

A TESTBED FOR QOS-BASED DATA ANALYTIC SERVICE SELECTION IN THE

CLOUD

by

Md Shahinur Rahman

B.Sc. in Computer Science, Khulna University of Engineering and Technology, Khulna,

Bangladesh, 2003

A thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Science

in the program of

Computer Science

Toronto, Ontario, Canada, 2015

©Md Shahinur Rahman 2015

ii

AUTHOR'S DECLARATION

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including

any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this thesis to other institutions or individuals for the

purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by other

means, in total or in part, at the request of other institutions or individuals for the purpose of

scholarly research.

I understand that my thesis may be made electronically available to the public.

iii

A TESTBED FOR QOS-BASED DATA ANALYTIC SERVICE SELECTION IN THE

CLOUD

Md Shahinur Rahman

Master of Science, Computer Science, 2015

Ryerson University

ABSTRACT

With the emergence of Big Data and Cloud Computing, more and more data analytic software

services have become available through a Cloud platform. Compared to the traditional service

selection problem, selecting this type of services has additional challenges, which requires new

selection models being proposed. It is the purpose of this work to “create a testbed” to benefit the

research community in this area so that different selection models with consideration of different

performance-influencing factors such as algorithms implemented, datasets to be processed,

hosting infrastructure, can be tested and compared. We created a cloud-based platform for

publishing and invoking analytic services as well as monitoring service performance during

invocation. We implemented various data mining algorithms from different packages as example

analytic services and hosted them on different infrastructure services. We also ran these services

on some real datasets to collect a sample dataset of their Quality of Service (QoS) values.

iv

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to my supervisor Dr. Cherie Ding for her

valuable support and guidance in helping me to go through all the complexity in my work. Her

valuable suggestions and guidance have greatly enhanced my knowledge and skills in research

and have significantly contributed to the completion of this thesis.

I am very grateful to Dr. Alex Ferworn, Dr. Ali Miri and Dr. Andriy Miranskyy for

taking time to review my thesis and provide their feedbacks.

In addition, I would like to thank all of my friends specially S.M. Rana and Md. Mizanur

Rahman who have reviewed my thesis and have given me valuable comments which enabled me

to improve my thesis.

Also, I would like to acknowledge the support of the Computer Science Department of

Ryerson University and my fellow students.

Finally, I would like to express my deep appreciations to my family and relatives who

have motivated and supported me during these years of study.

v

TABLE OF CONTENTS

AUTHOR'S DECLARATION .. ii

ACKNOWLEDGEMENTS ... iv

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

LIST OF ACRONYMS ... ix

CHAPTER 1 ... 1

INTRODUCTION .. 1

1.1 Background ... 1

1.2 Problem Statement .. 4

1.3 Objectives ... 6

1.4 Proposed Approach ... 6

1.5 Organization of the Thesis .. 7

CHAPTER 2 ... 9

LITERATURE REVIEW ... 9

2.1 Introduction ... 9

2.2 QoS Based Web Service Selection ... 9

2.3 Cloud Service Selection .. 10

2.4 Cloud Marketplace .. 12

2.5 Cloud Broker ... 14

2.6 Data Mining Services and Data Analytic Services ... 16

2.7 Discussion ... 17

METHODOLOGY ... 18

3.1 Introduction ... 18

3.2 System Design .. 18

3.2.1. System Architecture .. 18

3.2.2 UML Sequence Diagrams for Administrator and Regular User Tasks 21

3.2.3 USE Case Scenarios ... 22

3.3 Data Analytic Software Services .. 24

3.4 RESTful Web Services ... 24

3.5 QoS Properties .. 28

vi

3.6 Summary ... 28

CHAPTER 4 ... 30

EXPERIMENTS ... 30

4.1 Implementation of the testbed platform .. 30

4.1.1 Programming Environment .. 30

4.1.2 Class Diagram .. 31

4.1.3 User Interfaces ... 33

4.2 Proof of Concept Prototype... 39

4.2.1 Data Mining Packages ... 40

4.2.2 IaaS Services .. 43

4.3 QoS Data Collection ... 46

4.4 Summary ... 58

CHAPTER 5 ... 59

CONCLUSION AND FUTURE WORK ... 59

5.1 Conclusion .. 59

5.2 Future Works .. 60

REFERENCES ... 61

vii

LIST OF TABLES

Table 4.1: Hardware configuration ..31

Table 4.2: Software service parameters..37

Table 4.3: List of Implemented Weka Algorithms...41

Table 4.4: List of Implemented R algorithms...42

Table 4.5: List of Implemented Apache Commons Mathematics machine learning algorithms..43

Table 4.6: Amazon EC2 IaaS configuration..44

Table 4.7: Windows Azure IaaS configuration..45

Table 4.8: List of datasets...46

Table 4.9: QoS values for one dataset (Balance Scale), one IaaS (Azure-1) and all services.......49

Table 4.10: QoS values for one dataset (Lung Cancer), one IaaS (Azure-1) and all services.......50

Table 4.11: Average QoS values on one IaaS (Azure-1) for all dataset..51

Table 4.12: Average QoS values of one SaaS (Weka FarthestFirst Clustering) for all dataset.....52

Table 4.13: Average QoS values for one dataset (Lung Cancer) on all IaaS................................53

Table 4.14: Average QoS values of one SaaS (Weka SimpleKMeans Clustering) on all IaaS.....54

Table 4.15: Average QoS values of all SaaS for one dataset (Lung Cancer)................................55

Table 4.16: Average QoS values of all SaaS on one IaaS (Azure-1)..57

viii

LIST OF FIGURES

Figure 1.1: Basic service-oriented architecture..2

Figure 1.2: Cloud Computing Stack...3

Figure 3.1: System architecture..19

Figure 3.2: UML sequence diagram for service invocation..21

Figure 3.3: UML sequence diagram for administrator tasks..22

Figure 3.4: Use Case Diagram..23

Figure 3.5: Simple RESTful web service request and response.......................................26

Figure 3.6: Simple SOAP-based web service request and response.................................27

Figure 4.1: Class diagram of our implementation..32

Figure 4.2: File upload UI..33

Figure 4.3: Cloud server setup UI..34

Figure 4.4: Web service publish or registration UI..35

Figure 4.5: Web service invocation...36

Figure 4.6: Service invocation result...38

Figure 4.7: Collected QoS values..38

ix

LIST OF ACRONYMS

AHP: Analytic Hierarchical Process

AMI: Amazon Machine Image

API: Application Programming Interface

AWS: Amazon Web Services

EC2: Elastic Compute Cloud

HTML: HyperText Markup Language

IaaS: Infrastructure as a Service

JSON: JavaScript Object Notation

MVC: Model View Controller

OASIS: Organization for the Advancement of Structured Information Standards

PaaS: Platform as a Service

QoS: Quality of Service

REST: Representational State Transfer

SOA: Service-Oriented Architecture

SOAP: Simple Object Access Protocol

SaaS: Software as a Service

URI: Uniform Resource Identifier

x

URL: Uniform Resource Locator

WSDL: Web Service Description Language

XML: Extensible Markup Language

WEKA: Waikato Environment for Knowledge Analysis

1

CHAPTER 1

INTRODUCTION

1.1 Background

According to Wikipedia [1], service refers to “a set of related software functionalities that

can be reused for different purposes, together with the policies that should control its usage”. In

another definition according to OASIS [2], service is “a mechanism to enable access to one or

more capabilities, where the access is provided using a prescribed interface and is exercised

consistent with constraints and policies which are specified in the service description”.

 Service-Oriented Architecture is a kind of software architecture that contains a collection

of services where these services communicate with each other. Sometimes this communication

could be simple, such as simple data passing, and sometimes it could involve two or more

services communicating with each other to do some activity.

 Figure 1.1 illustrates the basic service-oriented architecture. Service providers publish

their developed services in a service registry. Service registry is a repository for all published

web services. Service consumer looks for the service in the service registry and then invokes the

service. The communication happens in such a way that both service provider and service

consumer can understand. The actual communication depends on the implementation of the web

service. Two popular communication technologies called Simple Object Access Protocol

(SOAP) and Representational State Transfer (REST) are used to communicate between two

services.

2

Figure 1.1: Basic service-oriented architecture

In every business, organizations need to invest time and budget to scale up their IT

infrastructure such as hardware, software and services. With on premise IT infrastructure, scaling

process can be slow and organizations are frequently unable to achieve optimal utilizations of IT

infrastructure. Cloud computing consists of highly optimized virtualized data centers. They

provide various software, hardware and information resources on demand. In another definition,

Cloud computing is a distributed computing model where different kinds of resources are

available in an on-demand pay-as-you-go model [3]. Organizations can simply connect to the

cloud over the internet and use the available resources whatever and whenever they need. Cloud

computing consists of three main service models including IaaS (Infrastructure as a Service),

PaaS (Platform as a Service and SaaS (Software as a Service) as shown in Figure 1.2.

3

Figure 1.2: Cloud Computing Stack

IaaS is to rent cloud infrastructure from Cloud service providers such as server, storage

and networking in an on-demand basis. As companies always want to invest optimal budget for

their business, IaaS can be a solution for them because customers do not need to pay for

hardware cost as they lease shared resources. As cloud infrastructure scales resources on-

demand, it is a great opportunity for the company to implement the workload balance. PaaS is

the platform containing a set of tools designed to make coding and deploying the applications

easier. Cloud-based applications or software services (SaaS) run on far-away computers in the

cloud that are connected to users' computers via Internet, usually via a web browser. The SaaS

providers can also provide API to access their application and data for the developers to use in

their own application for creating composite applications. It is pay-as-you-go, so that users don't

have to invest a lot in purchasing software packages. The major architecture of SaaS is based on

multi-tenant model. A single version of the application is installed for all customers considering

single configuration with this model. Horizontal scaling is implemented on multiple machines to

support scalability. Vertical scaling can resize the cloud server with no change of the code.

4

The purpose of cloud computing is to make available resources for the cloud users, where

they can access rented cloud infrastructure and software applications from anywhere and

anytime. The focus of this research work is on software services hosted in the cloud

environment, and we specially pay attention to data analytic software services.

As the number of analytic software services with similar functionality is increasing in the

Cloud, service selection becomes a very important issue of Cloud computing, because it directly

impacts the user experience in the Cloud. It is difficult for the customer to decide which services

to use to meet their requirements among the vast number of services in the cloud. QoS (Quality

of Service) - parameters (e.g., response time, throughput, availability, reliability, latency) play an

important role in the service selection process. Sometimes users can select services based on

their functionality (e.g., a clustering service), not considering their QoS values, but in most other

cases functional requirements are not enough and QoS requirements should also be considered.

