [400Mb || VME || HighSpeed LVDS |Stream
| LEDs | |Serializer | Bus || Camerainterface | Input

I

<:> SRAM Bank

SSP Loader (f :) FPGA Xilinx CY7C1472
CPLD Virtex4

XC95288 < L u —>| XC4VIX160 (———> Dual256Mb

AR SDRAM Bank
8 @ @ ‘“@ MT46V16M16
Configuration Interfacing

. NORFLASH uController DAC | DAC || DAC = DAC

L e

SVGA SVGA SVGA SVGA

GPIO & R523 Stream Output
LEDs o | 12C usB
(a)
Quad
VGA | GPIO &
Output | teps | USB
12C
Dual 72Mb SSP Loader
SRAM Bank CPLD
CY7€1472 j XC95288
_ > ' Interfacing
L\P;I:DgshCSpeed | 3 nController
i, LATRATN 2| PIC18F8410
interface | (reverseside) |
Dual 256Mb Configuration
SDRAM Bank NOR FLASH
MT46V1eM16 > GPIO &
S M LEDs |
VME Bus

FPGA Xilinx ~ 400Mb
Virtex4 Serializer
XC4VLX160

(h)

Fieure 8.4: Multi-stream Adaptive Reconfigurable System (MARS): (A) Block Diagram (B)
Component Placement

205

Iigure 8.5: Aggregated MARS Platforms for Parallel Processing

partitioning RCS that executes SSPs. All elements of the Multi-stream Adaptive Reconfig-
urable System (MARS) were discussed with the reasoning for their selection. The work on
development of the TPM platform was presented in several conferences [52, 56], a workshop
[55]. and in a journal paper [54].

Next chapter concentrates on the experimental aspect of the research. It describes the
experimental setups of the MARS platform with other platforms that were developed in ERSIL..

It provides a detailed explanation of conducted experiments and analysis ol acquired result.

206

Chapter 9

Experiments and Results

9.1 Introduction

This chapter presents the experimental component of this research work. First, the experi-
mental setup is described. This experimental setup is based on the MARS plétfonn and a
special set of multi-video capturing and pre-processing platforms (stereo-vision high-frame
rate cameras). The architecture organization of Multi-Mode Adaptive Reconﬁgu;a'ble system
(MARS) has been described up to the component level in Chapter 8. The video capturing on
a p{e—processing platform organization is presented in this chapter. Thc; next stage after the
exp(;,rimental setup is performance verification. For this stage speciai video«proce;ssing V"HCS
have been designed, integrated, and tested in operation with MARS platform. The verification
procedures, as well as the algorithm implemented in the above VHCs is described in detail in
thi§ chapter.

The last component of experimental work is the analysis pf performance and cost-
performance characteristics, that have been obtained on the basis of the experimental multi-
core. (multi-VHC) sﬁegment-speciﬁc‘ processors (SSPs). These SSPs were designed for the

above analysis only and are not associated with any specific application. The experiments

were done with the goal to analyze the following parameters:

207

1. Resource utilization.

2. Power consumption.

3. Data-execution timing parameters.
4. Bitstream compilation timing.

5. Cost-performance analysis.

All of the above experiments were conducted for the MARS platform based on the Xilinx
Virtex 4 FPGA family. The choice for this FPGA family was based on the fact that it provides
the highest bandwidth of configuration bus, an ability for partial configuration, and spans

across the devices of the same package.

9.2 Experimental Setups

Experiments for temporal partitioning mechanism (TPM) included several different steps.
This section describes the experimental setup and the experiments performed. First and fore-
m.ost, the experiments had to be performed to tesf TPM methodology on a hardware i)latform
with temporal partitioning support of FPGA resources. As described in Chépter 8, Seciion
3.3.2 MARS platform was désigned specifically for this purpose. With the support of 3.2
Gbit/sec bitstream upload bandwidth, programmable configuration memory mamlger was par-
ticularly suited for temporal partitioning experiments. ‘

In order to visually illustrate the idea of the experiments few image processing tasks wére
selected. The selection of video-stream processing applicatiénsiwas also rhbtivz&ed by the
R&D. p;djéct aéséciateé with the development of the ;ngxt generation of space-bbrné machine-
vision‘platforms. This project is called ;éi’astTrack High—Frafne Rate Stereéi\}ision Sensor”

"and was funded by MDA Space Missions and Ontario Centres of Excellence (OCE). It was

conducted in cooperation with the research groups from Queen’s University (object tracking

£208

LCD LCD LCD LCD
Monitor Manitor Monitor Monitor
n H2 ” ,”37 ! ; N47
MARS Video Output Ports
Platform i
Instrumenta LVDS o |
tion PC with mH Xilinx Virtex4 <> 1/0 [€> 00
Xilinx ISE FPGA Port
Suite and XC4VIX160
full library of - 2 |
VHCs and I
S5Ps Xilinx I LAS|‘| Memoryf
CPLD e
% Loader W @

Figure 9.1: Experimental Setup Based on MARS Platform and Stereo-vision Capturing Mod-
ule
algorithms) and University of Toronto (3D-vision algorithms). The goal of the project was
to create an FPGA based multi-mode 3D machine vision platform that would be able to pro-
cess multiple (3 and more) video streams with relatively high frame rate capability (up to 200
frames per second). Therefore, the stereo camera which was developed as a part of the “Fast-
Track™ project was used for the high speed image capturing and was attached to the LVDS 1/0
port of the MARS platform. Detailed description of the “FastTrack™ platform is given in the
next subsection. However, in accordance with Research Collaboration Agreement and associ-
ated NDA, it was not possible to utilize the developed segment specific processors (IP-cores
of 3D vision and object tracking algorithms) in this thesis without a written permission from
all of the above oreanizations. Therefore, some relatively simple-video processing algorithms
have been used (in a form of [P-cores) for test and verification purposes. These algorithms
and their implementations are also described in the following subsections. The overall setup
of the experimental platform and peripherals is shown in the Figure 9.1.

The overall structure of experiment consists of capturing sterco images, followed by pro-

cessing. Processing algorithms consisted of Sobel edge detection, colour intensity, image

209

inversion and image histogram generation. Following the processing, the results of the pro-
cessing are displayed on 4 video outputs simultaneously.

In order to test temporal partitioning setup each of the processing cores designed into
separate SSPs from VHCs. VHCs consisted of the algorithms mentioned above with several
variations each. Variations included area avoidance, levels of algorithm parallelism, video
display ordering, and image resolution. Following subsections describe each of the algorithms
and their variations in detail.

The second set of experiments concentrated on the aspect of performance evaluation and
cost-¢ffectiveness of an RCS employing TPM. For this purpose a different set of tools were
used that performed timing & power estimation, while covering a broad range of FPGA de-
vices. Based on the obtained results the cost-performance analysis was done and cost-per-logic
evaluation was performed for devices to identify the most cost-effective solutions for TPM.

For these experiments a highly parallel VHC stream processing corﬁponent was designed.
It involved a highly parallel input of two 128 bit vectors that underwent several mathematical
manipulations (e.g. multiplication, addition/subtraction, bit shift) and an output from the sys-
tem. All operations were pipelined, and after the initial delay produced a result on every clock
cycle. This VHC was used in parallel with other VHCs to form an SSP that was compiled
and tested for various devices, For these experiments, besides the MARS platform which ran
some of the generated SSPs, the Xilinx XPower Analyzer was used for’power calculation on
a broad range of different devices and frequencies. Xilinx ISE Timfng Analyzer was used for
obtaining the result of time analysis for the experiments. e ‘

Next subsections present details of the experimental setup and the ex{)eriments*that were

conducted throughout the research work.

210

{ rowdcolo camerao X Row0Colo cameral X Row0Coll Camerad X Rowocol1 cameral) ... { Row479 Col639 Camera1)

Figure 9.2: Bayer Pattern of Stereo Camera and Readout Data Organization

9.2.1 Stereo Image Capture Platform

Stereo image capture platform that was used in experiments is shown in Figure 9.3. It was
developed in ERSL lab and was part of the “FastTrack™ project. It is capable of taking stereo
images at 5 ms intervals (200 fps) by a system request, or by providing constant stream of
images along with the synchronization signals (e.g. slave/master modes). Resolution of a
single image is 640 x 480 pixels. Each pixel has 8 bit colour depth arranged in a Bayer patiern
format as shown in Figure 9.2. Data provided to the MARS platform from two cameras is
arranged in a form of row and column addressing with an output of two bytes per address.
Iiach byte represents a pixel value from the two image sensors. The data from both sensors
is saved simultancously into one of the SRAM banks. Upon completion of capturing the
SRAM bank contains two images which are used by the consecutive processing SSP cores.
At the final step of the capture the SSP core 1s signaling to the configuration manager to
reconfigure the FPGA with the next SSP. At this point FPGA is reconfigured with the next
SSP core in the schedule with the knowledge of the image location in SRAM. Several different
SSPs were created that differ in the image location on SRAM banks, in case of different

memory configurations.

9,.2.2 “Fast Track** Platform

One of the application of MARS platform was a project related to space application. “Fast
Track” project involved tracking objects at speeds of 200 fps. The requirement was to create
a fully embedded platform, which would perform run-time tracking of objects. This project
was done based on the requirements presented by the MDA Space Missions, which provided
funding for the project along with the Ontario Centres of Excellence.

Throughout the development of the project three versions of the “FastTrack” platform
were decided and they are described briefly in this section. In order to visually track objects
it was devised to use stereo image approach. Stereo images are used to extract disparity
information and, then, to provide the depth information about the surrounding environment.
This information is passed to the object extraction module which identifies the object based
on the original model. This information about the object identity is sent to the object tracking
algorithm which performs prediction and tracking of the object. For this purpose, all of the
“FastTrack” platforms include a pair of image sensors.

First platform was developed as a prototype and utilized only 30 fps image sensors. This
in turn allowed to use only one LVDS interface. In order to transfer both image streams of
data over 8 bit data bus, these streams were multiplexed. Multiplexing was done at twice the

speed of operation with the overall bandwidth of:

-

8bits/ pixel x 640pixels x 480lines X 30f ps X 2images = 147.456Mbits/sec

Transfer data is in the raw format and represents an image in Bayer pattern. Similar for-

mat is also present in both consequent versions. The second and third version of the “Fast-

" Track” platforms include image sensors with 200 fps performance, which translates into a
5 s

much higher bandwidth of: ’

8bits/ pixel x 640pixels x 480lines x 200f ps X 2images = 983.04Mbits/ sec

212

b g
oy
o1
-
>
-
g
-

Figure 9.3: “FastTrack™ Stereo-Vision Platform.

This required to expand the communication bus to 16 data bits, and to a second [.VDS
interface to the MARS platform. For this purpose an expansion card was built and attached to
the VME expansion bus. The final version of the platform, which is shown in Figure 9.3,was
capable of capturing stereo images at ~ 200 f ps and synchronously upload them to the MARS
platform [19]. The advantage of using MARS platform is in its capability of run-time mode
adaptation.

