

FAST CONTEXTUAL VIEW GENERATION AND REGION OF INTEREST

SELECTION IN 3D MEDICAL IMAGES VIA SUPERELLIPSOID MANIPULATION,

BLENDING AND CONSTRAINED REGION GROWING

by

Ken Lagos, BSc, Ryerson University, Canada, 2015

A thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Science

in the program of

Computer Science

Toronto, Ontario, Canada, 2019

© Ken Lagos, 2019

ii

AUTHOR’S DECLARATION

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including

any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this thesis to other institutions or individuals for the purpose

of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by other means,

in total or in part, at the request of other institutions or individuals for the purpose of scholarly

research.

I understand that my thesis may be made electronically available to the public.

iii

FAST CONTEXTUAL VIEW GENERATION AND REGION OF INTEREST

SELECTION IN 3D MEDICAL IMAGES VIA SUPERLLIPSOID MANIPULATION,

BLENDING AND CONSTRAINED REGION GROWING

by

Ken Lagos, MSc, Ryerson University, Toronto, Canada, 2019

ABSTRACT

This thesis presents a 3D widget user-interface (UI), super-ellipsoid shape primitives and a

customized volume rendering algorithm that together create a system effective for exploring 3D

medical images and for selecting a 3D region within these images. Using a “painting” metaphor,

the widget UI supports the fast and precise positioning of a super-ellipsoid shaped paint “blob”.

The paint blob can be “deposited” and automatically blended with previously deposited blobs to

form arbitrarily-shaped regions enclosing target image features. The rendering of these “focus”

regions can be controlled separately from the surrounding contextual region, allowing medical

experts to examine and measure image features relative to the context. The system’s core

algorithms are designed to execute on Graphics Processing Units (GPUs), resulting in real-time

interaction and high-quality visualizations. The focus plus context visualization system presented

in this thesis is validated via a user study and a series of experiments.

iv

ACKNOWLEDGEMENTS

I would like to thank my friends and family for their support throughout these years in my decision

to pursue a master’s degree. It has been a long journey with a lot of ups and downs, but I think it

was worth it in the end. I would also like to thank Dr. Tim McInerney and Dr. Kosta Derpanis for

their support and guidance as I probably could not have done it without their support.

v

TABLE OF CONTENTS

Author’s declaration.. ii

Abstract .. iii

Acknowledgements .. iv

List of Acronyms .. x

List of Tables ... xi

List of Figures ... xii

Chapter 1: Introduction ... 1

1.1 Thesis Statement ... 4

1.2 Contributions... 5

1.3 Thesis Outline ... 9

Chapter 2: Literature Survey ... 10

2.1 Volume Rendering: A Brief Review... 11

2.2 Ray Casting ... 14

2.3 Transfer Functions .. 16

2.4 Focus plus Context Views - Utilizing Spatial Information ... 20

vi

2.4.1 Focus plus Context Views using Explicitly Defined ROIs .. 21

2.4.2 Selecting a Complex-Shaped ROI as a Focus Region ... 23

2.4.3 Categorizing Complex-Shaped ROI Selection Techniques ... 25

2.4.4 Outlining/Sketching ... 26

2.4.5 Volume Clipping and Sculpting... 28

2.4.6 Deforming .. 29

2.4.7 Painting .. 30

2.4.7.1 Volume Painting Using Blended Spherical and Super-Ellipsoid Blobs .. 32

2.5 Interactive Selection Techniques for Data Dependent Focus Regions or Image Features . 33

2.6 Interactive Navigation and Manipulation Interfaces for 3D Images 35

Chapter 3: Methodology and Implementation .. 38

3.1 User Interface .. 39

3.1.1 Painting Modes .. 40

3.1.2 Voxel Intensity Visibility Range ... 41

3.1.3 Blob Tool Manipulation ... 42

3.1.4 Super-ellipsoid Constrained Region Grow Overview ... 45

vii

3.1.5 Open-View ... 47

3.1.6 Creating Focus plus Context Views ... 49

3.2 Implementation Details ... 51

3.2.1 Mathematical Formulation of Super-Ellipsoid Blending ... 53

3.2.2 Super-ellipsoid Blob Grid .. 57

3.2.3 Region Growing Algorithm ... 60

3.2.4 Open View ... 64

3.2.5 Accumulation Grid... 65

3.2.6 Rendering Pipeline ... 68

Chapter 4: User Study and Experimental Results ... 71

4.1 User Study Description ... 71

4.1.1 Participants ... 71

4.1.2 Apparatus ... 72

4.1.3 Techniques ... 72

4.1.4 Datasets .. 75

4.1.5 Accuracy Measures .. 77

viii

4.2 User Study Results .. 78

4.2.1 Part I: Blob Tool vs Surface Brush vs Screen Brush ... 78

4.2.1.1 Kidney Results .. 80

4.2.1.2 Sternum Results ... 81

4.2.1.3 Vertebra Results .. 83

4.2.2 Part II: Blob region grow tool .. 86

4.2.2.1 Aneurysm Results .. 86

4.2.2.2 Double Vertebra .. 88

4.2.2.3 Blob region grow tool vs Blob tool, Surface brush, and Screen Brush ... 89

4.2.3 Questionnaire Results .. 91

4.3 Additional Experiments .. 98

4.3.1 Dilated Aorta Experiment .. 98

4.3.2 Aneurysm Experiment ... 100

4.3.3 MRI Brain Tumor .. 102

4.3.4 Hypernephroma Experiment .. 103

4.3.5 Pulmonary Stent Experiment ... 104

4.3.6 Kidney Transplant Experiment .. 106

Chapter 5: Conclusions and Future Work ... 108

5.2 Future Work .. 110

ix

5.2.1 Improved Widget Handles ... 110

5.2.2 Transfer Function Editor .. 111

5.2.3 Accumulation Grid Super-Ellipsoid Field ... 112

References ... 113

x

List of Acronyms

1. ROI - Region of Interest

2. GPU - Graphics Processing Unit

3. TF - Transfer Function

4. VR - Volume Rendering

5. DVR - Direct Volume Rendering

6. GUI - Graphic User Interface

7. FPS - Frames per Second

8. MRI - Magnetic Resonance Imaging

9. CT - Computer Tomography

10. PET - Positron Emission Tomography

11. DICOM - Digital Imaging and Communications in Medicine

12. RGBA - Red Green Blue Alpha

13. LOD - Level of Detail

14. SDK - Software Development Kit

15. API - Application Programming Interface

16. ESS - Empty Space Skipping

xi

LIST OF TABLES

Table 4.1: Numerical values of the average task completion time (in seconds) for each

selection technique on the kidney dataset. Error calculated with a 95% confidence

interval. ... 80

Table 4.2: Numerical values of the average task completion time (in seconds) for each

selection technique on the sternum dataset. Error calculated with a 95% confidence

interval. ... 81

Table 4.3: Numerical values of the average task completion time (in seconds) for each

selection technique on the vertebra dataset. Error calculated with a 95% confidence

interval. ... 83

Table 4.4: Numerical values of the average task completion time (in seconds) and F1 score

for the aneurysm dataset. Error calculated with a 95% confidence interval. 86

Table 4.5: Numerical values of the average completion time (in seconds) and F1 score for

the blob region grow tool on the double vertebra dataset. Error calculated with a 95%

confidence interval. ... 88

Table 4.6: Numerical values of the average task completion time (in seconds) for each

selection technique on the kidney dataset with region blob region grow tool included.

Error calculated with a 95% confidence interval. ... 89

xii

LIST OF FIGURES

Figure 1: A snapshot of the graphical user interface and blend-able super-ellipsoid blobs

with a 3D widget interface. ... 5

Figure 2: A series of 2D MR image slices is stacked to form a 3D volume consisting of

volume elements or “voxels”. ... 11

Figure 3: Using multiple 2D projections of the volume to aid in the process of navigation

and ROI selection in 3DSlicer [9]. .. 12

Figure 4: Rays are cast through a volume and field values are sampled at regularly spaced

intervals [10]. .. 14

Figure 5: (a) A 1D TF specifying color and opacity values. The gray background represents

the histogram of binned scalar voxel values. .. 16

Figure 6: An example of a 1D TF and the resulting volume rendering of a CT volume [13] in

ImageVis3D [12]. Color and opacity are assigned to voxel ranges using curve widgets

(for example, the red curve in the figure). The gray background underneath the curves

represents the histogram of binned scalar voxel values. ... 17

Figure 7: A 2D histogram of voxel intensity values vs intensity gradient magnitudes in

ImageVis3D [12]. Some regions and boundaries are selected and assigned different

colors. The resulting generated image is on the right. .. 18

Figure 8: Outlining interaction metaphor used in LiveVolume [8] to outline the sternum.

From left to right: 1. Original 3D visualization. 2. Create an outline of the sternum using

LiveVolume’s [8] region select tool. 3. Voxels outside of the contour are removed. 4.

The scene is rotated to reveal the additional voxels selected by the contour. 5. Refine

selection by creating another contour around sternum. 6. Repeat process until only

sternum is selected. ... 26

Figure 9: An illustration of the screen painting technique used in the system. From left to

right: 1. Initial scene 2. Screen painting mode enabled. 3. Perform paint stroke. 30

Figure 10: Translational, rotational and scale widgets of the 3DS Max modeling package. 37

Figure 11: An example of the range of shapes created by the super-ellipsoid blob tool. The

Super-ellipsoid shape is controlled by a few intuitive parameters via GUI sliders. For

example, the blob can take the shape of a sphere, cylinder, cube, or anything in between. . 38

Figure 12: A snapshot of the graphical user interface of the volume rendering system

presented in this thesis. ... 39

xiii

Figure 13: The three painting techniques supported in the system. From left to right: blob

tool, blob region grow tool, and screen brush. Note the different regions highlighted by

each tool. ... 40

Figure 14: A scene with a ROI defined by the blob tool. The minimum and maximum visible

voxel intensities for the blob region and the context region (skin, in this example) have

separate controls and can be blended together seamlessly to create a focus plus context

view. .. 41

Figure 15: Super-ellipsoid blob tool and widget handles. From left column to right column:

translation handle, resize handle, and rotation handle. ... 42

Figure 16: Examples of blob tool interaction using the widget handles. The top row

illustrates translation, the middle row resizing, and the bottom row shows blob rotation

as well as two different blob shapes.. 43

Figure 17: Examples of how the widget-based blob region grow tool can be used to select

connected structures in real-time. The region growing algorithm is spatially-constrained

by the super-ellipsoid blob and the ROI can be dynamically resized in real-time by using

the widget handles to adjust the blob size/shape. The ROI can also be completely

removed by simply pressing a GUI undo button. Additional regions can be added by

repeating the region grow algorithm at different locations in the volume. 45

Figure 18: Using open-view to reveal an occluded ROI. The open-view cap is defined by a

super-ellipsoid blob that can be translated, scaled, rotated and shape-changed. The open-

view is tied to the camera (i.e. it is view-dependent) allowing users to interactively

reveal the target ROI from different viewpoints and to create cutaway surfaces of

different shapes, from rounded to rectangular. ... 47

Figure 19: Using the blob tool to paint a rough initial ROI and applying the blob region

grow tool within it to select the lungs and the intestines in this CT dataset retrieved from

the Osirix DICOM Image Library [13]. Voxels selected by the region growing algorithm

are added to the accumulation grid and the process is repeated until the desired view is

created. .. 49

Figure 20: Using open-view to create a specialized cutaway region to reveal a user’s earlier

selection of the lungs and intestines. These two structures can then be viewed in relation

to the skin and muscle in the dataset. .. 51

Figure 21: Super-ellipsoid blob blending resulting in various shapes. .. 53

Figure 22: Comparison of blob blending using different values for super-elliptic blending

parameter K. From left to right, K= 2, 8, and 32. ... 57

xiv

Figure 23: A high level view of the rendering pipeline for the 3D blob grid. The blob grid is

stored in GPU memory and is updated in a special GPU vertex shader program that

stores blob field values at grid voxels. .. 57

Figure 24: Region growing grid data structure. Each grid voxel contains an ID and a

ParentID. A non-zero ID indicates that the corresponding voxel in the volume image has

been selected and the ParentID indicates the voxel’s direction from its “parent” grid

voxel. ... 60

Figure 25: GPU based region growing pipeline for updating values in the region grow grid..... 60

Figure 26: A 2D representation of the region grow algorithm. Starting from the top left: 1.

Initial seed voxel. 2. Initial seed marked as grown and valid adjacent voxels marked as

potential new seeds. 3. Potential new seeds changed to new seeds by geometry shader.

4. Vertex shader marks new seeds as grown and flags adjacent voxels. 5. Potential new

seeds changed to new seeds by geometry shader. 6. No new seeds, region grow

complete. ... 62

Figure 27: A 2D representation of geometry shader region grow algorithm. Potential seeds

are flagged in parallel in the vertex shader and adjacency information is used by the

geometry shader to remove redundant output. .. 63

Figure 28: A 2D representation of a region shrink over two iterations. Starting from left to

right: 1. Initial region shrink scene. 2. Boundary voxels removed and grown voxels

marked as potential new seeds 3. New seeds marked as boundary voxels. 64

Figure 29: An open view representation for spherical and tapered cubical cap shapes. 64

Figure 30: A representation of the accumulation grid. Each voxel in the 3D grid contains an

id and matches the dimensions of the volume data. .. 65

Figure 31: GPU pipeline for updating the accumulation grid. Voxels selected in the blob

grid, or region growing grid are added to the accumulation grid by a special vertex

shader. ... 66

Figure 32: An example of how the blob region grow tool can be applied to a region defined

by the blob tool and added to the accumulation grid. From left to right: 1. Blob tool used

to create an ROI of the sternum and ribs. 2. Blob region grow applied to sternum. 3.

Region grow paint or blob paint can be added to accumulation grid. 67

Figure 33: Rendering pipeline for the volume ray cast shader. The vertex shader defines the

bounds of the volume and the fragment shader accesses voxels from the input volume,

blob grid, region growing grid, and accumulation grid to render the scene. 68

Figure 34: A 2D and 3D representation of color accumulation in the fragment shader. Rays

are cast from the camera into the volume. As the ray steps through the volume, each

visible voxel’s color and opacity are accumulated and blended until an opacity value of

xv

1.0 or greater is reached or until the ray hits the bounds of the volume. From left to

right: 1. A 3D visualization of volume ray casting, where each dot represents a step

along the ray. 2. A 2D visualization of volume ray casting, where each box represents a

ray’s color/opacity accumulation at each step. 3. The result of rendering the color and

opacity accumulation for each ray. ... 69

Figure 35: A 2D representation of the voxel visibility hierarchy for overlapping regions. 70

Figure 36: Illustration of the surface brush UI. The user moves the mouse and the brush blob

automatically slides along the data iso-surface under the cursor. The blob also orients

itself to line up with the data surface normal. The rightmost figure shows a side view

and illustrates this surface normal alignment. ... 72

Figure 37: Illustration of the screen brush. The brush has a circular outline and users can

paint strokes by holding down the left mouse button and dragging the cursor along the

screen. From left to right: 1. Painting the sternum until all target voxels (yellow) are

selected (green). 2. Rotating the view to reveal the additional voxels selected in depth. 3.

Switching the brush to erase mode to erase unwanted selections. 4. Apply erase and

inspect the result. .. 74

Figure 38: Illustration of the user study selection task. The yellow highlighted voxels are the

target region (in this example, a kidney transplant). If the user positions a paint tool such

that these yellow voxels are inside the bounds, they are highlighted green. If the paint

tool encompasses non-target voxels, they are highlighted red.. 75

Figure 39: A series of anatomical structures used in the user study. From left to right:

kidney, sternum, single vertebra, double vertebra and aneurysm. .. 76

Figure 40: Average task completion time (in seconds) for each selection technique on the

kidney dataset. Error calculated with a 95% confidence interval. .. 80

Figure 41: Average task completion time (in seconds) for each selection technique on the

sternum dataset. Error calculated with a 95% confidence interval. 81

Figure 42: The front, top, and back view of a randomly selected participant’s selection

results for the sternum dataset. The green highlight represents correctly selected voxels,

the yellow highlight represents target voxels, and the red highlight represents incorrectly

selected voxels. ... 83

Figure 43: Average task completion time (in seconds) for each selection technique on the

vertebra dataset. Error calculated with a 95% confidence interval. 84

Figure 44: The side, front, and back view of a randomly selected participant’s selection

results for the vertebra dataset. The green highlight represents correctly selected voxels,

the yellow highlight represents target voxels, and the red highlight represents incorrectly

selected voxels. ... 85

xvi

Figure 45: Average task completion time (in seconds) and F1 score for the aneurysm dataset.

