
 

ADAPTIVE PD SLIDING MODE CONTROL FOR 4 DOF SCARA VARIANT 

 
 

by 
 
 

Manjeet Tummalapalli 
Bachelor of Technology, K L University, Guntur (2016) 

 
 
 
 
 

A project 
 

presented to Ryerson University 
 

in partial fulfilment of the  
 

requirements for the degree of 
 

Master of Engineering 
 

in the program of 
 

Aerospace Engineering 
 
 
 
 
 

 Toronto, Ontario, Canada, 2019 
©Manjeet Tummalapalli, 2019 



ii 

 

AUTHOR’S DECLARATION FOR ELECTRONIC SUBMISSION OF A 

PROJECT 

 

 
I hereby declare that I am the sole author of this project.  This is a true copy of the project, 

including any required final revisions. 

 

I authorize Ryerson University to lend this project to other institutions or individuals for the 

purpose of scholarly research. 

 

I further authorize Ryerson University to reproduce this project by photocopying or by other 

means, in total or in part, at the request of other institutions or individuals for the purpose 

of scholarly research. 

 

I understand that my project may be made electronically available to the public. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 

 

ADAPTIVE PD SLIDING MODE CONTROL FOR 4 DOF SCARA VARIANT 

 
Manjeet Tummalapalli 

Master of Engineering, Aerospace Engineering, Ryerson University, Toronto (2019) 
 

 

Abstract 
 

This project proposes a new SCARA variant with 4 degree of freedom. The proposed variant 

is achieved by swapping joint 2 and joint 3 of the standard SCARA robots. An adaptive 

controller is defined based on the advantages and disadvantages of PD, and SMC controllers. 

The purpose of the project is to understand the dynamics of the variant and to track the 

performance for trajectories. Simulations for tracking performance are carried under linear 

and circular trajectories. The variant is studied over the three controllers; PD, PD-SMC and 

A-PD-SMC. The variant under the adaptive controller is most efficient in terms of tracking 

performance and the control inputs to the system. The system is simulated under high speed 

and with the influence of friction at the joints. The control gains are held constant for both 

the trajectories and hence the controller is able to perform good under changing trajectories. 

Due to the use of the adaptive law, the system is at the ease of implementation and since no 

priori knowledge if the system is needed, it is model free. Therefore, the proposed adaptive 

PD-SMC has proven to provide good, robust trajectory tracking.  
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CHAPTER 1: INTRODUCTION 
 

 1.1 BACKGROUND  

Bringing together of two technologies namely: numerical control machines for precise 

manufacturing and tele-operated machines for the remote handling of hazardous materials 

lead to the development of early industrial robots’ development in the early 1960s. The term 

robotics was first coined by Russian Isaac Asimov, popularly defining it as the science 

studying the intelligent connection between perception and action. Using the definition for 

robotics, a robotic system is said to be a complex system, functionally represented by 

multiple subsystems; controllers, actuators and sensors. A manipulating apparatus, namely 

a robot manipulator is a mechanical structure consisting of a sequence of rigid bodies linked 

together by means of articulations (joints). The first robotic manipulators were 

characterized by versatility, adaptability and execution repeatability (Siciliano B. S., 2009 

).The widespread of robot technology can be viewed as a result of the increase in the wider 

range of applications in manufacturing industry due to the reduction of manufacturing costs, 

increase in productivity and quality and the possibility of elimination of dangerous tasks for 

the human operator.  

  

The trend towards automation continued to increase following the global financial crisis in 

2009. In the year 2017, the robot sales worldwide increased by 30%, a new peak for fifth 

year in a row (International Federation of Robotics, 2018). The IFR Executive summary also 
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states that since 2010, the demand of industrial robots has accelerated considerably due to 

the ongoing trend towards automation and continued innovative technical improvements in 

industrial robots.  

  

 

 

 

 

 

 

 

 

 

Fig. 1.1 Estimated worldwide annual shipments of industrial robots by regions (International 
Federation of Robotics, 2018) 

  

 

 

 

 

 

 

 

 

 

 

Fig. 1.2 Estimated annual supply of industrial robots at year-end worldwide by industries (2015-
2017) (International Federation of Robotics, 2018) 
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Fig. 1.3 Estimated annual worldwide supply of industrial robots 2009 – 2017 and 2018*- 2021* 
(International Federation of Robotics, 2018) 

 

Fig 1.1 depicts the graphical description of the worldwide estimate of annual shipments for 

industrial robots whereas Fig. 1.2 depicts the distribution of robots by industry. From both 

we can see that the peak is at year 2017 has seen 262,000 units shipped in Asia/Australia 

and that the automotive and electrical/electronics industries are supplied with the highest 

number or robots per year with about 120,000 units each for 2017 alone. Due to the wide 

range of applications towards automation, industrial robots show significant characteristics 

of versatility and accuracy. According to Figure 1.2, industrial robots remain an essential 

component to many automated systems.  

Adding to the earlier definition of robot manipulators, the fundamental structure of a 

manipulator is a serial or open kinematics chain which has good dexterity and simple 

straight forward dynamics while on contrary the closed chain manipulators have a 

fundamental advantage of high structural stiffness. Further, the geometry of the robotic 

manipulators is decided by its industrial application.  
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SCARA geometry, where the acronym stands for Selective Compliance Assembly Robot Arm, 

is a special geometry for robotic manipulators that is designed using three revolute and one 

prismatic joint. SCARA was invented by Sankyo and Pentel under the guidance of Hiroshi 

Makino at the University of Yamanshi in the year 1981 (Shabana, 2001). These joints are 

arranged in such a way that all the axes of motion are parallel as shown in Fig. 1.4.  The 

SCARA robot characterizes in increased mechanical properties offering high stiffness to 

vertical loads with relatively compliant laterally. This feature is convenient for a variety of 

assembly tasks. In SCARA manipulator, the arm is movable in the X and Y directions but rigid 

in the Z direction (Shabana, 2001). The workspace of a robotic is the 3D or planar surface or 

plane on which the end effector can reach to complete the task given to the robot. The 

workspace of a conventional SCARA robot is given in Fig. 1.5. The parameter 𝑑3is for the 

prismatic joint and describes the motion in the Z direction. 𝜃 2 & 𝜃1are the angles of rotations 

for the arms (links) describing the motion of the revolute joint. It should be noted that the 

fourth degree of freedom is from the end-effector and is also a revolute joint with the axis of 

rotation in the Z direction (𝜃 4) but isn't shown in the Fig.1.4. 

 

 

Fig. 1.4 SCARA Configuration (Zargoun, 2013-2014) 
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Fig. 1.5 SCARA workplace (Craig J. J., 2005 ) 

 

Robot applications involves the completion of a generic task with a specific prescribed 

motion. Control laws are utilized for this purpose. Since, programmable robots play a 

significant role in the industry, the need for research and development of effective control 

laws is critical. The errors of the system, the inherent imprecisions and disturbances are 

compensated using the efficient design of control laws. The imprecisions can be caused due 

to unmodeled friction, vibrational dynamics, process related disturbances, hardware 

deficiencies and other inaccuracies of the system dynamics (Slotine, 1991). Due to the many 

uncertainties and parameter fluctuations, there is a need for achieving robust controllers. 

Almost most of the industrial applications require high accuracy trajectory tracking. It is 

important to consider each of the uncertainties and previously mentioned imprecisions into 

account when implementing a control law. 
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1.2 MOTIVATION AND OBJECTIVES  

The present available standard SCARA was developed in the year 1981 and has been 

extensively used for industrial applications. What if the applications’ requirements are 

modified, per say the physical limitation of the workspace restricts vertical movement in the 

axis three? Or maybe there is a modification to the applications of the robot, which can cause 

a change in the level of tracking performance needed, or the available control forces for 

tracking, and the power of the control activity, there may arise a question that a modification 

to the robot configuration may accompany to these changes. The motivation behind this 

research is the popularity and applications of a SCARA robot and the complexity involved in 

analysing its kinematics and dynamics. The main objective is to try to relocate the vertical 

prismatic joint to axis 2 and see how it effects in the dynamics and the performance. Work is 

done to first generalize the equations and state a generic sequence for achieving the 

dynamics of any manipulator, including the SCARA variant. Further to improve the tracking 

performance of the robot and hence to reduce the tracking errors. The outcome of the project 

is to propose a new adaptive hybrid control law that is a combination of PD and SMC 

controllers, using both the advantages of each to achieve a powerful and robust control law. 

The tracking is done on joint level of the robot, because by providing accurate joint control 

the tracking performance of the manipulator (end-effector) can be improved.  

The proposed hybrid Adaptive PD-SMC law has the following goals: 

1. Alternative to PID/PD control laws. 
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2. To achieve a control law that incorporates the advantages of nonlinear control, PD & 

SMC control schemes advantages. 

3. To improve the overall performance of the manipulator by reducing individual joint 

errors.  

4. Considering the fluctuations in parameters and friction, the control should be able to 

provide a robust tracking performance.  

5. To provide a model-free control law that doesn't require priori knowledge of the 

dynamics of the system.  

In this project the proposed adaptive hybrid PD-SMC control law will be tested for various 

trajectories. Simulations will be done using the available PD, PD-SMC and the proposed 

adaptive PD-SMC for linear and circular contours and the errors in tracking will be 

compared. Using linear and non-linear contour, the project aims at proving that given a set 

of control gains, the proposed control law is efficient in the sense that the tracking is better 

in performance when compared to PD and PD-SMC controllers. To achieve the said goals, the 

following objectives will have to be achieved: 

1. The coordinate frames and DH parameters of the robot are defined.  

2. Kinematic analysis, which gives the relationship between the tool tip pose with the 

individual joint pose and vice-versa.  

3. Perform singularity analysis, to find the points that produce unbounded results in joint 

velocities and torques.  

4. Model the dynamics of the 4 DOF SCARA variant.  
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5. Compare the dynamics of the variant to that of the standard SCARA robot. 

6. Formulate the hybrid adaptive PD - Sliding Mode control law.  

7. Compare the hybrid control law to the conventional PD and PD-SMC law at joint and 

end-effector level.  

1.3 ORGANIZATION OF CONTENTS 

The chapter 2 deals with the literature review of previous research on robotic manipulator 

control. The various results obtained in improving tracking performance will be 

summarized. The methodology behind hybridization of various control laws will also be 

briefly discussed.  

  

Chapter 3 will contain the kinematics and singularity analysis of the robot. It will also cover 

the mathematical formulation of the manipulator dynamics. From the obtained dynamics 

results, the formulation of standard PD and combination of PD-SMC will also done. This 

chapter will also formulate the proposed hybrid adaptive control law.  

  

Chapter 4 will contain the various selected control parameters for control laws. The chapter 

will later contain results from simulations for the 4 DOF SCARA robot using PD, PD-SMC and 

adaptive PD-SMC control laws for linear and circular contours.  

  

Chapter 5 deals with the summarization of the results, and finally Chapter 6 mentions the 

conclusions and the scope for future work in enhancing the hybrid control laws. 
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Chapter 2: LITERATURE REVIEW 
 

Robotic systems posses intense non linearities and are a subject to modelling parameter 

uncertainties and external disturbances. These cause the measurement of system to be 

tedious and designing a control law to be of more difficulty. Convergence of the system state 

to the requested state will require a high-level control law (Adelhedi, Jribi, Bouteraa, & 

Derbel, 2015). An idealized controller may be implemented to achieve good performance 

when the dynamics of the system is perfectly known. However, in most practical applications 

due the complexity of the system, the physical parameters are difficult to determine. External 

disturbances such as joint friction and payloads can make the use of ideal controllers 

difficult. The prime reason why adaptive controllers were introduced was to compensate for 

the dynamic model uncertainties and external disturbances (Sage, 1999) 

  

There exist some control laws that do no require previous knowledge of the system 

dynamics, but these control methods drawback in the sense that they do not account for the 

non linearities the dynamics. For applications that require precise and accurate control 

systems, the said control laws will not be enough. The most common in use with respect to 

the present industrial robots is 'proportional, integral, derivative' (PID) control for each 

degree of freedom. More sophisticated non linear control laws have been developed such as 

computed torque and inverse dynamic control wherein linearization and decoupling for the 

equations of motion are done. Owing to the modelling uncertainties, non linear adaptive 

control techniques have been developed where the dynamics parameters are identified 

online (during the process) (Dombre & Khalil, 2002)  
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The control technique followed and the way it is implemented on the system has an influence 

on the performance and range of applications of a robotic manipulator.  For example, if 

trajectory control is the prime objective of the control law, software and hardware 

implementations difficulties will arise, which are different from point-to-point control where 

reaching the final position is of importance. Manipulator mechanical design also has an 

influence on the kind of control scheme utilized. For example, the control problem of a 

cartesian manipulator is substantially different from that of an anthropomorphic 

manipulator. Finally, the driving system of the joints also has an influence on the control 

scheme implemented. For example, if a manipulator is actuated by electric motors, the 

presence of gears of high ratios in the system will linearize the system dynamics and thus 

decouple the joints, in turn reducing the nonlinear effects. But this comes with a price of 

occurrence of joint friction, elasticity and backlash that limits the system performance. On 

the other hand, consider a robot actuated by direct drives; the system will have eliminated 

the drawbacks from friction, elasticity and backlash but the nonlinearities and coupling 

between joints comes to play (Siciliano, 1999).  

Therefore, based on the application, the level of accuracy and easy of computing, various 

control laws have been developed. Here, some popular control systems have been reviewed.   

2.1 PD/PID CONTROL 

PD/ PID control is designed based on the principle of linearization of the system about an 

operating point. Since the stability of the entire system depends of the local linearization, 

this control scheme is guaranteed to be locally stable. (Murray, Li, & Sastry , 1994). Because 

of the simple structure and easy implementation, PID control (including PI and PD control) 
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has picked up widespread popularity amongst engineering applications. Over 90% of all 

control schemes use some form of PID control (Åström, 2001). Consider PD control law in 

its simplest form 

𝜏 =  − 𝐾𝑣�̇� −  𝐾𝑝�̇� (2.1) 

 where 𝐾𝑣 and 𝐾𝑝 are positive definite matrices, with the tracking error is given by 

𝑒 =  𝜃 −  𝜃𝑑  and 𝜏 represents the torque of the system. (Murray, Li, & Sastry , 1994).  It can 

be observed that the control law doesn't contain a feedback term, therefore for complicated 

trajectories achieving exact tracking is next to impossible. 

2.1.1. PD WITH DESIRED GRAVITY COMPENSATION 

The general PID controller calculates the required actuation forces from the difference 

between the desired and actual joint position, which is nothing but the error. In other words, 

as the force is based in the positional error, it implies that in general the error is never equal 

to zero. If the dynamic model of the robot (under the influence of inertial, Coriolis centripetal 

and gravitational forces) is known, the forces required for necessary performance can be 

predicted. Further, these forces can be generated by the robot motors, regardless of the 

position error signal. (Bajd M.) 

The choice of PID gains relies on relatively complex formulae in order to ensure global 

asymptotic stability (Qu, 1991) (Arimoto, 1984). The landmark work of (Takegaki, 1981) 

provided a robust position control that is easily tuned for global asymptotic stability. The PD 

control law with desired gravity compensation for setpoint control proposed by (Takegaki, 

1981) can be written as: 
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𝜏 = 𝐾𝑃𝑒 − 𝐾𝐷�̇� + 𝑔(𝑞𝑑) (2.2) 

where 𝜏 represents the torque in this formula and 𝑔(𝑞𝑑) is the vector of gravitational torques 

of the system at the desired joint angles. Graphically, this control law is represented as 

shown in Fig. 2.2. 

 

Fig. 2.1 PD Control with desired gravity compensation  (Bajd, Mihelj, Lenarcic, Stanovnik, & Munih) 

  

In PD controller with gravity compensation can drive the robot joints asymptotically to their 

desired values. This controller is also independent of the initial position and the velocity. 