Since MARS supports both spatial and temporal partitioning and reconfiguration, it pro-
vides a unique opportunity to change modes of operation as soon as system would detect re-
quirement for such change. Considering the Space applications, image processing algorithm
requirements can change rapidly based on the light exposure. So the system can be imple-
mented to use the temporal partitioning. Operation of temporal partitioning performs capture
of several frames at 200 fps. and then reconfigures to perform processing operation. Process-
ing could be done in one or several cores. The number of processing cores mostly depends
on the complexity ol processing at a particular instance of time. Scheduling and processing
cores can vary during the system operation. Based on these capabilities the MARS platform
presented a unique opportunity for development of systems for Space application with vari-

ous capabilities, as shown by “FastTrack™ project. One of the important factors why MARS

213

Edge Left Right Image
| Detection : | Intensity

L)

Stereo ' =y N MARS }
Camera | Platform |

Figure 9.4: Photo of the Experimental Setup with MARS Platform, “FastTrack™ Stereo-
Camera, and 4 L.CD Displays

platform architecture is especially beneficial for “Fast Track™ project is the lfault tolerance.
Because the target platform is oriented for Space application the effects of cosmic radiation
must be considered. As it was mentioned in Chapter 4, fault tolerance can be achieved by
loading a test SSP into an FPGA to verily its integrity. For the experiments in this work the
images received from the “Fast'Track™ stereo camera were passed down to several image/video
processing algorithms. The complete experimental setup is shown in Tdgure 9.4. In the next

three subsections these algorithms are described in more detail.

9.2.3 Results and Verification of Workload

As was mentioned in Section 9.2 a special set of SSPs had 1o be designed for verification of

the above experimental setup. This workload should test the complete system including:
e High-frame rate capturing component.
e Multi-channel parallel video-output part.

e Video-processing component.

214

These components were deployed on MARS platform with run-time TPM. For this purposes

the following algorithms have been selected due to their suitability for testing and verification

of all above mentioned components of the experimental setup:
1. Sobel Edge detection algorithm
2. Image histogram calculation procedure

3. Image colour intensity calculation procedure

The above algorithms and procedures are associated with real-time stream processing and,

therefore, easily can demonstrate correct performance of all components of the above experi-

mental setup.

In the following subsections the descriptions of these algorithms are given, as well as the

results of their implementation on the MARS platform.

9.2.3.1 Sobel Edge Detection Core

One of the image processing cores that was designed for the test experiment was the Sobel

-edge detection algorithm. It operates on the images that were saved by the stereo image

capture SSP core. Based on the algorithm described in [31], a 3 X 3 matrix of data is taken

app 4ol A2

10 -1

from an image and each of the | ;9 ay; ayp | Matrices is multipliedby | 2 0 -2 |,

azp a1 an

and| 0 0 0O |[,whichresultsin the following equation:

Sy =ap+2 X a1 +ap —ax—2Xaz —axn

P : : R=|S1+5|

© 215

St =ap+2xap+ap—-an—2xap—~ay .

1 0 -1

9.1

Iiigure 9.5: Photo of the Original Captured Image and Image after Processing on Sobel Ldge
Detection SSP Core

In the third line of equation 9.1 the partial sums S; and $> are added together and the ab-
solute values ol the answer is saved into a new image. This operation is done over the whole
image. Because it operates with stereo images, the processing algorithm is duplicated and,
therefore, allows processing in parallel. This SSP was implemented in several variations by
calculating Sobel edge detection algorithm on images in parallel, and in series. The first vari-
ation obviously provides lower latency, while the second saves area, and could be generated
for a smaller size logic device. Upon completion of the processing, a request is sent to the
loader/scheduler for the next SSP. Figure 9.5 shows the result originally captured image and

the image processed with the Sobel algorithm.

9.2.3.2 Image Histogram Calculation

One of the algorithms that was designed for image processing was a run-time histogram cal-
culation. Histogram calculation is used in many digital cameras nowadays and performs a
function of displaying a graph of the light intensity distribution. This algorithm requires three
steps, which have to be done in sequence, due to the algorithm’s sequential nature. It is needed
to go through the whole image and record the intensity of every pixel to the intensity array

counter. Since pixel intensities are fixed (o 8bit resolution there are 256 intensity levels. The

216

Figure 9.6: Photo of the histogram image processing SSP core

next step of operation is to scale the histogram to adapt the results to the screen. Since the
resolution of the screen is 640 x 480, the vertical histogram value had to be adjusted to 480
pixels. Therefore, the overall formula of transformation of each intensity level is:

Current intensity
MAX intensity counter

x 480 Modified intensitylevel (9.2)

At the completion of calculation there are 256 cells, each representing a level of the in-
tensity. These levels have to be represented in the form of a graph which is done by the next
step. Since there are only 256 levels and the maximum horizontal resolution is 640 pixels,
cach bar representing a single level 1s stretched to 2 pixels in width. The final image 1s formed
as a series of vertical white bars and stored to the SRAM as an image. This is done so that the
video display core would be able to read it as a video frame without any additional processing.
Example of this image processing can be segmented even more and these three steps can be
saved in three separate SSP cores. Iigure 9.6 shows the result of histogram image processing
of the original image [rom the previous figure.

As in previous SSP cores, the following step is to request reconfiguration with the next

SSP core [rom the configuration loader/scheduler.

Figure 9.7: Photo of the Original Captured Image and Image after Processing on Image Inten-
sity SSP Core

9.2.3.3 Image Colour Intensity

The purpose of image colour intensity algorithm is to display the intensity of an image by
different colour representation. Algorithm scans an image and based on the intensity of each
pixel, assigns an appropriate colour. The image data is read from the SRAM bank that was
assigned as a source location. After pixel is read it is compared to the look-up table and a
new value from the look-up table is saved into the corresponding image located at a different
SRAM bank location. Figure 9.7 shows the originally captured image and the image processed

with the image intensity algorithm,

9.2.4 Results of Experimental Setup Verification

The purpose of the experiments was to verily the methodology of temporal partitioning [or
a stream processing application and perform the power and timing analysis. Temporally par-
titioned SSPs described in the previous sections were execuled on the MARS plattorm. All

of the SSPs performed on the images captured in run-time by the “FastTrack™ sterco-camera.

218

This image data was used by SSPs to perform data processing'and temporal storage of pro-
cessed data. Final SSP core has displays the processed images on 4 video outputs simultane-
ously. Whole operation takes about ~ 110ms and upon completion is ready for next cycle.
Therefore, the verification stage has been successfully completed including verification of
the proper functionality of TPM deployed on the MARS platform. The obtained performance
parameters were registered and included in the Appendix B. Since these SSP corés were ori-
ented only for functional verification, they did not occupy a substantial area of the FPGA de-
vice to provide performance measurements. Therefore, specific workload components (SSPs)
based on highly paralleled stream processing elements have been developed and implemented
to obtain the quantitative parametric characteristics of the multi-stream processing platform

(MARS) with TPM.

9.3 Experimental Quantitative Performance Characteris-
tics

The results obtained from experimentation on highly paralleled VHC stream processing core
are organized in a form of tables and graphs in several sections, and are used in the analysis
section. These sections are: Logic Utilization, Power consumption, Timing results, and Bit-
stream compilation timing. These results are from experiments conducted on large SSPs that

were assembled from the VHCs described below.

9.3.1 Experimental Workload: Highly Para]]eled Stream Processors

As was mentioned i in mtroductmn to this chapter, stream processmg VHC was demgned to
perform parallel computation on two 128 bit data vectors Since the de51gn is hlghly parallel
it requires a significant amount of loglc and routlng resources. Due to that, it is 1dea1 for

testing the resource utilization, power consumption, and timing on various FPGA devices of

1219

Virtex 4 LX family. The reason why LX family was selected for the MARS platform was that
FPGAs of LX family have mostly homogeneous micro-architecture (consists of configurable
logic and do not contain any of the embedded PowerPC hard cores and many DSP slices).

The test involved joining several of the VHC cores in parallel into two and four of
these VHC to form the associated SSPs. These SSPs were generated into bitstreams for
XC4VLX40, XC4VLX60, XC4VLX80, XC4VLX100, XC4VLX160 devices with a pack-
age size of FF1148. Since results can vary for the same FPGA size with a different number of
available I/Os, the analysis was done on the same package of the FPGA devices to keep fair
evaluation. The experiments were not conducted on XC4VLX25 and lower devices for the
reason that the VHC (even as a single unit) in SSP could not be generated for this device due
to the lack of sufficient logic.

In addition, power analysis was conducted for all of the generated cores by the Xilinx
XPower Analyzer. For every single SSP core the performance analysis was done based on
three operating frequencies: 5S0MHz, 100MHz, and 200MHz. Power reading was recorded as
a quiescent power, dynamic power, and total power. For the analysis of cost-performance the
timing results were obtained from Xilinx ISE Timing Analyzer. Results consisted of worst
case data-path delays, as well as, worst clock to destination latencies.

To compare utilization of logic resources, they were recorded and p}esented in analysis
section. Captures of post-routed diagrams were obtained using Xilinx FPGA Editor image
and attached in the Appendix B of the thesis. The place and route times were also recorded
and their quantitative analysis confirmed the currently growing problem of increasing of bit-
stream compilation times as the size of FPGA increases. These findings further support the
use of TPM approach It should be noted that because all of the SSP core compllanons were
performed on the same i’C 1;1]8)7 can be compared together PC spcc1ﬁcanons were: Intel Core

2 Duo Eéé()() 24 GHz processor, 4GB RAM All compﬂanons were done usmg Xilinx ISE

“220

Table 9.1: Logic Use in 4-LUTs per Each Device for Single, Dual, and Quad VHC SSPs

XCAVLX40 | XCAVLX60 | XCAVLXSO | XCAVIX100 | XCAVLX160 | Average | Logic Per VHC
Single VHCSSP | 1414 . 1414 . . 1614- - 1414 ... 1414 . - 1414 *5 - 1418 ©
Dual VHCSSP | 19238 20121 20099 20240 19996 19939 9969
Quad VHC SSP | Can't FIt T~ Can't FIE = . 57375+ . 57534 v » . 57497 T 57469 2" 14367 "

Table 9.2: Logic Use in 4-LUTs per Each Device for Single, Dual, and Quad VHC SSPs

XCAVLX40 | XCAviX60 | xCavixso | XCavix100 | XCaviX16G | Average | Signals Per vHC
Single VHCSSP | _ 6326 - . 6326 6330 ... 6330 6330 6328, . 6328 . |
Dual VHCSSP | 34647 34875 34867 35026 34707 34824 17412
Quad VHCSSP [Can't FIL ™ Can'tFIt - 91535 = = 91777 T o193 ™" 91668 7 = 22917 77"

Design Suite 10.1 with all the latest service packs applied. Next sections present the results of

the experiments and then presents the discussion of these results.