Error calculated with a 95% confidence interval. ... 86

Figure 46: A comparison of a standard region grow tool and blob region grow tool. Left:

Standard region grow control that grows/shrinks uniformly in all directions based on

mouse movement. Middle: blob region grow that can be resized independently using the

widget handles. Right: A participant’s selection results for the aneurysm dataset using

the blob region grow tool. The green highlight represents correctly selected voxels, the

yellow highlight represents target voxels, and the red highlight represents incorrectly

selected voxels. ... 88

Figure 47: Average task completion time (in seconds) for each selection technique on the

kidney dataset with blob region grow tool included. Error calculated with a 95%

confidence interval. ... 90

Figure 48: Participant’s favorite technique excluding blob region grow tool. 94

Figure 49: Participant’s overall favorite selection technique. ... 94

Figure 50: Participant’s overall least favorite technique. .. 95

Figure 51: Participant’s rating on how easy each technique was to learn. 95

Figure 52: Participant’s rating on how easy it was to manipulate the tools into their desired

form via translating, resizing, or rotating. ... 96

Figure 53: Participant’s rating on how easy it was to manipulate the tools and select their

desired region of interest. .. 96

Figure 54: Participants rating on how useful open view was for selecting and viewing hidden

objects. .. 97

Figure 55: Participant’s favored region growing selection technique. .. 97

Figure 56: CT data set for a patient with a dilated aorta. Starting from the top left: 1. Set

initial minimum and maximum visibility settings to view aorta and surrounding

structures without losing any detail. 2. Create a ROI using the blob tool. 3. Add voxels

selected in the ROI to the accumulation grid. 4. Erase voxels from accumulation grid

with screen brush. 5. Restore original view. 6. Add open view to create various

contextual views by changing the viewing angle and visibility settings. 98

Figure 57: Aneurysm selection experiment. Starting from the top left: 1. Set minimum and

maximum visibility to view aneurysm and surrounding structures. 2. Select aneurysm

with blob region growing tool and interactively adjust the blob to add connecting

arteries. 3. Add selected voxels to accumulation grid. 4. Add open-view lens to create

various contextual views by changing the viewing angle and visibility settings................ 100

xvii

Figure 58: MRI brain tumor selection experiment. Starting from the top left: 1. Set initial

minimum and maximum visibility settings to view brain tumor without losing any

detail. 2. Select tumor with blob region grow tool and add to accumulation grid. 3. Use

blob tool and open view to create various contextual views by changing the viewing

angle and visibility settings. .. 102

Figure 59: Hypernephroma exploration experiment. Starting from the top left: 1. Select

kidneys and connected arteries using the blob region grow tool and add selected voxels

to accumulation grid. 2. Adjust visibility settings via TF to view muscle and organs. 3.

Add open-view lens to create various contextual views by changing the viewing angle

and visibility settings. The bottom row starting from the left illustrates how open-view

can be used to make cut surfaces: 1. Adjust visibility settings to show kidneys. 2. Place

a cubical open-view within kidney to create a cut surface. 3. Adjust open-view size and

placement to inspect kidney cross-section. ... 103

Figure 60: Pulmonary stent experiment. From top left: 1. Create initial view of stent and

lung region using TF. 2. Increase minimum visible voxel intensity via TF to isolate the

stent. 3. Use blob tool and paint the stent region and add it to accumulation grid. 4. Use

blob tool to create an ROI around the stent and remove surrounding structures. 5. Add

open-view lens to create various views by changing the viewing angle and visibility

settings. ... 104

Figure 61: Kidney transplant experiment. Starting from the top left: 1. Create initial view of

bones, arteries, and kidney transplant via TF. 2. Use blob tool to select the hipbone and

kidney transplant. 3. Use blob region grow tool to select the connected arteries and the

kidney. 4. Use a cubical shaped blob to create a cut away using the blob tool. 4. Create

contextual views by changing the viewing angle, blob size, and visibility settings to

view the focus region in respect to muscles or skin. ... 106

Figure 62: The translation, rotation, and scale widget handles provided in Unreal Engine 4. .. 110

Figure 63: An illustration of using the gradient of the blob field values for normals versus

using the gradient of grid values in the accumulation grid. The left two images show the

normals produced at the boundaries of a blob. The right two images show the boundary

normals produced by the values in the accumulation grid. ... 112

1

Chapter 1: Introduction

The visualization of 3D medical volume images has evolved rapidly over the past two decades.

The emergence of powerful Graphics Processing Units (GPUs), containing hundreds of processing

cores, has enabled the development of visualization algorithms that process these data volumes in

parallel. This hardware advancement has provided medical professionals with the capability of

viewing, manipulating, and exploring high-resolution 3D renderings of the data in real-time.

Consequently, the use of these 3D visualizations for examining and measuring specific anatomical

structures or pathologies, especially when viewed in the context of neighboring structures, is now

an important step in disease diagnosis, treatment planning and the planning of surgeries. Direct

Volume Rendering1 (DVR) is the standard algorithm for generating the visualizations, especially

for CT2 scans. Expert users utilize Transfer Functions (TFs) to control the visual output of a DVR

algorithm. A TF maps the scalar field values - commonly referred to as intensity values - stored in

a 3D medical image to optical properties of opacity3 and color. A TF is commonly defined using

a curve or a piecewise linear polynomial and a graphical user interface (GUI) enabling the user to

control the curve shape (See Section 2.1). A TF GUI provides users with the ability to quickly

select classes of anatomical structures, such as skin or bone or arteries, for rendering.

1 In computer graphics, direct volume rendering is an algorithm that samples 3D volumetric datasets along rays

emanating from the viewpoint, mapping the sample values to a color and opacity and accumulating these color and

opacity values to generate a final color and opacity for an array of screen pixels.
2 Computed Tomography
3 In computer graphics, opacity describes the degree to which an object is opaque. That is, it controls the

transparency of an object.

2

Despite the extensive amount of research in the field of volume rendering and transfer function

(TF) design [1], quickly defining a single TF that generates the desired view of a spatially localized

focus region within the data volume, or of specific anatomical structures, remains a non-trivial

task. Specifically, selecting an individual structure, a part of a structure, or an arbitrary volumetric

region of interest (ROI) containing several target structures is more difficult with these global

functions. This may be due to the fact that TF specification is primarily a mapping of

ranges/characteristics of voxel intensity values4 (i.e. it is data attribute based), and thus doesn’t

provide the user with the ability to localize specific features or regions in the volume image without

some additional control mechanisms. These additional mechanisms, such as 2D transfer functions,

provide more control to the user over the visualization output but often at the cost of more complex

user interfaces that are still primarily indirect in nature. Fast and simple direct selection of a spatial

sub-volume can complement a TF specification process by supporting separate and more easily

defined TFs for the “focus” region within the ROI, and for the context region surrounding it. In

particular, the separate TF can be set to visually “cut away” occluding data within the ROI in order

to reveal interior target structures, while also providing the option of maintaining a contextual view

of the surrounding volume. Conversely, a dedicated TF for a ROI can also be used to select and

highlight features within the ROI using some sort of distinctive rendering style in order to aid in

the visual analysis. Another use of a user-defined ROI is as input to a semi-automatic

segmentation5 algorithm, in order to either constrain the algorithm or provide it with an accurate

4 A voxel represents a scalar field value in a 3D image. It can be considered a 3D extension of a pixel. The scalar

field value is commonly referred to as the intensity value.
5 Segmentation is the process of labelling voxels in an image with the goal of dividing it into multiple parts.

Segmentation algorithms are used to identify objects and to allow for further analysis of the objects.

3

initialization, especially in noisier 3D medical images such as MR6 volumes where TF-defined

volume rendering of un-segmented images is often less effective. This “constraint envelope”

strategy may improve the robustness of the segmentation algorithm as well as potentially minimize

the often tedious and time-consuming manual editing phase [2] [3] [4]. A user-defined ROI

constraint/initialization may be especially useful in scenarios where segmentation algorithms do

not perform well, such as segmenting objects in noisy images.

Designing interaction techniques enabling a user to explore a volume or to quickly generate a

contextual view by directly selecting a focus ROI or selecting a specific target structure in a volume

rendered image is a challenging human-computer interaction (HCI) task. An interactive ROI

selection technique needs to provide the user with the ability to overcome the problems with the

TF specification approach by supporting functionality for the fast and controllable selection of

objects adjacent to other objects that have been mapped by the TF to similar opacity and color

values. Furthermore, target ROIs may vary from regularly shaped regions, such as rectangular

blocks or spheres, to arbitrarily complex, curving shaped objects/features, or to elaborate

branching objects such as vasculature. In addition, the TF specification may result in a volume

rendering in which target ROIs contain several visually disconnected objects or ROIs that are

visually occluded by parts of other structures. It is also an important requirement of interactive

ROI selection techniques to support the fast modification of the ROI as a user is exploring the

volume from new viewpoints. That is, visual analysis of medical images is often an iterative

process of initial view generation and visual examination, followed by view changes or

refinements (via volume navigation) and additional visual analysis. Finally, the interaction issues

6 Magnetic Resonance

4

are inherently tied to issues of the user’s depth perception of the target ROI as well as issues

involving the design of appropriate supporting visual cues, as well as signifiers7 to indicate

affordance, that guide the user’s actions during the ROI selection process. In summary, the goal is

to be able to simply and efficiently explore, select, and optionally remove regions of any shape or

level of occlusion, in order to examine and focus on structures and their relationship to surrounding

structures.

1.1 Thesis Statement

This thesis presents an interactive view generation and ROI selection technique that is based on

the manipulation and rendering of mathematically-compact and blend-able convex shape

primitives known as super-ellipsoids. Specifically, a user interface (UI) design that uses 3D

widgets for manipulating the super-ellipsoids is presented (Figure 1). The main hypothesis is that

the combination of the 3D widget UI, blend-able super-ellipsoids blobs, and a standard TF

interface is an effective paradigm for quickly creating useful views. The thesis will attempt to

quantitatively evaluate the UI efficiency and accuracy, as well as qualitatively evaluate the ease of

use, flexibility, and rendering control of the super-ellipsoid based technique and its associated UI

for selecting and visualizing a wide range of target ROIs and anatomical structures from 3D

medical images in order to generate effective contextual views. The 3D widget-based UI (referred

to as a blob tool) for manipulating blobs is compared to an alternative UI based on a surface

7 According to Norman [55] an “affordance is a relationship between the properties of an object and the capabilities

of the agent that determines just how the object could possibly be used”. Norman then defines the term signifier as

“any mark or sound, any perceivable indicator that communicates appropriate behavior to a person”. Put simply,

Norman states: “Affordances determine what actions are possible. Signifiers communicate where the action should

take place”. Affordances are what an object can do (truth). Perceived affordances are what one thinks an object can

do (perception). Signifiers make affordances clearer (closing the gap between truth and perception). Signifiers often

reduce number of possible interpretations and/or make intended way of using an object more explicit.”

5

paintbrush [5] and to a well-known screen-based paintbrush ROI selection technique. Several

experiments demonstrating the use of the view generation technique for creating a wide range of

contextual views are also performed in order to further validate the hypothesis.

Figure 1: A snapshot of the graphical user interface and blend-able super-ellipsoid blobs with a

3D widget interface.

1.2 Contributions

A super-ellipsoid based interactive volume navigation and ROI selection technique allows for the

dynamic generation of “focus plus context” views [6] in a volume rendered image. Super-

ellipsoids, referred to as “blobs” in this thesis, are defined using implicit functions and can be

seamlessly and tightly blended to form volumetric “paint” that envelopes anatomical regions of

6

any geometry or topology in the volume image. The blobs also provide a convenient mechanism

for interactively controlling and constraining a GPU region growing segmentation algorithm [7].

That is, connected sets of visible voxels belonging to a target anatomical structure are “grown”

(i.e. selected and highlighted) from a user-selected “seed” voxel, in real time. A widget-based UI

is used to change the position, shape, and size of the blob and thereby controls region growth

within it. Furthermore, inside a selected ROI defined by the blobs, a special TF may be applied

that controls color and opacity separately from the surrounding contextual region, including the

capability of rendering all voxels within the ROI invisible and thereby allowing users to quickly

remove occluding structures.

This thesis significantly expands on and improves upon previous work [5] that utilized a more

primitive, primarily spherical paint blob, along with a blob manipulation UI that utilized a data

iso-surface “painting” interaction metaphor – which is referred to in this thesis as a surface

paintbrush. In summary, the contributions of this thesis are:

1. A 3D widget UI for positioning, orienting and resizing super-ellipsoid shape primitives in

the 3D volume space. This “blob painting” UI enables blobs to be quickly manipulated

from any scene viewpoint using “handles”. Widget handles are visible on demand (i.e.

handle visibility is controlled with a single key press) and act as intuitive signifiers that

flexibly and accurately guide the ROI selection process. Both data independent (i.e.

blended blob envelopes) and data dependent (i.e. GPU region growing) voxel selection is

supported within the same 3D widget UI, allowing for fast and flexible volume exploration

and ROI selection in 3D images ranging from relatively clean CT scans to noisy images

such as MR scans.

7

2. A GPU region growing algorithm [7] that is controlled via the 3D widget UI and

constrained by super-ellipsoid blobs, enabling the user to precisely select connected

regions of voxels. This technique supports the highly-efficient real-time selection of

individual objects, parts of an object, or objects with complex geometry and topology -

such as artery networks.

3. An “open-view” capability that supports real-time exploration, examination and selection

of occluded structures. An auxiliary adjustable cutaway “lens” can be attached to the

camera at one end and the blob tool at the other. This capability allows the widget-based

UI to overcome problems with viewing and selecting deeply “buried” or hidden structures.

The adjustable cutaway lens design creates an effective perceptual depth cue of the cutaway

region by orienting the cut surfaces towards the viewer.

4. A user study comparing the 3D widget-based “blob tool” UI, the previously developed

“surface paintbrush” style UI and a standard cylinder “screen-space paintbrush” UI for

defining a ROI. Surface paintbrush style UIs are well-known technique for intuitively

selecting and removing outer region “layers” of voxels belonging to a specific tissue type,

such as skin. However, due to the nature of the painting style they simulate, they may not

be optimal for enveloping (i.e. selecting for highlighting or removing) structures with

varying thickness. A 3D widget-based UI, on the other hand, is more volume-oriented but

may require more user interaction to position and manipulate. Finally, the standard screen-

space paintbrush is familiar, highly intuitive and often efficient for painting and thereby

selecting 3D objects. However, for fast modification of the ROI to support volume

exploration, the blob tool is more flexible than the surface and screen paintbrushes.

8

5. A second part of the user study compares a 3D widget-controlled, blob constrained UI (i.e.

the blob region grow tool) for GPU region grow selection to a non-widget UI design that

simulates the GPU region grow selection interface in a popular and freely available volume

rendering package [8]. The goal of this part of the study is to determine if the interactive

widget-controlled region growing algorithm offers any advantages in terms of

performance, accuracy and controllability.

9

1.3 Thesis Outline

Chapter 2 provides a review of techniques for interactively visualizing and exploring 3D medical

images. An explanation of TF-based volume rendering is provided followed by a brief review of

existing TF based approaches. A more detailed review of 3D ROI selection algorithms and their

associated user interaction techniques is then presented.

Chapter 3 presents implementation details of the system, including an overview of the user

interface, the mathematical formulation of super-ellipsoid blending, pictorial descriptions of the

various GPU-based program algorithms (known as shaders) and data structures used.

Chapter 4 presents quantitative and qualitative results in the form of a user study and a series of

contextual view generation experiments in order to test the hypothesis that a combination of a 3D

widget UI and blend-able super-ellipsoids is an effective visualization technique.

Chapter 5 summarises the thesis work and discusses the conclusions, future work, and

improvements.

10

Chapter 2: Literature Survey

To gain insight into the information contained in an un-segmented volume image, it is necessary

to be able to explore it from different viewpoints and to visualize anatomical structures “buried”

inside it. One way this capability can be achieved is by using direct volume rendering and

highlighting target structures using some sort of distinctive visual style. At the same time, it is

often useful to render regions of the volume surrounding the target structures to help the user

maintain visual context and aid their visual examination and quantitative analysis. As mentioned

in the introduction, selecting features of interest through TF specification alone is often tedious

and unintuitive and can still result in target features being occluded by other structures. This

chapter will review context preserving feature visibility techniques that have been presented in the

literature, many of which use TF specification along with an explicit user selection of a ROI.

Before this review, the chapter will begin by providing some background on medical images and

volume rendering via transfer functions. A summary and classification of the most commonly used

types of TFs will be presented.

11

2.1 Volume Rendering: A Brief Review

Figure 2: A series of 2D MR image slices is stacked to form a 3D volume consisting of volume

elements or “voxels”.

A 3D volume image is a contiguous set of 2D image “slices” acquired by Magnetic Resonance

Imaging (MRI), Computer Tomography (CT), or Positron Emission Tomography (PET), etc. The

set of contiguous slices form a regular volumetric grid (Figure 2). Similar to a pixel (i.e. a picture

element) in a 2D image which can be visualized as a small square with an associated scalar value,

each volume element, or voxel, can be visualized as a small cube with an associated scalar value

(or intensity). These scalar values are the result of a scanning process and each value represents

the measurement of signal intensity, such as x-ray absorption in the case of CT scans. For example,

a CT scan creates a set of X-ray images taken from different angles. Computer processing is then

used to create cross-sectional images, or slices, that form the volume.

12

Figure 3: Using multiple 2D projections of the volume to aid in the process of navigation and

ROI selection in 3DSlicer [9].

As mentioned in the introduction, to visualize the data stored in the volume image, the scalar voxel

intensity values must be mapped to a visual representation. The most common and widely used

representation is a 2D image where the voxel values are mapped to a grayscale. Several standard

2D views (Figure 3) are typically provided corresponding to standard imaging planes: XY (axial),

XZ (coronal) and YZ (sagittal). While these standard 2D slice views are still heavily used by

radiologists and technicians, they require the mental reconstruction of a 3D anatomical structure

from 2D projections. The user interface is also often made more complex as regions of interest

must be marked on the 2D slice planes. Oblique slice views (Figure 3, upper right) are also often

provided to allow radiologists to create approximately orthogonal cross-sectional views of curving

anatomical structures and more easily perform this mental reconstruction and region of interest

specification.

