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ABSTRACT 

 

With the emergence of Big Data and Cloud Computing, more and more data analytic software 

services have become available through a Cloud platform. Compared to the traditional service 

selection problem, selecting this type of services has additional challenges, which requires new 

selection models being proposed. It is the purpose of this work to “create a testbed” to benefit the 

research community in this area so that different selection models with consideration of different 

performance-influencing factors such as algorithms implemented, datasets to be processed, 

hosting infrastructure, can be tested and compared. We created a cloud-based platform for 

publishing and invoking analytic services as well as monitoring service performance during 

invocation. We implemented various data mining algorithms from different packages as example 

analytic services and hosted them on different infrastructure services. We also ran these services 

on some real datasets to collect a sample dataset of their Quality of Service (QoS) values. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

According to Wikipedia [1], service refers to “a set of related software functionalities that 

can be reused for different purposes, together with the policies that should control its usage”. In 

another definition according to OASIS [2], service is “a mechanism to enable access to one or 

more capabilities, where the access is provided using a prescribed interface and is exercised 

consistent with constraints and policies which are specified in the service description”. 

 Service-Oriented Architecture is a kind of software architecture that contains a collection 

of services where these services communicate with each other. Sometimes this communication 

could be simple, such as simple data passing, and sometimes it could involve two or more 

services communicating with each other to do some activity.      

 Figure 1.1 illustrates the basic service-oriented architecture. Service providers publish 

their developed services in a service registry. Service registry is a repository for all published 

web services. Service consumer looks for the service in the service registry and then invokes the 

service. The communication happens in such a way that both service provider and service 

consumer can understand. The actual communication depends on the implementation of the web 

service. Two popular communication technologies called Simple Object Access Protocol 

(SOAP) and Representational State Transfer (REST) are used to communicate between two 

services.  
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Figure 1.1: Basic service-oriented architecture 

 

In every business, organizations need to invest time and budget to scale up their IT 

infrastructure such as hardware, software and services. With on premise IT infrastructure, scaling 

process can be slow and organizations are frequently unable to achieve optimal utilizations of IT 

infrastructure. Cloud computing consists of highly optimized virtualized data centers. They 

provide various software, hardware and information resources on demand. In another definition, 

Cloud computing is a distributed computing model where different kinds of resources are 

available in an on-demand pay-as-you-go model [3]. Organizations can simply connect to the 

cloud over the internet and use the available resources whatever and whenever they need. Cloud 

computing consists of three main service models including IaaS (Infrastructure as a Service), 

PaaS (Platform as a Service and SaaS (Software as a Service) as shown in Figure 1.2.  
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Figure 1.2: Cloud Computing Stack 

 

IaaS is to rent cloud infrastructure from Cloud service providers such as server, storage 

and networking in an on-demand basis. As companies always want to invest optimal budget for 

their business, IaaS can be a solution for them because customers do not need to pay for 

hardware cost as they lease shared resources. As cloud infrastructure scales resources on-

demand, it is a great opportunity for the company to implement the workload balance. PaaS is 

the platform containing a set of tools designed to make coding and deploying the applications 

easier. Cloud-based applications or software services (SaaS) run on far-away computers in the 

cloud that are connected to users' computers via Internet, usually via a web browser. The SaaS 

providers can also provide API to access their application and data for the developers to use in 

their own application for creating composite applications. It is pay-as-you-go, so that users don't 

have to invest a lot in purchasing software packages. The major architecture of SaaS is based on 

multi-tenant model. A single version of the application is installed for all customers considering 

single configuration with this model. Horizontal scaling is implemented on multiple machines to 

support scalability. Vertical scaling can resize the cloud server with no change of the code. 
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The purpose of cloud computing is to make available resources for the cloud users, where 

they can access rented cloud infrastructure and software applications from anywhere and 

anytime. The focus of this research work is on software services hosted in the cloud 

environment, and we specially pay attention to data analytic software services. 

As the number of analytic software services with similar functionality is increasing in the 

Cloud, service selection becomes a very important issue of Cloud computing, because it directly 

impacts the user experience in the Cloud. It is difficult for the customer to decide which services 

to use to meet their requirements among the vast number of services in the cloud. QoS (Quality 

of Service) - parameters (e.g., response time, throughput, availability, reliability, latency) play an 

important role in the service selection process. Sometimes users can select services based on 

their functionality (e.g., a clustering service), not considering their QoS values, but in most other 

cases functional requirements are not enough and QoS requirements should also be considered. 

In this work, for non-functional requirements, we mainly concentrate on the QoS-based selection 

of data analytic software services. 

1.2 Problem Statement 

In the last few years, researches were focused on service selection using different 

technologies including vector and matrix based approach [4] [5] [6], constraint programming or 

integer programming approach [7], multi-criteria decision making approach [8], semantic 

approach [9], etc. 

When more services are moving to the cloud, there are also research works on cloud-

based service selection. Some focus on software service selection [10] [11], and others focus on 

infrastructure service selection [12]. With the emergence of Big Data, analytic-as-a-service has 

attracted some research attention [13] [14] [15]. Researchers have started to implement analytic 
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software such as data mining algorithms as services and hosted them in the cloud. When more 

and more this type of analytic services are hosted in the cloud, it would become a challenge for 

users to find the right service to process their data.     

 Although there are many QoS-based service selection models (either web services or 

cloud services) that have been proposed, to the best of our knowledge, there are very few 

benchmark datasets available for researchers to compare the results of their models. QWS dataset 

[16] is one of the most popular ones. WS-Dream [17] is another one which has been used in 

several papers. Both of them are providing data of web services. Most of the research works for 

cloud-based service selection either use web service QoS data or simulation data to do the 

experiment. No real cloud-based end-to-end QoS data has been collected for the research 

purposes in the past.           

 When selecting data analytic services in the cloud, there are a few unique challenges: 1) 

the QoS values of services could be affected by the dataset to be processed, for example, the 

latency on a big dataset could be longer than the one on a small dataset, the accuracy of a service 

could be low when there is noise in the data;  2) in a cloud environment, a software service could 

be hosted on different infrastructure services, and thus the end-to-end QoS values could be 

affected by both software service implementations as well as infrastructure service 

configurations; 3) the service selection should be based on the end-to-end QoS values, and thus 

there should be a monitoring service offered by the system to collect these end-to-end QoS 

values instead of depending on published values from individual providers. Because of these 

challenges, to facilitate the research on cloud-based analytic service selection, it is important to 

set up a broker-like testbed framework in the cloud environment. This testbed framework can be 

used to publish services and software services will be hosted on different infrastructure services. 
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The hosted services can be invoked with end-to-end QoS values being monitored, and both 

dataset properties and QoS values from different services can be collected.  

 Because of these unique challenges for cloud-based data analytic service selection, and 

considering that there is no proper benchmark dataset available for the research in this area, it is 

the purpose of this thesis work to propose and implement a cloud-based testbed. Using it we can 

collect end-to-end QoS values considering the effects from software services, infrastructure 

services as well as the input datasets. With the collected QoS dataset, researchers can evaluate 

and compare the performances of their selection algorithms.  

1.3 Objectives 

There are two major objectives of the work. First, we want to design a cloud-based 

framework to build testbed for collecting end-to-end QoS values of data analytic services. 

Second, we want to implement a proof of concept prototype system. In this system, data mining 

services are created as representative analytic services, infrastructure services with different 

configurations and in different locations are selected from two different providers (Amazon EC2 

and Windows Azure). A client tool is developed to communicate with our data mining services 

hosted on different infrastructure services, invocation requests of applying these services on 

some real datasets are sent and end-to-end QoS values are collected from a monitoring engine.  

1.4 Proposed Approach 

The proposed framework is similar to a cloud marketplace, in which different providers 

can publish their services and users can select different services. However because our focus is 

on collecting QoS data, we are not going to implement a full cloud marketplace with all the 

required functionalities. We choose 3 major components to be included in our framework: 1) 
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publishing component for providers to publish their services, 2) invoking and monitoring 

component for users to invoke a service and for the system to record the end-to-end QoS values, 

and 3) simulation component to run a batch invocation job so that all the selected services will be 

invoked one by one on a given dataset and all the QoS data are collected.   

 In our proof-of-concept prototype, we chose three package providers for the data mining 

algorithms to be developed for our software services. We chose open source data mining 

packages from WEKA [18], R [19] and Apache Commons Math Machine Learning [20]. We 

developed 22 software services using 3 categories of data mining algorithms including 

Clustering, Classifier, and Association rule mining. For the service implementation, we used the 

RESTful web service framework to develop the software service. We hosted our developed 

software services in two different cloud infrastructures including Amazon EC2 and Windows 

Azure instances in different locations with different configurations. For the invocation of our 

services, we developed a client application which allows users to upload their own files, invoke 

data mining services to process data, and get the QoS values recorded. The collected QoS values 

are stored into a repository and these QoS values could serve as benchmark data for other 

researchers to compare their selection models or algorithms.  