9.3.2 Logic Utilization

In first series of experiments with SSPs that incorporated Single, Dual an(d’Quad VHCs are
described in previous section. The amount of logic and signals (routing resources) utilization,
have been recorded post place & route. Results are shown in Tables 9.1, 9.2,

In these tables the number of 4-LUTs and signals used were almost the same across all
devices for the same type of SSP. However, when the average is divided by the number of
VHCs inside an SSP, the resulting number is not the same and it is increasing. It should be
noted that for a single VHC configuration the resource and signal use is disproportionally
. smaller in comparison to Dual and Quad implementations. This fact fs due to th;: use of
embedded DSP slices first, prior to use of logic resources, which do not require much of
routing or any of extra logic. In Quad VHC configuration XC4V1X40 énd XC4VLX60, the

devices did not have sufficient amount of logic and signal resources to be able to fit such an

221

Figure 9.8: FFloor Plan for Post Place and Rout of XC4VI.X80 with Quad VHC Core

SSP, therefore results were not obtained. As can be seen from FPGA floor plan in Figure 9.8,
Quad VHC SSP core occupied almost the entire XC4VILX80 device.
Floor plans of all the other combinations of Single, Dual, Quad VHC SSP cores are in-

cluded in the Appendix B for reference.
9.3.3 Power Consumption

The next series of experiments were focused on the power consumption data for the same
set of SSPs. The power consumption was divided onto quiescent (static) and dynamic power.
Power consumption was computed for three different frequencies: i) SOMIz, ii) 100MIz, and
ii1) 200MI1z.

The Tables 9.3, 9.4, and 9.5 present the results obtained after running the power analysis
tool Xilinx XPower. Results consisted of quiescent power. dynamic power, and total power.
As in the previous section, the experiments were conducted on the SSP containing Single.

Double, and Quad VHC SSP cores.

222

Table 9.3: Power Consumption (Watt) of Single VHC SSP Core Operated at SOMHz,
100MHz, and 200M1z

Quiescent Power Dynamic Power Total Power
SOMHz 100MH: Z00MHz | SOMMH: 100MMz 200MMz | SOMHz 100MHz 200MHz
XC4VLX40 | 0.584 C.655 0.880 1.556 3.270 ésoo 1 2.23¢ 3.925 7.350
XCavixso | 0670 0775 1180 | 1690 3340 6610 | 2360 4115 7.7%
XC4VLXB0 | 0.770 0.910 1.400 1690 3.338 6.610 2.460 4248 8.010
xcavixi00 | 0522 1278 1875 | 1727 339 6700 | 2649 4668 87
XC4aviX1eo | 1.123 1419 2.4%0 1.748 3.409 6.712 | 2.871 4.828 9.202

Device

1.000 R.000
2.500 , 7000 W e - S
6.000
2 000 -
= £ 5000
£
i 1.500 o jd 00O
E e 1.000
1.000
2000
0500
1.0
0000 0 D00
XCAVEXAD XOCAVIXAOD XCAVIXAD XC4VIX100 XCAVIXI60 XOAVAXAD XCAVIXRO XCAVIXED XCAVIX100 XCAVIX160
(A) (B)

Figure 9.9: Quiescent (A) and Dynamic (B) Power Consumption (Watt) for a Single VHC
SSP Core Operated at SOMHz (Blue), 100MHz (Red), and 200MHz (Green)

Table 9.4: Power Consumption of Dual VHC SSP Core Operated at SOMHz, 100MHz, and
200MHz

o Quiescent Power = Dynamic Power
e ' i 2 e .

» SOMH:_100MHz_ 200Mia | SOMM: _100MHz _200MHe | SOMHE _100MH:
XCaviXao | 0594 0683 0990 1 7560 2516 4490
XCavixs0 [0680 0805 1242| 18%0 3.730 74“" 2570 4535 8652
XCAVLXS30 0.791 0.966 1587 | 1931 3.808 7.540 2722 4774
xcavixio0 | o947 1199 1985 1965 18S9 7627| 2912 5058 9.
XCAVLX160 | 1158 1527 2490 1982 3867 7610 3140 5394

Total Power

1.000 9.000
| 8000
2500 " T = r—— s
ot 7000
2.000 o 5 6.000
H ~ g
} 1500 - “"““’
! — '£ 2000
—/
1.000 ;______// 3000
! 2000
0500
1000
0.000 0.000
WANYSO XCAVIXAD XCAVLRD KOV X100 XCav 18D ! WaVIXSH XCAVIXRH XA LRD XAV X0 xravi X' /)
(a) (8)

Figure 9.10: Quiescent (A) and Dynamic (B) Power Consumption for a Dual VHC SSP Core
Operated at SOMHz (Blue). 100MI1z (Red). and 200MHz (Green)

223

Table 9.5: Power Consumption of Quad VHC SSP Core Operated at 50MHz, 100MHz, and
200MHz

Quiescent Power Dynamic Power Total Power

| SOMHz 100MHz 200MHz | SOMH: 100MHz 200MHz | SOMHz 100MHz 200MHz
XCAVLX40 Can'tFit Can'tFit Can'tFit CantFit Can'tFit CantFit Can'tFit Can'tFit Can'tFit
XCAVLX60 | Can'tFit Can'tFit Can'tFit | Can'tFt Can'tFit Can'tfit | Cantfit Can'tfit CantFit
XCAVLX20 0.854 1.163 1.587 2.687 5312 10530 3,541 6.475 12117
XC4VIX100 | 1034 1489 1985| 2717 5354 108600| 3751 6843 12585

Device

XC4VLX160 1.289 1.992 2.490 2.770 5.433 10.730 4.059 7.425 13.220
1.000 12 000
2500 10000
2.000 ~yar 2000
g ’/‘"’ -
§ 1,500 e ~ = _' 6000
— = - ~
1.000 / © a.000
0.500 2.000 ———
[LRE LU .o
XCAVIXERO XCAVIXTOO0 XCAVI X160 XCAVLXBO XCAVLX 100 XCAVLXIBO
(A) (B)

Figure 9.11: Quiescent (A) and Dynamic (B) Power Consumption for a Quad VHC SSP Core
Operated at SOMHz (Blue), 100MHz (Red), and 200MHz (Green)

I'rom the obtained results the figures depicting the power use per device were generated.
Dynamic power consumption across all of the SSP cores on the same frequency have been
determined. However, in the case ol quiescent power, a steady increase for the same operating
cores was observed. As described in Chapter 8. the power consumption of the configuration
memory manager was not included. This is due to the fact that its contribution for all devices is
very small (maximum of 66mW in continuous reconfiguration) and does not impact the overall
result of power consumption. Power consumption ol configuration memory manager and
configuration controller was measured directly on MARS platform in continuous operation.

As in previous case of power consumption in Quad VHC configuration, XC4VI.X40 and
XC4VI.X60 devices did not have sufficient amount of logic and signal resources (o be able to

{it such an SSP. therelore results were not obtained.

224

Table 9.6: Timing Operation Results for FPGAs Running SSP with Single, Dual, and Quad

VHCs
XCAVIX40G | Max Delay Clock to Max Freg
{ns) | Destination {ns} | {MHz)
Single VHC SSP | o 6.81 "+ .22 25.94 < "o 2 146.84 5
Dual VHL 559 6.96 28572 14368
XCAVLXED | Max Delay Clock to Max Freq
{ns) Destination (ns} {MHMz)
Single VHCSS® | 703 .. 02282 - - . 14225
Dual VHC $5P 7.19 29.253 139.08
XC4VLXS0 Max Delay Clock to Max Freq
{ns} Destination (ns} {MHz)
Single VHCSSP oo 7.46 5a nesor s 2748 potox 13405 7
Dual VHC Ssp 126.26
Quad VHC SsP |77778.08 =734 23.7¢
XCAVLX100 | MaxDelay Clock to } Max Freg
{ns) Destination {ns} | (MHz}
Single VHC 58P |7« 735 vvsee -5 DB AT - - 13605
Dual VHC $SP 742 294 134.77
Quad VHCSSP [™ 7937 33817 T 126407
XCAVLX160 Max Delay Clock to Max Freg
{ns) Destination {ns} (M2}
Single VHC SSP | =754 0 ~" 2598 07 13263 ¢
Dual VHC 559 8.16 30.92 122,55
QuadVHCSSP | TTEBE T ¢ 343 11547

9.3.4 Timing Results

The goal of next series of measurements was to determine the variations of timing parameters
when running the same set of SSPs on all FPGA devices from Xilinx Virtex-4 LX family. The

following timing parameters were estimated:
1. Maximum delay of data (from pad-to-pad).
2. Clock-t&desﬁnaﬁon timing.

#

3. Maximum processing frequency which can be reached of a device executing a given

+ . SSP-core.

Tabie 9.6 shows the timing parameters for SSP cores including Single, Dual, and Quad VHC

Cores.

225

Table 9.7: SSP Cores Compilation Times for Single, Dual, and Quad VHC SSP Cores

XC4VLX160 | Compilation time

(min)
Single VHC SSP |- \ 8.5
Dual VHC S5P 24.5

Quad VHCSSP | "::58.4

From the results it can be seen that as the logic resources increase, the delay also increases.
This, in turn, decreases the maximum operating frequency for the associated SSP. At the same

time, the increase in clock-to-destination delay is even more drastic.

9.3.5 Bitstream Compilation Timing

In Table 9.7 the timing of SSP core compilations is shown. These timing results were obtained
from compilation of all of the above SSP cores on the PC with configuration mentioned in

Section 9.3.

9.4 Analysis of Results

The overall assessment of RCS perfomAlance' with TPM is discussed in this éecfion. An anal-
ysis is done to determine the devices and size of SSP cores, that are most effective. Cost-
performance analysis demonstrate which devices are most cost-efficient for thg cost sensitive
applications utilizing TPM. Power consumption analysis addresses the suitability of particular
devices used in TPM for different types of applications. The subséétion on resgurce utiliza-
tion talks about the real overall utilization of resources by large desigr;s, and problems that
* arise w%th FPGAs growing ever more in logic size. Finally, the compilation process of SSPs
is discugsefi with thc? analysis of how the size of a mohplith design greatly impacts the design

time.

226

9.4.1 Performance Analysis of RCS with TPM

For the performance analysis of RCS, the results from Table 9.6 were used. First observation
that can be made from Table 9.6 is a decrease of processing speed of in a case of increase in
size of an FPGA device. As was shown in the results section, the larger FPGA devices used
on the same SSP core, the longer is the maximum signal-to-signal delay, which reduces the
frequency of operation from 143.68MHz to 122.55MHz on a dual VHC SSP core (over 17%
decrease). This effect is intensified further for all of the devices when design becomes more
complex. This is most apparent for the large devices (e.g. XC4VLX160) where from Single
to Quad VHC SSP core frequency of operation drops from 132.63MHz to 115.47MHz. The
same effect is observed in clock-to-destination node timing, where latency increases with tﬁe
use of a larger device and increases even more with a larger design on a large device, as was
shown increasing from 25.95ns to 34.3ns (over %32 increase). This is expected, since with a
larger design it takes more routing lines to get to all of the resources.