13

The multiple 2D views, however, often complicate user interaction and make it difficult for the

user to understand the spatial relationship between the various 2D and 3D views. Despite the

extensive training of medical image specialists to understand the 2D slice views, a 3D rendering

of the volume image is cognitively simpler to understand and displays a large amount of perceptual

information familiar to humans. Therefore, examining structures directly in this space is now

standard practice. For this reason, user interfaces for interactively viewing and manipulating 3D

data using traditional 2D mouse input device is a heavily researched field.

As mentioned in the introduction, rendering a 3D view of the anatomical structures buried in the

3D volume on a 2D screen window is now commonly performed using volume rendering and

expert users manipulate TFs via GUI’s to control the visual output of the volume rendering

algorithm. Direct volume rendering is a computationally intensive task that may be performed in

several ways. In the next section, a volume rendering technique based on ray casting will be

outlined. It should be noted that volume rendering is just one type of visualization technique that

is used to create 2D projections of discreetly sampled 3D datasets. It is fundamentally different

from another commonly used approach which is based on generating an intermediate surface

representation - such as connected triangle meshes - from the 3D scalar field and then rendering

these surfaces.

14

2.2 Ray Casting

Figure 4: Rays are cast through a volume and field values are sampled at regularly spaced

intervals [10].

Ray casting is an image-based volume rendering technique. Rays are cast from the current view

position through each screen pixel and traverse the volume (Figure 4). At (typically) regular

intervals along the ray, the scalar intensity value of the volume is sampled. As the sample point

may be between voxels, interpolation - for example tri-linear interpolation - is used to calculate an

accurate field value. Higher-order interpolation can also be used for improved accuracy at the

expense of additional computational cost. A user-defined TF is then used to map the intensity value

to a RGB color and an opacity A. In addition, the intensity gradient is calculated at the sample point

position using a finite difference approximation. This gradient represents the orientation of a local

surface within the volume (i.e. a surface normal vector). A light source is typically positioned at

the location of the viewpoint and this light source position, the sample point position, the normal

vector and the color and opacity value outputted by the TF are used in an equation of a local

illumination model [10] to shade the sample point position (i.e. determine a final color). The final

color and opacity of the current sample point is then added to the current total color and total

opacity for the ray and associated screen pixel. This front-to-back color and opacity accumulation

15

process continues until the ray exits the volume or until the opacity reaches a pre-defined threshold

(known as early-ray termination).

The color and opacity accumulation process can be described by the following recursive equation

[10]:

{
𝒄𝑖

∗ = 𝒄𝑖−1
∗ + (1 + 𝛼𝑖−1

∗)𝛼𝑖𝒄𝑖

𝛼𝑖
∗ = 𝛼𝑖−1

∗ + (1 + 𝛼𝑖−1
∗)𝛼𝑖

(2.1)

where 𝒄𝑖 = (𝑟𝑖, 𝑔𝑖, 𝑏𝑖) and 𝛼𝑖 (alpha) are the current color and opacity, respectively, at the sample

point 𝒑𝑖, and 𝒄𝑖
∗ and 𝛼𝑖

∗are the accumulated color and opacity. More generally, Equation 2.1 can

be viewed as an alpha compositing operation that combines the colors of the sampled ray points

using the alpha opacity values as weights to achieve partial or full transparency. Equation 2.1 is a

discrete approximation to the continuous light emission-absorption volume rendering integral

equation which defines the light intensity after traversing the ray between two points on the ray.

For an overview and introduction to volume rendering, the reader is referred to Engel et al. [11].

16

2.3 Transfer Functions

Figure 5: (a) A 1D TF specifying color and opacity8 values. The gray background represents the

histogram of binned scalar voxel values.

This section provides an overview of TFs in volume rendering. For a recent and complete review,

the reader is referred to the recent survey paper [1]. The simplest form of a TF is a 1D function

that maps scalar voxel values to color and opacity (Figure 5). Polynomial curve widgets are used

to interactively assign voxel intensity ranges to a color and opacity. The polynomial curves can be

piecewise linear or higher-order. Typically, a histogram is pre-computed in which the horizontal

axis corresponds to every scalar intensity value found in the volume image and the height above

the horizontal axis depicts the number of voxels with that intensity value (i.e. the frequency of

occurrence). The gray background in Figure 5 is a visualization of the histogram. The user can

manipulate (using a GUI) the curve and form a peak around a range of voxel values. The vertical

axis of the TF represents the opacity assigned to a curve x-axis value (i.e. a voxel intensity), with

8 In computer graphics opacity describes the level of a material’s impenetrability to light.

17

the opacity varying from 0 to 1. A color band at the top of Figure 5 can be manipulated, via GUI

controls, to assign an RGB color to a voxel intensity value. This 1D TF GUI interface is similar in

most volume visualization software packages. For example, Figure 6 shows the TF interface for

ImageVis3D [12].

Figure 6: An example of a 1D TF and the resulting volume rendering of a CT volume [13] in

ImageVis3D [12]. Color and opacity are assigned to voxel ranges using curve widgets (for

example, the red curve in the figure). The gray background underneath the curves represents the

histogram of binned scalar voxel values.

Manipulating a simple 1D TF can be sufficient to generate a desired view of a data set, especially

if the data is relatively noise free. However, it is often the case that such a TF cannot be used to

visually separate some types of tissues (for example, arteries and bone) due to their overlapping

scalar intensity values. Furthermore, medical data sets are derived from a scanning process and

therefore the measurements are often noisy. Finally, partial volume effects9 and intensity non-

9 The partial volume effect is the lack of contrast in an image between two neighboring tissues due to the finite

resolution of the medical scanner. The result is more than one tissue type measurement contributes to the field value

of voxels near the tissue boundary.

18

uniformity (known as field bias10 [14]) can occur. These factors make it difficult to correctly label

and therefore visually separate different tissue types with a 2D histogram and a 1D TF. One

possible reason for this difficulty is there is no local spatial correlation between the features in the

histogram and specific anatomical structures in the volume.

Figure 7: A 2D histogram of voxel intensity values vs intensity gradient magnitudes in

ImageVis3D [12]. Some regions and boundaries are selected and assigned different colors. The

resulting generated image is on the right.

Many 2D and multi-dimensional (MD) TFs have been proposed to overcome the problems with

1D TFs. For example, a common 2D TF takes as input not only the voxel intensity values but also

the gradient magnitude at each voxel location [15]. Figure 7 shows a TF where the gradient

magnitude is used to modulate the opacity such that interior homogeneous material regions are

supressed, and material boundaries are enhanced, thereby improving visual perception of the

volume rendering. A 2D joint histogram with voxel intensity values plotted along the horizontal

10 Field intensity non-uniformity arises from the imperfections of the scanning process and results in a variation in the

intensity of the same tissue at different location within the image.

19

axis and gradient magnitude values on the vertical axis is shown in the left of Figure 7. The end

regions of an arch in the histogram visualization correspond to the homogeneous regions while the

top parts of an arch represent maximum gradient magnitude regions and therefore correspond to

material boundaries. The rectangles in Figure 7 represent widgets that allow the user to

interactively select materials and material boundaries and assign to them color and opacity.

Unfortunately, Figure 7 also illustrates how adding dimensions to a transfer function UI adds

complexity and comprehension difficulty. Rectangular regions must now be adjusted to edit the

visualization and the 2D joint histogram is not as intuitive as the histogram used in the 1D TF.

One of the problems with 2D TFs utilizing gradient magnitude is that material values and gradient

magnitude values can still overlap and selecting features on a 2D histogram can be unintuitive.

Therefore, much research has been done using MD TFs that consider additional voxel intensity

(first and higher-order) derivative attributes, as well as other types of computed data attributes.

However, the resulting MD TFs create difficult user interface design challenges both in terms of

interaction and comprehension, as is suggested in Figure 7. Examples of data attributes are the use

of curvature measures [16], voxel intensity statistics that characterize local neighborhood around

each voxel [17], and the use of scale by computing a per voxel scale field characterizing the size

of a local feature [18]. Other researchers attempt to address the TF user interface visual complexity

issues for MD TFs by aggregating the extra attributes. For example, clustering algorithms can be

applied to the histogram of voxel intensity values [19] and the TF interaction and visualization can

be simplified such that the user selects and weights these clusters to generate the volume rendering.

Other researchers simplify TF design by finding meaningful structure in the data, for example by

20

using machine learning techniques on MD data attributes and mapping the lower dimensionality

structured information to each voxel in the data set [20]. The TF is then applied to this map.

2.4 Focus plus Context Views - Utilizing Spatial Information

In summary, a large amount of research has been carried out to create UI’s and TF’s that enable

medical professionals to generate insightful volume renderings of complex volume images, and

much success has been achieved. In general, many 1D TF’s and 2D TF’s do not utilize global or

local spatial information. However, how much spatial information is needed is perhaps task

dependent [1]. For example, for tasks such as surgical planning for a brain tumor, it is beneficial

to allow the surgeon to spatially localize and highlight target features or anatomical structures so

that they can be viewed and measured with respect to surrounding structures. Formally, focus plus

context visualizations attempt to visually combine a user-selected local spatial region of primary

interest (the focus) with the surrounding information — or context — into a single display [6]. In

a general sense, the focus region is differentiated from the context through the use of space,

opacity, and color et cetera. In the context of volume rendering, a separate TF is used within the

focus region, providing the possibility of a simpler UI design.

One of the most common focus plus context techniques is to make occluding objects semi-

transparent thereby revealing hidden objects [21] [22]. For surface mesh data, context can be

preserved by reducing the transparency of occluding objects according to the distance to the outline

of the transparent object, where the outline typically consists of silhouette lines and is therefore

view dependent [21]. For un-segmented volume data, the opacity of a sample point along a ray can

be controlled by a function of shading intensity, gradient magnitude, distance to the viewer, and

21

previously accumulated opacity [23]. Two user settable parameters allow the user to control the

depth of the transparency effect (higher values reveal more of the volume interior) and the

sharpness of the transition between transparent and visible regions. In general, the use of

transparency is limited – it does not provide a strong visual cue of the depth of the hidden objects

and it can be visually confusing if there are multiple overlapping layers of semi-transparent

surfaces. The use of a distance function as part of the overall TF specification does take spatial

information into account. However, the distance functions are typically radial in nature and do

necessarily provide much local spatial control.

In [24] a voxel classification scheme is used based on the ambient occlusion of voxels. Ambient

occlusion is equivalent to finding the centroid of the weighted histogram of intensities around that

voxel. The authors argue that most volumes (e.g. CT or MRI) contain occlusion patterns that

encode the spatial structure of features within the volume. A 2D TF is designed to incorporate the

ambient occlusion information, leading to better control over the separation of interior features

from exterior occluding features and from neighboring features with a similar intensity profile.

Another advantage of the ambient occlusion information is it is easily understandable by medical

professionals.

2.4.1 Focus plus Context Views using Explicitly Defined ROIs

Many researchers have developed techniques to generate focus plus context views where the focus

region (i.e. the ROI) is more explicitly defined with a convex shaped lens region [25] [26] [22]

[27] [5] [28]. The lens geometry is often a cylinder, sphere or cone or some other compactly

defined mathematical function. For example, Zhou et al. [25] used focal region defined by a center,

radius and a distance function where the opacity of a voxel is based on its distance to the focal

22

center. The use of masking also enables the effect known as a “Magic Lens” or “Magic Lantern”

[27] where the voxels inside the lens are ignored or highlighted. For example, Monclus et al. [27]

uses a second TF to visualize a cone-shaped ROI in a way that is distinct from the surrounding

material. Similarly, Ropinski et al. [29] uses a 3D convex shaped lens to define and render a

volumetric focus region using non-photorealistic rendering. Tappenbeck et al. [30] uses distance-

based transfer functions to hide or emphasize structures based on their distance to a reference

structure. Kirmizibayrak [31] uses a polygonal object to define the boundaries for the focus Magic

Lens sub-volume and also supports multi-modal rendering within this sub-volume. Burns [32]

defines a cutaway region using two user-defined angles, both measured with respect to viewing

direction ray. The larger of the two angles separates a base opaque region (the context) from a

focus region. The smaller angle controls the transition of opacity within the focus region. Any

voxels along the rays cast from the eye, where the angle between the ray and the viewing direction

ray is less than the smaller user-defined angle, are rendered transparent (clear). The opacity of

other voxels in the region between the clear region and the base region is smoothly transitioned to

fully opaque. Similar to some of the work presented in this thesis, Bruckner and Gröller [33] uses

a 3D volumetric painting approach with a 3D Gaussian lens.

Lenses realized with super-ellipsoids have also been used by other researchers, albeit often in more

restricted ways, for volume image exploration and ROI selection. Similar to the super-ellipsoid

lens presented in this thesis, Luo et al. [28] uses a super-ellipsoid distance function to define their

focal probe region. Within this region, a different rendering style may be used than in the

surrounding context. They also incorporate a view-dependent cone region to cutaway occluding

voxels in front of the focal probe. Radeva et al. [34] also uses a super-ellipsoid lens and

23

incorporates an on-demand 3D image slice view into the lens. The image slice supports the

rendering of a different modality image, providing the ability to simultaneously display mixed

modalities. Both of these research works share similarities with the super-ellipsoid lens presented

in this thesis. However, in this thesis the blob tool can act as a “lens” and multiple super-ellipsoid

paint blobs can be deposited and smoothly blended to define a complex–shaped region (Section

3.2.1). As mentioned in the introduction, this work can be considered an extension of [5]. However,

unlike the work presented in [5], in this thesis the super-ellipsoid blob tool can be used to constrain

and guide a region growing operation to segment complex visible structures such as arterial trees

and uses a more advanced widget-based UI.

Another issue with a convex lens approach is the target region/object may be occluded (i.e. hidden)

by other objects. In this thesis, a user-controllable view-dependent auxiliary lens is attached to the

blob tool and generates cutaway views in front of the blob to provide enhanced depth perception

of target objects. Luo et al. [28] also employs this strategy although in this thesis the shape of the

auxiliary lens is not restricted to a cone. The lens shape is configurable and is designed to provide

depth cues via the cut surfaces of the occluding objects such that the relative position and depth of

the target object is easier to perceive (see Chapter 3, Section 3.1.5).

2.4.2 Selecting a Complex-Shaped ROI as a Focus Region

Interactive selection of complex-shaped 3D ROI selection techniques can be categorized in several

ways. One categorization is data dependent techniques versus data independent techniques. An

interactive data independent technique specifies a ROI spatially (i.e. geometrically). A data

dependent technique uses data attributes, such as voxel intensity or voxel gradient magnitude, to

24

label voxels as part of the same structure. This segmentation process is a heavily researched field

in the world of medical image analysis [35] [36] [37] and advanced segmentation algorithms are

often required to select structures in noisy images. Advanced segmentation algorithms are beyond

the scope of this thesis. Instead, simpler semi-automatic highly-parallel GPU-based segmentation

algorithms, such as voxel region growing, can be used with great effect in volume rendered images

such as CT scans and MR scans to quickly define a ROI and generate a contextual view for

previewing and examining of a target region. These techniques may be sufficiently accurate to

perform a visual analysis of structures by quickly and iteratively generating contextual views from

different viewpoints and of different spatial cutaway shapes and extents. Measurement tools may

then be used to establish, for example, the 3D position and extent of an aneurysm. As mentioned

above, for more detailed measurements of specific target structures in noisier volume images such

as MR scans, advanced segmentation algorithms – both semi-automatic and automatic - are

typically required. However, as mentioned in the introduction, a user-defined “envelope” region

that surrounds a target structure can often be used to improve the robustness and efficiency of

semi-automatic algorithms [4].

Geometric techniques that are primarily based on user interactive spatial specification of a ROI

can take many forms. The advantage of these techniques is that they can be applied to any volume,

regardless of noise. For example, a 3D ROI can be created by defining a 2D ROI on successive

image slice planes and then merging them to form the 3D ROI [4].

Geometric approaches to focus region specification, while noise independent, places the emphasis

on the user to navigate to a region of interest and define an envelope. Hence, the effectiveness of

the spatial localization hinges upon the user interface. A simple, intuitive UI that is flexible enough

25

to define desired regions is the goal. A common strategy to deal with the occlusion problem is to

cut away, deform, or make the occluding parts of the volume semi-transparent in such a way that

the features of interest become visible.

2.4.3 Categorizing Complex-Shaped ROI Selection Techniques

Techniques for interactive geometric specification of a ROI can also be categorized based on the

underlying interaction metaphor used. Such a categorization can be useful for gaining an overall

insight into the task. Outlining (or sketching), painting, sculpting, and deforming are among the

most common metaphors used. In the following paragraphs we briefly describe these interaction

metaphors and provide illustrative examples from the literature. It should be noted that many of

the research works referenced below contain aspects of two or more of the categories within their

interaction metaphor. Nevertheless, for simplicity, each referenced work is slotted within a

particular category.

26

2.4.4 Outlining/Sketching

Figure 8: Outlining interaction metaphor used in LiveVolume [8] to outline the sternum. From

left to right: 1. Original 3D visualization. 2. Create an outline of the sternum using LiveVolume’s

[8] region select tool. 3. Voxels outside of the contour are removed. 4. The scene is rotated to

reveal the additional voxels selected by the contour. 5. Refine selection by creating another

contour around sternum. 6. Repeat process until only sternum is selected.