1.5 Organization of the Thesis 

The rest of the thesis is organized as follows:  

Chapter 2 reviews and analyzes the existing research work in the field of web service 

selection, cloud service selection, and cloud marketplace and brokers. It also reviews the existing 

research efforts that are closely related to our work such as QoS-based service selection, data 

analytic services, data mining as a service, etc. 
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Chapter 3 gives the details of our proposed methodology, including the architecture 

model, functions of different components and the system workflow. We also discuss about the 

RESTful web service framework for building our software services and how to set up 

infrastructure services from different cloud service providers to host the software services. 

Chapter 3 also talks about different QoS properties that we have considered in this thesis work.  

Chapter 4 explains how we implement the proposed testbed framework, shows some key 

interfaces of our system, describes the details of our proof-of-concept prototype implementation, 

including data mining software services and infrastructure services and their configurations, 

discusses the QoS data collection process, and, finally, reports the statistical information of a 

collected sample dataset, which showcases the impact of dataset, infrastructure configuration and 

location, as well as software service algorithms on the QoS values of services.   

Finally, in Chapter 5, we conclude our thesis with a summary of results and analysis.  We 

also talk about what could be the possible future enhancement of our work.   
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

As our ultimate goal is to provide a platform for the study on QoS-based service selection 

problem in the cloud environment for other researchers, we would like to discuss first some 

existing works on QoS-based service selection. After that, we would like to review papers on 

cloud marketplaces, cloud brokers, cloud service selection and data analytic services.  

2.2 QoS Based Web Service Selection 

Since many software services with similar functionalities are published by various 

providers, it is a big concern for the end-users to choose software services that best meet their 

requirements. The non-functional attributes of any software services such as response time, 

latency, availability, reliability, and throughput, can play an important role for the service 

selection process. Different types of service selection approaches are introduced in various 

papers.            

 In [21], Mixed Integer Programming (MIP) is used for solving the problem of service 

selection and match-making for linear constraints, while Constraint Programming (CP) is used 

for non-linear constraints. The experiment shows that MIP performs better than CP while 

considering linear constraints. So the match-making procedure can be completed using CP or 

MIP depending upon whether it is non-linear constraints or linear constraints.  

In [22], the user preferences are defined using utility functions, a probabilistic trust model 

is used to get quality distributions of providers, and then the services which could maximize the 

expected utility values are selected.          
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 In [23], the QoS manager acts as an agent for service providers and clients to do 

publishing and finding web service operations. QoSDB has been used to store the details of QoS 

of a web service and QoS values such as response time, throughput, reliability, availability and 

cost are optimized and the ranked values are stored in QoSDB. To find the best web services, the 

user has to specify the functional details of the service and its QoS values which are required to 

find the list of web services from the repository.      

 Analytic Hierarchical Process (AHP) is a popular Multi-Criteria Decision Making 

(MCDM) technique that solves problems by modeling QoS characteristics in the form of a 

hierarchy [24]. For the hierarchy, the multiple criteria are divided into sub-criteria and could be 

further divided and thus establishing different levels of criteria. The relative ranking of the 

various options is calculated based on the priorities associated with the criteria and their sub 

criteria within each level and finally the overall rank of each alternative can be determined.

 As we focus on QoS-based attributes, there are a few commonly used QoS attributes [5] 

[16] for assessing the performance of a service. Reliability indicates how many error messages 

have been generated compared to the total number of messages. Latency is considered as the 

time taken for the request to be processed. Response Time is the time it takes to send a service 

request and receive the response. Throughput represents the maximum number of invocations 

that can be managed in a certain time period. Availability is defined as the percentage of time the 

service and server are available. 

2.3 Cloud Service Selection 

In the service computing paradigm, web services are referring to software services hosted 

and provisioned by software providers through the Internet. In the cloud computing paradigm, 

there are many types of cloud services. Besides software services, there are also infrastructure 
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services, platform services, database services, storage services, etc. With a variety of services, 

the research on cloud service selection has some new challenges. Most of the research work 

nowadays is focused on either software services or infrastructure services, and various 

methodologies have been used. A fuzzy simple weighting system has been proposed in [25] to 

normalize and aggregate two types of attributes of a cloud service. They consider subjective 

assessment from cloud consumers and objective performance assessment from a trusted third 

party. Then they apply fuzzy weighting system on the subjective and objective information for 

normalization and aggregation, so that some specific performance aspects of a cloud service can 

be considered accordingly for potential cloud users.     

 MSSOptimiser (Multi-tenant SaaS Optimiser) approach has been introduced in [7], where 

functional specification and QoS requirements could be input of the proposed model. Integer 

Programming could be used to determine the optimal services. For large-scale scenarios, SaaS 

optimization problem is expensive, but MSSOptimiser provides greedy heuristic to provide an 

optimal solution efficiently.          

 In [26] [27], a hybrid fuzzy framework for cloud service selection has been proposed 

using three approaches: 1) fuzzy ontology based approach for functional matching; 2) fuzzy 

AHP for weighting; and 3) fuzzy TOPSIS approach for service ranking.  Bi-partite graph has 

been used to find functional matching results.  In their model, they focus on customer's fuzzy 

perception of QoS. To deliver more certain information into the ranking algorithm, they convert 

linguistic terms of customer's perception into precise numbers.     

 To solve the problem of cloud service selection based on multiple criteria, a rigorous 

mathematical model has been used but their approach is only effective to select amongst service 

offerings that are similar in specification but different in performance.   
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 In [28], the proposed methodology considers QoS parameters as the decisive factors for 

selecting appropriate cloud service. The model called Service selection for Data-centric cloud 

application (SSADCA) based on normalization mechanism is capable of accommodating any 

number of QoS parameters. The user is also able to accommodate any order of preferences of the 

QoS parameters.           

 AHP based methodology is used in [29]. The proposed methodology is two-fold: 1) 

consumer-centered service selection considering user's preference in multiple context (single 

user and multiple users); 2) making reasonable cloud service selection based on Cloud Service 

Decision-Making (CSDM). The proposed method is capable of automatically selecting cloud 

infrastructures. They consider a couple of criteria for their selection algorithm including 

deployment cost, location of cloud infrastructures, application clients, related applications, and 

communication among application components. They also introduced stepwise application 

placement algorithm for addressing scalability issue when the number of data centers and 

applications is large.          

 One of the main challenges for SaaS providers is to select best IaaS providers. To achieve 

this goal, SaaS provider needs to map user's requirements in QoS specification into the IaaS 

layer [30]. The work in [30] develops a set of mapping rules and a new way to calculate QoS 

values in a cloud environment using AHP method. QoS weights for service selection and ranking 

process are generated using AHP method based on QoS specification model. 

2.4 Cloud Marketplace 

Cloud marketplace is online storefront that is managed by cloud service providers or third 

parties. In a cloud marketplace, SaaS providers publish their software services and customers 

may subscribe to that software. Cloud service providers provide facilities to their subscribers to 



13 

 

use their already built-in cloud applications and approved applications from the third party. This 

approval of third party applications not only gives opportunity to the customers to use more 

applications, but also fills up the gaps for demanding more applications by their subscribers. 

 In [31], the market negotiation is the main focus of the paper, but they also attempt to 

define all important entities of the proposed marketplace such as sellers, buyers, intermediaries, 

etc. Market negotiation is the main functionality of the proposed marketplace that happens 

between the sellers and buyers who subscribe in the marketplace. The automation of the 

negotiation mechanism, inclusion of multiple attributes, and being a short term commitment are 

some of the characteristics.          

 The pricing model for IaaS resources is the main objective of the proposed model in [32]. 

The model is supposed to bring both a long term pricing contract for the benefit of IaaS 

providers and a pricing scheme that is based on users’ actual jobs. Some other features of the 

proposed model are: 1) economic benefits, 2) ability to provide a broader view of the user’s 

usage of cloud resources, and 3) better predictability compared to the traditional pricing models 

adopted by current cloud providers.        

 In [33], the main idea of the proposed marketplace system is to create interfaces for all 

cloud parties (e.g. users and service providers) to interact for business functions, and make the 

work flow easy to implement. The proposed architecture isolates the interface component from 

the core system logics. As a result, the marketplace could easily and quickly engage in the 

service provisioning process. It is designed to be flexible and used for all service functionalities, 

and by any providers and private developers. The structure of the proposed marketplace basically 

represents each entity as a logic block and each communication link as an interface (API). 

 The problem of service selection in a cloud marketplace is addressed in [34]. Cloud 
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marketplace should be able to support service composition, spanning different cloud layers and 

providing tools for providers to use existing products. The proposed solution takes into 

consideration the different layers of cloud entities along with the service business aspect 

specifically the service pricing. In their design view, the marketplace plays the role of a broker 

between the different service providers and their consumers. In their concept of multiple cloud 

layers, the business aspect and pricing are the main criteria for service selection mechanism.  