In this work, for non-functional requirements, we mainly concentrate on the QoS-based selection

of data analytic software services.

1.2 Problem Statement

In the last few years, researches were focused on service selection using different

technologies including vector and matrix based approach [4] [5] [6], constraint programming or

integer programming approach [7], multi-criteria decision making approach [8], semantic

approach [9], etc.

When more services are moving to the cloud, there are also research works on cloud-

based service selection. Some focus on software service selection [10] [11], and others focus on

infrastructure service selection [12]. With the emergence of Big Data, analytic-as-a-service has

attracted some research attention [13] [14] [15]. Researchers have started to implement analytic

5

software such as data mining algorithms as services and hosted them in the cloud. When more

and more this type of analytic services are hosted in the cloud, it would become a challenge for

users to find the right service to process their data.

 Although there are many QoS-based service selection models (either web services or

cloud services) that have been proposed, to the best of our knowledge, there are very few

benchmark datasets available for researchers to compare the results of their models. QWS dataset

[16] is one of the most popular ones. WS-Dream [17] is another one which has been used in

several papers. Both of them are providing data of web services. Most of the research works for

cloud-based service selection either use web service QoS data or simulation data to do the

experiment. No real cloud-based end-to-end QoS data has been collected for the research

purposes in the past.

 When selecting data analytic services in the cloud, there are a few unique challenges: 1)

the QoS values of services could be affected by the dataset to be processed, for example, the

latency on a big dataset could be longer than the one on a small dataset, the accuracy of a service

could be low when there is noise in the data; 2) in a cloud environment, a software service could

be hosted on different infrastructure services, and thus the end-to-end QoS values could be

affected by both software service implementations as well as infrastructure service

configurations; 3) the service selection should be based on the end-to-end QoS values, and thus

there should be a monitoring service offered by the system to collect these end-to-end QoS

values instead of depending on published values from individual providers. Because of these

challenges, to facilitate the research on cloud-based analytic service selection, it is important to

set up a broker-like testbed framework in the cloud environment. This testbed framework can be

used to publish services and software services will be hosted on different infrastructure services.

6

The hosted services can be invoked with end-to-end QoS values being monitored, and both

dataset properties and QoS values from different services can be collected.

 Because of these unique challenges for cloud-based data analytic service selection, and

considering that there is no proper benchmark dataset available for the research in this area, it is

the purpose of this thesis work to propose and implement a cloud-based testbed. Using it we can

collect end-to-end QoS values considering the effects from software services, infrastructure

services as well as the input datasets. With the collected QoS dataset, researchers can evaluate

and compare the performances of their selection algorithms.

1.3 Objectives

There are two major objectives of the work. First, we want to design a cloud-based

framework to build testbed for collecting end-to-end QoS values of data analytic services.

Second, we want to implement a proof of concept prototype system. In this system, data mining

services are created as representative analytic services, infrastructure services with different

configurations and in different locations are selected from two different providers (Amazon EC2

and Windows Azure). A client tool is developed to communicate with our data mining services

hosted on different infrastructure services, invocation requests of applying these services on

some real datasets are sent and end-to-end QoS values are collected from a monitoring engine.

1.4 Proposed Approach

The proposed framework is similar to a cloud marketplace, in which different providers

can publish their services and users can select different services. However because our focus is

on collecting QoS data, we are not going to implement a full cloud marketplace with all the

required functionalities. We choose 3 major components to be included in our framework: 1)

7

publishing component for providers to publish their services, 2) invoking and monitoring

component for users to invoke a service and for the system to record the end-to-end QoS values,

and 3) simulation component to run a batch invocation job so that all the selected services will be

invoked one by one on a given dataset and all the QoS data are collected.

 In our proof-of-concept prototype, we chose three package providers for the data mining

algorithms to be developed for our software services. We chose open source data mining

packages from WEKA [18], R [19] and Apache Commons Math Machine Learning [20]. We

developed 22 software services using 3 categories of data mining algorithms including

Clustering, Classifier, and Association rule mining. For the service implementation, we used the

RESTful web service framework to develop the software service. We hosted our developed

software services in two different cloud infrastructures including Amazon EC2 and Windows

Azure instances in different locations with different configurations. For the invocation of our

services, we developed a client application which allows users to upload their own files, invoke

data mining services to process data, and get the QoS values recorded. The collected QoS values

are stored into a repository and these QoS values could serve as benchmark data for other

researchers to compare their selection models or algorithms.

1.5 Organization of the Thesis

The rest of the thesis is organized as follows:

Chapter 2 reviews and analyzes the existing research work in the field of web service

selection, cloud service selection, and cloud marketplace and brokers. It also reviews the existing

research efforts that are closely related to our work such as QoS-based service selection, data

analytic services, data mining as a service, etc.

8

Chapter 3 gives the details of our proposed methodology, including the architecture

model, functions of different components and the system workflow. We also discuss about the

RESTful web service framework for building our software services and how to set up

infrastructure services from different cloud service providers to host the software services.

Chapter 3 also talks about different QoS properties that we have considered in this thesis work.

Chapter 4 explains how we implement the proposed testbed framework, shows some key

interfaces of our system, describes the details of our proof-of-concept prototype implementation,

including data mining software services and infrastructure services and their configurations,

discusses the QoS data collection process, and, finally, reports the statistical information of a

collected sample dataset, which showcases the impact of dataset, infrastructure configuration and

location, as well as software service algorithms on the QoS values of services.

Finally, in Chapter 5, we conclude our thesis with a summary of results and analysis. We

also talk about what could be the possible future enhancement of our work.

9

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

As our ultimate goal is to provide a platform for the study on QoS-based service selection

problem in the cloud environment for other researchers, we would like to discuss first some

existing works on QoS-based service selection. After that, we would like to review papers on

cloud marketplaces, cloud brokers, cloud service selection and data analytic services.

2.2 QoS Based Web Service Selection

Since many software services with similar functionalities are published by various

providers, it is a big concern for the end-users to choose software services that best meet their

requirements. The non-functional attributes of any software services such as response time,

latency, availability, reliability, and throughput, can play an important role for the service

selection process. Different types of service selection approaches are introduced in various

papers.

 In [21], Mixed Integer Programming (MIP) is used for solving the problem of service

selection and match-making for linear constraints, while Constraint Programming (CP) is used

for non-linear constraints. The experiment shows that MIP performs better than CP while

considering linear constraints. So the match-making procedure can be completed using CP or

MIP depending upon whether it is non-linear constraints or linear constraints.

In [22], the user preferences are defined using utility functions, a probabilistic trust model

is used to get quality distributions of providers, and then the services which could maximize the

expected utility values are selected.

10

 In [23], the QoS manager acts as an agent for service providers and clients to do

publishing and finding web service operations. QoSDB has been used to store the details of QoS

of a web service and QoS values such as response time, throughput, reliability, availability and

cost are optimized and the ranked values are stored in QoSDB. To find the best web services, the

user has to specify the functional details of the service and its QoS values which are required to

find the list of web services from the repository.

 Analytic Hierarchical Process (AHP) is a popular Multi-Criteria Decision Making

(MCDM) technique that solves problems by modeling QoS characteristics in the form of a

hierarchy [24]. For the hierarchy, the multiple criteria are divided into sub-criteria and could be

further divided and thus establishing different levels of criteria. The relative ranking of the

various options is calculated based on the priorities associated with the criteria and their sub

criteria within each level and finally the overall rank of each alternative can be determined.

 As we focus on QoS-based attributes, there are a few commonly used QoS attributes [5]

[16] for assessing the performance of a service. Reliability indicates how many error messages

have been generated compared to the total number of messages. Latency is considered as the

time taken for the request to be processed. Response Time is the time it takes to send a service

request and receive the response. Throughput represents the maximum number of invocations

that can be managed in a certain time period. Availability is defined as the percentage of time the

service and server are available.

2.3 Cloud Service Selection

In the service computing paradigm, web services are referring to software services hosted

and provisioned by software providers through the Internet. In the cloud computing paradigm,

there are many types of cloud services. Besides software services, there are also infrastructure

11

services, platform services, database services, storage services, etc. With a variety of services,

the research on cloud service selection has some new challenges. Most of the research work

nowadays is focused on either software services or infrastructure services, and various

methodologies have been used. A fuzzy simple weighting system has been proposed in [25] to

normalize and aggregate two types of attributes of a cloud service. They consider subjective

assessment from cloud consumers and objective performance assessment from a trusted third

party. Then they apply fuzzy weighting system on the subjective and objective information for

normalization and aggregation, so that some specific performance aspects of a cloud service can

be considered accordingly for potential cloud users.

 MSSOptimiser (Multi-tenant SaaS Optimiser) approach has been introduced in [7], where

functional specification and QoS requirements could be input of the proposed model. Integer

Programming could be used to determine the optimal services. For large-scale scenarios, SaaS

optimization problem is expensive, but MSSOptimiser provides greedy heuristic to provide an

optimal solution efficiently.

 In [26] [27], a hybrid fuzzy framework for cloud service selection has been proposed

using three approaches: 1) fuzzy ontology based approach for functional matching; 2) fuzzy

AHP for weighting; and 3) fuzzy TOPSIS approach for service ranking. Bi-partite graph has

been used to find functional matching results. In their model, they focus on customer's fuzzy

perception of QoS. To deliver more certain information into the ranking algorithm, they convert

linguistic terms of customer's perception into precise numbers.

 To solve the problem of cloud service selection based on multiple criteria, a rigorous

mathematical model has been used but their approach is only effective to select amongst service

offerings that are similar in specification but different in performance.

12

 In [28], the proposed methodology considers QoS parameters as the decisive factors for

selecting appropriate cloud service. The model called Service selection for Data-centric cloud

application (SSADCA) based on normalization mechanism is capable of accommodating any

number of QoS parameters. The user is also able to accommodate any order of preferences of the

QoS parameters.

 AHP based methodology is used in [29]. The proposed methodology is two-fold: 1)

consumer-centered service selection considering user's preference in multiple context (single

user and multiple users); 2) making reasonable cloud service selection based on Cloud Service

Decision-Making (CSDM). The proposed method is capable of automatically selecting cloud

infrastructures. They consider a couple of criteria for their selection algorithm including

deployment cost, location of cloud infrastructures, application clients, related applications, and

communication among application components. They also introduced stepwise application

placement algorithm for addressing scalability issue when the number of data centers and

applications is large.

