CONTINUOUS AUTHENTICATION BASED ON LEARNING USER COMMAND SEQUENCE

by

Bijan Khalilian B.Sc., Ryerson University, Toronto, Ontario, Canada, 2007

A Dissertation Submitted in Partial Fulfillment of the Requirements for the

Degree of

MASTER OF SCIENCE

in the Program of Computer Science

Toronto, Ontario, Canada, 2010

© Bijan Khalilian 2010 Ryerson University I hereby declare that I am the sole author of this thesis or dissertation.

I authorize Ryerson University to lend this thesis or dissertation to other institutions or individuals for the purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis or dissertation by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

CONTINUOUS AUTHENTICATION BASED ON LEARNING USER COMMAND SEQUENCE

Bijan Khalilian

M.Sc., Computer Science, Ryerson University, 2010

Abstract

In the context of information and computer security, a masquerader is an individual who can gain access to a system by disguising itself as a legitimate user. One of the prominent and popular methods for authenticating masqueraders is by using an intrusion detection system (IDS). This thesis promotes the idea that learning the user command sequence can be served as an alternative for addressing intrusion detection. Several approaches have been proposed in the literature, where this idea has been explored. To our knowledge, the method by Maxion and Townsend produces the best results of all past techniques so far in terms of detection rate (82.1% using the Greenberg dataset). In this thesis, we propose an IDS-based approach that consists in combining a novel Naïve Bayes classifier with a recently proposed sequential sampling technique for continuous authentication, applied to user command sequence, to detect masqueraders. Our experimental evaluation shows that our proposed scheme achieves a detection rate of 98%.

Acknowledgments

It is a pleasure to thank those who made this thesis possible. I owe my deepest gratitude to my supervisor Dr. Isaac Woungang and my co-supervisor Dr. Issa Traore for sharing their knowledge and providing continuous support. Without their help and guidance the completion of this work would have not been possible. I would also like to thank William Zereneh for making his valuable time available to me and many of my colleagues. I am grateful for his timely help and for always keeping his door open for many of us.

Dedication

I dedicate this thesis to my loving parents, Hamid and Mansoureh. Without their patience, support, and most of all love, the completion of this work would have not been possible. Furthermore, I would also like to dedicate this work to my wonderful and loving siblings Bita, Anahita and Aria.

Table of Contents

Abs	tract	I	ii
Ack	nowl	edgmentsi	v
Ded	licati	on	v
Tab	le of	Contents	/i
List	t of T	ables vi	ii
List	t of F	iguresi	х
List	t of A	cronyms	х
Cha	pter	1: Introduction	1
1.	.1	Context of Our Study	1
1.	.2	Research Problem	2
1.	.3	Our Approach	3
1.	.4	Contribution	4
1.	.5	Thesis Organization	4
Cha	pter	2: Background Research	6
2.	.1	Intrusion detection System Approaches	6
2.	.2	Quantitative Modeling Methods	7
	2.2.	Naïve Bayes Classifier	8
	2.2.2	2 Intrusion Detection Systems in Conjunction with Naïve Bayes Classifier	9
2.	.3	Continuous Authentication Based on Learning User Command Sequence1	0
	-	3: Continuous Authentication Based on Learning User Command Sequence (CS)	5
3.	.1	Design Space1	5
	3.1.	1 Data Collection1	5
	3.1.2	2 Greenberg's Data Organization1	8
	3.1.3	Reproducing Greenberg's Methodology1	9
3.	.2	System Architecture2	1
3.	.3	Implementation2	2
	3.3.1	1 Data Structure2	2
	3.3.2	2 Pre-processing the Dataset	5
	3.3.3	3 Naïve Bayes Classifier3	4

3.3.	3.1 Profiling Users
3.3.	3.2 Classifying Users
3.3.	3.3 Continuous Authentication and the Sequential Sampling Technique
Chapter	r 4: Experimental Evaluation
4.1	Challenges
4.2	Evaluation Approach and Setup49
4.2.	Performance Results
4.3.	Discussion71
Chapter	5: Conclusion
Append	ix A: Generated Statistics for the Greenberg Dataset (Ordered by Commands) 80
Append	ix B: Generated Statistics for the Greenberg Dataset (Ordered by History)83
Append	ix C: Generated Statistics for the Greenberg Dataset (Ordered by Errors)86
Append	ix D: Generated Statistics for the Greenberg Dataset (Ordered by Aliases)
Append	ix E: Generated Statistics for the Greenberg Dataset (Ordered by Lines)92
Append	ix F: List of User Profiles (Victims)95
Append	ix G: Undecided Results
Referen	ces

List of Tables

Table 1: Results produced by 6 methods to detect masquerades. Schonlau et al	12
Table 2: Results produced by implementing the Naive Bayes classifier. [10; 26]	12
Table 3: A list of detection methods and their relative results	13
Table 4: Login session record	18
Table 5: Command line record	18
Table 6: Greenberg's reproduced dataset sample	20
Table 7: Filename structure used in the dataset	24
Table 8: User types (user_types) database table schema	26
Table 9: User types (user_types) database table sample data	27
Table 10: Users (users) database table schema	27
Table 11: Users (users) database table sample data	28
Table 12: Sessions (sessions) database table schema	29
Table 13: User sessions (sessions) database table sample data	30
Table 14: Data items (data) database table schema	30
Table 15: Sample command lines in the 'data' table from User 1	32
Table 16: Data report (insert_report) database table schema	32
Table 17: Sample reports in the 'insert_report' table from 5 different users	34
Table 18: Small segment of a given profile	41
Table 19: Probability distribution for an arbitrary user	42
Table 20: Three selected sampling plans	54
Table 21: engine_report MySQL table schema	58
Table 22: engine_output MySQL table schema	60
Table 23: Details of the final results made by using CABLUCS	61
Table 24: Successive progression of the decision making process	61
Table 25: List of prepared sampling plans and tests	62
Table 26: Decision making process of the sequential sampling technique	65
Table 27: Results achieved based on different parameters and sampling sizes	67
Table 28: Result comparison based on Cost = (FAR) + (FRR)	74
Table 29: Result ranking comparison based on Cost = (FAR) + (FRR)	
Table 30: Result comparison based on Cost = (FAR) + 6(FRR)	
Table 31: Result ranking comparison based on Cost = (FAR) + 6(FRR)	
Table 32 :Users that were falsely rejected in 21 different test cases	

List of Figures

Figure 1: System architecture	21
Figure 2: Greenberg's dataset user session sample	24
Figure 3: General sampling plan	45
Figure 4: Sampling Plan A ($p_1 = 0.29$, $p_2 = 0.71$, $\alpha = 0.01$, $\beta = 0.01$)	55
Figure 5: Sampling Plan B ($p_1 = 0.30 \ p_2 = 0.70, \alpha = 0.01, \beta = 0.01$).	55
Figure 6: Sampling Plan C ($p_1 = 0.31 \ p_2 = 0.69, \alpha = 0.01, \beta = 0.01$)	56
Figure 7: User 1's new input tested on User 1's profile	63
Figure 8: User 2's input tested on User 1's profile	64
Figure 9: Analysing the system's FAR rate versus the sample size	68
Figure 10: Analysing the system's FRR rate versus the sample size	69
Figure 11: Analysis of the system's MTTA value as the sample size is increased	69
Figure 12: Analysing the system's MTTA value versus the sample size	70
Figure 13: Analyzing the systems CPU Usage versus the sample size	71
Figure 14: Relationship between sample size and FRR/FAR using sampling plan A	72
Figure 15: Relationship between sample size and FRR/FAR using sampling plan B	72
Figure 16: Relationship between sample size and FRR/FAR using sampling plan C	73

List of Acronyms

ANN	Artificial Neural Network
CA	Continuous Authentication
CR	Confidence Ratio
DR	Detection Rate
FAR	False Accept Rate
FRR	False Reject Rate
HCS	Hybrid Command Sequence
IDS	Intrusion Detection System
CABLUCS	Continuous Authentication Based on Learning User Command Sequence
MTTA	Mean Time-to-Alarm
NN	Neural Network
PHP	PHP: Hypertext Processor
SVM	Support Vector Machine
TTA	Time-to-Alarm

Chapter 1: Introduction

1.1 Context of Our Study

This thesis introduces a new approach in detecting masquerade attacks in systems, by implementing an intrusion detection system that consists of a Naïve Bayes classifier complemented with a recently proposed sequential sampling technique [1] for continuous authentication, applied to user command sequence. The Naïve Bayes classifier is used to train a dataset that consists of command-line history taken from 168 different users.

1.2 Motivation

In general, intrusion detection systems (IDS) are designed to handle masqueraders, i.e. users who impersonate other users, trying to gain access within a secure network. Typically, it is assumed that sophisticated masqueraders possess insider's knowledge on various features of the system such as topologies, potential vulnerabilities and the how various security products have been installed. To protect systems against masqueraders, security technologies such as firewalls, network-based intrusion detection systems, and strong authentication protocols are utilized.

In general, most authentication systems are only concerned about the point of entry [2]. Once a user has successfully passed the initial phase of authentication (i.e. user login), the user is deemed genuine. However, this assumption can be quite costly. In the case where such initial phase of authentication is compromised, the entire system can be in dire jeopardy. IDSs in conjunction with continuous authentication can be used to address this problem since these systems have been designed to detect different types of security hazardous behaviours after the user has already been given permission to access the system. The general idea of using continuous authentication is that the legitimacy of an active user session can be validated continuously, leading to a predefined and distinctive user profile (i.e. signature) during a live session within intermediate intervals. To this effect, a continuous authentication system can be used to investigate a user's typing habits [3], mouse dynamics [4] or command line sequence, in order to determine the legitimacy of a given user.

IDSs differ from conventional firewall systems and authentication protocols in the sense that in addition to prevent non-privileged users from accessing sensitive data or performing restricted tasks, they can also be used to control the access capability for users with the appropriate and official privileges who abuse their concessions. In other words, IDSs can be used to detect malicious insiders that use their privileges to perform unauthorized actions. For this reason, IDSs are considered as network security schemes of choice [5; 6]. Designing an IDS that can achieve a high level of accuracy while detecting masquerade attacks, is the primary motivation of our work.

1.2 Research Problem

Several IDS-based approaches for masquerade detection have been investigated, ranging from approaches based on support vector machine classifiers [7; 8]; to the pioneer approaches based on mouse dynamics [1] and keystroke dynamics to approaches based on sequence-based user commands profile [9; 10], to name a few. In the latter case, several attempts to learn user command sequence for masquerade detection have been investigated [10]. The proposal that yields the best result so far in terms of accuracy (using the Greenberg dataset) – measured by the level of detection achieved, is the work by Maxion and Townsend [10]. Yet, this performance is still inadequate, especially in the context of commercial-based systems. Therefore, designing IDS-based systems that can detect the above-mentioned canonical masquerade attack based on learning sequence-based user commands while producing a better level of accuracy compared to that obtained by the Maxion and Townsend's approach, would be highly desirable. This is the challenge addressed in this thesis.

1.3 Our Approach

In this thesis, to address the above-mentioned challenge, we follow up on an idea inherited from the pioneer work in [10], i.e. using a Naïve Bayes classification algorithm to learn sequence-based user commands, with the goal to provide a solution to the problem of masquerade detection. Our approach differs from that presented in [10] with respect to the use of updating mechanisms that dynamically recompute the classifier probabilities as monitored sequences are analyzed and classified by our Naïve Bayes classifier. More precisely, our approach consists of an integration of three components: (1) a data pre-processing module – that captures the user's data input and restructured them to a more manageable format; (2) a detector – which deploys a Naïve Bayes classification algorithm (as in [10]) in order to create a set of distinct user profiles; and (3) a dynamic sampling technique for continuous authentication (so-called sequential sampling technique) – which is inherited from a recently pioneered work on continuous authentication [1] and is used to distinguish the legitimacy of a given user based on a given user profile.

1.4 Contribution

There have been a lot of works dealing with learning using command sequence to detect masquerade attacks in systems [10]. To our knowledge, the best detection rate achieved so far is attributed to the approach proposed by Maxion and Townsend [10].

The contribution of this thesis is the design of a novel intrusion detection system that learns from sequence-based user commands profile to detect classical masquerade attacks while learning the behavioural tendencies of a given user. This design is realized by complementing a recently proposed evaluation technique for continuous authentication [1] (so-called sequential sampling) with a novel Naïve Bayes learning algorithm, applied to user command sequence. Our approach is shown to achieve a significant improvement over the above-mentioned performance by Maxion and Townsend [10].

1.5 Thesis Organization

This thesis is composed of the following Chapters.

Chapter 2: Background Research

In this chapter, we discuss previous works on the subject and their limitations.

<u>Chapter 3: Continuous Authentication Based on Learning User Command Sequence</u> (CABLUCS)

The chapter constitute the core of this thesis. We describe our CABLUCS intrusion detection system, including a discussion on its implementation.

Chapter 4: Experimental Evaluation

Validating the proposed Continuous Authentication Based on Learning User Command Sequence (CABLUCS) scheme is of course an essential part of this research work. In this chapter, we describe the experimental setup as well as the performance parameters and the obtained results.

Chapter 5: Conclusion

We conclude our work and present future possible works that can be done to extend the scope of the content of this thesis.

Chapter 2: Background Research

This chapter discusses related works on intrusion detection systems. Common methods and models employed within this field of research are discussed, as well as related research challenges. Finally, our new approach is contrasted against these related works.

2.1 Intrusion detection System Approaches

Various design approaches to Intrusion Detection Systems (IDSs) have been proposed in the literature, as well as a few attempts to produce taxonomies of IDSs [11], [12; 13; 14; 15; 16; 17], Typically, IDSs can be classified into three categories: sensors, detectors, and positive intrusion handlers (not including false alarms) [11]. Researches focus their attention mostly on detector entity along the system characteristics. There are currently two major types of detection approaches: Anomaly Detection and Signature Detection (Misuse Detection).

Anomaly Detection is based on abnormal behavior. It relies on self-learning for the purpose of detecting abnormal behaviors. A drawback of such system is that some behaviors may not be undesirable, leading to a high false positive rate [11]. Selflearning systems are broken down into two categories: non-time series systems and time series ones. Non-time series systems use stochastic models to determine what a normal behavior would be disregarding time constraints. On the other hand, timeseries systems determine normality based on techniques such as Markov models, artificial neural networks, to name a few [11; 18]. As instance, sequence learning for anomaly detection is an example of approach that records the normal working state of a system (i.e. the system's call traces, network packet traces, resource consumption patterns) with regards to its user, then uses this dataset to differentiate between normal and suspicious behavior, by comparing expected behavior patterns with lively detected behavior patterns. The goal is to produce a cost-effective and preeminent model that can, swiftly and appropriately be managed by a certain mechanism. This latter criteria is important because once these systems are deployed in large organizations, the datasets can be very large and in some cases unreliable in terms of timely masquerade detection.

Misuse detection systems are based on previously known intrusion attempts that are fairly common; therefore they may not be reliable in terms of catching new malicious behaviors. However, these systems can be used to detect sequences of instructions that violate the security policies. They make use of rule sets to distinguish behaviors; thus are unable to detect violations that are unknown to these rule sets.

2.2 Quantitative Modeling Methods

For quantitative modeling purpose, artificial neural networks are considered as an important class of tools [19]. These types of systems or computing models have been applied to various problems in many different areas, particularly for identifying the fundamental relationships among a set of variables or patterns in the data [19]. Two important characteristics of these systems are: parallel processing of information and learning and generalizing from experience.

2.2.1 Naïve Bayes Classifier

In addition to artificial neural network, Bayesian learning algorithms have been used as a tool of choice for modeling various systems [19]. The Bayesian learning concept consists in inferring a set of parameters of a predefined model from the information contained in some data.

The Naive Bayes classifiers are among the most successful known class of Bayesian learning algorithms, for learning to classify text documents [20; 21]. The Naïve Bayes classifier is also widely used to detect and classify spam [23; 24] and many other unwanted electronic documents.

The Naïve Bayes classifier is directly related to tasks where each instance x is described by a combination of attribute values. The target function f(x) can represent any available value from a finite set V. Given a set of training examples of the target function, the algorithm can classify a new instance. More precisely, given the new instance tuple of attribute values $(a_1, a_2 \dots a_n)$, the classifier indicates the most probable target value V_{MAP} as follows:

$$V_{MAP} = \operatorname{argmax}_{v_j \in V} P(v_j | a_1, a_2 \dots a_n)$$
(1)

By applying the Bayes theorem, Equation 1 can be re-formulated as:

$$V_{MAP} = \underset{v_{j} \in V}{\operatorname{argmax}} \frac{P(a_{1}, a_{2} \dots a_{n} | v_{j}) P(v_{j})}{P(a_{1}, a_{2} \dots a_{n})}$$

= $\operatorname{argmax}_{v_{j} \in V} P(a_{1}, a_{2} \dots a_{n} | v_{j}) P(v_{j})$ (2)

Given the training data, an estimation can be made using the two terms $P(a_1, a_2 \dots a_n | v_j)$ and $P(v_j)$. In order to evaluate $P(v_j)$, we calculate the frequency of which the target value v_i appears in the training examples.

The Naïve Bayes classifier is built on the assumption that the tuple of attribute values $(a_1, a_2 \dots a_n)$ is conditionally independent given the target value [20]. Therefore, this naive assumption indicates that $P(a_1, a_2 \dots a_n | v_j) = \prod_i P(a_i | v_j)$ and hence the Naïve Bayes classifier is expressed as:

$$V_{NB} = \operatorname{argmax}_{v_i \in V} P(v_i) \prod_{i \in positions} P(a_i | v_j)$$
(3)

The Naïve Bayes classifier has a specific characteristic that is different from other learning algorithms. The hypothesis is evaluated by examining the frequency of different data combinations throughout the training examples and without the need of querying. A comprehensive description of this machine learning algorithm can be found in [20]. The procedural steps required to implement the Naïve Bayes classifier is detailed in Chapter 3.

2.2.2 Intrusion Detection Systems in Conjunction with Naïve Bayes Classifier

Typically, the Naïve Bayes classifier is used to classify text documents [25]. However, a successful implementation of a Naïve Bayes classifier in an intrusion detection environment has also been presented [26; 27; 6; 10; 28]. Due to the nature of this

learning algorithm, it is natural to employ it in an application where the learning involves strings of text, such as command-lines. A description of procedures involved to implement such machine learning algorithm in an IDS based on learning user command-line sequences is given in Chapter 3.

2.3 Continuous Authentication Based on Learning User Command Sequence

The source of input data used in anomaly detection is normally extracted from different types of user/system input. The most commonly used data source in anomaly based intrusion detection systems involves one of, mouse dynamics [4; 29], keystroke dynamics, system processes [30; 31; 32; 33; 34], and/or command line sequence. In most literatures that involve learning command line sequence, the data is produced using UNIX or UNIX-like operating systems. The most commonly used dataset in this field, is the work of Schonlau et al. [9]. In the work of Schonlau et al., six different methods were used in order to learn and profile [35] user behaviour, based on their given UNIX command line history. These methods include:

- Uniqueness
- Bayes one-step Markov
- Hybrid multi-step Markov
- Compression
- IPAM (Incremental Probabilistic Action Modeling)
- Sequence-match

The *uniqueness* method is established based on the command frequency in the training data. A command line that is not witnessed in the training data is deemed to be malicious. Commands that have a low frequency in the training data will demonstrate a higher indication of malicious behaviour.

The *Bayes one-step Markov* method is based on the concept of single iterations between commands. The system will compare the given sequence of iteration probabilities to previously known iteration tendencies and determine the legitimacy of the given user.

The *hybrid multi-step Markov* method is based on the nth-order Markov chain and a given model that determines the proportionality of commands that were not witnessed in the training data.

The *compression* method is based on generating reversible maps for the data in correspondence to a representation that utilizes less storage than the original. New input from the user is compressed and compared to the given maps and tested for legitimacy based on the compression rates.

The *IPAM* (Incremental Probabilistic Action Modeling) method is based on one-step command iteration probabilities with regards to a given training data, while continuously expanding and updating its arrangement.

The *sequence-matching* method is based on determining the similarities between the ten most recent commands of a given user in comparison with a user's profile. The following table demonstrates the results achieved in each implemented method by Schonlau et al. [9].

Method	FRR (%)	FAR (%)	DR (%)
Uniqueness	1.4	60.6	39.4
Bayes one-step Markov	6.7	30.7	69.3
Hybrid multistep Markov	3.2	50.7	49.3
Compression	5.0	65.8	34.2
Sequence-Match	3.7	63.2	36.8
IPAM	2.7	58.9	41.1

Table 1: Results produced by 6 methods to detect masquerades. Schonlau et al

Looking at the results produced by Schonlau et al., we can clearly observe that the *Uniqueness* method has the lowest False Rejection Rate (FRR), while lacking a convincing False Acceptance Rate (FAR). Although the FRR value is relatively low, the chance of detecting malicious behaviour (DR) is 39.4%.

Other recent work done in this field includes the work of Maxion and Townsend [10]. Using the Naïve Bayes classifier as their learning algorithm, they have produced encouraging results. The following table demonstrates their final results after testing their method against both the Schonlau et al. dataset (typically denoted as SEA) and the Greenberg [36] dataset.

Table 2: Results produced by implementing the Naive Bayes classifier. [10; 26]

Method	FRR (%)	FAR (%)	DR (%)	Dataset
Naïve Bayes (updating)	1.3	38.5	61.5	SEA
Naïve Bayes (no-updating)	4.6	33.8	66.2	SEA
Naïve Bayes (truncated)	4.7	29.1	70.9	Greenberg
Naïve Bayes (enriched)	5.7	17.9	82.1	Greenberg

The hybrid command sequence (HCS) [37] model is another method used in order to detect malicious behaviour based on learning user command sequence. By using a genetic algorithm, the model profiles users based on recorded sessions. It evaluates users considering multiple command sequence fragments in a single session [37].

Other detection methods with regards to learning command sequences include the use of SVM (Support Vector Machine) [7; 38]. SVM is a pattern recognition classifier. It has shown significant results in terms of producing high detection rates [7; 38]. However the FRR rates are still considered to be high.

The following table demonstrates a comprehensive statistical look at the results gained from implementing each of the mentioned methods with respect to a given dataset.

Method	FRR (%)	FAR (%)	DR (%)	Dataset
Naïve Bayes (updating) [10]	1.3	38.5	61.5	SEA
Naïve Bayes (no-updating) [10]	4.6	33.8	66.2	SEA
Uniqueness [9]	1.4	60.6	39.4	SEA
Bayes one-step Markov [9]	6.7	30.7	69.3	SEA
Hybrid multistep Markov [9]	3.2	50.7	49.3	SEA
Compression [9]	5.0	65.8	34.2	SEA
Sequence-Match [9]	3.7	63.2	36.8	SEA
IPAM [9]	2.7	58.9	41.1	SEA
SVM (RBF Kernel) [7]	9.7	19.9	80.1	SEA
SVM (K-gram Kernel) [38]	14.19	10.39	89.61	SEA
SVM (String Kernel) [38]	23.77	2.6	97.40	SEA
HCS [37]	33.9	1.4	98.6	SEA
Naïve Bayes (truncated) [26]	4.7	29.1	70.9	Greenberg
Naïve Bayes (enriched) [26]	5.7	17.9	82.1	Greenberg

Table 3: A list of detection methods and their relative results

These methods can be evaluated and ranked based on certain ranking functions [39; 9; 6; 26]. These ranking functions depend solely on certain predefined criteria. Depending on the application, the significance of the errors produced by each detection method can vary. The ranking functions involved in determining the quality of a detection method is discussed in more detail in further chapters. The detection rates (DR) in most of the mentioned methods are very low. In cases where the detection rate is above 90% the FRR rates are above 20-30%. The challenge is to develop a system that would notably reduce the FAR and FRR rates.