 The VMware vision of cloud marketplace has been discussed in [35]. They emphasized 

that marketplace should be open especially for general purposes, to all vendors and developers to 

submit their offers. The deployment procedure must be easy in the cloud environment. The paper 

focuses on IaaS providers and it deals with different types of consumers in a way that it helps 

them avoid much of expenses in acquiring actual resources.      

 In [36], a new model for cloud marketplace has been proposed where IaaS providers can 

work collaboratively to provision services. Finding relationships between providers who can 

form a single combined service offer and end users are the main goal of this paper. This strategy 

has different advantages such as the service cost can be reduced for the customer, the negotiation 

time is reduced and conflicts between services’ requirements are minimized while maintaining 

QoS requirements for customers. 

2.5 Cloud Broker 

A cloud broker is simply a third-party individual or organization that acts as an 

intermediary between customers and sellers of the service in a cloud environment. Cloud broker 

works with customers to help them understand work processes, budgeting, data management 

systems and saves purchase time by providing information to customers. There are three types of 

cloud brokers [37] including cloud aggregators, cloud enablers and cloud agents. A Cloud 
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aggregator provides the customer information about Application Programming Interface and 

User interface complexity. A Cloud agent is a software application that helps to distribute the 

works among different cloud service providers. A Cloud enabler must provide the customer 

some additional services such as encryption, transfer of customer data to the cloud and help them 

understand the data lifecycle management.        

 In [38], a brokerage-based architecture is proposed, where cloud broker is responsible for 

service selection. They design a unique indexing technique for managing the information of a 

large number of cloud service providers and develop an efficient algorithm that ranks potential 

service providers and aggregates them if necessary.      

 A cloud broker service called STRATOS is proposed in [39], which is an initial version 

of a broker service layer. This initial step could be used for cross-cloud resource provisioning. 

The broker service also facilitates application topology construction and runtime modification, 

based on deployer's objectives. They also emphasize the importance of mechanisms to compare 

and normalize offerings from multiple providers.       

 The self-adaptation and self-management techniques can improve service-oriented 

systems because they can tackle the complexity of a complex system and their environments by 

themselves.  In [40], the authors designed a broker system called MOSES (MOdel-based SELF-

adaptation of SOA systems) which provides runtime QoS-driven adaptation of SOA applications. 

They developed two versions of MOSES. In version 1, they got some issues including network 

overhead and storage access problems etc.  In version 2, they used OpenESB (Open Source 

Enterprise Service Bus) that replaced Tomcat with Glassfish and also maintained the same 

functionalities of MOSES 1 including standard way for communication and easy integration of 

new components.    
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2.6 Data Mining Services and Data Analytic Services 

Data mining and data analytic services have attracted more and more attention from 

different sectors including academia, industry, and government. There is no proper benchmark 

tool for data analytic services to collect end-to-end QoS values in the cloud. In [41], the authors 

introduced cloud-based big data mining and analysis service platform by integrating R in their 

model. In the proposed architecture, there are four layers: infrastructure layer, virtualization 

layer, dataset processing layer and services layer. Apache CloudStack was installed, configured 

and deployed to construct virtual machine clusters to manage infrastructure resources. In data 

processing layer, R language runtime environment and RHadoop environment were setup. There 

are four aspects to be considered in services layer including computing mode selection, cloud 

services, data mining workflow and user interface. They applied K-Means algorithm as service 

in their model.            

 In [42], a comprehensive and collaborative workspace for data professionals and analysts 

as cloud-based data mining platform, called DMaaS (Data Mining as a Service) is proposed. 

Their data processing engine is based on Hadoop and they deployed their services considering 

some of the data mining algorithms from Apache Commons Math Machine Learning [20]. The 

end-users can access their services from their own browsers easily.    

 Analytics as a Service refers to the provision of analytics software and operations through 

Web-delivered technologies. Data Analytics as a Service (DAaaS) is an extensible analytical 

platform in cloud environment where various tools for data analytics are available and can be 

configured by the user to process and analyze huge quantities of data. Many of data analytics 

services are based on Machine Learning concepts. The DAaaS platform has the ability to support 

the complete lifecycle of its analytics capabilities. There are some challenges of analytics 
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services in the cloud such as information lifecycle management, security of the data, privacy, 

real-time analysis and data volume. In [47], the authors introduced an AaaS tool that can be used 

to accomplish the extraction and organization of terms and topics from unstructured data sources 

including NoSQL, flat and PDF files. They proposed, designed and implemented the framework. 

 A collaborative big data analytics platform for big data as a service was proposed in [48]. 

This paper described big data analytics platform to manage big data and developed analytics 

algorithms and services which could collaborate with data owners, data scientists and service 

developers on the web.        

2.7 Discussion 

Since our objective in this work is to provide end-to-end QoS values of a service in the 

cloud and these QoS values could be used for service selection algorithm, in this chapter, we first 

reviewed papers about QoS based service selection. We created some data mining services as 

representative data analytic services and hosted them in different cloud infrastructure. Thus we 

also reviewed papers on data analytic services, data mining and cloud marketplace. For data 

analytic services, QoS values are depending on dataset features and they are different for 

different datasets. However, based on our review, most of cloud marketplaces and brokers focus 

on different techniques including indexing techniques, AHP method and QoS weights for service 

selection, etc., and none of them tried to collect the end-to-end QoS values which are essential 

for service selection. From the above discussion, we see there is no proper benchmarking tools 

for collecting end-to-end QoS values and these QoS values are important factors for service 

selection. 
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CHAPTER 3 

METHODOLOGY 

3.1 Introduction 

In this thesis work, we want to create a framework, in which new analytic services can be 

published with related information saved in a repository, users can search and invoke services, 

and the QoS values of these invoked services can be monitored and recorded. Since we focus on 

data analytic services, QoS data is associated with not only the service but also the dataset being 

processed. As a proof of concept, we have applied this framework to create a testbed, in which 

we have selected a few types of algorithms (i.e. clustering, classification, association rule 

mining), each type with a few different algorithms implemented, from different data mining 

software packages (i.e. Weka, R, Apache Commons Math Machine Learning), and we have 

implemented all of them as software services using RESTful web service framework, hosted and 

delivered them through different cloud infrastructure services (i.e. Windows Azure, Amazon 

EC2) with different configurations, and finally invoked them with different datasets and recorded 

their QoS values. The generated QoS data collection can be used for research works on QoS-

based analytic service selection. 

3.2 System Design  

3.2.1. System Architecture          

  

Figure 3.1 shows the architecture model of our system including different components. 
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Figure 3.1: System architecture 

There are 4 main components including File Manager, Publishing, Invoking and 

Monitoring. In our model, we have two types of users including administrators and end users. 

The end user is only able to upload dataset and invoke software services on the dataset. The 

admin user is able to do whatever end user can do and on top of that, admin user can publish 

software service, introduce new cloud servers, add new software services and create new users.

 File Manager Component is responsible for handling user's file uploading and associating 

the uploaded file with the corresponding cloud server. When the end users upload their own 

dataset, they need to choose their desired cloud server to upload to. File Manager Component has 

a software service, responsible for uploading the file to the corresponding cloud server. Dataset 

repository keeps track of the uploaded file for that user when invoking software services. If the 
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dataset is uploaded successfully, it will be stored in Dataset Repository to be used for service 

invocation.           

 Publishing component implements two main tasks i.e. Service Lookup and Service 

Registry. All of our software services are published in Service Registry. There is an internal 

communication between Service Lookup and Service Registry to avoid duplicate service 

publishing. Admin and providers can publish software services and end users will invoke these 

software services. Whenever a new software service is going to be published, Service Lookup 

will check whether it is already published on that cloud server. The name of the software service 

must be unique but provider or admin can publish same software service in different names. 

When any new software service is published in Service Registry, service invocation URL 

(Uniform Resource Locator) will be automatically generated. After a software service is 

published, it will be stored into Service Repository.      

 The main task of invoking component is the invoking of the software service. Before 

invoking software services, end users need to choose a data-set populating from the File 

Manager Component, and a cloud server and a software service populating from the Publishing 

Component. After the invocation, this component will return the control to the monitoring 

component.            

 After invoking a software service, our model will monitor and record values of QoS 

properties such as Latency, Availability, Reliability, Response Time and Throughput. These QoS 

values will be stored into QoS Repository and will be displayed in a browser to the end user. 

Later on, researchers can use this recorded QoS values for service selection. 
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3.2.2 UML Sequence Diagrams for Administrator and Regular User Tasks 

 

Figure 3.2 shows the UML sequence diagram of the service invocation process in our 

model for a regular user. 

 

 

According to the diagram, an end user first needs to upload the dataset to the cloud 

server. After uploading the dataset, the end user chooses a cloud server, a software service and 

the parameters associated with the software service as indicated in Service Invocation Filter. 