Hence, due to these reasons, utilizing a smaller FPGA device with the use of TPM ap-
proach allows acceleration of the associated SSP execution. To compare the perfoimanéés
of small and large FPGA, one can calculate processing bandwidth of two data packets 1GBit
each ‘with the dual VHC SSP core running on a XC4VLX40 and quad VHC SSP core running
on XC4VLX160, respectively:. '

23(}
Tpramepa-scwivn = 35 128 % 143,68 x 105 =29-1ms
230 . ~
Tframequa-xconer = T 128 x 11547 108 — 102"

| 29. “
Speedup = -l-z—; = 1.59times

227

Even though number of VHCs in SSP core was doubled, the real performance increased only
1.59 times. At the same time, the cost of the target FPGA increased from $570 for XC4VLX40
to $5625 for XC4VLX160 which is close to 10 times cost increase. One can see that simply
doubling the number of smaller FPGAs can increase the cost-effectiveness by more than 6

times in comparison to using a larger FPGA:

Tf}‘amegmd_xc4yunﬁo X CXC4VLX160 _ 18.2 X 5625

Tsramepyg1_xcavixa T B1yx2%570 =6.17
s X2 xCxcavixao 2

Cost Per formanceincrease =

"(9.3)

By the same token dividing a large design into several smaller designs and processing
them with the notion of TPM, greatly benefits the cost-performance of a system. An obvious
argument for this solution is that a design can be constrained to a particular area of a large
device in order to achieve similar performance results as in smaller devices. However, this
is not possible in most cases'due to physical I/O restrictions of the device. In general, the
performance on the critical path delay can be optimized. However, when a large design is fitted
into a large FPGA consuming 85-90% of ‘a_vailable resources cqmplexity of routing doesn’t
often allow reaching the same level of performance as for smaller designs in smaller FPGAs.
Reduction of resource utilization in a large FPGA drops the cost—e;fﬁéienéy for such designs,
as was discussed in previous chapters. '

All aspects of the desigp should be evaluated, not only the IP-core synthesis, and the

following sections explore that approach.\

9.4.2 Cost Performance A‘1_1.aly~si‘s of Different FPGA Devices

In Chapter 5 the cost-performance ratio was discussed and evaluation of the cost of 1K 4-

LUTs per each device was done, as shown m Table 5.1.. When it comes down to the actual

228

Table 9.8: Cost in $USD per VHC for Single, Dual, and Quad VHC SSP Core Configurations
Across a Range of FPGA Devices

| XC4VLX40 | XC4VLX60 | XCAVLX80 | XCAVLX100 | XC4VLX160 |

Single VHC SSP 19.80 25.45 24.04 36.76 49.49
Dual VHC SSP 134.67 181.09 170.84 263.12 349,93
Quad VHC SSP No Data No Data 24384 373.97 503.10
600 00
500 00
40000
? 300.00 g
8 Dual
20000 o Z= Quad
///—-.———
100 00
0.00
XC4VLX40 XCAVLXED XCAVLXSD XCAVLX100 XC4VLX160

Figure 9.12: Cost-Effectiveness per VHC of Different FPGA Devices with Single, Dual, and
Quad VHC SSP Cores
evaluation of the cost of the VHC in different configurations on a whole range of devices it
evaluates in $/VHC core, as shown in Table 9.8.

FFor better visual representation, the costs are plotied on a graph, shown on Figure 9.12.

The data in the table and graph show that the most optimal and cost-effective device, on
which Dual and Quad VHC SSPs can be generated. is XC4VI.X80 since it the minimal cost
per VIHC. This cost is lower than that of XC4VI.X60 and occurs on the graph at a point just
before the cost per 1K 4-LLUT goes up significantly. As was mentioned in other sections, it
should be noted that the results for a single VIHC SSP should not be taken in account, since
in the beginning of place and route DSP slices of device are used. and logic resources are noi
utilized significantly. Due to that reason. one Dual and Quad VHC SSP core configurations
have been considered.

The analysis of cost-elfectiveness ol obtained results now proves quantitatively what was
proposed in Chapter 5. Results verily that utilization of a smaller device may be more cost-

effective if it is considered in $ per IK 4-L.UTs orin $ per VHC.

5 /
- *
E 4 -
g g SinrgIE
3
-9
— i~ Dual
i el
» -— e Quiad
2 T
1
ol , . , ,
XCAVLX40 XCAVLX60 XCAVLXBD XCAVIX100 XCAVEX160

Figure 9.13: Power Consumption per VHC for Single, Dual, Quad VHC SSP Configurations

9.4.3 Analysis of the Power Consumption

Power consumption results have to be considered as one of the very important factors in the
evaluation of system architecture. For the analysis of power performance Tables 9.3, 9.4, 9.5
and Graphs 9.9, 9.10, 9.11 are used and will be referred to in this sccﬁon. The results of the
Figures 9.9(B), 9.10(B), 9.11(B) show that dynamic power consumption is the same across all
of the devices with the same number of VHCs per SSP. This fact holds at different frequen-
cies of operation. If two functions utilize similar amount of resources the power consumption
would be similar. However, the quiescent power (as seen in Figures 9.9(A), 9.10(A), 9.11(A))
increases linearly with the size of device. This can be explained with the fact that a larger
device contains more logic and, thus, more static power drains in comparison to a smaller
FPGA device. It should also be noted, that the increase of quiescent power is relatively in-

significant and is measured around 10% for most of the scenarios going from single to quad

~ * VHC SSP core.. These results also reveal that overall power use per VHC drops as more VHCs

are packed into an SSP. This is an expected result, since initial power drain of the device is
spread over the VHCs that occupy FPGA device. This aspect of power consumption is shown

in Figure 9.13.. -

230

The Figure 9.13 also shows that power consumption per VHC for Single VHC per SSP is
different from Dual VHC per SSP configuration. This effect is greatly diminished when Quad
VHC SSP. This leads into the conclusion that there is a balance between power per VHC and
size of the device. Because a mid-range FPGA device, such as XC4VLX80 is tightly packed
as shown in Figure 9.8, it can utilize most resources and, therefore, minimize the power use
per VHC. All of these outcomes comply with the measurements done on the temporal video
processing cores. Results of these measurements are attachéd in the Appendix B of this thesis.

To summarize the power analysis, several cénclusions are drawn regarding the device se-

lection:

1. Design of the same size ran on different sized FPGAs use the same amount of dynamic

power, however, devices of smaller size use much less quiescent power.

2. Smaller devices have much smaller increase of quiescent power with the increase of
frequency of operation (e.g. 0.59W to 0.99 W for XC4VLX40) in comparison with
large devices (e.g. 1.15W to 2.49W for XC4VLX160). This can be attributed to the
fact that on larger device more logic is leaking static power. This further enforces the

advantage of smaller FPGA devices with TPM architecture.

Hence, for power critical solutions smaller devices may be a better choice. On the other
hand, power effectiveness of smaller or medium devices strongly depends on the number of
VHCs per SSP loaded to FPGA. In other words, if SSP occupies most of FPGA resources and
contains as much functionality as possible, the power effectiveness will reach its maxiniin;x.
This is another motivation factor for development of the CAD tool which allows optimization
of SSP architecture. This CAD tool (described in Chapter 7) allows to select and paék the
SSP to utilize FPGA device as much as possible while balancing the power consumption by

distributing different types of VHC across different segments.

231

9.4.4 Analysis of Resource Utilization

One of the important factors to be considered in evaluation of effectiveness is the resource uti-
lization of the system. For this analysis the data acquired from compilation of single, double,
and quad VHC SSP, presented in Tables 9.1, and 9.2 was used. As it was demonstrated in
the Section 9.4.1, the larger the design the lower is the performance. The same is true for the
resource utilization. By examining complex designs of Dual VHC SSP and Quad VHC SSP
an interesting fact is revealed: resource usage per VHC core is not the same. As shown in the
tables both required 4-LUTs and number of signals per VHC increases as the design becomes
more complex. Furthermore, if evaluation is conducted on a cost-per-VHC basis, the results
become even more advantageous for the TPM approach and a smaller FPGA. By using 1K

4-LUT costs from the Table 5.1 following comparison of VHC costs can be made:

CVHCDM—XC4VLX4O = 9.969KLUT X $18/KLUT = $179.42perVHC

CVHCDW-XC4VLX160 = 9.969KLUT X $35/KLUT = $348.91 perVHC

CviCpug—xcavixiso = 14.36TK LUT x 35K LUT = $502.85 per VHC

In the case of dual VHC SSP, implemented on XC4VLX40, the cost is $179.42 per VHC
core, and when the design is placed on the XC4VLX160, the overall cost almost doubles due
‘ to higher per 4-LUT cost of the larger FPGA. Op the other hand, when the quad VHC SSP is

used, the cost per VHC g§cs up to $502.85 per VHC. Overall, these results show that for cost
‘sensitive applications can l}@ produced a lowér total cost by exploiting smaller or mid-range

devices from the same FPGA family. .. .

232

9.4.5 Analysis of Compilation Process

Last but not least compilation time of the designs should be looked at, since it is becoming a
more and more pressing issue for most of the companies in the industry. Compilation times in
Table 9.7 show the alarming tendency, of compilation time increasing almost proportionally
with the amount of resources used. By taking the amount of 4-LUTs utilized for the Dual or

Quad VHC SSP core and the time it takes to perform place and route can be computed:

. 24.5min min
TIML’/LUTDMIVHCSSP = m = IZSM
58.4min min

Time/LUTQuadVHCSSP = m = 102m

With a large design occupying whole 160K 4-LUTs of XC4VLX160 it will require
160min = 2h40min of compilation time for a single core of a completely unconstrained design.
If constraints are present, this time can increase 5-10 times depending on how many cycles of
re-routing have to be performed. With the latest Virtex-6 XC6VLX760 offering 759K 6-LUT's
the compilation time would increase to at least ~ ?§Omin = 12h30min, which is not a reason-
able time for a “rapid” digital design. Hence, the cost of overall system increases even higher
due to the cost of the place and route time of the design. This also supports TPM approach
which stresses utilization of smaller devices of size where recompilation has to be done only
on, the single segment component and not on the whole design. This way, if a design that
was divided into 10 segments processed on TPM platform, requires a modification in one of
the segments, it would need only tenth of the compilation time in compad§;)n to a monolith
design. Therefore, the further tendency of increasing the on-chip FPGA resources keeping
methodology of monolithic (ASIC-type) design will dramatically increase instrumentation re-

sources and cost.

233

9.5 Summary

This chapter presented the set of experiments that were designed for the verification of the
TPM, as well as quantitative evaluation of the FPGA devices with different configurations of
VHCs in SSP cores. TPM operation was verified with several video processing cores operating
on captured stereo images. The successful tests prove that not only three or four but many more
processing cores can be requested by the embedded system itself, hence, giving the system the
capability of run-time architecture-to-task adaptation. Results of tests of multiple VHCs on
SSP core showed an overwhelming support for use of small to mid-size FPGAs with utilization
of TPM approach. Benefits of utilization of small to mid-size devices were shown in power
consumption, specifically in quiescent power, speed of processing, and resource utilization.
At last, the analysis of place and route time showed, that when large designs are used the
modification/recompilation task cannot be performed as fast and effective as it can be done on
mid-size FPGAs.

Described experiments demonstrated and proved the effectiveness of temporal partitioning

of run-time reconfigurable computing resources using small/mid-size FPGA devices.