In this thesis, we propose a novel IDS termed as Continuous Authentication Based on Learning User Command Sequence (CABLUCS). Our approach consists of using the sequential sampling technique (a novel proposed evaluation technique for continuous authentication [1]) in conjunction with the Naïve Bayes learning, applied to user command sequence, to detect masquerade attacks while learning the behavioural tendencies of a given user. More precisely, the user's normal behaviours are recorded and profiled using the Naïve Bayes classifier. The generated profile is used as their signature, while individuals whose behavioural tendency fails to match the given signature are identified as masqueraders.

Chapter 3: Continuous Authentication Based on Learning User Command Sequence (CABLUCS)

This Chapter constitutes the main contribution of this thesis. Here, we describe the design of our proposed Continuous Authentication Based on Learning User Command Sequence (CABLUCS) scheme. The design space, system architecture, and data collection and processing methodologies are described in-depth. A typical intrusion scenario is also introduced to assess the stated design.

3.1 Design Space

Designing an IDS involves a few challenges, including the methods involved in implementing data collectors, detectors and the different responses offered by the intrusion handlers.

3.1.1 Data Collection

Data collection is an important part of the system. Sensors are placed in appropriate locations within the system, in order to listen to the system's activities and collect important data that will determine whether or not an intrusion has taken place. However, depending on the native system, this task can be rather difficult. Learning user command sequences will be a challenge in terms of being able to analyze this data in such a way as to produce the appropriate analysis of the active situation, which will then serve to take the proper actions. In UNIX based systems or other similar systems, one can take advantage of the input provided by the user within a shell (a separate software program that provides direct communication between the user and the operating system). This data is collected by the operating system and is usually defined by the term *shell history*. Although datasets can be controversial in terms of privacy issues [40], in most cases, shell history is readily available.

The shell history can be used to achieve a basic understanding of the user's common patterns. Typically, the *command-line history* is used when attempting to develop an IDS within a UNIX environment [26; 10; 41; 42]. In 1988, Dr. Saul Greenberg of the Department of Computer Science at the University of Calgary, has collected traces of 168 users using the UNIX C shell (*csh*). These traces correspond to command line data executed by each user and the data was intended to be used for research purposes. This dataset [36] was kindly granted to us and we have used it in this thesis. Running this dataset using a slight modification of the C shell (*csh*) command interpreter has enabled us to duplicate Dr. Greenberg's data collection method, which is crucial in the context of this thesis in order to accomplish our data collection objectives.

Data collection in correspondence to different categories and groups of subjects is of importance. In order to relate different behaviours, it is important to have certain understanding of the given subjects, in which the data is being collected from. In this case, subjects were 168 unpaid volunteers, either students or employees of the University of Calgary. Subjects are divided by Greenberg into 4 different groups, which include:

- Novice Programmers
 - This group consisted of individuals that had no prior programming experience, minimal knowledge of operating systems or UNIX-like command interpreters. These users spent the majority of their time

16

learning programming techniques and concepts, while familiarizing themselves with the system's facilities [36].

- Experienced Programmers
 - This group consisted of undergraduate Computer Science students completing their senior years. An understanding of the UNIX environment and moderate knowledge of programming languages were expected from this group. [36].
- Computer Scientists
 - This group consisted of Computer Science graduates, including the members of the Faculty, researchers and past graduates from the Department of Computer Science [36].
- Non-programmers
 - This group consisted of members that mostly concentrated on the use of word processing applications. These members had little or no experience in programming languages or no knowledge of the UNIX environment [36].

It should be acknowledged that subjects were assigned as members of these groups given their current agenda at the University of Calgary. Therefore, the assumption that all members fit the given criteria of a particular group cannot be made thoroughly. From the months of February 1987 through June 1987, command line data was continuously collected on site, at Dr. Greenberg's laboratory. The collected data had a specific formatting that includes different annotation for explaining certain situations that had incurred during data collection. These annotations along certain drawbacks to the collected data are discussed next.

3.1.2 Greenberg's Data Organization

The given data was organized through hierarchal folders. The base folder was named as *unix_data*. This base folder was composed of five subfolders. Four of these subfolders corresponded to the groups of subjects, which themselves stored all command trace data of every subject (e.g. novice programmers, experienced programmers, computer scientists, and non-programmers).

The fifth subfolder, *showerrorcode*, included a C program, which was designed to provide explanations for the error codes that were generated by users when executing certain command-lines.

The following tables give a brief description of the attributes used in this dataset.

Code	Description	Example
S	Start time of the login session	S Thu Sep 20 14:23:32 2008
Е	End time of the login session	E Thu Sep 20 19:11:12 2008

<i>m</i> 11	1.T ·	•	1
Table	4: Login	session	record

Table 5: Command line record

Code	Description	Example
С	The line entered by the user	C gedit document.txt&
D	The current working directory	D /home/user/documents/

Α	The alias expansion of the previous command (if any)	A NIL
Н	The line entered had a history expansion in it (True or Nil)	H NIL
x	The error detected in the line by csh (if any). A following letter and number code indicates the category and actual error type.	X NIL
Т	The time the command line was executed by the command interpreter.	T Thu Sep 20 16:11:43 2008

3.1.3 Reproducing Greenberg's Methodology

In order to understand the data collection mechanism used by Greenberg et al. [36], we had to reproduce it using the software package that was kindly granted to us. C shell is a UNIX command interpreter that introduced new features such as aliases and command history. This justifies (in some sense) why Dr. Greenberg used this shell in order to collect command line history.

In order to achieve a consistent duplication of work, we also use C shell to reproduce Dr. Greenberg's data collection mechanism. Although this tool may be considered inadequate compared to more recent command interpreters, it is important to note that it serves its purpose in the case of collecting command line history. In order to reproduce Dr. Greenberg's data collection mechanism, a copy of the C shell source code was acquired from one of the Ubuntu's available repositories within our laboratory¹.

¹ The Distributed Applications and Broadband Network laboratory (DABNEL), Department of Computer Science, Ryerson University, Toronto, Canada

After making appropriate modifications to the C shell code provided by Greenberg et al. [36], sensors were placed accordingly in order to produce similar results. In addition to Dr. Greenberg's selection of attributes, a new attribute called *Time* (denoted *T*) is introduced. This attribute is used to determine the system time that the command line was executed by the command interpreter. Although Dr. Greenberg had included the attributes *S* and *E* which denote the starting and the ending time of each session respectively, it appeared important for us to track the displacement time ΔT of each command line. This is done in order to gain a better understanding of the user's intentions.

The output of our modified *csh* scheme compared to that of the Greenberg dataset scheme is captured in Table 6.

Greenberg Sample Data	Reproduced Sample Data
C ls D /home/XXXX/documents/ A ls –la H NIL X NIL	C ls D /home/XXXX/documents/ A ls –la H NIL X NIL T Thu Sep 20 16:11:43 2008

Table 6: Greenberg's reproduced dataset sample

Few drawbacks of the Greenberg's approach for data collection [36] are as follows.

 Given the structure of the implementation, the "details of history directives were not recorded" [36]. However, there are indications of history being used and the command-line that was retrieved.

- It is important to acknowledge that the system was unable to capture all user activity. This mainly relates to software packages that are invoked by the user, where the command line is no longer used (e.g. *emacs* versus *ls*).
- The command line executed does not necessarily determine the program that was actually invoked. Because of the many ways a program can be invoked (e.g. through an alias or a script). Although the records for the alias used are included in the dataset, the dataset fails to compensate for events where an alias is used to invoke another alias.

3.2 System Architecture

Similarly to many existing intrusion detection systems, our architecture is composed of sensors, detectors and intrusion handlers as depicted in Figure 1.

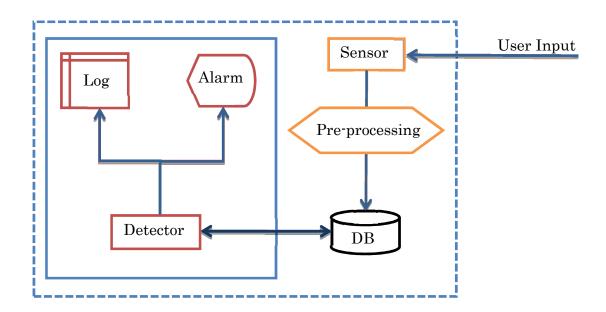


Figure 1: System architecture

The user input is captured by a sensor and restructured into a desired format (by undergoing a pre-processing step). The output of the pre-processing step is then placed in an incoming pool in the database and made ready for use. The detection mechanism (so-called Detector) will then deploy its intrinsic evaluation algorithm (in the form of a Naïve Bayes classifier) and a decision of an acceptance or a rejection will be made. If the input is rejected, the system will be alarmed and appropriate actions will be taken. Meantime, the system will keep maintaining a Log file that stores all the activities that have been running the system's operations. In case of an acceptance, the users will continue to use their concessions while the system will continue to authenticate their behaviours.

3.3 Implementation

This section describes the implementation of the Continuous Authentication Based on Learning User Command Sequence (CABLUCS) design approach. The Greenberg dataset [36] is used as the source for generating user profiles and user inputs. The Naïve Bayes classifier is used in conjunction with a new evaluation technique based on continuous authentication [1], namely the sequential sampling technique, to classify and evaluate a given user.

3.3.1 Data Structure

The Greenberg dataset is used as the source of data for this implementation, for training and testing purposes.

The data is in its raw format. It consists of multiple folders, each representing a separate category of subjects. The categories are defined by each user's level of experience or position (i.e. novice programmers, experienced programmers, computer scientists, and non-programmers) within the set of test subjects. For the purpose of our implementation, the category under which the user falls into is ignored. This information may be useful for the implementations of certain IDSs. However, due to the nature of our approach, the user categories are deemed to be extraneous. A discussion on future works that can incorporate a primary and secondary levels of classification in a multi-category based user environment is given in the Conclusion Chapter.

Each user is separated with a text file that contains the recorded command line history of the user. Each session is separated by a start and end time stamp. Figure 2 illustrates a single user session.

S Wed Feb 18 16:37:25 1987
E Wed Feb 18 16:56:22 1987
C date
D /user/srdg/xxxxx
A NIL
H NIL
X NIL
C mail
D /user/srdg/xxxxx
A NIL
H NIL
X NIL
C p audio.mail
D /user/srdg/xxxxx
A page audio.mail
H NIL

Figure 2: Greenberg's dataset user session sample

The filename for each user is constructed using the name of the category that the user is part of, and is concatenated with a numerical digit. An example is given in Table 7.

Table 7: Filename structure used in the dataset

User Category	Filenames
Computer Scientist	scientist-1, scientist-2,, scientist-52

Experienced Programmers	experienced-1, experienced-2, , experienced-36
Non-Programmers	non-1, non-2, , non-25
Novice Programmers	novice-1, novice-2, , novice-55

In this dataset (Table 7), there are 168 users, among which 52 are Computer Scientists, 36 are Experienced Programmers, 25 are Non-Programmers and 55 are Novice Programmers.

3.3.2 Pre-processing the Dataset

Due to the difficulty encountered in using the data in its current raw format, we had to restructure the data into a more manageable configuration. To this effect, the data was pre-processed and restructured into a relational database. This step is vital in order to maintain the relations between the command-lines, sessions, users and the user categories while this process is being completed. During the pre-processing progression, the complete structure and integrity of the data was preserved and tested.

The dataset was restructured into four database tables, referred to as user_types, users, sessions and data (as shown in Tables 8 to 14).

• The *user_types* table (Table 8) is created in order to maintain the different user categories involved in the dataset. This table can also be used to merge other datasets of similar nature into Greenberg's dataset by introducing new sets of categories.

Field Name	Description
utid	This field maintains the id for each user
	category. This id is used in other tables
	to indicate which category a particular
	user belongs to.
type	This field defines a two character
	identification of a user type. (i.e. 'cs' for
	Computer Scientist)
description	This field is used to maintain a brief
	description of each user type. It is used
	for the purpose of describing the types
	in English for individuals who are new
	to using the Greenberg dataset.

Table 8: User types (user_types) database table schema

• The *user_types* table (*Table 9*) maintains the four records that directly correspond to the four different categories involved in the dataset.

utid	type	description
1	cs	Computer Scientist
2	ер	Experienced Programmer
3	np	Non-Programmer
4	nv	Novice Programmer

Table 9: User types (user_types) database table sample data

These values in Table 9 are static. They are used as a reference point to indicate which category a user belongs to.

In order to maintain the identity of each user, the users' table (Table 10) is introduced. This table holds the basic records of all 168 users involved in the dataset. The *uid* field is used consistently throughout the database in order to maintain the data integrity.

Field Name	Description		
uid	This field maintains the id for each		
	user. This id is used in other tables to		
	identify each user.		
utid	This field is used to indicate which		
	category a particular user belongs to		
	within the <i>user_type</i> table.		
greenberg_name	This field maintains the filename used		
	in the Greenberg dataset that		

Table 10: Users (users) database table schema

corresponds to the given user. (i.e. scientist-1)

• The *users* table (Table 11) can also be used as a quick reference in order to distinguish between the different users while manually traversing through the database. This table plays a major role in keeping the integrity of the restructured dataset. Manipulation of this table can compromise the integrity of the overall dataset and hence it is only used as a reference.

Uid	Utid	greenberg_name
1	1	scientist-1
2	1	scientist-2
3	2	experienced-1
4	3	programmer-1
5	4	non-1

Table 11: Users (users) database table sample data

Sessions were handled with two lines at the beginning of each of the sessions.
 Each session's start and end time was parsed and converted into a UNIX
 Timestamp, and then inserted into the *sessions* table (Table 12). It is important
 to notice that once the newly converted timestamp is made available, date, time
 calculations and manipulations become simpler.

Field Name	Description		
sid	This field maintains the session id		
	for each session within a user's		
	stored data. This id is used in other		
	tables to identify a session.		
uid	This field is used to indicate the		
	user that this session belongs to.		
start	This field indicates the start time of		
	a session. The values are kept in		
	UNIX Timestamp format.		
end	This field indicates the start time of		
	a session. The values are kept in		
	UNIX Timestamp format.		

Table 12: Sessions (sessions) database table schema

A UNIX Timestamp is an integer which indicates the number of seconds elapsed since midnight proleptic Coordinated Universal Time (UTC) of January 1, 1970 [43]. For example, the UNIX Timestamp of 540682645 is the equivalent of February 18, 1987 at 3:37:25 pm. Every data item (command line) belongs to a particular session. Using the *sessions* table, we can immediately identify such session's start and end time/date as shown in Table 13.

sid	Uid	start	end
1	1	540682645	540683782
2	1	540742586	540744368
3	2	544203016	544203669
4	2	544424264	544438849
5	2	544449748	544459510

Table 13: User sessions (sessions) database table sample data

The *data* table (along with its relations with the *user_types*, *users* and *sessions* tables) holds the entire dataset. It contains 303,628 data items (command-lines) from 168 different users. Its main fields are shown in Table 14.

Table 14: Data items (data) database table schema

Field Name	Description		
did	This field maintains the data id for		
	each command line in the		
	Greenberg dataset. This id is used		
	in other tables to identify a		
	command line.		
sid	This field indicates which session		
	this command line belongs to.		
	Using this id we can indicate the		
	start and end time of the session.		

uid	This field is used to indicate the		
	user that this command line		
	belongs to.		
order	This field is used to maintain the		
	order in which command lines in a		
	session were entered.		
command	This field contains the entire		
	command line.		
directory	This field contains the current		
	working directory in which the		
	command line was executed.		
alias	This field will indicate if the		
	command line was in fact an alias		
	to execute another program. It		
	will contain the command in which		
	the alias is executing otherwise a		
	NIL value will be given.		
history	This field indicates whether or not		
	History was used to execute this		
	command line.		
error	This field indicates if an error		
	occurred during the executing of		
	this command line.		

• The *data* table (Table 15) encompasses the completely restructured dataset. In its new format, the data can be searched, manipulated and tested at a higher rate of efficiency. Furthermore, this higher rate of efficiency can also be transferred onto any available platforms.

did	sid	uid	order	command	directory	alias	history	error
1	1	1	1	Date	/user/srdg/xxxxx	NIL	NIL	NIL
2	1	1	2	Mail	/user/srdg/xxxxx	NIL	NIL	NIL
3	1	1	3	p audio.mail	/user/srdg/xxxxx	page audio.mail	NIL	NIL
4	2	1	1	Ls	/user/srdg/xxxxx	/bin/ls –Fs	NIL	NIL

Table 15: Sample command lines in the 'data' table from User 1

In order to gain a better understanding of the simple statistical features of the dataset, the *insert_report* table (Table 16) is introduced. This table gives a general understanding on the number of command-lines, aliases, use of history and errors, which are involved in the dataset.

Table 16: Data report (insert_report) database table schema

Field Name	Description		
id	This field contains the report id.		
filename	This field indicates the filename for		
	which this report was generated.		
uid	This field is used to indicate the		

	user that this report belongs to.
commands	This field indicates the number of
	command lines that were executed
	by the given user.
history	This field indicates the number of
	times the user resorted to using its
	history database.
errors	This field indicates the number of
	times an error occurred while a user
	executed its command lines.
aliases	This field indicates the number of
	times the user resorted to using an
	alias.
lines	This field indicates the number of
	lines in the filename.

Primarily, the generated reports (Table 17) allow us to test the integrity of the database by comparing the results to its raw counterparts. The general statistical understanding of the dataset will also allow us to plan our implementation in a more meaningful way.

Our new knowledge of the data allows us to make better choices for the future. For example, based on this, we can determine which users will be beneficial for our testing purposes. Hence, if a user does not have sufficient amount of data items, then it becomes difficult to process a complete set of tasks in most training environments. The reports will also be helpful to index users who have made use of their history, aliases or are disposed to make errors in their command lines or vice versa. This type of information can become crucial in many research related tasks, particularly tasks that involve datasets being used in a controlled environment. The generated statistics for the Greenberg's dataset is made available in Appendix A: Generated Statistics for the Greenberg Dataset (Ordered by Commands).

id	filename	uid	commands	history	errors	aliases	lines
1	scientist-1	1	1856	54	111	761	11792
2	scientist-10	2	2024	77	120	730	12658
3	scientist-11	3	205	0	13	0	1380
4	scientist-12	4	2499	53	52	1162	15412
5	scientist-13	5	3593	357	118	204	21988

Table 17: Sample reports in the 'insert_report' table from 5 different users

3.3.3 Naïve Bayes Classifier

The Naïve Bayes classifier is used as a learning mechanism (Detector box of Figure 1) in order to understand the available sample data.

The sample data is used in order to train the system and to familiarize it with possible outcomes. In principle, the available sample dataset will determine our expectations in anticipating accurate results in detecting legitimate versus illegitimate user sessions. The quality and the scale of available training data to the system will dictate our confidence in its results.

The basic algorithm involved in recognizing different predefined classifications with the use of the Naïve Bayes classifier involves two procedures, namely the Naïve Bayes learning mechanism and the Naïve Bayes classification. We first train our classifier with the available training data by using the Naïve Bayes learning mechanism. Once our learning procedure is completed, we classify new sets of input using our trained system.

In order to proceed with the learning mechanism, we first determine certain attributes that directly influence the Naïve Bayes learning algorithm. As previously stated, the Naïve Bayes classifier is typically used to classify text documents such as electronic news articles [44; 45] or to classify spam, websites, documents, to name a few [23; 24]. But in the case of intrusion detection and profiling of legitimate users (that we deal with in this thesis), the classification must be achieved differently.

Here, our approach for classification consists in considering the possible outcomes of an IDS, i.e. the detection of a masquerader (illegitimate user) or the detection of a legitimate user. Therefore, we determine that our target value is either *legitimate* or *illegitimate*. Based on our training data, we can then determine the characteristics of a legitimate user. Yet, we do not have a direct understanding of what characterizes an illegitimate user. Naturally if a legitimate user is not detected, then the user must be considered as illegitimate. However the Naïve Bayes classifier requires us to have certain understanding on all defined classifications in our dataset prior to the detection. The absence of the training data for illegitimate users prevents us from gaining any understanding on the behavioural tendencies of a potential masquerader. Therefore, due to this shortcoming, we are obliged to practice the common adaptation [10] of using any training data available to us that does not belong to the potential legitimate user and consider this as the training data for an illegitimate user. Certainly, such an assumption may have certain consequences that may skew the final classification results. Depending on the scale of the dataset, an immediate consequence based on this assumption is as follows. Due to the nature of the Naïve Bayes classifier algorithm, the number of incidences in any classification is of importance. For instance, in our dataset of 168 users, the available training data for one legitimate user compared to its illegitimate counterpart (167 users) can potentially disrupt the classification. The reasoning behind this claim lies solely in the nature of the Naïve Bayes classifier algorithm.

Once the target values for the classification have been decided, we need to traverse through the training data and identify each element as a member of each target value. We then introduce the set V to represent all the possible target values v_j . In order to begin the learning process we also introduce the set *Vocabulary*. This set includes all the distinct words (command lines) that are available within the training data. The Vocabulary set can be regarded as our dataset dictionary.

Two probability terms $P(v_j)$ and $P(w_k|v_j)$ are used as the driving forces of the learning mechanism within the Naïve Bayes classifier. The term $P(v_j)$ also known as the prior probability, represents the probability of the target value v_j occurring within the available training data. The term $P(w_k|v_j)$ represents the conditional probability, that a randomly selected word (command-line) from the training data belonging to the target value v_j will be the word w_k .

Once learning is completed, we can then classify new sets of input using the following Equation:

$$V_{NB} = \operatorname{argmax}_{v_{i} \in V} P(v_{j}) \prod_{i \in positions} P(a_{i}|v_{j}) \quad (4)$$

The procedural steps that are required to train (hence produce the profile of a user) and classify user command sequences using the Naïve Bayes classifier are discussed next.

3.3.3.1 Profiling Users

In order to test the legitimacy of a user session, we must first develop an understanding of what constitutes a legitimate user session. To this effect, it is required to make use of the available training data which corresponds to the normal working state of any particular user within the system, then, develop a profile that accurately represents such user. This can be achieved by using a Naïve Bayes learning mechanism. The detailed procedural steps involved in implementing our Naïve Bayes learning mechanism with our dataset, in order to create a set of independent and distinct user profiles, is described as follows.

Our target value set *V* is defined as as:

$$V = \{ legitimate, illegitimate \}$$
(5)

As previously mentioned, the Naïve Bayes classifier requires the evaluation of the two probability terms $P(v_j)$ and $P(w_k|v_j)$ with regards to the training data, in order to successfully classify the new input.

To calculate $P(v_i)$ with respect to our new target value set V, we evaluate the following:

$$|data| = \sum_{j \in V} |data_j|$$
$$= |data_{legitimate}| + |data_{illegitimate}| \quad (6)$$

where *data* is our training data.

$$P(v_{legitimate}) = \frac{|data_{legitimate}|}{|data|}$$
(7)

$$P(v_{illegitimate}) = \frac{|data_{illegitimate}|}{|data|}$$
$$= 1 - P(v_{legitimate})$$
(8)

We estimate the conditional probability $P(w_k|v_j)$ the same way as done in [20], i.e.

$$P(w_k | v_j) = \frac{n_k + 1}{n + |Vocabulary|}$$
(9)

where $w_k \in Vocabulary$,

 n_k is the number of times the command line w_k occurs in $data_j$ and

n is the total number of distinct command lines in data_i

Having the preceding algorithms outlined, we can begin to document and *profile* every user within our training dataset.