After the software service is invoked, the monitored QoS values are saved and they could also be 

Figure 3.2: UML sequence diagram for service invocation 
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displayed to the end user. Software service publishing, cloud server setup and user creation are 

not included in this diagram. These three options are controlled by admin or provider. 

Figure 3.3 shows the UML sequence diagram for administrator tasks. 

 

Figure 3.3: UML sequence diagram for administrator tasks 

According to the above figure, there are some tasks that are not available for end user. 

Introducing new service, setting up cloud servers, creating new users and service publications 

can only be done by admin user. Besides these tasks, admin can also do tasks of regular users 

such as the one shown in figure 3.2. 

3.2.3 USE Case Scenarios 

Figure 3.4 shows all the use cases of our system. 
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Figure 3.4: Use Case Diagram 

 There are two types of users in our model, i.e. administrator users or providers whose job 

is to configure the cloud server, publish the software service and create new users, and end users 

who can invoke the published services using their own datasets. According to our model, before 

invoking software services by end users, admin user needs to create new services, setup the 

cloud server and publish the software services. The users can login into the system via Logging 

in use case and dataset is uploaded by Dataset uploading use case. Before a software service is 

invoked, users need to select services in Service selection case and applying extra parameters to 
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the data done in Filtering case. After selecting cloud server from Cloud server setting case, users 

can invoke service and the QoS value of the invocation is displayed in QoS monitoring case. 

3.3 Data Analytic Software Services 

With today’s technology, more and more data are being collected. The value of the big 

data is not on its sheer volume. Instead, it lies on the user behavior or the hidden patterns we can 

learn from the data. Because of this reason, companies start to look for data mining or machine 

learning software to analyze the data they have saved. Many cloud providers (e.g., Amazon, 

Microsoft, IBM, Google) start to offer analytic software as services to their users. With all these 

analytic services from different providers being published and delivered in the cloud, how to 

select them becomes a challenge. Same as web service selection, QoS values of the services 

become deciding criteria to differentiate between different services. There are many factors that 

affect QoS values of analytic services. Similar to traditional web services, providers and their 

specific implementations would have impact on QoS values. On top of them, the dataset the 

service is going to work on, as well as the algorithm used, also have a significant impact on the 

QoS values, and these factors can often ignored in the current research work. In our framework, 

we will choose analytic services from different providers, from different categories (e.g. 

clustering, classification, association rule mining), and implementing different algorithms (e.g. k-

means, DBScan, hierarchical algorithm for clustering services), in order to study their impact on 

QoS values of the services. 

3.4 RESTful Web Services 

According to W3C definition [43], web service is “a software system designed to support 

interoperable machine-to-machine interaction over a network”. REST [44] stands for 
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Representational State Transfer. It is an architectural style for designing the system that enables 

clients and servers sending request and response respectively and this architectural style is 

approved by W3C Technical Architecture Group (TAG). REST treats everything as a resource, 

each resource follows the standard HTTP format and each resource has own its own name and 

address namely URI (Unified Resource Identifier). Each resource can have more than one 

representation such as HTML (HyperText Markup Language), XML (Extensible Markup 

Language), JSON (JavaScript Object Notation) and each representation moves over the network 

using HTTP protocol. RESTful web service is a great alternative to SOAP and WSDL based web 

service because RESTful service provides a couple of benefits to organizations such as easy 

integration, less memory consumption, security enablement, different output formats, better 

performance, scalability and support of the JSON format which is faster for parsing data. REST 

is being introduced in a large number of companies such as Yahoo, Facebook, Amazon, Flickr, 

del.ici.ous, Ebay as well as many enterprise organizations who have depreciated their existing 

SOAP based web services. As REST uses standard HTTP, it is much easier to use. Creating web 

service, client application, documentation and formatting the output in different formats are easy 

in REST. RESTful services communicate over HTTP using HTTP methods such as GET, POST, 

PUT, DELETE, etc. 

 Figure 3.5 shows a simple RESTful web service request and response procedure in our 

system.  In this figure, service consumer is just sending a simple URL request to the web service 

which is hosted somewhere and service provider is returning response based on the request with 

output including the latency information.  
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Figure 3.5: Simple RESTful web service request and response 

 

 Figure 3.6 shows how to invoke a simple SOAP based web service. From this figure, 

service consumer is sending a request which is in XML format and service provider is also 

sending response in xml format.  
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Figure 3.6: Simple SOAP-based web service request and response 

 

These two figures show the difference between RESTful web services and SOAP based 

web services. Generally speaking, SOAP uses a standard communication protocol which is a 

specification of XML-based message exchange, whereas RESTful web service uses standard 

interface such as HTTP for data transmission. Compared to SOAP-based services, RESTful web 

services are very simple to design and implement, easy to invoke, are less memory consuming, 

and are completely stateless. RESTful services also provide a good caching infrastructure over 

HTTP Get method which can improve the performance. Considering the above benefits, we use 

RESTful web service in our work. 
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3.5 QoS Properties 

As our main objective is data analytic service selection in the cloud environment based 

on end-to-end QoS values, we need to identify QoS parameters which play an important role on 

service selection [16]. A service can have many non-functional properties such as: 

 Response Time: Response time is the time taken to send a request and receive a 

response. The unit of measurement is milliseconds (ms). 

 Availability: Availability is the possibility that the system is up and can be invoked 

by users successfully. The method of calculation is the number of successful 

invocations / the total number of invocations and its unit is %. 

 Throughput: Throughput can be measured in two ways. One way is to measure it by 

calculating the volume of data which is invoked at a given period of time. The other 

method is to measure the total number of invocations for a given period of time. The 

unit of measurement is invokes/sec. 

 Reliability: Reliability measures the probability of a service to able to produce the 

correct result for a given period of time. It is measured by the ratio of the number of 

error messages to the total number of messages. The unit of measurement is %. 

 Latency: Latency is measured by time taken for a server to process a given request. 

The unit of measurement is milliseconds (ms). 

In our work, we are considering these 5 QoS properties.  

3.6 Summary 

In this chapter we have discussed the general methodology and technologies that we used 

in our work. We described the high level architecture of our system explaining our four main 
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components including Publishing, Invoking, Monitoring and File Manager. In our work, we only 

consider RESTful web services. We consider services from different providers, belonging to 

different categories and implementing different algorithms. We host our services in different 

cloud infrastructure platforms in different locations and with different configurations so that we 

can collect different end-to-end QoS values and investigate the impact of these different factors 

on the QoS values. These collected QoS values will benefit other researchers to study their QoS-

based service selection approaches. 
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CHAPTER 4 

EXPERIMENTS 

 

In this chapter, we will discuss about our implementation environment, proof of concept 

details, IaaS Configuration, our used datasets and QoS data collection. At the end, we will also 

analyze our collected QoS data. 

4.1 Implementation of the testbed platform 

In this work, we mainly wanted to create a testbed platform. In this platform, multiple 

IaaS and SaaS services can be published, and a user can choose the SaaS he/she would like to 

use and the IaaS he/she would like to host the SaaS, afterwards, the user can invoke the service 

to process the uploaded data file, and the result will be returned, and more importantly, all the 

QoS values for an invocation are recorded in a repository. The collected QoS values could be 

used for service selection research. In this section, we will talk about how we implemented the 

proposed testbed platform including the environment, the class diagram of our implementation 

and the major user interface screens. 

4.1.1 Programming Environment 

In this work, we chose Java for our system implementation. We have used Java SE 

(Standard Edition) Development Kit 7 and a couple of software development tools and libraries 

including  Eclipse IDE (Integrated Development Environment) indigo, Struts2 Framework, Ant  

build tool, MySQL database, Apache Tomcat 7.0.35, RESTful web services, Jersey framework, 

Weka Explorer, R studio, Weka libraries, R programming libraries and Apache machine learning 

libraries etc. We chose Struts2 framework for the following reasons: 1) it follows MVC (Model 
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View Controller) design patterns; 2) it communicates with the data layer; 3) it renders 

presentation layer etc.          

 Table 4.1 shows the hardware configuration used for the implementation environment 

and also used for running our experiment. 

Table 4.1: Hardware configuration 

Hardware Configuration 

Manufacturer Dell 

Processor Intel(R) Core (TM) i7-3632QM CPU @ 2.20 GHz 

RAM 8 GB 

Operating System Windows 7 Ultimate (Service Pack 1) 

System Type 64-bit 

 

4.1.2 Class Diagram 

Figure 4.1 shows the class diagram of our implementation. According to our model, we 

have three types of repositories, Dataset repository for storing datasets, Service repository and 

QoS repository for storing the collected QoS values.     

 According to our system design, Service and Cloud server are our base classes and they 

are used throughout the whole program. We can publish multiple services under one cloud server 

and that's why there is one-to-many relationship between the service and the cloud server class. 