234

Chapter 10

Summary

10.1 Summary of Research

Recent ch;emges in the area df high-performﬁncc compuﬁﬁg systems and their application are
the major motivation for the ;*esearch of dynamically reconﬁgurglble and adaptive compute{rs.
The proposed research focuses on one of the most promising directions in this area of research
- dynamically reconfigurable systems with temporal partitioning of homogeneous logic, rout-
ing, and memory resources. The approa:ch of temporal partitioning of FPGA resources is not
nev:/. However,’ pre;iousiy the main advantage of this approach was considered to be an ability
to execute tasks that required much more computing resources than an FPGA device could
| provide. This approach was motivated by limited résourc;:s that FPGA vendors provided a
decade ago. Nowz;days,.thc advances in process tcchnoiogies allowed to increase on-éhip
FPGA resources by many orders of magnitude, so now otﬁer aspects of tem;;oral partitioning
can be exploited. MaJor aspects are potential virtualization of computmg resources and dy-
namic synthe51s of processmg data—paths by large macro-operators associated w1th hardware
1mplemcntat10ns that form processmg algonthms Thexﬁrst aspect of virtualization of com-

puting resources is smnlar to virtualization of memory in conventional computers It became

possible because of homogeneous nature of logxc and routmg resources in FPGA dev1ces,

235

making possible the utilization of the same logic and routing resources multiple times. The
dynamic synthesis of data-paths potentially can provide the system with very high flexibility.
The flexibility means run-time adaptation of computing architecture to different changes in
task algorithm (e.g. change for the mode of operation), as well as rapid recovery from the
hardware faults. All these aspects, as well as the understanding of changes in the field and
potential benefits of novel technologies have motivated this rescarch:

It was clear from the beginning that there are several problems that must be solved before
getting a first working prototype which can utilize the concept of virtualization of comput-
ing resources with the existing FPGA technology. Solving these problems became the main
objective of the proposed research. First of all, there was a need for a methodology for high-
level (architectural) synthesis of virtual hardware components that became the component
basis for data stream processing, according to complex functions - macro-operators (MOs).
Addressing this issue would allow to compose of application specific processors (ASPs) from
pre-compiled hardware modules, andl to program using macr&-functions. However, fhc real
life constraints, of logic resources, power, timing and area siéniﬁcantly complicate the ASP
synthesis. It is necessary to consider multiple constraints to optimize the requested perfor-
mance parameters and to do that in relati;r’el& short time. Another problem is the sensitivity of
SRAM based FPGA devices to radiation el;fects and frequent hidden m'anufacturing defects.

The mechanism of fault 1dent1ﬁcat1(>n and mitigation was considered from the aspect of
run-time reconfiguration of FPGA w1th modlﬁcanon of ASP archltecture The CAD software
& provides an ability to do task programming using the macro-functions snynlar to object ori-
ented pr;)gramming in Iﬁgh-level graphical form. Thig .software; part would contain certain
CAD support to conduct proper segmentatlon of pmgrammed task algonthm and perform
sﬁmthesm of segment spemﬁc processor (SSP) while bemg optmuzed in the above mennoned
mulu-paramemc constramt space. Both had to be 1mplcmented ina forrn of platform prototype

iyt

| and assocxated CAD tool and verlﬁed The self-restoratlon mecha.msm which would provxde

- 236

mitigation from transient and permanent hardware faults in platform FPGA also expected to
be developed and embedded to the above platform prototype.

As the result of the research presented in this thesis, all of the above problems have been
successfully solved and the methodology for synthesis and design of cost-effective dynami-
cally reconfigurable computing systems with temporal partitioning of computing resources has
been completely developed and tested. The main contributions of this research can be divided

in theoretical and proof-of-concept contributions as described in detail in the next section.

10.2 Contributions

Contributions of this work are described on a per chapter basis. Since Chaptérs 1 and 2
introduced the computing architectures and reconfigurable computing, the contributic;ns begin
thh the introduction of architectural orgamzatlon in Chapter 3. |

Chapter 3 proposed a novel approach to the design of TPM architecture, mcludmg ar-
chitectural organization of pipelined and non-pipelined architectures for support of the TPM
mec;hanism. The methoaology of architectural design of a configuration controller also was
proposed and developed. ’I'he; architecture of TPM has been presented and published in several
conferences and journal publications [58], [51], [54]. “

Chapter 4 covers the fault tolerance aspect of the reconfigurable systems and proposed
novel mitigation algoritilm, that allows run-time recovery from transient and permanent faults.
T»;o novel methods for run-time mitigation faults in FPGA systems with SRAM configuration
mémory were proposed and developed. Both methodsJ utilize the concept of area avoidance.
The ﬁrstmmethod operates oﬁ the response froxﬁ the previoﬁs diagnostic IP-core. It performs
scrubbing or loads an Il;"core from’ the library that performs similar(operation and avoids the
faulty area. The second method provides a recovery from permanent faults w1th or without
functional degradatlon by sequential reconfiguration of a set of IP-cores These methods were

published in the Journal for Spacecrafts and Rockets [50].

237

Task segmentation was introduced in Chapter 5. The notion of cost-effectiveness of RCS
with TPM was presented with methodology of its evaluation based on system components.
This chapter also showed that design of a TPM system has to be balanced and reflect the per-
formance requirements in order to achieve the most cost-effective architecture. Methodology
for evaluation of cost-effectiveness of RCS with TPM was presented in the conference and
published in conference proceedings [52].

Chapter 6 presented a novel methodology of creation of Virtual Hardware Components
(VHCs) from Macro-Operators that were in turn composed of elementary operators. Ma-
jor contribution of this chapter was development of the method for generation of a VHC set
from an Architecture Configuration Graph (ACG) and ACG pruning. Creation of the VHC
set is done by variation in resource binding and scheduling, which produced a diversity of
VHCs with different performance pérameters. By'identiﬁcation of multi-parametric restric-
tions, ACG tree is pruned to result in a limited set of VHCs associated with the same macro-
operator. It was shown that set of VHCs that were arranged in ascending or descending order
for each parameter provide an efficient method of selection the optimal vartant. Methodolo-
gies described in this chapter were published in journal and conference publications [51],
[57], [58]. o |

Chapter 7 proposed a novel methodology for synthesis of a set of Seément Specific Proces-
sors (SSPs). The methodology involved generation of SSPs optimized over several parameters
ofa éiven algorithm/tasic. Task segmentation is main steps were cm}ered, such as: assignment

of dependency ‘relaiti‘on to each of the MOs in the sequencing graph representing a task, MO
selection methodology and creation of sub:ACG graphs !whichf"x"esult in the composition of
SSPs. f)ependjng on the pmaﬁetﬁé constraints, segmént’éftion xﬁéy vary reslllﬁng in different
éSP coxiipésitions. All of the proposed algorithms from this éhaﬁier were imp]eirienfeci in the

GUI appiication that performed automatic seginentation of the created sequenc'ing‘ graphf ~

1

238

Chapter 8 presented contribution of hardware and software implementation towards this
work. Hardware and software were specifically developed, implemented and debugged for
verification of the methodologies in this work. Chapter 8 described in detail all components
of the Multi-stream Adaptive Reconfigurable System (MARS) and the reasons why they were
selected for implementation. The implementation of the CAD tool for task algorithm segmen-
tation and synthesis of SSP set is described with associated SPC GUI software. This chapter
also described in detail the hardware architecture for the temporal partitioning of RCS that
executes SSPs and its building blocks. Implementing of TPM platform and associated de-
veloped software were presented in several workshops (SVAR 2007, 2008), and published in
conference and journal publications [52, 56], [55], [54].

Chapter 9 deal with experimental portion of this research. Specific experimental setup
was developed for the series of experiments and for the verification of the TPM. Quantita-
tive evaluation of the FPGA devices with different configurations of VHCs in SSP cores was
done. This chapter also presented analysis of the obtained results, and based on the analy-
sis concluded with recommendations for the design "of TPM architectures. Experiments have
proven the methodologies and concepts. Results of multiple VHCs on SSP IP-core revealed
an oiverwhelnﬁng“support for the use of smaller to mid-sized FPGA’ with utilization of TPM
approach. Benefits of using smaller to mid-sized FPGAs were in power consumption, specifi-
cally in quiescent power, as well as, in speed of processing, and resource utilization.

Overall, the obtained results have proved the proposed methodology and allowed to de-
velop a new class of reconfi gmjable computing systems tha; can provide several benefits based

on utilization of computing resource virtualization such as:
1. Flexible computing architecture that can satisfy multiple parametric requirements.

2. Capability for automatic restoration from hardware faults and, thus, a longer life-time

" forasystem. .

239

3. Acceleration in application programming by using macro-functions instead of regular

HDL programming.
4. Maximization of cost-performance parameters.

5. Application flexibility, such as multi-modal and multi-task workload instead of ASIC-

type uni-task applications.

Nonetheless, there are some further research components which can improve and extend func-

tionality of the proposed class of RCS.

10.3 Future Works

As was summarized in this chapter, substantial amount of research for this thesis lead to sev-
eral ever more expandable fields that can be researched, designed, and implemented. Some of

the areas of future work is described in this closing section. There are four main areas:
1. Development of an integrated CAD tool,

2. Incorporation of the segmentation mechanism with the run-time VHC selection in a

real-time hardware OS.

3. Fault tolerance testin g in real conditions of energized particles and further verification

of the proposed methodologies.
4. Automation and creation of an extensive VHC and SSP library.

~ Following subsections describe this work in more detail.

10.3.1 .. Integrated CAD Tool

The developed CAD tool, that was presented in Chapter 8, provides a user with a capability of

design estimation and selection of the appropriate VHCs for SSPs. This tool can be expanded

1240

to be a much more integrated tool for design of systems with TPM architecture. The a fully
integrated tool would be used to create full design of SSPs with further compilation into the
bitstreams with the options similar to the Xilinx ISE Design Suite, Altera Quartus II, and
other designer suites. In addition, the CAD tool could have a capability of generating different
types of library files suited for many options of configuration controller architectures. Also,
this CAD tool should include an expert VHC creator that would allow user to generate several
VHCs with different performance by providing only one version of VHDL or Verilog code.
The CAD software would perform all of the remaining operations to create variance of VHCs
that are constrained within the given parameters. This would allow such CAD tool to evolve

and aggregate as do object classes in object oriented design.

10.3.2 Segmentation in Real-Time Hardware OS

Methods for task segmentation and SSP selection were designed in a way that they can be
adapted to any computing platform. This platform is typically assumed to be a user’s PC,
however, with the current availability of powerful embedded processors segmentation can be
executed on these processors. This would give a unique opportunity of creating self-adaptable
hardware systems that, based on the given processing algorithm skeleton, can perform all of
the SSP selection operations. With an availability of the extensive SSP libraries which are
stored on a non-volatile memory, real-time hardware OS would be able to create and modify
a configuration schedule of the TI”M platform. This is also very effective for fault tolerancie
systems and would give the TPM a capability of constant self-recovery, and thus make it

virtually indestructible.