In order to implement a successful training session, it is required to have a sufficient amount of data for each user's profile. Lack of sufficient data will directly contribute to inaccurate results. Our initial confidence in the system relies on the quality and the availability of a rich representation of a user's behavioural tendencies in a form of a dataset. By investigating the general statistical information (See Appendix A) regarding the available dataset, we can make certain decisions in regards to possible usability and suitability for each user's data and their potential candidacy for our training sessions.

Retrieving the generated statistical information allows us to consider each user as a potential candidate for a training session. As a rule of thumb, we consider each user that has equal or greater than 1500 command lines in its data pool as such candidate. After applying this rule to our 168 user dataset, we witness that 75 of the users meet the requirements.

These 75 users will be denoted as *victims*. We then use the available data associated with each victim to build our profiles. To this effect, we have considered the first 1000 command lines of each victim as the source for our training data. Once the victims have been identified and their designated training data has been extracted, we proceed to gain a more detailed understanding on the overall commuted training data. Based on the final commuted training data, a vocabulary is built, which consists of all distinct command lines used by all victims along with their number of occurrences. This vocabulary is used as a reference to build each victim's profile.

Along with the vocabulary, each user's distinct command lines are identified and recorded in a separate table. This table contains all the distinct command lines witnessed in the training data that belong to each user, along with their number of occurrences.

In order to build a profile for every user, all command lines witnessed in the vocabulary are coupled with each user. A user profile consists of all the terms (command-lines) within the vocabulary along with the probabilities $p_{legitimate}$ and $p_{illegitamate}$ associated with the term with respect to the user. These probabilities are the representations of the results gained from evaluating the probability term $P(w_k|v_j)$, where w_k represents each command line in the vocabulary. $p_{legitimate}$ indicates the probability that the given command line belongs to the user, where $p_{illegitimate}$ indicates the probability that the given command line belongs to other users within the training data.

The vocabulary associated with our training data consisted of 17,982 terms (command lines). Therefore, each user's profile consists of the same number of terms along with their associated probabilities. After the completion of the learning mechanism, 1,348,650 records were generated, representing the profile information for the 75 victims. The following table (Table 18) represents a small segment of a profile belonging to one of the victims.

uid	Command Line	$p_{legitimate}$	$p_{\it illegitimate}$	
78	ls	0.40874959414524	0.43698392003477	
78	fg	0.12359203459912	0.12143113580107	
78	е	0.11171047003469	0.052685310845613	
78	lpq	0.092699966731619	0.046794399410464	
78	bye	0.059431585951238	0.023954223940219	
78	myada	0.052302647212585	5.5574636180644e-07	
78	e conq.a	0.052302647212585	5.5574636180644e-07	
78	ada –m conq.a	0.049926334299701	5.5574636180644e-07	
78	a.out	0.042797395561047	0.018062312505071	
78	who	0.03329214390951	0.040570040158232	
78	purge	0.03329214390951	0.0016122201956005	
78	rwho more	0.035668456822394	0.0043909520046327	
78	e queens.a	0.016657953519319	5.5574636180644e-07	

Table 18: Small segment of a given profile

In Table 18, each command line is represented with its associated $p_{legitimate}$ and $p_{illegitimate}$. In the next section, we discuss the classification process involved in determining whether a command line is classified as *legitimate* or *illegitimate*.

3.3.3.2 Classifying Users

Once we have established the probability values $p_{legitimate}$ and $p_{illegitimate}$ for all the terms within the vocabulary with respect to each victim, we can proceed to classify new terms (command-lines). As previously mentioned, ideally $p_{illegitimate}$ should represent the probability that the command line belongs to masqueraders. However, due to the absence of such data, it is required to build the probability from other sources. Although it may seem that the data is not authentic, it will nevertheless give a fair representation of what a legitimate user is not, which is the sole purpose of creating the counterpart classification to the target value *legitimate*. As a result of this assumption,

 $P(v_{illegitimate})$ will always dominate $P(v_{legitimate})$, since the available data ratio is 74:1. Consequently, the probability term $P(v_j)$ will dominate the Naïve Bayes classification, which in turn, will always classify inputs as *illegitimate*. In order to compensate for the dominating factor of the probability term $P(v_{illegitimate})$, we have to make the assumption that the likelihood of a masquerader will be equal to that of the legitimate user (victim). Thus, the consideration of the term $P(v_j)$ can be eliminated from the classification process.

As an example, given the sequence of command lines described in the set {*ls, cd classes, cd cps*511, *pico deadlines, exit*}, the Naïve Bayes classifier will determine the classification based on each command-line's predetermined probability. For instance, if the probability distribution for an arbitrary user who has entered the command-lines within the given set is captured in Table 19, the Naïve Bayes classifier can be used to classify the set as whether it is *legitimate* or *illegitimate* compared to the given sample user profile. The Naïve Bayes classifier makes the assumption that each element in the set is independent, which explains the naïve nature of the classifier.

Command Line	$p_{legitimate}$	p _{illegitimate}
ls	0.3121	0.4351
cd classes	0.3123	0.0922
cd cps511	0.0422	0.0311
pico deadlines	0.0911	0.0022
exit	0.0332	0.0021

Table 19: Probability distribution for an arbitrary user

In this example, to determine the classification, we perform the following calculations:

$$V_{NB} = \operatorname{argmax}_{v_i \in V} \prod_{i \in positions} P(a_i | v_j) \quad (10)$$

 $\prod_{i \in \text{positions}} P(a_i | v_{\text{legitimate}}) = P(ls | v_{\text{legitimate}}) P(cd \ classes | v_{\text{legitimate}}) \dots P(exit | v_{\text{legitimate}})$

$$= (0.3121)(0.3123)(0.0422)(0.0911)(0.0332)$$
$$= 1.24 \times 10^{-5}$$
(11)

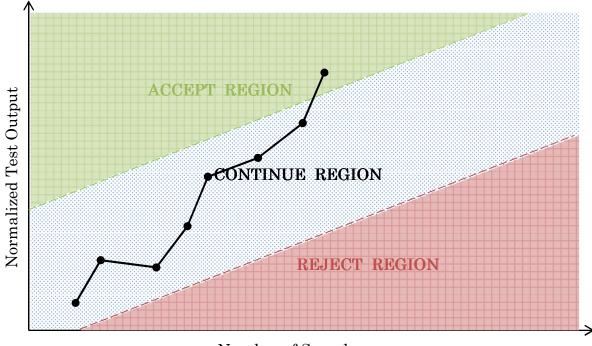
 $\prod_{i \in \text{positions}} P(a_i | v_{illegitimate}) = P(ls | v_{illegitimate}) P(cd classes | v_{illegitimate}) \dots P(exit | v_{illegitimate})$

$$= (0.4351)(0.0922)(0.0311)(0.0022)(0.0021)$$
$$= 5.76 \times 10^{-9}$$
(12)

Since $5.76 \times 10^{-9} < 1.24 \times 10^{-5}$, it is concluded that the set is classified as *legitimate*, i.e. the given set is recognized as legitimate input produced by the owner of our sample user profile.

In our implementation, we use the Naïve Bayes classifier to classify each new input that is witnessed in our evaluation. However, the final decision to accept or reject a user is made by using the sequential sampling method, as described in the next section.

3.3.3.3 Continuous Authentication and the Sequential Sampling Technique


In order to appropriately evaluate the legitimacy of a particular user against a certain profile, an evaluation technique is required, where the crucial characteristics of the system are recognized. In an IDS, decisions can be made using any number of input values, regardless of the relevancy of the data in question. However, the accuracy of the decisions can be questionable. In order to maintain a certain confidence rate in our system, we have adopted a recently proposed evaluation technique [1], which can be considered as a pioneer method for achieving continuous authentication based on learning biometrics data. In this thesis, this technique has been adapted for use in the case of user command sequence.

The term continuous authentication [46; 47; 48] refers to a system where the authentication process is continuously active throughout the session. Typically, the behavioural patterns of the user are tested and evaluated against a predefined signature. The data rates for the input streams are unknown. Hence, the authenticity of the user is tested continuously as data becomes available.

Due to the nature of our application, the input data flow rate is also unknown; hence an evaluation technique is required that can systematically adapt itself to the rate at which new input data are available. In order to evaluate the legitimacy of a user, we use the above-mentioned evaluation technique (sequential sampling technique [1]). This method has previously been used to evaluate the legitimacy of a user based on mouse dynamics. This is the first time that the method is being used for evaluating command line sequences.

The sequential sampling technique is a dynamic sample size decision technique. Typically, a classical sampling is used to make the decision on the validity of a particular user [1]. In classical sampling, the sample size is predetermined and decisions are only made when the end of the data collection procedure is met. The sequential sampling method was introduced to compensate for certain shortcomings of the classical sampling approach when dealing with continuous authentication. In a classical sampling approach, a decision cannot be made, until there is a sufficient amount of data available. Hence, the system can be vulnerable during that time, and thus the system's TTA (Time-to-Alarm) can be significantly influenced by such a method. By using the sequential sampling method, the decision making is active during data collection. Therefore, decisions can be made as new input is presented, and data collection and analysis can be done simultaneously [1].

In order to utilize the sequential sampling technique, it is required to first model a sampling plan which consists of three regions, namely, *Accept, Reject* and *Continue*. While the data is being collected continuously (as shown in Figure 3), the sample size is incremented accordingly until a decision is made.

Number of Samples

Figure 3: General sampling plan

The sequential sampling technique will continuously test the null hypothesis as the number of test inputs increases. The amount of collected data within each iteration is based on a predetermined sample size, while the sample size itself is determined based on the application in which the sequential sampling technique is used. Depending on the application the sample size can range from collecting only a single data item to collecting a large set of data items.

The sampling plan is developed in accordance with the following parameters [1]:

 α = acceptable type I error (false positive) β = acceptable type II error (false negative) p_1 = lower threshold limit (as proportion) p_2 = higher threshold limit (as proportion)

A decision is only made when a normalized confidence rate value enters one of the decision regions (i.e. accept or reject). The acceptance and rejection lines are expressed as follows [1]:

$$N_{CR} = h_2 + sn \tag{13}$$

$$N_{CR} = -h_1 + sn \qquad (14)$$

where N_{CR} is the normalized value of the confidence ratio computed for test number n.

$$N_{CR} = CR_n \times \frac{n}{100} \qquad (15)$$

The parameters h_1 , h_2 and s can be expressed as follows:

$$h_{1} = ln \frac{1-\alpha}{\beta} \div ln \frac{p_{2}(1-p_{1})}{p_{1}(1-p_{2})}$$
(16)
$$h_{2} = ln \frac{1-\beta}{\alpha} \div ln \frac{p_{2}(1-p_{1})}{p_{1}(1-p_{2})}$$
(17)
$$s = ln \frac{1-p_{1}}{1-p_{2}} \div ln \frac{p_{2}(1-p_{1})}{p_{1}(1-p_{2})}$$
(18)

It can be observed that equation 13 and 14, follow the basic principles of a straight line. Therefore, the variables h_1 and h_2 influence the distance between the two lines and s represents their slope [1].

Chapter 4: Experimental Evaluation

This Chapter discusses the performance evaluation of the Continuous Authentication Based on Learning User Command Sequence (CABLUCS) scheme proposed in this thesis. This includes the evaluation approach, the experiments setup and operational aspects, and finally a description of the results obtained.

4.1 Challenges

The goal of a IDS is to accurately determine the legitimacy of a given user in a timely fashion. To this effect, several parameters can been predefined and then used to measure the efficiency and accuracy of the system in terms of detection rate. In this thesis, we have considered the following parameters.

- The Detection Rate (DR): this is the rate at which the system can successfully detect an intrusion, in the event of a masquerade attack.
- False Reject Rate (FRR) and False Accept Rate (FAR): Typically, two types of errors arose when decisions are made using experimental data in an IDS. They are symbolized as Type I and Type II errors, respectively
 - A Type I error implies that a reject decision has inappropriately been made, indicating that a false rejection has occurred. In this case, the rejection of a legitimate user has happened. The FRR represents the percentage in which the system has falsely rejected a legitimate user.
 - A Type II error implies that an accept decision has inappropriately been made.
 This type of error indicates that a false acceptance has occurred. In this case, the acceptance of a masquerader as a legitimate user has happened. The FAR represents the percentage in which the system has falsely accepted a

masquerader as a legitimate user. It is also an indication of the rate at which the system has been compromised.

Time-to-Alarm (TTA) and Mean-Time-to-Alarm (MTTA): The accuracy of the detection mechanism is an important factor. However, if the decision is not made in a timely fashion, the system can be jeopardised. The TTA indicates the time elapsed until the masquerader was detected and the MTTA represents its responsiveness.

In the design of an IDS, attempting to minimize the FRR, FAR, and the MTTA rates is a difficult task in the sense that these attributes are loosely related to each other. In order to reduce the MTTA value, decisions must be made faster. However, a quick decision may not be appropriate since this may lead to increased FAR and FRR. The challenge is thus to minimize all attributes while maintaining an efficient and operational system.

4.2 Evaluation Approach and Setup

In order to setup the working environment for our experiments, we have acquired the LAMP software bundle. LAMP was installed on a Dell Workstation, Quad Xeon Processors at 1.86 GHz with 8 GB RAM. LAMP is an open source software bundle that consists of Linux, Apache HTTP Server, MySQL relational database management system and PHP. This combination is generally used to create dynamic, database driven, web applications. LAMP projects tend to be platform independent, hence once developed, they can be executed on most operating systems.

PHP is a scripting language with syntax similar to the C programming language, which is simple to deploy and execute. It is generally bundled for the use of dynamic web programming in relations with MySQL. The setup was configured to be sensitive to errors, while disabling caching and timeouts. Caching is typically used in PHP for the purpose of enhancing the processing time for the re-runs of the same code. Because we are interested in monitoring and differentiating the processing time (in seconds) of the different test cases, we have set this feature to 'disabled'. PHP processing timeouts are usually set to 30 seconds, which is a reasonable time if we are concerned with executing a program that results in producing a simple web page. However, due to the nature of our experiment, we anticipate a much higher of processing time. Therefore, timeouts have also been disabled. In our experiments, we have also configured PHP warning and error settings, to make all potential warnings and errors visible within our apparatus.

Along with PHP, the MySQL server and the Apache HTTP Server also utilize caching and other performance enhancing features as the system adapts itself to its environment. Therefore, for every test case, the servers are reset to their original status and restarted accordingly. As a result, certain tests could not be done simultaneously and longer testing times are required to test different parameters. This procedure is followed to maintain a fair comparison between the different test cases in comparative processing times (measured in seconds). These precautionary steps do not influence the FRR, FAR and MTTA values since these values do not incorporate time (in seconds) as their unit. The MTTA value is based on the number of actions required to make a decision, thus is not based on the processing time (in seconds) since different workstations can produce different processing times while testing the same IDS, but in contrast, they will all output the same MTTA value.

4.2.1 Extracting the Data from Its Raw Format

A PHP script was written in order to extract the data from its raw format into a MySQL database. The script traverses through the different folders looking for files that matched the required criteria. The criteria are set based on the provided Greenberg dataset structure. Once the script has determined that a file meets the criteria, it detects the user and its type. Using the discovered information regarding the user, the script then creates a user record in the database, while documenting the related information.

Once the user has been determined, the script traverses through its given data, scanning for user sessions. Each user session that is found is recorded in the database. The related information on this user is documented, which include the session's start and end time. A function is then used to convert the start and end time to a UNIX timestamp value.

4.2.2 Extracting the Command Line of a Session

Once a session has been determined, the data collection proceeds to extract command lines relative to the given session. Each command line is extracted from the session and is given an order number, which represents the order in which the command line is seen within that session. Certain string values (i.e. command-line, working directory and alias) are required to be character-escaped in order to meet certain PHP and MySQL compatibility issues. Due to the nature of the Greenberg dataset, each command line is known to be coupled with certain attributes (such as working directory, history, alias and error). In order to retrieve the attributes with respect to the command line, the script is parsed through each item and the necessary information is collected. An audit is also kept on the general statistical information of each user (i.e. the number of command lines, the errors, to name a few).

Due to certain hidden characters within the Greenberg dataset, several string comparisons in each user session tended to fail. By trimming whitespaces and other unknown hidden characters, this issue has been fixed. Binary data comparison is used in all tests, in order to represent a perfect match. The script finally traverses through every session within every 168 users available in the Greenberg dataset and records their entire data, while maintaining complete data integrity. The resulting data in its new format is highly accessible, easy to use, flexible and customizable.

4.2.3 Deciding the Victims and Masqueraders

After the above-mentioned data extraction, 31 masqueraders and 75 victims are decided by examining the general statistical information acquired. A PHP script is written in order to train the 75 profiles using our Naïve Bayes learning algorithm. The profiling process took approximately 5 hours to complete, yielding a total of 1,348,650 data items.

4.2.4 Calculating the Confidence Ratio

In order to calculate the confidence ratio (CR), a set of command lines are tested against a given profile. For instance, considering the following test input set of five command-lines { $ls, cd \ classes, vi \ hello. txt, whoami, exit$ }, we test each command line against user x's profile. Assuming that after each command line's independent classification based on the Naïve Bayes classifier, 4 command lines are classified as legitimate and 1 is classified as illegitimate. In this example, our CR for the five command lines belonging to user x is obtained as $\frac{4}{5} \times 100 = 80$. Although initially it may seem that the tested input set belongs to user x given a CR of 80%, this conclusion is based on only five command lines. If the next five command lines produces a CR of 5%, we can immediately sense that our original hypothesis may be faulty.

4.2.5 Determining the Legitimacy of Users

We use the sequential sampling technique in order to complement the nature of continuous authentication systems. The sequential sampling technique allows us to make better decisions as the size of our input set increases based on a given sample size. Different applications require different sample sizes.

The sequential sampling technique has been used to determine the legitimacy of users based on mouse dynamics, where sample sizes ranged from 25 to 100 [1]. The sample size used in a mouse dynamics application differs from that of a command-line based application. For instance, five command lines may differ in significance than five mouse gestures or clicks. In order to use the sequential sampling technique, we have built different sampling plans that will allow us to test the legitimacy of a given user. To build a sampling plan, we have to determine the *accept, continue* and *reject* regions. In order to determine these regions, we have established the parameters involved in producing the two lines that separate the three regions. Depending on the application, the values of the required parameters are different. In order to determine suitable values for the required parameters p_1 and p_2 , which represent the lower and higher thresholds respectively, we have conducted a simple test. This test consisted in determining values that will adjust the distance between the accept/reject lines in such a way that it will satisfy the overall range of our CR values. After several trials and error cases, three sampling plans are selected. The values chosen for each sampling plan are recorded in Table 20.

Sampling Plan	p ₁	p_2	α	β
Α	0.29	0.71	0.01	0.01
В	0.30	0.70	0.01	0.01
С	0.31	0.69	0.01	0.01

Table 20: Three selected sampling plans

In Table 20, α and β represent the acceptable type I and the acceptable type II errors respectively. In all our test cases, the values for these two parameters are set to 0.01. The three selected sampling plans are illustrated in Figure 4, Figure 5 and Figure 6.

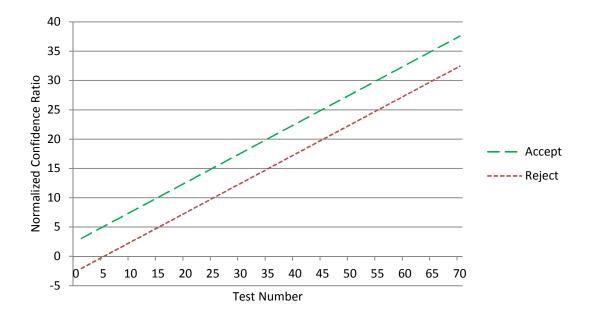


Figure 4: Sampling Plan A ($p_1 = 0.29, p_2 = 0.71, \alpha = 0.01, \beta = 0.01$).

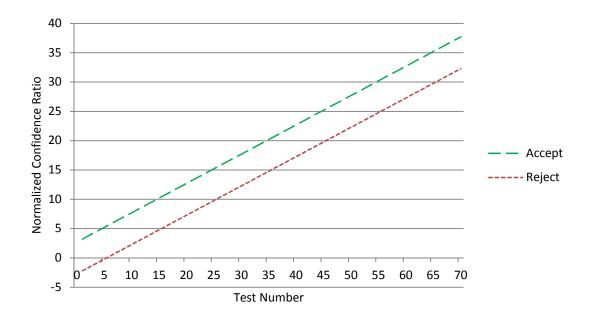


Figure 5: Sampling Plan B ($p_1 = 0.30 p_2 = 0.70, \alpha = 0.01, \beta = 0.01$).

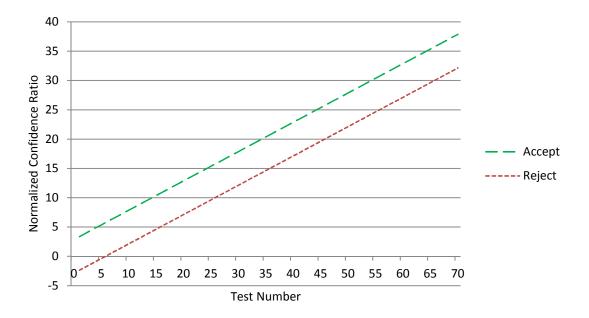


Figure 6: Sampling Plan C ($p_1 = 0.31 p_2 = 0.69, \alpha = 0.01, \beta = 0.01$)

4.2.6 Calculating the MTTA, FAR, and FRR

The p_1 and p_2 values determine the sensitivity of the system to decision making. As p_1 is decremented, the *continue* region becomes smaller and the system becomes more susceptible to making faster decisions. Hence, Sampling Plan A is expected to have a lower Mean-Time-to-Alarm (MTTA) value than Sampling Plan B and C. As p_1 is incremented, the MTTA value is expected to climb, hence, decisions are made slower. A lower MTTA does not always suggest a better system. The challenge is to lower the MTTA while making accurate decisions.

In order to calculate the False Rejection Rate (FRR), every victim is tested against its own profile. As previously mentioned, the first 1,000 command lines of a user are utilized in order to build its relative profile. It is crucial not to use the same data source as the new input for testing purposes; otherwise the results will not carry great weight in our conclusion. The first command-line used to test the user against its own profile is the 1,001st element in the given user's data pool. There are 75 victims in total, hence, 75 tests are completed for each sampling plan in order to calculate the relative FRR.

Calculating the FAR value involves testing all masqueraders against all victims for each sampling plan. All 31 masqueraders are contributing in attacking each of the 75 victims. The expected results in this test are rejections. In the case where an acceptance has been issued to a masquerader, the result is recorded and the FAR value is updated accordingly.

A maximum TTA of 1000 command-lines is set in order to compensate for system halts. System halts can occur when a decision cannot be made using the available input data against the sampling plan. This can occur if the normalized confidence ratio continues to be in the *continue region* of the sampling plan without penetrating the final decision regions (i.e. accept or reject). System halts can also be triggered as a result of insufficient input data that can cause the prevention of a decision from being made.