Despite the simple structure of the controller, it still requires the system dynamics to 

calculate the gravitational torque vector. Therefore, the gravity component be a feedforward 

term that helps controller compensate for the dynamics. 

2.1.2 NON-LINEAR PD/ PID CONTROL 

The standard PD/PID control suffers in performance due to the linearity of the control law 

and the poor compensation for the inherent nonlinearity of the used practical dynamic 

systems and sensors. (Rugh, 1987) proposed a method for compensating this. The author 
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has designed a law by linearizing the plant about every closed-loop set point with the PID 

controller in shown in Fig. 2.2 

 

Figure 2.2 Nonlinear closed-loop system (Rugh, 1987)  

The nonlinear PD (NPD) control is a control where the gains are the function of the tracking 

errors. Consider the general system:  

�̈� + 𝑐(�̇�, 𝑥) = 𝑢 (2.3) 

 where ẋ and x are system states and c(ẋ, x) is a nonlinear, state-dependent term. According 

to Xu et al., (Xu, 1995) for force control of a setpoint task, we have the NPD control in the 

form: 

𝑢 = 𝐾𝑒𝑓 + 𝐵�̇�𝑓 + 𝑓𝑑 + �̂�(�̇�, 𝑥) (2.4) 

where K and B are gains, fd is the desired force, ef = fd − f, and ĉ(ẋ, x) is the estimate of 

c(ẋ, x). The NPD’s control action depends on whether the system is moving towards or away 

from the desired setpoint as follows (Xu, 1995)  

• Moving away from setpoint: increase gains to stop the system 

• Moving toward setpoint: decrease gains to minimize the residual energy at the goal 
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Several other previous studies were conducted involving NPD control, however, many were 

applied only to point-set control of linear systems (Armstrong, 2000) (Seraji).  Ouyang et al. 

in (Ouyang, 2005) have extended NPD to a form of adaptive NPD learning control designed 

for repetitive tasks of robotic mechanisms. 

  

The NPD control laws provide a method of compensation for the nonlinear system dynamics 

of many mechanical systems but may demand some involved stability requirements. Also, as 

with other forms of control with feedforward terms, knowledge of the system dynamics is 

required for this approach. 

2.2 OTHER CONTROL METHODS 

The previous section has introduced the fundamental control schemes used over most of 

the industrial applications. The more advanced methods of control are presented in this 

section, which are proven methods for increasing the efficiency and implementation of the 

control systems. 

2.2.1 ADAPTIVE CONTROL  

 

Based on the previously mentioned control schemes it is evident that there can always be 

better performance given more intimate knowledge of the plant dynamics. Most of the 

current control techniques in fact use methods that rely on good understanding of the plant 

under study in some form or the other (Sastry, 1989).  However, in most industrial 

applications, the plant to be controlled is complex and its physical parameters are not fully 
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understood. In common language, "to adapt" means to change the behavior to compensate 

for new circumstances. Intuitively, an adaptive controller is thus a controller that can modify 

its behavior in response to the changes in the dynamics of the process and the character of 

the disturbances (Åström & Wittenmark , 1995). On the other hand, it should be noted that 

feedback control also attempts at reducing effects of external disturbances and plant 

uncertainties. Adaptive controller can be defined as a controller with adjustable parameters 

and a mechanism for adjusting the parameters, when needed. An adaptive controller can be 

visualized with two loops; one loop is the normal feedback with the process and the 

controller and the other is the parameter adjustment loop. It should also be noted that the 

parameter adjustment loop is often slower than the normal feedback loop.  

 

Fig. 2.3 Feedback and Adaptive Loop for Adaptive Controller (Craig, 2005) 

 

The identification of the plant is periodic and is based on the previous estimates and new 

data. Therefore, the system is said to be recursive and the identification and control can be 

done simultaneously. It should also be noted that when we say an adaptive system identifies, 

it can also be used to determine whether the system is nonlinear, finite or infinite 

dimensional or has continuous or discrete event dynamics. (Sastry, 1989). If the type of the 
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system is already been identified using other analysis, then the adaptive control law will be 

limited to the parametric adaptive control.  

  

There four types of adaptive systems, namely: 

1. Gain scheduling  

2. Model-reference adaptive control 

3. Self-tuning regulators  

4. Dual control 

  

Gain scheduling can be seen as having two loops. Inner loop composing of the process and 

the controller and the outer loop adjusting the controller parameters based on operating 

conditions. Gain scheduling can be regarded as a mapping from process parameters to 

controller parameters as seen from Fig. 2.4 below. Although gain scheduling is one of the 

earliest and a one with an intuitive approach, it has a drawback of being an open-loop 

adaption scheme with no real intelligence. Further, depending on the system, the extent of 

design maybe enormous.   

 

 

Fig. 2.4 Gain scheduling Controller (Sastry, 1989) 
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The model-reference adaptive system (MRAS) originally was proposed to solve a problem in 

which the performance specifications were given in terms of a reference model. This control 

scheme tells how the output should ideally respond to the command signal. A block diagram 

of the system is shown in Fig. 2.5, which shows the two methods of MRAC Laws, namely 

series and parallel, in terms of the placement of the controller in relation to the plant.  

The controller can be seen to have two loops, the inner loop is an ordinary feedback for the 

process and controller. The adjustment of the controller parameters is done in the outer 

loop, in such a way that the error, which is the difference of the process output y and model 

output 𝑦𝑚 is small. The major challenge of MRAS is to find the mechanism for the adjustment 

of the system parameters so that the system is stable. The adjustment of the parameter is 

done using the following mechanism  

𝑑𝜃

𝑑𝑡
=  − 𝛾𝑒

𝛿𝑒

𝛿𝜃
 

Eqn. (2.5) 

In this equation, 𝑒 = 𝑦 −  𝑦𝑚 denotes the model error and 𝜃 is a control parameter.  

 

Fig. 2.5: MRAC Laws (a) Series High-Gain Scheme  (b) Parallel Scheme (Sastry, 1989) 

 

Self-tuning regulators (STR) are obtained when the estimates of the process parameters are 

updated, and the controller parameters are obtained from the solution of a design problem 

using the estimated parameters.  The block diagram of STR is shown in the Fig. 2.6. The inner 
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loop consists of the process and an ordinary feedback controller. The parameters of the 

controller are adjusted in the outer loop, using recursive estimator and a design calculator.  

 

Fig. 2.6 Self-tuning Controller (Sastry, 1989) 

The STR scheme is very flexible in the choice of the under-lying design and estimation 

methods. The controller parameters are updates indirectly via the design calculator in the 

self-tuner as shown in the Fig. 2.6. There is also a possibility of reparametrizing the process 

so that the model can be expressed in terms of the controller parameters. This simplifies the 

algorithm which calculates the design parameter estimates.  

The adaptive control schemes discussed so far have heuristic approaches. There appears to 

be some limitations for example, parameter uncertainties are not considered in the design 

of the controller. There is a need to design adaptive controllers from some generic principles. 

An unknown constant can be modeled by the differential equation  

𝑑𝜃

𝑑𝑡
 = 0 (2.6) 

With the initial distribution that reflects the parameter uncertainty. Parameter drift can be 

described by adding some random variable to the right-hand side of the Eqn. (2.6). It is to be 

noted that the resulting plant using Eqn. (2.6) has no distinction between these control 

parameters and other state variables. Thus, resulting in a controller which can handle rapid 
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parameter variations. The controller can be regarded as being composed of two parts: a 

nonlinear estimator and feedback controller. The estimator generates the conditional 

probability distribution of the state, called hyper-state. The feedback controller composing 

of a nonlinear function maps the hyper-state into the space of the control variables. 

2.2.2 LEARNING CONTROL 

This control scheme is like the adaptive control is the sense that is utilizes gathered past 

processes information to determine the future control parameters. The difference between 

both the control schemes is that the learning controller makes use of long-term history and 

saves the previous states with their appropriate responses, while the adaptive controller 

depends on very recent history and reacts only to the current state. (White, 1992) 

  

The major advantage of the learning control method is that it is not necessary to have a 

parametric model of the system. The uncertainty in parameter estimation is compensated as 

the system "learns" as it propagates through the trails. The learning control has similar 

applications to adaptive control in the sense that it simplifies implementation of the 

controller and in turn improves the system performance by improving the reliability of the 

system.  

2.3 SLIDING MODE CONTROL  

Modelling inaccuracies can be due to the parameters of the system or of the unmodelled 

dynamics in the system. Adaptive controller can be a method of addressing these 

inaccuracies but sliding mode control is an alternative.  
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Modeling inaccuracies can be classified from a control point of view as: 

• Structured (parametric) uncertainties - inaccuracies of the terms actually included in 

the model 

• Unstructured uncertainties (unmodeled dynamics) - corresponds to the inaccuracies 

or the underestimations of the system order  

Since modeling inaccuracies have strong adverse effects on the nonlinear control systems, 

there is a need to address this issue explicitly. A typical robust control consists a nominal 

part, similar to feedback linearization and additional terms to deal with the modelling 

uncertainties. Sliding control is one such robust control scheme which is based intuitively on 

the fact that it is easy to control a 1st order system (nonlinear or uncertain) than it is to 

control a general nth order system. Therefore, a simplification is introduced, which converts 

a nth order problem to an equivalent 1st order one. But there is a limitation; the almost 

performance from the transformed system comes with a cost of high control activity.  

For this control scheme, a time varying sliding surface is represented using a scalar equation 

as (Slotine, 1991) 

𝑠 = (
𝑑

𝑑𝑡
+ 𝜆)

𝑛−1

𝑥 
(2.7) 

It can be seen that this is a nth order dynamic system. Where 𝜆 is strictly positive constant. 

Using this definition, formulated in (Slotine, 1991), the system can be converted to a first 

order stabilized problem of keeping the sliding surface s at zero. It can also be seen that the 

equation of 𝑠 contains 𝑥(𝑛−1), therefore we only need to differentiate 𝑠 once for the output 𝑢 

to appear. Furthermore, the bounds on the tracking error vector is directly related to 𝑠, 

which is a true measure of the tracking performance. If the dynamics of the system is exactly 
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known, then by solving the dynamics on the sliding mode �̇� = 0,  an expression of the control 

force called equivalent control 𝑢𝑒𝑞 can be obtained. This control force can be interpreted as 

the continuous control law that would maintain perfect tracking  �̇� = 0. 

   

The advantages of sliding mode control are that its easy to implement and the robustness 

available for the uncertainties. (Huang, Kua, & Chang, 2008.) (Wu, Li, Zhang, & Zhu., 2014). 

The SMC operates on a 'sliding manifold' in the state space. Once the sliding surface has been 

established, the controller successful reduces and later even eliminates the parametric 

uncertainties and external disturbances. The SMC advantages are primarily twofold; first the 

accurate compensation of uncertainties for non linear systems and the second is the finite 

time convergence to the sliding surface (Fridman, 2012). However, the discontinuous nature 

of the SMC induces rise to high frequency oscillations that generate dangerous chattering or 

vibration (Levant, June, 2010.) (Alobaidi, March, 2013.). These vibrations can be addressed 

using continuous approximations of the discontinuous feedback law. An alternative to this is 

the use of approximations to the sign function (Kapoor & Ohri, 2013) (Abera A, January 

2007). Hysteresis, saturations and sigmoides can also be used to achieve a continuous and 

smooth control signal.  

 

 

 

 

 

 

Fig. 2.7: Chattering about the sliding surface (Slotine, 1991) 
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2.4 TRAJECTORY PLANNING 

 The goal of trajectory planning is to generate the reference inputs to the motion control 

system which ensures that the manipulator executes the planned trajectories. The user 

specifies several parameters to describe the motion. Planning consists of generating a time 

sequence of the values attained by a polynomial function, interpolating the desired 

trajectory. (Siciliano, 1999). Techniques are required for trajectory generation, which is 

generic when the initial and final points are given (point to point motion). 

 

Once the trajectory has been defined, a method is required to estimate how accurate the 

system is following the assigned trajectory using the controller. One such performance 

estimator for industrial manipulators is tracking error. It is defined as the result of the 

individual axial tracking performance of each actuator. It can also be stated as how well the 

controller for each axis can track the desired reference position or state variable. 

  

Mathematically, the tracking error can be expressed as  

𝐸 = 𝑟 − 𝑝 (2.8) 

Where r is the reference position or desired position and P is the actual position. Another 

performance estimator for robotic manipulators is contour error, which can be defined as 

the component that is orthogonal to the desired path or contour. Contour errors generally 

arise due to the difference in the loop parameters, disturbances in loads, and the 

complexity of the contour shape. Additional errors can arise due to mechanical backlash 
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and friction (Koren, 1991). Due to the limitation of scope, this project considers only 

tracking error as a parameter for the estimation of the system performance.  

 

 

 

 

 

 

 

 

Fig. 2.8 Tracking and Contour Error (Yeh, 2003) 

2.5 CONTROL OF SCARA ROBOT 

Due to the many uncertainties and parameter fluctuations, there is a need for achieving 

robust controllers. Almost most of the industrial applications require high accuracy 

trajectory tracking. It is important to consider each of the uncertainties and previously 

mentioned imprecisions into account when implementing a control law. 

One of the earliest research on the control for SCARA robot was done in (Dessaint, April 

1992) and it has implemented using an adaptive controller for a SCARA robot powered by 

direct drive. The adaptive law consisted of the combination of PD regulator and a 

feedforward compensation of the full dynamics. These feedforward terms are adjusted by 

the adaption law so that the steady state errors are zero. The main advantages of this 

controller are that there isn't the need to measure the accelerations and the inverse of the 

mass matrix, which saves both time in computation and increases the ease of 
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implementation. The tracking performances using this control law is studied on a 2 DOF 

SCARA. 

The PID approach to control a SCARA robot was satisfactory when the speed of the process 

was slow. For high speed applications, inertia, centrifugal and Coriolis and gravitational 

terms which are nonlinear play a prominent role. In (Lee, Lee, Son, Lee, & Han, February 

1997) Jang M. Lee et.al. in 1997, designed a controller using a combination of PID and inverse 

dynamic algorithm. The tracking performance was studied over the process time of 1.4 

seconds (faster process compared to 2 seconds process time used in (Dessaint, April 1992)) 

and it was shown that the computational power was good enough and was still room for 

implementation of learning algorithms.  Another key attribute of this research is that gains 

of the PID are self tuned using an intelligent algorithm (fuzzy rules using desired system 

states).  

In (Visioli, February 2002) the importance of trajectory tracking control and how difficult 

the task can be is discussed. The paper also mentions that though several innovative 

solutions are presented, they are not discussed from an industrial point of view 

(implementation problems, tuning of parameters, etc.). The third axis, which is for the 

vertical motion of the manipulator, is dynamically decoupled from others. Therefore, the 

author assumes the robot to be planar and considers only the first two links. Experiments 

are done to compare the tracking for decentralized (typical PID, Sliding Mode control) 

controllers with centralized (model-based, computed torque and neural network control 

methods). The author summarizes that for a large number of industrial applications, 

decentralized controllers’ performance is sufficiently accurate.  
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Amir et.al. in (Moghadam , Gharib, & Moavenian) designed a robust controller for a SCARA 

robot using Quantitative feedback theory (QFT). The design of this controller includes the 

linearization of the robot dynamics and of suitable robust disturbance rejection bounds by 

reducing the sensitivity function. The tracking has results in good performance due to the 

fact there is a reduction in the cross-coupling effect between joints and the linear 

uncertainties in system modelling have been improved. But though the results obtained are 

of significant efficiency, the implementation of a QFT controller is comparatively difficult.  