In a tracing or outlining interaction metaphor for ROI selection, the user draws/outlines an accurate

contour on the screen, or on a plane defined within the volume image, or even directly on the object

surface, to delineate a 2D region [38] [39] [8] [40] [41]. To create a 3D region, several techniques

can be used. The contour can be extruded – i.e. copied and translated in depth and then connected

to the previous contour. The extrusion direction is often in a direction orthogonal to the viewing

27

plane. Alternatively, when outlining on the screen, the screen pixels contained inside the contour

region can be used as a “mask” in screen space and any visible voxels encountered along rays of

the volume ray caster during volume rendering are projected onto this screen space. Any voxels

inside the mask region are selected. Finally, tracing/outlining may also be performed on multiple

2D slices [42] [3], either manually or semi-automatically, where a subsequent contour stitching is

required to connect adjacent contours and form the 3D ROI. Similarly, in a contour sketching

interface, the user quickly draws line/curve strokes on the screen [40], on the data surface [43], or

on a series of 2D slices [4]. These strokes may overlap [44]. An algorithm then automatically

connects these primitives to form a contour. Similar to outlining, these contours are then connected

[4], or “inflated” [44], to form a 3D surface envelope. Sketching actions tend to be quick, rough

approximations and typically allows a user to introduce protrusions and bumps and other spatial

features on the 3D ROI in a progressive manner.

While tracing/outlining/sketching a 2D region on the screen/plane is simple, intuitive and precise,

extending this region to 3D using a 2D input device (e.g. a mouse) so that it selects target objects

in a 3D volume rendering is a more complex task. The user begins by rotating the 3D volume

rendered view of the data such that the target region/object to select is visually separated from the

(Figure 8) context region. The user traces around the object and extracts the region inside the

contour. This scene rotation and outlining process is repeated, progressively refining the 3D ROI.

While an individual tracing action itself is fast and precise, the increased cognitive load11 on the

user of rotating the volume to find views that separate the target ROI from the rest of the volume,

along with the subsequent tracing action, can result in less efficient and more difficult selection in

11 Cognitive load refers to the mental effort imposed on working memory in any one instant.

28

some scenarios. Controlling the depth of the 3D ROI is also problematic. Most screen space

techniques, for example, simply set the depth of the 3D ROI to the far side of the volume image

and the user can only see the selected 3D ROI shape after by scene rotation. Furthermore, the

efficiency of the tracing interaction itself depends on the complexity of the target shape. If a

mistake is made, the current outline is typically discarded and a new one generated. That is, there

is no facility inherent to outlining for 3D ROI shape editing. Outlining on multiple slices may also

complicate the interaction - especially if the slices are arranged on a curving extrusion path or if

some of the slices are orthogonal to others [42] [3]. Finally, outlining/sketching plus

stitching/extruding 3D shapes with complex topology is also inherently difficult and therefore

often not supported. The above issues may negatively affect ease of use, control and flexibility of

the technique. Fundamentally outlining/sketching is progressive, multi-stage process where the

selection is observed at the end of each stage to determine if it is complete. Thus, while this

approach is useful for selection in many scenarios, it is not as appropriate for fast 3D ROI

refinement required for volume exploration. Efficient volume exploration via selection requires a

technique that supports fast, fluid instantly observable changes to the 3D ROI.

2.4.5 Volume Clipping and Sculpting

A sculpting interaction metaphor simulates cutting/sculpting tools with convex-shaped tool “tips”

[45] [46], such as spheres, cylinders, rectangular blocks, and super-ellipsoids. Any voxels inside

the tool tip are selected and sculpted away. Progressive cuts can be achieved, analogous to a

sculptor with a chisel carving away pieces of stone. That is, rather than selecting voxels, sculpting

typically attempts to reveal structures inside a volume by physically removing parts of the volume

that otherwise would obstruct them. Typically, sculpting style interactions are performed directly

29

in the volume space, sometimes using a high DOF input device to position and orient the tool tip12

[45] or using a 3D widget interface if a mouse is used. A classic example of sculpting is the work

of Weiskopf et al. [45] to cut away parts of a volume by using various geometric primitives and

depth test algorithms. Sculpting style interactions are familiar and easily understood by users and

this interaction technique can be quite effective when cutting away regular shaped regions. One

problem with sculpting interactions is hidden target voxels can be inadvertently removed resulting

in an undo-redo sculpt sequence. Consequently, this scenario may result in the user using small

tool tips when accurate ROI boundaries are desired in order to avoid undoing and re-sculpting.

Another issue is perception – the progressive cutaway can make it difficult to perceive the extent

of material removed – especially if the material has similar appearance to the surrounding

structures.

2.4.6 Deforming

Directly deforming (i.e. pushing and pulling like kneading dough) occluding parts of the data

volume out of the way, or deforming a supporting geometric model that such that it envelopes or

separates occluding regions, is another type of ROI selection interaction metaphor [47] [48] [49].

Typical deforming actions include pushing, pulling, stretching, or peeling [50]. The underlying

data volume or supporting geometric model is often treated or modeled as a flexible material.

Generating a ROI using a deformation approach can be quite effective in some ROI selection

scenarios. The pushing/pulling actions of the model are easy to perform, intuitive and can

efficiently remove large occluding volumetric regions, especially when the flexible geometric

12 High DOF input devices are not explored in this thesis.

30

model is constructed as a deformable clipping surface [47]. The deformable material can be

interactively “edited” to quickly change the ROI. However, deforming a supporting geometric

model to select individual objects in the volume - especially curving, twisting, and/or elongated

objects, or objects with varying thickness - may negatively affect ease of use and control as well

as efficiency. In general, deformation may be better suited for separating/enveloping regions rather

than specific objects.

2.4.7 Painting

Figure 9: An illustration of the screen painting technique used in the system. From left to right:

1. Initial scene 2. Screen painting mode enabled. 3. Perform paint stroke.

Selection via painting typically defines a “brush” as a circular area along with a user-specified

depth/thickness of the brush to form a cylindrical region. Painting actions are typically constrained

such that the brush slides along some surface - most often an iso-surface of the data generated by

31

the TF specification - mimicking real world painting [31] [7] [33] [51]. Painting is also commonly

performed directly on other surfaces such as the screen plane (Figure 9), an image slice plane or

some other user-defined painting plane [5]. As the brush slides along a surface, paint is

continuously deposited and voxels inside the painted region can be rendered semi- or completely

transparent. Depositing paint can mean planting individual paint “blobs” of a user-settable

thickness which automatically smoothly merge with overlapping blobs to form a thick layer of

paint [33] [5]. Alternatively, as the circular brush slides on the iso-surface or on the screen, a

continuous mask region is created. During volume ray casting, if any voxels encountered along a

ray project onto the surface/plane such that they are inside the mask region, they are selected and

highlighted using the paint color [7]. Painting style interaction is simple, fast and intuitive as the

underlying painting metaphor is familiar and easily understandable. Selection techniques based on

painting are also typically quite flexible and easily support complex shaped regions. Painting often

works very well for removing layers of voxels or “thin shell” ROIs [7] such as the skull region in

a CT scan. Painting readily supports a previewing capability by using the brush as a “lens” [33]

[5]. However, painting on a data iso-surface requires relatively noise-free volume images (i.e. to

generate “clean” iso-surfaces) and therefore is primarily useful only for CT scans. Otherwise, the

“paintbrush” can inadvertently stick to small disconnected pieces of the iso-surface which can be

quite distant from the target object surface. A second issue is 3D ROI depth specification. This

issue is also true when painting on the screen or on a painting plane. If the target structure or region

is of varying thickness, then predefined paintbrush depth specification cannot be used and frequent

dynamic adjustments of paintbrush depth/thickness affect ROI painting efficiency. If ROI

boundary accuracy is required, the user may need to erase/undo already painted regions that have

“spilled over” into neighboring structures behind the ROI. One solution is to use smaller thinner

32

brushes and paint over target regions multiple times, progressively removing “material” and

progressively revealing deeper layers of the ROI [7]. This works well when the goal is to remove

the occluding layers. However, for selecting deep occluded structures, the paint selection technique

is not as applicable. For this reason, painting style selection is often combined with an interactive

region grower or other segmentation algorithm that can select these deeper, occluded structures

once parts of them are revealed via the painting actions (see Section 3.1.1).

2.4.7.1 Volume Painting Using Blended Spherical and Super-Ellipsoid Blobs

As mentioned in the introduction, in previous work Faynshteyn and McInerney [5] also used

blended blobs to isolate, via painting, regions of interest. These blobs were primarily spherical in

shape and the blending algorithm also generated a bulging effect when blobs were blended –

sometimes resulting in unintuitive ROI selection. While super-ellipsoid blobs were also supported,

the mathematical formulation of the super-ellipsoid and blending was not well-developed. There

was also no open-view capability – making it difficult to select an occluded ROI. The result was

that the technique was better suited to removing layers of tissue to reveal underlying structures.

Viola et al. [33] describe a framework called VolumeShop that supports illustrative volume

rendering techniques. It includes a surface-constrained 3D painting capability that uses a 3D

Gaussian paintbrush to deposit Gaussian blobs which can be blended to form the 3D ROI.

However, Gaussians have less shape control than super-ellipsoids and also suffer from unintuitive

bulging effects where the blobs blend.

In this thesis, the combination of the 3D widget-based UI and super-ellipsoid blobs contains

aspects of both sculpting and painting interaction styles. Similar to sculpting-style tools, the super-

33

ellipsoid lens used in this work acts as a cutting tool or as a highlighting tool. Unlike most

sculpting-style tools however, the super-ellipsoid blobs can be deposited and smoothly blended

like paint, if desired, to create a smooth envelope of paint defining an arbitrarily shaped ROI. This

feature allows the paint envelope to be used as an initialization of a segmentation algorithm, if

desired. It is also useful to tightly envelope a target object to better control the volume rendering

within. A widget is an indirect interaction technique (slightly less direct) but has certain

advantages. In Chapter 4, we compare this approach to a iso-surface painting style selection as

well as to a standard screen space painting approach. The advantages of 3D widget- based

techniques are they can provide precision and control and if the visual signifiers (i.e. the handles)

are well designed, then they are simple and intuitive to use. The main disadvantage of 3D widgets

is visual clutter and the serial nature of the widget positioning.

2.5 Interactive Selection Techniques for Data Dependent Focus Regions or Image Features

Interactive segmentation algorithms such as GPU based 3D interactive region growing are a fast

and effective way of selecting objects in relatively noise-free CT scans and MR scans. The

algorithm starts from a user selected “seed” voxel as well as user-defined intensity range, and

optionally a user-defined voxel gradient magnitude range. Voxels that are spatially adjacent to the

seed voxel and are within the user-defined value ranges are selected. These “child” voxels then

become new seed voxels and the algorithm repeats until no new child voxels are added. The

algorithm can typically also be under interactive control (using a mouse movement, for example

[8]) by enabling some control over the growing process. Furthermore, it is also common to support

interactive shrinking by unselecting voxels back to a previous voxel set. Some implementations

further allow for rough control over the spatially localized growing/shrinking of the selected voxels

34

[7]. Region growing is a noise sensitive algorithm so for noisier volume images, such as MR

images, it is often not possible to generate an accurate segmentation, especially for structures

buried deep within the volume. In these cases, more sophisticated semi-automatic or automatic

segmentation algorithms are required.

The volume visualization package LiveVolume [8] also supports fast GPU region growing to select

complex connected voxel regions. The UI is simple and effective – an initial point is selected, and

the user uses the mouse to control the growing/shrinking of this region in 3D by moving the cursor

away from, or towards this initial “central” point. This type of region growing control is compared

to the widget plus super-ellipsoid constrained region growing of this thesis in the user study (see

Chapter 4). Guo and Yuan [52] also use “region growing” techniques – i.e. based on topology

(connectedness) of voxels values. In this work, all connected regions are preprocessed and

organized into “branches” that can be instantly selected by simple painting on the voxels. Region

growing algorithms are susceptible to noise and the preprocessed regions may inadvertently

contain voxels from neighboring features or structures. Therefore, some user control is given up

for automation and speed. Chen [53] [7] also supports fast GPU region growing. They use a sketch-

based UI where the user sketches curves on the screen. These curves are projected into the data

volume and any iso-surface voxels with a value that is within a user-defined range are selected as

seed voxels. Reversing the growth is supported (i.e. region shrinking) and localized region

shrinking is accomplished by sketching additional curves on the screen to indicate regions that

should be shrunk.

The goal of Chen’s work is primarily segmentation of a target object whereas the goal of the work

in this thesis is primarily dynamic contextual view generation. The idea is to quickly select target

35

regions and apply a separate TF to highlight or remove them. The widget UI is designed to

interactively modify the selection to quickly generate contextual views from several viewpoints in

succession. In this thesis, having the region growing functionality controlled by the same 3D

widget UI as the geometric 3D ROI selection allows a user to precisely select regions of connected

voxels that might be otherwise difficult and/or time-consuming to isolate using only the geometric

approach. The two techniques are complementary.

2.6 Interactive Navigation and Manipulation Interfaces for 3D Images

Generating contextual views by utilizing spatially localized information within a volume rendering

requires the user to define a local region. This commonly means that the user needs to quickly and

easily interactively specify the position, spatial extent, shape, and optionally the orientation of the

local region. Specifying these parameters requires the ability to move in and around the volume,

known as navigation13. One of the primary navigation techniques for volume images is 3D rotation

of the volume. This interaction is most commonly based on a virtual trackball such as the well-

known Arcball [54]. Other than volume rotation, moving around in the volume image, by

specifying the position of a focus lens, is also a primary interaction. Orienting and scaling the lens

is also a common requirement.

There has been some research done in studying high degree of freedom input devices14 for

navigating, exploring, and selection in 3D medical images in a desktop environment [45] [51].

However, the mouse, a two degree of freedom (2-DOF) input device remains as the preferred

13 For an overview of navigation in 3D virtual environments, the reader is referred to [62].
14 A review of high DOF input devices is beyond the scope of this thesis.

36

choice due to its speed, high precision, ease of use, and accessibility. Comfort is also an important

factor – when using a mouse, the user’s arm rests on the desk and the large muscle groups of the

shoulder, which are more easily fatigued, are not activated. However, since the volume image is a

3D space, a mapping must occur between the 2D input and the 3D output. Additional input in the

form of modifier keys and/or the mouse wheel are often used to implement this mapping.

As described in the section on 3D ROI selection via painting, another technique for navigating in

a volume image is to use the mouse to pick points on a volume rendered data iso-surface [5]. In

addition, the surface normal vector can be used to orient a ROI delineator such as a convex lens.

However, as mentioned, this technique is noise sensitive. While an iso-surface position

specification can be used for translation and orientation, scaling of the ROI requires a separate

input mode. In addition, only visible surfaces can be utilized, and it is difficult to pick points on

the surfaces of thin structures such as arteries. Another well-known volume positioning technique

is to use the user-controlled camera view direction along with a depth specification (via the mouse

wheel, for example) to establish an oriented plane. The mouse can be used to pick points on this

plane [5]. Faynshteyn and McInerney [5] use a combination of data iso-surface lens positioning

and camera view plane lens positioning.

37

Figure 10: Translational, rotational and scale widgets of the 3DS Max15 modeling package.

Another common technique for 3D volume navigation and manipulation is the use of 3D widgets.

Widgets present to the user a proxy geometry in the form of “handles” (i.e. signifiers [55]) whose

visual appearance suggest to the user their affordance (Figure 10). Translation, orientation and

scale handles are presented as separate widgets or combined into a single widget. By selecting the

handle and associating a shape primitive (e.g. a lens) with the handle, the primitive can be

translated, oriented and scaled. The use of widgets is standard in modeling packages, game engine

software, and visualization packages. Widgets are a precise and data independent 3D navigation

and manipulation technique. The main problem with 3D widgets is visual clutter. In addition, the

same strength of 3D widgets – data independence – can also affect the efficiency of the technique

for translating and orienting a primitive (e.g. a lens) with respect to a target object. Control over

scaling a lens is, on the other hand, quite efficient and intuitive. In this thesis a 3D widget UI for

lens manipulation is proposed that also is integrated with data iso-surface positioning approach.

15 3ds Max, https://www.autodesk.ca/en/products/3ds-max/overview

38

The widget UI can be used alone or in concert with data iso-surface picking, enabling its use on

even noisy data sets. The UI is detailed in Chapter 3.

Chapter 3: Methodology and Implementation

Figure 11: An example of the range of shapes created by the super-ellipsoid blob tool. The

Super-ellipsoid shape is controlled by a few intuitive parameters via GUI sliders. For example,

the blob can take the shape of a sphere, cylinder, cube, or anything in between.

In the previous chapter a summary of TF based techniques as well as a summary of 3D ROI

selection techniques was presented. This chapter describes the mathematics and implementation

details of the widget-based blob tool for volume exploration and ROI selection. The system

combines volume rendering, a super-ellipsoid “blob tool” (Figure 11), a super-ellipsoid blending

algorithm, and a super-ellipsoid constrained region growing algorithm with an intuitive and

precisely controllable 3D widget UI to support the flexible real-time generation of focus plus

context views. This chapter is divided into two sections; a description of the user interface

followed by the implementation details describing the mathematics, algorithms and data

structures used.

39

3.1 User Interface

Figure 12: A snapshot of the graphical user interface of the volume rendering system presented

in this thesis.

The graphical user interface (GUI) (Figure 12) of the system was developed using Qt16, a cross-

platform application framework and widget toolkit for creating classic and embedded GUIs. The

design of the interface is also loosely based off well-known 3D computer graphics modeling

software such as Blender17, and game engines Unity18 and Unreal19.

16 Qt, http://qt-project.org
17 Blender, https://www.blender.org/
18 Unity, https://unity3d.com
19 Unreal, https://www.unrealengine.com

40

3.1.1 Painting Modes

Figure 13: The three painting techniques supported in the system. From left to right: blob tool,

blob region grow tool, and screen brush. Note the different regions highlighted by each tool.