4.2.7 Comparing a User against a Given Profile

In order to utilize the sequential sampling technique, for each sampling plan, a sample size must be set before any testing can begin. The sample size determines the number of command lines to sample before attempting to make a decision. For instance, a sample size of 5 means that the iterator will sample and accumulate every 5 commandlines as they are made available. Every iteration is recognized by a number, which is denoted as a *test number*. With a sample size of 5 command-lines, *test number 3* indicates that 15 command lines have been collected and tested.

A PHP script is written in order to simulate the testing process of a user against a given profile. This script incorporates the sequential sampling technique in order to make decisions on the legitimacy of the test user. The three different sampling plans are tested using different sample sizes, while the results are recorded in two different MySQL tables. The *engine_report* MySQL table (Table 21) is used to detail the final results made by the algorithm as a user is tested against a profile.

Field Name	Description					
id	This field is used as the primary key					
	for this table. It is used to identify					
	the given report (record).					
uid_input	This field identifies the user that is					
	being tested against a given profile.					
uid_profile	This field indicates the user-profile.					
iteration	This field indicates the number of					
	iterations required to make a					
	decision.					
decision_expected	This field indicates the expected					
	decision to be made. (i.e. Accept if					

Table 21: engine_report MySQL table schema

	<i>uid_input</i> is equal to <i>uid_profile</i>)
decisioin_made	is field indicates the final decision
	de after the testing was completed.
seconds	This field indicates the number of
	seconds required to make a decision.
sample_size	This field indicates the sample size
	used in the sequential sampling
	technique.
num_commands	This field indicates the number of
	command-lines that were required in
	order to make a decision.
num_trained_items	This field indicates the number of
	command-lines that were used to
	train the profile. In all of the tested
	cases, this number remained at
	1,000.
p1	This field indicates the lower
	threshold used in the sampling plan.
p2	This field indicates the higher
	threshold used in the sampling plan.
alpha	This field represents the acceptable
	type I error (false positive)
beta	This field represents the acceptable

	type II error (false negative)
max_iterations	This field indicates the maximum
	allowed number of iterations.

The details of each decision are recorded in the *engine_output* MySQL table (Table 22). This table outlined the successive progression of the decision making process of the sequential sampling technique (as shown in Table 23 and Table 24).

Table 22: engine_output MySQL table schema

Field Name	Description
report_id	This field identifies the report that
	this record belongs to.
test_num	This field indicates the test number
	for the given iteration. (i.e. 1,2,3)
accept_limit	This field represents the accept
	value, given the test number,p1, p2,
	alpha and beta.
reject_limit	This field represents the reject value,
	given the test number, p1, p2, alpha
	and beta.
normalized_cr	This field represents the normalized
	confidence ratio after testing n*N
	command lines, where n is the test

	number and N is the sample size.
cr	This field represents the confidence
	ratio after testing n*N command
	lines, where n is the test number and
	N is the sample size.
num_commands	This field represents the number of
	command-lines used to calculate the
	confidence ratio.

Table 23: Details of the final results made by using CABLUCS

Id	Uid Input	Uid Profile	Iteration	Decision Expected	Decision Made	Seconds	Sample Size	Number of Commands	Number of Trained Commands	Ρ1	P2	Alpha	Beta	Max Iteration
1	86	86	12	Accept	Accept	20	5	55	1000	0.3	0.7	0.01	0.01	1000
2	30	30	67	Accept	Reject	138	5	330	1000	0.3	0.7	0.01	0.01	1000
3	89	55	6	Reject	Reject	9	3	15	1000	0.31	0.69	0.01	0.01	1000
4	24	24	9	Accept	Accept	77	20	160	1000	0.29	0.71	0.01	0.01	1000

Table 24: Successive progression of the decision making process

Report id	Test Number	Accept Limit	Reject Limit	Normalized CR	CR	Number of Commands
3	1	3.3715216902596	-2.3715216902596	0	0	3
3	2	3.8715216902596	-1.8715216902596	0	0	6
3	3	4.3715216902596	-1.3715216902596	0	0	9
3	4	4.8715216902596	-0.8715216902596	0	0	12
3	5	5.3715216902596	-0.3715216902596	0	0	15

3	6	5.8715216902596	0.12847830974036	0	0	18
---	---	-----------------	------------------	---	---	----

4.2. Performance Results

The following table describes the annotations used to describe each completed test. Here, TID is used to indicate the given test. The list of prepared sampling plans and tests are shown in Table 25.

TID	Sample Size	Sampling Plan	<i>p</i> ₁	p ₂	α	β
1 _A	3	А	0.29	0.71	0.01	0.01
1 _R	3	А	0.29	0.71	0.01	0.01
$2_{\rm A}$	3	В	0.30	0.70	0.01	0.01
$2_{ m R}$	3	В	0.30	0.70	0.01	0.01
3 _A	3	С	0.31	0.69	0.01	0.01
3_{R}	3	В	0.31	0.69	0.01	0.01
4 _A	3	-	0.32	0.68	0.01	0.01
5 _A	3	-	0.33	0.67	0.01	0.01
6 _A	3	-	0.34	0.66	0.01	0.01
7 _A	3	-	0.35	0.65	0.01	0.01
8 _A	5	А	0.29	0.71	0.01	0.01
$4_{\rm R}$	5	А	0.29	0.71	0.01	0.01
9 _A	5	В	0.30	0.70	0.01	0.01
9 _R	5	В	0.30	0.70	0.01	0.01
10 _A	5	С	0.31	0.69	0.01	0.01
10 _R	5	C	0.31	0.69	0.01	0.01
11 _A	10	A	0.29	0.71	0.01	0.01
11 _R	10	A	0.29	0.71	0.01	0.01
12 _A	10	В	0.30	0.70	0.01	0.01
12_{R}	10	В	0.30	0.70	0.01	0.01
13 _A	10	С	0.31	0.69	0.01	0.01
13 _R	10	C	0.31	0.69	0.01	0.01
$14_{\rm R}$	15	А	0.29	0.71	0.01	0.01
15 _R	15	В	0.30	0.70	0.01	0.01
16 _R	15	С	0.31	0.69	0.01	0.01
17 _R	20	А	0.29	0.71	0.01	0.01
18 _R	20	В	0.30	0.70	0.01	0.01
19 _R	20	С	0.31	0.69	0.01	0.01

Table 25: List of prepared sampling plans and tests

Figure 7 and Figure 8 illustrate a visualization of the sequential sampling technique using actual data taken from our experiment. Figure 7 shows a user's test input on its own profile based on TID 9_A . TID values with the subscript letter *A*, represent a test case where the expected decision is an acceptance, and values with the subscript letter *R*, represent a test case where the expected decision is a rejection.

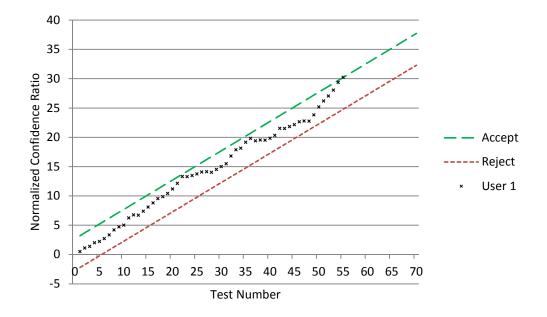


Figure 7: User 1's new input tested on User 1's profile

The user's normalized confidence ratio (CR) navigates through the *continue* region, until a decision has been made. We can witness a decision being made at *test number* 55, where the user's normalized confidence ratio crosses the acceptance line and hence the user is accepted. This is an example of a successful trial. Figure 8 demonstrates a test (TID $9_{\rm R}$) on the same profile, however this time, the profile does not belong to the user. By looking at this figure, we can witness that the system comes close to detecting the masquerader near *test number 24*, however the confidence ratio climbs as new data is made available. Eventually, this user is rejected at test number 70, where the confidence ratio penetrates the reject region.

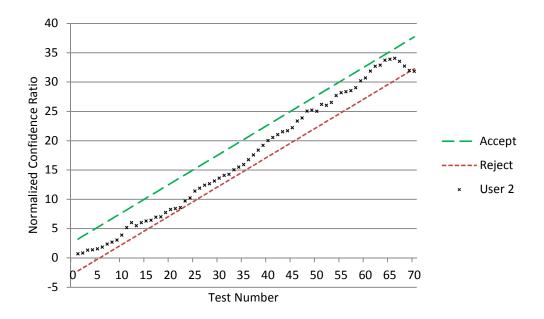


Figure 8: User 2's input tested on User 1's profile

During the course of the system's analysis of the user, we can witness that the decision can go either way. Depending on the sensitivity of the system, decisions can be altered dramatically. For instance, if the *continue* region was reduced in size, a faster decision would have been made at test number 24, which is more than 50% faster than the latter. The challenge lies in determining a sampling plan that will be ideal to the given application. It is important to mention that a sampling plan must be built, such that it compensates for the entire training range.

The following table (Table 26) illustrates the decision making process of the

system for the previous two examples.

Test Number	Number of Commands	Accept Limit	Reject Limit	User 1's Normalized CR	User 2's Normalized CR	Decision
1	5	3.211632	-2.21163	0.5	0.666667	Continue
2	10	3.711632	-1.71163	1.111111	0.8	Continue
3	15	4.211632	-1.21163	1.384615	1.285714	Continue
4	20	4.711632	-0.71163	2	1.333333	Continue
5	25	5.211632	-0.21163	2.222222	1.5	Continue
6	30	5.711632	0.288368	2.7	1.8	Continue
7	35	6.211632	0.788368	3.333333	2.333333	Continue
8	40	6.711632	1.288368	4.173913	2.666667	Continue
9	45	7.211632	1.788368	4.695652	3	Continue
10	50	7.711632	2.288368	5	3.846154	Continue
11	55	8.211632	2.788368	6.233333	5.133333	Continue
12	60	8.711632	3.288368	6.75	6	Continue
13	65	9.211632	3.788368	6.685714	5.473684	Continue
14	70	9.711632	4.288368	7.388889	6	Continue
15	75	10.21163	4.788368	8.076923	6.25	Continue
16	80	10.71163	5.288368	8.8	6.4	Continue
17	85	11.21163	5.788368	9.536585	6.925926	Continue
18	90	11.71163	6.288368	9.857143	6.967742	Continue
19	95	12.21163	6.788368	10.40476	7.71875	Continue
20	100	12.71163	7.288368	11.16279	8.235294	Continue
21	105	13.21163	7.788368	12.13333	8.4	Continue
22	110	13.71163	8.288368	13.29167	8.555556	Continue
23	115	14.21163	8.788368	13.26923	9.684211	Continue
24	120	14.71163	9.288368	13.47368	10.2	Continue
25	125	15.21163	9.788368	13.75	11.36364	Continue
26	130	15.71163	10.28837	14.06557	11.86957	Continue
27	135	16.21163	10.78837	14.12308	12.375	Continue
28	140	16.71163	11.28837	14	12.62745	Continue
29	145	17.21163	11.78837	14.5	13.07843	Continue
30	150	17.71163	12.28837	15	13.58491	Continue
31	155	18.21163	12.78837	15.5	14.03774	Continue
32	160	18.71163	13.28837	16.8	14.22222	Continue
33	165	19.21163	13.78837	17.85882	15	Continue
34	170	19.71163	14.28837	18.13333	15.45455	Continue
35	175	20.21163	14.78837	19.15789	15.90909	Continue
36	180	20.71163	15.28837	19.8	16.71429	Continue
37	185	21.21163	15.78837	19.38095	17.52632	Continue
38	190	21.71163	16.28837	19.53271	18.34483	Continue

Table 26: Decision making process of the sequential sampling technique

39	195	22.21163	16.78837	19.5	19.16949	Continue
40	200	22.71163	17.28837	19.82301	20	Continue
41	205	23.21163	17.78837	20.32479	20.5	Continue
42	210	23.71163	18.28837	21.52066	21	Continue
43	215	24.21163	18.78837	21.5	21.5	Continue
44	220	24.71163	19.28837	21.824	21.66154	Continue
45	225	25.21163	19.78837	22.14286	22.16418	Continue
46	230	25.71163	20.28837	22.64063	23.33333	Continue
47	235	26.21163	20.78837	22.78788	23.84058	Continue
48	240	26.71163	21.28837	22.75556	25.01408	Continue
49	245	27.21163	21.78837	23.8	25.18056	Continue
50	250	27.71163	22.28837	25.17241	25	Continue
51	255	28.21163	22.78837	26.18	26.17105	Continue
52	260	28.71163	23.28837	27.02632	26	Continue
53	265	29.21163	23.78837	28.03871	26.5	Continue
54	270	29.71163	24.28837	29.3625	27.65854	Continue
55	275	30.21163	24.78837	30.21605	28.15476	Accept User 1
56	280	30.71163	25.28837		28.32941	Continue
57	285	31.21163	25.78837		28.5	Continue
58	290	31.71163	26.28837		29	Continue
59	295	32.21163	26.78837		30.17045	Continue
60	300	32.71163	27.28837		30.66667	Continue
61	305	33.21163	27.78837		31.82609	Continue
62	310	33.71163	28.28837		32.66667	Continue
63	315	34.21163	28.78837		32.84043	Continue
64	320	34.71163	29.28837		33.68421	Continue
65	325	35.21163	29.78837		33.85417	Continue
66	330	35.71163	30.28837		34.02062	Continue
67	335	36.21163	30.78837		33.5	Continue
68	340	36.71163	31.28837		32.69231	Continue
69	345	37.21163	31.78837		31.94444	Continue
70	350	37.71163	32.28837		31.81818	Reject User 2

The two types of tests that were conducted in this experiment include the testing for rejection and the testing for acceptance. Acceptance tests involved the testing of a user against its own profile. The purpose of this test is to calculate the FRR of our intrusion detection system. Given that there are 75 victims, this type of testing did not require vast amount of computational time. Depending on the sample size, the acceptance tests

did not require more than an hour to complete a single trial on our workstation. However, in the case of a rejection test, 31 masqueraders are used as input to 75 profiles. Depending on the sample size, this type of test can take up to 10 hours to complete a single trial on our workstation. The purpose of a rejection test is to calculate the FAR of our intrusion detection system.

The following table (Table 27) illustrates the final results that we have achieved by implementing a Naïve Bayes learning mechanism in conjunction with the decision making of the sequential sampling technique.

Test ID	Sample Size N (Actions)	<i>p</i> ₁	p ₂	α	β	FAR (%)	FRR (%)	DR (%)	Min TTA (Commands)	Max TTA (Actions)	Mean TTA (Actions)	CPU Usage (Seconds)
	3	0.27	0.73	0.01	0.01	03.225		96.78	12	183	16.28	
	3	0.28	0.72	0.01	0.01	03.183		96.82	12	186	16.61	
1	3	0.29	0.71	0.01	0.01	02.968	12.00	97.03	15	198	19.35	6.97
2	3	0.30	0.70	0.01	0.01	02.882	12.00	97.12	15	237	20.09	7.20
3	3	0.31	0.69	0.01	0.01	02.882	12.00	97.12	15	252	20.60	7.35
4	3	0.32	0.68	0.01	0.01	02.796	12.00	97.20	18	252	23.63	-
5	3	0.33	0.67	0.01	0.01	02.581	12.00	97.42	18	300	24.46	-
6	3	0.34	0.66	0.01	0.01	02.581	12.00	97.42	18	546	25.25	-
7	3	0.35	0.65	0.01	0.01	02.581	12.00	97.42	21	552	29.13	-
8	5	0.29	0.71	0.01	0.01	02.237	12.00	97.76	25	555	34.26	10.42
9	5	0.30	0.70	0.01	0.01	02.237	12.00	97.76	25	575	35.17	10.47
10	5	0.31	0.69	0.01	0.01	02.237	12.00	97.76	25	575	36.16	10.59
11	10	0.29	0.71	0.01	0.01	01.464	13.33	98.41	50	910	67.94	17.61
12	10	0.30	0.70	0.01	0.01	01.421	13.33	98.45	50	910	70.22	18.10
13	10	0.31	0.69	0.01	0.01	01.421	13.33	98.41	50	920	72.59	18.75
14	15	0.29	0.71	0.01	0.01	-	12.00		-	-	-	-
15	15	0.30	0.70	0.01	0.01	-	12.00		-	-	-	-
16	15	0.31	0.69	0.01	0.01	-	12.00		-	-	-	-
17	20	0.30	0.70	0.01	0.01	-	13.33		-	-	-	-
18	20	0.31	0.69	0.01	0.01	-	13.33		-	-	-	-
19	20	0.29	0.71	0.01	0.01	-	13.33		-	-	-	-

Table 27: Results achieved based on different parameters and sampling sizes

Looking at the results, a few patterns are visible. We can witness that as the sample size increases the FAR rate is decreased. A larger sample size allows the system to gain a better understanding of the given user, before making a decision. Figure 9 illustrates the three different sampling plans used in testing the system. We can clearly notice that as the sample size is increased, the FAR rate decreases.

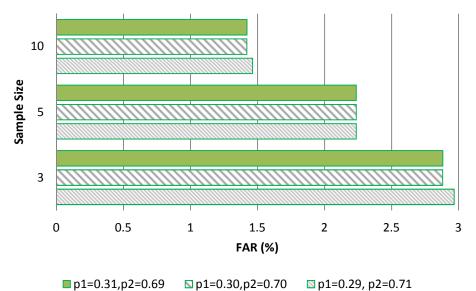


Figure 9: Analysing the system's FAR rate versus the sample size

Figure 10 illustrates the analysis of the FRR rate as the sample size increases. We can witness that as the sample size increases the FRR rate also increased.

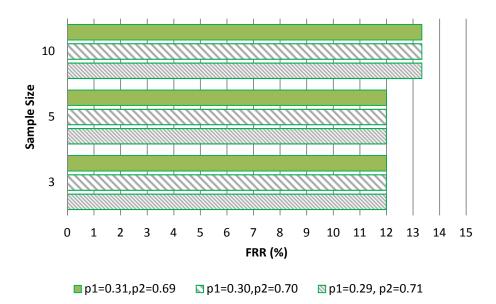
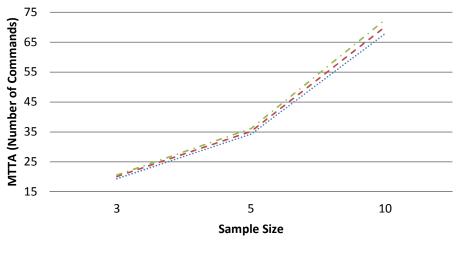



Figure 10: Analysing the system's FRR rate versus the sample size

Figure 11 illustrates the pattern of the MTTA value as the sample size is increased. It is observed that the Time-to-Alarm (TTA) is increased as the sample size is increased.

······ p1=0.29, p2=0.71 --- p1=0.30, p2=0.71 -·-· p1=0.31, p2=0.69

Figure 11: Analysis of the system's MTTA value as the sample size is increased

Figure 12 shows a closer view at the effects of the sample size on the MTTA value. We

can observed that depending on the sampling plan, the MTTA is also affected. This is understandable due to the fact that as the lower threshold is increased within the sampling plan, the *continue* region is also increased in size. Therefore, the time spent in the *continue* region is increased.

Figure 12: Analysing the system's MTTA value versus the sample size

Figure 13 illustrates the pattern between the CPU usages and the different sample sizes. Naturally, the CPU usage follows the same pattern as the MTTA value. Depending on the workstation used, the values in seconds are different. However, the illustrated pattern should remain the same.

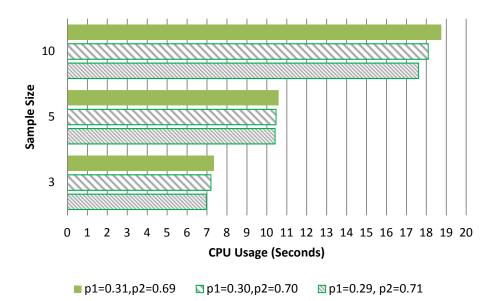


Figure 13: Analyzing the systems CPU Usage versus the sample size

A brief discussion on the given results will be given in the next section.

4.3. Discussion

As stated earlier, it is the goal of any intrusion detection system to reduce the FAR, FRR and the MTTA values. The challenge lies in finding suitable approaches that can accomplish this task in an efficient way. Looking at our results, we can witness a common trend, the more accurate our results are, the more time is consumed. Figure 14, Figure 15 and Figure 16 show the relationship between the FRR and the FAR value in three different sampling plans, using three different sample sizes.

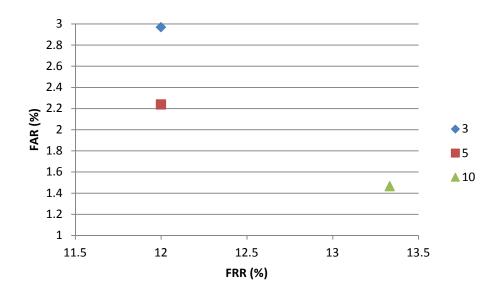


Figure 14: Relationship between sample size and FRR/FAR using sampling plan A

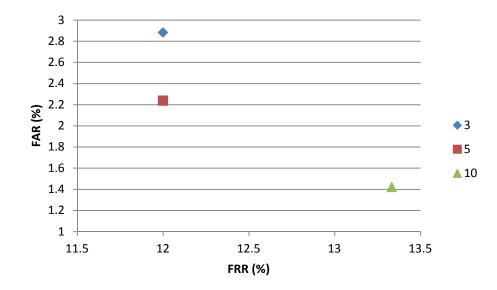


Figure 15: Relationship between sample size and FRR/FAR using sampling plan B

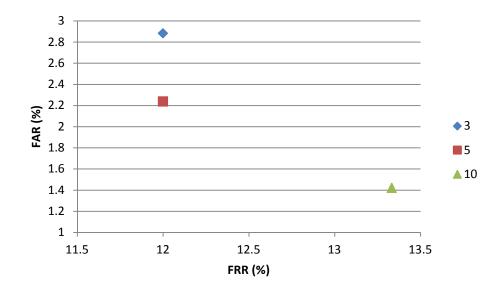


Figure 16: Relationship between sample size and FRR/FAR using sampling plan C It is important to acknowledge that the data used to calculate the FRR rate as opposed to the FAR rate was minimal. In order to calculate the FRR rate, 75 cases were tested, whereas the FAR rate was calculated by testing 3,235 cases. The FRR rate may become quite different if a more extensive testing procedure is applied.

The results show a promising range of detection rates. Depending on the sampling plan and sample size, the detection rate ranged from 96.78% to 98.41%. These values represent a promising system compared to other proposed intrusion detection systems [15]. Although there are not many literatures in the intrusion detection field where the Greenberg dataset has been used used, comparing these results solely on the basis of the outcome achieved, we can confirm that the results produced are quite competitive.

Depending on the ranking function used to evaluate the integrity of the system, the ranking results can vary. Hence, the emphasis can be set either on type I errors or type II errors. The following ranking function [10] represents the foundation for determining such emphasis.

$$Cost = \alpha(FAR) + \beta(FRR) \quad (19)$$

If there is no preference to the type of error considered, the α and β attributes can be ignored, i.e. set to 1. Therefore, in order to calculate the cost of a given detection algorithm, we add the FAR and FRR rates. Table 28 shows comparison comparative study of numerous detection methods based on a ranking function that does not emphasize on a particular type of error.