 One of the main challenges for SaaS providers is to select best IaaS providers. To achieve

this goal, SaaS provider needs to map user's requirements in QoS specification into the IaaS

layer [30]. The work in [30] develops a set of mapping rules and a new way to calculate QoS

values in a cloud environment using AHP method. QoS weights for service selection and ranking

process are generated using AHP method based on QoS specification model.

2.4 Cloud Marketplace

Cloud marketplace is online storefront that is managed by cloud service providers or third

parties. In a cloud marketplace, SaaS providers publish their software services and customers

may subscribe to that software. Cloud service providers provide facilities to their subscribers to

13

use their already built-in cloud applications and approved applications from the third party. This

approval of third party applications not only gives opportunity to the customers to use more

applications, but also fills up the gaps for demanding more applications by their subscribers.

 In [31], the market negotiation is the main focus of the paper, but they also attempt to

define all important entities of the proposed marketplace such as sellers, buyers, intermediaries,

etc. Market negotiation is the main functionality of the proposed marketplace that happens

between the sellers and buyers who subscribe in the marketplace. The automation of the

negotiation mechanism, inclusion of multiple attributes, and being a short term commitment are

some of the characteristics.

 The pricing model for IaaS resources is the main objective of the proposed model in [32].

The model is supposed to bring both a long term pricing contract for the benefit of IaaS

providers and a pricing scheme that is based on users’ actual jobs. Some other features of the

proposed model are: 1) economic benefits, 2) ability to provide a broader view of the user’s

usage of cloud resources, and 3) better predictability compared to the traditional pricing models

adopted by current cloud providers.

 In [33], the main idea of the proposed marketplace system is to create interfaces for all

cloud parties (e.g. users and service providers) to interact for business functions, and make the

work flow easy to implement. The proposed architecture isolates the interface component from

the core system logics. As a result, the marketplace could easily and quickly engage in the

service provisioning process. It is designed to be flexible and used for all service functionalities,

and by any providers and private developers. The structure of the proposed marketplace basically

represents each entity as a logic block and each communication link as an interface (API).

 The problem of service selection in a cloud marketplace is addressed in [34]. Cloud

14

marketplace should be able to support service composition, spanning different cloud layers and

providing tools for providers to use existing products. The proposed solution takes into

consideration the different layers of cloud entities along with the service business aspect

specifically the service pricing. In their design view, the marketplace plays the role of a broker

between the different service providers and their consumers. In their concept of multiple cloud

layers, the business aspect and pricing are the main criteria for service selection mechanism.

 The VMware vision of cloud marketplace has been discussed in [35]. They emphasized

that marketplace should be open especially for general purposes, to all vendors and developers to

submit their offers. The deployment procedure must be easy in the cloud environment. The paper

focuses on IaaS providers and it deals with different types of consumers in a way that it helps

them avoid much of expenses in acquiring actual resources.

 In [36], a new model for cloud marketplace has been proposed where IaaS providers can

work collaboratively to provision services. Finding relationships between providers who can

form a single combined service offer and end users are the main goal of this paper. This strategy

has different advantages such as the service cost can be reduced for the customer, the negotiation

time is reduced and conflicts between services’ requirements are minimized while maintaining

QoS requirements for customers.

2.5 Cloud Broker

A cloud broker is simply a third-party individual or organization that acts as an

intermediary between customers and sellers of the service in a cloud environment. Cloud broker

works with customers to help them understand work processes, budgeting, data management

systems and saves purchase time by providing information to customers. There are three types of

cloud brokers [37] including cloud aggregators, cloud enablers and cloud agents. A Cloud

15

aggregator provides the customer information about Application Programming Interface and

User interface complexity. A Cloud agent is a software application that helps to distribute the

works among different cloud service providers. A Cloud enabler must provide the customer

some additional services such as encryption, transfer of customer data to the cloud and help them

understand the data lifecycle management.

 In [38], a brokerage-based architecture is proposed, where cloud broker is responsible for

service selection. They design a unique indexing technique for managing the information of a

large number of cloud service providers and develop an efficient algorithm that ranks potential

service providers and aggregates them if necessary.

 A cloud broker service called STRATOS is proposed in [39], which is an initial version

of a broker service layer. This initial step could be used for cross-cloud resource provisioning.

The broker service also facilitates application topology construction and runtime modification,

based on deployer's objectives. They also emphasize the importance of mechanisms to compare

and normalize offerings from multiple providers.

 The self-adaptation and self-management techniques can improve service-oriented

systems because they can tackle the complexity of a complex system and their environments by

themselves. In [40], the authors designed a broker system called MOSES (MOdel-based SELF-

adaptation of SOA systems) which provides runtime QoS-driven adaptation of SOA applications.

They developed two versions of MOSES. In version 1, they got some issues including network

overhead and storage access problems etc. In version 2, they used OpenESB (Open Source

Enterprise Service Bus) that replaced Tomcat with Glassfish and also maintained the same

functionalities of MOSES 1 including standard way for communication and easy integration of

new components.

16

2.6 Data Mining Services and Data Analytic Services

Data mining and data analytic services have attracted more and more attention from

different sectors including academia, industry, and government. There is no proper benchmark

tool for data analytic services to collect end-to-end QoS values in the cloud. In [41], the authors

introduced cloud-based big data mining and analysis service platform by integrating R in their

model. In the proposed architecture, there are four layers: infrastructure layer, virtualization

layer, dataset processing layer and services layer. Apache CloudStack was installed, configured

and deployed to construct virtual machine clusters to manage infrastructure resources. In data

processing layer, R language runtime environment and RHadoop environment were setup. There

are four aspects to be considered in services layer including computing mode selection, cloud

services, data mining workflow and user interface. They applied K-Means algorithm as service

in their model.

 In [42], a comprehensive and collaborative workspace for data professionals and analysts

as cloud-based data mining platform, called DMaaS (Data Mining as a Service) is proposed.

Their data processing engine is based on Hadoop and they deployed their services considering

some of the data mining algorithms from Apache Commons Math Machine Learning [20]. The

end-users can access their services from their own browsers easily.

 Analytics as a Service refers to the provision of analytics software and operations through

Web-delivered technologies. Data Analytics as a Service (DAaaS) is an extensible analytical

platform in cloud environment where various tools for data analytics are available and can be

configured by the user to process and analyze huge quantities of data. Many of data analytics

services are based on Machine Learning concepts. The DAaaS platform has the ability to support

the complete lifecycle of its analytics capabilities. There are some challenges of analytics

17

services in the cloud such as information lifecycle management, security of the data, privacy,

real-time analysis and data volume. In [47], the authors introduced an AaaS tool that can be used

to accomplish the extraction and organization of terms and topics from unstructured data sources

including NoSQL, flat and PDF files. They proposed, designed and implemented the framework.

 A collaborative big data analytics platform for big data as a service was proposed in [48].

This paper described big data analytics platform to manage big data and developed analytics

algorithms and services which could collaborate with data owners, data scientists and service

developers on the web.

2.7 Discussion

Since our objective in this work is to provide end-to-end QoS values of a service in the

cloud and these QoS values could be used for service selection algorithm, in this chapter, we first

reviewed papers about QoS based service selection. We created some data mining services as

representative data analytic services and hosted them in different cloud infrastructure. Thus we

also reviewed papers on data analytic services, data mining and cloud marketplace. For data

analytic services, QoS values are depending on dataset features and they are different for

different datasets. However, based on our review, most of cloud marketplaces and brokers focus

on different techniques including indexing techniques, AHP method and QoS weights for service

selection, etc., and none of them tried to collect the end-to-end QoS values which are essential

for service selection. From the above discussion, we see there is no proper benchmarking tools

for collecting end-to-end QoS values and these QoS values are important factors for service

selection.

18

CHAPTER 3

METHODOLOGY

3.1 Introduction

In this thesis work, we want to create a framework, in which new analytic services can be

published with related information saved in a repository, users can search and invoke services,

and the QoS values of these invoked services can be monitored and recorded. Since we focus on

data analytic services, QoS data is associated with not only the service but also the dataset being

processed. As a proof of concept, we have applied this framework to create a testbed, in which

we have selected a few types of algorithms (i.e. clustering, classification, association rule

mining), each type with a few different algorithms implemented, from different data mining

software packages (i.e. Weka, R, Apache Commons Math Machine Learning), and we have

implemented all of them as software services using RESTful web service framework, hosted and

delivered them through different cloud infrastructure services (i.e. Windows Azure, Amazon

EC2) with different configurations, and finally invoked them with different datasets and recorded

their QoS values. The generated QoS data collection can be used for research works on QoS-

based analytic service selection.

3.2 System Design

3.2.1. System Architecture

Figure 3.1 shows the architecture model of our system including different components.

19

Figure 3.1: System architecture

There are 4 main components including File Manager, Publishing, Invoking and

Monitoring. In our model, we have two types of users including administrators and end users.

The end user is only able to upload dataset and invoke software services on the dataset. The

admin user is able to do whatever end user can do and on top of that, admin user can publish

software service, introduce new cloud servers, add new software services and create new users.

 File Manager Component is responsible for handling user's file uploading and associating

the uploaded file with the corresponding cloud server. When the end users upload their own

dataset, they need to choose their desired cloud server to upload to. File Manager Component has

a software service, responsible for uploading the file to the corresponding cloud server. Dataset

repository keeps track of the uploaded file for that user when invoking software services. If the

20

dataset is uploaded successfully, it will be stored in Dataset Repository to be used for service

invocation.

 Publishing component implements two main tasks i.e. Service Lookup and Service

Registry. All of our software services are published in Service Registry. There is an internal

communication between Service Lookup and Service Registry to avoid duplicate service

publishing. Admin and providers can publish software services and end users will invoke these

software services. Whenever a new software service is going to be published, Service Lookup

will check whether it is already published on that cloud server. The name of the software service

must be unique but provider or admin can publish same software service in different names.

When any new software service is published in Service Registry, service invocation URL

(Uniform Resource Locator) will be automatically generated. After a software service is

published, it will be stored into Service Repository.

 The main task of invoking component is the invoking of the software service. Before

invoking software services, end users need to choose a data-set populating from the File

Manager Component, and a cloud server and a software service populating from the Publishing

Component. After the invocation, this component will return the control to the monitoring

component.

 After invoking a software service, our model will monitor and record values of QoS

properties such as Latency, Availability, Reliability, Response Time and Throughput. These QoS

values will be stored into QoS Repository and will be displayed in a browser to the end user.