Users will upload their own datasets using FileUpload class which is dependent on the cloud 

server class because this dependency will allow users to upload datasets to the desired cloud 

server. Dataset is uploaded to the cloud server by web service called UpdateSoftwareService. For 

publishing software services into the repository, ServiceRegistry class is used and this class is 

dependent on Service and CloudServer class. ServiceInvokation class is the main class to invoke 
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software services hosted on the cloud server, from client web application. Based on the selection 

of cloud server and software services from the available lists, ServiceInvoke class will invoke 

Clustering/Classifier/Association software services. After invoking, service invocation results 

will be recorded and saved in the repository for the future usage. 

 

Figure 4.1: Class diagram of our implementation 
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4.1.3 User Interfaces 

In this section, we will show some of our major implemented user interfaces. These 

interfaces could illustrate the typical system workflows and user tasks. Figure 4.2 shows the 

interface for a user to upload datasets. 

 

Figure 4.2: File upload UI 

Figure 4.3 shows one of our major UIs called Cloud server setup. Using this interface, 

admin can set up a number of cloud servers in the system. According to the figure, cloud server 

name is simply the name of the server and this name must be unique. IP is the IP address of the 

cloud server, for example 127.0.0.1 and Tomcat port is the port of the installed Tomcat on the 

cloud server. The default Apache Tomcat port is 8080, but it can be changed anytime. Upload 

Base Directory is a physical location in the cloud server where dataset will be stored, for 

example “C:/cloudupload/”. Upload Directory is another location inside Upload Base Directory, 
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for example amazon, dataset, etc. which is just a naming convention to make difference between 

one directory to another. R Installed Path is the location of the installation directory of R studio, 

for example “C:/program files/R/R-3.0.3/bin/Rscript.exe”. This path is the most important path 

which is needed to invoke the R software services. This location is needed to execute the R script 

inside the Java code. 

 

Figure 4.3: Cloud server setup UI 

Figure 4.4 shows the interface for software service publication or registration into our 

system. Using this UI, admin or provider can publish their software services in the cloud. In the 

figure, title is the identifier or name of the service and it must be unique in the system. 

Description is not a mandatory field. Based on the selection of the cloud server and the service 

from the drop down list, system will generate invocation URL of the service, for example, if the 

context path of the service is “/emclustering/rest/emclustering” and IP of the cloud server is 
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52.10.109.251 and apache tomcat server port is 8080, the generated URL for the service would 

be “http:// 52.10.109.251:8080/emclustering/rest/emclustering”. 

 

Figure 4.4: Web service publish or registration UI 

Figure 4.5 shows the service invocation user interface. All the uploaded datasets, all the 

cloud servers and available published services are loaded into the drop down list for user to 

select a service to invoke. 
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Figure 4.5: Web service invocation 

In the above figure, there are a couple of parameters that users need to set their values. 

No of clusters means how many clusters user wants to form on his/her dataset. Repulsion 

parameter is used only for Weka CLOPE clustering algorithm and the default value is 2.6. The 

dataset for Weka CLOPE clustering should be nominal type, otherwise service invocation could 

fail. Users also need to set the repulsion parameter value very carefully because the parameter 

value affects directly the success of the service invocation. Acuity and Cutoff are the two 

parameters used for Weka Cobweb clustering. The default value of these two parameters are 1.0 

and 0.0028. The success and failure of Weka Cobweb clustering service depend on the parameter 

values. Weka Cobweb clustering service supports both nominal and non-nominal values. Epsilon 

and Minpoints are two double type parameters used for Weka DBSCAN/Optics clustering and 
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Apache DBSCAN clustering algorithms. The default values of these two parameters are 0.9 and 

6 respectively. MaxCluster and MinCluster are Weka XMeans clustering parameters. The default 

values of MaxCluster and MinCluster are 4 and 2 respectively. MaxIteration parameter is used 

for Apache KMeansPlusPlus clustering which means how many times the system will iterate on 

the dataset to get the expected output. For invocation of apache clustering service, users can 

decide whether to use the header information on the dataset. If they use header information, they 

need to set YES of Column Header parameter. If Column header is set to YES, service will 

ignore that line to apply the clustering algorithm on the dataset. All these parameters have default 

values. If users are not familiar with the algorithm, they can always use the default values. If they 

have some knowledge about the algorithm, they can set their own values good for their datasets. 

Table 4.2 shows a list of parameters that users can pass before invoking services and the 

corresponding services which require them. 

Table 4.2: Software service parameters 

Parameter Name Applicable Services 

No of cluster 

 

Weka EM/FarthestFirst/Hierarchical/SimpleKMeans/sIB Clustering, Apache 

KMeansPlusPlus Clustering, R Hierarchical/ SimpleKMeans Clustering 

Repulsion Weka CLOPE Clustering 

e 

Acuity, Cutoff Weka Cobweb Clustering 

Epsilon, Minpoints Weka DBSCAN/OPTICS Clustering, Apache DBSCAN Clustering 

Max(Min)Cluster Weka XMeans Clustering 

Max Iteration Apache KMeansPlusPlus Clustering 

No of columns Apache KMeansPlusPlus/DBSCAN Clustering 

Column Header Apache KMeansPlusPlus/DBSCAN Clustering 
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Figure 4.6 shows service invocation result using Weka SimpleKMeans clustering service. 

It also shows the percentage of incorrectly clustered instances and the latency value in 

milliseconds (ms). 

 

Figure 4.6: Service invocation result 

Figure 4.7 shows the end-to-end QoS values for Weka SimpleKMeans clustering service 

based on the dataset used.  

 

Figure 4.7: Collected QoS values 
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Latency is measured as the time taken for the cloud server to process a given request and 

it is 0.225 seconds. Response time is calculated as the ping time to the server plus the latency. 

Reliability is the percentage of the success request. For this one request, the invocation is success 

and Reliability is 100%. As the system and the service are running properly and invocation has 

been done successfully, Availability is also 100%. Throughput has been calculated based on the 

output size of the service. The output size in byte divided by 1024, gives the output size in 

kilobyte. This output size in kilobyte is multiplied by 8, which gives the output in kilobit. Then it 

is divided by total time taken for the successful request, which gives the Throughput value. The 

calculation steps are shown below, 

Output size in byte = 903 

Output size in Kilobyte = 903/1024 

       = 0.8818359375 

Output size in kilobit = 0.8818359375*8 

              = 7.0546875  

Total time for successful request in seconds = Response Time + Latency  

 = 3.188+0.168 = 3.356 

Throughput = 7.0546875 / 3.356 = 2.10211189 

4.2 Proof of Concept Prototype  

The implemented platform is supposed to be generic, and can be used to include any 

number and type of services. In this work, we implemented a proof of concept prototype to 

showcase the value of the testbed platform and demonstrate how it is used to host data mining 

services in particular.  
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4.2.1 Data Mining Packages 

Data mining is the procedure of analyzing large quantities of data from different aspects 

and summarizing that data into useful format which is used further for the business purposes. 

Data mining techniques are used by different types of companies from medium sized to large 

sized companies to analyze their data and to take suitable decisions for their business growth. 

Data mining package or software is one kind of tool for analyzing the data. This tool allows users 

to analyze their data from different dimensions, categorize it and finally summarize it in a human 

readable format. Among many data mining algorithms, three categories of algorithms are most 

popular including Clustering, Classification and Association rule mining. Classifiers are used to 

allocate data to predetermined groups. Clustering is used to group data according to customer 

preferences or logical relationships. Association is used to mine data to identify associations 

between different items.  Among various packages, we chose three for our work which are 

Weka, R and Apache Commons Math Machine Learning. The idea is that different packages 

represent different software providers, and in this way, we could have data mining services 

implementing the same algorithm coming from different providers.    

Weka (Waikato Environment for Knowledge Analysis) is a popular data mining package, 

which is written in Java. Weka is a free software package under GNU General Public License. 

Weka contains a collection of visualization tools and algorithms for data analysis including 

graphical user interfaces to access the functionalities. Weka provides several standard data 

mining algorithms such as Preprocessing, Classification, Clustering, Association rule mining, 

Regression and Feature selection. Weka has the support of database access using Java Database 

Connectivity. This feature supports to process data returned by a database query. The main user 

interface of Weka is called Explorer. Users can use Explorer to run different data mining 
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algorithms. In this work, instead of using this interface, we will use the Weka API to implement 

the services.  

Table 4.3 shows a list of Weka algorithms that we chose to implement our services. 

Table 4.3: List of Implemented Weka Algorithms 

SL Algorithm Name Type 

1 Expectation Maximization (EM) 

( 

Clustering 

2 Hierarchical Clustering 

3 Filtered Clustering 

4 FarthestFirst Clustering 

5 CLOPE Clustering 

6 SimpleKMeans Clustering 

7 Cobweb Clustering 

8 sIB Clustering 

9 DBSCAN Clustering 

10 XMeans Clustering 

11 BFTree Classifier 

12 AdaBoostM1 Classifier 

13 LMT Classifier 

14 REPTree Classifier 

15 RandomTree Classifier 

16 RandomForest Classifier 

17 Apriori Association 

18 Tertius Association 

 

R [41] is an open source programming language and software environment for statistical 

calculation and data analysis. R has many interfaces to communicate with the code which is 
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written in other programming language such as C, C++, Fortran, Java and Python. S is a 

statistical programming language and R is an implementation of S programming language. The R 

language is widely used by statisticians and data miners for statistical software development. R 

implements a wide range of statistical and graphical techniques including clustering, 

classification for statistics data analysis. As we used Java programming language for developing 

the web services and R is a different programming language, we need an intermediate interpreter 

that will communicate with R compiler and execute the R script within Java. For this purpose we 

chose RCaller as an intermediate interpreter.       