10.3.3 Fault Tolerance Verification & Testing

One aspect of this work that was not field tested is the hardware fault mitigation. In order

to verify the SEE mitigation operation, the platform with the TPM support has to be tested

241

at proton and ion irradiation facility. Such facility can provide bombardment of the platform
by proton or ion particles with specified fluence and dosage, as was described in the paper by
David Hiemstra et al. [44]. Series of such tests would be able to provide a valuable insight into
how TPM self-recovery mechanism performs. By identifying failure trends, the granularity of
the area avoidance could be better tuned and, hence, allow for more optimal design from the
stand point of fault recovery and overall performance. Also, further work can be done in the
area of SEE mitigation for terrestrial applications, since the future FPGA devices with an even

smaller scale of the process technology, would encounter SEU on the terrestrial level.

10.3.4 Extensive VHC and SSP library

One of the very important requirements for the TPM architecture is a library of pre-built VHC
modules. Since VHCs are the essentiai building block of the SSPs the extensive library of
VHC:s provides a greater flexibility of architecture design, and an optimal task-to-architecture
adaptation. Such library could be created with the general support of common processing
functions that are used in the industry. A model for the initial library can be MATLAB pack-
age, who's initial library of functions can be expanded by the user or by purchasing specialized
packages. In addition, the creation of the automated VHC generator from the algorithm rep-
resentation would give users a tool for rapid creation of custom VHCs for their specialized

needs.

242

Bibliography

[1] N. Abel, L. Kessal, and D. Demigny. Design flexibility using FPGA dynamical re-
configuration. ICIP’04. International Conference on Image Processing, 4:2821-2824,

October 2004.

[2] M. Abramovici, J.M. Emmert, and C.E. Stroud. Roving STARs: an integrated ap-
proach to on-line testing, diagnosis, and fault tolerance for FPGAs in adaptive comput-
ing systems. Proceedings of The Third NASA/DoD Workshop on Evolvable Hardware,
(7):73-92, July 2001. 7 |

' [3] M. Aksit and Z. Choukair. Dynamic, adaptive and reconfigurable sygtems overview
and prospective vision. In Proceedings of 23rd International Conference on Distributed

Computing Systems Workshops, pages 84-89, May 2003.

[4] M. Alderighi, F. Casini, S. :D’Angclo, M. Mancini, A. Marmo, S. Pastore, and G.R.
Sechi. A Tool for Injecting SEU-like Faults into the Configuration Control Mechanism
of Xiiinx Virtex FPGAs. Proceedings of 18th IEEE International Symposium"on Defe;':r
and Fault Tolerance in VLSI Systems, pages 71-78, Nov. 2003.

[5] A. Alsolaim, J. Becker, M. Glesner, and J. Starzyk. Architecture and apblication of a

N ;dynamically }econﬁgurable hardware arraj} for future mobile communication Systems.

IEEE Symposium on Field-Prbgmmmable Custoﬁ Computing Machines, pages 205—
214, 2000. .

243

[6] Altera. Using the Nios I Configuration Controller Reference Designs, March 2009.

[7] J. Becker, M. Hubner, G. Hettich, R. Constapel, J. Eisenmann, and J. Luka. Dynamic
and Partial FPGA Exploitation. Proceedings of the IEEE, 95(2):438-452, Feb 2007.

[8] M. Berg. Fault tolerance implementation within SRAM: based FPGA designs based
upon the increased level of single event upset susceptibility. In JOLTS 2006. 12th IEEE

International On-Line Testing Symposium, page 3, 2006.

[9] Etienne Bergeron, Marc Feeley, and Jean Pierre David. Hardware JIT Compilation for
Off-the-Shelf Dynamically Reconfigurable FPGAs. Compiler Construction, 4959:178-
192, April 2008.

[10] Christophe Bobda. Synthesis of Dataflow Graphs for Reconfigurable Systems using
Temporal Partitioning and Temporal Placement. Master’s thesis; University of Pader-

born, 2003.

[11] K. Bondalapati and V.K. Prasanna. Reconfigurable computing systems. Proceedings of
the IEEE, 90(7):1201-1217, Jul 2002.

[12] M. Borgatti, A. Capello, U. Rossi, J.-L. Lambert, I. Moussa, F Fummi, and
G. Pravadelli. An integrated design and verification methodology for reconfigurable
multimedia systems. Proceedings of Design, Automation and Test in Europe, 3:266-

271, March 2005.

[13] Paulo S. Brand, Nascimento, and Manoel Eusebio de Lima. Temporai partiti(ming for
_image processing based on ﬁrpe—spaf:e c‘:omplex_i;y in rgconﬁgurable a;rc})1itec:t}1r;e:st In
- DATEE 06: ‘P‘rvo*ceeding‘s of thg:g confgrgnge Aon’ Dé&ign, A;ttomation a;zd Te;st in Ez;}ope,
pagég 375:—'3;80,‘3001_ Leuven, éelgiu%xi, Belgigmt 2006. European Design and Automa-

tion Association.

, 244

[14] Brendan Bridgford, Carl Carmichael, and Chen Wei Tseng. Correcting Single-Event
Upsets in Virtex-1I Platform FPGA Configuration Memory. February 2007.

[15] C.Carmichael. Virtex FPGA series configuration and readback. Xilinx Inc., 2.8 edition, °
March 2005.

[16] C. Chantrapornchai, EM. Sha, and X.S. Hu. Efficient design exploration based on
module utility selection. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 19(1):19-29, Jan 2000.

[17] Sumanta Chaudhuri, Jean-Luc Danger, Sylvain Guilley, and Philippe Hoogvorst. FASE:
An Open Run-Time Reconfigurable FPGA Architecture for Tamper-Resistant and Se-
cure Embedded Systems. In ReConFig 2006. IEEE International Conference on Re-

configurable Computing and FPGA'’s, pages 1-9, Sept. 2006.

[18] Weisheng Chong, S. Ogata, M. Hariyama, and M. Kameyama. Architecture of a Multi-
Context FPGA Using Reconfigurable Context Memory. Proceedings of 19th IEEE

International Parallel and Distributed Processing Symposium, page 144a, April 2005.

[19] Pil Woo Chun, Jamin Islam, Valeri Kirischian, and Lev Kirischian. Irfxplementing a
cost-ei;fective run-time recoﬁﬁgurable syétem for stream applications. In ICEE 2008.

Second International Conference on Electrical Engineerihg, pages 1-5, March 2008.

[20] 5Pill Woo Chun. Valeri' Kiri:schian, Sergei Zhelnakov, and Lev Kirischian. Reconfig-
urable Mulnprocessor W1th Self-optmnzmg, Self—assembhng, and Self—reston ng Micro-
architecture. In WARFP2005 Proceedmgs of Workskop on Arckzz‘ecture Research using

" FPGA Platform, February 2005. ‘ ’

i [21] RP Colwell, R.P. Nxx 1.1. O’Donnell, D.B. Papworth and PK. Rodman A VLIW
t architecture for a trace scheduhng compller IEEE Transacrzons on Computers

37(8):967-979, Aug 1988.

245

[22] Altera Corporation. Stratix Il Device Handbook. Altera Inc., 3 edition, May 2005.

[23] V.Correia and A. Reis. Advanced technology mapping for standard-cell generators. In
Integrated Circuits and Systems Design, 2004. SBCCI 2004. 17th Symposium on, pages
254-259, Sept. 2004.

[24] D.R. Czajkowski, P.K. Samudrala, and M.P. Pagey. SEU mitigation for reconfigurable
FPGAs. IEEE Aerospace Conference, page 7, March 2006.

[25] A.Dasu and S. Panchanathan. Reconfigurable media processing. Proceedings of Inter-
national Conference on Information Technology: Coding and Computing, pages 300—

304, Apr. 2001.

[26] A.Dasu and S. Panchanathan. A survey of media processing approaches. IEEE Trans-
actions on Circuits and Systems for Video Technology, 12(8):633;645, Aug 2002.

[27} E. Davies. Machine Vision: Theory, Algorithms and Practicalities. Academic Press,

1990.

[28] R.E. DeMara and Kening Zhang. Autonomous FPGA fault handling through competi-
tlve runtime reconfiguration. Proceedings of 2005 NASZA/DOD Conference on Evolvable

Hardware, pages 109-116, July 2005.

[29] Paulo Sergio B. do Nascimento, Manoel E. de Lima, Stelita M da Silva and J ordana L.
Seixas. Mapping of image processing systems to FPGA computer based on temporal
pamnomng and design space exploration. In SBCCI ’06 Pmceedmgs of the 19th

annual symposium on Integrated circuits and systems des:gn, pages 50~55 2006.

[30] A Doumar and H. Ito Detectmg, (havnosmg, and tolerating faults in SRAM-based

ﬁcld programmablc gate arrays: a survey. IEEE Transacnons on Very Large Scale
Integranon (VLSI) Systems, 11(3):386-405, June 2003.

-

x 246

[31] Peter E. Hart Duda, Richard O. Pattern classification and scene analysis. John Wiley-

Sons, 1973.

[32] Michalis D. Galanis, Gregory Dimitroulakos, and Costas E. Goutis. Partitioning
Methodology for Heterogeneous Reconfigurable Functional Units. The Journal of Su-

percomputing, 38:17-34, October 2006.

[33] Maya Gokhale and Paul S. Graham. Reconfigurable Computing: Accelerating Compu-

tation With Field-Programmable Gate Arrays. Birkhauser, 2006.

[34] Kim Golblatt. The Express Configuration of SpartanXL FPGAs. Xilinx Inc., 1.0 edition,
November 1998.

[35] S.C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and R.R. Taylor.
PipeRench: a reconfigurable architecture and compiler. Computer, 33(4):70-77, Apr
2000.

[36] S. Golshan and E. Bozorgzadeh. Single-event-upset (SEU) awareness in FPGA routing.
In DAC '07: Proceedings of the 44th annual Design Automation Conference, pages
330333, New York, NY, USA, 2007. ACM.

[37] 1. Gonzalez, S. Lopez-Buedo, and F.J. Gomez-Arribas. Implementation of secure appli-

cations in self-reconfigurable systems. Microprocessors and Microsystems, May 2007.

[38] Rafael C. Gonzalez, Richard E. Woods, and Steven L. Eddins. Digital Image Processing
using Matlab. Prentice Hall, 2004.

[39] P. Graham, M. Caffrey, J. Zimmerman, D. E. Johnson, P. Sundararajan, and C. Patter-
_ son. Consequences and Categories of SRAM FPGA Configuration SEUs. In Military
and Aerospace Applications of Programmable Logic Devices, 2003.

247

[40] Masanori Hariyama and Michitaka Kameyama. A Multi-Context FPGA Using a
Floating-Gate-MOS Functional Pass-Gate and Its CAD Environment. Circuits and Sys-
tems, 2006. APCCAS 2006. IEEE Asia Pacific Conference on, pages 1803-1806, Dec.
2006.

[41] R. Hartenstein. A decade of reconfigurable computing: a visionary retrospective. Pro-
ceedings of Design, Automation and Test in Europe, Conference and Exhibition, pages

642649, 2001.

[42] PJ. Hatcher, M.J. Quinn, A.J. Lapadula, B.K. Scevers, R.J. Anderson, and R.R. Jones.
Data-parallel programming on MIMD computers. IEEE Transactions on Parallel and

Distributed Systems, 2(3):377-383, Jul 1991.

[43] Bruce Hendrickson and Tamara G. Kolda. Graph partitioning models for parallel com-

puting. Parallel Computing, 26:1519-1534, November, 2000.