Later on, researchers can use this recorded QoS values for service selection.

21

3.2.2 UML Sequence Diagrams for Administrator and Regular User Tasks

Figure 3.2 shows the UML sequence diagram of the service invocation process in our

model for a regular user.

According to the diagram, an end user first needs to upload the dataset to the cloud

server. After uploading the dataset, the end user chooses a cloud server, a software service and

the parameters associated with the software service as indicated in Service Invocation Filter.

After the software service is invoked, the monitored QoS values are saved and they could also be

Figure 3.2: UML sequence diagram for service invocation

22

displayed to the end user. Software service publishing, cloud server setup and user creation are

not included in this diagram. These three options are controlled by admin or provider.

Figure 3.3 shows the UML sequence diagram for administrator tasks.

Figure 3.3: UML sequence diagram for administrator tasks

According to the above figure, there are some tasks that are not available for end user.

Introducing new service, setting up cloud servers, creating new users and service publications

can only be done by admin user. Besides these tasks, admin can also do tasks of regular users

such as the one shown in figure 3.2.

3.2.3 USE Case Scenarios

Figure 3.4 shows all the use cases of our system.

23

Figure 3.4: Use Case Diagram

 There are two types of users in our model, i.e. administrator users or providers whose job

is to configure the cloud server, publish the software service and create new users, and end users

who can invoke the published services using their own datasets. According to our model, before

invoking software services by end users, admin user needs to create new services, setup the

cloud server and publish the software services. The users can login into the system via Logging

in use case and dataset is uploaded by Dataset uploading use case. Before a software service is

invoked, users need to select services in Service selection case and applying extra parameters to

24

the data done in Filtering case. After selecting cloud server from Cloud server setting case, users

can invoke service and the QoS value of the invocation is displayed in QoS monitoring case.

3.3 Data Analytic Software Services

With today’s technology, more and more data are being collected. The value of the big

data is not on its sheer volume. Instead, it lies on the user behavior or the hidden patterns we can

learn from the data. Because of this reason, companies start to look for data mining or machine

learning software to analyze the data they have saved. Many cloud providers (e.g., Amazon,

Microsoft, IBM, Google) start to offer analytic software as services to their users. With all these

analytic services from different providers being published and delivered in the cloud, how to

select them becomes a challenge. Same as web service selection, QoS values of the services

become deciding criteria to differentiate between different services. There are many factors that

affect QoS values of analytic services. Similar to traditional web services, providers and their

specific implementations would have impact on QoS values. On top of them, the dataset the

service is going to work on, as well as the algorithm used, also have a significant impact on the

QoS values, and these factors can often ignored in the current research work. In our framework,

we will choose analytic services from different providers, from different categories (e.g.

clustering, classification, association rule mining), and implementing different algorithms (e.g. k-

means, DBScan, hierarchical algorithm for clustering services), in order to study their impact on

QoS values of the services.

3.4 RESTful Web Services

According to W3C definition [43], web service is “a software system designed to support

interoperable machine-to-machine interaction over a network”. REST [44] stands for

25

Representational State Transfer. It is an architectural style for designing the system that enables

clients and servers sending request and response respectively and this architectural style is

approved by W3C Technical Architecture Group (TAG). REST treats everything as a resource,

each resource follows the standard HTTP format and each resource has own its own name and

address namely URI (Unified Resource Identifier). Each resource can have more than one

representation such as HTML (HyperText Markup Language), XML (Extensible Markup

Language), JSON (JavaScript Object Notation) and each representation moves over the network

using HTTP protocol. RESTful web service is a great alternative to SOAP and WSDL based web

service because RESTful service provides a couple of benefits to organizations such as easy

integration, less memory consumption, security enablement, different output formats, better

performance, scalability and support of the JSON format which is faster for parsing data. REST

is being introduced in a large number of companies such as Yahoo, Facebook, Amazon, Flickr,

del.ici.ous, Ebay as well as many enterprise organizations who have depreciated their existing

SOAP based web services. As REST uses standard HTTP, it is much easier to use. Creating web

service, client application, documentation and formatting the output in different formats are easy

in REST. RESTful services communicate over HTTP using HTTP methods such as GET, POST,

PUT, DELETE, etc.

 Figure 3.5 shows a simple RESTful web service request and response procedure in our

system. In this figure, service consumer is just sending a simple URL request to the web service

which is hosted somewhere and service provider is returning response based on the request with

output including the latency information.

26

Figure 3.5: Simple RESTful web service request and response

 Figure 3.6 shows how to invoke a simple SOAP based web service. From this figure,

service consumer is sending a request which is in XML format and service provider is also

sending response in xml format.

27

Figure 3.6: Simple SOAP-based web service request and response

These two figures show the difference between RESTful web services and SOAP based

web services. Generally speaking, SOAP uses a standard communication protocol which is a

specification of XML-based message exchange, whereas RESTful web service uses standard

interface such as HTTP for data transmission. Compared to SOAP-based services, RESTful web

services are very simple to design and implement, easy to invoke, are less memory consuming,

and are completely stateless. RESTful services also provide a good caching infrastructure over

HTTP Get method which can improve the performance. Considering the above benefits, we use

RESTful web service in our work.

28

3.5 QoS Properties

As our main objective is data analytic service selection in the cloud environment based

on end-to-end QoS values, we need to identify QoS parameters which play an important role on

service selection [16]. A service can have many non-functional properties such as:

 Response Time: Response time is the time taken to send a request and receive a

response. The unit of measurement is milliseconds (ms).

 Availability: Availability is the possibility that the system is up and can be invoked

by users successfully. The method of calculation is the number of successful

invocations / the total number of invocations and its unit is %.

 Throughput: Throughput can be measured in two ways. One way is to measure it by

calculating the volume of data which is invoked at a given period of time. The other

method is to measure the total number of invocations for a given period of time. The

unit of measurement is invokes/sec.

 Reliability: Reliability measures the probability of a service to able to produce the

correct result for a given period of time. It is measured by the ratio of the number of

error messages to the total number of messages. The unit of measurement is %.

 Latency: Latency is measured by time taken for a server to process a given request.

The unit of measurement is milliseconds (ms).

In our work, we are considering these 5 QoS properties.

3.6 Summary

In this chapter we have discussed the general methodology and technologies that we used

in our work. We described the high level architecture of our system explaining our four main

29

components including Publishing, Invoking, Monitoring and File Manager. In our work, we only

consider RESTful web services. We consider services from different providers, belonging to

different categories and implementing different algorithms. We host our services in different

cloud infrastructure platforms in different locations and with different configurations so that we

can collect different end-to-end QoS values and investigate the impact of these different factors

on the QoS values. These collected QoS values will benefit other researchers to study their QoS-

based service selection approaches.

30

CHAPTER 4

EXPERIMENTS

In this chapter, we will discuss about our implementation environment, proof of concept

details, IaaS Configuration, our used datasets and QoS data collection. At the end, we will also

analyze our collected QoS data.

4.1 Implementation of the testbed platform

In this work, we mainly wanted to create a testbed platform. In this platform, multiple

IaaS and SaaS services can be published, and a user can choose the SaaS he/she would like to

use and the IaaS he/she would like to host the SaaS, afterwards, the user can invoke the service

to process the uploaded data file, and the result will be returned, and more importantly, all the

QoS values for an invocation are recorded in a repository. The collected QoS values could be

used for service selection research. In this section, we will talk about how we implemented the

proposed testbed platform including the environment, the class diagram of our implementation

and the major user interface screens.

4.1.1 Programming Environment

In this work, we chose Java for our system implementation. We have used Java SE

(Standard Edition) Development Kit 7 and a couple of software development tools and libraries

including Eclipse IDE (Integrated Development Environment) indigo, Struts2 Framework, Ant

build tool, MySQL database, Apache Tomcat 7.0.35, RESTful web services, Jersey framework,

Weka Explorer, R studio, Weka libraries, R programming libraries and Apache machine learning

libraries etc. We chose Struts2 framework for the following reasons: 1) it follows MVC (Model

31

View Controller) design patterns; 2) it communicates with the data layer; 3) it renders

presentation layer etc.

 Table 4.1 shows the hardware configuration used for the implementation environment

and also used for running our experiment.

Table 4.1: Hardware configuration

Hardware Configuration

Manufacturer Dell

Processor Intel(R) Core (TM) i7-3632QM CPU @ 2.20 GHz

RAM 8 GB

Operating System Windows 7 Ultimate (Service Pack 1)

System Type 64-bit

4.1.2 Class Diagram

Figure 4.1 shows the class diagram of our implementation. According to our model, we

have three types of repositories, Dataset repository for storing datasets, Service repository and

QoS repository for storing the collected QoS values.

 According to our system design, Service and Cloud server are our base classes and they

are used throughout the whole program. We can publish multiple services under one cloud server

and that's why there is one-to-many relationship between the service and the cloud server class.

Users will upload their own datasets using FileUpload class which is dependent on the cloud

server class because this dependency will allow users to upload datasets to the desired cloud

server. Dataset is uploaded to the cloud server by web service called UpdateSoftwareService. For

publishing software services into the repository, ServiceRegistry class is used and this class is

dependent on Service and CloudServer class. ServiceInvokation class is the main class to invoke

32

software services hosted on the cloud server, from client web application. Based on the selection

of cloud server and software services from the available lists, ServiceInvoke class will invoke

Clustering/Classifier/Association software services. After invoking, service invocation results

will be recorded and saved in the repository for the future usage.

Figure 4.1: Class diagram of our implementation

33

4.1.3 User Interfaces

In this section, we will show some of our major implemented user interfaces. These

interfaces could illustrate the typical system workflows and user tasks. Figure 4.2 shows the

interface for a user to upload datasets.

Figure 4.2: File upload UI

Figure 4.3 shows one of our major UIs called Cloud server setup. Using this interface,

admin can set up a number of cloud servers in the system. According to the figure, cloud server

name is simply the name of the server and this name must be unique. IP is the IP address of the

cloud server, for example 127.0.0.1 and Tomcat port is the port of the installed Tomcat on the

cloud server. The default Apache Tomcat port is 8080, but it can be changed anytime. Upload

Base Directory is a physical location in the cloud server where dataset will be stored, for

example “C:/cloudupload/”. Upload Directory is another location inside Upload Base Directory,

34

for example amazon, dataset, etc. which is just a naming convention to make difference between

one directory to another. R Installed Path is the location of the installation directory of R studio,

for example “C:/program files/R/R-3.0.3/bin/Rscript.exe”. This path is the most important path

which is needed to invoke the R software services. This location is needed to execute the R script

inside the Java code.