 Table 4.4 shows the list of our implemented R algorithms. We mainly focus on clustering 

algorithms here from R package. 

Table 4.4: List of Implemented R algorithms 

SL Algorithm Name Type 

1 Hierarchical 

( 

Clustering 

2 KMeans Clustering 

  

 Apache Commons Math Machine Learning is a project of Apache Software Foundation 

and its purpose is to provide reusable open source software. Apache Commons Mathematics has 

implemented some machine learning algorithms which are open source and written in Java. 

Apache Software Foundation has implemented four clustering algorithms which are KMean++, 

Fuzzy-KMeans, DBSCAN and Multi-KMeans++.        

 Table 4.5 shows the list of Apache Commons Mathematics machine learning algorithms 

used to develop services. Here we only consider clustering algorithm.    
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Table 4.5: List of implemented Apache Commons Mathematics machine learning algorithms 

SL Algorithm Name Type 

1 KMeans++ 

( 

Clustering 

2 DBSCAN Clustering 

 

So in this prototype implementation, we have 3 software providers – Weka, R, and 

Apache Commons Math Machine Learning. There are 3 types of data mining services – 

clustering, classification, and association rule mining. Weka services cover all three types, 

Apache services only cover clustering services and R services also only cover clustering 

services. Although a few clustering algorithms have been implemented in both R and Apache, 

here we only choose two from each which we can find corresponding implementations in Weka. 

In this way, we could test the impact of different factors (provider, functionality, algorithms) of 

SaaS services on the QoS values. 

4.2.2 IaaS Services 

Since we need to have multiple IaaS services from multiple providers, in this work we 

chose Amazon EC2 and Windows Azure cloud infrastructure to host our developed software 

services. Then for services from each provider, we also want to have different configurations and 

different hosting locations, so that we could have a variety of IaaS services. Amazon EC2, which 

is also known as Amazon Elastic Compute Cloud, provides resizable computing capacity in the 

Amazon Web Services (AWS) cloud. Amazon EC2 offers a wide range of instance types that 

vary based on combinations of CPU power, amount of memory, storage size and network 

capacity. Amazon provides pre-configured instances, which is known as Amazon Machine 

Images (AMIs) that include operating systems such as Windows or Linux. The AMIs may 
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include a wide range of preinstalled software packages. Amazon EC2 provides various types of 

instances based on the workload from "micro" instances for small jobs to high performance "x-

large" instances for data warehousing tasks. The users can also mix different types of instances 

based on the amount of memory they need. Amazon EC2 Spot Instances allow users to bid on 

spare instances to be used whenever user's bid price exceeds the current spot price. Amazon EC2 

Reserved Instances provide customers a good discount which could be up to 75%. Amazon EC2 

Dedicated Instances is another instance type which is based on pay-as-you-go pricing model and 

there is no long-term commitment.         

 For our work, we chose the Amazon EC2 Dedicated Instances to host our developed web 

services in Windows platform. There are a number of options in this type and we chose the micro 

type for our thesis.     

Table 4.6 shows our chosen Amazon EC2 IaaS configuration to host our developed 

software services.           

    Table 4.6: Amazon EC2 IaaS configuration 

SL Name OS & Bit Processor RAM Location 

1 Amazon-1 Windows Server 2012 R2 (64 bit) 

( 

Intel(R) @ 2.5 GHz 1 GB Tokyo 

2 Amazon-2 Windows Server 2012 R2 (64 bit) Intel(R) @ 2.5 GHz 1 GB US (Oregon) 

3 Amazon-3 Windows Server 2003 R2 (32 bit) Intel (R) @ 2.5 GHz 4 GB US (Oregon) 

 

Windows Azure is a Microsoft implemented cloud computing platform. Windows Azure 

was renamed to Microsoft Azure on April, 2014 [45]. Windows Azure uses Fabric layer, which 

is a cluster hosted in Microsoft data center that manages computing resources. The two important 

features of Windows Azure are scaling and reliability which are controlled by Microsoft Azure 
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Fabric Controller in such a way that services and environments do not crash if any of the services 

goes down. A feature called Automated Service Management supports application upgrading 

without compromising performance. Windows Azure provides a number of services such as data 

management, media services, networking, virtual network, virtual machine, integration among 

applications, high density website hosting, and access control service, etc. Windows Azure 

supports a variety of Microsoft and third-party protocols, programming languages and platforms 

including XML, REST, SOAP, Eclipse, Ruby, PHP, Python, etc.  

As Amazon-1 and Amazon-2 instances are under free tier account, we cannot chose more 

RAM for the instances. But as Amazon-3 is a paid instance, we selected 4 GB RAM. We could 

not select same type of IaaS from Amazon and Azure because of their different infrastructure 

configuration. For example Windows Azure has core options but Amazon does not have that. As 

a free user, we can select maximum 1 GB RAM from Amazon but 4 GB RAM from Windows 

Azure.     

Table 4.7 shows our chosen Windows Azure IaaS configuration for hosting our 

developed software services. All Azure instances are under one month free subscription and we 

have to select at least 4 cores. This is how Windows Azure are configured. 

Table 4.7: Windows Azure IaaS configuration 

SL Name OS & Bit  Processor RAM Location 

1 Azure-1 Windows Server 2008 R2 (64 bit) 

( 

7 core 14GB Japan West 

2 Azure-2 Windows Server 2008 R2 (64 bit) 

 

7 core 14GB North Europe 

3 Azure-3 Windows Server 2008 R2 (64 bit) 4 core 7GB Central US 

4 Azure-4 Windows Server 2012 R2 (64 bit) 4 core 14GB Central US 
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As we have mainly used free tier of the IaaS account and different cloud service 

providers have different types of options, we are limited in our IaaS configuration selection. For 

example as a free tier user, we cannot select more memory in Amazon EC2. Amazon does not 

provide core configuration to the free user. On the other hand, Windows Azure gives core 

options available to their users. 

4.3 QoS Data Collection 

In this work, we use the real datasets collected from UCI machine learning repository 

[46]. Based on the task type, there are a number of different types of datasets. Each dataset may 

have different data properties, for example, different sizes, different dimensions, different types 

of data (numeric, categorical, Boolean, etc.).  Here we chose six of them for our experiment 

because they are varying on these data properties.       

 Table 4.8 describes our used datasets in this work. We chose our datasets based on four 

criteria: the number of dimensions, size (number of rows), whether to have missing data or not, 

and the data type. The target was to find datasets with varying values on these criteria. The 

required information was obtained from the UCI dataset description.  

Table 4.8:  List of datasets 

SL Dataset Name # of rows Dimension Missing Values Year Data Type 

1 Lung Cancer 

( 

32 56 Yes 1992 numeric, string 

2 Balance Scale 

 

625 4 No 1994 nominal 

3 Car Evaluation 1728 6 No 1997 numeric, string 

4 Turkiye student evaluation 5820 33 No 2013 numeric 

5 Opt digits 5620 64 No 1998 numeric 

6 Diabetic data 100000 55 Yes 2014 numeric 

 



47 

 

 

We developed a client web application for our experiment. Its functions include setting 

up the cloud server, publishing software services, uploading user's datasets, invoking software 

services and monitoring software services' QoS values. For experiment, we hosted our developed 

software services into different cloud infrastructure services from either Windows Azure or 

Amazon EC2. Then we hosted client web application in our local system.  We used default 

parameter values for classifier and association rule mining services. We used some default 

parameter values for clustering algorithm and we also implemented some parameters into the 

client web application where users can send his/her chosen parameter values before invoking 

software services.            

 In our experiment, we set a threshold value for time-out. If the client web application 

does not receive any response from a service within five minutes, that invocation will be timed 

out. We sent ten requests to invoke a services for all IaaS and datasets from the client 

application. Users can send more than ten requests. First of all, an end-user needs to upload 

his/her own dataset to the desired cloud server. To invoke a service, the end-user needs to select 

cloud server, software service and dataset from the drop down list. Then user also needs to tell 

the system how many requests he/she wants to send to the server to invoke the service. After 

that, user can enter available parameter values or use default values. The parameter values could 

affect whether we could get proper result from that service. If wrong parameter values are 

provided, some QoS values can be affected or sometimes service invocation could fail. 

