
Ryerson University
Digital Commons @ Ryerson

Theses and dissertations

1-1-2010

A User-Centric QoS-Based Web Service Selection
Framework
Delnavaz Mobedpour
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations
Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by
an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

Recommended Citation
Mobedpour, Delnavaz, "A User-Centric QoS-Based Web Service Selection Framework" (2010). Theses and dissertations. Paper 1390.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1390&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1390&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1390&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1390&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/1390?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1390&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

i

A USER-CENTRIC QOS-BASED WEB SERVICE SELECTION

FRAMEWORK

by

Delnavaz Mobedpour

B.E. in Software Engineering, Shahid Beheshti University, Iran, 2001

A thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Computer Science

In the program of

Computer Science

Toronto, Ontario, Canada, 2010

©Delnavaz Mobedpour 2010

ii

AUTHOR’S DECLARATION

I hereby declare that I am the sole author of this thesis.

I authorize Ryerson University to lend this thesis to other institutions or individuals for the

purpose of scholarly research.

DELNAVAZ MOBEDPOUR

Signature Date

I further authorize Ryerson University to reproduce this thesis by photocopying or by other

means, in total or in part, at the request of other institutions or individuals for the purpose of

scholarly research.

DELNAVAZ MOBEDPOUR

Signature Date

iii

A USER-CENTRIC QOS-BASED WEB SERVICE SELECTION FRAMEWORK

Delnavaz Mobedpour

Master of Science, Computer Science, 2010

Ryerson University

ABSTRACT

With the proliferation of web services, the selection process, especially the one based on

the non-functional properties (e.g. Quality of Service – QoS attributes) has become a more and

more important step to help requestors locate a desired service. There have been many research

works proposing various QoS description languages and selection models. However, the end user

is not generally the focal point of their designs and the user support is either missing or lacking

in these systems. The QoS language sometimes is not flexible enough to accommodate users’

various requirements and is too complex so that it puts extra burden on users. In order to solve

this problem, in this thesis we design a more expressive and flexible QoS query language (QQL)

targeted for non-expert users, together with the user support on formulating queries and

understanding services in the registry. An enhanced selection model based on Mixed Integer

Programming (MIP) is also proposed to handle the QQL queries. We performed experiments

with a real QoS dataset to show the effectiveness of our framework.

iv

ACKNOWLEDGEMENTS

 Pursuing my Master degree was an interesting experiment that was not possible without the

guidance and support from many people. First of all I want to thank my supervisor Dr. Cherie

Ding, who supported and guided me through all the obstacles I had. Her constant support

motivated me beyond imagination and her precious guidance and suggestions have greatly and

majorly contributed to this research.

 Furthermore, I would like to acknowledge the support of the Computer Science Department

of Ryerson University. Especially I want to pay my respect and appreciation to my committee

members, Dr. Abhari, Dr. Soutchanski and Dr. Woungang for their valuable guidance. Also I

want to thank my friends Elmira, Kian, and Shermineh, who helped and encouraged me a lot.

 Finally, I would like to thank my husband, Rouzbeh Alibeik, for the invaluable love and

support that he has unconditionally given to me during these last two years.

v

TABLE OF CONTENTS

AUTHOR’S DECLARATION ... ii

ABSTRACT ... iii

ACKNOWLEDGEMENTS ... iv

ACRONYMS .. x

INTRODUCTION .. 1

1.1. General Settings ... 1

1.2. Main Issues in QoS Languages and Selection Algorithms .. 2

1.3. Main Contributions .. 4

1.4. Outline of Thesis .. 5

CHAPTER 2 ... 7

RELATED WORKS ... 7

2.1. Review on Web Service QoS Languages .. 7

2.2. Review on QoS-based Web Service Selection Methods .. 11

2.3. Summary .. 15

CHAPTER 3 ... 16

QOS-BASED WEB SERVICE SELECTION FRAMEWORK ... 16

3.1. QQL – Our User-Centric QoS Query Language .. 16

3.1.1. The Language Definition .. 16

3.1.2. Validation .. 22

3.1.3. Operators ... 22

3.2. The Guided Query Formulation Process .. 23

3.3. The Architecture Model ... 29

3.4. Handling Fuzzy Values .. 31

3.4.1. Clustering .. 32

3.5. Selection Algorithm ... 33

3.5.1. Selection based on functional requirements .. 36

3.5.2. Selection based on QoS requirements ... 36

3.5.3. Ranking ... 40

vi

3.6. Case Studies of Processing QQL Queries .. 41

3.7. Summary .. 44

CHAPTER 4 ... 45

IMPLEMENTATION AND EVALUATION .. 45

4.1. Implementation .. 45

4.1.1. The Matching Method ... 47

4.1.2. The Selection Method ... 52

4.1.3. The Ranking Method .. 52

4.2. Experiments ... 53

4.2.1. Sample Queries and Results .. 53

4.3. Evaluation of QoS Selection Algorithm .. 55

4.4. Summary .. 61

CHAPTER 5 ... 62

CONCLUSIONS... 62

5.1. Conclusion ... 62

5.2. Main Contributions .. 62

5.3. Future Works ... 63

APPENDIX A -Selection method ... 64

APPENDIX B - Matching method.. 66

APPENDIX C - Ranking method ... 67

APPENDIX D - Clustering method .. 69

REFERENCES ... 71

vii

LIST OF TABLES

Table 3.1- A case study, a sample QoS query and five QoS offers .. 40

Table 3.2- The results of the case study .. 41

Table 4.1- Sample Result on Amazon Keyword .. 54
Table 4.2- Sample Result on Protein Keyword .. 56

Table 4.3- Execution time average of plain MIP and our algorithm .. 57

Table 4.4- Precision of plain MIP and our algorithm ... 58

Table 4.5- Kendall Tau correlation coefficient between our algorithm and plain MIP 60

viii

LIST OF FIGURES

Figure 3.1- The hierarchy of the language elements ... 20

Figure 3.2- A segment of a sample QQL query .. 21
Figure 3.3- QQL schema... 22
Figure 3.4- Step 1 of query formulation, Selecting QoS attributes .. 24
Figure 3.5- Step 2 of query formulation, specifying the QoS requirements 255
Figure 3.6- Step 3 of query formulation, Browsing QoS attribute’s values, reliability here 266
Figure 3.7- Step 4 of query formulation, defining QoS attributes’ preferences and relaxations .. 27

Figure 3.8- Step 5 of query formulation, definition of time constraints 288

Figure 3.9- The final result page ... 29

Figure 3.10- An architecture model illustration .. 280

Figure 3.11- Detailed architecture of selection and ranking component 283

Figure 3.12- The flowchart of the selection algorithm ... 284

Figure 4.1- An instance of an offer’s MIPP .. 47

Figure 4.2- Query and offer comparison... 42

Figure 4.3- The availability MIPP of the query .. 48

Figure 4.4- The result of objective function of the query ... 48

Figure 4.5- The result of objective function of the offer .. 49

Figure 4.6- Execution time average of plain MIP and our algorithm ... 57

Figure 4.7- Precision of plain MIP and our algorithm .. 59

Figure 4.8- Correlation of plain MIP and our algorithm .. 61

thesis/writing/thesis-V3.docx#_Toc270000011

ix

x

ACRONYMS

AHP: Analytic Hierarchy Process

CP: Constraint Programming

CSP: Constraint Satisfaction problem

DL: Description Logic

FMCDM: Fuzzy Multiple Criteria Decision Making

IR engine: Information Retrieval engine

MCDM: Multi-Criteria Decision Making

MIP: Mixed Integer Programming

MIPP: Mixed Integer Programming Problem

Ont: Ontology

QoS: Quality of web Services

QQL: QoS query language

OWL: Ontology Web Language

SLA: Service Level Agreement

UI: User Interface

UDDI: Universal Description, Discovery and Integration

URI: Uniform Resource Identifier

URL: Uniform Resource Locator

W3C: World Wide Web Consortium

WSDL: Web Service Description Language

XML: Extensible Markup Language

1

CHAPTER 1

INTRODUCTION

1.1. General Settings

Based on the W3C (World Wide Web Consortium) definition, a web service is “a software

application identified by a URI, whose interface and bindings are capable of being defined,

described, and discovered as XML artifacts”. “A Web Service supports direct interactions with

other software agents using XML-based messages exchanged via Internet-based protocols.” [1]

This description emphasizes that a web service needs to be defined by its provider, then

advertised by its provider or a third party, and afterwards discovered by clients, in addition a web

service has the capability to be combined and interacted with other web services to function as a

new composite web service, in an Internet standard environment.

Each provider describes its web service functionality in a WSDL (Web Service Description

Language) standard file and publishes it on UDDI (Universal Description, Discovery and

Integration) repository. A UDDI registry hosted on the web allows various web services to be

stored on it and be discovered on the Internet. After deploying the web services on the Internet

the major step is web service discovery. The discovery process happens when a user sends a

request, through an IR (Information Retrieval) engine, to find services according to his/her

functional requirements. The mentioned process will search among the .wsdl files in the

available UDDI repositories to find the web services that satisfy user’s query. However, the

discovery process, based on functional requirements, won’t be completely accurate without non-

functional features (such as availability, response time, etc). Thus there should be QoS (Quality

of Service) or non-functional matching in addition to the functional matching.

2

With more and more web services published online, the selection process is becoming

more and more important, particularly the one based on the non-functional or QoS attributes, in

regard to assist requestors to find a desired service. In general, there are two types of service

requestors – the human users who could be the direct consumers of services or developers who

want to use them in more complex application development, or programs (e.g. a service

composition engine) which automatically send requests and select services for further tasks.

There have been many research works proposing various QoS description languages and

selection models. However, the end user is usually not the focal point of their designs and the

user support is either missing or lacking in these systems. Without the proper user support, the

accuracy of the QoS requests cannot be guaranteed, and without accurate QoS requests, even the

best selection model cannot satisfy users’ requirements. Therefore, we believe that a service

selection system should be user-centric, which is especially crucial for the human-involved

service selection.

In our proposed framework we assume that there is a certain way to collect the QoS data

and we just simply use the data for further processing. Moreover, we assume that the data we get

is reliable and trustworthy. In our experiment, we will use a real QoS dataset, and again we

assume that it is trustable and accurate.

1.2. Main Issues in QoS Languages and Selection Algorithms

 There are a few major issues in current selection approaches concerning the user support.

First of all, many systems assume that users are capable of formulating requests which precisely

reflect their QoS requirements. This assumption may not be true due to many reasons. For

instance, a user may not have the knowledge about what the realistic QoS values are. With a

3

request on reliability greater than 98%, there could be zero matching service. But 98% may be a

randomly picked number inferring high reliability. Lowering this number by a few percent, we

may find some matching services. Because of this kind of difficulty of choosing a right number,

it is not reliable for a selection system to assume the accuracy of the QoS requests from users and

build its success on top of this assumption. It is very desirable if the selection system can guide

users to choose the right QoS values.

Secondly, in many current systems, the user interface design is not a big concern. Different

selection models are proposed and then it is assumed that users would have the ability to submit

a proper query which works with the model, no matter how complex the query might be. The

user may need to have the knowledge on ontology, utility functions, fuzzy membership

functions, etc. In reality, many of the users don’t have this kind of knowledge. So we should

have a not-so-complex query language which is targeted for non-expert users, and a carefully

designed interface to help users formulate the query. The interface should provide a lot of

assistance tools to guide users making sure they will not feel overwhelmed.

Thirdly, the expressiveness of the QoS query language could be enhanced to allow

requestors to define their requirements in a more precise and comprehensive way. For instance,

in many papers, the QoS requirement is represented as either a number (e.g. reliability: 98%), or

a fuzzy description (e.g. reliability: very good). However, it is very possible that users may have

a mixed request –numeric values on some attributes and fuzzy expressions on others. Therefore,

the QoS language as well as the selection model should have the ability to support this kind of

request.

Another issue we want to address for the query language and the selection model is the lack

of support for defining relaxation policies, e.g. which quality attribute should be relaxed first if

4

services cannot satisfy all of the soft constraints. Usually the order and degree of relaxation is

decided by users’ preferences on those attributes, which might not be true all the time. For

instance, a user cares about price more than reliability if both requirements can be satisfied.

However, if none of the services can satisfy both of those, when relaxing the constraints, because

it is a critical task, the reliability just cannot be sacrificed or only to a small extent, then the price

constraint should be relaxed first and more. From this example we could see that it is necessary

to define a separate preference order and relaxation order, which is lacking in many current

works.