[44] David M. Hiemstra, Fayez Chayab, and Zaecem Mohammed. Single Event Upset Char-
acterization of the Virtex-4 Field Programmable Gate Array Using Proton Irradiation.

IEEE Radiation Effects Data Workshop, pages 105-108, July 2006.

_[45] R.D. Hudson, D.I. Lehn, and PM. Athanas. A run-time reconfigurable engine for im-
age interpolation. Proceedings of IEEE Symposium on FPGAs for Custom Computing
Machines, pages 88-95, Apr 1998. '

“

[46] Michael Huebner, Tobias Becker, and Juergen Becker. Real-time LUT-based network
topologies for dynamic and partial FPGA self-reconfiguration. In SBCCI *04: Pro-
ceedings of the 17th sympesi&m on Iﬁtégrate:f circuits and system design, pages 28-32,

2004.

\ 248

[47] V. Kathail, S. Aditya, R. Schreiber, B. Ramakrishna Rau, D.C. Cronquist, and
M. Sivaraman. PICO: automatically designing custom computers. Computer, 35(9):39—

47, Sep 2002.

[48] K.M. Kavi, B.P. Buckles, and U.N. Bhat. A Formal Definition of Data Flow Graph
Models. IEEE Transactions on Computers, C-35(11):940-948, Nov. 1986.

[49] L. Kirischian. Optimization of parallel task execution on the adaptive reconfigurable
group organized computing system. PARELEC 2000, Proceedings of International
Conference on Parallel Computing in Electrical Engineering, pages 100-105, 2000.

* [50] Lev Kirischian, Vadim Geurkov, Valeri Kirischian, Jacob Kleiman, and Irina Terterian.
Maultilevel Radiation Protection of Partially Reconfigurable Field Programmable Gate
Array Devices. Journal of Spacecraft and Rockets, 43:523-529, 2006.

[51] Lev Kirischian, Vadim Geurkov, Valeri Kirischian, and Irina Terterian. Multi-
parametric optimisation of the modular computer architecture. International Journal

of Technology, Policy and Management, 6:327-346, 2006. |

‘ [SQ] V. Kirischian, V. Geurkov, and L. Kirischian. C(;st effective reconfigurable architec-
ture for streax.ﬁ processing applicatiohs. In CCECE 2008. Canadian Conference on

Electrical and Computer Engineering, péges 541-546, May 2008.

[53] Valeri Kirischian, Védim Geurkov, Pill Woo Chun, and Lev Kin'schian. Reconfigurable
‘ Macro-processor - Cost-efficient Platform for Rapid*Pmétot}_rping. In FAIM2007: Flexi-

ble Automation and Intelligent Manufacturing, volume ‘2,:'1')Eagésv 78 1—'78‘8, J uhe 2007.

[54] Valeri Kirischian, Vadim Geurkov, Pill Woo Chun, and Lev Kirischian. Macro-

. -

" programmable reconfigurable stream processor for collaborative manufacturing sys-

- tems. Journal of Intelligent Md}mfactﬁring, 19:723-734, 2008.

249

i
%
i

[55] Valeri Kirischian, Vadim Geurkov, and Lev Kirischian. A Cost Efficient Reconfigurable
Video Processing Platform for Machine Vision. In Seventh International Workshop on

Advanced Manufacturing Technologies - ATM2007, page 44, June 2007.

[56] Valeri Kirischian, Vadim Geurkov, and Lev Kirischian. A multi-mode video-stream
processor with cyclically reconfigurable architecture. In CF ’08: Proceedings of the

Sth conference on Computing Frontiers, pages 105~106, 2008.

[57] Valeri Kirischian, Irina Terterian, and Lev Kirischian. Optimization of Architecture
Selection in the Multi-parametric Design Space. In 17-th International Conference on
Systems Research, Infomatics & Cybernetics: InterSymp-2005, volume 4, pages 30-35,
August 2005.

[58] Valeri Kirischian, Sergei Zhelnakov, Pill Woo Chun, Lev Kirischian, and Vadim
Geurkov. Uniform Reconfigurable Processing Module for Design and Manufacturing

- Integration. In Fifth International Workshop on Advanced Manufacturing Technologies

- ATM2005, pages 77-82, May 2005.

[59] D. Koch, C. Beckhoff, and J: Teich: Bitstream Decompression for High Spéed FPGA
Configuration from Slow Memories. ICFPT 2007. International Conference on Field-

Programmable Technology, pages 161-168, Dec. 2007.

[60] Y.E. Krasteva, AB Jimgno, E. dela Torre, and T. Riesgo. Straight method for reallo§a~

.. tion of complex cores by dynamic gpconﬁgqration in Virtex I FPGAs. RSP 2005. ﬁe

16th IEEE International Wgr}cshop on Rapid System Prototyping, pages 77-83, June
2005. h | |

~ [61] V. Krishnan and S. Katkobqri. A genetic algorithm for the design space exploration of

datapaths during high-level synthesis. IEEE Transactions on Evolutionary Computa-

tion, 10(3):213-229, June 2006.

\ 250

[62]

[63]

[64]

[65]

[66]

[67]

Alexei Kudriavtsev and Peter Kogge. Generation of permutations for SIMD proces-
sors. In LCTES ’05: Proceedings of the 2005 ACM SIGPLAN/SIGBED conference on

Languages, compilers, and tools for embedded systems, pages 147-156, 2005.

Dhananjay Kulkarni, Walid A. Najjar, Robert Rinker, and Fadi J. Kurdahi. Compile-
time area estimation for LUT-based FPGAs. ACM Transactions on Automation of Elec-

tron Systems, 11(1):104-122, 2006.

Ian Kuon and Jonathan Rose. Measuring the gap between FPGAs and ASICs. In
FPGA ’06: Proceedings of the 2006 ACM/SIGDA 14th international symposium on
Field Programmable Gate Arrays, pages 21-30, 2006.

Marco Lanuzza, Paolo Zicari, Fabio Frustaci, Stefania Perri, and Pasquale Corsonello.
An Efficient and Low-Cost Design Methodology to Improve SRAM-Based FPGA Ro-
bustness in Space and Avionics Applications. Reconfigurable Computing: Architec-

tures, Tools and Applications, 5453/2009:74-84, 2009.
Lattice Inc. Lattice ispTRACY Usage Guide, tn1054 edition, February 2006.

O. Lehtoranta, E. Salminen, A. Kulmala, M. Hannikainen, and T.D. Hamalainen. A par-
allel MPEG-4 encoder for FPGA based multiprocessor SoC. International Conference

on Field Programmzzble Logic aﬁd Applications, pages 380-385, Aug. 2005.

[68] A. Lodi, L. Ciccarelli, A. Cappelli, F. Carnpi, and M. Toma. Decoder-based multi-

context interconnect architecture. Proceedings of IEEE Computer Society Annual Sym-

posium on VLSI, pages 231-233, Sept. 2003.

[69] R. Lyseckya, F. Vahid, and S.X. Tan. Dynamic FPGA routing for just-in-time FPGA

compilation. Proceedings of 41st Design Automation Conference, pages 954-959,

2004,

251

[70] T.Makimoto. The hot decade of field programmable technologies. Proceedings of 2002
IEEE International Conference on Field-Programmable Technology, pages 3-6, Dec.
2002.

[71] V. Manohararajah, S.D. Brown, and Z.G. Vranesic. Heuristics for area minimization
in lut-based fpga technology mapping. Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, 25(11):2331-2340, Nov. 2006.

[72] Gary S. May and Simon M. Sze. Fundamentals of Semiconductor Fabrication. John
Wiley & Sons, Inc., 2003.

[73] Michael Wirthlin D. Eric Johnson Nathaniel Rollins Maya Gokhale, Paul Graham. Dy-
namic reconfiguration for management of radiation-induced faults in FPGAs. Interna-

tional Journal of Embedded Systems, 2:28-38, 2006.

[74] S. Toutounchi M.B. Tahoori, S. Mitra and EJ . McCluskey. Fault Grading FPGA Inter-

connect Test Configurations. International Test Cbnference, pages 608-617, 2003.

[75] E.J.Mcdonald. Runtime FPGA partial reconfi gﬁration. IEEE Aerospace and Electronic
Systems Magazine, 23(7):1 O—-15, July 2008.

[76] F. Mehdipour, M. S Zamani, HR. Ahmadlfar M Sedighi, and K Murakaml Reducmg
reconfiguration time of reconﬁgurable computmg systems in mtegrated temporal parti-
tioning and physical design framework. IPDPS 2006. 20th International Parallel and
Distributed }’rocessing Symposium, page 8, 25-29 April 2006. x :

4

[77] B. Mei, A. Lambrechts, J.Y. Mignolet, D. Verkéét, and R. Lauwereins. Architecture
¢ * exploration for a reconfigurable architecture template. IEEE Design and Test of Com-

 puters, 22(2):90-101, April 2005.

, 252

[78] S. Merchant, G.D. Peterson, and D. Bouldin. Improving embedded systems education:
laboratory enhancements using programmable systems on chip. (MSE ’05). Proceed-
ings of 2005 IEEE International Conference on Microelectronic Systems Education,

pages 5-6, June 2005.

[79] Giovani De Micheli. Synthesis and Optimization of Digital Circuits. McGrow-Hill,
1994.

[80] Alan Mishchenko, Satrajit Chatterjee, and Robert Brayton. Improvements to tech-
nology mapping for LUT-based FPGAs. In FPGA ’06: Proceedings of the 2006
ACM/SIGDA 14th international symposium on Field programmable gate arrays, pages
4149, New York, NY, USA, 2006. ACM. |

[81] Abdellatif Mtibaa, Bouraoui Ouni, and Mohamed Abid. An efficient list scheduling
algorithm for time placement problem. Hardware/Software System on Chip Co-design:

Approach and Application, 33(44):285-298, July 20()’?.

[82] P.L. Murray and D. VanBuren. Single Event Effect Mitigation in ReConfigurable Com-

puters for Space Applications. IEEE Aerospace Conference, pages 1-7, March 2005.

[83] Mark Ng and Mike Peattie. Using a Microprocessor to Configure Xilinx FPGAs via
Slave Serial or SelectMAP Mode. Xilinx Inc., 1.5 edition, December 2007.

[84] K. Paulsson, M. Hubner, G. Auer, M. Dreschmann, L. Chén, and J. Becker. Imple-
mentation of a Virtual Internal Configuration Accgss Port (JCAP) for Enabling Partial
Self-Reconfiguration on Xilinx Spartan IIl FPGAs. In FPL 2007. International Con-

ference on Field Programmable Logic and Applications, pages 351-356, Aug. 2007.

. [83] K. Paulsson, M. Hiibner, and J. Becker. On-line optimization of FPGA power-

dissipation by exploiting run-time adaption of communication primitives. In SBCCI

253

[86]

[87]

(88]

[89]

[90]

'06: Proceedings of the 19th annual symposium on Integrated circuits and systems

design, pages 173-178, 2006.

R. Perez. Methods for Spacecraft Avionics Protection Against Space Radiation in the
Form of Single-Event Transients. IEEE Transactions on Electromagnetic Compatibil-

ity, 50(3):455-465, Aug. 2008.