The system primarily uses the super-ellipsoid blob tool for painting and exploration. However,

the blob and/or paint can also be used to constrain a semi-automatic segmentation technique. In

this system, a super-ellipsoid is used to constrain a region grow algorithm which provides users

with additional control over how a ROI is selected. This tool is referred to as the blob region

grow tool. A screen space painting technique was also added to the system for comparison

purposes and is an additional quick and intuitive way of selecting, editing, and deleting areas of

interest. When these techniques are combined, a user can interactively create contextual views

for any dataset. Figure 13 illustrates the three different painting techniques supported in the

system.

41

3.1.2 Voxel Intensity Visibility Range

Figure 14: A scene with a ROI defined by the blob tool. The minimum and maximum visible

voxel intensities for the blob region and the context region (skin, in this example) have separate

controls and can be blended together seamlessly to create a focus plus context view.

Users can control which voxels are rendered by the volume ray caster by manipulating GUI

sliders to control the minimum and maximum voxel intensity visibility thresholds for the volume

image and super-ellipsoid defined regions. In effect, the sliders represent a simple rectangular

42

step function that defines the intensity range in which voxels are considered visible by the

volume ray caster. Figure 14 illustrates how the sliders can be manipulated to alter the scene.

3.1.3 Blob Tool Manipulation

Figure 15: Super-ellipsoid blob tool and widget handles. From left column to right column:

translation handle, resize handle, and rotation handle.

43

Figure 16: Examples of blob tool interaction using the widget handles. The top row illustrates

translation, the middle row resizing, and the bottom row shows blob rotation as well as two

different blob shapes.

Blob tool: As described, the blob tool is defined by a super-ellipsoid blob and has a 3D widget-

based manipulation scheme (Figure 15). That is, users use the mouse to select the handles to

translate, scale, and orient the blob. The handles are designed to suggest their function (i.e.

translate, rotate, scale) and operation as well as provide an additional visual depth cue for the

blob tool. To interact with the widget handles, a user begins by pressing and holding the shift

key, causing the handles to appear near the blob. Once visible, the user selects a handle with the

mouse. Once a handle is selected, holding down the left mouse button and moving the mouse

44

allows the user to perform transformations on the blob corresponding to the current

transformation mode (Figure 16). The handles are also hidden during this action to allow the user

to clearly see the effects of their movements on the blob. When the user releases the left mouse

button, the handles reappear. The user can also use GUI sliders to change the shape and opacity

of the blob.

For precise blob positioning in any scenario or data volume, the user uses the translation widget

handles. However, for quick blob positioning in a relatively noise-free CT data set, the user has

the option of clicking on a point of a visible data iso-surface to instantly center the blob at the

selected location. As the blob is manipulated, voxels inside are highlighted to provide visual

feedback of the selection region. If a user is satisfied with the selection, they can apply the blob

(i.e. blend it with any previously applied blobs) by pressing a keyboard shortcut or a GUI button.

If the user makes a mistake they can instantly undo applied blobs with a GUI button or keyboard

shortcut.

45

3.1.4 Super-ellipsoid Constrained Region Grow Overview

Figure 17: Examples of how the widget-based blob region grow tool can be used to select

connected structures in real-time. The region growing algorithm is spatially-constrained by the

super-ellipsoid blob and the ROI can be dynamically resized in real-time by using the widget

handles to adjust the blob size/shape. The ROI can also be completely removed by simply

pressing a GUI undo button. Additional regions can be added by repeating the region grow

algorithm at different locations in the volume.

46

Highly parallel GPU-based region grow algorithms are a fast and effective segmentation

technique for selecting a ROI within a volume where the ROI consists of a connected set of

visible voxels. However, region grow algorithms are noise sensitive and are prone to “leaking”

into neighboring regions with similar voxel intensity ranges to that of the target ROI. Therefore,

interactively controlling the region grow process prevents a user from wasting time manually

correcting the region grow output by removing the leaked regions. In this thesis, the same widget

controlled super-ellipsoid blob UI that is used to paint an ROI is also used to interactively

constrain and “steer” the region grow process. This interactive blob region grow tool can be

applied directly to the volume image to select connected voxels, for example an artery “tree”, or

alternatively can be applied to connected voxels within a previously “painted” ROI. In this

manner, the blob tool can be combined with the blob region grow tool to allow the user to

flexibly select complex shaped ROIs even within a moderately noisy volume image.

As mentioned, the constrained region grow is implemented on the GPU and the evolution of the

selected region can be controlled in real time by resizing/reshaping the blob tool using the widget

handles (Figure 17). The user selects the blob region grower and initiates region growing by first

using the translation widget handles to place the blob around an anatomical structure they wish

to select (Figure 17 upper left brown-colored region). The user then moves the mouse along the

surface of this structure and a small green circular region is highlighted, indicating a valid seed

voxel is within the bounds of the blob. If the circular region is colored red, this indicates the seed

voxel is outside the blob boundary. A valid seed point is then selected with a mouse click. The

region grow process is then activated and all valid connected voxels within the blob boundary

are selected, essentially instantaneously (Figure 17, upper row, second from left). Valid voxels

47

are voxels that are visible in the scene and not already selected. The blob can then be

interactively resized, reshaped or rotated using the widget handles and the selected region will

automatically grow and/or shrink, in real-time, to stay within the blob boundary (Figure 17 upper

row). Other target regions can be dynamically added to the currently selected region by

reinitiating the region grow tool and selecting new seed voxels (Figure 17 middle row and

bottom row). If desired, the user can also use a key or GUI button to completely undo any

painted region they have previously selected with the region grower.

3.1.5 Open-View

Figure 18: Using open-view to reveal an occluded ROI. The open-view cap is defined by a

super-ellipsoid blob that can be translated, scaled, rotated and shape-changed. The open-view is

tied to the camera (i.e. it is view-dependent) allowing users to interactively reveal the target ROI

from different viewpoints and to create cutaway surfaces of different shapes, from rounded to

rectangular.

48

In situations where the blob itself is occluded or the target object is occluded, the user may

enable an Open-View mode to remove the occluding objects without losing the surrounding

context. The Open-View capability is implemented with an (invisible) auxiliary “lens” with one

lens endpoint fixed to the viewpoint and the other endpoint attached to the blob tool. As the user

manipulates the blob tool, the Open-View lens automatically cuts away any occluding visible

voxels between the viewpoint and the blob. The shape of the Open-View lens is defined by a

shaft region and an adjustable super-ellipsoid cap (see Section 3.2.5 in this chapter). The cap can

be translated, scaled, and rotated using a similar widget interface as the blob tool. The cap can

also be tapered. GUI sliders are also available to adjust the shape of the cap – which in turn

automatically adjusts the shape of the shaft to match. Combining the Open-View capability with

an intuitive widget-based blob manipulation UI allows the user to quickly create specialized

view dependent cutaway regions that match the geometry of the target object and the geometry

of the surrounding structures such that the contextual view is enhanced with effective depth cues

provided by the surface of the cutaway region (Figure 18).

49

3.1.6 Creating Focus plus Context Views

Figure 19: Using the blob tool to paint a rough initial ROI and applying the blob region grow

tool within it to select the lungs and the intestines in this CT dataset retrieved from the Osirix

DICOM Image Library [13]. Voxels selected by the region growing algorithm are added to the

accumulation grid and the process is repeated until the desired view is created.

50

To create contextual views, many other volume rendering solutions use either multi-dimensional

TFs and/or separate data-dependent segmentation techniques to produce the desired results.

Unfortunately, as discussed in chapter 2, the multi-dimensional TF UI can be complex and there

is no single technique that works for all situations. The system described in this thesis provides

tools to break the view generation problem into a series of simpler phases using the various tools,

where each tool is designed to be easy to use and the combined effect results in a desired view

which can also be quickly adjusted. The system uses a data structure called the Accumulation

Grid (see Section 3.2.6) which accumulates/combines the user’s various paint actions. A

disadvantage of this approach is that the effectiveness of the system is dependent on the user’s

ability to identify the most effective tool for each phase of the view generation task. Figure 19 is

an example of how a skilled user could use the blob tool to define a ROI with different visibility

settings to roughly isolate the lungs. The user can then use this ROI as the input sub-volume for

the blob region grow tool to quickly select the lungs and create a contextual view that may be

difficult to accomplish without a finely tuned spatial transfer function or specialized

segmentation algorithm.

In the CT data set [13] (Figure 19), the arteries and bones are visible due to the minimum and

maximum voxel visibility settings. Unfortunately, the lungs and intestines have a much lower

intensity range and cannot be rendered with arteries and bones as the skin and clothing of the

subject is occluding them. However, by first isolating the lungs and intestines and adding them to

the accumulation grid, it becomes possible to have a clear view of objects of greatly varying

intensities without a complicated spatial transfer function. The view can also be enhanced even

further with the addition of Open-View (Figure 20). This feature allows users to create a cutaway

51

region within the area of interest and remove occluding objects. In this case, Open-View allows

the user to have a clear understanding of the lung and intestines position in relation to the

subject’s skin and muscles.

Figure 20: Using open-view to create a specialized cutaway region to reveal a user’s earlier

selection of the lungs and intestines. These two structures can then be viewed in relation to the

skin and muscle in the dataset.

3.2 Implementation Details

As mentioned, super-ellipsoid blobs can be placed and blended together to define an arbitrarily

shaped 3D ROI within the volume image. The super-ellipsoid blobs are defined using implicit

functions and the functions are evaluated at fixed points in a special 3D grid of voxels referred to

as the blob grid. That is, each voxel of this grid stores an implicit function field value. The blob

52

grid has dimensions matching that of the input volume. For example, for a 256x256x256 input

volume, a 256x256x256 blob grid is used. The implementation allows users to place a large

number of blobs, if desired, in real time. To ensure quick lookups into the grid, the blob grid is

stored in GPU memory and is modified and accessed in a highly parallel manner from GPU

shader programs. Unfortunately, this implementation requires a large amount of GPU memory

but results in overall higher performance by avoiding expensive calculations in the volume ray

cast shader program. Specifically, this gain in performance is achieved by computing the blob

grid values in a separate rendering phase using a special, highly-efficient GPU vertex shader

program. As the user deposits a new blob, it is blended with the existing grid field values

computed from the previously deposited blobs. There is no need to re-compute the grid field

values for all blobs. Consequently, during the volume rendering phase, at each step along the ray

these grid values can then be efficiently accessed from the volume rendering fragment shader

program. Storing the blended blob field values in a grid is a scalable solution as additional blobs

have little or no performance impact.

In addition to the blob grid, two other grids are required to support the system functionality. The

dimensions of both of these grids also match the volume image dimensions. A region grow grid

is used to record voxels selected by the blob region grow tool. The accumulation grid, as

mentioned previously, is used to combine the voxel selections of the individual paint actions.

The following sections will describe these data structures and the associated algorithms and

equations used to implement the complete super-ellipsoid blob tool functionality.

53

3.2.1 Mathematical Formulation of Super-Ellipsoid Blending

Figure 21: Super-ellipsoid blob blending resulting in various shapes.

A 3D region is defined in the system using a soft object modeling [56] approach. In the soft

modeling approach, an implicit surface model is derived from a global potential field function

𝐹(𝑥, 𝑦, 𝑧) (the implicit function). This global function is defined as the sum of n component field

functions 𝐹𝑖, one for each shape primitive 𝑃𝑖 (i. e. 𝑏𝑙𝑜𝑏)(Figure 21). That is:

𝐹(𝑥, 𝑦, 𝑧) = ∑ 𝐹𝑖(𝑥, 𝑦, 𝑧)

𝑛

𝑖=1

(3.1)

The surface of the object 𝑺 may be derived from the implicit function 𝐹(𝑥, 𝑦, 𝑧) as the points in

space whose value equals a threshold denoted by 𝑇 (in soft object modeling T is often set to 0.5):

 𝑺 = {(𝑥, 𝑦, 𝑧) ∈ 𝑅3, 𝐹(𝑥, 𝑦, 𝑧) = 𝑇 } (3.2)

Each component field function 𝐹𝑖(𝑥, 𝑦, 𝑧) may be conveniently defined as the composition of a

distance function 𝑑𝑖(𝑥, 𝑦, 𝑧) and a potential function 𝐹𝑖(𝑑), where:

 𝐹𝑖(𝑥, 𝑦, 𝑧) = 𝐹𝑖 ∘ 𝑑𝑖(𝑥, 𝑦, 𝑧) (3.3)

In general, function 𝑑𝑖(𝑥, 𝑦, 𝑧) defines the distance between a point 𝒑(𝑥, 𝑦, 𝑧) and the center

point of shape primitive 𝑃𝑖, while function 𝐹𝑖(𝑑) characterizes the blending properties of the

54

shape primitive (i.e. how a shape primitive is blended with other shape primitives). In our

implementation the blending function is defined as [57]:

𝐹𝑖(𝑑) = {

0

−
4

9
∗ d6 +

17

9
∗ d4 − 22/9 ∗ d2 + 1

, 𝑑 > 1.0

, 0 ≤ 𝑑 ≤ 1.0

(3.4)

The distance function formulation follows that of Tigges et al. [57] where 𝑑(𝑥, 𝑦, 𝑧) is a super-

quadratic distance function derived from the implicit equation of a super-ellipsoid. That is, in this

formulation, the super-ellipsoid shape primitive 𝑃𝑖 is represented via the distance function. The

distance function is evaluated in a normalized volume image coordinate space. The super-

quadratic (sq) distance function is therefore defined as:

𝑑𝑠𝑞(𝑥, 𝑦, 𝑧) = (|
𝑥

𝑟𝑥
|

2

𝜀2 + |
𝑦

𝑟𝑦
|

2

𝜀2
)

𝜀2
𝜀1

+ |
𝑧

𝑟𝑧
|

2

𝜀1

(3.5)

The surface of a super-ellipsoid has an implicit formulation 𝐹𝑠𝑒(𝑥, 𝑦, 𝑧) = 𝑑𝑠𝑞(𝑥, 𝑦, 𝑧) − 1 = 0

where 𝑑𝑠𝑞(𝑥, 𝑦, 𝑧) also defines an inside-outside function. An inside-outside function provides a

simple test to determine if a point 𝒑(𝑥, 𝑦, 𝑧) is inside the super-ellipsoid (𝑑𝑠𝑞(𝑥, 𝑦, 𝑧) < 1),

outside the super-ellipsoid (𝑑𝑠𝑞(𝑥, 𝑦, 𝑧) > 1) or on the surface of the super-ellipsoid

(𝑑𝑠𝑞(𝑥, 𝑦, 𝑧) = 1). The coefficients 𝑟𝑥, 𝑟𝑦, 𝑟𝑧 are scale factors in the x, y and z directions,

respectively. The parameter 𝜀2 controls the cross-sectional shape of the super-ellipsoid in the

(𝑥, 𝑦) plane while 𝜀1 controls the cross-sectional shape in a plane along the z-axis perpendicular

to the (𝑥, 𝑦) plane. Together these parameters control the range of influence of a super-ellipsoid

shape primitive (via the distance function).

55

The distance function as defined in equation (3.5) above has blending problems. Tigges et al.

[57] solved the blending problem by extending the distance function (for the ith shape primitive)

to:

 𝑑𝑖(𝑥, 𝑦, 𝑧) = 𝑑𝑠𝑞(𝑥, 𝑦, 𝑧)
𝜀2
2

(3.6)

Finally, blending of the component functions 𝐹𝑖, is generally performed by simply summing their

potential fields, as in equation (3.1). Super-elliptic blending [58] has been proposed to reduce

unwanted field “bulging” effects between the component functions that can result from this

simple sum. Super-elliptic blending generates a more predictable shape of the global potential

field function 𝐹(𝑥, 𝑦, 𝑧). This type of blending is performed as follows:

𝐹(𝑥, 𝑦, 𝑧) = (∑ 𝐹𝑖(𝑥, 𝑦, 𝑧)𝐾

𝑛

𝑖=1

)

1
𝐾

(3.7)

Where the parameter 𝐾 controls the amount of blending. When 𝐾 = 1 the super elliptic blend

has the same result as the summation blend. When 𝐾 = ∞ the super-elliptic blend is equal to the

union of the component field function 𝐹𝑖 (i.e. no blending occurs). In this thesis, 𝐾 is set to a

value of 8 for its balanced blending properties. See Figure 22 for an example of the effect of the

parameter K.

 Translating and rotating a super-ellipsoid blob is simply a matter of applying a

transformation matrix M to the super-ellipsoid centered coordinates of equation (3.8).

Representing super-ellipsoid-centered coordinates as 𝑠𝑒 and volume image coordinates as 𝑣𝑜𝑙 ,

the transformation can be represented as:

56

[

𝑥𝑣𝑜𝑙

𝑦𝑣𝑜𝑙
𝑧𝑣𝑜𝑙

1

] = 𝐌 [

𝑥𝑠𝑒

𝑦𝑠𝑒
𝑧𝑠𝑒

1

]

(3.8)

Where 𝐌 is defined as:

M = [

𝑢𝑥 𝑣𝑦 𝑛𝑧 𝑐𝑥

𝑢𝑥 𝑣𝑦 𝑛𝑧 𝑐𝑦

𝑢𝑥 𝑣𝑦 𝑛𝑧 𝑐𝑧

0 0 0 1

]

(3.9)

The vectors (𝒖, 𝒗, 𝒏) are the basis vectors of the super-ellipsoid blob expressed in volume image

coordinates and the point 𝒄(𝑥, 𝑦, 𝑧) represents the blob center in volume image coordinates. That

is, for a given point defined in local super-ellipsoid coordinates, transformation M first rotates

(defined by the vectors (𝒖, 𝒗, 𝒏)) the point and then translates it by vector 𝒄(𝑥, 𝑦, 𝑧) . The

transformation M-1 transforms a point in volume coordinates to super-ellipsoid coordinates. In

this case, the point is first translated then rotated. Transformation M-1 can be written as:

M-1 = RT = [

𝑢𝑥 𝑢𝑦 𝑢𝑧 0

𝑣𝑥 𝑣𝑦 𝑣𝑧 0

𝑛𝑥 𝑛𝑦 𝑛𝑧 0

0 0 0 1

] [

1 0 0 −𝑐𝑥

0 1 0 −𝑐𝑦

0 0 1 −𝑐𝑧

0 0 0 1

]

(3.10)

57

Figure 22: Comparison of blob blending using different values for super-elliptic blending

parameter K. From left to right, K= 2, 8, and 32.