The final issue we want to address is the missing time dimension in many QoS languages,

e.g. time to invoke the service, and for how long the service will be used. If a service is supposed

to be used in future, then the selection should be based on the predicted future QoS values. Or if

a service is to be used for a long period of time, then the history record of this service, and its

consistency, stability or reputation would be more important factors to be considered. If the time

dimension could be added to queries, the selection model could be more properly designed.

1.3. Main Contributions

The main purpose of this thesis is to solve the above mentioned problems. We want to

propose a more expressive and powerful QoS query language targeted for non-expert users,

together with the user support on formulating queries and understanding services in the registry.

Our goal is to achieve a lower cognitive overload on users and in the mean time more options for

users to express their QoS requirements accurately, so that the selection process afterwards could

be more accurate and the result will be more satisfying.

5

Furthermore, we propose an enhanced selection model based on Mixed Integer

Programming (MIP) [2]. The reason for choosing MIP model is because of the existing problems

in the ontology and constraint programming approaches. The former has performance problems

and the latter has accuracy problems, in addition to not handling the over-constrained queries.

Moreover, in MIP, we can manage continuous, discrete and enumerated variables. In this thesis,

we build our selection model based on the original MIP algorithm [2], and we modify it in a way

that can handle relaxation policies per variables based on user defined relaxation orders, and

provide informative results in two categories of super-exact matches and partial matches. Our

selection model could also handle the fuzzy requirements using a clustering-based approach.

Our main contributions are three-fold: we define a more consumer (i.e. non-expert user)

oriented QoS query language with the support on various useful features such as a separate

relaxation order, fuzzy requirements and time dimension, we design a selection system interface

with the guided user support, and finally we propose an enhanced MIP selection algorithm

supportive of our language’s new features.

1.4. Outline of Thesis

 The rest of the thesis is organized as follows.

Chapter 2 gives a review on the related works, including various QoS languages both

semantic and syntactic based, then we go through major QoS-based service selection models

such as Description Logic based reasoning, Constraint Programming , Mixed Integer

Programming, Multi-Criteria Decision Making (MCDM), etc.

We explain QQL – our QoS query language in terms of elements and operators, and user

interface design for the guided query formulation process in Chapter 3. Moreover, we use a

6

query example to explain the validation process. After that, we present the architecture of our

user-centric selection system, and we also discuss how to process the newly proposed query

features such as fuzzy values and separate relaxation and preference orders. Next, we explain

our enhanced selection algorithm in terms of matching, relaxing and ranking methods. At the end

of the chapter, we illustrate our algorithm with a step-by-step case study.

In Chapter 4, we explain our actual system implementation and how we handle those new

features. In the experiment part, we provide some sample queries and their results. Then we

present the evaluations of our proposed selection algorithm compared with the simple MIP

selection method in terms of their efficiencies and accuracies.

Finally, Chapter 5 concludes the thesis and presents future works for further exploration.

7

CHAPTER 2

RELATED WORKS

Since there is no well accepted standard yet, in different research works, various types of

QoS languages have been defined. In general, there are two streams of approaches for QoS

specification and QoS-based service selection – one is built on semantic web technologies, and

the other is non-semantic based. In this chapter, we will first review QoS description languages,

and then provide an overview of the selection models under both categories.

2.1. Review on Web Service QoS Languages

Ontology is a description of existing concepts and entities and their relationship in a

particular domain, with its specific rules. It is usually closely connected with the semantic web

technology. The first category of QoS language is semantic-based and it is often called QoS

ontology, such as DAML-QoS [3], QoSOnt [4], WS-QoS [5], OWL-Q [6], onQoS [7], WS-

QoSOnto [8], QoS ontology defined in [9] [10], etc. A few common QoS properties include

name, category, data type, unit, scale, tendency, relationship, metric, priority, etc. Some ontology

supports even more, for instance, the dynamic attributes which are not fixed values and are

context-related [10], or the composite QoS attributes in which a few QoS attributes can be

combined with a given function [12]. As for the data types, the work in [8] supports a fairly

complete list consisting of single value types (Boolean, string, numeric, and enumeration) and

multiple value types (range, set, list, and vector). It also defines comparison rules for each type.

When defining the constraints on these QoS attributes, the users could specify them as either

8

hard (compulsory) or soft (optional) constraints, different operators can be used on different data

types, and both linear and non-linear constraints can be specified [6] [10] [8].

In DAML-QoS ontology [3], three layers exist, the QoS profile layer includes

matchmaking process, the QoS property definition layer contains domain and constraint

definitions, and the metrics layer has QoS metrics specifications. In this ontology, the user can

define his/her request of QoS constraints in the QoS profile layer. Despite supporting quality

levels and roles for requesters and providers, the DAML-QoS ontology could not support QoS

tendency, preferences and differentiation between hard or soft constraints. Also, the QoS metric

model is not very strong.

In [13], the proposed ontology concentrates on a fairly comprehensive list of terms for

defining QoS features of a web service. However, the support for metrics and value types

definition is not very strong, and the mentioned conversion method is working only between

units that are not metrics.

The onQoS ontology [14] supports different aspect of QoS features such as metrics, metric

conversion, value types, and QoS, except that it does not support QoS features such as tendency,

unit, dynamic discovery, QoS relationship, QoS preferences, QoS mandatory, and QoS quality

levels.

QoSOnt [4] has been proposed for the purpose of developing service centric systems. This

ontology has three main levels: unit layer, attribute layer and domain layer. The SQRM is a

graphical tool in QoSOnt [4] for stating QoS queries which is hardly user supportive. In this

proposal the upper ontology contains QoS vocabulary and concepts; the middle ontology

includes definition of QoS aspects about distributed systems. This ontology has similar point of

view as that discussed in [14], except it is not supporting relationships between QoS attributes.

9

Moreover, the conversion method has usage only for QoS units, not QoS metrics or mapping

QoS properties.

The QoS-MO ontology [15] supports multiple quality levels, interdependent QoS

requirements between providers and requesters, though gives a weak support for QoS units,

value types, metrics, and preferences.

The OWL-Q ontology in [6] is an upper ontology that extends OWL-S by using the

semantic QoS metric matching, resulting in more relevant offers by just applying syntactic

matching. OWL-Q has a fairly complete list for QoS features, except tendency and the QoS

properties’ usage support.

The designed ontology in [8] supports defining great details for QoS features at various

levels. It is by far the most comprehensive one according to our knowledge.

The proposed Policy Centered Meta-model (PCM) for QoS features of web services in

[10] is based on the clear differences between requestors’ and providers’ NFP (Non-Functional

Properties), in which policies expressing NFP specifications should be aggregated to one entity

under an applicable criteria, and a list of NFP constraints operators. This model is described

using a BNF (Backus Normal Form) syntax in which semantics comes from an ontology based

on OWL-DL and WSML (Web Service Modeling Language).

The second category of QoS languages is syntactic based. They are usually XML based and

include both hard and soft quality constraints.

QRL [19] supports the temporal-aware requirement, e.g. availability > 98% during working

hours, > 90% otherwise. This language is based on constraint programming in which each

constraint is checked by a constraint solver. Thus, there is no need to write a separate method to

match the temporal awareness of the request and offers. This is one of the few QoS languages

10

which consider time factors. However, it is different from our time dimension which considers

when to invoke the service, and for how long the service will be used. Moreover, our time

feature will be used in selecting offers based on predicted QoS attributes.

The QoS model proposed in [17] is more from a consumer’s perspective, in which QoS is

measured by the difference between the perceived and expected quality. The model also

introduces a compensation factor for unsatisfied quality requirements and briefly mentions about

the importance of the temporal dimension.

The QoS model used in [18] is based on the UML QoS Framework, with an extension on

defining priorities between QoS attributes and dimensions. Q-WSDL [16] is a QoS extension to

WSDL and is considered as a meta-model.

onQoS-QL [7] is a QoS query language defined based on the QoS ontology onQoS. Users

can express a subjective, personalized and contextualized way to evaluate a service on selected

QoS parameters and get an aggregated QoS overall value. A QoS query is essentially a few

predicates combined with aggregation functions. Defining such a query is not easy for non-

expert users. However, the system didn’t provide a graphical interface for users to specify

queries.

A few of these papers also reported their user interface designs. The work in [5]

implemented a WS-QoS editor, which can be used by both service providers and requestors to

specify their QoS requirements or offers without knowing the underlying XML schema. This

schema includes three types of elements: the SQoSRequirementDefinition element representing

user’s requirements; the WSQoSOfferDefinition element that shows QoSattributes of the offered

web services; and finally the WSQoSOntology element that contains user (a client or service

provider) defined QoS parameters and necessary protocol references.

11

The work in [4] also provides a graphical tool to help users edit their QoS requirements

which are visualized as a tree, with QoS attributes as leaves and comparison operators as nodes.

Accordingly the matchmaking algorithm traverses the requirement tree from bottom leaves to

upper ones till reaches the root. The evaluated final value of the whole tree would be a Boolean

value, either true, which represents matching of the query and offer, or false, that shows

otherwise. However, the user support in both systems is very limited.

One problem with these QoS languages is that they don’t have enough support for helping

the users define their QoS requirements accurately. They usually assume that users would like to

spend time on learning their QoS languages and also assume that the QoS specifications fed into

their selection systems are accurate. It might be true for providers, but most likely not true for

consumers.

Most of these works focus on defining the QoS description languages, which could be used

by both providers and consumers. Few works look into the query language itself, which is used

by only consumers and should be closely related with the user interface support.

2.2. Review on QoS-based Web Service Selection Methods

The web service matchmaking or selection process checks offered web services to find the

ones that satisfy all the user’s requirements. There are two types of matchmaking: functional and

non-functional. Here, we will mainly review the QoS-based selection methods. One of the

important issues in matchmaking is how to find web services that users would like to choose

despite their differences from the query. Moreover, the matchmaker algorithm should provide a

ranking order to suggest well informed options to the requester.

12

QoS-based web service selection is usually considered as an optimization problem.

Different approaches have been proposed, such as Description Logic (DL) based reasoning,

Constraint Programming (CP), Mixed Integer Programming (MIP), Multi-Criteria Decision

Making (MCDM), etc.

In [12], the discovery process has three steps: using DL reasoning to guarantee the

semantic compatibility, translating QoS conditions into constraints and using CP to find

satisfying values, and finally selecting services by optimizing the global utility function.

In [6] a semantic QoS metric matching algorithm is proposed that can match offers and

request even if they use similar concepts but different instances from the OWL-Q ontology. This

algorithm runs through three steps, firstly it produces CSP (Constraint Satisfaction problem) for

the request and each offer, secondly it solves all the produced CSPs with an existing CSP solver,

and thirdly it finds only the common metrics in the solution space of the request and offer,

afterwards the algorithm needs to find out if every solution of the offer exists in the solution

space of the request and returns the matched ones.

In [2], the semantic QoS description is transformed into MIP problems, and then a MIP

engine is exploited for matchmaking. MIP is a method of mathematical optimization in which

the problem’s specifications are coded with some variables, and constraints and an objective

function are to be minimized or maximized. MIP approach is proved to perform better than CP

according to their experiment.

Sometimes QoS is represented as a vector for each service, and then the matching and

ranking are based on distance or similarity measurement, or a weighted sum of all attributes [11]

[20]. In [20], the matching algorithm compares the lower and upper bound values of each QoS

attributes of numeric data types one by one, if all of the offered web service’s QoS attributes

13

satisfy the requirement , that offer will be selected. In case of boolean type, it simply checks if

they are equal or not. This paper did not consider any QoS attributes with fuzzy values. The

ranking part models QoS data in a vector and sorts the services based on aggregation of

consumer’s given weight to each attribute. The selection algorithm in [11] chooses the offers

according to user’s constraints and arranges them in a matrix where each row shows a service

and each column represents a constraint. Based on this matrix, all the offers will be ranked after

a procedure of normalization and distance calculation for each service.

Outranking algorithm (a type of MCDM techniques) is applied to evaluate and trade-off

between alternative services based on their QoS priorities in [18]. Outranking method introduces

a global priority constraint in the selection algorithm that can be used like an ordinary constraint.

With this global priority constraint the priority of QoS features could be defined relatively. The

outranking methods evaluate each offer according to a list of conditions which can be decision

maker’s priorities or other problem specifications. The PROMETHEE [23] class that has been

used in the outranking methods compares each two alternative offers at a time which results in

the larger deviation offers as the higher preferred ones.