Table 28: Result comparison based on Cost = (FAR) + (FRR)

Method	Cost	DR (%)	FAR (%)	FRR (%)	Sample Size	Trained	Data
N. Bayes Classifier	33.8	70.9	29.1	4.7	10	1000	Greenberg
N. Bayes Classifier	23.6	82.1	17.9	5.7	10	1000	Greenberg
CABLUCS	14.97	97.3	2.97	12	3	1000	Greenberg
CABLUCS	14.24	97.76	2.24	12	5	1000	Greenberg
CABLUCS	14.75	98.45	1.42	13.33	10	1000	Greenberg
Customized Grammars	14.1	93.1	6.9	7.2	-	-	SEA
Customized Grammars	30.6	71.0	29.0	1.6	-	-	SEA
Self Signature with Uniqueness	14.6	91.3	8.7	5.9	-	-	SEA
Self Signature with Uniqueness	33.9	67.5	32.5	1.4	-	-	SEA
Boosting Decision Stumps	20.9	89.2	10.8	10.1	-	-	SEA
SVM	29.6	80.1	19.9	9.7	-	-	SEA
ECM	30.2	72.3	27.7	2.5	-	-	SEA
N. Bayes (no updating)	38.4	66.2	33.8	4.6	-	-	SEA
N. Bayes (updating)	39.8	61.5	38.5	1.3	-	-	SEA
Uniqueness	62	39.4	60.6	1.4	-	-	SEA
IPAM	61.3	41.4	58.6	2.7	-	-	SEA
Hybrid Markov	53.9	49.3	50.7	3.2	-	-	SEA

Sequence match	66.9	36.8	63.2	3.7	-	-	SEA
Compression	70.8	34.2	65.8	5.0	-	-	SEA
Bayes one-step Markov	37.4	69.3	30.7	6.7	-	-	SEA

Using this ranking function, we can witness that our system ranks 1st in the detection methods that use the Greenberg dataset, and ranks 2nd overall, regardless of the dataset used.

Rank	Method	Cost	Dataset
1	Customized Grammars	14.1	SEA
2	CABLUCS	14.24	Greenberg
3	Self Signature with Uniqueness	14.6	SEA
4	CABLUCS	14.75	Greenberg
5	CABLUCS S	14.97	Greenberg
6	Boosting Decision Stumps	20.9	SEA
7	Naïve Bayes Classifier	23.6	Greenberg
8	SVM	29.6	SEA
9	ECM	30.2	SEA
10	Customized Grammars	30.6	SEA
11	Naïve Bayes Classifier	33.8	Greenberg
12	Self Signature with Uniqueness	33.9	SEA
13	Bayes one-step Markov	37.4	SEA
14	Naïve Bayes (no updating)	38.4	SEA
15	Naïve Bayes (updating)	39.8	SEA
16	Hybrid Markov	53.9	SEA
17	IPAM	61.3	SEA
18	Uniqueness	62	SEA
19	Sequence match	66.9	SEA
20	Compression	70.8	SEA

Table 29: Result ranking comparison based on Cost = (FAR) + (FRR)

The SEA dataset is the work of Schonlau et al. [9], which is a more commonly used benchmark dataset. In their work, the emphasis was set based on achieving a 1% FRR rate [10]. After the completion of their tests, the only successful method to achieve the given FRR rate was *Uniqueness*. In order to rank *Uniqueness* as the best detection method based on the given criteria, the β (type II error) emphasis was set to 6. Table 30 shows the results in comparison to the Schonlau et al. ranking function.

Method	Cost	DR (%)	FAR (%)	FRR (%)	Sample Size	Trained	Dataset
N. Bayes Classifier	57.3	70.9	29.1	4.7	10	1000	Greenberg
Naïve Bayes Classifier	52.1	82.1	17.9	5.7	10	1000	Greenberg
CABLUCS	74.97	97.3	2.97	12	3	1000	Greenberg
CABLUCS	74.24	97.76	2.24	12	5	1000	Greenberg
CABLUCS	81.4	98.45	1.42	13.33	10	1000	Greenberg
Customized Grammars	14.1	93.1	6.9	7.2	-	-	SEA
Customized Grammars	30.6	71.0	29.0	1.6	-	-	SEA
Self Signature with Uniqueness	14.6	91.3	8.7	5.9	-	-	SEA
Self Signature with Uniqueness	33.9	67.5	32.5	1.4	-	-	SEA
Boosting Decision Stumps	20.9	89.2	10.8	10.1	-	-	SEA
SVM	29.6	80.1	19.9	9.7	-	-	SEA
ECM	30.2	72.3	27.7	2.5	-	-	SEA
N. Bayes (no updating)	38.4	66.2	33.8	4.6	-	-	SEA
N. Bayes (updating)	39.8	61.5	38.5	1.3	-	-	SEA
Uniqueness	62.0	39.4	60.6	1.4	-	-	SEA
IPAM	61.3	41.4	58.6	2.7	-	-	SEA
Hybrid Markov	53.9	49.3	50.7	3.2	-	-	SEA
Sequence match	66.9	36.8	63.2	3.7	-	-	SEA
Compression	70.8	34.2	65.8	5.0	-	-	SEA
Bayes one-step Markov	37.4	69.3	30.7	6.7	-	-	SEA

Table 30: Result comparison based on Cost = (FAR) + 6(FRR)

Table 31 shows the ranking comparison of the detection methods based on the new criteria. We can witness that the results have dramatically changed given that the emphasis is now based on the type II error. Considering the relatively high FRR rate of

our system in comparison to other mentioned detection methods, it comes as no surprise that our system is now ranked the lowest.

Rank	Method	Cost	Dataset
1	Customized Grammars	14.1	SEA
2	Self Signature with Uniqueness	14.6	SEA
3	Boosting Decision Stumps	20.9	SEA
4	SVM	29.6	SEA
5	ECM	30.2	SEA
6	Customized Grammars	30.6	SEA
7	Self Signature with Uniqueness	33.9	SEA
8	Bayes one-step Markov	37.4	SEA
9	N. Bayes (no updating)	38.4	SEA
10	N. Bayes (updating)	39.8	SEA
11	Naïve Bayes Classifier	52.1	Greenberg
12	Hybrid Markov	53.9	SEA
13	N. Bayes Classifier	57.3	Greenberg
14	IPAM	61.3	SEA
15	Uniqueness	62	SEA
16	Sequence match	66.9	SEA
17	Compression	70.8	SEA
18	CABLUCS	74.24	Greenberg
19	CABLUCS	74.97	Greenberg
20	CABLUCS	81.4	Greenberg

Table 31: Result ranking comparison based on Cost = (FAR) + 6(FRR)

Depending on the favouritism of the ranking function, each detection method can be ranked and used differently, in contingent with the application in question. It can be said that the FAR value of our system shows a more accurate representation of our detection method than the FRR rate. As previously stated, the FAR value is determined after numerous testing for each given trial (3,235 cases per trial), while the FRR value is tested using only 75 cases per trial. Hence, a single incident of a false rejection can significantly skew the overall results. Looking at the cases where the false rejections were witnessed, we can gain a better understanding for the reasoning behind our high FRR rate. Table 32 shows the 13 profiles that were consistently rejected throughout 21 different test cases. Our high FRR rate is based on 17.33% of our victims that have an average probability of 72.16% in producing a false rejection. Further investigation of the relative sampling plans and the sequential progression in the decision making process of these 13 profiles can demonstrate the reasoning for such consistently high rejection rates.

Uid	FRR (%)
10	100
13	4.76
19	100
20	33.33
30	76.19
40	100
43	100
45	100
71	52.38
126	14.29
128	33.33
129	76.19
154	47.62
157	100

Table 32 : Users that were falsely rejected in 21 different test cases

Chapter 5: Conclusion

In this thesis, we have proposed a hybrid approach based on learning user command sequence for detecting classical masquerade attacks. Our approach (so-called CABLUCS) consisted of two methods, the Naïve Bayes classifier and the sequential sampling technique, used to enhance the capability of a continuous authentication mechanism within an intrusion detection system. In addition, a newly structured dataset was formed using the Greenberg raw dataset, in such a way as to maximize its usability and efficiency. Using this newly structured dataset, a general statistical analysis of the given data was produced, which can be quite helpful to future researchers using the Greenberg dataset. Through experimental evaluation, we found that our scheme achieves a significant improvement over the Maxion and Townsend scheme in terms of accuracy detection.

We believe that this performance is largely attributed to the contribution of the part of our approach that deal with sequential sampling technique for continuous authentication, which constitutes the core of the decision making regarding the legitimacy of a user.

Departing from the results achieved in this thesis, we can infer that our technique can provide significant advancement to the field of masquerade detection, by opening the possibility of exploring the method to other areas of anomaly detection. This can be classified as future work.