3.2.2 Super-ellipsoid Blob Grid

Figure 23: A high level view of the rendering pipeline for the 3D blob grid. The blob grid is

stored in GPU memory and is updated in a special GPU vertex shader program that stores blob

field values at grid voxels.

As mentioned in the introduction of Section 3.2, the system uses a special 3D grid with the same

dimensions as the volume image to store blob field values. Each field value stored in the grid is

updated whenever the user adds or removes a blob. However, calculating each field value

sequentially on the CPU would be too computationally expensive. To ensure real-time

58

performance, the massively parallel compute power of the GPU is leveraged by performing the

blob grid calculations in a special vertex shader program (Figure 23). The blob grid is stored in

GPU memory and after its field values are calculated, it can be accessed by the volume ray cast

fragment shader program where volume rendering occurs. Algorithm 1 contains pseudo-code

detailing how the vertex shader updates the blob field values at each grid voxel of the blob grid.

Algorithm 1 Updating Blob Grid Field Values

Input:

 𝒅𝒊𝒎𝒙𝒚𝒛: physical dimensions of input volume

 𝒃𝒍𝒐𝒃𝑮𝒓𝒊𝒅[𝑖][𝑗][𝑘]: 3D blob grid

𝒄𝒙𝒚𝒛: center of input blob in volume coordinates

 𝒓𝒙, 𝒓𝒚, 𝒓𝒛: blob scale factors

 𝑹: blob rotation matrix from equation 3.10

 𝜺𝟏: exponent from equation 3.5

 𝜺𝟐: exponent from equation 3.5

 𝑲: superelliptic blend parameter

 𝑾𝒚𝒗𝒊𝒍𝒍𝑩𝒂𝒔𝒊𝒔𝑭𝒖𝒏𝒄(𝑑): −
4

9
∗ d6 +

17

9
∗ d4 − 22/9 ∗ d2 + 1

 𝒊𝒔𝑫𝒓𝒂𝒘: 𝐵𝑜𝑜𝑙𝑒𝑎𝑛 𝑓𝑙𝑎𝑔 𝑡𝑜 𝑎𝑑𝑑 𝑖𝑛𝑝𝑢𝑡 𝑏𝑙𝑜𝑏 𝑓𝑖𝑒𝑙𝑑 𝑡𝑜 𝑔𝑟𝑖𝑑

for each grid voxel i, j, k ∈ 𝑏𝑙𝑜𝑏𝐺𝑟𝑖𝑑[𝑖][𝑗][𝑘] do

 𝑝𝑣𝑜𝑙𝑥𝑦𝑧 = 𝑣𝑜𝑥𝑒𝑙𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑖, 𝑗, 𝑘, 𝑑𝑖𝑚𝑥𝑦𝑧)

𝑝𝑠𝑒𝑥𝑦𝑧 ← [𝑅] ∗ [
𝑝𝑣𝑜𝑙𝑥𝑦𝑧 − 𝑐𝑥𝑦𝑧

1.0
]

𝑣𝑎𝑙𝑥 ← (|𝑝𝑠𝑒𝑥|/(𝑟𝑥))2.0/𝜀2

59

𝑣𝑎𝑙𝑦 ← (|𝑝𝑠𝑒𝑦|/(𝑟𝑦))2.0/𝜀2

𝑣𝑎𝑙𝑧 ← (|𝑝𝑠𝑒𝑧|/(𝑟𝑧))2.0/𝜀1

𝑑𝑠𝑞 ← ((𝑣𝑎𝑙𝑥 + 𝑣𝑎𝑙𝑦)𝜀2/𝜀1 + 𝑣𝑎𝑙𝑧)𝜀1/2.0

if 𝑑𝑠𝑞 > 1.0 then

 𝑣𝑎𝑙 ← 0

else

 𝑣𝑎𝑙 ← 𝑊𝑦𝑣𝑖𝑙𝑙𝐵𝑎𝑠𝑖𝑠𝐹𝑢𝑛𝑐(𝑑𝑠𝑞)

end if

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑙𝑜𝑏𝑉𝑎𝑙𝑢𝑒 ← 𝑏𝑙𝑜𝑏𝐺𝑟𝑖𝑑[𝑖][𝑗][𝑘]

if 𝑖𝑠𝐷𝑟𝑎𝑤 = 𝑡𝑟𝑢𝑒 then

 𝑢𝑝𝑑𝑎𝑡𝑒𝑑𝑉𝑎𝑙𝑢𝑒 ← (𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑙𝑜𝑏𝑉𝑎𝑙𝑢𝑒𝐾 + 𝑣𝑎𝑙𝐾)1/𝐾

 𝑏𝑙𝑜𝑏𝐺𝑟𝑖𝑑[𝑖][𝑗][𝑘] ← 𝑢𝑝𝑑𝑎𝑡𝑒𝑑𝑉𝑎𝑙𝑢𝑒

else

 𝑢𝑝𝑑𝑎𝑡𝑒𝑑𝑉𝑎𝑙𝑢𝑒 ← (𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑙𝑜𝑏𝑉𝑎𝑙𝑢𝑒𝐾 − 𝑣𝑎𝑙𝐾)1/𝐾

𝑢𝑝𝑑𝑎𝑡𝑒𝑑𝑉𝑎𝑙𝑢𝑒 ← max (𝑢𝑝𝑑𝑎𝑡𝑒𝑑𝑉𝑎𝑙𝑢𝑒 ,0.0)

 𝑏𝑙𝑜𝑏𝐺𝑟𝑖𝑑[𝑖][𝑗][𝑘] ← 𝑢𝑝𝑑𝑎𝑡𝑒𝑑𝑉𝑎𝑙𝑢𝑒

end if

end for

60

3.2.3 Region Growing Algorithm

Figure 24: Region growing grid data structure. Each grid voxel contains an ID and a ParentID.

A non-zero ID indicates that the corresponding voxel in the volume image has been selected and

the ParentID indicates the voxel’s direction from its “parent” grid voxel.

The GPU-based region-growing algorithm follows the algorithm described in Chen et al. [53].

The algorithm makes use of the input volume image as well as a 3D Region Growing Grid which

is stored in GPU memory (Figure 24). Like the Blob Grid, the Region Growing Grid has the

same dimensions as the volume image. The algorithm is divided into a vertex shader stage,

geometry shader stage, and a transform feedback stage (Figure 25).

Figure 25: GPU based region growing pipeline for updating values in the region grow grid.

61

The vertex shader begins once the user has selected an initial seed voxel or when new seed

voxels have been added from a previous iteration. For each new seed voxel and its neighbors, a

check is made to determine whether the voxel is valid. A valid voxel is one that is visible, inside

the blob, and has not already been marked as selected. If the seed voxel is valid, it is marked as

selected by setting its identifier to a non-zero integer corresponding to its constraining blob’s id

(red voxel). For voxels neighboring the seed, another identifier indicating the voxel’s direction

from its “parent” grid voxel is stored (yellow voxel). A parent grid voxel is the voxel that (i.e.

left, right, top, bottom, back, front, boundary) acted as the “parent” seed in the region grow

process. For example, in Figure 25 the upper yellow voxel would have its identifier set to “top”

(adjacency id of green parent voxel) while the left most yellow voxel would set its identifier to

“left”. If the adjacent voxel is invalid, its parent id is marked as a boundary voxel. The adjacency

information is then used in the geometry shader stage to output new seeds and boundary voxels

into a special GPU memory buffer known as the transform feedback buffer. The data from this

buffer is then passed back into the vertex shader and the process is repeated in parallel on each of

these new seeds until no new seed voxels are output. Saving the seed and boundary voxels in the

transform feedback buffer and using the GPU to region grow seeds in parallel allows users to

dynamically shrink or grow regions in real time. Figure 26 illustrates this process with a 2D

example and shows how values are set in the region grow grid for each new seed point passed to

62

the region grow shaders.

Figure 26: A 2D representation of the region grow algorithm. Starting from the top left: 1.

Initial seed voxel. 2. Initial seed marked as grown and valid adjacent voxels marked as potential

new seeds. 3. Potential new seeds changed to new seeds by geometry shader. 4. Vertex shader

marks new seeds as grown and flags adjacent voxels. 5. Potential new seeds changed to new

seeds by geometry shader. 6. No new seeds, region grow complete.

For simplicity, Figure 26 only illustrates a 2D example with a maximum of 4 seeds. However, a

real scenario may have thousands of seeds processed in parallel and may result in duplicate

neighbor voxel output. To reduce redundancy and ensure the algorithm runs at interactive rates,

the adjacency information is used by the geometry shader to determine which grown voxel is

responsible for emitting new seeds [53]. Figure 27 illustrates how the geometry shader uses

adjacency information to eliminate duplicate output.

63

Figure 27: A 2D representation of geometry shader region grow algorithm. Potential seeds are

flagged in parallel in the vertex shader and adjacency information is used by the geometry

shader to remove redundant output.

When the region grow bounds defined by the blob region grow tool are changed, (i.e. the user

changes the size and/or shape of the blob) the algorithm uses the boundary voxels stored in the

transform feedback buffer as new seeds. The algorithm then performs a region grow or region

shrink depending on the new dimensions of the region grow bounds. In the case where a

boundary voxel isn’t adjacent to a valid voxel, the algorithm performs a region shrink. The

shrink first checks to see if the current boundary voxels are still valid by checking if there are

any grown adjacent voxels within the region grow bounds. If all adjacent voxels are invalid, the

algorithm performs a region shrink by setting the current voxel as empty and flagging all

neighboring non-empty voxels as new seeds. The new seeds are then stored into the transform

feedback buffer and the process is repeated until no new seeds are added. Figure 28 illustrates a

2D example of how the algorithm performs a region grow shrink.

64

Figure 28: A 2D representation of a region shrink over two iterations. Starting from left to right:

1. Initial region shrink scene. 2. Boundary voxels removed and grown voxels marked as potential

new seeds 3. New seeds marked as boundary voxels.

3.2.4 Open View

Figure 29: An open view representation for spherical and tapered cubical cap shapes.

As described in Section 3.1.4, the open-view capability is implemented with an (invisible)

auxiliary “lens”, with one lens endpoint fixed to the viewpoint and the other endpoint attach to

the blob tool. The cap of the Open-View lens (Figure 29) is defined by one half of a super-

ellipsoid, optionally tapered, and allows users to create open-view lenses of varying shapes. The

region created by the Open-View lens is determined by a line starting from the camera to the

center of the blob tool. During volume ray casting, a calculation is made to determine the

coordinate on the line that produces the shortest distance between the current ray position and the

Open-View line. This coordinate is then used as the origin of a super-ellipse with the same shape

65

parameters as the cap. The series of super-ellipses along the line constitutes the shaft of the

Open-View lens and all voxels within this area and not within the blob are hidden from view. If

the Open-View cap shape is spherical, it results in a cylindrical tube shaft with a (hemi-)spherical

cap at the end. For cubical shapes, the user has the option of tapering the end of the cap. A

spherical cap or a tapered cubical cap result in cut surfaces of objects surrounding the target ROI

(i.e. inside the blob) that are oriented toward the viewer, regardless of how deep the target ROI is

within the volume. Based on experiments, this shaft-plus-cap Open-View design results in a

superior depth cue for the occluded target ROI than using a simple frustum shaped Open-View

or a single super-ellipsoid shaped Open-View. In addition, the flexibility of the adjustable super-

ellipsoid cap shape provides greater cutaway shape control.

3.2.5 Accumulation Grid

Figure 30: A representation of the accumulation grid. Each voxel in the 3D grid contains an id

and matches the dimensions of the volume data.

The purpose of the accumulation grid is to give users the ability to combine ROIs of different

visibility settings. The grid is stored in GPU memory and is a data structure matching the

dimensions of the input volume (Figure 30). Each index in the grid holds an id that represents an

index into an array of transfer function parameters that define voxel visibility. Currently, the

66

transfer function parameters consist simply of two values representing the minimum and

maximum voxel intensity visibility range. Future implementations can be extended to define

more complex voxel visibility rules.

Figure 31: GPU pipeline for updating the accumulation grid. Voxels selected in the blob grid, or

region growing grid are added to the accumulation grid by a special vertex shader.

The process of adding data to the accumulation grid is handled in parallel by a special vertex

shader (Figure 31). This vertex shader evaluates each voxel in the grid against the values stored

in the blob grid or region growing grid. Voxels marked as selected in the blob grid or region

growing grid are assigned an ID in the accumulation grid. An ID of zero represents an empty

value and an ID greater than zero represents a voxel that has been added to the accumulation

grid. If a voxel in the accumulation grid already has an ID greater than zero, the incoming data is

discarded. This was done to prevent users from overriding previously selected areas unless

explicitly requested by the eraser function. Figure 32 illustrates how a user can add selected

voxels to the accumulation grid from either the blob grid or region growing grid.

67

Figure 32: An example of how the blob region grow tool can be applied to a region defined by

the blob tool and added to the accumulation grid. From left to right: 1. Blob tool used to create

an ROI of the sternum and ribs. 2. Blob region grow applied to sternum. 3. Region grow paint or

blob paint can be added to accumulation grid.

68

3.2.6 Rendering Pipeline

Figure 33: Rendering pipeline for the volume ray cast shader. The vertex shader defines the

bounds of the volume and the fragment shader accesses voxels from the input volume, blob grid,

region growing grid, and accumulation grid to render the scene.

Figure 33 illustrates the rendering pipeline of our system and begins with a check to determine if

the blob grid, accumulation grid, or region growing grid needs to be updated. In the case where

an update is required, the corresponding shader is executed. Once the grids are updated, they are

69

passed into the volume ray casting shader to render the final scene. The volume ray casting

shader is divided into a vertex shader and fragment shader with most of the work done in the

fragment shader. The vertex shader creates the boundaries of the volume ray caster and the

fragment shader assigns a color to each screen pixel by stepping along each ray in parallel. For

each step along the ray, the algorithm uses the volume data, blob grid data, region growing grid

data, accumulation grid data, and the separate minimum/maximum voxel visibility setting for the

context region and the painted blob region(s) to determine the final rendering.

Figure 34: A 2D and 3D representation of color accumulation in the fragment shader. Rays are

cast from the camera into the volume. As the ray steps through the volume, each visible voxel’s

color and opacity are accumulated and blended until an opacity value of 1.0 or greater is

reached or until the ray hits the bounds of the volume. From left to right: 1. A 3D visualization of

volume ray casting, where each dot represents a step along the ray. 2. A 2D visualization of

volume ray casting, where each box represents a ray’s color/opacity accumulation at each step.

3. The result of rendering the color and opacity accumulation for each ray.

Figure 34 illustrates how the volume ray caster steps along a ray and assigns a color to a pixel.

Each ray starts with an initial entry coordinate and points along the ray are sampled until an

70

opacity of 1.0 is reached or the bounds of the volume are hit. At each step along the ray, a blob

field value is calculated and if the value is greater than 0.5 the blob surface is rendered. The

shader then checks if the current voxel selected from the volume data is visible by comparing its

intensity against the data from the blob grid, accumulation grid, and open view. If the voxel is

visible, its color and opacity are accumulated into the result.

The blob surface of a ROI is rendered in the volume ray caster using the previously computed

field values in the blob grid. For the preview blob, the blob field is calculated inside the volume

ray caster and can be dynamically resized, translated, rotated and blended with the blob grid data

in real time. Voxel visibility is determined by the accumulation grid, blob grid, open view, and

the minimum and maximum visible voxel intensity ranges. For overlapping regions, there is a

visibility hierarchy and the order is as follows: accumulation grid voxels, preview blob voxels,

open view voxels, blob grid voxels, and volume data voxels. For example, a voxel inside the

accumulation grid that is marked as invisible will not be shown even if it is within the minimum

and maximum visible voxel intensity range for the blob or volume regions (Figure 35).

Figure 35: A 2D representation of the voxel visibility hierarchy for overlapping regions.

71

Chapter 4: User Study and Experimental Results

In this chapter we present the results of a user study that evaluates the effectiveness of our

widget-based super-ellipsoid painting and region growing system for exploring and selecting

areas of interest within a 3D volume. The user study compares the blob tool to a surface brush

technique and a screen brush technique. These tools are described in Section 4.1.3. Also, in this

chapter, several experiments are presented illustrating the contextual view generation capabilities

of the system. The data sets used in the experiments are downloaded from the Osirix DICOM

Image Library [13]. All the results were generated on a Windows 10 desktop computer equipped

with a Nvidia 1080 GTX graphic card on a 1920x1080 native resolution monitor.

4.1 User Study Description

The user study was divided into four parts. Each part required participants to select a highlighted

target object. The goal was to compare the widget-based UI selection tools (the blob tool and the

blob region grow tool) to other types of tools with well-known UIs according to time, accuracy,

and user preference.