The selection model in [8] is based on AHP (Analytic Hierarchy Process) – another type of

MCDM methods. AHP has three connected steps: decomposing the problem, comparative

decisions and synthesizing priorities. The generated hierarchy includes the ultimate goal,

conditions and their sub-conditions, and different alternative solutions. The QoS ranking

problem can be expressed as a MCDM problem , since there is a process of ranking different

web services (alternative solutions in AHP) based on their QoS attributes, in compare with the

user’s query (ultimate goal in AHP) which contains various QoS constraints (conditions in

AHP). The flow of the selection algorithm in [8] is as the following: In the first step, a hierarchy

14

is designed by the decision makers for the problem at hand, and the offers are ranked based on

their QoS values. In the second step, in order to find the relative priorities, the elements of each

pair of two conditions are compared. Then for each two conditions, their solutions are compared

to identify their relative local rank. In the third step, to calculate the whole rank of each solution,

the relative local ranks of all conditions are aggregated.

Another category of the QoS-based service selection methods [24] is based on fuzzy

theory. Usually in these approaches, QoS criteria can be categorized into a few groups such as

“very poor, medium poor, poor, medium, good, medium good, very good” [26]. Then, a group of

evaluators should assess web services based on those QoS criteria. By using different fuzzy set

models, the final fuzzy ranking values can be calculated. In [26], selecting web services has

modeled as FMCDM (Fuzzy Multiple Criteria Decision Making) with three types of weights:

objective (reliability of evaluation) and subjective (users’ preferences) weights and a new

synthetic weight that combines and balances them together. Fuzzy numbers are used to represent

subjective weights and entropy values that show the average amount of information quantity of

each QoS attribute, or objective weights, which are used to develop the consistency of decision

making. A fuzzy decision making model is used in [25] to express the users’ inaccurate

preferences, then calculate the weight of each QoS condition based on LEM (Linguistic Entropy

Method), and finally select the relevant offers according to the query. LEM is a new method

based on traditional entropy weighting technique that, by using fuzzy logic, prioritized each QoS

attribute according to user’s preferences and confidence level. The major issues with these fuzzy

ranking models include a high requirement on user evaluation efforts, the subjective nature and

possible untruthful evaluations, a requirement for users to define fuzzy numbers or membership

functions, and an ignorance of crisp form data types.

15

2.3. Summary

In this chapter, we reviewed QoS description languages both semantic and syntactic based.

Semantic description languages are commonly known as ontology based descriptions and are

proposed through various research works such as DAML-QoS, QoSOnt, OWL-Q, etc. Syntactic

description languages are usually XML-based and require less processing time.

Furthermore, we reviewed different selection models for both semantic and syntactic QoS

languages. QoS-based web service selection is usually considered as an optimization problem

and different optimization approaches have been used such as CP [6], MIP [2], MCDM [12], etc.

 Based on these reviews we could identify a few issues which should be addressed, such

as users’ incapability of formulating requests which precisely reflect their QoS requirements, the

insufficiency of the user interface design, lack of the expressiveness of the QoS query language

in case of a mixed request on numeric values and fuzzy expressions, lack of support for defining

independent relaxation policies from preference orders, and finally the missing time dimension

in many QoS languages. Therefore in our work we tried to address all these issues by the

following solutions: we define a more consumer oriented QoS query language with the support

on various useful features such as a separate relaxation order, fuzzy requirements and time

dimension; we design a selection system interface with the guided user support; and at last we

propose an enhanced MIP selection algorithm supportive of our language’s new features.

16

CHAPTER 3

QOS-BASED WEB SERVICE SELECTION FRAMEWORK

3.1. QQL – Our User-Centric QoS Query Language

3.1.1. The Language Definition

Our main interest of defining a QoS language is to add a few properties which we feel are

necessary to express the real user requirement in a more accurate and comprehensive way and

are missing in the current languages. These properties can be added to an existing QoS language

or included in a new language. Here, we take the second approach – design a new language, in

which we also include many of the commonly supported properties. When we compare the

semantic and syntactic approaches of defining QoS languages, semantic languages are usually

complex and time consuming and the subsequent selection models may suffer from the

performance problems, whereas the syntactic models may have a low accuracy due to the

mismatching vocabulary or metrics [6]. In the current stage, we choose the syntactic approach.

Nonetheless, the same properties can be added into QoS ontology in a similar way.

In our proposed language, a QoS query can be represented as a 6-tuple:

QQL Query : <qID, uID, sbTime, timeConstraints, qosConstraints, dataSource>

The first three components represent the query ID, user ID and the submission time

respectively. These components are mainly used for the logging purpose so that it is possible to

run a query-log mining process in future.

Time constraint itself includes four elements as defined below:

17

timeConstraints : < Invocation start date, invocation end date, duration of usage, frequency of

usage >

Invocation start date is defined as the date when the service is first invoked, invocation end

date is defined as the date when the service is last invoked, duration of usage is defined as how

long the service is used in each invocation (e.g. a stock price service could be used for 8 hours

per invocation, whereas a currency exchange service may be used only once), and frequency of

usage is defined as how often the service is invoked during the period from start date to end date

(e.g. 5 times per week). It should be noticed that these are only estimated values based on user’s

expectation during the query time, and the actual values signed in the final contract may not be

the same. By providing a time dimension in the query language, users are capable of defining a

possible usage pattern, which could give more information for a more accurate selection in the

later stage. All these time constraints are optional. If a user doesn’t have such a requirement, or

enough knowledge of specifying it accurately, it could be left blank and the selection would be

based on the current QoS values. If a user doesn’t specify all of the time constraints, then the

prediction would be based on only the available ones.

dataSource defines which data source the selection process relies on. There are three

common sources to get the service QoS data – descriptions published by providers, SLAs

(Service Level Agreement) signed between requestors and providers, and the actual monitored

data from each invocation instance. The published QoS description is usually available and thus

is the default data source. The other two, the SLAs or monitored data, may not be available, and

they often indicate a higher level of complexity of the selection algorithm and a longer

processing time. We keep this property for future usage, and for now we just take the default

value.

18

QoS constraints include constraints on all N QoS attributes the system supports, which can

be represented as an N-tuple:

qosConstraints : <qosConstraint1, qosConstraint2, …, qosConstraintN>

If a user doesn’t have a concern on a QoS attribute, the corresponding constraint will be

empty. For any non-empty QoS constraint, it can be further described by an 8-tuple as:

qosConstrainti: <name, type, unit, tendency, preference order, relaxation order, weight, values>

Name defines the name of the attribute, e.g. reliability, response time. Type refers to the

data type of the attribute, and currently we support Boolean, string, enumeration, numeric, and

fuzzy types. Unit defines the measurement unit of the attribute, e.g. millisecond for response

time. The conversion will be done automatically between the supported units. Tendency

represents user’s expectation on the attribute values, positive tendency means a higher value is

preferred, and negative tendency means a lower value is preferred. It is usually a predefined

value depending on the data type, e.g. tendency for response time is negative, and tendency for

reliability is positive.

Preference order defines the order of user preference on each attribute. If there are N

attributes, the value range of the preference would be between 0 to N, with 1 referring to the

most preferred attribute and a bigger value referring to a less preferred attribute. It is possible

that a user might assign a same preference value to different attributes. If the preference value on

an attribute is zero, it means that user doesn’t have a concern on this attribute and it should not

be checked during the selection process. Relaxation order defines the order of relaxation when

there has to be a trade-off among different quality attributes. Its value range is also between 0

and N, with 1 referring to the attribute whose value should be first relaxed, and a bigger value

referring to an attribute which should be relaxed later. There could be multiple attributes having

19

a same relaxation order value, and zero means relaxation cannot be done on this attribute (i.e. a

hard constraint). As we mentioned before, relaxation order could be unrelated to the preference

order. However, if this value is not specified in a query, by default, it is opposite to the

preference order, e.g. the most preferred attribute will be relaxed the last. By defining the

relaxation order, we can differentiate the soft and hard constraints, and furthermore define how

we want to deal with soft constraints. Weight measures the preference level of each attribute. It is

not defined by the user. It is automatically converted from the preference order by normalizing

its value to (0, 1) range.

Values define the user requirement on the attribute values. Our query language supports

three types of value representation. Boolean, string and enumeration types are represented as a

single value. Numeric type is always represented as a range. The reason is that most of the

constraints on numeric values could be defined as a range, e.g. “response time < 2 second” could

be represented as (0, 2), “reliability > 95%” could be rewritten as (95%, 100%), etc. For fuzzy

type, depending on the granularity level we want to achieve, we could define different linguistic

expressions. One example could be “good”, “medium”, and “poor”. It also supports this

particular expression – “best available”, because we believe it is a common requirement in many

users’ minds.

Definitely, this property list can be further expanded with good features from those existing

languages, e.g. the validity period [19], the composite attribute [12], etc.

Regarding the QoS attributes, there have been a few research efforts such as [27] of

defining a quite complete list of them and grouping them into different categories. Our language

could support all of them. However, in the later examples, we will only use a few. Figure 3.1

below shows the hierarchical relationship between different language elements.

20

Figure 3.1- The hierarchy of the QQL language elements

Figure 3.2 shows a sample query in accordance with our proposed query language. In the

proposed framework an XML document is generated for each query. The root element of the

21

document is a <QoSQuery> that includes at least one <qID>, <uID>, <sbTime>,

<dataSource> element, and may have zero or more <timeConstraints> or < qosConstraints>

elements.

Figure 3.2- A segment of a sample QQL query

<?xml version="1.0" encoding="utf-8"?>

<QoSQuery>

 <qID>1</qID>
 <uID>10</uID>

 <sbTime>01/10/2010 16:40:40 ET</sbTime>

 <timeConstraints>
 <startDate>02/17/2010</startDate>

 <endDate>07/17/2010</endDate>

 <frequencyOfUsage>
 <value>3</value>

 <unit>week</unit>

 </frequencyOfUsage>
 <durationOfUsage>

 <value>2</value>

 <unit>hours</unit>
 </durationOfUsage>

 </timeConstraints>

<QoSConstraints>

 <QoSConstraint>

<name>price</name>
<type>numeric</type>

 <unit>US dollar</unit>

 <tendency>negative</tendency>
<preference>4</preference>

< relaxationOrder>0</relaxationOrder>

 <weight>0.3</weight>
 <values type="range" >

 <from>0</from>

 <to>150</to>
 </values>

 </QoSConstraint>

……
 <QoSConstraint>

<name>reliability</name>

<type>numeric</type>
 <unit>%</unit>

<tendency>positive</tendency>

<preference>3</preference>
< relaxation>1</relaxation>

 <weight>0.1</weight>

 <values type="fuzzy" >
 <value>good</value>

 </values>

 </QoSConstraint>

 </QoSConstraints>

<dataSource>provider</ dataSource >

</QoSQuery>

22

3.1.2. Validation

In our proposed language, the validation process for the original query and offers constraint

specifications is using the XML-schema [28] as shown in Figure 3.3. In this schema we describe

each element, together with its type and usage in terms of being mandatory or optional.

3.1.3. Operators

In our language, we have two types of operators, between constraints and inside the

constraint; the former includes Boolean operators such as “AND” and “OR”, e.g.

<?xml version="1.0" encoding="utf-8"?>

<xs:schema id="Query_Schema" targetNamespace="http://tempuri.org/Query_Schema.xsd"

elementFormDefault="qualified"

 xmlns="http://tempuri.org/Query_Schema.xsd"

xmlns:mstns="http://tempuri.org/Query_Schema.xsd"

xmlns:xs="http://www.w3.org/2001/XMLSchema" >

 <xs:element name="Query">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="constraints">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="QoSAttribute">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute name="name" type="xs:positiveInteger" use="required"/>

 <xs:attribute name="unit" type="xs:string" use="required"/>

 <xs:attribute name="Type" type="xs:string" use="required"/>

 <xs:attribute name="tendency" type="xs:string" use="required"/>

 <xs:attribute name="weight" type="xs:string" />

 <xs:attribute name="preference" type="xs:int" use="optional"/>

 <xs:attribute name="relaxation" type="xs:int" use="optional"/>

 <xs:attribute name="value" type="xs:string" use="optional"/>

 <xs:complexType>

 <xs:simpleContent>

 <xs:attribute name="from" type="xs:positiveInteger" use="optional"/>

 <xs:attribute name="to" type="xs:positiveInteger" use="optional"/>

 </xs:simpleContent>

 </xs:complexType>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <!-- end of constraints-->

Figure 3.3- QQL schema

23

(q.availability> 85% AND q.responsetime < 5 msec); and the latter contains operators like “>”,

“<” and “=”, e.g. (q. availability > 85%)

The Boolean operator “AND” is explicitly used between constraints of a query. However,

if any QoS attributes have relaxation order greater than zero, the “OR” operator will be used

implicitly between constraints. For instance, if the query is:

(q. availability > 85% , q.avaialability.relaxation:1;

 q.responsetime < 5 msec , q.responsetime.relaxation:2;)

The matchmaking process with these two constraints is described as the following: in the

first step, without any relaxation, we gather all the offers that satisfy the availability constraint

“AND” response time constraint; then in the second step, with availability relaxed, we get all

the offers that satisfy the availability constraint “OR” the response time constraint; and in the

third step, with both availability and reliability relaxed, we collect all the offers either satisfy the

availability constraint “OR” the response time constraint “OR” none of them.