We show some of the collected QoS values below. In these tables, status 0 means a 

successful invocation and status -1 means a failed invocation. When status is -1, the other 
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columns have empty cells. For all the software services, we have availability 100% and therefore 

this value is not included in the tables.  

Table 4.9 shows QoS values of all implemented software services hosted on the same 

IaaS service (Azure-1) running for the same dataset (i.e. Balance scale dataset). From this table, 

we can see that among all clustering services, Weka Hierarchical Clustering, Weka DBSCAN 

Clustering, Apache KMeansPlusPlus Clustering, Apache DBSCAN Clustering, R Hierarchical 

Clustering and R KMeans Clustering failed to process the dataset.  The reason of failure for 

Weka DBSCAN clustering is selection of the wrong parameter values for Epsilon and Minpoints. 

If these two values are not provided properly, algorithm will fail to process the file. As Balance 

scale dataset contains string data, the other listed services failed to process the file because they 

only support numeric values. Weka Apriori Associator and Weka Tertius Associator failed 

because they only support nominal data type. We could also see that although the services are 

applied on the same dataset and hosted on same IaaS instance, the collected QoS values vary 

between different SaaS services.  

Table 4.10 shows QoS values of all implemented software services hosted on the same 

IaaS service (Azure-1) running for another dataset (i.e. Lung Cancer).  
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Table 4.9: QoS values for one dataset (Balance Scale), one IaaS (Azure-1) and all services 

 

 

Service Name Status Response Time (s) Throughput Reliability Latency(s) 

Weka EM Clustering 0 4.133 1.451 100% 0.272 

Weka Hierarchical Clustering -1     

Weka Filtered Clustering 0 3.644 2.534 100% 0.019 

Weka CLOPE Clustering 0 4.111 4.177 100% 0.136 

Weka FarthestFirst Clustering 0 3.791 0.857 100% 0.036 

Weka SimpleKMeans Clustering 0 3.845 1.805 100% 0.061 

Weka Cobweb Clustering 0 4.111 4.017 100% 0.136 

Weka sIB Clustering 0 4.449 1.864 100% 0.537 

Weka XMeans Clustering 0 4.244 1.460 100% 0.041 

Weka DBSCAN Clustering -1     

Apache KMeansPlusPlus Clustering -1     

Apache DBSCAN Clustering -1     

R Hierarchical Clustering -1     

R KMeans Clustering -1     

Weka BFTree Classifier 0 3.999 1.844 100% 0.097 

Weka AdaBoostM1 Classifier 0 3.917 1.910 100% 0.038 

Weka REPTree Classifier 0 3.962 1.895 100% 0.025 

Weka LMT Classifier 0 5.385 1.085 100% 1.575 

Weka RandomTree Classifier 0 3.810 1.975 100% 0.016 

Weka RandomForest Classifier 0 4.095 1.828 100% 0.038 

Weka Apriori Associator -1     

Weka Tertius Associator -1     
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Table 4.10: QoS values for one dataset (Lung Cancer), one IaaS (Azure-1) and all services 

Service Name Status Response Time (s) Throughput Reliability Latency(s) 

Weka EM Clustering 0 3.907 9.168 100% 0.042 

Weka Hierarchical Clustering 0 3.866 1.902 100% 0.003 

Weka Filtered Clustering 0 3.869 9.095 100% 0.008 

Weka CLOPE Clustering 0 4.869 0.839 100% 0.295 

Weka FarthestFirst Clustering 0 3.873 2.077 100% 0.003 

Weka SimpleKMeans Clustering 0 3.542 8.150 100% 0.005 

Weka Cobweb Clustering 0 4.132 0.706 100% 0.051 

Weka sIB Clustering -1     

Weka XMeans Clustering 0 3.918 4.675 100% 0.109 

Weka DBSCAN Clustering -1     

Apache KMeansPlusPlus 

Clustering 

0 3.803 4.210 100% 0.006 

Apache DBSCAN Clustering 0 3.923 0.075 100% 0.02 

R Hierarchical Clustering 0 4.102 12.533 100% 0.328 

R KMeans Clustering 0 3.909 9.345 100% 0.19 

Weka BFTree Classifier 0 3.617 1.825 100% 0.003 

Weka AdaBoostM1 Classifier 0 3.942 1.673 100% 0.008 

Weka REPTree Classifier 0 3.984 1.658 100% 0 

Weka LMT Classifier 0 4.063 1.605 100% 0.055 

Weka RandomTree Classifier 0 3.819 1.730 100% 0 

Weka RandomForest Classifier 0 3.596 1.836 100% 0.003 

Weka Apriori Associator -1     

Weka Tertius Associator -1     
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From this table, we can see that among all clustering services, Weka sIB Clustering, 

Weka DBSCAN Clustering, Weka Apriori Association and Weka Tertius Association failed to 

process the dataset. The reason of failure for Weka DBSCAN clustering is selection of the wrong 

parameter values for Epsilon and Minpoints. Weka Apriori Associator and Weka Tertius 

Associator failed because Lung Cancer dataset contains numeric data but these two associators 

only support nominal data type. Comparing Table 4.9 and Table 4.10, we can see we have higher 

success rate in Table 4.10, which means successful invocation depends on dataset, data types and 

parameter values also.  

Table 4.11 shows the average QoS values on one IaaS (Azure-1) for all datasets. The 

QoS values are averaged on all SaaS services. 

 

Table 4.11: Average QoS values on one IaaS (Azure-1) for all datasets 

Dataset Name Latency (Sec) Reliability Response Time(Sec) Throughput 

Lung Cancer 0.054 81.81% 3.929 4.061 

Balance Scale 0.168 63.64% 4.106 1.886 

Car Evaluation 1.952 54.54% 6.819 1.771 

Opt digits 10.318 68.18% 11.882 4.236 

Turkiye student evaluation 6.332 68.18% 8.819 2.837 

Diabetic data 24.354 31.81% 13.329 0.180 

 

 From the above table, we can observe the average reliability of the services on Diabetic 

dataset is less than that on other datasets because diabetic dataset has a lot of missing data and 

noise. We can also see that the reliability on Lung cancer dataset is more than that on other 

dataset because this dataset is small and clean. We could see that Lung Cancer dataset has the 
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smallest latency because it is the smallest based on its size and dimension, and Diabetic dataset 

has the largest latency because it is the biggest dataset among all. The response time is also 

affected by the dataset size and dimension. But it is affected more heavily by the network 

transmission time, which explains why the response time is much bigger than the latency. There 

is no clear pattern on throughput because throughput is not only decided by the service 

processing time, the network transmission time, but also decided by the size of the output which 

varies a lot among different software services. We observe the similar patterns for other IaaS 

services, and thus we are not showing their values here. 

Table 4.12 shows the average QoS values of one SaaS (Weka FarthestFirst Clustering) 

for all datasets. The QoS values are averaged on all IaaS services. 

 

Table 4.12: Average QoS values of one SaaS (Weka FarthestFirst Clustering) for all datasets 

Dataset Name Latency (Sec) Reliability Response Time(Sec) Throughput 

Lung Cancer 0.053 100% 3.625 2.218 

Balance Scale 0.054 100% 3.612 0.903 

Car Evaluation 0.089 100% 3.736 1.033 

Opt digits 3.079 100% 9.466 1.818 

Turkiye student evaluation 6.830 100% 16.674 1.081 

Diabetic data 2.093 100% 5.638 1.164 

 

From the above table, we can see the Reliability of Weka FarthestFirst Clustering service 

for all datasets is 100%. Interestingly, this service works very fast for Diabetic dataset. Although 

it is the biggest dataset, its latency is lower than two other smaller datasets. The latency for 

Turkiye student evaluation dataset is slower than those for other datasets.  
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Table 4.13 shows the average QoS values on all IaaS for one dataset (Lung Cancer). The 

QoS values are averaged on all SaaS services. 

 

Table 4.13: Average QoS values for one dataset (Lung Cancer) on all IaaS 

IaaS Name Latency(sec) Reliability Response Time(sec) Throughput 

Azure-1 0.054 81.81% 4.115 4.217 

Azure-2 0.066 81.81% 3.489 2.858 

Azure-3 0.848 81.81% 4.478 4.017 

Azure-4 0.785 81.81% 4.521 3.654 

Amazon-1 1.247 81.81% 4.283 2.570 

Amazon-2 1.434 81.81% 4.771 2.852 

Amazon-3 1.282 81.81% 4.924 3.043 

 

In this table, we can see the reliability is the same (81.81%) for all the IaaS services, 

which means the reliability is mainly decided by the dataset features. We can also see the 

variation of latency and throughput, which shows the impact of IaaS configurations and locations 

on their values. Since Azure instances have higher configurations, in general, their latency values 

are better than those from EC2 instances. The impact of configurations on response time is 

smaller because the network transmission time is usually bigger than the processing time, and it 

is mainly decided by the location. So the instances from Europe or Asia usually have longer 

response time. Throughput also varied among different IaaS instances, however no clear pattern 

can be observed. 