4.1.1 Participants

Sixteen people participated in the study. Each participant took an average of one hour to

complete the study. The participants were asked to paint several regions of interest with four

different paint-based selection tools and then fill out a questionnaire. Participants consisted of

14 males and 2 females aged between 18-30 years old. Participant's average mouse usage per

week was approximately 28 hours, with an average of 11 hours a week for video games and 2.4

72

hours for 3D modeling software. All 16 participants had a computer science or engineering

background and didn’t have any medical experience.

4.1.2 Apparatus

The user study experiments were performed on a Windows 10 desktop computer with a mouse

and keyboard. The computer was equipped with Nvidia 1080 GTX graphic card to ensure the

system ran at a smooth 60 fps on a 1920x1080 native resolution monitor.

4.1.3 Techniques

The four tools used in the study were the blob tool and widget-based blob region grow tool, a

surface brush and a screen brush. The UI of the surface brush and UI of the screen brush are

described below.

Figure 36: Illustration of the surface brush UI. The user moves the mouse and the brush blob

automatically slides along the data iso-surface under the cursor. The blob also orients itself to

line up with the data surface normal. The rightmost figure shows a side view and illustrates this

surface normal alignment.

Surface brush: The surface brush (Figure 36) was implemented in a separate system [5].

However, the UI and volume rendering parameters of this system were updated to match those of

73

the blob tool, screen brush and blob region grow tool system. The surface brush is defined by a

super-ellipsoid blob similar to the blob tool, but instead of widget handles, the surface brush has

an adjacent GUI panel with sliders and buttons to control brush size, orientation, and shape. The

surface brush also had two painting modes, painting-plane sliding mode and surface sliding

mode. In painting-plane sliding mode, the user presses and holds the left mouse button. As the

user moves the mouse, the brush automatically adheres to and slides along the surface of an

invisible oriented painting plane. The orientation of the painting plane is automatically tied to the

camera view plane orientation. The depth of the painting plane in the volume image (i.e. distance

from the camera) can be controlled with the mouse scroll wheel that translates it along the view

plane normal. Surface sliding mode is the primary painting mode and allows the user to slide the

brush blob along data iso-surfaces in the volume rendering by moving the mouse cursor (while

pressing and holding the left mouse button) (Figure 36). In addition, if the mouse is moved to a

new iso-surface position and the left mouse button is clicked, the brush will automatically jump

to that surface position. Paint mode switching is handled by a button in the GUI panel. Similar to

the blob tool, voxels encompassed by the paintbrush blob are highlighted to indicate the effect a

paint action would have on the view. If a user is satisfied with the brush position, they can

deposit the paint brush blob with a key press or with a GUI button. If the user makes a mistake,

they can undo a deposited blob with an undo key or GUI button.

74

Figure 37: Illustration of the screen brush. The brush has a circular outline and users can paint

strokes by holding down the left mouse button and dragging the cursor along the screen. From

left to right: 1. Painting the sternum until all target voxels (yellow) are selected (green). 2.

Rotating the view to reveal the additional voxels selected in depth. 3. Switching the brush to

erase mode to erase unwanted selections. 4. Apply erase and inspect the result.

Screen brush: The screen brush is a screen space painting technique similar to the ones used in

many other 2D painting applications. Centered around the mouse-controlled cursor, is a circular

outline indicating the bounds of the screen brush which can be resized using a separate GUI

slider. Users can paint on a view by holding down the left mouse button and dragging the mouse

cursor along the screen to paint strokes (Figure 37). Since the view is defined in a 3D space, the

brush also paints in depth and selects voxels based on the camera’s perspective projection. This

results in a brush that appears to be painting in a 2D view but is painting a 3D cone that gets

wider based on the distance from camera. The depth of the cone extends to the far side of the

volume image. Therefore, to select a target object, users must rotate the view with the mouse to

find a screen view such that the target object is visually separated from the surrounding objects.

75

After painting the object from this viewpoint, the users must then rotate the view again to a new

viewpoint. They then paint any missed portions of the target and/or erase painted regions on

neighboring objects that were behind the target object when painting from the previous

viewpoint. This process is repeated until the target object has been selected. Voxels underneath

the screen brush are highlighted to indicate the effect a paint action would have on the view. If

the user is satisfied with the highlighted region, they can press a GUI button to add the paint to

the accumulation grid or press a key or GUI button to undo the paint. Once paint is added to the

accumulation grid users can switch the brush to erase mode and erase incorrectly selected areas

with the same technique. Although this painting style requires a user to continually rotate the

entire view and painting/erasing to refine the selection, the painting action itself is familiar and

intuitive to users.

4.1.4 Datasets

Figure 38: Illustration of the user study selection task. The yellow highlighted voxels are the

target region (in this example, a kidney transplant). If the user positions a paint tool such that

these yellow voxels are inside the bounds, they are highlighted green. If the paint tool

encompasses non-target voxels, they are highlighted red.

76

The study used two CT scans [13] and was comprised of four different target anatomical

structures. Each structure was specifically selected to tease out the strengths and weaknesses of

each painting UI. In the hands of an experienced user, the selection tools used in the study can be

used to quickly isolate a complex-shaped ROI consisting of multiple anatomical structures.

However, in this study the participants are naïve users. Consequently, an ROI consisting of

single, clearly defined anatomical structures were chosen as the targets. The target structures

were highlighted in yellow and the remaining visible voxels were de-emphasized by coloring

them gray (Figure 38). If the user correctly selects these voxels, they are instantly painted green.

Incorrectly selected voxels (i.e. voxels inside the paint bounds but outside the target) were

instantly painted red.

Figure 39: A series of anatomical structures used in the user study. From left to right: kidney,

sternum, single vertebra, double vertebra and aneurysm.

Kidney transplant: The kidney transplant structure (Figure 39, left) was chosen because it was

a challenging structure to isolate. Participants were tasked with painting the kidney while

77

minimizing the amount of “spilled” paint (colored red) on surrounding structures such as the

surrounding arteries and hip bone.

Sternum: The sternum structure (Figure 39, second from left) was chosen because it was an easy

target to isolate accurately. The goal was to determine which technique had the best results when

selecting a relatively clean object.

Vertebra: A vertebra (Figure 39, middle) was chosen because it was a challenging structure to

isolate and typically requires resizing interactions. The goal was to evaluate the effectiveness of

the widget based resize handles against the GUI slider-based resizing of the surface brush and

screen space brush.

Double Vertebra: The double vertebra target (Figure 39, second from right), as the name

implies, adds another vertebra in the spine and is used for the region grow part of the user study.

This structure was the most difficult to select.

Aneurysm: A CT scan containing an aneurysm (Figure 39, right) was used in part II of the study

that tested the widget-based blob region grow tool. Specifically, it was used to test the

effectiveness of the blob region grow tool’s widget interface compared to an unconstrained

region-grow brush with simple mouse control for growing and shrinking the selected region.

4.1.5 Accuracy Measures

We follow Yu et al. [59] and use the recent American Psychological Association

recommendations [60] that report results using estimation techniques and confidence intervals.

To compare the four techniques, we used task completion times and an F1 accuracy measure to

evaluate the accuracy of our results. An F1 measure is calculated from the number of true

positives (TP, correctly selected voxels), false positives (FP, incorrectly selected voxels), and

78

false negatives (FN, correct voxels not selected). F1 is calculated as 𝐹1 = 2 ∗ (𝑃 ∙ 𝑅)/(𝑃 + 𝑅)

with precision 𝑃 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) and recall 𝑅 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁). An F1 score of 1 indicates a

perfect performance, while a score of 0 represents the worst possible result. For accuracy, a 95%

confidence interval was calculated.

4.2 User Study Results

This section will provide an analysis of the user study results, results of the questionnaire, and

observations from watching participants complete the study.

4.2.1 Part I: Blob Tool vs Surface Brush vs Screen Brush

The first part of the study was designed to compare the blob tool with the surface brush and

screen brush. These three paint tools are all interactive geometric selection techniques that can be

used to spatially isolate a 3D ROI. Participants were asked to select all voxels of the target

object as quickly and accurately as possible with target voxels highlighted in yellow. If non-

target voxels were selected, they were highlighted in red, while correctly selected voxels were

highlighted in green. Since participants were given a visual cue when voxels were incorrectly

selected, they were told that they could have a little bit of spilled paint if they had made a

reasonable attempt. This was mentioned to prevent participants from redoing their paint until

they had made a perfect selection. Giving participants visual feedback also mitigates the

advantage a user with knowledge of anatomy and medical images may have over a naive user.

Participants were also shown the open-view functionality and demonstrations were given for

each technique. They were also given a few minutes to practice with each interface before

beginning the trials. The surface brush, blob tool, and screen brush were tested on the kidney

79

transplant, sternum, and vertebra datasets. The blob region grow tool was tested on the kidney

transplant, aneurysm, and double vertebra. Two trials were performed for each target object. The

first trial for each dataset was used for practice and its results were discarded. However,

participants were not told this information and performed both trials as quickly and accurately as

possible. The order of the techniques the participants used followed a round robin approach

except for the region grow technique always being last. For example, the first participant would

conduct trials in the order of screen brush, surface brush, blob tool and blob region grow tool.

The second participant would be blob tool, screen brush, surface brush, and blob region grow

tool. The third participant would be surface brush, blob tool, screen brush and blob region grow

tool, and so on. This round robin approach to testing was done to insure no selection technique

had a learning advantage over other. The region grow technique was exempt from this because it

was a semi-automatic segmentation technique that used the blob tool interface and we didn’t

want it to influence participants performance and answers on the questionnaire with respect to

the purely geometric selection techniques. Participants were also allowed to undo/redo any of the

selections during a trial and once they felt they had completed their task, they could press a finish

button to begin the next trial. Once participants had completed the trials for the screen brush,

surface brush, and blob tool they were given a questionnaire to evaluate their level of satisfaction

for each tool they had used. Once they had finished evaluating the three tools they were asked to

perform the blob region grow tool trials and finish the questionnaire.

80

4.2.1.1 Kidney Results

Table 4.1: Numerical values of the average task completion time (in seconds) for each selection

technique on the kidney dataset. Error calculated with a 95% confidence interval.

Figure 40: Average task completion time (in seconds) for each selection technique on the kidney

dataset. Error calculated with a 95% confidence interval.

For the kidney dataset (Figure 40, Table 4.1), many participants struggled with positioning the

blob tool in depth using the translation handles. This may indicate that the current

implementation of the translation handles wasn’t providing enough of a visual depth cue and/or

intuitive positioning control. Participants instead preferred to use the surface brush’s mouse

wheel functionality in painting-plane mode for translating the brush in depth based on the camera

view. The average completion time reflects this issue as the blob tool took an average of 122

seconds to complete with a 39 second variance calculated at a 95% confidence interval, while the

81

surface brush’s average completion time was 96 seconds with a 25 seconds variance calculated at

a 95% confidence interval. The average completion time for the screen brush was 69 seconds and

participants did better than the two previous techniques due to the kidney’s relatively compact

area of interest and few surrounding objects. These traits allowed participants to quickly select

the kidney while also limiting the amount of spilled paint, thus lowering erasing time

significantly.

4.2.1.2 Sternum Results

Table 4.2: Numerical values of the average task completion time (in seconds) for each selection

technique on the sternum dataset. Error calculated with a 95% confidence interval.

Figure 41: Average task completion time (in seconds) for each selection technique on the

sternum dataset. Error calculated with a 95% confidence interval.

82

The sternum dataset (Figure 41, Table 4.2) was the easiest object to select for participants with

an average completion time of 25 seconds for the surface brush, 48 seconds for the blob tool, and

61 seconds for the screen brush. The screen brush performed poorly because there are many

objects hidden behind the sternum which resulted in participants having to repeatedly rotate the

view and perform erasing actions to remove spilled paint. It was predicted that the surface brush

would be simple to use for the sternum selection. Using the mouse, the surface brush could easily

slide along the sternum’s exposed surface and only a few resize operations were needed as the

sternum had a fairly consistent thickness. The surface brush was therefore the fastest technique.

On the other hand, because of the ease of applying the surface brush to the sternum, it was

observed that participants seemed reluctant to rotate the view to check for spilled paint and undo

the paint blob or resize the brush before applying it. This reluctance resulted in a rather poor

selection accuracy, with an F1 score of 0.79.

Like the surface brush, one option for positioning the blob tool is to simply click on the sternum

surface point and the blob tool would automatically jump to that point. However, instead of

using a smaller blob size and quickly painting multiple times with this fast positioning capability,

many participants opted to use the resize widget handles to make nicely shaped blob to paint the

sternum in the fewest paint actions possible. This strategy resulted in slower selection times than

the surface brush. However, this strategy is perhaps not unexpected as the idea of the widget

interface is the handles suggest their function and operation to the user. Furthermore, while the

resizing approach to selection resulted in a higher average completion time, it also produced a

significantly higher F1 score with the blob tool F1 score of 0.97 versus surface brush’s F1 score

of 0.79. Figure 42 illustrates a random participant’s selection results for the sternum dataset.

83

Figure 42: The front, top, and back view of a randomly selected participant’s selection results

for the sternum dataset. The green highlight represents correctly selected voxels, the yellow

highlight represents target voxels, and the red highlight represents incorrectly selected voxels.

4.2.1.3 Vertebra Results

Table 4.3: Numerical values of the average task completion time (in seconds) for each selection

technique on the vertebra dataset. Error calculated with a 95% confidence interval.

84

Figure 43: Average task completion time (in seconds) for each selection technique on the

vertebra dataset. Error calculated with a 95% confidence interval.

The vertebra dataset (Figure 43, Table 4.3) was the most difficult selection task for the surface

brush because the dimensions and orientation of the vertebra required the participants to resize

and rotate the brush to match it closely. The surface brush used a GUI slider-based brush resize

and brush orientation controls on a panel closely adjacent to the volume rendering window. It

was observed that participants struggled to connect their GUI slider resize actions to the brush

resizing. For example, participants would often lose track of the orientation of the width, height,

and depth resize sliders after a rotation slider had been used and this resulted in participants

having to test each resize slider again to reorient themselves. This disconnect between the GUI

sliders and their effect on the brush seemed to frustrate most of the participants and resulted in a

premature termination of the vertebra selection task when using the surface brush. Consequently,

the F1 accuracy score was 0.82 with an average completion time of 93 seconds.

85

The blob tool fared much better as the resize handles provided an excellent visual orientation

cue. When a user uses the rotation handles to orient the blob, the resize handles are also

reoriented to remove any confusion on how a handle interacts with the blob’s current state. The

use of the resize handles allowed participants to accurately select the vertebra and resulted in an

F1 score of 0.94 with an average completion time of 70 seconds. However, the screen brush had

the fastest average completion time of 57 seconds due to the small size of the vertebra and the

few surrounding objects. These two traits allowed the user to select the vertebra with minimal

spilled paint which resulted in a low editing time and an F1 score of 0.92. Figure 44 illustrates a

random participant’s selection results for the vertebra dataset.

Figure 44: The side, front, and back view of a randomly selected participant’s selection results

for the vertebra dataset. The green highlight represents correctly selected voxels, the yellow

highlight represents target voxels, and the red highlight represents incorrectly selected voxels.

86

4.2.2 Part II: Blob region grow tool

4.2.2.1 Aneurysm Results

Table 4.4: Numerical values of the average task completion time (in seconds) and F1 score for

the aneurysm dataset. Error calculated with a 95% confidence interval.

Figure 45: Average task completion time (in seconds) and F1 score for the aneurysm dataset.

Error calculated with a 95% confidence interval.

The aneurysm dataset (Figure 45, Table 4.4) was selected to evaluate the usefulness of our 3D

widget-based UI for the blob region grow tool. The goal was to determine if the widget handle

UI improved selection performance and user satisfaction when compared to a region grow

technique with a more standard and simpler mouse-based UI. With the standard mouse-based UI,

users began by selecting an initial seed voxel. Then, by simply moving the mouse away or back

towards this seed voxel position, the selected region expands or contracts uniformly in all

87

directions. That is, the selected region has a spherical shape only – unlike the super-ellipsoid

blob region grow tool. This simple but often effective UI design was patterned off the region

grow tool of the publicly available LiveVolume [8] volume rendering software system.

In order to test the hypothesis that a widget based, super-ellipsoid constrained UI would have

superior performance, we chose a target object that could, in theory, be easily selected by the

standard region grow tool by naïve users. That is, rather than choosing a more complex-shaped

target object that might bias the experiment toward the more flexible UI of the widget-based blob

region grow tool. The aneurysm (Figure 46) has a relatively spherical shape that can be selected

in a single grow interaction if the initial seed voxel is carefully chosen. However, all participants

were unable to do so, due to poor initial seed placement. Without the extra controls provided by

the widget handles, accurate selection depended on the initial seed placement and editing the

selection with a uniform grow in all directions resulted in “paint” spilling onto connected non-

target structures. Conversely, with the widget-based blob region grow tool, participants were

able to place the initial seed point anywhere in the dataset and quickly adjust the selected region

boundaries independently on six sides using the widget handles. As a result, users performed

much better with the widget-based blob region growing tool with an average completion time of

36 seconds and an average F1 score of 0.95. In comparison, the standard region grower’s average

completion time was 59 seconds and average F1 score of 0.92. In a questionnaire asking

participants to name their favorite UI between the two region grow tools, the blob region grow

tool was unanimously the favorite. Participants commented that the widget handles were

intuitive and added flexibility.