3.2. The Guided Query Formulation Process

For a user-centric service selection system, the user interface (UI) design is really crucial.

On one hand, it should be compatible with our expressive query language, and on the other hand,

it shouldn’t put too much burden on users to define a complex QoS query. We believe that a

guided process is necessary for query formulation and the UI design should facilitate this

process.

The following figures show the key interfaces during the query formulation stage. Figure

3.4 illustrates the first step – selecting the QoS attributes and the keyword. The keyword is an

item that should be selected in this page to lead the framework to produce XML-based

24

documents, compatible with our system, for each offer. By defining the keyword, e.g. flight, the

user specifies his/her query to be applied to offers that have this particular functionality.

Then there is a list of all supported QoS attributes in the left side of the page. When a user

selects an attribute from this list, it will be added to the list on the right side. After the user picks

up all the concerned attributes, he/she could move the mouse over each item of the right list to

get more information (e.g. definition of the attribute, or a sample request on this attribute).

Adding or removing any attributes will be done by pressing the buttons between the lists. By

restricting the attribute names to the system supported list, it could solve the vocabulary

mismatch problem to a certain extent.

Figure 3.4- Step 1 of query formulation: selecting QoS attributes

The second step – defining the QoS requirement, is illustrated in Figure 3.5. As we

discussed before, sometimes users may not have any knowledge about the realistic value ranges

on those QoS attributes. In this case, the users could click for example the “Reliability Browse”

link, and then a new window will be popped up to show the distribution patterns of the values of

this selected QoS attribute, as shown in Figure 3.6. The main purpose of this browsing function

is to let users know what QoS values the current services have and what patterns could be

25

revealed from service clusters, so that users could put down more reasonable values in their

queries. The detailed discussion on this function can be found in [29]. In the browsing page the

user could find three groups of services clustered based on their values on the selected QoS

attribute. By clicking on any of these groups, the actual QoS values (the interval data) of services

in that cluster are shown in details in the middle textbox. The summary information for each

cluster is shown in the bottom textbox, including the centroid of the cluster, the size, and the

closest three services to the center point.

Figure 3.5- Step 2 of query formulation, specifying the QoS requirements

26

Figure 3.6- Step 3 of query formulation: browsing QoS attribute’s values (e.g. reliability)

After users have gained some knowledge on the value ranges and distribution patterns of

the selected attributes, for each attribute, they could choose to define their QoS requirement

either as a single/range value or as a fuzzy value. Depending on the attribute type, the system

decides whether it should be a single or range value. For the range value, if the first textbox is

empty, it means the requirement is less than (or equal to) the value specified in the second

textbox, and if the second textbox is empty, then it is greater than (or equal to) the value

specified in the first textbox. For the single value, again, depending on the type, users could

either choose from the valid values supported by the system or enter the free text. If users choose

fuzzy values, currently supported values include “best available”, “good”, “medium” and “poor”.

Figure 3.7 shows the fourth step – defining the order of preference and relaxation. For the

selected attributes in the first step, users are able to define which attributes they are more

concerned about and which attributes should be relaxed first in the service selection stage. For

27

the unselected attributes, their preference values are set to zero. For the selected attributes, if

users leave their preference value fields empty, the values would be set to 1 plus the biggest

preference value specified by users. For instance, based on the example input in Figure 3.7,

preference for response time is 2, for price 4, for reliability 3, and for authentication 1. For the

relaxation order, if an attribute is selected in step 1, but its relaxation order is undefined, it means

it is a hard constraint and shouldn’t be relaxed. As shown in Figure 3.7, price and response time

are hard constraints. Relaxation order is only meaningful when the attribute is selected in step 1.

Figure 3.7- Step 4 of query formulation: defining QoS attributes’ preferences and relaxations

Figure 3.8 shows the last step – defining the time constraints. When a user performs a

search, he/she may want to use this service right away, or sometimes in future. If the service is

supposed to be invoked in a future period of time, it would be more accurate if the system could

predict the service quality level at the specified future time and make the selection decision

28

based on the predicted QoS values. The expected usage patterns would also affect how we want

to do the selection. This interface is quite straightforward. Users just need to input different time

values as requested. If the invocation is actually now, then the box beside Time shouldn’t be

checked, and the prediction step will be skipped. Or if a user is not sure about the exact

invocation frequency or usage duration, he/she could either input an estimated value or leave

those fields blank. Prediction is only based on the given inputs.

Figure 3.8-Step 5 of query formulation, definition of time constraints

The sample query shown in Figure 3.2 is formulated based on the user input illustrated by

Figures 3.4 to 3.8. By introducing this kind of UI design, we could make sure users could get full

support when formulating their QoS queries and they also have the freedom of skipping many of

the input boxes and take the default settings. It reduces users’ cognitive overload and in the mean

time provides the capability of submitting an expressive QoS query.

After formulating the query, user will be led to the result page, as shown in Figure 3.9. The

first grid shows the query, the second one shows the offers that match the query or are better than

the requirements, and the last grid shows offers that partially matches the query. All the results

are ranked based on their matching scores.

29

Figure 3.9- The final result page

3.3. The Architecture Model

Having explained our QoS query language and the UI design, in this section we will

illustrate how we can use them in a user-centric service selection system. Figure 3.10 shows the

30

system architecture. We could see that the service requestor is interacting with the system

through the user interface, unaware of the complex query language and underlying selection

models. When a user chooses to browse the QoS data in a service repository, the browsing

component will rely on the clustering component to show the distribution pattern of the QoS

values. Browsing step could give a user more confidence on choosing the right values for the

query. Afterwards, the user follows the four steps as explained before and enters all the required

data, and then the input data will be fed into the QoS query formulating component. The

generated XML-based query is then sent to the selection and ranking component. If the user has

entered the time constraints, the prediction component will be triggered so that the selection is

based on the predicted data instead of the current data. Finally the matching services will be

presented to the user as a ranked list. QoS prediction is not studied and implemented in this

thesis. However, the prediction algorithms from previous research works [30] can be added into

our framework.

Figure 3.10- An architecture model illustration

31

3.4. Handling Fuzzy Values

Before we move on to explain our selection model, we first discuss how we process the

mixed fuzzy and range requirements. Usually the fuzzy requirement is handled by the fuzzy set

theory, and users are required to input their evaluations on the services. We tackle this issue from

a different perspective. When a user enters a fuzzy requirement, e.g. reliability: good, it basically

means the user doesn’t have a specific value to define, as long as the quality level on this

attribute is on high end, he/she will be happy. Instead of asking users to evaluate which service

has a good or poor reliability, we cluster all services into a few groups on this particular attribute.

If we define three quality levels: good, medium and poor, then we cluster the services into three

groups. All services fall into one of the three categories. When we define more quality levels, we

will have more clusters in the result. Take the most popular clustering algorithm – k-means

algorithm [31] as an example, the number of quality levels decides the number of clusters – the

value k.

Again, we will use an example to illustrate the selection process for mixed type queries.

Suppose the QoS query is: (price < $100, reliability: good, response time: medium). In order to

do matchmaking, first, we cluster services into 3 groups (Srel
1
, Srel

2
, Srel

3
) based on reliability, and

take the cluster with high end values – Srel
3
. Then services are clustered into 3 groups (Sres

1
, Sres

2
,

Sres
3
) based on response time, and we take the clusters with high end and medium range values –

Sres
2
, Sres

3
. The reason we choose 2 clusters is that users always prefer a better quality service,

and if users specify the fuzzy requirement as medium, it means both medium and good are

acceptable. The next step is to get all services satisfying the requirement on price – Sprice. The

final matching services will be the intersection of the three sets:

32

. Afterwards, the preference-aware selection models can be

used to rank these services.

3.4.1. Clustering

K-means clustering algorithm categorizes the QoS data into k groups or clusters. Since in

our system for the QoS attributes with fixed values we support single and range values, and

single values can be easily converted to range values (e.g. 1 converted to [1, 1]), the data objects

in the clustering algorithm are interval vectors representing values of different QoS attributes of

web services. It chooses k initial centers, and then places each interval data in the group with the

closest distance. The distance is calculated by the Euclidean function as shown below:

DE (a , b) = (3-1)

Where a, b represent two QoS vectors [(a1l, a1u), (a2l, a2u), …, (anl, anu)] and [(b1l, b1u), (b2l,

b2u), …, (bnl, bnu)], ail is to represent the lower bound of the interval and aiu is to represent the

upper bound of the interval, and n is the number of attributes the system supports.

After going through all the interval data, the algorithm calculates the new centers for each

cluster and re-assigns vectors to clusters again. These steps will be repeated until an adequacy

criterion converges to an optimal value. Below is the formula for the adequacy function,

 (3-2)

Where k is the number of clusters, vectors are the centroids of the

partition , and q is a random vector from Ci.

33

3.5. Selection Algorithm

Ideally, a matchmaking algorithm would result in offers that match both functional and

QoS requirements of the user’s query. However, in reality returning faultless offers is

impossible. One of the problems is how to select the offers that despite their differences from the

query, the user might want to choose. Another problem is the ranking part; the matchmaking

algorithm should calculate the distance between query and offer in a way that the user can decide

clearly which offer to choose. The goal of solving the first problem leads us to design a selection

algorithm based on user’s defined relaxation and preference orders to find offers that user might

choose even though they might not be exact matches. In our matchmaking algorithm, we design

two result lists: super-exact matches and partial matches. The former includes offers that satisfy

all the user’s requirements or have better QoS features than the request. And the latter contains

offers that have at least one worse QoS features than the request.

Our proposed algorithm has 3 parts – selection based on functional requirements, selection

based on QoS requirements, and ranking part which is the answer to the second issue mentioned

earlier. Figure 3.11 shows the detailed architecture inside the QoS selection component.

34

Figure 3.11- Detailed architecture of selection and ranking component

Figure 3.12 shows the flowchart of the selection algorithm:

IR engine

35

Figure 3.12 - The flowchart of the selection algorithm

36

3.5.1. Selection based on functional requirements

In order to find functionally matched web services, an IR (Information Retrieval) system

has been used to find the offered web services according to user’s chosen keywords. The IR

system can index all the keywords related to web services in the repository and those keywords

can be found from the WSDL files or other sources. Then the system provides an interface to

users, in which users can type in a keyword, and then the matching services will be discovered

and retrieved. For instance, if we want to find services related to “protein”, we just need to type

in this term, and then the result is a list of web services that has something to do with protein.

3.5.2. Selection based on QoS requirements

The next step in our algorithm is finding web services that satisfy the QoS requirements.

This process will take place on the result list returned from the previous step. In order to explain,

the query and offers are represented as:

Q = (q1, q2,…,qn) , O = (qs1, qs2,…,qsn) , i=1,2,…,n

where n is the number of quality attributes. For instance if our QQL query is Q = (0.95, 2, 100,

true), n would be 4 and q1 represents the required value on reliability, q2 refers to the value of

response time, q3 is the value of price and q4 is the value of authentication. Respectively qs1, qs2,

qs3, qs4 show the values of these QoS attributes from the offers. The below representations show

offers in the same format as the query:

O1 = (0.90, 1, 90, true) , O2 = (0.90, 1, 90, true)

In QoS-based selection part, there are 3 steps: sorting, handling hard constraints, and

handling soft constraints.

In sorting step, we sort each attribute qi of the query Q for the purpose of efficiency. The

desired order for different types of attributes is single, range and fuzzy attributes. Since matching

37

the single attribute is the simplest one of the matching process, we sort the attributes in a way to

consider the single attributes first. The single matching process checks the constraints of the

offer and query to see if they are equal or not. For example q4 of the Q is a single attribute which

has only two values, true or false; the single matching process compares Q.q4 and O1.q4, since

they have the same value the result will be true for this particular attribute of O1 on q4. Then

range matching process is considered and the unsatisfying services are ruled out so as to leave

fewer offers for applying clustering in the fuzzy attributes situations.

In the next step, we check the query’s hard constraints by going through the sorted list of

the functionally matched web services, to make sure each offer will satisfy them. The constraints

with qi.relax = 0 are identified as hard constraints and are not allowed to be relaxed. Thus the

selection algorithm will go through each offer and select the ones that satisfy all the hard

constraints.