Owing to the increasing popularity and the complexity of motor drives for robotic 

manipulators and the nonlinearities in the dynamics, modelling process using mathematical 

representation or white box approach is complicated. Therefore, in (Zargoun, Modelling and 

Control of SCARA manipulator, 2013-2014), Ibrahmin et al. have modelled a control system 

for 4DOF SCARA using Computer-Aided Design (CAD). After the system has been designed 

using CAD and SolidWorks, the PID controller was later designed in MATLAB/Simulink 

environment. Simulations using this Simulink environment have shown that the tracking 

performance has less than 1% error, which for pick and place applications is widely 

acceptable. But the drawback is that the 4DOF model of the robot has been converted to an 

equivalent 2DOF system based on the decoupling between joints.  

SMC (Sliding Mode Control), which will be detailly explained in the later chapters, is a highly 

robust and easy to implement control method. An adaptive SMC has been utilized by F. 

Adelhedi et al. in (Adelhedi, Jribi, Bouteraa, & Derbel, 2015) for the control of SCARA robot 

with 3 DOF. Owing to the quality of adaptive systems to deal with parameter uncertainties, 

the authors have assumed the mass of third link to be unknown. The controller was able to 
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deal with the physical and environmental perturbations and later represent the stabilized 

value of the mass at joint three.  Therefore, through this research, the adaptive controller is 

proven to show satisfactory control stability and trajectory tracking considering parameter 

fluctuations.  

(Sen, Bakırcıoğlu, & Kalyoncu, Dec 07-09, 2017) has also made use of CAD model of SCARA 

robot and the position control was performed in MATLAB/Simulink. PID controller was 

applied for step inputs in reference trajectory, and the obtained results were satisfactory.   

2.6 REMARKS 

Various control algorithms were presented in this chapter, with the objective of improving 

tracking control of the robotic manipulators. The key advantages and limitations of each 

method were also discussed. It was shown that in order to achieve better tracking 

performance, there is a need to the priori knowledge of the system. But such a system will 

be difficult to implement.  Therefore, advanced control schemes such as adaptive and sliding 

mode control were introduced.  

The following chapter will formulate the control algorithm for the adaptive hybrid PD-sliding 

mode control law. The main purpose of this project is to improve the tracking performance 

of a 4 DOF SCARA variant over the conventional PD and the hybrid PD-SMC control laws 

while maintaining the ease of implementation. 

The scope of this project is to utilize the available literature on adaptive control schemes and 

its implementation on SCARA robot and to design a SCARA variant in the hopes of improving 

its tracking performance by modifying the available control laws.  
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Chapter 3. MANIPULATOR DESIGN 
 

The previous chapters have discussed the importance of the control schemes for industrial 

robots and the available control schemes. The previous work regarding the control of 

industrial SCARA were also discussed. This chapter deals with defining the 4 DOF SCARA 

variant, in terms of geometry, coordinate frames and robot specifications. Further the 

kinematic analysis will also be done to understand the relation between the various joints in 

the robot and the end-effector. The dynamics equations for the robot are derived which will 

be used for the establishing the control laws for the various controllers in the later chapters.  

3.1 COORDINATE FRAMES:  

To describe the geometry of the robot motion, the cartesian coordinate frame with the origin 

𝑂𝑖 and axes 𝑋𝑖, 𝑌𝑖  & 𝑍𝑖 for each link must be determined as shown in Fig. 3.1, 

• The locations of the origin can be placed at any arbitrary locations within the 

geometry accordingly. 

• A right-handed orthonormal coordinate frame is established, firstly 

𝑍𝑂 , 𝑍1, 𝑍2,𝑍3 & 𝑍4 axes are defined such that their directions represent the rotational 

axis. 

• The X axes are defined in such a way that it lies along the common normal from 𝑍𝑖−1 

axis and 𝑍𝑖  axis. 

• Finally, Y axes are assigned to complete the right-handed triad. 

 

The Denavit-Hartenberg parameters are the four parameters that are linked with a specific 

convention for attaching reference frames to the links of a spatial kinematic chain. 

Confirming the locations of origin and the coordinate frames, the Denavit-Hartenerg (DH) 

parameters have been formulated for the robot system.  

https://en.wikipedia.org/wiki/Kinematic_chain


28 

 

  
Fig. 3.1 The SCARA Variant, with directions of 

motion of joints 

 

Fig. 3.2 The SCARA Variant, defining the 

coordinate frames and D-H Parameters 

 

 

By observing the figure, it is evident that the following are the four parameters:  

ai = distance from the intersection Zi-1 and Xi to origin along Xi 

θi = angle of rotation from Xi-1 to Xi about Zi-1 

αi = angle of rotation from Zi-1 to Zi about Xi 

di  = distance from origin of intersection of Zi-1 and Xi along Zi-1 

 

By observing the geometry of the robot, the D-H Parameters are summarized as follows:  

Reference 
Frame 

Link length 
𝒂𝒊 

Twist angle 
𝜶𝒊 

Link offset 
𝒅𝒊 

Joint twist 
𝜽𝒊 

1 L1 0 0 θ1 
2 0 0 𝑑2 0 
3 L3 0 0 θ3 
3 0 0 0 θ4 

Table 3.1 D-H Parameters of the SCARA Variant System 
 

3.2 FORWARD KINEMATICS:  

Forward kinematics gives the relationship between the tool tip position and the orientation 

with the individual joint positions and orientation. The forward kinematics for a robot 
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consisting of a series of chains is found using the rigid transformation to characterize the 

relative movement allowed at each joint and separate rigid transformation to define the 

dimensions of each link.  

 

The rigid transformation matrix is given as follows for consecutive reference frames, using 

the D-H parameters:  

𝑇𝑖−1
𝑖 = ⌈

𝑐𝑜𝑠𝜃𝑖  −𝑠𝑖𝑛𝜃𝑖𝑐𝑜𝑠𝛼𝑖 𝑠𝑖𝑛𝜃𝑖𝑠𝑖𝑛𝛼𝑖 𝑑𝑖𝑐𝑜𝑠𝛼𝑖

𝑠𝑖𝑛𝜃𝑖 𝑐𝑜𝑠𝜃𝑖𝑐𝑜𝑠𝛼𝑖 −𝑐𝑜𝑠𝜃𝑖𝑠𝑖𝑛𝛼𝑖 𝑑𝑖𝑠𝑖𝑛𝛼𝑖

0 𝑠𝑖𝑛𝛼𝑖 𝑐𝑜𝑠𝛼𝑖 𝑑𝑖

0 0 0 1

⌉ 

 

(3.1) 

 

Where i-1 is the reference coordinate and i is the source coordinate. A series of successive 

rotation and translation is required to obtain the transformation matrix of the end-effector 

with respect to the base reference frame.  

𝑇0
4 = 𝑇0

1𝑇1
2𝑇2

3𝑇3
4 (3.2) 

Where, 𝑇0
4 is the final transformation matrix of the RPRR SCARAR Variant. MATLAB has been 

utilized to get the expressions of the transformation matrices as following (Appendix A): 

 

𝑇0
1 = ⌈

𝑐𝑜𝑠𝜃1 −𝑠𝑖𝑛𝜃1 0 𝑙1𝑐𝑜𝑠𝜃1

𝑠𝑖𝑛𝜃1 𝑐𝑜𝑠𝜃1 0 𝑙1𝑠𝑖𝑛𝜃1

0 0 1 0
0 0 0 1

⌉                           𝑇1
2 = ⌈

1 0 0 0
0 1 0 0
0 0 1 𝑑2

0 0 0 1

⌉ 

 

𝑇2
3 = ⌈

𝑐𝑜𝑠𝜃3 −𝑠𝑖𝑛𝜃3 0 𝑙3𝑐𝑜𝑠𝜃3

𝑠𝑖𝑛𝜃3 𝑐𝑜𝑠𝜃3 0 𝑙3𝑠𝑖𝑛𝜃3

0 0 1 0
0 0 0 1

⌉                   𝑇3
4 = ⌈

𝑐𝑜𝑠𝜃4 −𝑠𝑖𝑛𝜃4 0 0
𝑠𝑖𝑛𝜃4 𝑐𝑜𝑠𝜃4 0 0

0 0 1 0
0 0 0 1

⌉ 

 

(3.3) 
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Therefore, using Eqn. (3.2) & (3.3), the symbolic final transformation matrix can be obtained 

as follows:  

𝑇0
4 = [

cos (𝜃1 + 𝜃3 + 𝜃4)  −sin(𝜃1 + 𝜃3 + 𝜃4) 0 𝐿3 cos(𝜃1 + 𝜃3) + 𝐿1𝑐𝑜𝑠𝜃1

sin(𝜃1 + 𝜃3 + 𝜃4) cos (𝜃1 + 𝜃3 + 𝜃4) 0 𝐿3 sin(𝜃1 + 𝜃3) + 𝐿1𝑠𝑖𝑛𝜃1

0 0 1 𝑑2

0 0 0 1

] 

 

 

(3.4) 

Now, in order to get the final positions of the end-effector in terms of terms of the joint 

variable, we consider the last column of 𝑇0
4 matrix from Eqn. 3.4.  

𝑋 =  𝐿3 cos(𝜃1 + 𝜃3) + 𝐿1𝑐𝑜𝑠𝜃1  

 

(3.5) 

𝑌 = 𝐿3 sin(𝜃1 + 𝜃3) + 𝐿1𝑠𝑖𝑛𝜃1 

𝑍 = 𝑑2 + 𝑑0 

 

It is to be noted that in the Eqn. (3.5), for the expression of Z, an additional term 𝑑0was added. 

This is not present in the matrix expression of the transformation matrix but is added due to 

the height of the first R joint above the fixed surface. This can be observed in Fig. 3.1, 

therefore, 𝑑0 is the height of the fixture on which the first joint rests. 

3.3 INVERSE KINEMATICS 

Inverse kinematics is the mathematical process of finding the variable parameters or the 

movements of the individual joints, for known end-effector details. In robotics inverse 

kinematics is obtained from the kinematics equations following the sequence:  
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Unlike the forward kinematics there is no predefined method to calculate the joint variables. 

The equations of inverse kinematics are unique and are obtained from basic trigonometric 

operations. Consider the trigonometric operations performed on the 3D space using the joint 

and end-effector variables shown in the Fig. 3.3. 

 

Fig. 3.3 Trigonometric method for finding the inverse kinematics 

 

Using the representation in Fig. 3.3 and the end-effector coordinates, which are symbolically 

represented as (𝑥𝑐, 𝑦𝑐 , 𝑧𝑐), trigonometric operations are performed to obtain expressions of 

individual joint variables in terms of the end-effector coordinates.  

cos(𝜃3) =
𝑥𝑐

2 + 𝑦𝑐
2 − 𝐿1

2 − 𝐿3
2

2𝐿1𝐿3
 

𝑠𝑖𝑛𝜃3 =  √(1 − 𝑐𝑜𝑠𝜃3 
2)−

+  



32 

 

 

The following final expressions were obtained, which are the inverse kinematic equations:  

𝜃3 = 𝑎𝑟𝑐 tan (𝑠𝑖𝑛𝜃3 , 𝑐𝑜𝑠𝜃3 ) (3.6) 

𝜃1 = 𝑎𝑟𝑐 tan(𝑥𝑐 , 𝑦𝑐) − 𝑎𝑟𝑐 tan (𝐿3𝑠𝑖𝑛𝜃3 ,𝐿1 + 𝐿3𝑐𝑜𝑠𝜃3 ) (3.7) 

𝑑2 = 𝑧𝑐 −  𝑑0 (3.8) 

𝜃4 = 0 

 

(3.9) 

It is to be noted that the fourth angle 𝜃4 is kept at a constant value 𝜃4 = 0. This is done due 

to the limitations of the number of equations available to solve for it. The 𝜃4 is therefore, 

during the later simulations, run from 0 to 2π , for one complete revolution, for the total 

duration of the time. This method can be avoided by considering the pose of the robot, which 

the sum of the 𝜃1 𝜃3 𝜃4 & 𝑑2 variables and applying controller for it. Hence making the system 

analysis full for the 4 DOF but is a tedious process and due to limitations in scope, this method hasn’t 

been opted. 

3.4 SINGULARITY ANALYSIS: 

Singularity analysis is done to obtain the joint variable locations where the end-effector 

cannot move. These are the locations for joint variables where the end-effector doesn’t 

respond as expected. It is crucial to locate these points as they correspond to unbounded 

joint velocities and torques for corresponding bounded joint velocities and torques. 

(Abdolmalaki, 2017).  

 

Singularity condition can be solved by equating the determinate of the Jacobian Matrix to 

zero. This gives the joint variables and their locations where the singularity condition occurs. 
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The Jacobian matrix and corresponding equations will be found in Appendix B. The results 

obtained from solving the determinate of Jacobian to zero (|𝐉| = 0) are as follows: 

𝐿1𝐿3𝑠𝑖𝑛𝜃3 = 0  (3.10) 

Solving Eqn. 3.10, the following is obtained. 

𝐿1 = 0, 𝐿3 = 0 & 𝜃3 = 0, 𝜋 (3.11) 

Studying the results obtained in Eqn. (3.11) graphically, in the 3-D plane, the singularity 

condition is given out in the following two cases:  

• Case 1: 𝐿1 = 0, 𝐿3 = 0 corresponds to the condition where links 1 & 3 are removed. 

Therefore, this eliminates the structures of links 1 & 3, as shown in Fig 3.4 

  

Fig. 3.4 Case 1: The lengths 𝑳𝟏& 𝑳𝟑 are = 0, joints overlap. 

 

• Case 2: 𝜃3 = 0, 𝜋 where the arm is at full extension and overlaps to link 2 respectively 

as shown in Fig. 3.5 
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3.5 DYNAMIC ANALYSIS 

Manipulator dynamics is essential for both the analysis of performance and for the design of 

controllers. The kinematic analysis is used to study the motion of the robot without the 

consideration of forces and torques. Whereas the dynamic equations explicitly describe the 

relationship between various robot forces and the motion (Craig, 2005). The equations of 

motion for the SCARA variant are discussion in this section, which is nothing but the way in 

which the motion of the manipulator arises from the torques applied by the actuators or 

from external forces applied to the manipulator.   

 

In general, there are two methods to obtain the equations of motion; Newton-Euler 

formulation, and the Lagrangian Formulation. The Newton-Euler formulation is derived by 

the direct interpretation of Newton’s second law of motion, which describes the dynamics in 

terms of forces and momentums. In Lagrangian framework, the dynamics are described in 

  

Fig. 3.5 Case 2: 𝜽𝟑 = 𝟎,𝝅, the arm is at full extension or overlap with link 2. 
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terms of work and energy in the generalized coordinates. The dynamic equations for this 

project are derived using Lagrangian method.  

 

The study makes use of ‘Lagrange Formulation’ which is the difference of the system’s kinetic 

and potential energy as follows:  

𝑑

𝑑𝑡
(
𝜕𝑇

𝜕�̇�
) − (

𝜕𝑇

𝜕𝑞𝑖
) =  𝜏𝑖 

(3.12) 

The Lagrange method when computed over the total system, derives the required control 

torque to be applied on each joint. Therefore, these Lagrangian equations of motion, which 

are nonlinear due to the coupling between various joint forces, provide a very powerful 

technique for analysing the state of the system. In general form the Lagrangian dynamic 

equations are written as: 

𝑀(�̈�) + 𝐶(�̇�, 𝑞) + 𝑔(𝑞) =  𝜏 (3.13) 

where M is the mass inertia term, C is a vector of Coriolis and centrifugal terms and G is the 

gravitational constant. Since the degree of freedom for the present study is 4, expanding Eqn. 