Figure 4.3: Cloud server setup UI

Figure 4.4 shows the interface for software service publication or registration into our

system. Using this UI, admin or provider can publish their software services in the cloud. In the

figure, title is the identifier or name of the service and it must be unique in the system.

Description is not a mandatory field. Based on the selection of the cloud server and the service

from the drop down list, system will generate invocation URL of the service, for example, if the

context path of the service is “/emclustering/rest/emclustering” and IP of the cloud server is

35

52.10.109.251 and apache tomcat server port is 8080, the generated URL for the service would

be “http:// 52.10.109.251:8080/emclustering/rest/emclustering”.

Figure 4.4: Web service publish or registration UI

Figure 4.5 shows the service invocation user interface. All the uploaded datasets, all the

cloud servers and available published services are loaded into the drop down list for user to

select a service to invoke.

36

Figure 4.5: Web service invocation

In the above figure, there are a couple of parameters that users need to set their values.

No of clusters means how many clusters user wants to form on his/her dataset. Repulsion

parameter is used only for Weka CLOPE clustering algorithm and the default value is 2.6. The

dataset for Weka CLOPE clustering should be nominal type, otherwise service invocation could

fail. Users also need to set the repulsion parameter value very carefully because the parameter

value affects directly the success of the service invocation. Acuity and Cutoff are the two

parameters used for Weka Cobweb clustering. The default value of these two parameters are 1.0

and 0.0028. The success and failure of Weka Cobweb clustering service depend on the parameter

values. Weka Cobweb clustering service supports both nominal and non-nominal values. Epsilon

and Minpoints are two double type parameters used for Weka DBSCAN/Optics clustering and

37

Apache DBSCAN clustering algorithms. The default values of these two parameters are 0.9 and

6 respectively. MaxCluster and MinCluster are Weka XMeans clustering parameters. The default

values of MaxCluster and MinCluster are 4 and 2 respectively. MaxIteration parameter is used

for Apache KMeansPlusPlus clustering which means how many times the system will iterate on

the dataset to get the expected output. For invocation of apache clustering service, users can

decide whether to use the header information on the dataset. If they use header information, they

need to set YES of Column Header parameter. If Column header is set to YES, service will

ignore that line to apply the clustering algorithm on the dataset. All these parameters have default

values. If users are not familiar with the algorithm, they can always use the default values. If they

have some knowledge about the algorithm, they can set their own values good for their datasets.

Table 4.2 shows a list of parameters that users can pass before invoking services and the

corresponding services which require them.

Table 4.2: Software service parameters

Parameter Name Applicable Services

No of cluster

Weka EM/FarthestFirst/Hierarchical/SimpleKMeans/sIB Clustering, Apache

KMeansPlusPlus Clustering, R Hierarchical/ SimpleKMeans Clustering

Repulsion Weka CLOPE Clustering

e

Acuity, Cutoff Weka Cobweb Clustering

Epsilon, Minpoints Weka DBSCAN/OPTICS Clustering, Apache DBSCAN Clustering

Max(Min)Cluster Weka XMeans Clustering

Max Iteration Apache KMeansPlusPlus Clustering

No of columns Apache KMeansPlusPlus/DBSCAN Clustering

Column Header Apache KMeansPlusPlus/DBSCAN Clustering

38

Figure 4.6 shows service invocation result using Weka SimpleKMeans clustering service.

It also shows the percentage of incorrectly clustered instances and the latency value in

milliseconds (ms).

Figure 4.6: Service invocation result

Figure 4.7 shows the end-to-end QoS values for Weka SimpleKMeans clustering service

based on the dataset used.

Figure 4.7: Collected QoS values

39

Latency is measured as the time taken for the cloud server to process a given request and

it is 0.225 seconds. Response time is calculated as the ping time to the server plus the latency.

Reliability is the percentage of the success request. For this one request, the invocation is success

and Reliability is 100%. As the system and the service are running properly and invocation has

been done successfully, Availability is also 100%. Throughput has been calculated based on the

output size of the service. The output size in byte divided by 1024, gives the output size in

kilobyte. This output size in kilobyte is multiplied by 8, which gives the output in kilobit. Then it

is divided by total time taken for the successful request, which gives the Throughput value. The

calculation steps are shown below,

Output size in byte = 903

Output size in Kilobyte = 903/1024

 = 0.8818359375

Output size in kilobit = 0.8818359375*8

 = 7.0546875

Total time for successful request in seconds = Response Time + Latency

 = 3.188+0.168 = 3.356

Throughput = 7.0546875 / 3.356 = 2.10211189

4.2 Proof of Concept Prototype

The implemented platform is supposed to be generic, and can be used to include any

number and type of services. In this work, we implemented a proof of concept prototype to

showcase the value of the testbed platform and demonstrate how it is used to host data mining

services in particular.

40

4.2.1 Data Mining Packages

Data mining is the procedure of analyzing large quantities of data from different aspects

and summarizing that data into useful format which is used further for the business purposes.

Data mining techniques are used by different types of companies from medium sized to large

sized companies to analyze their data and to take suitable decisions for their business growth.

Data mining package or software is one kind of tool for analyzing the data. This tool allows users

to analyze their data from different dimensions, categorize it and finally summarize it in a human

readable format. Among many data mining algorithms, three categories of algorithms are most

popular including Clustering, Classification and Association rule mining. Classifiers are used to

allocate data to predetermined groups. Clustering is used to group data according to customer

preferences or logical relationships. Association is used to mine data to identify associations

between different items. Among various packages, we chose three for our work which are

Weka, R and Apache Commons Math Machine Learning. The idea is that different packages

represent different software providers, and in this way, we could have data mining services

implementing the same algorithm coming from different providers.

Weka (Waikato Environment for Knowledge Analysis) is a popular data mining package,

which is written in Java. Weka is a free software package under GNU General Public License.

Weka contains a collection of visualization tools and algorithms for data analysis including

graphical user interfaces to access the functionalities. Weka provides several standard data

mining algorithms such as Preprocessing, Classification, Clustering, Association rule mining,

Regression and Feature selection. Weka has the support of database access using Java Database

Connectivity. This feature supports to process data returned by a database query. The main user

interface of Weka is called Explorer. Users can use Explorer to run different data mining

41

algorithms. In this work, instead of using this interface, we will use the Weka API to implement

the services.

Table 4.3 shows a list of Weka algorithms that we chose to implement our services.

Table 4.3: List of Implemented Weka Algorithms

SL Algorithm Name Type

1 Expectation Maximization (EM)

(

Clustering

2 Hierarchical Clustering

3 Filtered Clustering

4 FarthestFirst Clustering

5 CLOPE Clustering

6 SimpleKMeans Clustering

7 Cobweb Clustering

8 sIB Clustering

9 DBSCAN Clustering

10 XMeans Clustering

11 BFTree Classifier

12 AdaBoostM1 Classifier

13 LMT Classifier

14 REPTree Classifier

15 RandomTree Classifier

16 RandomForest Classifier

17 Apriori Association

18 Tertius Association

R [41] is an open source programming language and software environment for statistical

calculation and data analysis. R has many interfaces to communicate with the code which is

42

written in other programming language such as C, C++, Fortran, Java and Python. S is a

statistical programming language and R is an implementation of S programming language. The R

language is widely used by statisticians and data miners for statistical software development. R

implements a wide range of statistical and graphical techniques including clustering,

classification for statistics data analysis. As we used Java programming language for developing

the web services and R is a different programming language, we need an intermediate interpreter

that will communicate with R compiler and execute the R script within Java. For this purpose we

chose RCaller as an intermediate interpreter.

 Table 4.4 shows the list of our implemented R algorithms. We mainly focus on clustering

algorithms here from R package.

Table 4.4: List of Implemented R algorithms

SL Algorithm Name Type

1 Hierarchical

(

Clustering

2 KMeans Clustering

 Apache Commons Math Machine Learning is a project of Apache Software Foundation

and its purpose is to provide reusable open source software. Apache Commons Mathematics has

implemented some machine learning algorithms which are open source and written in Java.

Apache Software Foundation has implemented four clustering algorithms which are KMean++,

Fuzzy-KMeans, DBSCAN and Multi-KMeans++.

 Table 4.5 shows the list of Apache Commons Mathematics machine learning algorithms

used to develop services. Here we only consider clustering algorithm.

43

Table 4.5: List of implemented Apache Commons Mathematics machine learning algorithms

SL Algorithm Name Type

1 KMeans++

(

Clustering

2 DBSCAN Clustering

So in this prototype implementation, we have 3 software providers – Weka, R, and

Apache Commons Math Machine Learning. There are 3 types of data mining services –

clustering, classification, and association rule mining. Weka services cover all three types,

Apache services only cover clustering services and R services also only cover clustering

services. Although a few clustering algorithms have been implemented in both R and Apache,

here we only choose two from each which we can find corresponding implementations in Weka.

In this way, we could test the impact of different factors (provider, functionality, algorithms) of

SaaS services on the QoS values.

4.2.2 IaaS Services

Since we need to have multiple IaaS services from multiple providers, in this work we

chose Amazon EC2 and Windows Azure cloud infrastructure to host our developed software

services. Then for services from each provider, we also want to have different configurations and

different hosting locations, so that we could have a variety of IaaS services. Amazon EC2, which

is also known as Amazon Elastic Compute Cloud, provides resizable computing capacity in the

Amazon Web Services (AWS) cloud. Amazon EC2 offers a wide range of instance types that

vary based on combinations of CPU power, amount of memory, storage size and network

capacity. Amazon provides pre-configured instances, which is known as Amazon Machine

Images (AMIs) that include operating systems such as Windows or Linux. The AMIs may

44

include a wide range of preinstalled software packages. Amazon EC2 provides various types of

instances based on the workload from "micro" instances for small jobs to high performance "x-

large" instances for data warehousing tasks. The users can also mix different types of instances

based on the amount of memory they need. Amazon EC2 Spot Instances allow users to bid on

spare instances to be used whenever user's bid price exceeds the current spot price. Amazon EC2

Reserved Instances provide customers a good discount which could be up to 75%. Amazon EC2

Dedicated Instances is another instance type which is based on pay-as-you-go pricing model and

there is no long-term commitment.

 For our work, we chose the Amazon EC2 Dedicated Instances to host our developed web

services in Windows platform. There are a number of options in this type and we chose the micro

type for our thesis.