In the next step, the algorithm will handle the soft constraints. The soft constraints are

identified by non zero relaxation order or qi.relax <> 0. Basically in this step all the offers from

the previous step (offers satisfying the hard constraints) are considered for soft constraints

matching. Offers satisfying all the soft constraints are added to the super-exact matches list. Then

the algorithm goes through the relaxation routine. In this routine the respective constraints based

on the relaxation order are removed one by one from the smallest value to the greatest. And all

other remaining constraints are checked to find if they satisfy the query requirement. If any offer

matching at least one soft constraint is found, it will be added to the partial matched list.

The routine we use to find if each attribute of an offer satisfies the constraint of the query is

MIP [2]. We will produce a MIP problem for each attribute of offers and the request. The MIP

problem is an optimization problem depending on qi.tendency in terms of maximization or

38

minimization. Based on the tendency of an attribute, we can calculate utility function for each

and its corresponding preference-aware weight. The following formula shows the utility

function of :

 (3-3)

where min and max in formula (3-3) represents the smallest and greatest value of in the whole

functionally matched list of offers. Also represents a variable that can be either of the query

or of an offer.

The weight parameter for each attribute is calculated as formula (3-4):

 (3-4)

Formula (3-4) basically indicates that the weight parameter is based on preference order of each

attribute. and variables are the maximum and minimum value of the

preferences in the QQL query. Since in some cases and are equal and

consequently is zero, we include a small random value 0.1 in formula to avoid having zero

weights. We will continue with producing MIP problems (MIPP) as shown below:

If (qi.tendency = positive) then

 (3-5) (3-6)

If (qi.tendency = negative) then

 (3-7) (3-8)

In these formulas, j indicates the total number of offers, and formula (3-6) and (3-8) imply

MIPP for all offers and formula (3-5) and (3-7) show MIPP for the QQL query. Depending on

39

the tendency, MIPP for offers is to find either the maximum or minimum value of the weighted

utility functions among all offers, MIPP for query in our case is just one single value.

The MIP problem will be solved by using lp_solve. lp_solve is a free open source

application [35] for solving linear integer programming optimization problems based on branch

and bound techniques. With branch and bound method, the solver can manage integer variables

(or single variables), semi-continuous (or range variables) variables and Special Ordered Sets (or

enumeration and fuzzy variables). After solving each MIPP, the algorithm decides if each offer

satisfies the QQL query according to (3-9) and (3-10). These two formulas show if the MIPPs of

the offer and query are met we will have a matching offer to put into the result lists, either in

super-exact matches list or in partial matches list. If the matching routine was called for an offer

after matching all the hard and soft constraints, the offer will be placed in the super-exact

matched list. But if the matching routine was called during the relaxation stage, the offer will be

categorized in the partial matched list.

If (qi.tendency = positive) then (e.g. reliability)

If (>=) then

Matched-list.add (Si) (3-9)

If (qi.tendency = negative) then (e.g. response time)

If (<=) then

Matched-list.add (Si) (3-10)

40

3.5.3. Ranking

After matching and selection we will have two lists including super-exact matched and

partial matched offers. The services satisfying all the constraints are ranked together and will be

placed in the former list, and then other services that satisfy all the hard constraints and some of

the soft constraints will be ranked in the latter list. In order to rank the selected services we

continue with already produced MIP problems. First we will calculate Q.MIPP for the query and

Sj.MIPP for each service as an aggregation of all the MIPPs’ attributes as shown by formula (3-

11). As explained earlier, j corresponds to the total number of offers, and i represents the number

of QoS attributes. Thus in (3-11) Sj.MIPP represents MIPP for offers and Q.MIPP shows MIPP

for the QQL query.

Sj.MIPP = , Q.MIPP = (3-11)

Then, the difference between Sj.MIPP of each offer and Q.MIPP of the request will be

calculated according to (3-12) and taken as the ranking score for that service. After calculating

the scores we can sort the services, from the smallest ranking value to the greatest, and present

them to the requester.

Si. ranking_score = | Sj.MIPP - Q. MIPP | (3-12)

where Si. ranking_score is the absolute value of the difference between Sj.MIPP of an offer and

Q.MIPP.

41

3.6. Case Studies of Processing QQL Queries

We will use one example to show the role of the relaxation order in the selection process.

Suppose a user selects four concerned QoS attributes in step 1: reliability, response time, price

and authentication. Table 3.1 shows a sample QoS requirement (Req.) and 6 QoS offers (s1 to s6),

alongside with user defined relaxation (Relax.) and preference order (Pref).

Table 3.1- The case study with a sample QoS query and six QoS offers

 q1:Reliability q2:Response

Time

q3:Price q4:Authentication

Pref. 3 2 1 3

Relax. 0 1 2 3

Q > 95% < 2s < $100 True

S1 > 95% < 3s $95 True

S2 > 98% < 1s $110 True

S3 > 98% < 1s $90 False

S4 > 98% < 4s $80 True

S5 > 90% < 1s $90 True

S6 > 95% < 2s $99 True

According to MIP formula described before we have utility function for each attribute

according to (3-3) as below.

Moreover we have weight parameter for each attribute based on (3-4):

42

We first calculate MIPP for reliability. According to (3-5) we will have:

q1 >= 0.95;  Q.MIPP.q1 = 0.03125

According to (3-6) we will have:

S1.qs1 >= 0.95  S1.MIPP.qs1 = 0.03125

Since reliability has positive tendency, according to (3-9), we can decide that S1 satisfies the

request on this attribute. We can continue to check other services.

Similarly we can calculate MIPP for the other three attributes. Then, according to (3-11) and (3-

12) we will have the ranking scores of each offer:

Q.MIPP = Q.MIPP.q1 + Q.MIPP.q2 + Q.MIPP.q3 + Q.MIPP.q4 = 0.61975

MIPP_S1 = S1 .MIPP.qs1 + S1 .MIPP.qs2 + S1 .MIPP.qs3 + S1 .MIPP.qs4 = 0.64375

 S1. ranking_score = 0.024

MIPP_S2 = 5  S2. ranking_score = 0.248

MIPP _S3 = 2  S3. ranking_score = 0.528

MIPP _S4 = 3.98  S4. ranking_score = 0.152

MIPP _S5 = 2  S5. ranking_score = 0.528

MIPP _S6 = 2  S6. ranking_score = 0.036

Table 3.2 below shows the results of the case study. In the table, we highlight the service

attribute values which could satisfy the constraints.

43

Table 3.2-The results of the case study

Q MIPP.q1 MIPP.q2 MIPP.q3 MIPP.q4 Q.MIPP

 0.03125 0.1815 0.357 0.05 0.61975

 MIPP.qs1 MIPP.qs2 MIPP.qs3 MIPP.qs4 S.MIPP Diff Rank

S1 0.03125 0.363 0.1995 0.05 0.64375 0.024 1

S2 0.05 0 0.672 0.05 0.772 0.248 3

S3 0.05 0 0.042 0 0.092 0.528 4

S4 0.05 0.5445 -0.273 0.05 0.3715 0.152 2

S5 0 0 0.042 0.05 0.092 0.528 -1

S6 0.03125 0.1815 0.3255 0.05 0.58825 0.036 0

Based on what we explained before, the preference order of the 4 attributes is (3, 2, 1, 3),

and the relaxation order is (0, 1, 2, 3). When the relaxation order is zero, it means the

corresponding constraint is a hard constraint. Among the six services in our case study S6 will be

placed at the top of the result list since it satisfies all the constraints. Besides, when calculating

S6.MIPP, its value is greater than the value for Q.MIPP, which shows that S6 is slightly better

than what the requester is looking for so it will be placed in the super-exact matched list. The

offer S5 will be filtered out since it does not meet the hard constraint on reliability. All the other

four offers are qualified. Since none of them satisfy all the requirements, we need to look at the

relaxation order to decide how we can trade-off among different offers. According to their MIPP

distance, the final ranking for partially matched offers could be (S1, S4, S2, S3).

From this example, we could see that when the trade-off decision needs to be made, the

relaxation order should be considered first, and then the preference order. Most of the current

44

selection models would not consider them differently, which we feel couldn’t fully capture the

real user requirements.

3.7. Summary

In this chapter we defined our QoS language features, in terms of variables’ different

properties and operators, which we feel are necessary to express the real user requirement in a

more accurate and comprehensive way and are missing in the current languages. Our proposed

XML-based QoS language has the property of portability, extensibility, modularity, verification

and validation.

By portability we mean it could work well alongside other applications which is provided

by XML features, e.g. to encapsulate information in order to be used by other systems. With

XML infrastructure as the underlying structure for our language, extensibility will be provided.

Moreover, by using XML we will have a modular and structured document (query) and using

XML and XML-schema allows our language to verify and validate user’s queries easily and

clearly. Later in the chapter we introduced our user-centric selection framework’s UI which

could guide users through different steps of formulating their queries.

Moreover, in this chapter we explained the user-centric selection system architecture, and

we also discussed how to process the newly proposed features in our query language, such as

fuzzy values and separate relaxation and preference orders. Handling fuzzy values is

implemented by an interval-based clustering algorithm. Then we presented our selection

algorithm using a flowchart and then moved on to explain it in terms of matching, relaxing and

ranking methods. At the end of the chapter we further illustrated our selection and ranking

algorithm with a case study step by step.

45

CHAPTER 4

IMPLEMENTATION AND EVALUATION

4.1. Implementation

As discussed earlier, our contributions are proposing a new QoS query language which

leads us to design a user-centric interface to help users formulate queries and a selection method

that supports fuzzy values and separate relaxation and preference orders. In this chapter first we

are going through various steps of implementing the QoS-based selection framework, and then

we present some examples and finally discuss the evaluation of our selection algorithm.

The dataset we used in our experiment is a web service dataset called QWS [32], [33]

which includes information of 2507 web services. For each service, it contains real data for

various QoS attributes including response time, availability, throughput, successability,

reliability, compliance, best practices, latency and documentation, as well as the service name

and its WSDL address.

In the functional matching layer, we implement an application using Lucene [34], to

discover the functional matched offers from this QWS dataset. In order to get relevant keywords

for each service, we extract terms from “service name” field, and we download the WSDL file if

it is still available and extract terms from it. Then we use Lucene to index all the keywords to

form our search database. Lucene is one of the Apache projects. This open-source and free

search engine could be used as an API in any application that needs text searching and indexing

functionalities [34]. Lucene architecture is mainly based on documents including text fields. This

structure helps Lucene API to work with any file format as long as it could extract the data of the

fields, so naturally files like PDFs, XML, HTML, word documents and etc. are usable in this

46

model. By using Lucene’s search package, we wrote a Java program to search through the

service name and WSDL file of each web service based on an input keyword. If our defined

keyword was found, that web service would be written in a text file as one of the functional

matches according to that keyword. The output file of this program will be used as the input for

the next layer - non-functional matching layer, of our framework. We design our experiments

using some most frequently occurring keywords such as development, management, google,

amazon, commerce, etc. As the result of this layer we have text files containing matched offers

for each keyword.

In the non-functional matching layer, we used C# ASP.Net to implement our whole

framework. Our program is a web application that runs on a web server. Thus it can be accessed

by users easily without installing or configuring anything on their local machines, just by typing

the URL of the application like any other web pages. According to the prototype design as

explained earlier, we have six steps in our selection framework. In the first step, user is guided to

choose a keyword and some QoS attributes to formulate his/her query. By choosing a keyword,

the text file of the previous step is found and all the offers in it will be transformed to XML files

based on their QoS values. Each offer’s XML document has a structure like our language schema

that was introduced in Figure 3.3. As a result we will have an XML repository, on the web

server, that has XML files of functionally matched offers. In the second step, user will have to

put together all the QoS requirements simply by typing each value in its textbox. To get more

information on the value distribution of each attribute, he/she can use browse link on that

particular attribute. This link leads user to a pop up web page, implemented as step 3 of the

framework, which shows data clusters based on k-means clustering algorithm. The result of step

2 is an XML document representing user’s query. The fourth step is about specifying preference

47

and relaxation order per attribute. Preference order helps calculating the weight to be used in the

ranking process, and relaxation order helps in relaxation process to be used in selection

procedure. Since we already have the query and all the offers’ XML documents, we just need to

update them in this step with the new information of relaxation and preference orders. The fifth

step is about time constraints, despite designing this web page the framework won’t do anything

based on this page, it is just extra information right now, though it can be used in prediction

procedure in future works. The sixth step is to do the matching and ranking for the query and

generate the results page. This page will show the request, super-exact matches and partial

matches separately. In order to generate this page, two main tasks are done: selection and

ranking. Before explaining how they are implemented, we first clarify the matching method,

which is a step in the selection process.