(3.13) for four joints above Eqn. 2 becomes:  

[

𝜏1

𝜏2

𝜏3

𝜏4

]    = 

[
 
 
 
𝑀11 𝑀12 𝑀13 𝑀14

𝑀21 𝑀22 𝑀23 𝑀24

𝑀31 𝑀32 𝑀33 𝑀34

𝑀41 𝑀42 𝑀43 𝑀44]
 
 
 
[

�̈�1

�̈�2

�̈�3

�̈�4

] + 

[
 
 
 
𝐶11 𝐶12 𝐶13 𝐶14

𝐶21 𝐶22 𝐶23 𝐶24

𝐶31 𝐶32 𝐶33 𝐶34

𝐶41 𝐶42 𝐶43 𝐶44]
 
 
 
[

�̇�1

�̇�2

�̇�3

�̇�4

] + [

𝑔1

𝑔2

𝑔3

𝑔4

] 

 

(3.14) 

 

Now, the general Eqn. (3.13) & (3.14) must be expanded further to obtain the expression of 

𝜏i in terms of 𝑀𝑖𝑗 , 𝐶𝑖𝑗  & 𝑔𝑖, where i,j is from 1 to 4. A general method for deriving the mass 

inertia terms is given as follows: 

Rewriting Eqn. (3.13) as: 
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𝜏𝑖 = ∑ 𝑀𝑖𝑘�̈�𝑘

4

𝑗=max (𝑖,𝑘)

+ ∑ 𝐶𝑖𝑘�̇�𝑚

4

𝑚=1

+ 𝐺𝑖 
 

(3.15) 

 

• Mass inertia term: 

𝑀𝑖𝑘 = ∑ 𝑇𝑟𝑎𝑐𝑒(𝑈𝑗𝑘𝐼𝑗𝑈𝑗𝑖
𝑇)

4

𝑗=max (𝑖,𝑘)

 
(3.16) 

𝑈𝑖𝑗 = 
𝜕𝑇0

𝑖

𝜕𝑞𝑗

= {
𝑇0

𝑗−1
𝑄𝑗𝑇𝑗−1

𝑖       𝑓𝑜𝑟 𝑗 ≤ 𝑖

0                        𝑓𝑜𝑟 𝑗 > 𝑖
 

(3.17) 

 

Where T has been defined from the Eqn (3.3) & (3.4). The matrix Q is defined as:  

Q matrix for P joint, 𝑄𝑃 = [

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

] and for R joint 𝑄𝑅 = [

0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

]   

 

(3.18) 

The inertia matrix I is given by: 

𝐼𝑖 = 

[
 
 
 
 
 
 
 
−𝐼𝑥𝑥 + 𝐼𝑦𝑦 + 𝐼𝑧𝑧

2
𝐼𝑥𝑦 𝐼𝑥𝑧 𝑚𝑖�̅�𝑖

𝐼𝑥𝑦

𝐼𝑥𝑥 − 𝐼𝑦𝑦 + 𝐼𝑧𝑧

2
𝐼𝑦𝑧 𝑚𝑖�̅�𝑖

𝐼𝑥𝑧 𝐼𝑦𝑧

𝐼𝑥𝑥 + 𝐼𝑦𝑦 − 𝐼𝑧𝑧

2
𝑚𝑖�̅�𝑖

𝑚𝑖�̅�𝑖 𝑚𝑖�̅�𝑖 𝑚𝑖�̅�𝑖 𝑚𝑖 ]
 
 
 
 
 
 
 

 

 

 

 

(3.19) 

 

• Centrifugal and Coriolis term: 

𝐶𝑖𝑗(𝜃, �̇�) =  ∑ 𝜏𝑖𝑗𝑘𝜃�̇�

𝑛

𝑘=1

=
1

2
∑(

𝜕𝑀𝑖𝑗

𝜕𝜃𝑘
+ 

𝜕𝑀𝑖𝑘

𝜕𝜃𝑗

𝑛

𝑘=1

−
𝜕𝑀𝑘𝑗

𝜕𝜃𝑖
)𝜃�̇� 

(3.20) 

 

Using Eqns. (3.15 – 3.20), the equations of motion are derived using MATLAB, Appendix C 

and the results are obtained as follows:  



37 

 

 

• Mass inertia matrix M =  

𝑀 = 

[
 
 
 
 

𝑝1 + 𝑝2𝑐𝑜𝑠𝜃3 0 𝑝3 + 0.5𝑝2𝑐𝑜𝑠𝜃3 𝑝5

0 𝑝4 0 0

𝑝3 + 0.5𝑝2𝑐𝑜𝑠𝜃3 0 𝑝3 𝑝5

𝑝5 0 𝑝5 𝑝5]
 
 
 
 

 

 

(3.21) 

 

Where 𝑝1to 𝑝5 are given by: 

𝑝1 = ∑𝐼

4

1

+ 𝑚1𝑟1
2 + 𝑚3𝑟3

2 + 𝐿1
2(𝑚1 + 𝑚2) + (𝐿1

2 + 𝐿2
2)(𝑚4 + 𝑚3) + 2(𝐿1𝑚1𝑟1

+ 𝐿3𝑚3𝑟3) 

𝑝2 = 2[𝐿1𝐿2(𝑚3 + 𝑚4) + 𝐿1𝑚3𝑟3] 

𝑝3 = ∑𝐼

4

3

+ 𝑚3𝑟3
2 + 𝐿3

2(𝑚3 + 𝑚4) + 2𝐿3𝑚3𝑟3 

𝑝4 = 𝑚2 + 𝑚3 + 𝑚4 

𝑝5 = 𝐼4 

 

 

 

 

 

 

 

(3.22) 

 

• Centrifugal and Coriolis term: 

Solving the Eqn. (3.19) for the SCARA variant, the following result has been obtained for the matrix 

C. 

𝐶 =  

[
 
 
 
− 𝜃3

̇ 0 −( 𝜃1 +̇  𝜃3)̇  𝑝6 0

0 0 0 0
𝜃1̇𝑝6 0 0 0

0 0 0 0]
 
 
 
 

 

 

 

(3.23) 

Where,   

𝑝6 = (𝐿
3
𝑚3 + 𝐿3𝑚4 + 𝑚3𝑟3)𝐿1𝑠𝑖𝑛𝜃3 

 

(3.24) 
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• Gravity term G: 

𝐺 = [

0
9.81(𝑚2 + 𝑚3 + 𝑚4)

0
0

] 

 

(3.25) 

 

Therefore, my bringing together Eqns. (3.21, 3.23 & 3.25), the general matrix form for the 

equations of motion is:  

[

𝜏1

𝜏2

𝜏3

𝜏4

] =  

[
 
 
 
 

𝑝1 + 𝑝2𝑐𝑜𝑠𝜃3 0 𝑝3 + 0.5𝑝2𝑐𝑜𝑠𝜃3 𝑝5

0 𝑝4 0 0

𝑝3 + 0.5𝑝2𝑐𝑜𝑠𝜃3 0 𝑝3 𝑝5

𝑝5 0 𝑝5 𝑝5]
 
 
 
 

[

�̈�1

�̈�2

�̈�3

�̈�4

]

+  

[
 
 
 
− 𝜃3

̇ 𝑝6 0 −( 𝜃1 +̇  𝜃3)̇  𝑝6 0

0 0 0 0
𝜃1̇𝑝6 0 0 0

0 0 0 0]
 
 
 
[

�̇�1

�̇�2

�̇�3

�̇�4

] + [

0
9.81(𝑚2 + 𝑚3 + 𝑚4)

0
0

] 

 

 

 

 

(3.26) 

Where the 𝑝1to 𝑝6 are defined in Eqns. (3.22 & 3.24) 

 

For comparison, the generic methodology described above and the MATLAB, Appendix C 

were used to derive the equations of motion for the standard SCARA robot. The following 

results were obtained:  

[

𝜏1

𝜏2

𝜏3

𝜏4

] =  

[
 
 
 
 

𝑝1 + 𝑝2𝑐𝑜𝑠𝜃2 𝑝3 + 0.5𝑝2𝑐𝑜𝑠𝜃2 0 𝑝5

𝑝3 + 0.5𝑝2𝑐𝑜𝑠𝜃2 𝑝3 0 𝑝5

0 0 𝑝4 0

𝑝5 𝑝5 0 𝑝5]
 
 
 
 

[

�̈�1

�̈�2

�̈�3

�̈�4

]

+  

[
 
 
 
− 𝜃2

̇ 𝑝6 −( 𝜃1 +̇  𝜃2)̇  𝑝6 0 0

𝜃1̇𝑝6 0 0 0
0 0 0 0
0 0 0 0]

 
 
 

[

�̇�1

�̇�2

�̇�3

�̇�4

] + [

0
9.81(𝑚2 + 𝑚3 + 𝑚4)

0
0

] 

 

 

 

 

(3.27) 

Where the 𝑝1to 𝑝6 are defined as 
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𝑝1 
= ∑𝐼

4

1

+ 𝑚1𝑟1
2 + 𝑚3𝑟3

2 + 𝐿1
2(𝑚1 + 𝑚2 + 𝑚3 + 𝑚4) + 𝐿2

2(𝑚2 + 𝑚3 + 𝑚4)

+ 2(𝐿1𝑚1𝑟1 + 𝐿2𝑚2𝑟2) 
𝑝2 = 2[𝐿1𝐿2(𝑚2 + 𝑚3 + 𝑚4) + 𝐿1𝑚3𝑟3] 

 

𝑝3 
= ∑𝐼

4

2

+ 𝑚2𝑟2
2 + 𝐿2

2(𝑚2 + 𝑚3 + 𝑚4) + 2𝐿3𝑚3𝑟3 

𝑝4 = 𝑚3 + 𝑚4 
𝑝5 = 𝐼4 
𝑝6 = (𝐿2𝑚2 + 𝐿2𝑚3 + 𝐿2𝑚4 + 𝑚2𝑟2)𝐿1𝑠𝑖𝑛𝜃2 

 (3.28) 
 

 

It can be observed that the dynamics equations for both the configurations are similar with 

modifications in the changed axes 2 & 3. Moreover, it can also been seen that the Eqn. (3.28), 

the equations of 𝑝1to 𝑝6 contain extra terms in mass and length of the links when compared 

to the similar equations of 𝑝1to 𝑝6 from the SCARA variant in Eqn. (3.22 & 3.24).  

3.6 REMARKS 

For the modified SCARA robot, the robot parameters are defined. The kinematics analysis 

has been carried out to get the relation between the task space and joint space parameters. 

The generic methodology to define the dynamics of the system has laid out and been utilized 

to derive the equations of motion for the SCARA variant. To understand how the variant 

defers from the standard SCARA, the equations of motion has been derived using the generic 

equations described here for the standard SCARA as well. In comparison the equations of 

motion are almost similar for both the configurations, except in terms of the changed axes 2 

& 3. Moreover, the presence of few extra terms in the equations for standard SCARA when 

compared to the variant, it can be said that the control is comparatively easier for the variant.  
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Using the equations of motion, stability could be analyzed using the Lyapunov theory, but 

due to the limitation of time and scope in this project, that part has been skipped. The control 

laws defined in the later sections will use these set of equations of motion.  
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CHAPTER 4: ADAPTIVE PD SLIDING MODE CONTROL 
 

 

Once the dynamics of the system are available, the later part is the design of the control laws. 

For the presented dynamics in Chapter 3, the controllers are designed in this chapter. The 

control laws are presented for PD and PD-SMC schemes, to be used later in the simulations. 

Finally, the adaptive control scheme is formulated for a manipulator, the rationale and the 

methodology behind it are also discussed.  

4.1 DYNAMIC MODEL 

Control of a robotic manipulator can be achieved by the controlling the input torques to the 

system. Therefore, it is evident that first the dynamic equations of the system be defined to 

get the relationship between the torques/forces applied by the actuators and the resulting 

motions of the manipulator. The dynamic model for the 4D0F SCARA variant has been 

studied and discussed in detail in section 3.5, but we reproduce the generic dynamic 

Lagrangian equation of motion for a robotic manipulator, since we use it repeatedly in this 

chapter.  The dynamics can be mathematically represented by the following nonlinear 

differential equation for an 𝑛-link rigid manipulator: 

 𝑀(𝑞)�̈� + 𝐶(�̇�, 𝑞)�̇� + 𝐺(𝑞) + 𝐷(𝑡, �̇�, 𝑞) = 𝜏(𝑡) (4.1) 

 
where: 

• 𝑞 = 𝑞(𝑡), �̇� = �̇�(𝑡), �̈� = �̈�(𝑡) are functions of time and are 𝑛 × 1 vectors representing the 

joint position, velocity, and acceleration, respectively. 

• 𝑀(𝑞) is an 𝑛 × 𝑛 inertia matrix. 

• 𝐶(�̇�, 𝑞) is an 𝑛 × 𝑛 matrix containing the centrifugal-Coriolis terms. 
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• 𝐺(𝑞) is an 𝑛 × 1 vector of gravitational torques or forces. 

• 𝐷(𝑡, �̇�, 𝑞) is an 𝑛 × 1 vector representing friction, uncertainty, disturbance terms. 

• 𝜏(𝑡) is an 𝑛 × 1 vector of the joint torques or forces. 

4.2 PD FORMULATION 

As discussed in earlier sections 2.1, PD control is based on local linearization and it 

guarantees local stability. The PD control is based only on the tracking errors of the 

trajectory and therefore has no feedback term. For this project, a general PD control is 

utilized with a gravity compensation vector to increase the robustness of the system. This 

vector is calculated by the system dynamics at desired joint angles. Hence, can be treated as 

feedforward term to assist the controller in compensating for the dynamics.  

In order to formulate the PD control law, first we must define the tracking errors of the 

system as follows:  

𝑒(𝑡) =  𝜃𝑑(𝑡) −  𝜃(𝑡)  

�̇�(𝑡) =  𝜃�̇�(𝑡) − �̇�(𝑡)  

�̈�(𝑡) =  𝜃�̈�(𝑡) − �̈�(𝑡) (4.2) 

 
Where 𝑒, �̇� and �̈� are the tracking errors in position, velocity and acceleration respectively.  

𝜃𝑑 , 𝜃�̇�  and 𝜃�̈�  are the desired position, velocity and acceleration respectively.  

By substituting Eqn. (4.2) in Eqn. (4.1), the dynamic model (required torque) for achieving 

the desired trajectory is given as:  

𝜏𝑑(𝑡) = 𝑀(𝑞)�̈�𝑑 + 𝐶(�̇�, 𝑞)�̇�𝑑 + 𝐺(𝑞) + 𝐷(𝑡, �̇�, 𝑞) (4.3) 

Where, 𝜏𝑑(𝑡) is the desired torque input.  
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 Therefore, from Eqn. (4.3) – Eqn. (4.1) and utilizing Eqn. (4.2), the dynamic model of the 

system is rewritten in terms of the tracking errors as follows:  

𝜏𝑑(𝑡) − 𝜏(𝑡) =  𝑀(𝑞)�̈� + 𝐶(�̇�, 𝑞)�̇� (4.4) 

It should be noted that in Eqn. (4.4), there is no feedback term. The following PD control law 

has been selected for the tracking control of the rigid robotic manipulators,  

𝜏𝑃𝐷(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑑�̇�(𝑡) (4.5) 

Where, the 𝐾𝑝 and 𝐾𝑑 are positive definite matrices defining the proportional and derivative 

gains respectively. From Eqn. (4.5) is can be seen that the PD control is easy to implement 

and does not require priori knowledge of the system, whereas only requires the tracking 

errors of the system. Therefore, the PD control utilized is a model-free linear feedback 

control of the system.  

4.3 PD-SMC FORMULATION 

From the discussions in the earlier chapters, it can be noted that both PD control and SMC 

have their respective advantages and disadvantages. The advantages and weaknesses of a 

PD controller can be stated as follows. They are easy to implement as they are model free but 

on the other hand due to their linear nature have relatively low tracking performance. On 

the other hand, SMC has gives high tracking, but needs priori knowledge of the dynamics of 

the system. The exact dynamics, in some cases, may not be readily available or could be 

difficult to obtain. An attempt to combine the two control schemes was done in (Acob, 2011) 

and following control law was outlined for the hybrid PD-SMC scheme:  
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𝜏𝑃𝐷−𝑆𝑀𝐶(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑑�̇�(𝑡) + 𝐾𝑠𝑠𝑔𝑛(𝑠)  

                                                    𝑠 = 𝜆𝑒(𝑡) + �̇�(𝑡) (4.6) 

Where  𝑠 is the sliding surface of the system.  