scientist 42 15 7705 231 299 717 47280 experienced 7 55 5887 67 612 2998 3559 scientist 18 48 5654 6 410 116 3455 ora 4 106 5600 18 161 3206 3033 scientist 40 38 4655 435 3701 1640 2002 scientist 40 28 4656 435 3701 1640 2004 scientist 47 29 4707 174 320 789 27990 scientist 47 32 4707 174 320 789 2799 scientist 47 32 4707 124 63 665 2544 scientist 37 32 4707 24 63 665 25410 scientist 37 38 176 124 3735 222 102 25210 scientist 37 3817 102	User	Uid	Commands	History	Errors	Aliases	Lines
scientist 42 10 6008 6 644 3343 37709 scientist 18 48 6584 67 612 2926 3589 scientist 18 48 6584 6 240 1816 34359 scientist 40 38 4605 0 8 101 3206 3083 scientist 4 28 4607 178 320 788 4282 scientist 77 32 4472 28 160 2004 2009 scientist 77 32 4472 28 160 2004 2009 scientist 77 32 4472 28 160 2004 2005 scientist 77 32 4407 165 124 212 2479 scientist 78 90 4042 165 124 212 2479 scientist 73 37 3876 42 122 379 2324 scientist 39 24 3776 <th< th=""><th>scientist-36</th><th>20</th><th>12056</th><th>488</th><th>566</th><th>3161</th><th>73434</th></th<>	scientist-36	20	12056	488	566	3161	73434
experimend-75555876761222263589nor 410656801816152063425nor 410656801816152063083scientist-4038400509862923020scientist-4128400509862923020scientist-4128400717832078822092scientist-3732448712183166025040scientist-3732448712183166625040scientist-3732448712183166625040scientist-37324007224656652544scientist-37994042165124212224788scientist-379738877880231125010scientist-379738871028503344scientist-37973876212313292250scientist-381243776212313292270scientist-37973776212313292270scientist-3816336071223772270scientist-391643401736302016scientist-301643401736302016scientist-331633371222228115620440 <th>scientist-52</th> <td>15</td> <td>7705</td> <td>231</td> <td>299</td> <td>717</td> <td>47280</td>	scientist-52	15	7705	231	299	717	47280
experimender755558767612202635896scientist 1010650801861329630835nor 410650801861329630835scientist 4038465637016462001scientist 4129400017832078827992scientist 4729400717832078827992scientist 3732418712188186625000scientist 3732418712188186625000scientist 3732418712188186625000scientist 3732418712246566525421scientist 373788171028502316scientist 3737381710285023172scientist 3737381710285023172scientist 3737381710285023172scientist 37373714174298104022843scientist 37373714174298104022843scientist 37383714174298104022843scientist 37393508712237322706scientist 36301736302016scientist 373935087318202016s	scientist-42	10	6068	6	644	3243	37598
scientist-19 48 5884 6 240 1516 3425 scientist-40 38 546 6 240 18 161 3296 30830 scientist-40 38 4605 0 98 628 2999 scientist-4 23 4456 435 370 1646 2805 scientist-4 23 4456 435 370 1646 2805 scientist-7 32 4187 121 88 166 2904 2829 scientist-7 32 4187 121 88 166 2904 2829 scientist-7 32 4187 121 383 166 665 2549 novice-6 146 4463 1112 372 1000 2808 scientist-7 9 26 4407 224 65 6665 294 novice-6 146 4463 1112 372 1000 2808 scientist-7 89 9 4404 165 124 2122 2479 scientist-7 87 3893 78 60 2516 2514 scientist-7 37 3817 100 88 0 2516 2514 scientist-7 37 3817 100 88 0 2516 2514 scientist-7 37 3817 100 88 0 2516 2511 scientist-7 37 3817 100 88 0 2516 2511 scientist-7 37 3817 102 88 0 2516 2511 scientist-7 37 3817 102 88 0 2516 2511 scientist-7 38 0 3517 118 204 2188 scientist-5 39 0 3508 7 118 204 2188 scientist-1 4 47 3331 222 228 146 2040 scientist-1 4 47 3331 222 228 146 2040 scientist-1 8 12 3104 0 113 0 1840 scientist-1 8 12 3104 0 137 0 1384 scientist-1 8 12 3104 0 141 546 1906 scientist-1 8 12 3104 0 141 546 1906 scientist-1 8 12 3104 0 140 546 1906 scientist-1 9 43 2841 306 141 133 1760 scientist-1 9 43 2841 306 142 343 340 146 scientist-1 9 43 2841 366 349 340 146 scientist-1 9 43 2841 366 349 340 146 scientist-1 9 43 2841 366 349 340 146 scientist-1 9 48 2469 340 146 scientist-1 9 49 241 450 149 scientist-1 140 2414 340 scientist-1 140 2414 340 scientist-1 44 340 147 scientis		55	5857	67	612	2926	35896
nor4 106 5500 1.8 101 32.96 30830 experienced-20 53 4456 455 370 1646 28054 scientist 4 23 4407 178 320 789 27982 scientist 4 23 4407 178 320 789 27982 scientist 37 32 4487 121 83 1866 26040 scientist 37 32 4487 121 83 1866 26040 scientist 37 39 4067 224 657 665 25142 scientist 37 69 4067 224 657 665 25143 scientist 37 73 3817 1002 857 0 23144 scientist 37 73 3917 102 859 2910 23237 scientist 37 16 3030 714 148 1492 23137 scientist 37 16 3030 77		48		6	240		
scientist-40 38 4005 0 98 028 29920 experienced'30 53 4456 4455 370 1646 29020 experienced'37 23 44577 178 320 789 27992 experienced'37 32 4487 121 83 1866 25604 novice' 6 116 4463 1112 372 1009 26060 escientist 9 26 4067 224 65 665 25542 non 20 69 4042 165 124 2122 24789 experienced-28 74 39817 102 85 0 2316 scientist 27 37 3817 112 2123 1329 22258 scientist 37 32 3377 118 204 2118 scientist 32 30 3771 122 379 22700 scientist 32 16 3360 7 122 379 <th>non-4</th> <th>106</th> <th></th> <th>18</th> <th>161</th> <th></th> <th></th>	non-4	106		18	161		
experienced-20 53 4455 435 370 1646 29205 scientist 4 23 4307 178 320 788 2709 scientist 37 32 4487 121 83 1866 26200 scientist 37 32 4487 121 83 1866 26200 scientist 37 32 4467 224 65 665 25424 nor 20 99 44042 165 124 2122 24788 scientist 37 37 3817 102 85 0 23344 experienced 28 74 3893 78 600 2516 23344 experienced 4 75 3770 2 133 2906 22325 scientist 38 24 3774 174 2988 1906 22380 scientist 31 42 3331 178 133 2 2100 scientist 32 16 3300 52				0	98		
scientist-4 23 4407 178 390 789 27999 experienced-35 75 4272 28 169 2604 96 scientist 37 32 4187 121 83 1866 25004 norce-46 116 4163 112 372 1909 26080 scientist 9 26 4067 224 65 665 25444 nor 20 99 4042 165 124 2122 24786 experienced-28 74 3893 78 60 22516 2316 experienced-4 75 3776 2 123 129 2375 scientist 38 24 3773 48 168 1312 23172 scientist 38 24 3773 48 168 2129 2170 scientist 32 30 3771 172 2879 28766 2140 scientist 24 43 330 178							28054
experienced-35 78 4472 28 169 2504 3629 scientist 37 32 4187 121 83 1866 25600 scientist 37 32 4167 121 832 1866 25600 scientist 37 26 4067 224 65 665 2544 scientist 37 37 26 4067 224 65 660 2516 experienced-38 74 8893 78 60 2516 5214 scientist 34 24 3775 48 168 1312 23172 experienced-1 80 3714 174 298 1006 2830 scientist 33 42 3775 48 168 1212 2172 experienced-1 80 3714 174 298 2160 2183 scientist 36 30 3508 7 122 379 22760 scientist 23 16 3600		23	4507	178		789	27992
scientist 37 32 4187 121 88 1866 25600 novice 46 146 4163 112 372 1909 26080 escientist 9 26 4067 224 65 6055 24144 non 20 99 4042 165 124 2122 21708 experienced 28 74 3893 78 60 2516 251424 esperienced 28 74 3893 78 60 2516 2514 experienced 28 74 3893 78 160 2516 2516 escientist 27 37 3770 2 123 1329 23258 scientist 30 24 3775 48 168 1612 24172 experienced 1 80 3714 174 298 1006 22830 scientist 13 42 3593 357 118 204 21988 scientist 25 30 3500 7 122 379 22700 scientist 14 47 3433 178 183 2 21980 scientist 21 16 3360 52 135 481 2114 experienced 24 86 3331 222 228 1156 29140 experienced 24 86 3331 222 228 1156 29140 novice 19 164 3401 7 363 0 19840 scientist 29 16 340 052 135 481 21144 experienced 24 86 3331 222 228 1156 29140 novice 14 126 3314 0 178 0 19840 scientist 29 16 1306 52 135 481 21144 experienced 24 86 3331 222 228 1156 19046 1906 scientist 29 39 3106 0 101 546 19066 scientist 29 39 3106 0 101 546 19066 scientist 29 39 3106 0 101 546 19066 scientist 19 43 2831 106 112 1330 17360 scientist 19 43 2831 106 112 1330 17360 scientist 19 43 2831 306 102 114 scientist 19 43 2831 306 110 405 1643 scientist 19 43 2831 306 110 405 1643 scientist 19 43 253 30 16632 scientist 19 53 32 1162 15412 scientist 29 117 2683 20 243 530 16632 scientist 10 245 37 0 130 0 1144 scientist 19 43 2531 48 1100 1444 scientist 19 43 206 189 110 100 1424 scientist 10 21 330 0 1140 scientist 10 10 30 300 scientist 10 20 30 300 scientist 10 30 300 sci			4272	28	169	2504	
novies-46 146 4165 112 372 1909 26080 scientist-9 26 4067 224 65 665 25424 nor 20 99 4061 35 222 910 2522 experienced-28 74 3893 78 60 2516 25116 scientist-27 37 3817 102 85 0 23344 experienced-1 80 3774 174 298 1030 23255 ecientist-38 24 3775 48 168 1312 23172 experienced-1 80 3774 174 298 1906 28369 scientist-13 42 3593 367 118 204 21898 scientist-14 47 3433 178 183 2 21400 novice-19 164 3401 7 363 0 20840 novice-14 126 3191 0 136<							
scientist 9 26 4067 224 65 665 25424 non 20 99 4002 165 124 2122 24798 experienced-3 62 4015 35 222 910 2520 experienced-3 77 9887 102 885 0 23344 experienced-4 75 3770 2 123 1329 22355 experienced-1 80 3714 174 298 1006 22330 scientist 23 30 3508 7 112 379 22706 scientist 24 47 3433 178 188 2 21400 scientist 25 16 3360 52 135 481 21454 scientist 23 16 3360 52 135 481 21454 scientist 23 16 3360 52 135 481 21454 scientist 24 80 331 222 <t< th=""><th></th><td></td><td></td><td></td><td></td><td></td><td>26080</td></t<>							26080
non:20 99 40/2 165 124 2122 24783 asporinced'9 60 335 222 910 25220 acporinced'28 74 3883 78 60 2234 scientist:27 37 3817 102 85 0 2334 experienced'4 73 3775 48 108 1312 2377 asportanced'1 80 3774 174 298 1006 22830 scientist'13 42 3503 37 118 204 21988 scientist'14 47 3433 178 183 2 24100 novice'19 164 3401 7 363 0 2084 acportance'24 86 3331 222 228 1456 2044 novice'33 122 3124 0 137 0 1984 novice'33 122 3137 0 1376 1984	scientist-9						25424
experienced-5 62 4015 35 222 910 2529 experienced-28 74 3803 78 60 2016 25116 experienced-4 75 3877 102 85 0 23344 experienced-1 80 3776 2 123 1329 2225 scientist-13 42 3503 337 118 204 21988 scientist-14 47 3433 178 188 2 2100 scientist-25 30 3508 7 122 379 22706 scientist-26 16 3400 52 135 481 21404 experienced-24 86 3331 222 228 1456 20440 novice-33 122 3104 0 137 0 19840 novice-34 126 3194 0 208 0 19786 scientist-29 73 2841 235 1							
exportenced-28 74 3893 78 60 2516 25116 25116 scientist-27 37 3817 102 85 0 23344 scientist-28 24 3775 48 168 1312 23355 scientist-38 24 3775 48 168 1312 23355 scientist-13 42 3503 357 118 204 21898 scientist-14 47 3433 178 183 2 21404 nvice-19 164 3401 7 363 0 2086 scientist-28 166 3330 222 228 1456 2040 nvice-14 126 3194 0 137 0 10840 nvice-36 112 3127 0 106 0 10556 scientist-2 25 2954 236 112 1330 17560 scientist-2 25 2957 2901 <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
scientist-27 37 3817 102 85 0 23344 asperienced-4 75 3776 2 123 1329 23255 scientist-38 24 3775 4.8 108 1312 23175 experienced-1 80 3714 174 298 1906 22830 scientist-13 42 3533 357 118 204 2198 scientist-14 47 3433 178 183 2 21404 novice-19 164 3401 7 363 0 20816 scientist-23 16 3300 52 135 481 21454 experienced-24 86 3331 222 228 1466 20440 novice-34 122 3197 0 10840 19966 18556 scientist-33 39 3106 0 101 546 19066 scientist-43 39 3106 0							
experienced-4 75 3776 2 123 1329 22355 scientist-38 24 3775 48 168 1312 23172 scientist-38 42 3593 357 118 204 21985 scientist-13 42 3593 357 118 204 21985 scientist-14 47 3433 178 183 2 2140 novice-19 164 3401 7 363 0 2286 escientist-23 16 3300 52 135 481 21454 experienced-24 86 3331 222 228 1456 20440 novice-35 142 3134 0 1377 0 1884 experienced-24 86 3331 222 228 1456 20440 novice-33 122 3127 0 106 0 19766 scientist-39 312 3126 0							
scientist-38 24 3775 48 168 1312 23172 experienced-1 80 3714 174 298 1906 22830 scientist-13 42 3503 337 118 204 21988 scientist-25 30 3508 7 122 379 22706 scientist-23 164 3401 7 163 2 21404 novice-19 164 3401 7 363 0 2886 scientist-33 16 3300 52 135 481 21454 experienced-24 86 3311 222 228 1456 20440 novice-36 142 3213 0 137 0 19840 novice-37 122 317 0 106 0 19766 scientist-19 25 2934 236 149 1656 1814 experienced-32 68 2030 67 122							
experienced-1 80 3714 174 298 1906 22830 scientist-13 42 3593 357 118 204 21988 scientist-14 47 3433 178 183 2 21404 novice-19 164 3401 7 363 0 2086 scientist-23 16 3360 52 135 481 21454 experienced-24 86 3331 222 228 1456 29440 novice-36 142 3213 0 137 0 19840 novice-37 122 3127 0 106 0 19556 scientist-4 126 3194 0 208 0 19566 scientist-19 43 2831 106 101 516 1956 scientist-2 25 2954 236 149 1656 18514 experienced-22 73 2814 325 122							
scientist:13 42 3593 367 118 204 21988 scientist:26 30 3308 7 122 379 22706 scientist:14 47 3433 178 183 2 21404 novice:19 164 3401 7 363 0 2886 scientist:23 16 3360 52 135 481 21454 scientist:23 16 3330 222 228 1456 20440 novice:36 142 3213 0 137 0 19840 novice:33 122 3127 0 006 0 1055 scientist:43 39 3106 0 101 546 19966 scientist:2 25 2954 236 112 1330 1756 scientist:19 43 2831 106 112 1330 1766 scientist:19 43 2651 84 200							
scientist-1447343317818237922706scientist-14473433178188221404novice-1916434017363020816scientist-231633605213548121454experienced-24863331222228146620440novice-3614232130137019840novice-3712231270106019786scientist-372322520542361491056scientist-3812231270106019860scientist-393106010154619966scientist-304532263149165618514experienced-3273281432512256017475scientist-304526677418980417080scientist-30452669158891016643scientist-34522639158891016643scientist-46-325518011049514490scientist-16-323740213138114960novice-1151245737213138114960novice-1151245737213138114960novice-1151245737213138114960novice-34							
scientist-14 47 3433 178 183 2 21404 novice·19 164 3401 7 363 0 20816 scientist23 16 3360 52 135 481 21454 experienced·24 86 3331 222 228 1456 20440 novice·36 142 3213 0 137 0 1884 novice·33 122 3127 0 106 0 19556 scientist-3 39 3106 0 101 546 19066 experienced·8 68 2930 67 265 625 18114 scientist-19 43 2831 106 112 1330 17566 experienced·22 73 2814 326 122 560 1747 scientist-20 45 2697 74 189 804 17680 scientist-21 28 2499 53 52 <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
novice-19 164 3401 7 363 0 20816 scientist-33 16 3360 52 135 481 21454 experienced-24 86 3331 222 228 1456 20440 novice-36 142 3213 0 137 0 19840 novice-36 142 3213 0 137 0 19840 novice-33 122 3127 0 106 0 19556 scientist-2 25 2954 236 149 1656 18514 experienced-8 68 2930 67 265 265 18114 exientist-9 43 2831 106 112 1330 17560 exientist-9 43 2831 200 243 530 16632 scientist-9 17 2683 20 243 530 16632 scientist-34 52 2639 15 88							
scientist-23 16 3360 52 135 481 21454 experienced:24 86 3331 222 228 1456 20440 novice:36 142 3213 0 137 0 19840 novice:33 122 3127 0 106 0 19756 scientist-13 39 3106 0 101 546 19860 experienced:8 68 2930 67 265 625 1814 scientist-19 43 2831 106 112 1330 17560 experienced:22 73 2814 325 122 5660 17478 scientist-20 44 2697 74 189 804 17080 scientist-21 28 2639 15 88 910 16638 scientist-22 43 26371 87 213 1381 14960 scientist-29 117 2683 20							
experienced·24 86 3331 222 228 1456 20440 novice·36 142 3213 0 137 0 19840 novice·37 122 3194 0 208 0 19766 novice·33 122 3127 0 106 0 19566 scientist·13 39 3106 0 101 546 19966 scientist·2 25 2954 236 149 1656 18514 scientist·19 43 2831 106 112 1330 17560 experienced·22 73 2814 325 122 560 17478 scientist·20 45 2639 15 88 910 16645 scientist·21 28 2439 53 52 1162 15412 proice·1 151 2457 37 213 1381 14960 novice·12 164 20 0 106							
novice-36 142 3213 0 137 0 19840 novice-14 126 3194 0 208 0 19756 novice-33 122 3127 0 106 0 19556 scientist-13 39 3106 0 101 546 19066 scientist-2 25 2954 236 149 1656 18514 experienced-8 68 2930 67 265 625 18114 experienced-22 73 2814 325 122 560 17478 scientist-19 43 2831 106 112 1330 16632 scientist-20 45 2697 74 189 804 17080 scientist-34 52 2639 115 88 910 16645 scientist-46 3 2551 80 110 495 16480 scientist-47 52 2639 157 83 </th <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
novice-14 126 3194 0 208 0 19786 novice-33 122 3127 0 106 0 19586 scientist-43 39 3106 0 101 546 19966 scientist-2 25 2954 236 149 1656 18514 experienced-8 68 2930 67 265 625 18114 scientist-19 43 2831 106 112 1330 17660 experienced-22 73 2814 325 122 500 17475 scientist-20 45 2697 74 189 804 17080 scientist-29 17 2683 20 243 530 16632 scientist-12 28 2639 15 88 910 166480 scientist-12 28 2499 53 52 1162 1512 novice-1 151 2477 37 213	-						
novice-33 122 3127 0 106 0 19556 scientist-43 39 3106 0 101 546 19066 scientist-2 25 2954 236 149 1656 18514 scientist-19 43 2831 106 112 1330 17560 experienced-22 73 2814 325 122 560 17475 scientist-29 17 2683 20 243 530 16632 scientist-29 17 2683 20 243 530 16632 scientist-46 3 2551 80 110 495 16648 scientist-12 28 2499 53 52 1162 15412 novice-1 151 2457 37 213 1381 14960 novice-1 151 2457 37 213 1381 14960 novice-1 151 2457 37 213							
scientist-43393106010154619066scientist-2252954236149105618514experienced-86829306726562518114scientist-19432831106112133017560experienced-2273281432512256017478scientist-204526677418980417080scientist-204526677418980416642scientist-34522639158891016648scientist-463225518011049516480scientist-12282499535211621512novice-1151245737213138114960novice-1211824360210016366experienced-917123518613650214500novice-311502337093014244novice-32812306189119100014244novice-3313622210120013816experienced-2984224459133107213566novice-3313622210120013816novice-341362221012340913422novice-3515520662217013166<							
scientist-2 25 2954 236 149 1656 18514 experienced-8 68 2930 67 265 625 18114 scientist-19 43 2831 106 112 1330 17560 experienced-22 73 2814 325 122 5600 17475 scientist-20 45 2697 774 189 804 17080 scientist-20 45 2697 774 189 804 17080 scientist-34 52 2639 15 88 910 16632 scientist-46 3 2551 80 110 4495 16480 scientist-12 28 2499 53 52 1162 15420 novice-1 151 2436 0 210 0 16480 experienced-21 59 2334 0 210 0 16490 novice-1 151 2436 0 <							
experienced·8 68 2930 67 265 625 18114 scientist·19 43 2831 106 112 1330 17560 experienced·22 73 2814 325 122 560 17178 scientist·20 45 2697 74 189 804 17080 scientist·29 17 2683 20 243 530 16632 scientist·29 17 2683 20 243 530 16632 scientist·29 17 2683 20 243 530 16632 scientist·12 28 2499 53 52 1162 1540 novice·1 151 2457 37 213 1381 14960 novice·12 118 2436 0 210 0 16366 experienced·21 59 2394 157 83 974 14762 experienced·21 79 2337 0							
scientist-19432831106112133017560experienced-2273281432512256017478scientist-204526977418980417080scientist-291726832024353016632scientist-34522639158891016648scientist-34522639158891016648scientist-12282499535211621542novice-1151245737213138114960novice-121824360210016366experienced-215923941578397414762experienced-17792333014410214306novice-31502337093014244experienced-23812306189119100014244novice-31362221012003816scientist-304021291861234091386scientist-304021291861234091349novice-31157207301021812692novice-31157207303603306scientist-4149203703603306scientist-10272066221703306sci							
experienced-22 73 2814 325 122 560 17478 scientist-20 45 2697 74 189 804 17080 scientist-29 17 2683 20 243 530 16632 scientist-34 52 2639 15 88 910 16648 scientist-12 28 2499 53 52 1162 1511 novice-1 151 2457 37 213 1381 14960 novice-12 118 2436 0 210 0 1638 experienced-21 59 2394 157 83 974 14760 experienced-11 79 2343 0 114 102 14396 novice-3 150 2337 0 93 0 1540 novice-3 150 2337 0 130 1424 experienced-23 81 2306 189 119 1004							
scientist-20 45 2697 74 189 804 17080 scientist-29 17 2683 20 243 530 16632 scientist-34 52 2639 15 88 910 16648 scientist-34 52 2639 15 88 910 16648 scientist-34 3 2551 80 110 495 16480 scientist-12 28 2499 53 52 1162 1511 novice-1 151 2457 37 213 1381 14960 novice-12 118 2436 0 210 0 16366 experienced-21 59 2394 157 83 974 14762 experienced-17 79 2343 0 144 102 14396 novice-3 150 2337 0 93 0 15400 novice-3 150 2317 0 133							
scientist-29 17 2683 20 243 530 1632 scientist-34 52 2639 15 88 910 16648 scientist-46 3 2551 80 110 495 16480 scientist-12 28 2499 53 52 1162 1511 novice-1 151 2457 37 213 1381 14960 novice-12 118 2436 0 210 0 16366 experienced-21 59 2394 157 83 974 14762 experienced-17 79 2343 0 144 102 14396 novice-3 150 2337 0 93 0 15400 novice-3 150 2337 0 93 0 15400 novice-3 150 2337 0 119 1004 14244 experienced-23 81 2306 189 119							
scientist-34 52 2639 15 88 910 16648 scientist-46 3 2551 80 110 495 16480 scientist-12 28 2499 53 52 1162 15412 novice-1 151 2457 37 213 1381 14960 novice-12 118 2436 0 210 0 16386 experienced-21 59 2394 157 83 974 14762 experienced-17 79 2343 0 144 102 14396 novice-3 150 2337 0 93 0 14500 novice-41 115 2317 0 93 0 14244 experienced-23 81 2306 189 119 1004 14244 novice-28 136 2221 0 120 0 13866 experienced-29 84 2214 59 133							
scientist-46 3 2551 80 110 495 16480 scientist-12 28 2499 53 52 1162 1512 novice-1 151 2457 37 213 1381 14960 novice-12 118 2436 0 210 0 16366 experienced-21 59 2394 157 83 974 14762 experienced-17 79 2331 0 144 102 14366 novice-3 150 2337 0 144 102 14366 novice-3 150 2337 0 93 0 15400 experienced-23 81 2306 189 119 1004 1424 novice-3 156 2317 0 51 1000 14244 experienced-23 81 2306 189 119 1004 14214 novice-28 136 2221 0 133							
scientist-12 28 2499 53 52 1162 15412 novice-1 151 2457 37 213 1381 14960 novice-12 118 2436 0 210 0 16366 experienced-21 59 2394 157 83 974 14762 experienced-9 71 2351 86 136 502 14500 experienced-17 79 2343 0 144 102 14396 novice-3 150 2337 0 93 0 15400 novice-41 115 2317 0 51 1000 14244 experienced-23 81 2306 189 119 1004 14214 novice-28 136 2221 0 120 0 13816 experienced-29 84 2214 59 133 1072 13566 novice-23 129 2138 0 72							
novice-1 151 2457 37 213 1381 14960 novice-12 118 2436 0 210 0 16366 experienced-21 59 2394 157 83 974 14762 experienced-9 71 2351 86 136 502 1450 experienced-17 79 2343 0 144 102 14396 novice-3 150 2337 0 93 0 15400 novice-41 115 2317 0 51 1000 14244 experienced-23 81 2306 189 119 1004 14214 novice-28 136 2221 0 120 0 13816 experienced-29 84 2214 59 133 1072 13866 novice-23 129 2138 0 72 0 13186 scientist-30 40 2129 186 123							
novice-12 118 2436 0 210 0 16366 experienced-21 59 2394 157 83 974 14762 experienced-9 71 2351 86 136 502 14500 experienced-17 79 2343 0 144 102 14396 novice-3 150 2337 0 93 0 1500 novice-41 115 2317 0 93 0 1444 experienced-23 81 2306 189 119 1000 14244 experienced-23 81 2306 189 119 1004 14214 novice-28 136 2221 0 120 0 13866 experienced-29 84 2214 59 133 1072 13566 novice-23 129 186 123 409 13492 novice-31 157 2073 0 102 138							
experienced·215923941578397414762experienced·9712351861365021450experienced·17792343014410214396novice·31502337093014396novice·411152317051100014244experienced·23812306189119100414214novice·2813622210120013816experienced·2984221459133107213566novice·231292138072013492novice·311572007301021812692novice·31157200662217013070scientist·41492037036013070scientist·102720247712073012658							
experienced·9 71 2351 86 136 502 14500 experienced·17 79 2343 0 144 102 14396 novice·3 150 2337 0 93 0 15400 novice·3 150 2337 0 93 0 15400 novice·41 115 2317 0 51 1000 14244 experienced·23 81 2306 189 119 1004 14214 novice·28 136 2221 0 120 0 13816 experienced·29 84 2214 59 133 1072 13566 ovice·23 129 2138 0 72 0 13492 novice·31 157 2073 0 102 18 12692 novice·31 157 2066 2 217 0 13070 scientist·41 49 2037 0 36 0 <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
experienced-17 79 2343 0 144 102 14396 novice-3 150 2337 0 93 0 150 160 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600 1620 0 1600 1620 0 16120 0 161214 0 1600 1620 0 1636 16214 0 1636 16214 163 16214 1636 1636 16214 1636 1636 1636 1636 1636 1636 1636 1636 1636 1636 1636 1637 1636 1636 1636 1636 1637 1636 1636 1636 1637 1636							
novice-3 150 2337 0 93 0 1500 novice-41 115 2317 0 51 1000 14244 experienced-23 81 2306 189 119 1004 14214 novice-28 136 2221 0 120 0 13816 experienced-29 84 2214 59 133 1072 13566 novice-23 129 2138 0 72 0 13186 scientist-30 40 2129 186 123 409 13492 novice-25 155 2066 2 217 0 13070 scientist-41 49 2037 0 36 0 13036 experienced-30 66 2028 82 110 624 12686 scientist-10 27 2024 77 120 730 12658	-						
novice-41 115 2317 0 51 1000 14244 experienced:23 81 2306 189 119 1004 14214 novice:28 136 2221 0 120 0 133 1072 13366 experienced:29 84 2214 59 133 1072 13566 novice:23 129 2138 0 72 0 13366 scientist:30 40 2129 186 123 409 13492 novice:31 157 2073 0 102 188 12692 novice:25 155 2066 2 217 0 13070 scientist:41 49 2037 0 36 0 13070 scientist:41 49 2037 0 36 0 13070 scientist:10 27 2024 77 120 730 12658							
experienced·23 81 2306 189 119 1004 14214 novice·28 136 2221 0 120 0 1386 experienced·29 84 2214 59 133 1072 13566 novice·23 129 2138 0 72 0 13186 scientist·30 40 2129 186 123 409 13492 novice·31 157 2073 0 102 18 12692 novice·35 155 2066 2 217 0 13070 scientist·41 49 2037 0 36 0 36 experienced·30 66 2028 82 110 624 12686 scientist·10 27 2024 77 120 730 12658							
novice-28 136 2221 0 120 0 13816 experienced-29 84 2214 59 133 1072 13566 novice-23 129 2138 0 72 0 13186 scientist-30 40 2129 186 123 409 13492 novice-23 157 2073 0 102 18 12692 novice-31 157 2073 0 102 18 12692 novice-25 155 2066 2 217 0 13070 scientist-41 49 2037 0 36 0 13036 experienced-30 66 2028 82 110 624 12686 scientist-10 27 2024 77 120 730 12658							
experienced·29 84 2214 59 133 1072 13566 novice·23 129 2138 0 72 0 13186 scientist·30 40 2129 186 123 409 13492 novice·31 157 2073 0 102 18 123 409 13492 novice·31 157 2073 0 102 18 12692 novice·35 155 2066 2 217 0 13070 scientist·41 49 2037 0 36 0 13036 experienced·30 66 2028 82 110 624 12686 scientist·10 27 2024 77 120 730 12658							
novice-23 129 2138 0 72 0 13186 scientist-30 40 2129 186 123 409 13492 novice-31 157 2073 0 102 18 12692 novice-35 155 2066 2 217 0 13070 scientist-41 49 2037 0 36 0 13036 experienced-30 66 2028 82 110 624 12686 scientist-10 27 2024 77 120 730 12658							
scientist-30 40 2129 186 123 409 13492 novice-31 157 2073 0 102 188 12692 novice-25 155 2066 2 217 0 13070 scientist-41 49 2037 0 36 0 13036 experienced-30 66 2028 82 110 624 12686 scientist-10 27 2024 77 120 730 12658							
novice-31 157 2073 0 102 18 12692 novice-25 155 2066 2 217 0 13070 scientist-41 49 2037 0 36 0 13036 experienced-30 66 2028 82 110 624 12686 scientist-10 27 2024 77 120 730 12658		-ii-					
novice-25 155 2066 2 217 0 13070 scientist-41 49 2037 0 36 0 13036 experienced-30 66 2028 82 110 624 12686 scientist-10 27 2024 77 120 730 12658				The second s			
scientist-41 49 2037 0 36 0 13036 experienced-30 66 2028 82 110 624 12686 scientist-10 27 2024 77 120 730 12658							
experienced-30 66 2028 82 110 624 12686 scientist-10 27 2024 77 120 730 12658							
scientist-10 27 2024 77 120 730 12658							
	scientist-10 novice-37	27 154	2024 1949	77 0	120 57	730	12658 12044

Appendix A: Generated Statistics for the Greenberg Dataset (Ordered by Commands)

novice-4	131	1919	0	123	0	11758
novice-22	166	1893	1	51	547	11844
experienced-34	76	1869	206	218	598	11676
scientist-1	13	1856	54	111	761	11792
non-11	98	1848	0	61	0	12210
novice-8	153	1840	0	19	0	11298
experienced-14	88	1810	23	153	996	11200
experienced-19	58	1810	163	88	829	11270
experienced 12 experienced-12	77	1763	100	92	889	10840
scientist-21	19	1762	50	134	586	10894
scientist-39	41	1753	173	77	530	10094
experienced-27	67	1693	77	54	741	11032
novice-55	128	1662	6	40	0	10218
non-1	90	1622	0	59	410	10210
experienced-36	63	1580	56	116	781	9718
non-22	112	1567	48	56	0	10004
scientist-5	21	1563	18	78	558	10164
scientist-44	44	1543	12	84	394	9544
scientist-50	12	1496	219	225	387	9526
scientist-24	29	1490	0	55	1217	9250
experienced-25	83	1465	69	89	346	9072
novice-10	114	1464	0	40	872	9038
experienced-11	70	1456	21	86	927	9126
scientist-49	51	1448	138	97	179	9106
novice-35	135	1444	0	54	50	9022
scientist-15	50	1429	200	81	175	9216
non-18	111	1403	0	64	0	8804
novice-47	148	1316	0	78	0	8118
non-23	89	1294	0	48	636	8118
experienced-33	82	1292	83	65	649	7986
novice-44	158	1277	0	40	0	7896
novice-34	147	1276	4	46	0	8146
novice-2	160	1267	0	58	0	8072
non-3	108	1265	9	15	209	7928
non-7	101	1231	3	54	792	7704
novice-29	120	1230	0	44	0	7754
scientist-47	11	1229	9	81	618	7672
novice-27	139	1195	1	63	414	7452
novice-17	132	1194	0	59	0	7702
novice-15	141	1139	0	48	0	7148
novice-26	137	1120	0	60	0	7066
experienced-13	85	1109	25	160	446	6848
novice-39	163	1107	0	51	9	6936
scientist-6	14	1103	33	49	278	7196
novice-18	167	1088	0	38	0	6710
novice-42	119	1068	0	33	5	6774
scientist-35	22	1049	23	29	594	6612
novice-7	145	1039	98	51	36	6608
novice-53	124	1028	0	41	51	6558
novice-50	117	985	0	<u>92</u>	0	6100
scientist-26	6	983	0	70	231	6388
scientist-3	36	978	1	<u> </u>	255	6398
experienced-32	54	974	47	87	303	6102
novice-40	165	967	0	24	722	6032
novice-30	149	946	0	28	0	5986
experienced-3	87	915	88 0	42	356	5600
scientist-51	34 123	910 871	0	67 44	358 0	5754 5520
novice-6	35	871 862	17	<u> </u>	223	5330
scientist-45	134	<u> </u>		<u> </u>		5330
novice-9	134	003	0	63	0	<i>5292</i>

novice-21	127	849	1	42	0	5268
novice-24	130	849	48	53	118	5436
non-17	110	848		65	0	5330
scientist-8	2	842	0	51	79	5294
novice-38	159	839	0	17		5468
non-16	105	833	144	26	0	5108
scientist-48	9	819	0	43	0	5216
experienced-16	60	795	24	43	245	4932
scientist-28	18	765	64	22	235	4332 5032
experienced-6	57	757	04	32	69	4752
scientist-22	7	750	0	39	20	5026
novice-49	156	730	0	33	20	4428
novice-54	130	683	0	56	0	4428
experienced-31	61	683	19	38	454	4368
	72	679	<u> </u>		454 59	4368
experienced-26 novice-13	168	652	0	49	0	4192
	116	651	0	<u> </u>		4106
novice-45 novice-52	116	650	0	<u> </u>	0 0	4120
novice-52 novice-43	140	608	0		45	<u>4174</u> 3778
scientist-32	5	601	0	20	40	3916
novice-5	<i>121</i>	<u> </u>	0 1	<u> </u>	0	3916
experienced-18	69	575	5	21	114	3548
	94 B9			21 28		
non-15 scientist-17	46	571	0	<u> </u>	0	3736 3792
	46 96	569 542	0	<u> </u>	0 0	3792 3390
non-24 non-10	96			20		
	93 100	495 487	0	<u> </u>	0 0	3096
non-13			0 0	20	0	3072
novice-51 non-2	143 113	480 454		20	63	3046 2934
	56	434 446	0 2			
experienced-10		446	5	<u> </u>	170 0	2774
novice-20 novice-32	144 133	418 385	<i>3</i> <i>0</i>	<u> </u>	60	2722 2512
	33		0	28	169	2312
scientist-7	102	366		28		
non-9 non-25	102	357	4		45	2432
scientist-16	8	327 326	3		48 38	2264 2250
	4	326	0	<u> </u>		2250
scientist-33 novice-48	152	269	0	9	0	1704
novice-11	162	203	2	21	0	1704
novice-16	162	256	0	21 25		1598
scientist-31	101	250	9	20	12	1598
	103	230	9		12	
non-5						1770
non-8	97 65	239 225	28	<u>13</u> 12	18 85	1524
experienced-15	60	225 219	<i>0</i> <i>6</i>	12	80 33	1404 1414
experienced-2	107					
non-12		216	0 0	26	0	1390
scientist-11	31	205		13	0	1380
non-14	109 95	201	1	4	0	1272
<i>non-6</i>		177	0	7	0	1152
non-19	92	175	0	7	116	1356
non-21	91	132	0	7	0	890