4.1.1. The Matching Method

In the matching method, for each attribute of each offer and query, we produce a mixed

integer programming problem. This problem is an optimization problem, maximization or

minimization, based on attribute’s tendency. Figure 4.1 shows an example MIPP for the

availability attribute of an offer. In cases of single type values and fuzzy values, first they are

converted to range values and then the MIP problems are produced. The single type values are

converted to value 1 or 0 depending on whether it is true or false. The fuzzy type values are

converted to range values based on the range of the chosen cluster. For example, if user chooses

medium cluster and the min-max range was (0.8, 0.92), the new range value would be this range

instead of the medium term that represents a fuzzy value.

48

Figure 4.1- An instance of an offer’s MIPP

Then the program solves each pair of two problems, the query and an offer’s MIPP.

Solving the MIPP is implemented by using a free API, called lp-solve.5.5.0.15 [35]. The result of

solving the query and an offer’s MIPP is compared with each other, as shown in Figure 4.2:

Figure 4.2- Query and offer comparison

For instance, if we have the availability requirement as “Query.Availability > 75” and an

offer is “offer.Availability = 77”, the MIPP of the offer is shown in Figure 4.1 and the MIPP of

the query is in Figure 4.3.

if ((reqMIPP <= offerMIPP) && (attr_tend == "positive"))

 ret = true;

if ((reqMIPP >= offerMIPP) && (attr_tend == "negative"))

 ret = true;

49

Figure 4.3- The availability MIPP of the query

After solving each problem, the objective function’s result of the query and offer is shown

in Figure 4.4, 4.5.

Figure 4.4-The result of objective function of the query

50

Figure 4.5-The result of objective function of the offer

Since the availability’s tendency is positive, based on the conditions in Figure 4.2, the

result of the comparison is true, the query’s MIPP value 0.17 is less than the offer’s value 0.2,

meaning that the offer satisfies the request on this particular attribute. Thus for all the attributes

of the offer and the query, this process will be applied, and if all the offer’s attributes meet the

requirements, that offer will be a match for the query.

In order to create MIPP model in lp-solve, we follow these steps:

 Make MIPP model with make_lp(0, 2) method with 2 columns, this method creates a

blank MIPP model that will be configured with our desired variables during the following

steps.

51

 Set the columns’ names, one as our attribute, the other as a constant.

We have to include this constant variable, because the API solver needs the model to

contain at least two variables.

 Set the max or min of the problem based on the attribute’s tendency.

 Calculate the weight based on the preference order of the QoS attribute.

 Then normalize the attribute’s value and with the calculated weight from the previous

step, produce the utility function.

 Set the objective function based on the utility function.

 Add the constraints based on tendency.

 Add the constraint for the constant.

if (str_tendency == "negative")

 lpsolve55.lpsolve.set_maxim(lp);

if (str_tendency == "positive")

 lpsolve55.lpsolve.set_minim(lp);

double w = (find_max_pref() – qi.pref + 0.1)/ (find_max_pref() - find_min_pref());

max = find_max(attr_name);

min = find_min(attr_name);

Uq = w*(q-min)/(max-min)

lpsolve55.lpsolve.str_set_obj_fn(lp, uq.ToString());

if (str_tendency == "positive")
 lpsolve55.lpsolve.str_add_constraint(lp, "1 0",

 lpsolve.lpsolve_constr_types.GE, Convert.ToDouble(lowerVal));

if (str_tendency == "negative")

 lpsolve55.lpsolve.str_add_constraint(lp, "1 0",

 lpsolve.lpsolve_constr_types.LE, Convert.ToDouble(upperVal));

lpsolve55.lpsolve.str_add_constraint(lp, "0 1", lpsolve.lpsolve_constr_types.EQ, 1);

52

 Solve the problem and return the value as MIPP.

 Then delete the problem, to free the used space.

4.1.2. The Selection Method

First we need to find exact or super matched offers for the requested query. In this method

we find all the offers that satisfy all the constraints of the query, and then insert them into a table

for later presentation as the super-exact matches in the final results. The matching method is as

explained earlier.

Then we consider the remaining offers, and find the ones that satisfy all the hard

constraints (attributes with the relaxation order of zero). We apply the relaxation method on

these offers. Relaxation method goes through all the attributes with the relaxation order other

than zero, from smallest to the greatest. For each offer, it will remove the corresponding

constraint and apply the matching method to see if it will satisfy other constraints in the request.

In this way we will find partial matches for the request, and then insert them into another table.

4.1.3. The Ranking Method

In this method, we just solve all MIP problems of each offer and the query. Then we

calculate the distance between each offer and query, the result would be the ranking score.

lpsolve55.lpsolve.solve(lp);

lpsolve55.lpsolve.delete_lp(lp);

53

4.2. Experiments

We design our experiments based on queries of different keywords. We rank the keywords

for those services based on their frequencies and choose the 9 most frequent terms including

amazon, business, flight, commerce, protein, development, google, management, and Net. For

each one we design one or more query with different QoS requirements.

4.2.1. Sample Queries and Results

In the first sample query, the keyword is “amazon” and the QQL query is Q1 = (280,

medium, 9, 8), where q1 is response time, q2 is availability, q3 is latency and q4 is throughput. The

relaxation and preference order of the query are defined as follows:

Relaxation: (1,2,3,4) Preference: (2,1,2,1)

The returning result from our framework is shown in Table 4.1. In this table, the first 13

rows presented in darker background show the offers that satisfy all the constraints. The rest of

the rows show offers that partially match the query’s constraints in the ascending order of their

ranking scores, from the smallest value to the largest. As presented in Table 4.1, the framework

applied the clustering method on the fuzzy value of q2 and returns the constraint as q2>65 which

contains the “medium” and “good” value for the availability. Since there are not any hard

constraints in this sample query, the partially matched offers are the ones that at least satisfy one

of the soft constraints in the order of their relaxation order values as q1 with relaxation order of 1,

q2 with relaxation order of 2, q3 with relaxation order of 3, and q4 with relaxation order of 4.

54

Table 4.1- Sample Result for a Query with “Amazon” as the Keyword

55

In the second sample query, the keyword is “protein”. The QQL query is: Q2 = (250, 84,

30, 9), where q1 is response time, q2 is availability, q3 is latency and q4 is throughput. The

relaxation and preference order of the query are as follows:

Relaxation: (0,0,1,2) Preference: (1,2,4,3)

The returning result in Table 4.2 shows 62 offers, the first 16 rows in the darker

background are the offers that satisfy all the constraints. The rest of the table shows offers that

partially match the query’s constraints in the order of their ranking score, from the smallest value

to the largest. Since in this query we have hard constraints on q1 and q2, the partially matched

offers are the ones that satisfy these two constraints but may not satisfy others. Based on the

query and the relaxation and preference order, the partially matched offers should have q1 less

than 250 and q2 greater than 84 but if other constraints are not met, they will be all right as well.

4.3. Evaluation of QoS Selection Algorithm

Since our algorithm adds extra parts such as relaxation and clustering components on top of

the original MIP algorithm, we would like to check the efficiency of our algorithm. We

conducted a comparison of the execution time between our selection method and the original

(plain) MIP selection algorithm. The data for this analysis is shown in Table 4.3 which includes

five columns, the first one is the keywords, the second one is the average time of running our

algorithm in milliseconds, and the third column shows the average execution time of the plain

MIP algorithm in milliseconds. The fourth column is the difference of the second and third

columns and the last one is percentage of the difference. As illustrated in Figure 4.6, the time

difference between our algorithm and plain MIP is not greater than 34%, which shows although

we added the clustering and relaxation modules to the plain MIP algorithm, the processing time

of the new algorithm is not increased that much.

56

Table 4.2- Sample Result for a Query with “Protein” as the Keyword

57

Table 4.3- Comparison of average execution time of plain MIP and our algorithm

Keyword

Avg. Exec. Time of

our algorithm (ms)

Avg. Exec.Time of

Plain MIP(ms) Difference % of Difference

amazon 64.3745 58.832 5.5425 8.6

commerce 11.376 7.818 3.558 31.2

development 37.025 26.128 10.897 29.4

flight 3.376 3.049 0.327 10.7

google 66.1335 55.18 10.9535 10.7

management 38.602 32.913 5.689 17.28

.Net 25.06533 16.46867 8.59667 34.2

protein 456.741 366.021 90.72 19.8

business 31.152 21.271 9.881 31.7

Figure 4.6- Average execution time of plain MIP and our algorithm

In the next evaluation, we conduct an experiment to measure the precision of our selection

algorithm. In this experiment we measure the precision of the plain MIP which is the base of our

58

algorithm; then we try to measure the precision of our proposed algorithm and finally compare

them with each other.

By finding the relevant offers in our algorithm result and plain MIP result and use the (4-1)

formula the precision is measured. Since for each keyword, we have at least two queries, thus we

calculate the average value of precision for each keyword based on its total number of queries.

 (4-1)

According to our implementation, based on the 9 chosen keywords, the average precision

of the selection algorithm of simple MIP and our algorithm is shown in Table 4.4.

Table 4.4- Precision of plain MIP and our algorithm

keyword

Avg. Precision of

our algorithm (%)

Avg. Precision of

Plain MIP (%)

amazon 97.82 28.26

commerce 94.44 17.65

development 95.83 16.66

flight 80 57

google 94.44 64.71

management 100 50

.Net 90.91 40

protein 98.38 26.23

business 91.23 4.5

As discussed earlier the matching method checks if each of the QoS attributes of an offer

will satisfy the request based on formula 3-4 and 3-5. Thus, as we expected, the result of the

plain MIP is only the offers satisfying all the constraints and offers with better QoS values

without considering the relaxation process. However our new algorithm returns partial matches

59

for the request as well as super and exact matches. If we consider just the precision of the

matched offers the precision for both algorithm are the same, the difference is the precision of

the partial matched offers. Figure 4.7 below shows the same result.

Figure 4.7- Precision of plain MIP and our algorithm

Another evaluation is done regarding the ranking results of our selection algorithm. In this

experiment we measure the ranking difference between our algorithm’s results and the manual

ranking result. We also compare the ranking results of the plain MIP algorithm with the manual

result. Taking the manual result as the baseline, we compare the ranking effectiveness of our

algorithm and the plain MIP. The ranking difference is calculated by Kendall tau method [36] as

a correlation coefficient between two ranked lists. In order to estimate the Kendall tau value, we

use a free application called “Past” [37] that implements this method and only needs inputs in the

form of spread sheets. The result is shown in Table 4.5 for each keyword.

60

According to [38], the value of calculated correlation between [0.1, 0.3] or [-0.3,-0.1]

shows a small correlation, values between [0.3, 0.5] or [-0.5,-0.3] represent a medium correlation

and between [0.5, 1.0] or [-1.0,-0.5] demonstrate a large correlation. The large value for

correlation coefficient means that the two compared ranking sets have high level of similarity.

According to Table 4.5, we can see that among the 9 keywords, the results for 4 of them from

our approach are very close to the manual ranking, 2 are close, and 3 are not close. And the

ranking from our approach is more similar to the manual ranking than the plain MIP approach.

One of the reasons for the low Kendall Tau values for some queries is that Kendall Tau test is to

measure the exact match between two lists, which might be hard to achieve in many cases. Since

the size of our test set is quite limited, more experiments are required to reach a conclusion.

Table 4.5 – Comparison of Kendall Tau correlation coefficient

between our algorithm and plain MIP

keyword

Kendall Tau

Of our

algorithm

 Kendall Tau

Of plain MIP

amazon 0.25 0.21

commerce 0.75 0.67

development -0.6 -0.1

flight 0.33 0.33

google 0.1 0.1

management 0.21 -0.14

.Net -0.67 -0.67

protein 0.18 0.18

business 0.1 0.099

61

Figure 4.8- Correlation of plain MIP and our algorithm

4.4. Summary

In this chapter, we explained our framework’s implementation including different layers

such as functional matching layer and QoS matching layer. In the functional matching layer, we

implemented an application using Lucene, to discover the functionally matched offers from a test

dataset. In the QoS matching layer, we could help users formulate their QoS queries step by step

in a guided way. Furthermore we discussed the implementation of our selection algorithms,

ranking method and matching method. And then we presented two sample queries with different

values, in terms of fuzzy and range types. Finally we analyzed our selection algorithms by

measuring and comparing the average running time and precision between the plain MIP and our

enhanced selection algorithm. We also measured the accuracy of our selection algorithm by

checking the difference of the ranking results from the plain MIP ranked results.