𝐾𝑠 is the positive definite matrix containing the SMC gains  

𝜆 is the matrix containing the positive definite vector of the slopes of the sliding surface. 

and where the 𝑠𝑔𝑛(𝑠) is the signum function defined as follows 

𝑠𝑔𝑛(𝑠) = {

−1 𝑖𝑓 𝑠 < 0
0 𝑖𝑓 𝑠 = 0
1 𝑖𝑓 𝑠 > 0

 

 

(4.7) 

This control scheme contains a nonlinear term, due to the switching term of SMC and the 

feedback from the PD control, Therefore the weakness of a control law has been 

compensated by the other. Therefore, this controller satisfies the complementary principle 

for the hybridization of two control systems. (Ouyang P. , 2005) 

But the control scheme in Eqn.  (4.6), in reality causes, the trajectory to oscillate along the 

sliding surface. This causes vibrations or chatter, which is undesirable. This chatter can be 

eliminated by using a thin boundary layer ∅, which ensures that outside the boundary layer, 

the defined control law is attractive. (Slotine, 1991). Therefore, in an attempt to reduce the 

chattering for the hybrid PD-SMC controller, the following modification is done to the control 

torque:  

𝜏𝑃𝐷−𝑆𝑀𝐶(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑑�̇�(𝑡) + 𝐾𝑠𝑚𝑖𝑛 (𝑎𝑏𝑠 (
𝑠

∅
) , 1)𝑠𝑔𝑛(𝑠/∅) (4.8) 

The introduction of the boundary layer ∅, to the controller gives the effect of a lowpass filter 

structure to the local dynamics of the sliding boundary layer. This filter like behaviour 

smoothens the control discontinuity inside the boundary layer and eliminates chatter.  
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4.4 ADAPTIVE PD-SMC FORMULATION 

In order to achieve better tracking performances for the PD-SMC controller, an adaptive law 

has been used to estimate the dynamics of the system. An adaptive controller, as explained 

in section 2.2.1, has basically a parameter estimation loop, which is useful in situations where 

the dynamics of the system vary or are initially unknown. Many adaptive controllers have 

been developed for various applications (Xu, 2001) (Tomei, 1991) (Middelton, 1988). This 

section deals with the formulation of an adaptive PD-SMC, A-PD-SMC in short, which consists 

of a PD control part for bringing the trajectory to the normalized surface, SMC control part 

to force the trajectory close to the sliding surface and finally an adaptive control part to 

estimate the unknown dynamics of the system. This controller, A-PD-SMC is an extension of 

the previous PD-SMC law, with an addition of a parameter estimator.  

For the 4DOF SCARA variant under study, the following A-PD-SMC law is proposed: 

𝜏𝐴−𝑃𝐷−𝑆𝑀𝐶 = 𝜏�̂� + 𝐾𝑝𝑒(𝑡) + 𝐾𝑑�̇�(𝑡) + 𝐾𝑠𝑚𝑖𝑛 (𝑎𝑏𝑠 (
𝑠

∅
) , 1)𝑠𝑔𝑛(𝑠/∅) (4.9) 

 The A-PD-SMC is much similar to the PD-SMC law in Eqn. (4.8), expect an addition term 𝜏�̂� , 

which is defined as the estimation of the reference or desired torque, given in Eqn. (4.3). The 

estimation 𝜏�̂� , is defined as follows (Ouyang, Tang, Yue, & Jayasinghe, 2016): 

𝜏�̇̂� =  𝜎𝑠, 𝜏�̂�(0) =  𝜏𝑟0̂  (4.10) 

 Where, 𝜎 is a defined as the adaptive gain (positive gain) and 𝜏𝑟0̂is the initial vector of the 

estimated torque vector.  It should be noted that from Eqn. (4.9), the proposed A-PD-SMC 

law is feedback, nonlinear with no priori knowledge of the system, depending only on the 

tracking errors and utilized reference torques to bring the tracking to the sliding surface.  
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4.5 FRICTION IN JOINTS  

The design and analysis of friction compensators depend heavily on the type of the friction 

model used and the suitability of the analysis technique employed. (Hélouvry, Dupont, & 

Canudas de Wit, 1994). Brain Armstrong et.al. has listed a survey which describes models of 

machine frictions, followed with a detailed study of analysis techniques and with a survey of 

friction compensation methods. It has to be accepted that the modelling of friction in a 

system is a multifaceted phenomenon, incorporating Coulumb and Viscous friction, 

nonlinear friction at low velocities, temporal phenomena and the elasticity of the interface. 

From the reference (Hélouvry, Dupont, & Canudas de Wit, 1994), the following friction 

matrix has been utilized for the SCARA variant under study: 

𝑓 =  −(𝑔𝑎𝑖𝑛𝑠. 𝑓𝑐 + (𝑔𝑎𝑖𝑛𝑠. 𝑓𝑠 − 𝑔𝑎𝑖𝑛𝑠. 𝑓𝑐)𝑒
(

�̇�
𝑔𝑎𝑖𝑛𝑠.𝑓𝑡

)

2

)𝑠𝑖𝑔𝑛�̇� + 𝑔𝑎𝑖𝑛𝑠. 𝑏 𝑥 �̇� 

 

(4.11) 

Where, 𝑔𝑎𝑖𝑛𝑠. 𝑓𝑐 , 𝑔𝑎𝑖𝑛𝑠. 𝑓𝑠 , 𝑔𝑎𝑖𝑛𝑠. 𝑓𝑡  & 𝑔𝑎𝑖𝑛𝑠. 𝑓𝑏 are friction gain parameters. This section has 

not been detailed in further as a lot of analytical work has to be detailed in other to 

understand the complete friction modelling, therefore, the friction model has been 

borrowed.  

4.6 REMARKS:  

In this chapter the three control schemes to be utilized for the control of the SCARA Variant 

are defined. The control laws are borrowed from sources and slight modifications were done 

in order to reduce chatter. The PD-SMC is seen to have both the advantages of PD and SMC 

controllers and the resultant controller is nonlinear with a feedback loop for system 
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information. The defined A-PD-SMC law is an attempt to compensate for the system 

parameters variations and/or lack of information. The adaptive loop in these controller 

estimates the unknown parameters based on the reference system information given. The 

defined control laws are in the later chapter used for the simulations of tracking 

performance.  
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CHAPTER 5: SIMULATIONS and RESULTS 
 

 

This chapter deals with a number of simulations for the trajectory tracking control of the 

4DOF SCARA Variant. The performance will be tested under the three control laws; PD, PD-

SMC and A-PD-SMC. Two trajectories, namely circular and linear, in 3-D space will be used. 

Further, a mechanism for establishing smooth motions for all the joints is also mentioned in 

this chapter. The SCARA Variant manipulator will be analyzed for position errors and control 

torques under the various control schemes. The study done in this chapter is critical as the 

efficiency of the control laws defined for tracking a 3-D, 4DOF robotic manipulator will be 

analysed.   

5.1 SIMULATION SETUP 

The simulations for the robotic manipulator are done over the three defined control laws 

and for two trajectories (linear and circular). Different control gain parameters are used for 

each, as the different trajectories call for different control parameters, though if such a 

system with no change in control parameters can be designed, it will make the 

implementation of the controller very easy.  

 

The SCARA Variant robot used in this simulation is made of n = 4 rigid links of length 𝐿𝑖  that 

are actuated about their respective joints, where the subscript 𝑖 denotes the joint number. 

The total degree of freedom of the manipulator is therefore 4. The sequence of the joints is 

R-P-R-R, where R stands for a revolute joint and P stands for a prismatic joint respectively. 

The motion of the manipulator is in the 3-D plane, and the rigids links have their centre of 
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mass at a distance 𝑟𝑖 from the preceding joint along its length. The angle of each link relative 

to the preceding one is denoted by 𝑞𝑖. Whereas, for the joint 2, the prismatic joint, the 

notation 𝑞2, is the displacement of the joint from the fixed base. The structural specifications 

of the SCARA Variant are shown in Table 5.1. 

Link 
𝒊 

Mass 𝒎𝒊 
(Kg) 

Length 𝑳𝒊 
(m) 

Distance to Centre of Mass 
𝒓𝒊 (m) 

Inertia 𝑰𝒊 
 𝒌𝒈𝒎𝟐 

1 0.4 0.25 0.125 0.002 
2 0.2 0.15 0.075 0.0002 
3 0.2 0.25 0.125 0.002 
4 0.1 0.15 0.075 0.002 

Table 5.1 SCARA Robot Specifications 

 

5.2 TRAJECTORY PLANNING FOR SIMULATIONS 

The desired trajectories are input to the simulations in terms of a start and end point for each 

axis of the 3-D space. In order to ensure smooth trajectories for each joint, a fifth order 

polynomial is used to parametrically establish the position and velocity (Craig, 2005). The 

fifth order polynomial is given as:  

 
𝑠𝑐(𝑡) = 6 (

𝑡

𝑇
)
5

− 15(
𝑡

𝑇
)
4

+ 10(
𝑡

𝑇
)
3

 (5.1) 

 

Where t is the amount of time elapsed in the trajectory and T is the total duration of the 

trajectory. The sampling rate is selected as 2000 [Hz], which was enough to ensure smooth 

trajectories of both linear and circular contours. The position vectors of the end-effector are 

defined by using the fifth order polynomial in Eqn. (5.1), as follows:  

• For Linear Trajectory, where the subscript 1 & 2 represent the initial coordinate and 

final coordinate of the line respectively: 
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𝑥 =  𝑥1 + 𝑠𝑐(𝑡)(𝑥2 − 𝑥1) 

𝑦 =  𝑦1 + 𝑠𝑐(𝑡)(𝑦2 − 𝑦1) 

𝑧 =  𝑧1 + 𝑠𝑐(𝑡)(𝑧2 − 𝑧1) 

 

 

(5.2) 

•  For circular trajectory, the position vectors are given by the subscript 0 represents 

the centre of the circle and R is the radius of the circle.  

𝑥 =  𝑥0 +  𝑅 cos (2𝜋𝑠𝑐(𝑡)) 

𝑦 =  𝑥0 +  𝑅 cos (2𝜋𝑠𝑐(𝑡)) 

𝑧 =  𝑥0 +  𝑅 cos (2𝜋𝑠𝑐(𝑡)) 

 

 

 

(5.3) 

5.3 SCARA ROBOT SIMULATION RESULTS FOR LINEAR 

TRAJECTORIES 

Two linear trajectories are chosen to study the performance of the system under the 

different control laws. The Table 5.2 shows the different starting and ending points for the 

end-effector for the two trajectories in 3-D space. 

Trajectory X coordinate Y coordinate Z coordinate 

𝑥1 𝑥2 𝑦1 𝑦2 𝑧1 𝑧2 

Linear Trajectory 𝐼 -0.11 0.15 0.09 0.25 0.20 0.48 

Linear Trajectory 𝐼𝐼 0.14 0.10 0.26 0.10 0.50 0.21 

Table 5.2 Linear Trajectories Specifications 

 

The graphical motion of the end-effector in 3-D for the two linear trajectories mentioned in 

Table 5.2 are shown below in Fig 5.1. The selection of the two linear starting and ending 

points were done arbitrarily. 
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Fig. 5.1 The selected two trajectories for Linear Motion 

 

The control parameters used for the robot for the linear trajectory simulations are listed in 

Table 5.3. An attempt was made to keep the control gains similar between both the linear 

trajectories, in order to increase the efficiency and the utility of the controllers.  

Controller 

PD PD-SMC A-PD-SMC 

𝐾𝑝 =  diag[1500, 2500, 1250, 750]   

 

𝐾𝑝 =

 diag[1500, 2500, 1250, 750]   

𝐾𝑝 =

 diag[1500, 2500, 1250, 750]   

𝐾𝑑 = 𝑑𝑖𝑎𝑔[1050, 1750, 875, 1225] 𝐾𝑑

= 𝑑𝑖𝑎𝑔[1050, 1750, 875, 1225] 

𝐾𝑑

= 𝑑𝑖𝑎𝑔[1050, 1750, 875, 1225] 

 𝐾𝑠 = 𝑑𝑖𝑎𝑔[100, 75, 50, 50] 𝐾𝑠 = 𝑑𝑖𝑎𝑔[100, 75, 50, 50] 

𝜆 = 𝑑𝑖𝑎𝑔[100,100,100] 𝜆 = 𝑑𝑖𝑎𝑔[100,100,100] 

𝜙 = 0.2 𝜙 = 0.2 

𝜎 = 2000 

Table 5.3 Control Parameter Specifications of Linear Motion 

 

The joints individual position and velocity based on the end-effector coordinates given are 

shown in Fig.5.2 & Fig.5.3 for linear trajectories I and II respectively. In these figure, the 

angular position and the velocity of the joints are calculated using the inverse kinematics 
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from the end-effector coordinates (𝑥𝑐, 𝑦𝑐, 𝑧𝑐), which is given by the set of Eqn. (5.2) and 

graphically in Fig. 5.2 & 5.3. 

   
Fig. 5.2 Angular positions and velocities for joints and Position of the End-effector for Linear 

Trajectory I 

   
Fig. 5.3 The angular positions, angular velocities of the joints and the end-effector position for 

Trajectory II 

 

 

5.3.1 TRACKING ERRORS OF LINEAR TRAJECTORY I: 

Using the desired trajectory, the tracking errors of each axis is calculated and since, the 

tracking performance of the individual joints directly correspond to the performance of the 

end-effector. Simulations are carried out for the desired end-effector coordinates given by 

Linear Trajectory I. The simulations are carried using the control parameters listed in Table 

5.3. The tracking errors for the four joints are compared over the three control methods: PD, 

PD-SMC and A-PD-SMC.  
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Fig. 5.4 The Tracking Errors for Joint 1 and Joint 2 between the controllers 

 

 

Fig. 5.5 Tracking Errors for Joint 3 and Joint 4 between the controllers 

 

Fig. 5.4 and Fig. 5.5 depict the joint space tracking errors for each joint. It is evident from the 

graphs that the tracking performance is best for A-PD-SMC, since the tracking errors are the 

closest to zero. PD controller has the least performance as it can be seen from the above 

figures that the errors in joint tracking are exponentially changing. When comparing the 

performance for A-PD-SMC and PD-SMC, both controllers are able to track the trajectory with 

high accuracy, but the adaptive controller has a better edge.  From the mean and standard 

deviation results in Table 5.4, it can be verified that both PD-SMC and A-PD-SMC controllers 
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achieve better tracking than the standard PD controller, since the mean of the errors of each 

axis are lesser to that of PD. The drawback from the set of values of mean and standard 

deviation is that the deviation of the errors for joint 1, is higher for adaptive than the one for 

hybrid. But since the mean is lesser for adaptive to hybrid by a scale of 10-1, this drawback 

can be neglected. The average mean of the joint’s errors for joints 1,3 and 4 in radians for PD, 

PD-SMC and A-PD-SMC are -1.206 x 10-3, 6.68 x 10-5, and -3.3 x 10-6 respectively. 

Controller Joint 1 Joint 2 Joint 3 Joint 4 
Mean 
(rad) 

S.D (rad) Mean 
(m) 

S.D. (m) Mean 
(rad) 

S.D. (rad) Mean 
(rad) 

S.D.  
(rad) 

PD -0.0030 0.0011 0.0194 0.0067 3.81 x 10−4 0.0026 -0.0010 0.0023 
PD-SMC  

−1.36 x 10−4 
3.48 x 10−5 0.0017 1.83 x 10−4 9.16 x 10−5 2.67 x 10−4 2.45 x 10−4 3.26 x 10−4 

A-PD-SMC −2.23 x 10−5 3.84 x 10−5 1.67 x 10−4 3.75 x 10−4 2.3 x 10−5 1.33 x 10−4 −1.06 x 10−5 1.2 x 10−4 

Table 5.4 Mean and Standard Deviation of Axial Tracking Errors for Linear Trajectory I 

 

5.3.2 CONTROL TORQUES FOR LINEAR TRAJECTORY I: 

The maximum input torque results listed in Table 5.5 show that for the maximum torque for 

PD controller for Joints 1 is zero, because all the values are in negative (with the minimum 

being -10.52). It can be seen that for all the joints, the maximum torques required are the 

highest for A-PD-SMC controller (except for Joint 2, which is less than PD-SMC by 2.04 %). 