User	Uid	Commands	History	Errors	Aliases	Lines
scientist-36	20	12056	488	566	3161	73434
experienced-20	53	4556	435	370	1646	28054
scientist-13	42	3593	357	118	204	21988
experienced-22	73	2814	325	122	560	17478
scientist-2	25	2954	236	149	1656	18514
scientist-52	15	7705	231	299	717	47280
scientist-9	26	4067	224	65	665	25424
experienced-24	86	3331	222	228	1456	20440
scientist-50	12	1496	219	225	387	9526
experienced-34	76	1869	206	218	598	11676
scientist-15	50	1429	200	81	175	9216
experienced-23	81	2306	189	119	1004	14214
scientist-30	40	2129	186	123	409	13492
scientist-4	23	4507	178	320	789	27992
scientist-14	47	3433	178	183	2	21404
experienced-1	80	3714	174	298	1906	22830
scientist-39	41	1753	173	77	530	10992
non-20	99	4042	165	124	2122	24798
experienced-19	58	1807	163	88	829	11328
experienced-21	59	2394	157	83	974	14762
non-16	105	821	144	26	0	5108
scientist-49	51	1448	138	97	179	9106
scientist-37	32	4187	121	83	1866	25604
novice-46	146	4163	112	372	1909	26080
scientist-19	43	2831	106	112	1330	17560
experienced-12	77	1763	106	92	889	10840
scientist-27	37	3817	102	85	0	23344
novice-7	145	1039	98	51	36	6608
experienced-3	87	915	88	42	356	5600
experienced-9	71	2351	86	136	502	14500
experienced-33	82	1292	83	65	649	7986
experienced-30	66	2028	82	110	624	12686
scientist-46	3	2551	80	110	495	16480
experienced-28	74	3893	78	60	2516	25116
experienced-27	67	1693	77	54	741	11032
scientist-10	27	2024	77	120	730	12658
scientist-20	45	2697	74	189	804	17080
experienced-25	83	1465	69	89	346	9072
experienced-7	55	5857	67	612	2926	35896
experienced-8	68	2930	67	265	625	18114
scientist-28	18	765	64	26	235	5032
experienced-29	84	2214	59	133	1072	13566
experienced-36	63	1580	56	116	781	9718
scientist-1	13	1856	54	111	761	11792
scientist-12	28	2499	53	52	1162	15412
scientist-23	16	3360	52	135	481	21454
scientist-21	19	1762	50	134	586	10894
scientist-38	24	3775	48	168	1312	23172
non-22	112	1567	48	56	0	10004
novice-24	130	849	48	53	118	5436
experienced-32	54	974	47	87	303	6102
novice-1	151	2457	37	213	1381	14960
experienced-5	62	4015	35	210	910	25220
scientist-6	14	1103	33	49	278	7196
experienced-35	78	4272	28	169	2504	26290
non-8	97	239	28	103	18	1524
experienced-13	85	1109	25	10	446	6848
experienceu 15	00	1103	20	100	440	0040

Appendix B: Generated Statistics for the Greenberg Dataset (Ordered by History)

experienced-16	60	795	24	22	245	4932
scientist-35	22	1049	24	22	594	6612
experienced-14	88	1810	23	153	996	11270
experienced-11	70	1456	23	86	927	9126
scientist-29	17	2683	21	243	530	16632
experienced-31	61	683	19	38	454	4368
non-4	106	5050	18	161	3296	30830
scientist-5	21	1563	18	78	558	10164
scientist-45	35	862	17	59	223	5330
scientist-34	52	2639	15	88	910	16648
scientist-44	44		10	84	394	9544
non-3	108	1265	9	15	209	7928
scientist-47	11	1200	9	81	618	7672
scientist-31	1	250	9	20	12	1758
scientist-25	30	3508	7	122	379	22706
novice-19	164	3401	7	363	0	20816
experienced-2	64	219	6	11	33	1414
novice-55	128	1662	6	40	0	10218
scientist-18	48	5584	6	240	1816	34258
scientist-42	10	6068	6	644	3243	37598
novice-20	144	418	5	19	0	2722
experienced-18	69	575	5	21	114	3548
non-9	102	357	4	23	45	2432
novice-34	147	1276	4	46	0	8146
non-25	104	327	3	18	48	2264
non-7	101	1231	3	54	792	7704
novice-25	155	2066	2	217	0	13070
novice-11	162	256	2	21	0	1770
experienced-4	75	3776	2	123	1329	23258
experienced-10	56	446	2	26	170	2774
non-14	109	201	1	4	0	1272
novice-27	139	1195	1	63	414	7452
novice-21	127	849	1	42	0	5268
scientist-3	36	978	1	69	255	6398
novice-22	166	1893	1	51	547	11844
novice-5	121	593	1	67	0	3804
novice-9	134	853	0	63	0	5292
novice-17	132	1194	0	59	0	7702
novice-23	129	2138	0	72	0	13186
novice-40	165	967	0	24	722	6032
scientist-26	6	983	0	70	231	6388
novice-4	131	1919	0	123	0	11758
novice-15	141	1139 385	0 0	48 37	0 60	7148 2512
novice-32 novice-54	133 138		0	56	0	4248
novice-26	137	1120	0	60	0	7066
novice-28	137	2221	0	120	0	13816
novice-35	135	1444	0	54	50	9022
novice-52	135	650	0	38	0	4174
novice-51	143	480	0	20	0	3046
scientist-32	5	601	0	20	0	3916
novice-49	156	723	0	31	0	4428
novice-31	157	2073	0	102	18	12692
novice-44	158	1277	0	40	0	7896
novice-38	159	839	0	17	0	5468
novice-2	160	1267	0	58	0	8072
novice-16	161	256	0	25	0	1598
novice-39	163	1107	0	51	9	6936
novice-18	167	1088	0	38	0	6710

novice-37	154	1949	0	57	0	12044
scientist-33	4	325	0	12	0	2044
novice-14	126	3194	0	208	0	19786
novice-47	148	1316	0	78	0	8118
novice-30	140	946	0	28	0	5986
novice-3	150	2337	0	93	0	15400
scientist-8	2	842	0	51	79	5294
novice-48	152	269	0	9	0	1704
novice-8	152	1822	0	19	0	11298
novice-13	168	652	0	49	0	4106
experienced-15	65	225	0	12	85	1404
scientist-24	29	1494	0	55	1217	9250
non-23	89	1494	0	48	636	8118
non-1	90	1234	0	40 59	410	10110
non-21	91	1022	0	7		890
non-19	91 92	152	0	7	116	1356
non-10	93	495	0	20	0	3096
non-15	93	435 571	0	20	0	3736
non 10 non-6	95	177	0	7	0	1152
scientist-11	31	205	0	13	0	132
scientist 11	33	366	0	28	169	2246
experienced-6	57	757	0	32	69	4752
scientist-41	49	2037	0	36	0	13036
experienced-26	43	679	0	66	59	4192
scientist-17	46	569	0	38	0	3792
scientist-43	39	3106	0	101	546	19066
scientist 40	38	4605	0	98	628	29020
experienced-17	79	2343	0	144	102	14396
scientist-51	34		0	67	358	5754
non-24	96	542	0	34	0	3390
non-11	98	1848	0	61	0	12210
scientist-48	9	819	0	43	0	5216
novice-45	116	651	0	16	0	4120
novice-50	117	985	0	92	0	6100
novice-12	118	2436	0	210	0	16366
novice-42	110	1068	0	33	5	6774
novice-29	120	1230	0	44	0	7754
novice-33	122	3127	0	106	0	19556
novice-6	123	871	0	44	0	5520
novice-53	120	1028	0	41	51	6558
novice-41	115	2317	0	51	1000	14244
novice-10	110	1464	0	40	872	9038
non-13	100	487	0	5	0	3072
non-5	103	244	0	11	0	1770
scientist-16	8	326	0	29	38	2250
non-12	107	216	0	26	0	1390
non-17	110	848	0	65	0	5330
non-18	111	1403	0	64	0	8804
scientist-22	7	750	0	39	20	5026
non-2	113	454	0	15	63	2934
novice-43	125	608	0	26	45	3778
10/100 10	120	000	0	20	40	5110

User	Uid	Commands	History	Errors	Aliases	Lines
scientist-42	10	6068	6	644	3243	37598
experienced-7	55	5857	67	612	2926	35896
scientist-36	20	12056	488	566	3161	73434
novice-46	146	4163	112	372	1909	26080
experienced-20	53	4556	435	370	1646	28054
novice-19	164	3401	7	363	0	20816
scientist-4	23	4507	178	320	789	27992
scientist-52	15	7705	231	299	717	47280
experienced-1	80	3714	174	298	1906	22830
experienced-8	68	2930	67	265	625	18114
scientist-29	17	2683	20	243	530	16632
scientist-18	48	5584	6	240	1816	34258
experienced-24	86	3331	222	228	1456	20440
scientist-50	12	1496	219	225	387	9526
experienced-5	62	4015	35	222	910	25220
experienced-34	76	1869	206	218	598	11676
novice-25	155	2066	200	210	0	13070
novice-1	151	2457	37	213	1381	14960
novice-12	118	2436	0	210	0	16366
novice-14	126	3194	0	208	0	19786
scientist-20	45	2697	74	189	804	17080
scientist-14	47	3433	178	183	2	21404
experienced-35	78	4272	28	169	2504	26290
scientist-38	24	3775	48	168	1312	23172
non-4	106	5050	18	161	3296	30830
experienced-13	85	1109	25	160	446	6848
experienced-14	88	1810	23	153	996	11270
scientist-2	25	2954	236	149	1656	18514
experienced-17	79	2343	0	143	1000	14396
novice-36	142	3213	0	137	0	19840
experienced-9	71	2351	86	136	502	14500
scientist-23	16	3360	52	135	481	21454
scientist-21	10	1762	50	135	586	10894
experienced-29	84	2214	50	133	1072	13566
non-20	99	4042	165	133	2122	24798
experienced-4	75	3776	2	124	1329	23258
novice-4	131	1919	0	123	0	11758
scientist-30	40	2129	186	123	409	13492
scientist-25	30	3508	7	123	379	22706
experienced-22	73	2814	325	122	560	17478
scientist-10	27	2014	77	122	730	12658
novice-28	136	2024	0	120	0	13816
experienced-23	81	2306	189	120	1004	13810
scientist-13	42	3593	357	113	204	21988
experienced-36	63	1580	56	116	781	9718
scientist-19	43	2831	106	110	1330	17560
	43	1856	54	112	761	11792
scientist-1	66	2028	82	111 110	624	11792
experienced-30	3	2028	82 80	110	495	
scientist-46						16480
novice-33	122	3127	0	106	0	19556
novice-31	157	2073	0	102	18	12692
scientist-43	39	3106	0	101	546	19066
scientist-40	38	4605	0	<u>98</u>	628	29020
scientist-49	51	1448	138	97	179	9106
novice-3	150	2337	0	93	0	15400
novice-50	117	985	0	92	0	6100
experienced-12	77	1763	106	92	889	10840

Appendix C: Generated Statistics for the Greenberg Dataset (Ordered by Errors)

experienced-25	83	1465	69	89	346	9072
scientist-34	52	2639	15	88	910	16648
experienced-19	58	1807	163	88	829	11328
experienced 13	54	974	47	87	303	6102
experienced 32	70	1456	21	86	927	9126
scientist-27	37	3817	102	85	0	23344
scientist-44	44	1543	102	84	394	
scientist-37	32	4187	12	83	1866	25604
experienced-21	59	2394	121	83	974	14762
scientist-47	11	1229	9	81	618	7672
scientist-15	50	1429	200	81	175	9216
scientist-5	21	1563	18	78	558	10164
novice-47	148	1316	0	78	0	8118
scientist-39	41	1753	173	77	530	10992
novice-23	129	2138	0	72	0	13186
scientist-26	6	983	0	70	231	6388
scientist-3	36	978	1	69	255	6398
novice-5	121	593	1	67	0	3804
scientist-51	34	910	0	67	358	5754
experienced-26	72	679	0	66	59	4192
scientist-9	26	4067	224	65	665	25424
experienced-33	82	1292	83	65	649	7986
non-17	110	848	0	65	0	5330
non-18	111	1403	0	64	0	8804
novice-27	139	1195	1	63	414	7452
novice-9	134	853	0	63	0	5292
non-11	98	1848	0	61	0	12210
novice-26	137	1120	0	60	0	7066
experienced-28	74	3893	78	60	2516	25116
novice-17	132	1194	0	59	0	7702
scientist-45	35	<i>862</i>	17	59	223	5330
non-1	90	1622	0	59	410	10110
novice-2	160	1267	0	58	0	8072
novice-37	154	1949	0	57	0	12044
non-22	112	1567	48	56	0	10004
novice-54	138	683	0	56	0	4248
scientist-24	29	1494	0	55	1217	9250
non-7	101	1231	3	54	792	7704
experienced-27	67	1693	77	54	741	11032
novice-35	135	1444	0	54	50	9022
novice-24	130	849	48	53	118	5436
scientist-12	28	2499	53	52	1162	15412
novice-22	166	1893	1	51	547	11844
scientist-8	2	842	0	51	79	5294
novice-41	115	2317	0	51	1000	14244
novice-39	163	1107	0	51	9	6936
novice-7	145	1039	98	51	36	6608
novice-13	<u> </u>	652 1103	0	49 49	0 278	4106
scientist-6 non-23	89	1103	33	49	278 636	7196 8118
non-25 novice-15	141	1294	0	48	030	7148
novice-34	141	1139	4	40	0	8146
novice-6	123	871	4 0	40	0	5520
novice-29	120	1230	0	44	0	7754
scientist-48	9	819	0	43	0	5216
experienced-3	87	915	88	43	356	5600
novice-21	127	849	1	42	0	5268
novice-53	127	1028	0	42	51	6558
novice-10	114	1464	0	40	872	9038
novice-44	158	1277	0	40	0	7896
	100	1277	0	40	0	1000

novice-55	128	1662	6	40	0	10218
scientist-22	7	750	0	39	20	5026
experienced-31	61	683	19	38	454	4368
scientist-17	46	569	0	38	0	3792
novice-18	167	1088	0	38	0	6710
novice-52	140	650	0	38	0	4174
novice-32	133	385	0	37	60	2512
scientist-41	49	2037	0	36	0	13036
non-24	96	542	0	34	0	3390
novice-42	119	1068	0	33	5	6774
experienced-6	57	757	0	32	69	4752
novice-49	156	723	0	31	0	4428
scientist-16	8	326	0	29	38	2250
scientist-35	22	1049	23	29	594	6612
scientist-7	33	366	0	28	169	2246
novice-30	149	946	0	28	0	5986
non-15	94	571	0	28	0	3736
non-12	107	216	0	20	0	1390
scientist-28	18	765	64	26	235	5032
novice-43	125	608	0	26	45	3778
non-16	105	821	144	26	0	5108
experienced-10	56	446	2	26	170	2774
novice-16	161	256	0	25	0	1598
novice-40	165	967	0	20	722	6032
non-9	102	357	4	23	45	2432
experienced-16	60	795	24	22	245	4932
novice-11	162	256	21	21	0	1770
experienced-18	69	575	5	21	114	3548
non-10	93	495	0	20	0	3096
novice-51	143	480	0	20	0	3046
scientist-32	5	601	0	20	0	3916
scientist-31	1	250	9	20	12	1758
novice-20	144	418	5	19	0	2722
novice-8	153	1822	0	19	0	11298
non-25	104	327	3	18	48	2264
novice-38	159	839	0	17	0	5468
novice-45	116	651	0	16	0	4120
non-3	108	1265	9	15	209	7928
non-2	113	454	0	15	63	2934
scientist-11	31	205	0	13	0	1380
non-8	97	239	28	13	18	1524
experienced-15	65	225	0	12	85	1404
scientist-33	4	325	0	12	0	2044
non-5	103	244	0	11	0	1770
experienced-2	64	219	6	11	33	1414
novice-48	152	269	0	9	0	1704
non-19	92	175	0	7	116	1356
non-6	95	177	0	7	0	1152
non-21	91	132	0	7	0	890
	~ -		Ų		U U	
non-13	100	487	0	5	0	3072

User	Uid	Commands	History	Errors	Aliases	Lines
non-4	106	5050	18	161	3296	30830
scientist-42	10	6068	6	644	3243	37598
scientist-36	20	12056	488	566	3161	73434
experienced-7	55	5857	67	612	2926	35896
experienced-28	74	3893	78	60	2516	25116
experienced-35	78	4272	28	169	2504	26290
non-20	99	4042	165	124	2122	24798
novice-46	146	4163	112	372	1909	26080
experienced-1	80	3714	174	298	1906	22830
scientist-37	32	4187	121	83	1866	25604
scientist-18	48	5584	6	240	1816	34258
scientist-2	25	2954	236	149	1656	18514
experienced-20	53	4556	435	370	1646	28054
experienced-24	86	3331	222	228	1456	20440
novice-1	151	2457	37	213	1381	14960
scientist-19	43	2831	106	112	1330	17560
experienced-4	75	3776	2	123	1329	23258
scientist-38	24	3775	48	168	1312	23172
scientist-24	29	1494	0	55	1217	9250
scientist-12	28	2499	53	52	1162	15412
experienced-29	84	2214	59	133	1072	13566
experienced-23	81	2306	189	119	1004	14214
novice-41	115	2317	0	51	1000	14244
experienced-14	88	1810	23	153	996	11211
experienced-21	59	2394	157	83	974	14762
experienced-11	70	1456	21	86	927	9126
scientist-34	52	2639	15	88	910	16648
experienced-5	62	4015	35	222	910	25220
experienced 0	77	1763	106	92	889	10840
novice-10	114	1464	0	40	872	9038
experienced-19	58	1807	163	88	829	11328
scientist-20	45	2697	74	189	804	17080
non-7	101	1231	3	54	792	7704
scientist-4	23	4507	178	320	789	27992
experienced-36	63	1580	56	116	781	9718
scientist-1	13	1856	54	110	761	11792
experienced-27	67	1693	77	54	741	11032
scientist-10	27	2024	77	120	730	12658
novice-40	165	967	0	24	722	6032
scientist-52	105	7705	231	24	717	47280
scientist-9	26	4067	224	65	665	25424
experienced-33	82	1292	83	65	649	7986
non-23	89	1292	0	48	636	8118
scientist-40	38	4605	0	98	628	29020
experienced-8	68	2930	67	265	625	18114
experienced 0 experienced-30	66	2028	82	110	624	12686
scientist-47	11	1229	9	81	618	7672
experienced-34	76	1869	206	218	598	11676
scientist-35	22	1009	200	218	594	6612
scientist-21	22 19	1049	23 50	<i>29</i> 	586	10894
experienced-22	73	2814	325	134	560	17478
experiencea-22 scientist-5	21	<u> </u>	320 18		558	17478
novice-22	166	1363	18		547	10164
scientist-43	39	3106	<i>10</i>	101	546	11844 19066
	17		20			
scientist-29	41	2683		243 77	530	16632
scientist-39		1753	173		530	10992
experienced-9	71	2351	86	136	502	14500

Appendix D: Generated Statistics for the Greenberg Dataset (Ordered by Aliases)

scientist-46	3	2551	80	110	495	16480
scientist-23	16	3360	52	135	481	21454
experienced-31	61	683	19	38	454	4368
experienced-13	85	1109	25	160	446	6848
novice-27	139	1195	1	63	414	7452
non-1	90	1622	0	59	410	10110
scientist-30	40	2129	186	123	409	13492
scientist-44	44	1543	12	84	394	9544
scientist-50	12	1496	219	225	387	9526
scientist-25	30	3508	7	122	379	22706
scientist-51	34	910	0	67	358	5754
experienced-3	87	915	88	42	356	5600
experienced-25	83	1465	69	89	346	9072
experienced-32	54	974	47	87	303	6102
scientist-6	14	1103	33	49	278	7196
scientist-3	36	978	1	69	255	6398
experienced-16	60	795	24	22	245	4932
scientist-28	18	765	64	26	235	5032
scientist-26	6	983	0	70	231	6388
scientist-45	35	862	17	59	223	5330
non-3	108	1265	9	15	209	7928
scientist-13	42	3593	357	118	204	21988
scientist-49	51	1448	138	97	179	9106
scientist-15	50	1429	200	81	175	9216
experienced-10	56	446	2	26	170	2774
scientist-7	33	366	0	28	169	2246
novice-24	130	849	48	53	118	5436
non-19	92	175	0	7	116	1356
experienced-18	69	575	5	21	114	3548
experienced-17	79	2343	0	144	102	14396
experienced-15	65	225	0	12	85	1404
scientist-8	2	842	0	51	79	5294
experienced-6	57	757	0	32	69	4752
non-2	113	454	0	15	63	2934
novice-32	133	385	0	37	60	2512
experienced-26	72	679	0	66	59	4192
novice-53	124	1028	0	41	51	6558
novice-35	135	1444	0	54	50	9022
non-25	104 102	327	3	<u>18</u> 23	48	2264
non-9 novice-43	102	357 608	4	23	45 45	2432 3778
scientist-16	8	326	0	20	38	2250
novice-7	145	1039	98	<u> </u>	36	6608
experienced-2	64	219	6	11	33	1414
scientist-22	7	750	0	39	20	5026
non-8	97	239	28	13	18	1524
novice-31	157	2073	0	102	18	12692
scientist-31	1	250	9	20	12	1758
novice-39	163	1107	0	51	9	6936
novice-42	119	1068	0	33	5	6774
scientist-14	47	3433	178	183	2	21404
novice-30	149	946	0	28	0	5986
novice-47	148	1316	0	78	0	8118
novice-3	150	2337	0	93	0	15400
novice-34	147	1276	4	46	0	8146
scientist-17	46	569	0	38	0	3792
novice-20	144	418	5	19	0	2722
novice-51	143	480	0	20	0	3046
novice of						
novice-36	142	3213	0	137	0	19840

novice-52	140	650	0	38	0	4174
scientist-27	37	3817	102	85	0	23344
scientist-32	5	601	0	20	0	3916
novice-48	152	269	0	9	0	1704
novice-8	153	1822	0	19	0	11298
novice-13	168	652	0	49	0	4106
novice-18	167	1088	0	38	0	6710
scientist-41	49	2037	0	36	0	13036
scientist-33	4	325	0	12	0	2044
novice-19	164	3401	7	363	0	20816
novice-11	162	256	2	21	0	1770
novice-16	161	256	0	25	0	1598
novice-2	160	1267	0	58	0	8072
novice-38	159	839	0	17	0	5468
novice-44	158	1277	0	40	0	7896
novice-49	156	723	0	31	0	4428
novice-25	155	2066	2	217	0	13070
novice-37	154	1949	0	57	0	12044
novice-54	138	683	0	56	0	4248
novice-26	137	1120	0	60	0	7066
novice-28	136	2221	0	120	0	13816
novice-12	118	2436	0	210	0	16366
novice-50	117	985	0	92	0	6100
novice-45	116	651	0	16	0	4120
non-6	95	177	0	7	0	1152
non-24	96	542	0	34	0	3390
non-22	112	1567	48	56	0	10004
non-18	111	1403	0	64	0	8804
non-17	110	848	0	65	0	5330
non-14	109	201	1	4	0	1272
non-11	98	1848	0	61	0	12210
non-12	107	216	0	26	0	1390
non-13	100	487	0	5	0	3072
non-16	105	821	144	26	0	5108
non-5	103	244	0	11	0	1770
novice-29	120	1230	0	44	0	7754
novice-5	121	593	1	67	0	3804
scientist-11	31	205	0	13	0	1380
novice-9	134	853	0	63	0	5292
novice-17	132	1194	0	59	0	7702
novice-4	131	1919	0	123	0	11758
non-21	91	132	0	7	0	890
novice-23	129	2138	0	72	0	13186
novice-55	128	1662	6	40	0	10218
novice-21	127	849	1	42	0	5268
novice-14	126	3194	0	208	0	19786
non-10	93	495	0	20	0	3096
non-15	94	571	0	28	0	3736
novice-6	123	871	0	44	0	5520
novice-33	122	3127	0	106	0	19556
scientist-48	9	819	0	43	0	5216