62

CHAPTER 5

CONCLUSIONS

5.1. Conclusion

We started our thesis by reviewing various researches on QoS query language descriptions

and selection models. According to these reviews, we found some issues that have not been

solved yet. Thus we proposed our new QoS query language and selection model to support the

solution for these problems, and we specially emphasized on the support for the user-centric

selection process. Our language has a few new features such as the separate preference and

relaxation order, the mixed fuzzy and value requests, which could give users more flexibility and

power to express their actual requirements in a more accurate way. We understand that a new

query language always poses some cognitive overload on users, and thus we design our system

in a guided way to make sure it is easy for users to formulate their queries. To support all these

new features, our selection model adds extra handlers on top of the MIP algorithm. From our

experiment, we could see that although our algorithm takes longer time to generate the result

compared with the original MIP algorithm, the precision of the ranking result is largely

improved.

5.2. Main Contributions

There are three main contributions of this thesis:

63

 We proposed a more expressive and powerful QoS query language suitable for

unprofessional users, together with the user support on formulating queries and

understanding services in the registry.

 We provided new features such as time dimension, separate relaxation and preference

policies and browsing various QoS attributes for our new language.

 We proposed an enhanced selection model based on MIP which is capable of handling

relaxation policies per variables based on user defined relaxation orders, processing fuzzy

requirements, and providing ranked results in two categories of super-exact matches and

partial matches.

5.3. Future Works

There are a few directions we can work on in the future. One possibility for improving our

framework is implementing the prediction part according to the time dimension of the proposed

language. Another option to improve our algorithm efficiency is using other distance functions

in clustering component, such as Hausdorff [39] , or City Block [29] distance functions. Another

alternative for expanding our research would be to convert our syntactic language to semantic

language. And finally we can work on further improving our ranking algorithm.

64

APPENDIX A -Selection method

void selection()

 {

 request = S_assign_Xml[0];

 for (int p = 0; p < offers_cnt; p++)

 {

 Range_result[p] = selection_Hard(S_assign_Xml[p]);

 }

 AllHard_result = Range_result;

 for (int h = 1; h < offers_cnt; h++)

 insert(AllHard_result[h], h, "tbl_Hard_selected");

 for (int j = 0; j < GridView2.Rows.Count; j++)

 {

 Label lblSID = (Label)GridView2.Rows[j].FindControl("lblSID");

 TextBox txtRank = (TextBox)GridView2.Rows[j].FindControl("txtRank");

 updateRank(lblSID.Text, Convert.ToDouble(txtRank.Text), "tbl_Hard_selected");

 }

 for (int i = 0; i < offers_cnt; i++)

 {

 Range_result[i] = selection_Range(S_assign_Xml[i]);

 }

 whole_result = Range_result;

 for (int h = 1; h < offers_cnt; h++)

 insert(whole_result[h], h, "tbl_Selected");

 for (int j = 0; j < GridView2.Rows.Count; j++)

 {

 Label lblSID = (Label)GridView2.Rows[j].FindControl("lblSID");

 TextBox txtRank = (TextBox)GridView2.Rows[j].FindControl("txtRank");

 updateRank(lblSID.Text, Convert.ToDouble(txtRank.Text), "tbl_Selected");

 }

 int empty_whole = 0;

 for (int p = 1; p < offers_cnt; p++)

 {

 if (whole_result[p].isEmpty(whole_result[p]) == false)

 {

 empty_whole++;

 }

 }

 //startdate

 for (int r = 1; r < attr_cnt; r++)

 {

 for (int j = 1; j < offers_cnt; j++)

 {

 Range_result[j] = selection_Range_Soft(whole_result[j],r);

 }

 }

 whole_result_soft = Range_result;

 int empty_whole2 = 0;

 for (int p = 1; p < offers_cnt; p++)

 {

 if (whole_result_soft[p].isEmpty(whole_result_soft[p]) == false)

 {

 ++empty_whole2;

 }

 }

65

 if (empty_whole2 == 0) // it means the whole intersection of soft constraints is

empty

 {

 for (int r = 1; r <= attr_cnt; r++)

 {

 for (int g = 1; g < offers_cnt; g++)

 {

 if (r == whole_result[g].reliability.relax_order)

 {

 for (int j = 1; j < offers_cnt; j++)

 {

 Range_result[j] = selection_Range_Soft(whole_result[j], r);

 }

 }

 if (r == whole_result[g].responsetime.relax_order)

 {

 for (int j = 1; j < offers_cnt; j++)

 {

 Range_result[j] = selection_Range_Soft(whole_result[j], r);

 }

 }

 if (r == whole_result[g].price.relax_order)

 {

 for (int j = 1; j < offers_cnt; j++)

 {

 Range_result[j] = selection_Range_Soft(whole_result[j], r);

 }

 }

 if (r == whole_result[g].authentication.relax_order)

 {

 for (int j = 0; j < offers_cnt; j++)

 {

 Range_result[j] = selection_Range_Soft(whole_result[j], r);

 }

 }

 if (r == whole_result[g].availability.relax_order)

 {

 for (int j = 1; j < offers_cnt; j++)

 {

 Range_result[j] = selection_Range_Soft(whole_result[j], r);

 }

 }

 if (r == whole_result[g].latency.relax_order)

 {

 for (int j = 1; j < offers_cnt; j++)

 {

 Range_result[j] = selection_Range_Soft(whole_result[j], r);

 }

 }

 if (r == whole_result[g].throughput.relax_order)

 {

 for (int j = 1; j < offers_cnt; j++)

 {

 Range_result[j] = selection_Range_Soft(whole_result[j], r);

 }

 }

 }

 }

 whole_result_soft = Range_result;

 for (int h = 1; h < offers_cnt; h++)

 insert(whole_result_soft[h], h, "tbl_Selected");

 delete("tbl_Selected", "tbl_Hard_selected");

 for (int j = 0; j < GridView2.Rows.Count; j++)

 {

 Label lblSID = (Label)GridView2.Rows[j].FindControl("lblSID");

 TextBox txtRank = (TextBox)GridView2.Rows[j].FindControl("txtRank");

 updateRank(lblSID.Text, Convert.ToDouble(txtRank.Text), "tbl_Selected");

 }

 }

 //stopdate

 GridView4.DataBind();

 GridView5.DataBind();

 System.GC.Collect();

 }

66

APPENDIX B - Matching method

Ranking method

 double ranking(string SID)

 {

 double s_r = 0.0, req_r = 0.0;

 double diff = 0.0;

 req_r = lp_solve(S_assign_Xml[0], 0);

 int ind = Convert.ToInt32(SID.Substring(SID.IndexOf("S")+1));

 s_r = lp_solve(S_assign_Xml[ind], ind);

 diff = Math.Abs(req_r - s_r);

 return diff;

 }

 double lp_solve_matching(string attr_name, string str_tendency, int prefOrder,

 double lowerVal , double upperVal)

 {

 string uq = "";

 double min = 0.0, max = 0.0;

 double MIP_pref = 0.0;

 if (attr_name != "")

 {

 int lp;

 lp = lpsolve55.lpsolve.make_lp(0, 2);

 if (attr_name == "response time")

 lpsolve55.lpsolve.set_col_name(lp, 1, "responsetime");

 else

 lpsolve55.lpsolve.set_col_name(lp, 1, attr_name);

 lpsolve55.lpsolve.set_col_name(lp, 2, "c");

 if (str_tendency == "negative")

 lpsolve55.lpsolve.set_maxim(lp);

 if (str_tendency == "positive")

 lpsolve55.lpsolve.set_minim(lp);

 if (str_tendency == "neutral")

 lpsolve55.lpsolve.set_maxim(lp);

 max = find_max(attr_name);

 min = find_min(attr_name);

 double w = find_weight(attr_name, prefOrder);

 writeXML_weights(attr_name, w);

 uq = (w / (max - min)).ToString();

 uq += " " + (-w * min / (max - min)).ToString();

 lpsolve55.lpsolve.str_set_obj_fn(lp, uq.ToString());

 if (str_tendency == "positive")

 lpsolve55.lpsolve.str_add_constraint(lp, "1 0", lpsolve.lpsolve_constr_types.GE,

Convert.ToDouble(lowerVal));

 if (str_tendency == "negative")

 lpsolve55.lpsolve.str_add_constraint(lp, "1 0", lpsolve.lpsolve_constr_types.LE,

Convert.ToDouble(upperVal));

 lpsolve55.lpsolve.str_add_constraint(lp, "0 1",

lpsolve.lpsolve_constr_types.EQ, 1);

 lpsolve55.lpsolve.set_outputfile(lp, "C://test6//" + attr_name + "_S" +

"_result.lp");

 lpsolve55.lpsolve.write_lp(lp, "C://test6//" + attr_name + "_S" + ".lp");

 lpsolve55.lpsolve.solve(lp);

 lpsolve55.lpsolve.print_objective(lp);

 lpsolve55.lpsolve.print_solution(lp, 2);

 lpsolve55.lpsolve.print_constraints(lp, 2);

 MIP_pref = lpsolve55.lpsolve.get_objective(lp);

 lpsolve55.lpsolve.delete_lp(lp);

 }

 return MIP_pref;

 }

 bool range(string a_name, string attr_tend, int pref, object req_up_val,

object req_low_val, object S_up_val, object S_low_val)

 {

 bool ret = false;

 double reqMIPP = 0.0, offerMIPP = 0.0;

 reqMIPP = lp_solve_matching(a_name, attr_tend, pref,

 Convert.ToDouble(req_low_val), Convert.ToDouble(req_up_val));

 offerMIPP = lp_solve_matching(a_name, attr_tend, pref,

 Convert.ToDouble(S_low_val) , Convert.ToDouble(S_up_val));

 if ((reqMIPP <= offerMIPP) && (attr_tend == "positive"))

 ret = true;

 if ((reqMIPP >= offerMIPP) && (attr_tend == "negative"))

 ret = true;

 return ret;

 }

67

APPENDIX C - Ranking method

 double ranking(string SID)

 {

 double s_r = 0.0, req_r = 0.0;

 double diff = 0.0;

 req_r = lp_solve(S_assign_Xml[0], 0);

 int ind = Convert.ToInt32(SID.Substring(SID.IndexOf("S")+1));

 s_r = lp_solve(S_assign_Xml[ind], ind);

 diff = Math.Abs(req_r - s_r);

 return diff;

 }

 double lp_solve(S_Obj S_beRanked, int counter)

 {

 string attr_name = "";

 string[] uq = new string[1000];

 double rank_whole = 0.0;

 double min = 0.0, max = 0.0;

 string str_tendency = "neutral";

 for (int k = 0; k < attr_Order.Count(); k++)

 {

 attr_name = attr_Order[k].ToString();

 if (attr_name != "")

 {

 str_tendency = S_beRanked.find_tendency(attr_name).ToString();

 int lp;

 lp = lpsolve55.lpsolve.make_lp(0, 2);

 if (attr_name == "response time")

 lpsolve55.lpsolve.set_col_name(lp, 1, "responsetime");

 else

 lpsolve55.lpsolve.set_col_name(lp, 1, attr_name);

 lpsolve55.lpsolve.set_col_name(lp, 2, "c");

 if (str_tendency == "negative")

 lpsolve55.lpsolve.set_maxim(lp);

 if (str_tendency == "positive")

 lpsolve55.lpsolve.set_minim(lp);

 if (str_tendency == "neutral")

 lpsolve55.lpsolve.set_maxim(lp);

 max = find_max(attr_name);

 min = find_min(attr_name);

 double w = find_weight(attr_name, S_beRanked.find_pref_order(attr_name));

 writeXML_weights(attr_name, w);

 uq[k] = (w / (max - min)).ToString();

 uq[k] += " " + (-w * min / (max - min)).ToString();

 lpsolve55.lpsolve.str_set_obj_fn(lp, uq[k].ToString());

 if (str_tendency == "positive")

 lpsolve55.lpsolve.str_add_constraint(lp, "1 0",

 lpsolve.lpsolve_constr_types.GE, Convert.ToDouble(S_beRanked.find_lower_val(attr_name)));

 if (str_tendency == "negative")

 lpsolve55.lpsolve.str_add_constraint(lp, "1 0",

 lpsolve.lpsolve_constr_types.LE, Convert.ToDouble(S_beRanked.find_upper_val(attr_name)));

 if (str_tendency == "neutral")

 {

 if (S_beRanked.find_val(attr_name).Equals(true))

 lpsolve55.lpsolve.str_add_constraint(lp, "1 0",

 lpsolve.lpsolve_constr_types.EQ, 1.0);

 else

 lpsolve55.lpsolve.str_add_constraint(lp, "1 0",

lpsolve.lpsolve_constr_types.EQ, 0.0);