This result is as excepted because better tracking performance comes with the cost of high 

control activity. Over all the joints, the control torque is the highest for Joint 2, which is the 

prismatic joint. This is due to the fact that the resultant of the control of vertical motion 

(along Z axis) requires more energy.  

Controller 𝝉𝟏 𝝉𝟐 𝝉𝟑 𝝉𝟒  
PD 0 91.53 10.50 9.97 

PD-SMC 10.27 93.47 13.39 7.66 
A-PD-SMC 19.47 91.56 21.58 8.90 

Table 5.5 Maximum input torque for the Joints 
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The variation of the input control torques required for each controller is depicted in Fig. 5.6. 

Though there is a presence of vibrations in the control torque requirements for joint 1, joint 

and joint 3, the A-PD-SMC controller is able to reduce the initial higher torque, quickly when 

compared to PD and PD-SMC controller. When looking at the control torques for joint 2, the 

initial torque shoots exponentially to approximately 70 kgm2 and then the adaptive 

controller is efficient in the sense that it is able to reduce the input torque exponential within 

0.5 seconds of the simulation. The initial high torque could be the reason of the initial inertial 

torque of the highly coupled system.  

 

  

 
Fig. 5.6 Input control torques for Linear Trajectory I, for the joints. 
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5.3.3 TASK SPACE END-EFFECTOR TRACKING FOR LINEAR TRAJECTORY 

I: 

 
The end-effector tracking error is also of interest in terms of performance evaluation. After 

the implementation of each of the control law, the end-effector coordinates are respectively 

calculated using the forward kinematics, from the actual individual joint space coordinates, 

From the results obtained from Fig. 5.7 (a), it is observed that when compared to PD 

controller both PD-SMC and A-PD-SMC have better end-effector tracking in all axes. The 

tracking for the Y axis for PD-SMC and A-PD-SMC controllers seem to be zero, which we know 

isn’t possible in reality (perfect tracking is highly difficult). Therefore, in order to element 

the scaling effects in this graph, only the hybrid and adaptive controller’s end-effector were 

plotted in Fig. 5.7 (b), and between the two, the adaptive controller provides a better end-

effector tracking in the Y axis. The Z axis tracking error is most efficient for adaptive law, 

keeping the zero near about zero and with the least deviation, proving the efficiency of the 

controller in most vertical industrial applications.  

  
 

 
Fig. 5.7 (a) Tracking Error of the End-Effector in Task Space for Linear Trajectory I 
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Fig. 5.7 (b) Tracking Error of the End-Effector in Y axis Task Space for Linear Trajectory I for PD-

SMC & A-PD-SMC Controllers. 

 

The below Table 5.6 gives the values of the mean and standard deviations for tracking errors 

in end-effector for the different controllers. The average mean of the task space error for A-

PD-SMC is 1.91x 10-5, for PD-SMC is 5.45 x 10-4 & for PD controller it is 0.062888 over the 

three axes.  In general, the errors and deviations are less for adaptive scheme when 

compared to standard PD and PD-SMC controllers, proving the adaptive scheme achieves the 

highest end-effector tacking performance.  

Controller x axis y axis z axis 

Mean  S.D. Mean S.D. Mean S.D. 

PD -7.34 x 10-4 2.58 x 10-4 0.1700 0.0603 0.0194 0.0067 

PD-SMC -3.44 x 10-5 3.75 x 10-5 -2.97 x 10-5 3.54 x 10-5 0.0017 1.83 x 10-4 

A-PD-SMC -1.58 x 10-6 2.62 x 10-5 -8.10 x 10-6 2.20 x 10-5 1.67 x 10-4 3.75 x 10-4 

Table 5.6 Mean and Standard Deviation for End-Effector in Task Space for Linear Trajectory I 

 

5.3.4 TRACKING ERRORS FOR LINEAR TRAJECTORY II 

The simulations are later carried for tracking performance of the described Linear 

Trajectory II in Table 5.2.  The tracking errors for the four joints are compared over the 

derived three control methods: PD, PD-SMC and A-PD-SMC. The simulations are carried 

using the control parameters listed in Table 5.3. The results are found in Fig. 5.8 & 5.9. 
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Fig. 5.8 The Tracking Errors for Joint 1 and Joint 2 between the controllers for Trajectory II 

  

Fig. 5.9 The Tracking Errors for Joint 3 and Joint 4 between the controllers for Trajectory II 

 

As seen from the joint tracking results for Linear Trajectory I, the performance is better for 

PD-SMC and A-PD-SMC when compared to the standard PD controller. From the mean and 

standard deviation results in Table 5.7, it can be verified that both PD-SMC and A-PD-SMC 

controllers achieve better tracking than the standard PD controller. When comparing both 

the hybrid and adaptive controller, the standard deviation for all the joints are lesser for the 

later. Therefore, this change in the trajectory changes improves the performance. The only 

joint where the adaptive controller fails to improve the tracking performance when 

compared to PD-SMC law is for joint 4, where the mean tracking error has changed from the 

positive 4.42 x 10-5 to negative -9.78 x 10-5. The average mean of the joints errors for joints 1, 
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3 and 4 in radians for PD, PD-SMC and A-PD-SMC are -1.59 x 10-3 , -5.734 x 10-5 , and -3.27 x 

10-5 respectively. 

Controller Joint 1 Joint 2 Joint 3 Joint 4 
Mean 
(rad) 

S.D (rad) Mean 
(m) 

S.D. 
(m) 

Mean 
(rad) 

S.D. (rad) Mean 
(rad) 

S.D.  
(rad) 

PD -3.822 x 10-

4 

0.0025 0.0234 0.0092 -0.0035 0.0016 -8.86 x 10-4 0.0024 

PD-SMC −5.32 x 10-5 1.56 x 10-

4 

0.0037 0.0012 -1.63 x 
10-4 

2.60 x 10-4 4.42 x 10-5 3.56 x 10−4 

A-PD-SMC −2.26 x 10−5 1.01 x 10-

4 

2.25 x 10−4 4.20 x 10−4 2.3 x 10−5 1.43 x 10−4 −9.78 x 10−5 1.18 x 10−4 

Table 5.7 Mean and Standard Deviation of Axial Tracking Errors for Linear Trajectory II 

 

5.3.5 CONTROL TORQUES FOR LINEAR TRAJECTORY II: 

The results for the maximum required input control torque for tracking performance in 

Linear Trajectory II are tabulated in Table 5.8. The required control torques increased from 

PD, to PD-SMC and to A-PD-SMC, for joints 1 and 3. There is a decrease from hybrid to 

adaptive control torque for joint 2, which is like the trend observed for the linear trajectory 

I. This percentage of decrease if 2.10%. There is also a decrease from the standard PD to the 

hybrid control torque for Joint 4, which also follows the similar trend to Table 5.5 for Linear 

Trajectory I, where the percent in decrease is 15%. The control torques are the highest for 

joint 2, where the control action is in the vertical direction, opposing gravity, which is also 

like the trends in torque for Linear Trajectory I.   

Controller 𝝉𝟏 𝝉𝟐 𝝉𝟑 𝝉𝟒  
PD 11.344 91.50 9.96 9.11 

PD-SMC 12.23 92.92 10.04 7.70 
A-PD-SMC 19.87 90.96 20.70 8.92 

Table 5.8 Maximum input torque for the Joints for Linear Trajectory II 

 

The control torques required for each controller are depicted in Fig. 5.10. Similar to the 

control torque requirements for Linear Trajectory I, the initial torques are reduced quickly 

for the adaptive scheme when compared to the others. The presence of chatter is still evident 
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even with the change of the trajectory. This could be improved by changing the control 

parameters between the same trajectory shape, but such implementation is not always 

industrially feasible.  

 

 

  

Fig. 5.10 Input control torques for Linear Trajectory II, for the joints. 

 

5.3.6 TASK SPACE END-EFFECTOR TRACKING FOR LINEAR TRAJECTORY 

II: 

The end-effector tracking error is also of interest in terms of performance evaluation. From 

the results obtained from Fig. 5.11, it is observed that the end-effector tracking for PD is 

overshooting, exponentially changing with time. The adaptive controller is the most efficient 
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and the Fig. 5.11 (b) shows the comparison between PD-SMC and A-PD-SMC tracking errors 

as the earlier figure, due to scaling factors, doesn’t depict this relation. From Fig. 5.11 (b), 

between PD-SMC and A-PD-DMC, the later achieves better end-effector tracking.  

 

  
 

 
Fig. 5.11 (a) Tracking Error of the End-Effector in Task Space for Linear Trajectory II 

 

 

 

Fig. 5.11 (b) Tracking Error of the End-Effector in Y axis Task Space for Linear Trajectory II for PD-

SMC & A-PD-SMC Controllers. 

 

The Table 5.8 shows the means and standard deviations for the end-effector tracking. The 

average mean of the task space error for A-PD-SMC is 4.72 x 10-5, for PD-SMC is 1.23 x 10-3 & 

for PD controller it is 0.06774 over the three axes. Similar results to the ones observed for 

linear trajectory I are observed where the adaptive scheme has proven to provide the highest 

tracking performance in end-effector task space. 
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Controller x axis y axis z axis 

Mean  S.D Mean S.D. Mean S.D. 

PD -1.76 x 10-4 2.60 x 10-4 0.1800 0.0603 0.0234 0.0092 

PD-SMC -3.91 x 10-5 2.60 x 10-5 3.60 x 10-5 5.23 x 10-5 0.0037 0.0012 

A-PD-SMC -1.25 x 10-5 2.0 x 10-5 -7.07 x 10-5 3.30 x 10-5 2.25 x 10-4 4.20 x 10-4 

Table 5.9 Mean and Standard Deviation for End-Effector in Task Space 

 

5.4 SCARA ROBOT SIMULATION RESULTS FOR CIRCULAR 

TRAJECTORIES 

Since the linear trajectories are proven to show better tracking performance for both the 

joint and task space, there is a need to verify the efficiency of the adaptive controller for other 

trajectory shapes. For this purpose, two circular trajectories are chosen to study the 

performance of the system under the different control laws. The Table 5.10 shows the 

specifications of the circular trajectories; centres of the circular and the radius for each axis.  

The two trajectories in 3-D space are shown in Fig. 5.12. 

Trajectory X coordinate 

centre 

Y coordinate 

centre 

Z coordinate 

centre 

Radius 

Circular Trajectory I 0.12 0.12 0.12 0.2 

Circular Trajectory II 0.2 0.2 0.2 0.1 

Table 5.10 Circular Trajectory Specifications 
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Fig. 5.12 The selected two trajectories for Circular Motion 

 

The initial assumption was to use different control parameters between linear and circular 

trajectories, but after some tuning, the control parameters listed in Table 5.3 also prove to 

show acceptable performance for circular trajectories. This, therefore, increases the 

efficiency and the utility of the controllers, making it easy for industrial implementation. 

For the two circular trajectories, the angular positions and angular velocities of the joints 

over the simulation are shown in Fig. 5.13 & 5.14 along with the position of the end-effector. 

   
Fig. 5.13 Angular positions and velocities for joints and Position of the End-effector for Circular 

Trajectory I 
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Fig. 5.14 Angular positions and velocities for joints and Position of the End-effector for Circular 

Trajectory II 

 
 
 

5.4.1 TRACKING ERRORS OF CIRCULAR TRAJECTORY I: 

The system is studied for the tracking performance for the end-effector coordinates in 

Trajectory I. The tracking errors for the four joints are compared over the derived three 

control methods: PD, PD-SMC and A-PD-SMC. The simulations are carried using the control 

parameters listed in Table 5.3. 

 

Fig. 5.15 The Tracking Errors for Joint 1 and Joint 2 between the controllers 



65 

 

 

 

Fig. 5.16 Tracking Errors for Joint 3 and Joint 4 between the controllers 

 

Fig. 5.15 and Fig. 5.16 depict the joint space tracking errors. It is evident from the graphs are 

the tracking performance is best for A-PD-SMC when compared to PD and SMC controllers. 

From the mean and standard deviation results in Table 5.11, it can be verified that both PD-

SMC and A-PD-SMC controllers achieve better tracking than the standard PD controller. The 

adaptive controller outperformed the PD-SMC controller by a margin of 68% for Joint 1, 93% 

for join 2, 72% for joint 3, and over 100% for joint 4. The average mean of the joints errors 

for joints 1, 3 and 4 in radians for PD, PD-SMC and A-PD-SMC are 3.426 x 10-3 ,5.515 x 10-5 , 

and 9.76 x 10-6 respectively.  The standard deviation also shows the similar results with the 

adaptive controller having the values much closer to the mean values, when compared to the 

hybrid PD-SMC controller.  

Controller Joint 1 Joint 2 Joint 3 Joint 4 
Mean 
(rad) 

S.D (rad) Mean 
(m) 

S.D. (m) Mean 
(rad) 

S.D. (rad) Mean 
(rad) 

S.D.  
(rad) 

PD 0.0010 0.0015 0.0205 0.0080 0.0010 0.0012 -9.72 x 10-4 0.0020 
PD-SMC 5.03 x 10−5 

 
1.58 x 10−4 0.0025 0.0013 8.677 x 10−5 2.70 x 10−4 2.84 x 10−5 2.91 x 10−4 

A-PD-SMC 1.61 x 10−5 1.55 x 10−4 1.63 x 10−4 4.80 x 10−4 2.38 x 10−5 2.11 x 10−4 −1.05 x 10−5 1.19 x 10−4 

Table 5.11 Mean and Standard Deviation of Axial Tracking Errors for Circular Trajectory I 
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5.4.2 CONTROL TORQUES FOR CIRCULAR TRAJECTORY I: 

The torque results listed in Table 5.12 show that the required control torque for the joints 

has reduced from PD to PD-SMC to A-PD-SMC.  The required control torque has decreased 

from PD-SMC to A-PD-SMC by 30.2% for joint 1, 20.3% for joint 2, and by 3.1% for joint 4. 

There is a slight increase in this required torque by 2.9% joint 3. This, unlike the results 

obtained for linear trajectories, where between the hybrid and adaptive, a trend in decrease 

is observed for control torques. This increased tracking performance with a reduced control 

torque input is a characteristic observation. The reduced control torque could be due to 

poles placement of the system. The eigen values for the linearized system could provide 

insights as to which trajectories increase the performance of the system. 

Controller 𝝉𝟏 𝝉𝟐 𝝉𝟑 𝝉𝟒 
PD 36.63 116.331 14.53 10.56 

PD-SMC 36.48 115.334 13.45 9.19 
A-PD-SMC 25.46 91.92 13.84 8.90 

Table 5.12 Maximum input torque for the Joints 
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Fig. 5.17 Input control torques for Circular Trajectory I, for the joints. 

 

Fig. 5.17 shows the plots for the control torque for the different joints. There is chatter for 

most region of the PD and PD-SMC controllers in Joints 1, 3, & 4. This chatter is reduced when 

using the adaptive controller, once again proving its efficiency. The required control torque 

for joint 2, follows the similar trends with the linear trajectories, where initially the torque 

is exponentially increased and then quickly reduced to the regions close to zero. There is a 

drastic decrease in the control torques for joint 3, for time t=0.5 s. 