Table 4.6 shows our chosen Amazon EC2 IaaS configuration to host our developed

software services.

 Table 4.6: Amazon EC2 IaaS configuration

SL Name OS & Bit Processor RAM Location

1 Amazon-1 Windows Server 2012 R2 (64 bit)

(

Intel(R) @ 2.5 GHz 1 GB Tokyo

2 Amazon-2 Windows Server 2012 R2 (64 bit) Intel(R) @ 2.5 GHz 1 GB US (Oregon)

3 Amazon-3 Windows Server 2003 R2 (32 bit) Intel (R) @ 2.5 GHz 4 GB US (Oregon)

Windows Azure is a Microsoft implemented cloud computing platform. Windows Azure

was renamed to Microsoft Azure on April, 2014 [45]. Windows Azure uses Fabric layer, which

is a cluster hosted in Microsoft data center that manages computing resources. The two important

features of Windows Azure are scaling and reliability which are controlled by Microsoft Azure

45

Fabric Controller in such a way that services and environments do not crash if any of the services

goes down. A feature called Automated Service Management supports application upgrading

without compromising performance. Windows Azure provides a number of services such as data

management, media services, networking, virtual network, virtual machine, integration among

applications, high density website hosting, and access control service, etc. Windows Azure

supports a variety of Microsoft and third-party protocols, programming languages and platforms

including XML, REST, SOAP, Eclipse, Ruby, PHP, Python, etc.

As Amazon-1 and Amazon-2 instances are under free tier account, we cannot chose more

RAM for the instances. But as Amazon-3 is a paid instance, we selected 4 GB RAM. We could

not select same type of IaaS from Amazon and Azure because of their different infrastructure

configuration. For example Windows Azure has core options but Amazon does not have that. As

a free user, we can select maximum 1 GB RAM from Amazon but 4 GB RAM from Windows

Azure.

Table 4.7 shows our chosen Windows Azure IaaS configuration for hosting our

developed software services. All Azure instances are under one month free subscription and we

have to select at least 4 cores. This is how Windows Azure are configured.

Table 4.7: Windows Azure IaaS configuration

SL Name OS & Bit Processor RAM Location

1 Azure-1 Windows Server 2008 R2 (64 bit)

(

7 core 14GB Japan West

2 Azure-2 Windows Server 2008 R2 (64 bit)

7 core 14GB North Europe

3 Azure-3 Windows Server 2008 R2 (64 bit) 4 core 7GB Central US

4 Azure-4 Windows Server 2012 R2 (64 bit) 4 core 14GB Central US

46

As we have mainly used free tier of the IaaS account and different cloud service

providers have different types of options, we are limited in our IaaS configuration selection. For

example as a free tier user, we cannot select more memory in Amazon EC2. Amazon does not

provide core configuration to the free user. On the other hand, Windows Azure gives core

options available to their users.

4.3 QoS Data Collection

In this work, we use the real datasets collected from UCI machine learning repository

[46]. Based on the task type, there are a number of different types of datasets. Each dataset may

have different data properties, for example, different sizes, different dimensions, different types

of data (numeric, categorical, Boolean, etc.). Here we chose six of them for our experiment

because they are varying on these data properties.

 Table 4.8 describes our used datasets in this work. We chose our datasets based on four

criteria: the number of dimensions, size (number of rows), whether to have missing data or not,

and the data type. The target was to find datasets with varying values on these criteria. The

required information was obtained from the UCI dataset description.

Table 4.8: List of datasets

SL Dataset Name # of rows Dimension Missing Values Year Data Type

1 Lung Cancer

(

32 56 Yes 1992 numeric, string

2 Balance Scale

625 4 No 1994 nominal

3 Car Evaluation 1728 6 No 1997 numeric, string

4 Turkiye student evaluation 5820 33 No 2013 numeric

5 Opt digits 5620 64 No 1998 numeric

6 Diabetic data 100000 55 Yes 2014 numeric

47

We developed a client web application for our experiment. Its functions include setting

up the cloud server, publishing software services, uploading user's datasets, invoking software

services and monitoring software services' QoS values. For experiment, we hosted our developed

software services into different cloud infrastructure services from either Windows Azure or

Amazon EC2. Then we hosted client web application in our local system. We used default

parameter values for classifier and association rule mining services. We used some default

parameter values for clustering algorithm and we also implemented some parameters into the

client web application where users can send his/her chosen parameter values before invoking

software services.

 In our experiment, we set a threshold value for time-out. If the client web application

does not receive any response from a service within five minutes, that invocation will be timed

out. We sent ten requests to invoke a services for all IaaS and datasets from the client

application. Users can send more than ten requests. First of all, an end-user needs to upload

his/her own dataset to the desired cloud server. To invoke a service, the end-user needs to select

cloud server, software service and dataset from the drop down list. Then user also needs to tell

the system how many requests he/she wants to send to the server to invoke the service. After

that, user can enter available parameter values or use default values. The parameter values could

affect whether we could get proper result from that service. If wrong parameter values are

provided, some QoS values can be affected or sometimes service invocation could fail.

We show some of the collected QoS values below. In these tables, status 0 means a

successful invocation and status -1 means a failed invocation. When status is -1, the other

48

columns have empty cells. For all the software services, we have availability 100% and therefore

this value is not included in the tables.

Table 4.9 shows QoS values of all implemented software services hosted on the same

IaaS service (Azure-1) running for the same dataset (i.e. Balance scale dataset). From this table,

we can see that among all clustering services, Weka Hierarchical Clustering, Weka DBSCAN

Clustering, Apache KMeansPlusPlus Clustering, Apache DBSCAN Clustering, R Hierarchical

Clustering and R KMeans Clustering failed to process the dataset. The reason of failure for

Weka DBSCAN clustering is selection of the wrong parameter values for Epsilon and Minpoints.

If these two values are not provided properly, algorithm will fail to process the file. As Balance

scale dataset contains string data, the other listed services failed to process the file because they

only support numeric values. Weka Apriori Associator and Weka Tertius Associator failed

because they only support nominal data type. We could also see that although the services are

applied on the same dataset and hosted on same IaaS instance, the collected QoS values vary

between different SaaS services.

Table 4.10 shows QoS values of all implemented software services hosted on the same

IaaS service (Azure-1) running for another dataset (i.e. Lung Cancer).

49

Table 4.9: QoS values for one dataset (Balance Scale), one IaaS (Azure-1) and all services

Service Name Status Response Time (s) Throughput Reliability Latency(s)

Weka EM Clustering 0 4.133 1.451 100% 0.272

Weka Hierarchical Clustering -1

Weka Filtered Clustering 0 3.644 2.534 100% 0.019

Weka CLOPE Clustering 0 4.111 4.177 100% 0.136

Weka FarthestFirst Clustering 0 3.791 0.857 100% 0.036

Weka SimpleKMeans Clustering 0 3.845 1.805 100% 0.061

Weka Cobweb Clustering 0 4.111 4.017 100% 0.136

Weka sIB Clustering 0 4.449 1.864 100% 0.537

Weka XMeans Clustering 0 4.244 1.460 100% 0.041

Weka DBSCAN Clustering -1

Apache KMeansPlusPlus Clustering -1

Apache DBSCAN Clustering -1

R Hierarchical Clustering -1

R KMeans Clustering -1

Weka BFTree Classifier 0 3.999 1.844 100% 0.097

Weka AdaBoostM1 Classifier 0 3.917 1.910 100% 0.038

Weka REPTree Classifier 0 3.962 1.895 100% 0.025

Weka LMT Classifier 0 5.385 1.085 100% 1.575

Weka RandomTree Classifier 0 3.810 1.975 100% 0.016

Weka RandomForest Classifier 0 4.095 1.828 100% 0.038

Weka Apriori Associator -1

Weka Tertius Associator -1

50

Table 4.10: QoS values for one dataset (Lung Cancer), one IaaS (Azure-1) and all services

Service Name Status Response Time (s) Throughput Reliability Latency(s)

Weka EM Clustering 0 3.907 9.168 100% 0.042

Weka Hierarchical Clustering 0 3.866 1.902 100% 0.003

Weka Filtered Clustering 0 3.869 9.095 100% 0.008

Weka CLOPE Clustering 0 4.869 0.839 100% 0.295

Weka FarthestFirst Clustering 0 3.873 2.077 100% 0.003

Weka SimpleKMeans Clustering 0 3.542 8.150 100% 0.005

Weka Cobweb Clustering 0 4.132 0.706 100% 0.051

Weka sIB Clustering -1

Weka XMeans Clustering 0 3.918 4.675 100% 0.109

Weka DBSCAN Clustering -1

Apache KMeansPlusPlus

Clustering

0 3.803 4.210 100% 0.006

Apache DBSCAN Clustering 0 3.923 0.075 100% 0.02

R Hierarchical Clustering 0 4.102 12.533 100% 0.328

R KMeans Clustering 0 3.909 9.345 100% 0.19

Weka BFTree Classifier 0 3.617 1.825 100% 0.003

Weka AdaBoostM1 Classifier 0 3.942 1.673 100% 0.008

Weka REPTree Classifier 0 3.984 1.658 100% 0

Weka LMT Classifier 0 4.063 1.605 100% 0.055

Weka RandomTree Classifier 0 3.819 1.730 100% 0

Weka RandomForest Classifier 0 3.596 1.836 100% 0.003

Weka Apriori Associator -1

Weka Tertius Associator -1

51

From this table, we can see that among all clustering services, Weka sIB Clustering,

Weka DBSCAN Clustering, Weka Apriori Association and Weka Tertius Association failed to

process the dataset. The reason of failure for Weka DBSCAN clustering is selection of the wrong

parameter values for Epsilon and Minpoints. Weka Apriori Associator and Weka Tertius

Associator failed because Lung Cancer dataset contains numeric data but these two associators

only support nominal data type. Comparing Table 4.9 and Table 4.10, we can see we have higher

success rate in Table 4.10, which means successful invocation depends on dataset, data types and

parameter values also.

Table 4.11 shows the average QoS values on one IaaS (Azure-1) for all datasets. The

QoS values are averaged on all SaaS services.