User	Uid	Commands	History	Errors	Aliases	Lines
scientist-36	20	12056	488	566	3161	73434
scientist-52	15	7705	231	299	717	47280
scientist-42	10	6068	6	644	3243	37598
experienced-7	55	5857	67	612	2926	35896
scientist-18	48	5584	6	240	1816	34258
non-4	106	5050	18	161	3296	30830
scientist-40	38	4605	0	98	628	29020
experienced-20	53	4556	435	370	1646	28054
scientist-4	23	4507	178	320	789	27992
experienced-35	78	4272	28	169	2504	26290
novice-46	146	4163	112	372	1909	26080
scientist-37	32	4187	121	83	1866	25604
scientist-9	26	4067	224	65	665	25424
experienced-5	62	4015	35	222	910	25220
experienced-28	74	3893	78	60	2516	25116
non-20	99	4042	165	124	2122	24798
scientist-27	37	3817	102	85	0	23344
experienced-4	75	3776	2	123	1329	23258
scientist-38	24	3775	48	168	1312	23172
experienced-1	80	3714	174	298	1906	22830
scientist-25	30	3508	7	122	379	22706
scientist-13	42	3593	357	118	204	21988
scientist-23	16	3360	52	135	481	21454
scientist-14	47	3433	178	183	2	21404
novice-19	164	3401	7	363	0	20816
experienced-24	86	3331	222	228	1456	20010
novice-36	142	3213	0	137	0	19840
novice-14	126	3194	0	208	0	19786
novice-33	120	3127	0	106	0	19756
scientist-43	39	3106	0	100	546	19066
scientist-2	25	2954	236	149	1656	18514
experienced-8	68	2930	67	265	625	18114
scientist-19	43	2831	106	112	1330	17560
experienced-22	73	2814	325	112	560	17478
scientist-20	45	2697	74	189	804	17080
scientist-34	52	2639	15	88	910	16648
scientist-29	17	2683	20	243	530	16632
scientist-46	3	2551	80	110	495	16480
novice-12	118	2436	0	210	0	16366
scientist-12	28	2499	53	52	1162	15412
novice-3	150	2337	0	93	0	15400
novice-1	151	2457	37	213	1381	14960
experienced-21	59	2394	157	83	974	14762
experienced-9	71	2351	86	136	502	14500
experienced 0 experienced-17	79	2343	0	144	102	14396
novice-41	115	2317	0	51	1000	14244
experienced-23	81	2306	189	119	1000	14214
novice-28	136	2200	0	113	0	13816
experienced-29	84	2221	59	120	1072	13566
scientist-30	40	2214	186	133	409	13492
novice-23	129	2123	0	72		13186
novice-25	129	2138 2066	2	217	0	13186
scientist-41	49	2066	0	36	0	13070
scientist-41 novice-31	49 157	2037 2073	0	36 102	18	12692
experienced-30	66	2073	82	102	624	12692
	27	2028				
scientist-10			77	120	730	12658
non-11	98	1848	0	61	0	12210

Appendix E: Generated Statistics for the Greenberg Dataset (Ordered by Lines)

novice-37	154	1949	0	57	0	12044
novice-22	166	1893	1	51	547	11844
scientist-1	13	1856	54	111	761	11792
novice-4	131	1919	0	123	0	11752
experienced-34	76	1869	206	218	598	11756
experienced-19	58	1805	163	88	829	11328
novice-8	153	1807	0	19	023	11328
experienced-14	88	1822	23	153	996	11230
experienced 14 experienced-27	67	1693	77	54	741	11270
scientist-39	41	1753	173	77	530	1092
scientist-21	19	1755	50	134	586	10332
experienced-12	77	1762	106	92	889	10834
novice-55	128	1662	6	40	000	10040
scientist-5	21	1563	18	78	558	10218
non-1	90	1622	0	59	410	10104
non-22	112	1567	48	56	0	10110
experienced-36	63	1580	56	116	781	9718
scientist-44	44	1543	12	84	394	9544
scientist-50	12	1945	219	225	334	9526
scientist-24	29	1490	0	55	1217	9250
scientist-15	29 50	1434	200	<u> </u>	1217	9230
experienced-11	70	1425	200	86	927	9126
scientist-49	51	1400	138	97	179	9106
experienced-25	83	1465	69	89	346	9072
novice-10	114	1464	0	40	872	9038
novice-35	135	1444	0	54	50	9022
non-18	111	1403	0	64	0	8804
novice-34	147	1276	4	46	0	8146
novice-47	148	1316	0	78	0	8118
non-23	89	1294	0	48	636	8118
novice-2	160	1267	0	58	0	8072
experienced-33	82	1292	83	65	649	7986
non-3	108	1265	9	15	209	7928
novice-44	158	1277	0	40	0	7896
novice-29	120	1230	0	44	0	7754
non-7	101	1231	3	54	792	7704
novice-17	132	1194	0	59	0	7702
scientist-47	11	1229	9	81	618	7672
novice-27	139	1195	1	63	414	7452
scientist-6	14	1103	33	49	278	7196
novice-15	141	1139	0	48	0	7148
novice-26	137	1120	0	60	0	7066
novice-39	163	1107	0	51	9	6936
experienced-13	85	1109	25	160	446	6848
novice-42	119	1068	0	33	5	6774
novice-18	167	1088	0	38	0	6710
scientist-35	22	1049	23	29	594	6612
novice-7	145	1039	98	51	36	6608
novice-53	124	1028	0	41	51	6558
scientist-3	36	978	1	69	255	6398
scientist-26	6	983	0	70	231	6388
experienced-32	54	974	47	87	303	6102
novice-50	117	985	0	92	0	6100
novice-40	165	967	0	24	722	6032
novice-30	149	946	0	28	0	5986
scientist-51	34	910	0	67	358	5754
experienced-3	87	915	88	42	356	5600
novice-6	123	871	0	44	0	5520
novice-38	159	839	0	17	0	5468
novice-24	130	849	48	53	118	5436

scientist-45	35	862	17	59	223	5330
non-17	110	848	0	65	0	5330
scientist-8	2	842	0	51	79	5294
novice-9	134	853	0	63	0	5292
novice-21	134	849	1	42	0	5268
scientist-48	9	819	0	42	0	5208
non-16	105	821	144	26	0	5108
scientist-28	105	765	64	20	235	5032
scientist-22	7	750	04	39	20	5032
experienced-16	60	795	24	22	20	4932
experienced 10	57	757	0	32	69	4332
novice-49	156	723	0	31	03	4152
experienced-31	61	683	19	38	454	4428
	138	683	19	<u> </u>		4368
novice-54	72	679	0	<u> </u>	59	4248
experienced-26 novice-52	140	650	0	38	0	4192
	140	650 651	0			4174 4120
novice-45	116	651 652	0	<u> </u>	0 0	4120
novice-13 scientist-32	168 5	601	0	<u>49</u> 20	0	4106 3916
	121			67		
novice-5	46	593 569	1	<u> </u>	0	3804
scientist-17			0	<u> </u>	0	3792
novice-43	125 94	608		26	45 0	3778
non-15	69	571	0 5	28		3736
experienced-18	96	575 542	<u> </u>	<u> </u>	114 0	3548 3390
non-24	96			20		
non-10	93	495 487	0	<u> </u>	0	3096
non-13	143		0	$\frac{3}{20}$	0 0	3072
novice-51 non-2	143	480		20	63	3046 2934
	56	454	0 2			
experienced-10		446 418	5	<u> </u>	170 0	2774
novice-20	144 133	418 385	<i>3</i> <i>0</i>	<u> </u>	60	2722 2512
novice-32	102	<u> </u>		23		
non-9		337	4		45	2432 2264
non-25	104 8			<u> </u>	48 38	
scientist-16 scientist-7	33	326 366	0 0	<u> </u>		2250 2246
scientist-33	4	300	0	<u> </u>	109 0	2246
non-5	103	244	0	12	0	1770
novice-11	162	244 256	2	21	0	1770
scientist-31	102	250	9	21 20	12	1770
novice-48	152	250	0	<u> </u>	12 0	1704
	161	203	0	25	0	
novice-16 non-8	97	236 239	28	20 13	18	1598 1524
experienced-2	64	239 219	28 6	13		1524 1414
experienced-2 experienced-15	65	219 225	<u> </u>	11		1414 1404
non-12	107	225 216	0	26	<u> </u>	1404
	31	216 205	0	<u> </u>	0	1390
scientist-11 non-19			0			
	92 109	175	0	7	116	1356
non-14		201		4	0	1272
non-6	95	177	0	7	0	1152
non-21	91	132	0	7	0	890

Appendix F: List of User Profiles (Victims)

Uid	Number of Distinct Commands	Uid	Number of Distinct Commnds		
3	427	73	234		
10	427	74	350		
13	425	75	193		
15	316	76	244		
16	273	77	336		
17	507	78	241		
19	412	79	338		
20	376	80	241		
21	345	81	188		
23	351	84	230		
24	426	86	420		
25	286	88	274		
26	311	90	341		
27	312	98	472		
28	314	99	262		
30	462	106	322		
32	320	112	277		
37	275	115	252		
38	329	118	138		
39	349	122	138		
40	389	126	358		
41	342	128	137		
42	222	129	126		
43	307	131	255		
44	367	136	195		
45	422	142	157		
47	334	146	339		
48	314	150	119		
49	267	151	284		
52	214	153	107		
53	168	154	230		
55	339	155	339		
58	321	157	129		
59	195	164	206		
62	267	166	208		
63	274				
66	204				
67	341				
68	335				
71	341				

Appendix	G:	Undecided	Results
----------	----	-----------	---------

Uid Input	Uid Profile	Decision Expected	Interval Size	p ₁	p ₂	α	β
70	52	Reject	10	0.29	0.71	0.01	0.01
22	52	Reject	10	0.29	0.71	0.01	0.01
82	52	Reject	10	0.29	0.71	0.01	0.01
70	52	Reject	10	0.30	0.70	0.01	0.01
22	52	Reject	10	0.30	0.70	0.01	0.01
82	52	Reject	10	0.30	0.70	0.01	0.01
108	84	Reject	10	0.31	0.69	0.01	0.01
70	84	Reject	10	0.31	0.69	0.01	0.01
22	84	Reject	10	0.31	0.69	0.01	0.01
82	84	Reject	10	0.31	0.69	0.01	0.01
13	13	Accept	15	0.29	0.71	0.01	0.01
13	13	Accept	20	0.31	0.69	0.01	0.01
13	13	Accept	15	0.30	0.7	0.01	0.01
13	13	Accept	15	0.30	0.7	0.01	0.01
13	13	Accept	15	0.31	0.69	0.01	0.01
13	13	Accept	20	0.29	0.71	0.01	0.01
13	13	Accept	10	0.31	0.69	0.01	0.01
13	13	Accept	10	0.30	0.7	0.01	0.01
13	13	Accept	20	0.30	0.7	0.01	0.01
30	30	Accept	15	0.31	0.69	0.01	0.01
30	30	Accept	5	0.45	0.55	0.01	0.01
30	30	Accept	20	0.29	0.71	0.01	0.01
30	30	Accept	15	0.30	0.7	0.01	0.01
30	30	Accept	20	0.30	0.7	0.01	0.01
30	30	Accept	20	0.31	0.69	0.01	0.01
30	30	Accept	15	0.30	0.7	0.01	0.01
30	30	Accept	15	0.29	0.71	0.01	0.01
55	55	Accept	20	0.30	0.7	0.01	0.01
55	55	Accept	20	0.29	0.71	0.01	0.01
55	55	Accept	15	0.31	0.69	0.01	0.01
55	55	Accept	15	0.30	0.7	0.01	0.01
55	55	Accept	10	0.31	0.69	0.01	0.01
55	55	Accept	10	0.29	0.71	0.01	0.01
55	55	Accept	20	0.31	0.69	0.01	0.01
55	55	Accept	15	0.30	0.7	0.01	0.01
55	55	Accept	15	0.29	0.71	0.01	0.01
55	55	Accept	10	0.30	0.7	0.01	0.01
58	58	Accept	20	0.31	0.69	0.01	0.01
58	58	Accept	20	0.30	0.7	0.01	0.01
78	78	Accept	20	0.31	0.69	0.01	0.01
98	98	Accept	15	0.31	0.69	0.01	0.01
98	98	Accept	20	0.31	0.69	0.01	0.01
98	98	Accept	20	0.30	0.7	0.01	0.01
98	98	Accept	20	0.29	0.71	0.01	0.01
136	136	Accept	20	0.31	0.69	0.01	0.01
136	136	Accept	20	0.30	0.7	0.01	0.01
136	136	Accept	20	0.29	0.71	0.01	0.01

References

[1] Ahmed, A. A., & Traore, I. (2008). Performance Metrics and Model for Continuous Authentication Systems. *submitted to the IEEE Transactions on Dependable and*.

[2] O'Gorman, L. (2003). Comparing Passwords, Tokens, and Biometrics for User Authentication. *IEEE, Dec. 03 Vol. 91*, (pp. 2021-2040).

[3] Shepherd, S. (1995). Continuous authentication by analysis of keyboard typing characteristics. *Security and Detection, European Convention*, (pp. 111-114). Brighton.

[4] Ahmed, A., & Traore, I. (2007). A New Biometric Technology Based on Mouse Dynamics. *Dependable and Secure Computing, IEEE Transactions*, (pp. 165-179).

[5] Loeb, V. (2001). Spy Case Prompts Computer Search. Washington Post, DC, A01-00.

[6] Maxion, R., & Townsend, T. (2004). Masquerade detection augmented with error analysis. *Reliability, IEEE Transactions* (pp. 124-147). Pittsburgh: IEEE Reliability Society.

[7] Kim, H., & Cha, S. (2005). Empirical evaluation of SVM-based masquerade detection using UNIX commands. *Computer & Security*, 24, 160-168.

[8] Wang, K., & S, S. (2003). One-class training for masquerade detection. *3rd IEEE Conference Data Mining Workshop on Data Mining for Computer Security.*

[9] Schonlau, M., DuMouchel, W., Ju, W., Karr, A. F., Theus, M., & Vardi, Y. (2001). Computer Intrusion: Detecting masquerades. *Statistical Science*, *I* (16), 58-74.

[10] Maxion, R., & Townsend, T. (2002). Masquerade detection using truncated command lines. *Dependable Systems and Networks. DSN 2002. Proceedings. International Conference*, (pp. 219-228). Pittsburgh.

[11] Axelsson, S. (2000, March 14). Intrusion Detection Systems: A Survey and Taxonomy. 1-27. Sweden.

[12] Armstrong, D., & Peile, C. (2005). Perimeter intruder detection systems performance standard. *Security Technology, 2005. CCST '05. 39th Annual 2005 International Carnahan Conference,* (pp. 33-36). Las Palmas.

[13] Cannady, J. (1998). *Artificial Neural Networks for Misuse Detection*. Retrieved from http://csrc.nist.gov/nissc/1998/proceedings/paperF13.pdf

[14] Ghosh, A. K., & Schwartzbard, A. (1999). A study in using neural networks for anomaly and misuse detection. *Proceedings of the 8th conference on USENIX Security Symposium - Volume 8*, 12-12.

[15] Jali, K. A., Kamarudin, M. H., & Masrek, M. N. (2010). Comparison of Machine Learning algorithms performance in detecting network intrusion. *Networking and Information Technology (ICNIT), International Conference*, (pp. 221-226). Manila, Philippines.

[16] Kemmerer, R. A., & Vigna, G. (2002). Intrusion detection: A brief history and overview. *Computer 35* (SUPPL), 27-30.

[17] Lin, M., Miikkulainen, R., & Ryan, J. (1998, June). Intrusion Detection with Neural Networks. *Advances in Neural Information Processing Systems*.

[18] Liu, Z., Florez, G., & Bridges, S. (2002). A comparison of input representations in neural networks: a case study in intrusion detection. *Neural Networks. IJCNN '02. Proceedings of the 2002 International Joint Conference on*, (pp. 1708-1713). Honolulu, HI.

[19] Zhang, P. (2005). Neural Networks. In *Data Mining and Knowledge Discovery Handbook* (pp. 487-507). Springer US.

[20] Mitchell, T. (1997). *Machine Learning*. The McGraw-Hill Companies, Inc.

[21] Kim, S.-B., Han, K.-S., Rim, H.-C., & Myaeng, S. H. (2006). Some Effective Techniques for Naive Bayes Text Classification. *Knowledge and Data Engineering, IEEE Transactions*, (pp. 1457-1466). Los Angeles.

[22] Michie, D., Spiegelhalter, D. J., & Taylor, C. C. (1994). *Machine learning, neural and statistical classification*. New York: Ellis Horwood.

[23] Almeida, T., Yamakami, A., & Almeida, J. (2009). Evaluation of Approaches for Dimensionality Reduction Applied with Naive Bayes Anti-Spam Filters. *Machine Learning and Applications. ICMLA '09. International Conference*, (pp. 517-522). Miami Beach, FL.

[24] Yang, Z., Nie, X., Xu, W., & Guo, J. (2006). An Approach to Spam Detection by Naive Bayes Ensemble Based on Decision Induction. *Intelligent Systems Design and Applications. ISDA '06. Sixth International Conference*, (pp. 861-866). Jinan.

[25] Joachims, T. (1996). *A probabilistic analysis of the Rocchio algorithm with TFIDF for text categorization.* Carnegie Mellon University: Computer Science Technical Report CMU-CS-96-118.

[26] Maxion, R. (2003). Masquerade detection using enriched command lines. *Dependable Systems and Networks. Proceedings. 2003 International Conference*, (pp. 5-14).

[27] Maxion, R., & Tan, K. (2000). Benchmarking anomaly-based detection systems. *Dependable Systems and Networks, 2000. DSN 2000. Proceedings International Conference*, (pp. 623-630). New York, NY.

[28] Jiang, L., Zhang, H., & Cai, Z. (2009). A Novel Bayes Model: Hidden Naive Bayes. *Knowledge and Data Engineering, IEEE Transactions*, (pp. 1361-1371).

[29] Garg, A., Rahalkar, R., Upadhyaya, S., & Kwiat, K. (2006). Profiling Users in GUI Based Systems for Masquerade Detection. West Point: Information Assurance Workshop IEEE.

[30] Ghosh, A. K., Schwartzbard, A., & Schatz, M. (1999). Learning Program Behavior Profiles for Intrusion Detection.

[31] Ghosh, A. K., Wanken, J., & Charron, F. (1998). Detecting anomalous and unknown intrusions against programs. *In Proceedings of the 1998 Annual Computer Security Applications Conference*.

[32] Heywood, M., Lichodzijewski, P., & Zincir-Heywood, N. (2001). *Host-Based Intrusion Detection Using Self-Organizing Maps.* Retrieved from http://users.cs.dal.ca/~mheywood/X-files/Publications/PeterSOM-ids.pdf

[33] Hoglund, A. J., Hatonen, K., & Sorvari, A. S. (2000). A computer host-based user anomaly detection system using theself-organizing map. *Proceedings of the IEEE-INNS-ENNS International Joint Conference on*, 411 - 416.

[34] Wang, W., Guan, X., & Zhan, X. (2004). Profiling program and user behaviors for anomaly intrusion detection based on non-negative matrix factorization. *Decision and Control, 2004. CDC. 43rd IEEE Conference*, (pp. 99 - 104 Vol.1). Atlantis.

[35] Marin, J., Ragsdale, D., & Sirdu, J. (2001). A hybrid approach to the profile creation and intrusion detection. *DARPA Information Survivability Conference & Exposition II. DISCEX '01. Proceedings*, (pp. 69-76). Anaheim.

[36] Greenberg, S. (1988). *Using Unix: collected traces of 168 users*. Calgary: Research report 88/333/45, Department of Computer Science, University of Calgary.

[37] Jian, Z., Shirai, H., Takahashi, I., Kuroiwa, J., Odaka, T., & Ogura, H. (2007). A Hybrid Command Sequence Model for Anomaly Detection. *Advances In Knowledge Discovery and Data Mining*, 4426 (1), 108-118.

[38] Seo, J., & Cha, S. (2007). Masquerade detection based on SVM and sequence-based user commands profile. *2nd ACM symposium on Information, computer and communications security*, (pp. 398-400). Singapore.

[39] Zhang, H., & Sheng, S. (2004). Learning weighted naive Bayes with accurate ranking. *Data Mining. ICDM '04. Fourth IEEE International Conference*, (pp. 567-570).

[40] Masrom, M., & Ismail, Z. (2008). Computer security and computer ethics awareness: A component of management information system. *Information Technology. ITSim 2008. International Symposium*, (pp. 1-7). Kuala Lumpur.

[41] Yurcik, W., & Liu, C. (2005). A first step toward detecting SSH identity theft in HPC cluster environments: discriminating masqueraders based on command behavior. *Cluster Computing and the Grid, 2005. CCGrid 2005. IEEE International Symposium,* (pp. 111 - 120). Cardiff, UK.

[42] Bishop, M. (2009). Reflections on UNIX Vulnerabilities. *Computer Security Applications Conference. ACSAC '09. Annual*, (pp. 161-184). Honolulu, HI.

[43] Robbins, A. (2005). *Unix in a Nutshell* (4th ed.). (M. Loukides, Ed.) Sebastopol, United States of America: O'Reilly Media Inc.

[44] Lang, K. (1995). Newsweeder: Learning to filter netnews. *12th International Conference on Machine Learning* (pp. 331-339). San Francisco: Morgan Kaufmann Publishers.

[45] Leng, C., Wang, S., & Wang, H. (2009). Learning Naive Bayes Classifiers with Incomplete Data. *Artificial Intelligence and Computational Intelligence. AICI '09. International Conference*, (pp. 350-353). Shanghai.

[46] Brosso, I., Ferreira, F., Bressan, G., & Ruggiero, W. (2010). Known User Continuous Authentication System. *Consumer Communications and Networking Conference (CCNC), 2010 7th IEEE*, (pp. 1-2). Las Vegas, NV.

[47] Ferro, M., Pioggia, G., Tognetti, A., Dalle Mura, G., & De Rossi, D. (2009). Event Related Biometrics: Towards an Unobtrusive Sensing Seat System for Continuous Human Authentication. *Intelligent Systems Design and Applications. ISDA '09. Ninth International Conference on*, (pp. 679-682). Pisa.

[48] Liu, J., Yu, F., Lung, C.-H., & Tang, H. (2008). A Framework of Combining Intrusion Detection and Continuous Authentication in Mobile Ad Hoc Networks. *Communications. ICC '08. IEEE International Conference on*, (pp. 1515-1519). Beijing.

[49] Kohonen, T. (2001). Self-Organizing Maps (3rd ed.). New York, United States of America: Springer.

[50] Lane, T., & Brodley, C. E. (2003). An Empirical Study of Two Approaches to Sequence Learning for Anomaly Detection. *Machine Learning Vol. 51*, 73-107.

[51] Johnson, R. A. (2005). *Miller & Freund's Probability and Statistics for Engineers.* Toronto: Pearson Education, Inc.

[52] Wan, M. D., Wu, H.-C., Kuo, Y.-W., Marshall, J., & Huang, S.-H. (2008). Detecting Masqueraders Using High Frequency Commands as Signatures. *Advanced Information Networking and Applications - Workshops. AINAW 2008. 22nd International Conference*, (pp. 596-601). Okinawa.