 

5.4.3 TASK SPACE END-EFFECTOR TRACKING FOR CIRCULAR 

TRAJECTORY I: 

 

   
Fig. 5.18 (a) End-Effector Task Space Tracking for Circular Trajectory I 
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Fig. 5.18 (b) End-Effector Task Space Y Axis Tracking Error for PD-SMC & A-PD-SMC Controllers 

 
The end-effector tracking error is also of interest in terms of performance evaluation. From 

the results obtained from Fig. 5.18, it is observed that when compared to PD controller both 

PD-SMC and A-PD-SMC have better end-effector tracking in all axes. The adaptive law can be 

seen to bring the Z axis tracking error to zero at the end of the simulation, since proving to 

the most efficient from vertical industrial applications. The average mean of the task space 

error for A-PD-SMC is 5.076x 10-5, for PD-SMC is 8.25 x 10-4 & for PD controller it is 0.07357 

over the three axes. 

Controller x axis y axis z axis 

Mean  S.D Mean S.D. Mean S.D. 

PD 2.18 x 10-4 3.09 x 10-4 0.2000 0.0698 0.0205 0.0080 

PD-SMC 1.47 x 10-5 2.71 x 10-5 -3.74 x 10-5 8.76 x 10-5 0.0025 0.0013 

A-PD-SMC 6.80 x 10-6 2.70 x 10-5 -1.75 x 10-5 6.67 x 10-5 1.63 x 10-4 4.80 x 10-4 

Table 5.13 Mean and Standard Deviation for End-Effector Tracking Error in Task Space for Circular 

Trajectory I 

 

5.4.4 TRACKING ERRORS FOR CIRCULAR TRAJECTORY II 

The simulations for tracking performance are carried for the described Circular Trajectory 

II.  The tracking errors for the four joints are compared over the derived three control 

methods: PD, PD-SMC and A-PD-SMC. The simulations are carried using the control 

parameters listed in Table 5.3. The results are found in Fig. 5.19 and 5.20. The results from 
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the graphs of tracking errors are as expected, with the adaptive PD-SMC performing better 

than PD-SMC and the standard PD controller.  

  

Fig. 5.19 The Tracking Errors for Joint 1 and Joint 2 between the controllers for Trajectory II 

  

Fig. 5.20 The Tracking Errors for Joint 3 and Joint 4 between the controllers for Trajectory II 

 

From the mean and standard deviation results in Table 5.14, it can be verified that both PD-

SMC and A-PD-SMC controllers achieve better tracking than the standard PD controller. The 

mean and the standard deviations of the errors for the joints are slightly more for adaptive 

when compared to the hybrid controller. On the other hand, joint 1 for adaptive is able to 

achieve a mean error of zero, whereas the hybrid controller of joint 4 is able to achieve the 
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mean as zero. The average mean of the joint’s errors for joints 1, 3 and 4 in radians for PD, 

PD-SMC and A-PD-SMC are -1.433 x 10-3, -1.34x 10-4, and -1.566 x 10-3 respectively. 

Controller Joint 1 Joint 2 Joint 3 Joint 4 
Mean 
(rad) 

S.D 
(rad) 

Mean 
(m) 

S.D. 
(m) 

Mean 
(rad) 

S.D. 
(rad) 

Mean 
(rad) 

S.D.  
(rad) 

PD -0.0008 0.0028 0.0204 0.0082 -0.0023 0.0315 -0.0012 0.0059 
PD-SMC −0.0002 0.0008 0.0029 0.0020 -0.0002 0.0011 0.0000 0.0047 

A-PD-SMC 0.0000 0.0277 0.0002 0.0055 −0.0045 0.0008 −0.0002 0.0001 
Table 5.14 Mean and Standard Deviation of Axial Tracking Errors for Circular Trajectory II 

 

5.4.5 CONTROL TORQUES FOR CIRCULAR TRAJECTORY II: 

The torque results listed in Table 5.15 it can be seen that the pattern for the control torques 

is not similar to the one observed for Circular Trajectory I over all the joints. The highest 

control input is observed for joint 1 with the adaptive controller with a value of 182.6 N.m.. 

Joint 4 has the closest variations with the trajectory I with -36.13%, -14.65% and -0.05% for 

PD, PD-SMC & and A-PD-SMC respectively. Joint 3 has the highest variation with trajectory I, 

with 266.40%, 226.70% & 629.89% for PD, PD-SMC & A-PD-SMC respectively. Joint 1 control 

inputs have varied with trajectory I, with 138.19%, 53.86% & 617.55% for PD, PD-SMC & A-

PD-SMC respectively.  The Joint 2 control inputs for adaptive controllers has increased from 

trajectory I to trajectory II by 0.53%. Between PD & PD-SMC for Joint 1 the control torque 

has decreased by 35.6%, for Joint 2 by 0.11%, for Joint 3 by 17.4%, for Joint 4 increased by 

3.3%. Between PD-SMC and A-PD-SMC for Joint 1 the control torque has increased by 239%, 

for Joint 3 by 129.8%, for Joint 4 by 10.9% and whereas for Joint 2 it has decreased by 

30.69%.  

 The control torques required for each controller is depicted in Fig. 5.21. The presence of 

chatter is also significantly less for the adaptive control than the other controllers. When 

compared to the linear trajectory control, the initial control torques required for circular 



71 

 

trajectory, over all the joints are less. Moreover, apart from joint 4, all other joints require 

smoother control inputs when compared to the linear trajectories. The chatter present in the 

input torque for joint 4 using the adaptive controller is fairly in the region of time t=0-0.5 

seconds, and is significantly smooth for the remaining time, which is unlike the other 

controllers. 

Controller 𝝉𝟏 𝝉𝟐 𝝉𝟑 𝝉𝟒  
PD 87.2520 133.5024 53.2377 7.7570 

PD-SMC 56.1309 133.3524 43.9422 8.0163 
A-PD-SMC 182.6885 92.4137 101.0177 8.8945 

Table 5.15 Maximum input torque for the Joints for Circular Trajectory II 
 

 

  

Fig. 5.21 Input control torques for Circular Trajectory II, for the joints. 

 

 



72 

 

5.4.6 TASK SPACE END-EFFECTOR TRACKING FOR CIRCULAR 

TRAJECTORY II: 

 
From the results obtained from Fig. 5.21, it is observed that like the previous results, the end-

effector tracking is the better for adaptive and the hybrid controllers when compared to the 

standard PD. The maximum and minimum values of the end-effector tracking error for PD-

SMC are found to be 1.8525 x 10-4 and -0.0013 respectively. Similarly, for A-PD-SMC the 

maximum and minimum value are 7.2145 x 10-4 and -4.9238 x 10-4 respectively. Which are 

very less values for the tracking errors, therefore it can be said that the task space tracking 

in y axis is the most efficient for PD-SMC and A-PD-SMC. Between, A-PD-SMC and PD-SMC 

controller, but Y axis, from Fig. 5.21 (b), the adaptive controller has between performance.  

   

Fig. 5.22 (a) End-Effector Task Space Tracking Error for Circular Trajectory II 

 

 

 

Fig. 5.22 (b) End-Effector Task Space Tracking Error for PD-SMC & A-PD-SMC Controllers 

 

The Table. 5.16 can be finally used to prove that the system is most efficient in terms of end-

effector tracking when the adaptive controller is used. A-PD-SMC over PD-SMC achieves 
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about 33.6%, over 100% and 94.5% better tracking end-effector tracking for x, y and z axis 

respectively.  The average mean of the task space error for A-PD-SMC is 3.745 x 10-5 , for PD-

SMC is 9.210 x 10-4 & for PD controller it is 0.04019 over the three axes. 

Controller x axis y axis z axis 

Mean  S.D. Mean S.D. Mean S.D. 

PD 1.84 x 10-4 9.91 x 10-4 0.1000 0.1163 0.0204 0.0082 

PD-SMC -7.85 x 10-5 1.69 x 10-4 -5.84 x 10-5 2.14 x 10-4 0.0029 0.0020 

A-PD-SMC -5.21 x 10-5 1.41 x 10-4 7.45 x 10-6 1.57 x 10-4 1.57 x 10-4 5.94 x 10-4 

Table 5.16 Mean and Standard Deviation for End-Effector in Task Space for Circular Trajectory II. 

5.5 REMARKS 

The simulation results show that irrespective of the trajectory shape, the system under the 

adaptive PD-SMC controller, achieves better tracking performance, both in joint and task 

space, over PD and PD-SMC controllers. It can be said that since the joint 2 is the vertical 

joint, working against the forces of gravity, and that is the joint which has been moved, it is 

in our interest to study how the joint behaves under adaptive controller. From Fig. 5.22 It 

can be  seen that under the adaptive controller, the joint 2 tracking performance is better 

and is within approximately 0.7 x 10-3 m, which is good performance.  

 
Fig. 5.23 Mean Joint 2 Tracking Error for PD-SMC & A-PD-SMC Controllers 
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Since, the joint space tracking performance directly effects the task space tracking 

performance, it can be seen from Fig. 5.23, that the mean task tracking is very less for A-PD-

SMC when compared to PD-SMC for all the trajectories.  

 
Fig. 5.24 Mean End-Effector Tracking Error for PD-SMC and A-PD-SMC 

 

The control inputs are the highest of the joint 2, mostly over all trajectories, because the 

linear motion of this joint is in the vertical direction. The tracking error of the end effector in 

the Y axis is very negatable, therefore, the SCARA variant under the influence of the proposed 

adaptive control achieves almost perfect y axis tracking. Without any change of the control 

parameters, good tracking is observed for both linear and circular trajectories, making the 

system robust and easy to implement. By comparing the obtained curves for the control 

input requirements over all the trajectories, it has been observed that the chatter in the 

curves is comparatively less for adaptive controller and that the required control input 

curves are smoother for circular trajectories when compared to linear. When the average of 

the control input torques for all the joints are compared for each of the trajectories, in Fig. 

5.24, it can be seen that the adaptive controllers require the highest input. Circular trajectory 
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I, is able to achieve higher tracking performance using the adaptive controller with 

comparatively lesser inputs than the corresponding PD & PD-SMC controllers. Therefore, if 

the coordinates of the circular trajectory II are used, then the required input are less to get 

higher tracking. When comparing circular and linear trajectories, the later requires 

comparatively lesser control inputs than the earlier, making linear trajectories tracking less 

power consuming.  

 
Fig. 5.25 Average Torques for the joints over the various trajectories. 
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CHAPTER 6: CONCLUSIONS AND FUTURE WORK 
 

6.1 GENERAL REVIEW 

In this project, a modification has been performed for the axis two of the standard SCARA 

robotic manipulator. The standard SCARA robotic manipulator has a revolute joint for Joint 

2 and a prismatic joint for Joint 3. The axis 2 (joint 2) of the modified SCARA is now a 

prismatic joint, whereas the axis 3 (joint 3) is the revolute joint. The kinematics and 

dynamics were analysed for the SCARA variant were studied.  

 

In this project, the existing control schemes for adaptive PD-SMC and hybrid PD-SMC were 

modified, incorporating the boundary layer restrictions, in order to increase the tracking 

performance for the SCARA variant. Simulations were performed using two trajectory 

shapes; linear and circular and two coordinates for each. Meaning a total for four trajectories 

were simulated to analyse the performance of the controller.  

The proposed PD-SMC and A-PD-SMC were able to achieve much higher performance than 

the standard PD controller. Relative to PD-SMC, the A-PD-SMC achieved higher performance 

in both joint and task space. The adaptive controller, for all the simulations are provided 

higher end-effector tracking to the desired trajectories, when compared to PD and PD-SMC 

controllers. The Y and Z axis are able to achieve almost perfect tracking using A-PD-SMC. 

Between the two linear trajectories, the control torques have little variation, whereas the 

variation between the control torques for the two circular trajectories is more. Circular 
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trajectories on average require more control inputs to achieve better tracking than linear 

trajectories. 

The tuning of the control parameters has led to smoother control inputs requirements for 

the joints, though some chatter is still evident. The selection of the control parameters has 

been such that for both the trajectories, the given satisfactory performance. This is an 

important characteristic as, under the same system, good tracking performance can be 

achieved for either linear or circular trajectory. 

6.2 MAIN CONTRIBUTIONS 

The following are the main contributions pertaining to the work done in this project: 

• An alternative to the Standard SCARA Robot was proposed, with a vertical Z axis 

Prismatic joint in axis 2.  

• A model-free adaptive PD-SMC controller was proposed with control parameters 

which can be tuned easily for acceptance results in terms of tracking and control 

inputs requirements. 

• The control system is robust in the sense that it is fast and is easily implemented 

because there no need to change the set control parameters between linear and 

circular trajectories.  
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6.3 FUTURE WORK 

The work done in this report shows that the adaptive PD-SMC control law can provide a 

robust, model-free and intuitive tracking performance over PD and PD-SMC controllers. The 

future scope of the project can be carried out to study the contour performance of the 

controllers. Work can also be done to demonstrate how the modified SCARA robot functions 

in correspondence to the standard SCARA robot using the defined control laws. Tracking and 

contour performance can also be explored for other trajectories shapes such as arbitrary and 

non-linear. Finally, experimental results can be obtained to validate the application of the 

proposed SCARA variant and the proposed controller.  
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List of Appendices 

SINGULARITY ANALYSIS: 

For revolute joints 𝐽𝑖 = (
𝑍𝑖−1 x (𝑂𝑛 − 𝑂𝑖−1)

𝑍𝑖−1
) 

For prismatic joints 𝐽𝑖 = (
𝑍𝑖−1 

0
) 

Where 𝑍𝑖  is the corresponding 𝑇0
𝑖 matrix’s third column. 

and 𝑂𝑖is the corresponding 𝑇0
𝑖 matrix’s fourth column. 

The MATLAB code can be found in Appendix B for the symbolic evaluation of the Jacobian.  