Table 4.11: Average QoS values on one IaaS (Azure-1) for all datasets

Dataset Name Latency (Sec) Reliability Response Time(Sec) Throughput

Lung Cancer 0.054 81.81% 3.929 4.061

Balance Scale 0.168 63.64% 4.106 1.886

Car Evaluation 1.952 54.54% 6.819 1.771

Opt digits 10.318 68.18% 11.882 4.236

Turkiye student evaluation 6.332 68.18% 8.819 2.837

Diabetic data 24.354 31.81% 13.329 0.180

 From the above table, we can observe the average reliability of the services on Diabetic

dataset is less than that on other datasets because diabetic dataset has a lot of missing data and

noise. We can also see that the reliability on Lung cancer dataset is more than that on other

dataset because this dataset is small and clean. We could see that Lung Cancer dataset has the

52

smallest latency because it is the smallest based on its size and dimension, and Diabetic dataset

has the largest latency because it is the biggest dataset among all. The response time is also

affected by the dataset size and dimension. But it is affected more heavily by the network

transmission time, which explains why the response time is much bigger than the latency. There

is no clear pattern on throughput because throughput is not only decided by the service

processing time, the network transmission time, but also decided by the size of the output which

varies a lot among different software services. We observe the similar patterns for other IaaS

services, and thus we are not showing their values here.

Table 4.12 shows the average QoS values of one SaaS (Weka FarthestFirst Clustering)

for all datasets. The QoS values are averaged on all IaaS services.

Table 4.12: Average QoS values of one SaaS (Weka FarthestFirst Clustering) for all datasets

Dataset Name Latency (Sec) Reliability Response Time(Sec) Throughput

Lung Cancer 0.053 100% 3.625 2.218

Balance Scale 0.054 100% 3.612 0.903

Car Evaluation 0.089 100% 3.736 1.033

Opt digits 3.079 100% 9.466 1.818

Turkiye student evaluation 6.830 100% 16.674 1.081

Diabetic data 2.093 100% 5.638 1.164

From the above table, we can see the Reliability of Weka FarthestFirst Clustering service

for all datasets is 100%. Interestingly, this service works very fast for Diabetic dataset. Although

it is the biggest dataset, its latency is lower than two other smaller datasets. The latency for

Turkiye student evaluation dataset is slower than those for other datasets.

53

Table 4.13 shows the average QoS values on all IaaS for one dataset (Lung Cancer). The

QoS values are averaged on all SaaS services.

Table 4.13: Average QoS values for one dataset (Lung Cancer) on all IaaS

IaaS Name Latency(sec) Reliability Response Time(sec) Throughput

Azure-1 0.054 81.81% 4.115 4.217

Azure-2 0.066 81.81% 3.489 2.858

Azure-3 0.848 81.81% 4.478 4.017

Azure-4 0.785 81.81% 4.521 3.654

Amazon-1 1.247 81.81% 4.283 2.570

Amazon-2 1.434 81.81% 4.771 2.852

Amazon-3 1.282 81.81% 4.924 3.043

In this table, we can see the reliability is the same (81.81%) for all the IaaS services,

which means the reliability is mainly decided by the dataset features. We can also see the

variation of latency and throughput, which shows the impact of IaaS configurations and locations

on their values. Since Azure instances have higher configurations, in general, their latency values

are better than those from EC2 instances. The impact of configurations on response time is

smaller because the network transmission time is usually bigger than the processing time, and it

is mainly decided by the location. So the instances from Europe or Asia usually have longer

response time. Throughput also varied among different IaaS instances, however no clear pattern

can be observed.

Table 4.14 shows the average QoS of one SaaS (Weka SimpleKMeans Clustering) on all

IaaS. The QoS values are averaged on all the datasets.

54

Table 4.14: Average QoS values of one SaaS (Weka SimpleKMeans Clustering) on all IaaS

IaaS Name Latency(sec) Reliability Response Time(sec) Throughput

Azure-1 13.165 100% 17.067 3.680

Azure-2 10.145 100% 13.563 4.339

Azure-3 19.023 100% 22.105 3.696

Azure-4 19.107 100% 21.818 3.996

Amazon-1 0.199 83.33% 3.359 5.335

Amazon-2 0.308 83.33% 3.745 4.724

Amazon-3 0.247 83.33% 3.359 5.294

From this table, we observed that the Latency and Response time of Amazon IaaS are

lower than that of Azure IaaS. We have one big size dataset called Diabetic which was invoked

successfully in Azure IaaS but failed in Amazon IaaS due to time-out. Invocation for Azure

succeeded because of its good configuration but it took long time to finish the invocation. On the

other hand, Amazon IaaS timed out to process Diabetic dataset due to its low configuration. The

way we calculated the latency is to remove the failed cases. So with exclusion of this dataset,

Amazon IaaS gives better latency values. However, this failure also affects the reliability. The

Amazon IaaS has lower reliability than Azure IaaS.

Table 4.15 shows the average QoS values of all SaaS for one dataset (Lung Cancer). The

QoS values are averaged on all IaaS instances. For the fail cases, their columns have empty

values.

55

Table 4.15: Average QoS values of all SaaS for one dataset (Lung Cancer)

Service Name Latency (sec) Response Time (sec) Reliability Throughput

Weka EM Clustering 0.062 3.462 100% 10.384

Weka Hierarchical Clustering

Weka Filtered Clustering 0.043 3.608 100% 9.809

Weka CLOPE Clustering 0.295 4.869 100% 0.387

Weka FarthestFirst Clustering 0.002 3.509 100% 2.055

Weka SimpleKMeans Clustering 0.034 3.302 100% 7.503

Weka Cobweb Clustering 0.051 4.132 100% 0.743

Weka sIB Clustering

Weka XMeans Clustering 0.097 3.809 100% 4.033

Weka DBSCAN Clustering

Apache KMeansPlusPlus Clustering 0.104 3.667 42.85% 4.995

Apache DBSCAN Clustering 0.020 3.822 42.85% 0.082

R Hierarchical Clustering 0.422 4.133 42.85% 11.903

R KMeans Clustering 0.304 3.775 42.85% 12.605

Weka BFTree Classifier 0.004 3.553 100% 1.605

Weka AdaBoostM1 Classifier 0.116 3.503 100% 1.673

Weka REPTree Classifier 0.005 3.807 100% 1.709

Weka LMT Classifier 0.115 3.993 100% 1.673

Weka RandomTree Classifier 0.104 3.504 100% 1.773

Weka RandomForest Classifier 0.204 3.604 100% 1.803

Weka Apriori Associator

Weka Tertius Associator

56

From this table, we can see that among all the clustering services, Weka FarthestFirst is

the fastest one and thus has the smallest latency. Among all the classifier services, Weka

REPTree Classifier has the smallest latency. Weka Apriori and Tertius Associator failed because

Lung Cancer dataset is not nominal data type. Throughput value varies among different services.

Since we consider failure invocations for the Reliability, we see different Reliability values such

as 100%, 42.85%, etc.

Table 4.16 shows the average QoS values of all SaaS on one IaaS (Azure-1). The QoS

values are averaged on all datasets.

From this table, we can see that the Reliability values vary when we average QoS values

on datasets. Weka DBSCAN clustering services failed for all the datasets. Weka Apriori

Associator and Weka Tertius Associator have less reliability than any other software services. A

few services have 100% reliability, which means they work properly for all the datasets. We can

also see the variation of latency, response time and throughput. We ran our simulation in

different timeframe, for example, pick hour and off-pick hour and we also chose different cloud

server locations. Sometimes we set wrong parameters for clustering services. Sometimes we

observed the network problem to communicate with the cloud server from the client application.

These influential factors make the difference of the QoS values and these differences affect

throughput directly because throughput value depends on service output, response time and

latency.

57

Table 4.16: Average QoS values of all SaaS on one IaaS (Azure-1)

Service Name Latency (sec) Response Time (sec) Reliability Throughput

Weka EM Clustering 2.235 7.535 83.33% 3.235

Weka Hierarchical Clustering 0.173 3.706 16.67% 1.643

Weka Filtered Clustering 0.251 3.9829 83.33% 5.458

Weka CLOPE Clustering 0.295 4.8698 16.67% 0.839

Weka FarthestFirst Clustering 0.445 3.697 100% 1.493

Weka SimpleKMeans Clustering 3.165 8.067 100% 3.680

Weka Cobweb Clustering 0.093 4.112 33.33% 2.361

Weka sIB Clustering 0.537 4.449 16.67% 1.864

Weka XMeans Clustering 0.182 4.292 66.67% 4.366

Weka DBSCAN Clustering

Apache KMeansPlusPlus Clustering 0.076 4.428 50% 4.179

Apache DBSCAN Clustering 0.082 4.274 50% 0.073

R Hierarchical Clustering 0.333 4.046 50% 12.595

R KMeans Clustering 0.172 3.436 50% 11.955

Weka BFTree Classifier 0.762 4.590 83.33% 1.768

Weka AdaBoostM1 Classifier 0.436 3.103 100% 1.893

Weka REPTree Classifier 0.215 3.507 100% 1.819

Weka LMT Classifier 0.302 3.052 83.33% 2.073

Weka RandomTree Classifier 0.294 4.014 100% 2.001

Weka RandomForest Classifier 0.324 4.101 100% 1.903

Weka Apriori Associator 0.057 3.831 16.67% 1.873

Weka Tertius Associator 7.336 11.061 16.67% 0.548

58

4.4 Summary

In this chapter, we explained our implementation details, our programming environment,

our user interfaces, data mining packages, and infrastructure configurations. We selected three

algorithm providers, two cloud service providers and six UCI datasets. We chose our datasets

based on different data properties such as dimension, size, missing values, data types (numeric

data, string data and combined data etc.).

From our collected QoS values, we could see some services failed to process the file. The

reason of failure could lie on dataset, algorithm implemented and parameters that users send to

the service. We see some services such as Weka DBSCAN, Weka CLOPE, and Weka OPTICES

clustering services are directly affected by the parameter values. R clustering and Apache

clustering services are affected by the data type because these two provider's algorithms support

only numeric datasets. Some services only support nominal data type, such as Weka CLOPE

clustering service. Sometimes we see QoS values vary a lot due to the network communication

from client system to the cloud server.

59

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

QoS-based service selection in the cloud environment could be a big challenge now-a-

days, especially for data analytic services. In the cloud environment, different users follow

different strategies for data analytic service selection. QoS properties such as availability,

latency, response time, reliability and throughput are some influential factors for selecting these

services. The values of these properties for data analytic services could vary for different

datasets, and they also depend on how they are implemented and where and how they are hosted.

Although various approaches have been studied and proposed, there is no proper benchmarking

tool that will record the end-to-end QoS values for these software services when they are running

on different datasets and hosted in different infrastructure servers.