 }

68

 lpsolve55.lpsolve.str_add_constraint(lp, "0 1", lpsolve.lpsolve_constr_types.EQ, 1);

 lpsolve55.lpsolve.set_outputfile(lp, "C://test4//" + attr_name + "_S" +

counter.ToString() + "_result.lp");

 lpsolve55.lpsolve.write_lp(lp, "C://test4//" + attr_name + "_S" + counter.ToString()

+ ".lp");

 lpsolve55.lpsolve.solve(lp);

 lpsolve55.lpsolve.print_objective(lp);

 lpsolve55.lpsolve.print_solution(lp, 2);

 lpsolve55.lpsolve.print_constraints(lp, 2);

 double rank = lpsolve55.lpsolve.get_objective(lp);

 rank_whole += rank;

 lpsolve55.lpsolve.delete_lp(lp);

 }

 }

 return rank_whole;

 }

69

APPENDIX D - Clustering method

void Browse(int cond, string attribute)

 {

 int minInd = 0, maxInd = 0, medInd = 0;

 DateTime startTotalTime = DateTime.Now;

 csCluster selectedCluster = new csCluster();

 csKMeans kMeans = new csKMeans();

 string f_attr = "C:\\Users\\delnavaz\\Documents\\Visual Studio

2008\\WebSites\\myQL\\App_Data\\Cluster_data_" +

 attribute + ".txt";

 initialCluster = kMeans.RetrieveData(f_attr);

 DateTime startRoutineTime = DateTime.Now;

 selectedCluster = (csCluster)(kMeans.CloneObject((csCluster)(kMeans.kMeans(initialCluster,

3))));

 DateTime endRoutineTime = DateTime.Now;

 TimeSpan routineDuration = endRoutineTime - startRoutineTime;

 double min = 0, max = 0, med = 0;

 selectedCluster =

(csCluster)(kMeans.CloneObject((csCluster)(GetClustersSummery(selectedCluster))));

 if (selectedCluster.Count > 0)

 {

 min = selectedCluster[0].MinLowerBound;

 max = selectedCluster[0].MaxUpperBound;

 med = selectedCluster[0].MinLowerBound;

 for (int i = 0; i < selectedCluster.Count; i++)

 {

 if (min > selectedCluster[i].MinLowerBound)

 {

 minInd = i;

 min = selectedCluster[i].MinLowerBound;

 }

 if (max < selectedCluster[i].MaxUpperBound)

 {

 maxInd = i;

 max = selectedCluster[i].MaxUpperBound;

 }

 }

 for (int e = 0; e < 3; e++)

 {

 if ((e != maxInd) && (e != minInd))

 {

 medInd = e;

 med = (selectedCluster[e].MinLowerBound + selectedCluster[e].MaxUpperBound) / 2;

 }

 }

 double[] rangemin = new double[2];

 double[] rangemed = new double[2];

 double[] rangemed_child = new double[2];

 double[] rangemax = new double[2];

 rangemin = selectedCluster[minInd].Max();

 rangemed = selectedCluster[medInd].First();

 rangemax = selectedCluster[maxInd].Max();

70

 rangemed_child = selectedCluster[medInd][0];

 double min_med, max_med;

 min_med = rangemed_child[0];

 max_med = rangemed_child[1];

 for (int p = 1; p < selectedCluster[medInd].Count(); p++)

 {

 if (selectedCluster[medInd][p].Min() < min_med)

 min_med = selectedCluster[medInd][p].Min();

 if (selectedCluster[medInd][p].Max() > max_med)

 max_med = selectedCluster[medInd][p].Max();

 }

 if (cond == 2)

 {

 result[0] = rangemin[0];

 result[1] = rangemin[1];

 }

 if (cond == 1)

 {

 result[0] = min_med;

 result[1] = max_med;

 }

 if (cond == 0)

 {

 result[0] = rangemax[0];

 result[1] = rangemax[1];

 }

 cluster = (csCluster)(kMeans.CloneObject((csCluster)(selectedCluster)));

 }

 }

71

REFERENCES

[1] D. Austin, A. Barbir, C. Ferris, and S. Garg, ”Web services architecture requirements”, W3C

Working Group Note, W3C, 2002. Available at http://www.w3.org/TR/wsa-reqs. Last retrieved

at July 2010.

[2] K. Kritikos, and D. Plexousakis,” Mixed-Integer Programming for QoS-Based Web Service

Matchmaking”, IEEE Transaction on Services Computing, Vol. 2, Issue 2, pp.122-139, 2009.

[3] C. Zhou, L.T. Chia, and B.S. Lee, “Web Services Discovery with DAML-QoS Ontology”,

International Journal of Web Services Research, Vol. 2, Issue 2, pp. 43-66, 2005.

[4] G. Dobson, R. Lock, and I. Sommerville, “QoSOnt: a QoS Ontology for Service-Centric

Systems”, in Proceedings of the 31st ERUOMICRO Conference on Software Engineering and

Advanced Applications, pp. 80-87, 2005.

[5] M. Tian, A. Gramm, H. Ritter, and J. Schiller, “Efficient Selection and Monitoring of QoS-

aware Web Services with the WS-QoS Framework”, in Proceedings of the IEEE/WIC/ACM

International Conference on Web Intelligence, pp. 152-158, 2004.

[6] K. Kritikos, and D. Plexousakis, “Semantic QoS Metric Matching”, in Proceedings of the

European Conference on Web Services, pp. 265-274, 2006.

[7] G. Damiano, E. Giallonardo, and E. Zimeo, “onQoS-QL: A Query Language for QoS-based

Service Selection and Ranking”, in Proceedings of the International Conference on Service

Oriented Computing – Workshops, pp. 115-127, 2007.

http://www.w3.org/TR/wsa-reqs

72

[8] V.X. Tran, H. Tsuji, and R. Masuda, “A New QoS Ontology and its QoS-based Ranking

Algorithm for Web Services”, Simulation Modeling Practice and Theory, Vol 17, Issue 8, pp.

1378-1398, 2009.

[9] E.M. Maximilien, and M.P. Singh, “A Framework and Ontology for Dynamic Web Service

Selection”, IEEE Internet Computing, Vol 8, Issue 5, pp. 84-93, 2004.

[10] F.D. Paoli, M. Palmonari, M. Comerio, and A. Maurino, “A Meta-Model for Non-

Functional Property Descriptions of Web Services”, in Proceedings of the IEEE International

Conference on Web Services, pp. 393-400, 2008.

[11] Y.T. Liu, A.H.H. Ngu, L.Z. Zeng, “QoS Computation and Policing in Dynamic Web

Service Selection”, in Proceedings of the International Conference on World Wide Web, pp. 66-

73, 2004.

[12] Q. Ma, H. Wang, Y. Li, G. Xie, and F. Liu, “A Semantic QoS-aware Discovery Framework

for Web Services”, in Proceedings of the IEEE International Conference on Web Services,

pp.129-136, 2008.

[13] I.V. Papaioannou, D. T. Tsesmetzis, I. G. Roussaki, M. E. Anagnostou., “A QoS ontology

language for web services”, in Proceedings of the 20th International Conference on Advanced

Information Networking and Applications, IEEE Computer Society, pp. 18–25, 2006.

[14] E. Giallonardo, and E. Zimeo, “More semantics in QoS matching”, in Proceedings of the

IEEE International Conference on Service Oriented Computing and Applications, IEEE

Computer Society, pp. 163–171, 2007.

[15] G.F. Tondello, and F. Siqueira, “QoS-MO ontology for semantic QoS modeling”, in

Proceedings of ACM Symposium on Applied Computing, ACM Press, pp. 2336–2340 , 2008.

73

[16] A. D’Ambrogio, “A Model-driven WSDL Extension for Describing the QoS of Web

Services”, in Proceedings of the IEEE International Conference on Web Services, pp.789-796,

2006.

[17] Q.X. Du, C.H. Chi, S. Chen, and J.M. Deng, “Modeling Service Quality for Dynamic QoS

Publishing”, in Proceedings of the IEEE International Conference on Services Computing, pp.

307-314, 2008.

[18] C. Herssens, I.J. Jureta, and S. Faulkner, “Dealing with Quality Tradeoffs during Service

Selection”, in Proceedings of the International Conference on Autonomic Computing, pp. 77-86,

2008.

[19] O. Martín-Díaz, A. Ruiz-Cortés, A. Durán, and C. Müller, “An Approach to Temporal-

Aware Procurement of Web Services”, in Proceedings of the International Conference on

Service Oriented Computing, pp. 170-184, 2005.

[20] J. Yan, and J. Piao, “Towards QoS-based Web Service Discovery”, in Proceedings of the

International Conference on Service Oriented Computing, pp. 200-210, 2008.

[21] A. Zisman, J. Dooley, and G. Spanoudakis, “Proactive Runtime Service Discovery”, in

Proceedings of the IEEE International Conference on Services Computing, pp. 237-245, 2008.

[22] A. Ruiz-Cortés, O. Martín-Díaz, A.D. Toro, and M. Toro, “Improving the Automatic

Procurement of Web Services Using Constraint Programming”, International Journal on

Cooperative Information Systems, Vol 14, Issue 4, pp. 439-468, 2005.

[23] J. Brans, and P. Vincke. “A preference ranking organization method”, Management

Science, Vol 31, Issue 6, pp. 647–656, 1985.

74

[24] V.X. Tran, and H. Tsuji, “QoS based Ranking for Web Services: Fuzzy Approaches”, in

Proceedings of the 4th International Conference on Next Generation Web Services Practices, pp.

77-82, 2008.

 [25] P. Wang, K. Chao, C. Lo, C. Huang, and Y. Li, “A Fuzzy Model for Selection of QoS-

Aware Web Services”, in Proceedings of the IEEE International Conference on E-Business

Engineering, pp. 585-593, 2006.

[26] P. Xiong, and Y. Fan, “QoS-Aware Web Service Selection by a Synthetic Weight”, in

Proceedings of the 4th International Conference on Fuzzy Systems and Knowledge Discovery,

pp. 632-637, 2007.

[27] S. Ran, “A Model for Web Services Discovery with QoS”, ACM SIGecom Exchanges, Vol 4,

Issue 1, pp. 1-10, 2003.

[28] Cover pages: XML Schemas, Core Standards, http://xml.coverpages.org/schemas.html, Last

retrieved at July 2010.

[29] C. Ding, P. Sambamoorthy, and Y. Tan, “QoS Browsing for Web Service Selection”, in

Proceedings of the International Conference on Service Oriented Computing, pp. 285-300, 2009.

 [30] M. Li, J.P. Huai, and H.P. Guo, “An Adaptive Web Services Selection Method Based on

the QoS Prediction Mechanism”, in Proceedings of the IEEE/WIC/ACM International

Conference on Web Intelligence – Workshops, pp. 395-402, 2009.

[31] A.K. Jain, M.N. Murty, and P.J. Flynn, “Data Clustering: A Review,” ACM Computing

Surveys, Vol 31, Issue 3, pp.316-323, 1999.

[32] E. Al-Masri, Q. H. Mahmoud, “Discovering the best web service”, (poster) In Proceeding

of: 16
th

 International Conference on World Wide Web, pp. 1257 – 1258, 2007.

http://xml.coverpages.org/schemas.html

75

[33] E. Al-Masri, Q. H. Mahmoud, “QoS-based Discovery and Ranking of Web Services”, In

Proceeding of: IEEE 16
th

 International Conference on Computer Communications and Networks,

pp. 529 – 534, 2007.

[34] Lucene, Apache project, http://lucene.apache.org/, Last retrieved at July 2010.

[35] lp_solve reference guide, http://lpsolve.sourceforge.net/5.5/, Last retrieved at July 2010.

[36] M. Farah, and D. Vanderpooten, “An outranking approach for rank aggregation in

information retrieval”, In Proceedings of the 30th annual international ACM SIGIR conference

on Research and development in information retrieval, pp. 591 – 598,2007.

[37] PAST, PAlaeontological, http://folk.uio.no/ohammer/past/, Last retrieved at July 2010.

[38] J. Cohen, “Statistical power analysis for the behavioral sciences”, 2nd Edition, publisher:

Taylor & Francis, Inc., ISBN: 0805802835, 1988.

[39] M. Chavent, F.A.T. De Carvalho, Y. Lechevallier, R. Verde, “New Clustering Methods for

Interval Data”. Computational Statistics, Vol 21, Issue 2, pp. 211–229, 2006.

http://lucene.apache.org/
http://lpsolve.sourceforge.net/5.5/
http://folk.uio.no/ohammer/past/

76

	Ryerson University
	Digital Commons @ Ryerson
	1-1-2010

	A User-Centric QoS-Based Web Service Selection Framework
	Delnavaz Mobedpour
	Recommended Citation