 

Appendix A Finding the Transformation Matrices 

syms d2 t1 t3 t4 L1 L3 

RPRR_T_01 = Transformation_matrix( 0, t1, L1, 0); 

RPRR_T_12 = Transformation_matrix( d2, 0, 0, 0); 

RPRR_T_23 = Transformation_matrix( 0, t3, L3, 0); 

RPRR_T_34 = Transformation_matrix(0, t4, 0, 0);  

RPRR_T_04 = RPRR_T_01*RPRR_T_12*RPRR_T_23*RPRR_T_34; 

function T = Transformation_matrix(d,t,r,a) 

T =[cos(t) -cos(a)*sin(t) sin(a)*sin(t) r*cos(t) ; 

sin(t) cos(a)*cos(t) -sin(a)*cos(t) r*sin(t) ; 

0 sin(a) cos(a) d ; 

0 0 0 1 ]; 

End 

Published by MATLAB® R2017B 

Appendix B Singularity Analysis: 

Z_0=[0 0 1]'; 

Z_1=RPRR_T_01(1:3,3); 

Z_2=RPRR_T_02(1:3,3); 

Z_3=RPRR_T_03(1:3,3); 

%***************************************************************

******* 

% O matrices are defined as per the definition 
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O_0=[0 0 0]'; 

O_1=RPRR_T_01(1:3,4); 

O_2=RPRR_T_02(1:3,4); 

O_3=RPRR_T_03(1:3,4); 

O_4=RPRR_T_04(1:3,4); 

%***************************************************************

******* 

J1=[cross(Z_0,(O_4-O_0));Z_0 ]; % R joint 

J2=[Z_1 ;zeros(3,1)]; % P joint 

J3=[cross(Z_2,(O_4-O_2));Z_2 ]; % R joint 

J4=[cross(Z_3,(O_4-O_3));Z_3 ]; % R joint 

%***************************************************************

******* 

Jacobian=[J1 J2 J3 J4]; 

Jacobian =simplify([Jacobian(1:3,:);Jacobian(6,:)]); 

simplify(det(Jacobian)); 

Published by MATLAB® R2017B 

Appendix C Dynamic Equations: 

Defining U Matrices: 

% Defining U Matrices 

%***************************************************************

******* %***First column for R joint 

 

U{1,1} = Q_REVOLUTE() * RPRR_T_01; 

U{2,1} = Q_REVOLUTE() * RPRR_T_02; 

U{3,1} = Q_REVOLUTE() * RPRR_T_03; 

U{4,1} = Q_REVOLUTE() * RPRR_T_04; 

 

%***Second Column for P joint 

U{1,2} = zeros(4,4); 

U{2,2} = RPRR_T_01 * Q_PRISMATIC() * RPRR_T_12; 

U{3,2} = RPRR_T_01 * Q_PRISMATIC() * RPRR_T_12*RPRR_T_23; 

U{4,2} = RPRR_T_01 * Q_PRISMATIC() * 

RPRR_T_12*RPRR_T_23*RPRR_T_34; 

 

%***Third Column for R joint 

U{1,3} = zeros(4,4); 

U{2,3} = zeros(4,4); 

U{3,3} = RPRR_T_02 * Q_REVOLUTE() * RPRR_T_23; 

U{4,3} = RPRR_T_02 * Q_REVOLUTE() * RPRR_T_23*RPRR_T_34; 

 

%***Fourth Column for R joint 

U{1,4} = zeros(4,4); 

U{2,4} = zeros(4,4); 
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U{3,4} = zeros(4,4); 

U{4,4} = RPRR_T_03 * Q_REVOLUTE() * RPRR_T_34; 

 

%********************** Q matrix for Revolute joints 

************************ 

 

function Q_RJ = Q_REVOLUTE() 

Q_RJ = [ 0 -1 0 0 

1 0 0 0 

0 0 0 0 

0 0 0 0];  

end 

%***************************************************************

******* 

%******************* Q matrix for Prismatic joints 

*************************** 

 

function Q_PJ = Q_PRISMATIC() 

Q_PJ = [ 0 0 0 0 

0 0 0 0 

0 0 0 1 

0 0 0 0]; 

end 

%***************************************************************

******* 
 

For M Matrix 

% Defining M matrix 

 

for i = 1:4 

for k = 1:4 

j = max(i,k); 

M = 0; 

for j = 1:4 

M = M + trace(U{j,k}*I{j}*U{j,i}.'); 

end 

Mass_Matrix(i,k) = M; 

end 

end 

 

For C Matrix 

syms t1_dot d2_dot t3_dot t4_dot 

q = [t1; d2; t3; t4]; 
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q_dot = [t1_dot; d2_dot; t3_dot; t4_dot]; 

  

for i = 1:2 

    for j =1:4 

        C = 0; 

        for k = 1:4 

            C = C + ((1/2)*((diff(M(i,j),q(k)) + 

diff(M(i,k),q(j)) - diff(M(k,j),q(i))))*q_dot(k)); 

        end 

        C_Matrix(i,j) = C; 

    end 

end 

 

Published by MATLAB® R2017B 

MATLAB FUNCTION FOR CONTROL 

The MATLAB function used for the control analysis for the system are presented here. For 

similarity purposes, only the files for A-PD-SMC are depicted for once linear trajectory. 

Declaring Global Variable 

global   robot gains tdom pdom N friction torque M C G 

Declaring Robot Parameters 

robot.mass   = [0.2 0.1 0.2 0.1]*20;  

robot.l      = [0.25 0.15 0.25 0.15]; %length of the link 

robot.r      = robot.l/2;             %centre of mass distance 

robot.I     = [01 0.1 01 0.1]*0.002;  

robot.tormax = 8; 

 

Declaring Sampling and Time definition 

N       = 2000;   %sampling rate in Hz 

tf      = 2;      %total time in seconds 

tdom.dt = tf/(N-1); 

tspan   = 0:tdom.dt:tf; 

 

Initializing Control Torques 
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torque.td1 = zeros(N,4); 

torque.td2 = zeros(N,4); 

torque.td3 = zeros(N,4); 

torque.td4 = zeros(N,4); 
 

Defining Control Gains 

gains.kp   = [6,10,5,3]'*250; %proportional gain  

gains.kd   = [6,10,5,7]'*175; %derivative gain  

gains.ki   = [0 0 0 0]';      %integral gain 

gains.K    = [20 15 10 10]'*5; %smc control gain.  

gains.l    = [10 10 10 10]'*10; %lamba slope sliding surface  

gains.phi  = 0.2;  %boundary layer thickness  

gains.sigma = 2000; %adaptive gain  

 

Defining Friction Parameters 

friction.b     = 1.5; %initial 1.5 

friction.fc    = 3;%initial 3 

friction.fs    = 5;%initial 5 

friction.ft    = 100;%initial 100 

friction.delta = 2;%initial 2 

 

Defining Linear Trajectory Initial and Final Points 

% tracking a 3D line 

x1=-0.14; x2=0.10; 

y1=0.26; y2=0.10;        %trajectory II 

z1=0.50; z2=0.21;  

 

Defining the Smooth Trajectory using 5TH degree polynomial 

% Define the end-effector motion using fifth order polynomial  

r   = 10*(tspan/tf).^3-15*(tspan/tf).^4+6*(tspan/tf).^5; 
 

% calculate the desired position vectors 

x=x1+r*(x2-x1); 

y=y1+r*(y2-y1); 

z=z1+r*(z2-z1); 

 

Finding the Angular Position and Velocity of the Joints 

q=inverse_4dof_matrix([x' y' z'],robot.l,N); 

q(:,4) = (2*pi*r); 



84 

 

 

% find the angular velocity by diff function 

dq=diff(q)/tdom.dt; dq(N,:)=dq(N-1,:); 
 

% save the desired position and velocity to a structure 

tdom.Qd=q; 

tdom.dQd=dq; 
 

Getting the smooth motion of the End-Effector for the simulation 

%motion of the end effector in 3D space 

zz=forward_4dof(q,robot.l); 

 

Ode function for A-PD-SMC Controller 

if i == 3  
  

   td0 =[ 0 0 0 0]; 
 

   p0      = [tdom.Qd(1,1) tdom.dQd(1,1) tdom.Qd(1,2) 

tdom.dQd(1,2) tdom.Qd(1,3) tdom.dQd(1,3) tdom.Qd(1,4) 

tdom.dQd(1,4) td0]; 
 

   opts    = odeset('RelTol',1e-5,'AbsTol', 1e-3*ones(12,1)); 
 

   [t2,x5] = ode15s(@system_time_4dof_APDSMC,tspan,p0,opts); 
 

   err25   = [tdom.Qd(:,1) tdom.dQd(:,1) tdom.Qd(:,2) 

tdom.dQd(:,2) tdom.Qd(:,3) tdom.dQd(:,3) tdom.Qd(:,4) 

tdom.dQd(:,4)] - x5(:,1:8);  

 

Control System for A-PD-SMC Controller 

 
Inputs – time, angular position and velocity of joints, desired trajectory, gains, robot 
specifications, friction 
Output – velocity and acceleration of the system 

function xdot = system_time_4dof_APDSMC(t,y) 

  

global  robot gains friction tdom torque 

  

%% Robotic Manipulator's Properties 

  

m  = robot.mass; 

r  = robot.r; 
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Iz = robot.Iz; 

l  = robot.l; 

  

%% Angle handling  

  

q  = [y(1); y(3); y(5); y(7)]; 

dq = [y(2); y(4); y(6); y(8)]; 

td = [y(9); y(10); y(11); y(12)]; 

j  = int32(t/tdom.dt+1) 

  

%% cosines & sines 

  

c    = cos(q);  

s    = sin(q); 

  

%% Matrix M  

  

M(1,1) = 

(Iz(1)+Iz(2)+Iz(3)+Iz(4))+(m(1)*r(1)^2)+(m(3)*r(3)^2)+(l(1)^2*(m

(1)+m(2)))+((l(1)^2+l(3)^2)*(m(4)+m(3)))+(2*((l(1)*m(1)*r(1))+(l

(3)*m(3)*r(3))))+(2*c(3)*(((l(1)*l(3))*(m(3)+m(4)))+(l(1)*m(3)*r

(3)))); 

M(1,2) = 0; 

M(1,3) = 

Iz(3)+Iz(4)+(m(3)*r(3)^2)+(l(3)^2*(m(3)+m(4)))+(2*l(3)*m(3)*r(3)

)+((1/2)*c(3)*(((l(1)*l(3))*(m(3)+m(4)))+(l(1)*m(3)*r(3)))); 

M(1,4) = Iz(4); 

  

M(2,1) = 0; 

M(2,2) = m(2) + m(3) + m(4); 

M(2,3) = 0; 

M(2,4) = 0; 

  

M(3,1) = 

Iz(3)+Iz(4)+(m(3)*r(3)^2)+((l(3)^2*(m(3)+m(4))))+(2*l(3)*m(3)*r(

3))+((1/2)*c(3)*(((l(1)*l(3))*(m(3)+m(4)))+(l(1)*m(3)*r(3)))); 

M(3,2) = 0; 

M(3,3) = Iz(3) +Iz(4)+(m(3)*r(3)^2)+(l(3)^2*(m(3)+m(4))) + 

(2*l(3)*m(3)*r(3)); 

M(3,4) = Iz(4); 

  

M(4,1) = Iz(4); 

M(4,2) = 0; 

M(4,3) = Iz(4); 

M(4,4) = Iz(4); 

 

%% Matrix C 
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C(1,1) = (-dq(3))*((l(3)*m(3)) + (l(3)*m(4)) +( 

m(3)*r(3)))*(l(1)*s(3)); 

C(1,2) = 0; 

C(1,3) = -(dq(1) + dq(3))*((l(3)*m(3)) + (l(3)*m(4)) + 

(m(3)*r(3)))*(l(1)*s(3)); 

C(1,4) = 0; 

  

C(2,1) = 0; 

C(2,2) = 0; 

C(2,3) = 0; 

C(2,4) = 0; 

  

C(3,1) = (-dq(1))*((l(3)*m(3)) + (l(3)*m(4)) + 

(m(3)*r(3)))*(l(1)*s(3)); 

C(3,2) = 0; 

C(3,3) = 0; 

C(3,4) = 0; 

  

C(4,1) = 0; 

C(4,2) = 0; 

C(4,3) = 0; 

C(4,4) = 0; 

  

  

%% Matrix G 

  

G(1,1) = 0; 

G(2,1) = 9.8*(m(4)+m(3)+m(2)); 

G(3,1) = 0; 

G(4,1) = 0; 

  

%% Friction Matrix f  

  

f = -(friction.fc+(friction.fs-friction.fc)*exp(-

(dq/friction.ft).^2)).*sign(dq)+friction.b*dq; 

f=2*f; 

%% PD Controller 

  

qd  = tdom.Qd(j,:)';  

dqd = tdom.dQd(j,:)';  

e   = qd-q;  

de  = dqd-dq;  

  

%Control Input  

sf=de+gains.l.*e; 

 



87 

 

%APD-SMC control 

u  = 

gains.kp.*e+gains.kd.*de+gains.K.*min(abs(sf/gains.phi),1).*sign

(sf/gains.phi) + td; 

  

torque.td3(j,:) = u'; 

torque.td2(j,:)=f'; 

torque.td1(j,:)=f'; 

torque.td3(j,:)=f'; 

 

%% Find xdot 

xx   = M\(u-f-C*dq-G); 

xdot = [dq(1) xx(1) dq(2) xx(2) dq(3) xx(3) dq(4) xx(4) 

gains.sigma*sf']'; 

  

end 

 

Forward Kinematics 

Inputs –joint space position 
Output – end effector position 

function pos=forward_4dof(q,l) 
  

pos(:,2)=l(3)*cos(q(:,1)+q(:,3))+l(1)*cos(q(:,1)); 

pos(:,1)=l(3)*sin(q(:,1)+q(:,3))+l(1)*sin(q(:,1)); 

pos(:,3)=q(:,2)+0.25; 
  

end 

 

Inverse Kinematics 

Inputs – end-effector position, robot link lengths, and sampling rate 
Output – angular positions of the joints 

 

function angle=inverse_4dof_matrix(pos,l,N) 
  

%% Angular position calculations 
  

for i=1:N 
     

x = pos(i,1); 

y = pos(i,2);  

z = pos(i,3);                   

% dx = vel(i,1); dy=vel(i,2); dz = vel(i,3);    
  

% 1. distance_2 
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angle(i,2) = z - 0.25; 
  

% 2. theta_3 

cos3 = ((x)^2 + (y)^2 - l(1)^2 - l(3)^2)/(2*l(1)*l(3)); 

% law of cosines (c^2 = a^2 + b^2 -2*a*b*cos3) 

sin13 = (sqrt(1-(cos3)^2)); 

sin23 = -(sqrt(1-(cos3)^2)); % two solutions 
  

angle(i,3) = atan2(sin13,cos3); 

%angle(i,3) = atan2(sin23,cos3); 

%theta_3_2 = atan2(sin23,cos3)*rad2deg; 
  

% 3. theta_1 

xx = atan2(x,y) ; 

yy1 = atan2((l(3)*sin(angle(i,3))),l(1)+(l(3)*cos(angle(i,3)))); 

%yy2 = atan2((r1+(r3*cosd(theta_3_2))),r3*sind(theta_3_2)); 
  

angle(i,1) = (xx-yy1);  

%theta_1_2 = -(xx-yy2)*rad2deg; 
  

% 4. theta_4 

angle(i,4) = 0; 
  

end 

end 

 

Ode setup and control system for PD Controller 

if i == 1 
            

p0      = [tdom.Qd(1,1) tdom.dQd(1,1) tdom.Qd(1,2) tdom.dQd(1,2) 

tdom.Qd(1,3) tdom.dQd(1,3) tdom.Qd(1,4) tdom.dQd(1,4)]; 
 

opts    = odeset('RelTol',1e-5,'AbsTol', 1e-3*ones(8,1));  
 

[t2,x2] = ode15s(@system_time_4dof_PD,tspan,p0,opts); 

err22   = [tdom.Qd(:,1) tdom.dQd(:,1) tdom.Qd(:,2) tdom.dQd(:,2) 

tdom.Qd(:,3) tdom.dQd(:,3) tdom.Qd(:,4) tdom.dQd(:,4)] - 

x2(:,1:8); 

 

u  = gains.kp.*e+gains.kd.*de; 

xx   = M\(u-f-C*dq-G); 

xdot = [dq(1) xx(1) dq(2) xx(2) dq(3) xx(3) dq(4) xx(4)]'; 

 

 

Ode setup and control system for PD-SMC Controller 

if i == 2 
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     p0      = [tdom.Qd(1,1) tdom.dQd(1,1) tdom.Qd(1,2) 

tdom.dQd(1,2) tdom.Qd(1,3) tdom.dQd(1,3) tdom.Qd(1,4) 

tdom.dQd(1,4)]; 
 

     opts    = odeset('RelTol',1e-5,'AbsTol', 1e-3*ones(8,1));  
 

     [t2,x3] = ode15s(@system_time_4dof_PDSC,tspan,p0,opts); 
 

     err23 = [tdom.Qd(:,1) tdom.dQd(:,1) tdom.Qd(:,2) 

tdom.dQd(:,2) tdom.Qd(:,3) tdom.dQd(:,3) tdom.Qd(:,4) 

tdom.dQd(:,4)] - x3(:,1:8);  

 

sf=de+gains.l.*e; 

 

u  = 

gains.kp.*e+gains.kd.*de+gains.K.*min(abs(sf/gains.phi),1).*sign

(sf/gains.phi); 
 

torque.td3PDSC(j,:) = u'; 

torque.td2(j,:)=f'; 

torque.td1(j,:)=f'; 

torque.td3(j,:)=f'; 
 

xx   = M\(u-f-C*dq-G); 

xdot = [dq(1) xx(1) dq(2) xx(2) dq(3) xx(3) dq(4) xx(4)]'; 

 

 

Published by MATLAB® R2017B 
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