Table 4.14 shows the average QoS of one SaaS (Weka SimpleKMeans Clustering) on all 

IaaS. The QoS values are averaged on all the datasets.  
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Table 4.14: Average QoS values of one SaaS (Weka SimpleKMeans Clustering) on all IaaS 

IaaS Name Latency(sec) Reliability Response Time(sec) Throughput 

Azure-1 13.165 100% 17.067 3.680 

Azure-2 10.145 100% 13.563 4.339 

Azure-3 19.023 100% 22.105 3.696 

Azure-4 19.107 100% 21.818 3.996 

Amazon-1 0.199 83.33% 3.359 5.335 

Amazon-2 0.308 83.33% 3.745 4.724 

Amazon-3 0.247 83.33% 3.359 5.294 

 

From this table, we observed that the Latency and Response time of Amazon IaaS are 

lower than that of Azure IaaS. We have one big size dataset called Diabetic which was invoked 

successfully in Azure IaaS but failed in Amazon IaaS due to time-out. Invocation for Azure 

succeeded because of its good configuration but it took long time to finish the invocation. On the 

other hand, Amazon IaaS timed out to process Diabetic dataset due to its low configuration. The 

way we calculated the latency is to remove the failed cases. So with exclusion of this dataset, 

Amazon IaaS gives better latency values. However, this failure also affects the reliability. The 

Amazon IaaS has lower reliability than Azure IaaS. 

Table 4.15 shows the average QoS values of all SaaS for one dataset (Lung Cancer). The 

QoS values are averaged on all IaaS instances. For the fail cases, their columns have empty 

values.  
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Table 4.15: Average QoS values of all SaaS for one dataset (Lung Cancer) 

 

Service Name Latency (sec) Response Time (sec) Reliability Throughput 

Weka EM Clustering 0.062 3.462 100% 10.384 

Weka Hierarchical Clustering     

Weka Filtered Clustering 0.043 3.608 100% 9.809 

Weka CLOPE Clustering 0.295 4.869 100% 0.387 

Weka FarthestFirst Clustering 0.002 3.509 100% 2.055 

Weka SimpleKMeans Clustering 0.034 3.302 100% 7.503 

Weka Cobweb Clustering 0.051 4.132 100% 0.743 

Weka sIB Clustering     

Weka XMeans Clustering 0.097 3.809 100% 4.033 

Weka DBSCAN Clustering     

Apache KMeansPlusPlus Clustering 0.104 3.667 42.85% 4.995 

Apache DBSCAN Clustering 0.020 3.822 42.85% 0.082 

R Hierarchical Clustering 0.422 4.133 42.85% 11.903 

R KMeans Clustering 0.304 3.775 42.85% 12.605 

Weka BFTree Classifier 0.004 3.553 100% 1.605 

Weka AdaBoostM1 Classifier 0.116 3.503 100% 1.673 

Weka REPTree Classifier 0.005 3.807 100% 1.709 

Weka LMT Classifier 0.115 3.993 100% 1.673 

Weka RandomTree Classifier 0.104 3.504 100% 1.773 

Weka RandomForest Classifier 0.204 3.604 100% 1.803 

Weka Apriori Associator     

Weka Tertius Associator     
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From this table, we can see that among all the clustering services, Weka FarthestFirst is 

the fastest one and thus has the smallest latency. Among all the classifier services, Weka 

REPTree Classifier has the smallest latency. Weka Apriori and Tertius Associator failed because 

Lung Cancer dataset is not nominal data type. Throughput value varies among different services. 

Since we consider failure invocations for the Reliability, we see different Reliability values such 

as 100%, 42.85%, etc. 

Table 4.16 shows the average QoS values of all SaaS on one IaaS (Azure-1). The QoS 

values are averaged on all datasets.  

From this table, we can see that the Reliability values vary when we average QoS values 

on datasets. Weka DBSCAN clustering services failed for all the datasets. Weka Apriori 

Associator and Weka Tertius Associator have less reliability than any other software services. A 

few services have 100% reliability, which means they work properly for all the datasets. We can 

also see the variation of latency, response time and throughput. We ran our simulation in 

different timeframe, for example, pick hour and off-pick hour and we also chose different cloud 

server locations. Sometimes we set wrong parameters for clustering services. Sometimes we 

observed the network problem to communicate with the cloud server from the client application. 

These influential factors make the difference of the QoS values and these differences affect 

throughput directly because throughput value depends on service output, response time and 

latency. 
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Table 4.16: Average QoS values of all SaaS on one IaaS (Azure-1) 

 

Service Name Latency (sec) Response Time (sec) Reliability Throughput 

Weka EM Clustering 2.235 7.535 83.33% 3.235 

Weka Hierarchical Clustering 0.173 3.706 16.67% 1.643 

Weka Filtered Clustering 0.251 3.9829 83.33% 5.458 

Weka CLOPE Clustering 0.295 4.8698 16.67% 0.839 

Weka FarthestFirst Clustering 0.445 3.697 100% 1.493 

Weka SimpleKMeans Clustering 3.165 8.067 100% 3.680 

Weka Cobweb Clustering 0.093 4.112 33.33% 2.361 

Weka sIB Clustering 0.537 4.449 16.67% 1.864 

Weka XMeans Clustering 0.182 4.292 66.67% 4.366 

Weka DBSCAN Clustering     

Apache KMeansPlusPlus Clustering 0.076 4.428 50% 4.179 

Apache DBSCAN Clustering 0.082 4.274 50% 0.073 

R Hierarchical Clustering 0.333 4.046 50% 12.595 

R KMeans Clustering 0.172 3.436 50% 11.955 

Weka BFTree Classifier 0.762 4.590 83.33% 1.768 

Weka AdaBoostM1 Classifier 0.436 3.103 100% 1.893 

Weka REPTree Classifier 0.215 3.507 100% 1.819 

Weka LMT Classifier 0.302 3.052 83.33% 2.073 

Weka RandomTree Classifier 0.294 4.014 100% 2.001 

Weka RandomForest Classifier 0.324 4.101 100% 1.903 

Weka Apriori Associator 0.057 3.831 16.67% 1.873 

Weka Tertius Associator 7.336 11.061 16.67% 0.548 
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4.4 Summary 

In this chapter, we explained our implementation details, our programming environment, 

our user interfaces, data mining packages, and infrastructure configurations. We selected three 

algorithm providers, two cloud service providers and six UCI datasets. We chose our datasets 

based on different data properties such as dimension, size, missing values, data types (numeric 

data, string data and combined data etc.).  

From our collected QoS values, we could see some services failed to process the file. The 

reason of failure could lie on dataset, algorithm implemented and parameters that users send to 

the service. We see some services such as Weka DBSCAN, Weka CLOPE, and Weka OPTICES 

clustering services are directly affected by the parameter values. R clustering and Apache 

clustering services are affected by the data type because these two provider's algorithms support 

only numeric datasets. Some services only support nominal data type, such as Weka CLOPE 

clustering service. Sometimes we see QoS values vary a lot due to the network communication 

from client system to the cloud server. 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

QoS-based service selection in the cloud environment could be a big challenge now-a-

days, especially for data analytic services. In the cloud environment, different users follow 

different strategies for data analytic service selection. QoS properties such as availability, 

latency, response time, reliability and throughput are some influential factors for selecting these 

services. The values of these properties for data analytic services could vary for different 

datasets, and they also depend on how they are implemented and where and how they are hosted. 

Although various approaches have been studied and proposed, there is no proper benchmarking 

tool that will record the end-to-end QoS values for these software services when they are running 

on different datasets and hosted in different infrastructure servers.  

Our contributions are listed below:  

 We designed and implemented a cloud-based framework to build a testbed that 

could be used for collecting end-to-end QoS values from data analytic services. 

These QoS values are helpful for comparing different selection algorithm 

proposed by different researchers. 

 We implemented a proof of concept prototype system where we chose data 

mining algorithms from different providers to develop data analytic services as 

representative services. We found that provider, functionality and implemented 

algorithm are some SaaS related factors that impact QoS values. We hosted our 
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developed data analytic services in different cloud infrastructure services with 

different configurations in different locations. We found that provider, location 

and configuration are some IaaS related factors that impact QoS values. 

5.2 Future Works 

QoS based service selection is expanding and growing day by day in different sectors 

including research community, government organization and private industries. There are a few 

directions we would like to work on in the future. 

 Firstly, we could expand our current system to a fully functioning cloud marketplace with 

more functionalities. 

 Secondly, in this work, we only consider five QoS properties, and in the future we could 

include more QoS properties. 

 Thirdly, right now we only support RESTful services, and in the future we have plan to 

include the support to SOAP based services as well because they are still used in many 

organizations.  

 We plan to introduce other services that are not based on REST. 

 Lastly, we could try more SaaS services, IaaS instances and more datasets to collect a 

bigger sized QoS dataset to share with the research community. 
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