Our contributions are listed below:

 We designed and implemented a cloud-based framework to build a testbed that

could be used for collecting end-to-end QoS values from data analytic services.

These QoS values are helpful for comparing different selection algorithm

proposed by different researchers.

 We implemented a proof of concept prototype system where we chose data

mining algorithms from different providers to develop data analytic services as

representative services. We found that provider, functionality and implemented

algorithm are some SaaS related factors that impact QoS values. We hosted our

60

developed data analytic services in different cloud infrastructure services with

different configurations in different locations. We found that provider, location

and configuration are some IaaS related factors that impact QoS values.

5.2 Future Works

QoS based service selection is expanding and growing day by day in different sectors

including research community, government organization and private industries. There are a few

directions we would like to work on in the future.

 Firstly, we could expand our current system to a fully functioning cloud marketplace with

more functionalities.

 Secondly, in this work, we only consider five QoS properties, and in the future we could

include more QoS properties.

 Thirdly, right now we only support RESTful services, and in the future we have plan to

include the support to SOAP based services as well because they are still used in many

organizations.

 We plan to introduce other services that are not based on REST.

 Lastly, we could try more SaaS services, IaaS instances and more datasets to collect a

bigger sized QoS dataset to share with the research community.

61

REFERENCES

[1] Service (systems architecture). Available at: http://en.wikipedia.org/wiki/service(systems

architecture), last accessed on August 2015.

[2] OASIS SOA Reference Model. Available at: https://www.oasis-open.org/committees/tc

home.php?wg_abbrev=soa-rm, last accessed on August 2015.

[3] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud computing and

emerging IT platforms: vision, hype, and reality for delivering computing as the 5th utility”,

2009 Future Generation Computer Systems, pp. 599-616.

[4] J. Yan and J. Piao, "Towards QoS-based web services discovery," 2009 Service-Oriented

Computing ICSOC 2008 Workshops, pp. 200-210.

[5] E. Al-Masri and Q. H. Mahmoud, "QoS-based Discovery and Ranking of Web

Services", 2007 16th International Conference on Computer Communications and Networks

(ICCCN), pp. 529-534.

[6] Y. Liu, A. H. Ngu and L. Z. Zeng, "QoS Computation and Policing in Dynamic Web

Service Selection", 2004 13th International World Wide Web Conference, pp. 66-73.

[7] Q. He, J. Han, Y. Yang, J. Grundy and H. Jin, "QoS-driven service selection for multi-

tenant SaaS", 2012 IEEE Fifth International Conference on Cloud Computing, pp. 566-573.

62

[8] D. Skoutas, D. Sacharidis, A. Simitsis, V. Kantere and T. Sellis, "Top-k dominant web

services under multi-criteria matching," 2009 12th International Conference on Extending

Database Technology: Advances in Database Technology, pp. 898-909.

[9] Q.MA, H. WANG, Y. LI, G. XIE and F. LIU , "A Semantic QoS-aware Discovery

Framework for Web Services", 2008 IEEE International Conference on Web Services, pp. 129-

136.

[10] R. Madaleno and R. Neto Marinheiro, "Identification and ranking of relevant criteria for

the selection of Software as a Service", 2013 8th Iberian Conference on Information Systems and

Technologies (CISTI), pp. 1-6.

[11] Y. M. Afify, I. F. Moawad, N. L. Badr and M.F. Tolba, "A Semantic-based Software-as-

a-Service (SaaS) Discovery and Selection System", 2013 8th International Conference on

Computer Engineering & Systems (ICCES), pp. 57-63.

[12] S. Le, H. Dong, H. F.K, H. O.K, J. Ma and Y. Zhang, "Multicriteria Decision Making

with Fuzziness and Criteria Interdependence in Cloud Service Selection", 2014 IEEE

International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1929-1936.

[13] R. K. Lomotey and R. Deters, "Analytics-as-a-Service (AaaS) Tool for Unstructured Data

Mining", 2014 IEEE International Conference on Cloud Engineering, pp. 319- 324.

[14] F. Zulkernine, M. Bauer and A.Aboulnaga, "Towards Cloud-based Analytics-as-a-

Service (CLAaaS) for Big Data Analytics in the Cloud", 2013 IEEE International Congress on

Big Data, pp. 62-69.

[15] IBM Research “Analytics-as-a-Service Platform”. Available at: http://researcher.ibm.com

63

/researcher/view_project.php?id=3992, last accessed on August 2015.

[16] The QWS Dataset. Available at: http://www.uoguelph.ca/~qmahmoud/qws/, last accessed

on August 2015.

[17] WS-Dream Dataset. Available at: http://www.wsdream.net/dataset.html, last accessed on

August 2015.

[18] The WEKA toolkit, University of Waikato. Available at: http://www.cs.waikato.ac.nz/ml/

weka/, last accessed on August 2015.

[19] The R Project for Statistical Computing. Available at: http://www.r-project.org/, last

accessed on August 2015.

[20] Apache Commons Math Machine Learning. Available at: http://commons.apache.org/

proper/commons-math/userguide/ml.html, last accessed on August 2015.

[21] K. Kritikos and D. Plexousakis, “Mixed-Integer Programming for QoS-based Web

Service Matchmaking”, 2009 IEEE Transactions on Services Computing, pp. 122-139.

[22] C.W. Hang and M.P. Singh, “From Quality to Utility: Adaptive Service Selection

Framework”, 2010 International Conference on Service Oriented Computing, pp. 456-470.

[23] R.J.R. Raj and T. Sasipraba, "Web service selection based on QoS Constraints", 2010

Trends in Information Sciences & Computing (TISC), pp. 156-162.

[24] V. X. Tran, H. Tsuji and R. Masuda, "A new QoS ontology and its QoS-based ranking

algorithm for Web services," 2009 Simulation Modelling Practice and Theory, pp. 1378-1398.

64

[25] L. Qu, Y. Wang and O. M.A, "Cloud Service Selection Based on the Aggregation of User

Feedback and Quantitative Performance Assessment", 2013 IEEE International Conference on

Services Computing (SCC), pp. 152-159.

[26] L. Sun, H. Dong, F.K. Hussain, O.K. Hussain, J. Ma and Y. Zhang, "A Hybrid Fuzzy

Framework for Cloud Service Selection", 2014 IEEE International Conference on Web Services,

pp. 313-320.

[27] M. Tajvidi, R. Ranjan, J. Kolodziej and L. Wang, "Fuzzy cloud service selection

framework", 2014 IEEE 3rd International Conference on Cloud Networking (CloudNet), pp.

443-448.

[28] A.Kr Mandal, S. Changder and A. Sarkar, " Selection of Services for Data-Centric Cloud

Applications: A QoS Based Approach", 2013 Second International Conference on Advanced

Computing, Networking and Security, pp. 102-107.

[29] M. Sun, T. Zang, X. Xu and R. Wang, "Consumer-Centered Cloud Services Selection

Using AHP", 2013 International Conference on Service Science, pp. 1 - 6.

[30] R. Karim, C. Ding and A. Miri , "An End-To-End QoS Mapping Approach for Cloud

Service Selection", 2013 IEEE Ninth World Congress on Services, pp. 341-348.

[31] H. Li and J. Jeng, "CCMarketplace: A Marketplace Model for a Hybrid Cloud", 2010

Conference of the Center for Advanced Studies on Collaborative Research, pp. 174-183.

[32] T. Heninger, A. Singh, V. Singh, T. Wies and D. Zufferey, "A Marketplace for Cloud

Resources", 2010 International Conference of Embedded Systems, pp. 1-7.

65

[33] S. Chang, "Application Marketplace as a Service - A Reference Architecture for

Application Marketplace Service", 2010 International Conference on Cloud and Internet

Computing (3PGCIC), pp.186-192.

[34] A. Menychtas, A. Gatzioura and T. Varvarigou, “A Business Resolution Engine for

Cloud Marketplaces”, 2011 Third IEEE International Conference on Coud Computing

Technology and Science, pp. 462-46.

[35] O. Krieger, P. McGachey and A. Kanevsky, "Enabling a Marketplace of Clouds:

VMware’s vCloud Director", 2010 Operating Systems Review, pp. 103-114.

[36] S. Song, M. M. Hassan and E. Huh, "A Novel Cloud Market Infrastructure for Trading

Service", 2009 International Conference on Computational Science and Its Applications, pp. 44-

50.

[37] Cloud Broker. Available at: http://searchcloudprovider.techtarget.com/definition/cloud-

broker, last accessed on August 2015.

[38] S. Sundareswaran, A. Squicciarini, and D. Lin, "A Brokerage-Based Approach for Cloud

Service Selection", Cloud Computing (CLOUD), 2012 IEEE 5th International Conference,

pp.558-565.

[39] P.Pawluk, B. Simmons, M. Smit, M. Litoiu and S.Mankovski, "Introducing STRATOS:

A Cloud Broker Service", 2012 IEEE Fifth International Conference on Cloud Computing, pp.

891-898.

[40] V. Cardellini and S.Iannucci, "Designing a Broker for QoS-driven Runtime Adaptation of

SOA Applications", 2010 IEEE International Conference on Web Services, pp. 504-511.

66

[41] F. Ye, Z.Wang, F. Zhou, Y.Wang and Y. Zhou, "Cloud-Based Big Data Mining &

Analyzing Services Platform Integrating R", 2013 International Conference on Advanced Cloud

and Big Data (CBD), pp.147-151.

[42] T.Chen, J. Chen and B. Zhou, "A System for Parallel Data Mining Service on Cloud",

2012 Second International Conference on Cloud and Green Computing (CGC), pp. 329-330.

[43] Web service. Available at: http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/

#webservice, last accessed on August 2015.

[44] Roy T. Fielding and Richard N. Taylor, "Principled Design of the Modern Web

Architecture", 2000 22nd international conference on Software engineering, pp.407-416.

[45] Microsoft Azure. Available at: http://blogs.microsoft.com/blog/2010/02/01/windows-

azure-general-availability/, last accessed on August 2015.

[46] UCI Machine Learning Repository. Available at: https://archive.ics.uci.edu/ml/

datasets.html, last accessed on August 2015.

[47] Richard K. Lomotey and R. Deters, "Analytics-as-a-Service (AaaS) Tool for

Unstructured Data Mining", 2014 IEEE International conference on Cloud Engineering, pp. 319-

324.

[48] K. Park, M. C. Nguyen and H.Won, "Web-based Collaborative Big Data Analytics on

Big Data as a Service platform", 2014 IEEE International conference on Big Data, pp. 564-567.