Brian Pratt, Michael Caffrey, Paul Graham, Keith Morgan, and Michael Wirthlin. Im-
proving FPGA Design Robustness with Partial TMR. 44th Annual., IEEE International

Reliability Physics Symposium Proceedings, pages 226-232, March 2006.

K.M.G. Purna and D. Bhatia. Temporal partitioning and scheduling data flow graphs
for reconfigurable computers. IEEE Transactions on Computers, 48(6):579-590, June

1999.

Yang Qu, Juha-Pekka Soininen, and Jari Nurmi. A parallel configuration model for
reducing the run-time reconﬁguration overhead. In DATE ’'06: Proceedings of the
conference on Design, Automation and Test in Europe, pages 965-969, 3001 Leuven,

Belgium, Belgium, 2006. European Design and Automation Association.

A. D. George R. Hymel and H. Lam.” Evaluating Partial Reconfiguration for Embed-

‘ded FPGA Applications. In Proceedings of High-Performance Embedded Computing
" Workshop, Sept. 2007.

[91] J. Resano, D. Mozos, D. Verkest, and F. Catthoor. A reconfigurable manager for dy-

e namlcally reconﬁgurablc hardware. IEEE Deszgn & Test of Computers, 22(5):452-460,

Oct. 2005.

[92] L. Rockett, D. Patel, S. Danmgcr, B. Cronquist, and J.J. Wang. Radiation Hardened

FPGA Technology for Space Apphcatlons 2007 IEEE Aerospace Conference, pages
1-7, March 2007.

N 254

[93] J. Rose and S. Brown. Flexibility of interconnection structures for field-programmable

gate arrays. IEEFE Journal of Solid-State Circuits, 26(3):277-282, Mar 1991.

[94] E. Sanchez, M. Sipper, J.-O. Haenni, J.L. Beuchat, A. Stauffer, and A. Perez-Uribe.
Static and dynamic configurable systems. IEEE Transactions on Computers, (6):556—

564, June 1999,

[95] P. Schumacher, M. Mattavelli, A. Chirila-Rus, and R. Turney. A Virtual Socket Frame-
work for Rapid Emulation of Video and Multimedia Designs. ICME 2005. IEEE Inter-

national Conference on Multimedia and Expo, pages 872-875, July 2005.

[96] P.Sedcole, B. Blodget, T. Becker, J. Anderson, and P. Lysaght. Modular dynamic recon-
figuration in Virtex FPGAs. IEEE Proceedings of Computers and Digital Techniques,
153(3):157-164, May 2006.

[97] D. Seto and M. Watanabe. Reconfiguration performance analysis of a dynamic optically
reconfigurable gate array architecture. ICFPT 2007. International Conference on Field-

Programmable Technology, pages 265-268, Dec. 2007.

[98] Nikunj Shroff. Memory Hierarchy for Microblaze and PowerPC based Systems. Mas-
ter’s thesis, Indian Institute of Technology Delhi, May 2007.

[99] Miguel L. Silva and Joao Canas Ferreira. Support for partial run-time reconfiguration

of platform FPGAs. Journal of Systems Architecture, 52:709-~726, December 2006. .

[100] D.P. Singh, V. Manohararajah, and SD Brown. Two-stage physical 'Syntﬁesis for FP-
GAs. Proceedings of the IEEE 2005 Custom Intégrated Circuits Conferéﬁce, pages
171-178, Sept. 2005. ‘

[101] H. Singh, Ming-Hau Lee, Guangming Lu, FJ. Kurdahi, N. Bagherzadeh, and EM.

" Chaves Filho. MorphoSys: an integrated reconfigurable system for data-parallel and

255

computation-intensive applications. IEEE Transactions on Computers, 49(5):465-481,

May 2000.

[102] Gerard J.M. Smit, André B.J. Kokkeler, Pascal T. Wolkotte, and Marcel D. van de

[103]

[104]

[103]

[106]

[107]

[108]

Burgwal. Multi-core architectures and streaming applications. Proceedings of the 2008

international workshop on System level interconnect prediction, pages 35-42, 2008.

G Snider. Spacewalker: Automated Design Space Exploration for Embedded Computer
Systems. HP Laboratories Palo Alto HPL-2001-220, (1), september 2001.

Suresh Srinivasan, Prasanth Mangalagiri, Yuan Xie, N. Vijaykrishnan, and Karthik
Sarpatwari. FLAW: FPGA lifetime awareness. DAC '06: Proceedings of the 43rd

annual Design Automation Conference, pages 630-635, 2006.

C. Steiger, H. Walder, and M. Platzner. Operating systems for reconfigurable embedded
platforms: online scheduling of real-time tasks. IEEE Transactions on Computers,

53(11):1393-1407, Nov. 2004.

E. Stott, P. Sedcole, and P. Cheung. Fault tolerant methods for reliability in FPGAs. In
FPL 2008. International Conference on Field Programmable Logic and Applications,
pages 415-420, Sept. 2008.)

I. Taniguchi, K. Ueda, K. Sakanushi, Y. Takeuchi, and M. Imai. Task Partitioning

Oriented Architecture Exploration Method for Dynamic Reconfigurable Architectures.

- 2006 IFIP International Conference on Very Large Scale Integration, pages 290-295,

Oct. 2006.

C. Tanougast, Y. Berviller, P. Brunet, and S. Weber. Automated RTR temporal partition-
ing for reconfigurable embedded real-time system design. Proceedings of International

quallei and Distributed Précessing Symposium, page 8, 22-26 April 2003.

[109] R. Tessier and W. Burleson. Reconfigurable Computing for Digital Signal Processing:
A Survey. The Journal of VLSI Signal Processing, 28:7-27, May 2001.

[110] Andres Upegui and Eduardo Sanchez. Evolving Hardware by Dynamically Reconfig-
uring Xilinx FPGAs. Evolvable Systems: From Biology to Hardware, 3637:56-65,
2005.

[111] Nikolaos S. Voros and Konstantinos Masselos. System Level Design of Reconfigurable

Systems-on-Chip. Springer, 2005.
[112] Xilinx Inc. Xilinx Configuration Solutions, 1.1 edition, May 2006.
[113] Xilinx Inc. ChipScope Pro Software and Cores User Guide, v9.1.01 edition, 2007.
[114] Xilinx Inc. Embedded System Tools Reference Manual, 10.1 edition, February 2008.

[115] Xilinx Inc. Radiation-Tolerant Virtex-4 QPro-V Family Overview, 1.2 edition, Decem-
ber 2008.

[{116] Xilinx Inc. Single-Event Upset Mitigation for Xilinx FPGA Block Memories, 1.1 edi-
tion, March 2008.

[117] Xilinx Inc. System ACE CompactFlash Solution, 2.0 edition, October 2008.
[118] Xilinx Inc. Virtex-5 FPGA User Guide, 4.2 edition, May 2008.
[119] Xilinx Inc. Wﬂgx—S FPGA Configuration User Guide, 3.6 edition, February 2009.

[120] Hui-Jae You, Sun-Tae Chung, and Souhwan Jung. Optimization of SAD Algorithm on
VLIW DSP. Engineering and Technology World Academy of Science, 27:1307-1314,
- February 2008.

[121] Chi Wai Yu, Julien Lamoureux, Steven J.E. Wilton, Philip H.W. Leong, and Wayne
Luk. The Coarse-Grained / Fine-Grained Logic Interface in FPGAs with Embedded

257

Floating-Point Arithmetic Units. 4th Southern Conference on Programmable Logic,

pages 63-68, March 2008.

[122] Hamid R. Zarandi and Seyed Ghassem Miremadi. Dependability evaluation of Al-
tera FPGA-based embedded systems subjected to SEUs. Microelectronics Reliability,
47:461-470, 2007.

“ 1258

Appendix A

Border Variant Search

This is an example of the border variant search for a VHC with a limitation of 40mW, based on
the resources shown in Figure 6.17. The comparison of Figures A.1 and A.2 shows that after
only 5 iterations of the algorithm the border variant of the VHC was found. By identifying the
border variant, the rule R3,2 — R1,1 — R2,3 is determined which is used in the subsequent
searches of the VHC variants based on other parameters.

A border variant search for the VHC with a limitation of 225CLB is shown in the Figure
A.3. Similarly as with the power parameter comparison of Figures A.3 and A4 shows that
after 6 iterations of the algorithm the border variant of the VHC was found. A new rule is

identified to be R2,2 —+ R3,2 — R1, 1.

R, Ria

Rz
Ryy = Rz :E Ryy a Rz z Ria

offoNcRoloRoNole

RysRaafes MoaffeoCes Ao Was ARualRies 2{Raas Mas|RidRes /Ry

09990009@0@@@@@@@@@@@@@@

Figure A.1: Example of ACG with Selected border Variant of VHC w1th a 40 mW Limit
Restriction - S - :

. 259

Result Path Fowed (€,
24mwW|R3,3-R1,2-R2,3 -
36mW | R3,3-RL2-R23 -
46 MW R3,3~R1,2-R2,3 .
39mW(R3,2~R1,1-R2,3 R3,2;RL1
41mW|R3,2-~R1,1-R22 R3.3RLE

Alv]Aa|v]y

il w|[r]-in

5 BE @

Figure A.2: Sequence of search for power consumption border variant with a 40 mW limit

(=)
R,
O

R“ ‘ @
@@@@@@@@@@@@

Ryl Rya| Ryg| Ryy Ryg RyglRaz| RygfRys Mz Ry Ryz| Ruaf Ryd Rys| Ryl Res| Rea| Ruy Rad Rusl By

DRQUOVVWOXOOOPOLWHREOEOWOY®E®E
. Figure A.3: Example of an ACG with Selected border Variant of VHC with a 225 CLB limit

Result Path Fixed | ¢,>,=
212CBs [R2,2-R34-RLZT >
312CL8s |R2,3~R3,4~R1,2 - <
217CLBs |R2,2-R3,3+R1,2 | R22 >
222C18s (R2,2-R3,2-RL2 | R22 >
232C18s |R2,2-83,1~R1,2 | R2.2 <
225CL8s |R2,2-R3,2~R11 (RLZR3,2{ =

'H@Mi o

Flgure A.4: Sequence of search area reqmrement with a 225 CLB

’ 260

10€+20
10€+18
10E+16
10E+14
1.0E+12
108+10
10£+08
1.0E+06
10£+08
10€:02
10€+00

boarder variant

Number of aperations for finding

1 2 3 45 6 7 &8 9 10111213 14 1516 17 1519 20
Number of resources

Figure A.5: Logarithmic Comparison Between Number of Variants in Exhaustive ACG Gen-
eration and border Variant Search Algorithm

Figure A.5 shows the comparison of effectiveness of this algorithm. It shows, in logarith-
mic scale, the number of operations required for border variant search by exhaustive (blue)

method and proposed non-exhaustive (red) method.

261

262

Appendix B

Power Consumption

F'ollowing figures show complete power calculations that were done by the Xilinx XPower cal-
culator for the experiments a described in Chapter 9. Fligure B.1 shows the power consumption
of the different FPGAs at three different frequencies of operation. From these graphs it is ap-