88

Figure 46: A comparison of a standard region grow tool and blob region grow tool. Left:

Standard region grow control that grows/shrinks uniformly in all directions based on mouse

movement. Middle: blob region grow that can be resized independently using the widget handles.

Right: A participant’s selection results for the aneurysm dataset using the blob region grow tool.

The green highlight represents correctly selected voxels, the yellow highlight represents target

voxels, and the red highlight represents incorrectly selected voxels.

4.2.2.2 Double Vertebra

Table 4.5: Numerical values of the average completion time (in seconds) and F1 score for the

blob region grow tool on the double vertebra dataset. Error calculated with a 95% confidence

interval.

The double vertebra dataset (Table 4.5) was only tested with the blob region grow tool due to

time constraints. However, further insight into the effectiveness of the widget interface was

gleaned. All blob region grow experiments were conducted last and therefore resulted in a lower

learning curve for participants due to their experience in the previous trials with the widget

89

interface. To counter this advantage, participants were asked to select two vertebrae with the

blob region grow tool. However, although most participants accurately selected the surface of

each vertebra using the blob region grow tool, unfortunately voxels inside the vertebra were

missed resulting in an F1 accuracy score of 0.88. This is a potential problem with region

growing, as mentioned previously, as it selects voxels within a specified range that are connected

to the initial seed voxel. Many objects have a large intensity variation in their interior, resulting

in disconnected islands of valid voxels. Nonetheless, it is interesting to note that both vertebras

were selected with an average completion time of 93 seconds. Therefore, a single vertebra was

selected in roughly 47 seconds (50% of 93) – which is considerably lower than the fastest

technique in the single vertebra experiment (57 seconds using the screen brush).

4.2.2.3 Blob region grow tool vs Blob tool, Surface brush, and Screen Brush

Table 4.6: Numerical values of the average task completion time (in seconds) for each selection

technique on the kidney dataset with blob region grow tool included. Error calculated with a

95% confidence interval.

90

Figure 47: Average task completion time (in seconds) for each selection technique on the kidney

dataset with blob region grow tool included. Error calculated with a 95% confidence interval.

One experiment was performed to compare the blob region grow tool with the purely geometric

region selection tools using a single anatomical structure – the kidney transplant. While the blob

region grow tool is somewhat different in nature than the geometric tools in that it selects

connected sets of voxels starting from a seed voxel, it was nonetheless deemed useful to gain

further insight into the widget-based UI and into the region-grow tool (Figure 47, Table 4.6). As

mentioned previously, to create a user study for naïve users, the target ROIs used in the study

were all single anatomical structures (i.e. consisting of connected voxels). Therefore, it was

expected that the blob region grow tool would outperform the other tools for these structures, at

least in terms of selection time. Indeed, the blob region grow tool resulted in the fastest selection

time with an average completion time of 55 seconds and a variance of 16 seconds calculated at a

95% confidence interval. Participants primarily used the resize widget handles to quickly grow

the selected voxels into the entire kidney. As the region growing algorithm doesn’t grow on

already selected voxels, participants also would often perform smaller region grow selections

91

and use them as boundaries to perform a large selection on the entire kidney without “spilling”

paint into surrounding areas. When selecting connected sets of voxels, the blob region grow tool

has an inherent advantage as it lowers the importance of having to position the blob accurately to

select the target region. Most geometric-based techniques require more precise positioning.

Furthermore, often participants opted to ignore the translation handles of the blob region grow

tool completely and exclusively use the resize widget handles. This interaction strategy

dramatically reduced the average selection completion time and may suggest that the resize

handles are more effective in general for selection tasks as the handles (and hence the blob

resizing) can be controlled independently on each side and therefore can also act secondarily to

translate the blob. Unfortunately, a weakness of the blob region grow tool is that it may miss

voxels underneath the surface and resulted in a F1 score of 0.92. However, if voxels beneath the

surface is not important, the blob region grow tool is just as effective as the blob tool and screen

brush at capturing the shape of an object. Interestingly, the accuracy of the surface brush also

suffered the same issues as the blob region grow tool due to user’s reluctance to resizing the

brush to encapsulate entire regions (F1 score of 0.91). Users instead opted to paint multiple blobs

along the surface of the kidney with a relatively small brush which resulted in voxels underneath

the surface of the kidney to be missed. The accuracy of the blob tool (F1 score of 0.98) didn’t

suffer this issue due to user’s preference of using the blob tool’s widget resize handles to

encapsulate entire sections of the kidney before painting.

4.2.3 Questionnaire Results

After the trials for each tool were completed, participants were asked to fill out a questionnaire to

evaluate their level of satisfaction for each technique. Each question was rated on a 7-point

92

Likert scale with a 1 indicating the lowest level of satisfaction and a 7 representing the highest.

Users were also asked to pick their favorite technique before and after the introduction of the

blob region grow tool (Figure 48,49). Before the introduction of the blob region grow tool

participants generally favored the screen brush as it provided a simple and familiar interface for

the selection tasks. The blob tool came in second as users with gaming or 3D modeling

experience were familiar with the handle-based controls. The surface brush was the favorite for

users that preferred to only use the more direct mouse-dominant surface sliding interface. It was

observed that these users generally struggled with spatial awareness as well as coordinating

between the mouse and keyboard, which put the other techniques at a disadvantage. Participants

overwhelmingly favored the blob region grow tool once it was introduced. The intuitive blob

tool interface combined with the region-grow functionality allowed users to quickly and

accurately select a single object ROI. The least favorite technique was the surface brush (Figure

50), most likely due to having the brush size and shape controls on a separate GUI panel, which

frustrated users in tasks where the brush required resizing and/or reorienting. This result was

expected for these tasks as the surface brush, as mentioned, is a more direct manipulation

technique for positioning and automatic orientation. However, the cost of this direct-

manipulation capability is the difficulty of integrating resizing and orientation fine tuning into

the interface. Several special keys can be used and combined with mouse movement or the

mouse scroll wheel, but the resulting UI is rather clumsy and requires memorizing the keys. On

the other hand, when using the surface brush painting-plane mode, the functionality of using the

mouse wheel to move the brush in depth, dependant on the user’s view, was well received and

should be incorporated into the blob tool in future work. Each technique was also evaluated on

how easy it was to learn (Figure 51), how easy it was to control (Figure 52), and how easy it was

93

to select objects (Figure 53). Participants found the screen brush easiest to learn with an average

score of 6.29 followed by the blob region grow tool at 5.66, the surface brush at 5.31, and the

blob tool at 5.06. For control, participants preferred the screen brush with an average score of

6.47 followed by the blob region grow tool at 6, the surface brush at 5.12, and the blob tool at

4.87. For selection, the screen brush came out on top again with an average score of 6 followed

by the blob region grow tool at 5.91, blob tool at 5.12, and surface brush at 4.5. Interestingly,

participants rated the blob tool relatively poorly when compared to the widget blob region grow

tool even though they both shared the same interface. This difference in rating may have resulted

from users performing the blob region grow tool trials last and thus giving them an experience

advantage. Generally, the open-view functionality was well received and was rated on how

helpful the functionality was for viewing and selecting hidden objects with an average score of

5.5 and 5.37 respectively (Figure 54). Lastly, our blob region grow tool was unanimously the

favorite when compared against a standard uniform region grower. Participants commented that

the widget handles were intuitive and added flexibility. These traits resulted in participants

selecting the aneurysm with an average completion time of 35.6 seconds and an average F1 score

of 0.95. Versus the uniform region grower’s average completion time of 59.25 seconds and

average F1 score of 0.92 (Figure 55).

94

Figure 48: Participant’s favorite technique excluding blob region grow tool.

Figure 49: Participant’s overall favorite selection technique.

95

Figure 50: Participant’s overall least favorite technique.

Figure 51: Participant’s rating on how easy each technique was to learn.

96

Figure 52: Participant’s rating on how easy it was to manipulate the tools into their desired

form via translating, resizing, or rotating.

Figure 53: Participant’s rating on how easy it was to manipulate the tools and select their

desired region of interest.

97

Figure 54: Participants rating on how useful open view was for selecting and viewing hidden

objects.

Figure 55: Participant’s favored region growing selection technique.

98

4.3 Additional Experiments

Additional experiments were performed to demonstrate the capabilities and flexibility of the

system in various volume image selection/exploration situations. All experiments were

performed in less than 5 minutes and a brief description and discussion of the selection process is

provided for each experiment.

4.3.1 Dilated Aorta Experiment

Figure 56: CT data set for a patient with a dilated aorta. Starting from the top left: 1. Set initial

minimum and maximum visibility settings to view aorta and surrounding structures without

losing any detail. 2. Create a ROI using the blob tool. 3. Add voxels selected in the ROI to the

accumulation grid. 4. Erase voxels from accumulation grid with screen brush. 5. Restore

original view. 6. Add open view to create various contextual views by changing the viewing

angle and visibility settings.

Figure 56 is a series of volume renderings of a CT data set (down-sampled to 256x256x170

voxels) for a patient with a dilated aorta. The goal was to select the aorta and create views to

allow it to be viewed in context and measured. In this experiment, a combination of the blob tool

99

and screen brush is used. The top left of Figure 56 shows a view of the dataset with a voxel

visibility range that removes as much of the surrounding information as possible, while also

maintaining the details of the aorta. A simple 1D TF was used to create this view. To remove the

remaining occluding objects, the blob tool was used to plant a series of blended blobs to roughly

isolate the region surrounding the aorta. A separate TF controlling the visibility of voxels outside

the ROI was then configured to hide all voxels. The selected voxels within the ROI were then

added to accumulation grid (Figure 56, top row, second from right) and unwanted voxels were

removed using the screen brush’s eraser function (Figure 56, top and bottom rows, right). Once

the segmentation of the aorta was complete, the voxel visibility range was adjusted to re-display

the surrounding context. An open-view lens was then added to create several contextual views,

each using a different lens shape. The open-view lens generates a cross-sectional view within the

heart region that allows users to more clearly view the aorta with respect to the heart. The open-

view lens can be reoriented and reshaped in real-time and if desired, the aorta itself can be cut in

two and its cross-section measured.

100

4.3.2 Aneurysm Experiment

Figure 57: Aneurysm selection experiment. Starting from the top left: 1. Set minimum and

maximum visibility to view aneurysm and surrounding structures. 2. Select aneurysm with blob

region growing tool and interactively adjust the blob to add connecting arteries. 3. Add selected

voxels to accumulation grid. 4. Add open-view lens to create various contextual views by

changing the viewing angle and visibility settings.

The region of interest for this CT dataset (down-sampled to 256x256x144) is the aneurysm and

the connected arteries (Figure 57). An aneurysm is an excessive localized enlargement of an

101

artery cause by a weakening of the artery wall. Like the previous experiment, an initial voxel

visibility intensity range was chosen that removes as much of the surrounding information as

possible without removing any important detail from the ROI. As the data set was relatively

clean (i.e. noise free), the blob region grow tool was used to initially select the aneurysm itself.

At this point, the aneurysm volume can be measured, if desired. The widget handles were then

used to resize the region grow blob to grow onto connecting arteries and the selected voxels were

added to the accumulation grid. The minimum voxel visibility range was then lowered to render

surrounding skin, muscles, and bones. A rectangular open-view lens was then added to create a

view that allows users to clearly see the aneurysm’s position in relation to various surrounding

structures. The open-view lens also allows the user to view the aneurysm from any angle and

quickly gain additional insight.

102

4.3.3 MRI Brain Tumor

Figure 58: MRI brain tumor selection experiment. Starting from the top left: 1. Set initial

minimum and maximum visibility settings to view brain tumor without losing any detail. 2. Select

tumor with blob region grow tool and add to accumulation grid. 3. Use blob tool and open view

to create various contextual views by changing the viewing angle and visibility settings.

This experiment uses a (down-sampled) 288x288x22 MRI scan and demonstrates how the

system can be used with nosier volume images to create effective views (Figure 58). In this case,

the object of interest is a tumor inside the brain with a very high intensity value. To select the

tumor, the minimum voxel visibility range was set to a high value and the blob region grow tool

was used to select and add the tumor to the accumulation grid. To create cross sections in the

brain, a rectangular blob tool was used with its minimum voxel visibility range was set to the

maximum value. Since voxels within the accumulation grid are not affected by the visibility

103

settings of the blob tool, it allows users to quickly create cross sections by translating, rotating,

or resizing the blob. This allows users to quickly ascertain the tumor’s position relative to other

objects within the dataset.

4.3.4 Hypernephroma Experiment

Figure 59: Hypernephroma exploration experiment. Starting from the top left: 1. Select kidneys

and connected arteries using the blob region grow tool and add selected voxels to accumulation

grid. 2. Adjust visibility settings via TF to view muscle and organs. 3. Add open-view lens to

create various contextual views by changing the viewing angle and visibility settings. The bottom

row starting from the left illustrates how open-view can be used to make cut surfaces: 1. Adjust

visibility settings to show kidneys. 2. Place a cubical open-view within kidney to create a cut

surface. 3. Adjust open-view size and placement to inspect kidney cross-section.

Hypernephroma is a common type of kidney cancer that begins in the lining of the renal tubules

of the kidney. This experiment is a 256x256x117 (down-sampled) CT scan and shows how our

system can be used to select the kidneys and its surrounding arteries, or as a tool to create cross

sections using an invisible rectangular blob to cut the kidney in half and view the cancer within.

104

Starting from the top left of Figure 59, the kidneys and its surrounding arteries were added to the

accumulation grid using the blob region grow tool. The minimum voxel visibility range was then

lowered to show muscles and organs. A rectangular open-view was also added to allow the user

to inspect the kidneys from various angles. The bottom row of Figure 59, starting from the left,

shows how a rectangular open-view can be used to create cross sections within the kidney to

view the pockets within and inspect the areas affected by the cancer.

4.3.5 Pulmonary Stent Experiment

Figure 60: Pulmonary stent experiment. From top left: 1. Create initial view of stent and lung

region using TF. 2. Increase minimum visible voxel intensity via TF to isolate the stent. 3. Use

blob tool and paint the stent region and add it to accumulation grid. 4. Use blob tool to create an

ROI around the stent and remove surrounding structures. 5. Add open-view lens to create

various views by changing the viewing angle and visibility settings.

105

A stent is a metal or plastic tube inserted into an airway or artery (the pulmonary artery in this

example) to keep it open. This experiment was conducted on a 512x512x308 CT scan and

demonstrates how our system can be used to select a stent and inspect its position within the

artery. Starting from the top left of Figure 60, the voxel visibility range was adjusted to view the

lungs, but unfortunately, the stent wasn’t clearly visible until the voxel intensity range was set to

a high value. As the surrounding area was clean, the blob tool was used to select the stent and the

selected voxels were added to the accumulation grid. The voxel visibility range was then lowered

to view the stent’s position around the heart and top of the lungs. To get a clearer view, the blob

tool was placed around the area of the stent and all outside voxels were removed. This allowed

the user to zoom in and create an enlarged view of the stent and its surrounding objects for

inspection. Voxels of lower intensity were then brought back, and an open view lens was added

to show cross-sectional views of the stent within the artery. These two techniques allow the user

to inspect the stent’s position relative to other objects and to potentially verify the stent was

correctly installed.

106

4.3.6 Kidney Transplant Experiment

Figure 61: Kidney transplant experiment. Starting from the top left: 1. Create initial view of

bones, arteries, and kidney transplant via TF. 2. Use blob tool to select the hipbone and kidney

transplant. 3. Use blob region grow tool to select the connected arteries and the kidney. 4. Use a

cubical shaped blob to create a cut away using the blob tool. 4. Create contextual views by

changing the viewing angle, blob size, and visibility settings to view the focus region in respect

to muscles or skin.

107

This experiment was conducted on a 256x256x296 (down-sampled) CT scan and showcases how

a user could create various contextual views for a kidney transplant. Starting from the top left of

Figure 61, the hip bone and its surrounding structures were selected using the blob tool and the

selected voxels were added to the accumulation grid. The remaining connecting arteries and

vertebrae were then selected using the blob region grow tool and were also added to the

accumulation grid. A rectangular blob tool was then placed over the accumulated paint and the

minimum voxel visibility range was set to reveal skin. The minimum voxel visibility range for

the blob was then set to the maximum value to hide all voxels within the blob that were not

within the accumulation grid. An open-view lens was then added and combined with various

blob sizes and visibility settings to create several contextual views.

108

Chapter 5: Conclusions and Future Work

In this thesis, a volume rendering system that uses super-ellipsoids to perform fast volume of

interest selection in medical images via a widget-based interface was presented. It accomplishes

this by providing users with a blob tool that can be intuitively translated, scaled, rotated, and

transformed. 3D paint, in the form of blended super-ellipsoids, can be deposited to form a well-

defined 3D ROI in which a separate transfer function can be applied. The ability to define an

area of interest with a separate transfer function using multiple complementary tools allows users

to quickly create effective contextual views by breaking the view generation problem into a

series of simple and intuitive geometrically-defined interactions. A real-time blob region grow

tool with a widget-based UI was described. A screen brush with a simple UI was also integrated

into our system as another complementary technique to select or erase regions. An open-view

auxiliary lens functionality was introduced as a method for quickly exploring and viewing

occluded objects. It accomplishes this by giving users the ability to create view-dependent

cutaway regions with a user-adjustable super-ellipsoid defined cap that is attached to the blob

tool. This functionality allows users to quickly customize the cutaway region shape to either

explore or view occluded objects in any situation. An accumulation grid was introduced to

combine the output of the intermediate selections resulting from the individual interactions.

Examples of this workflow were presented in a series of experiments in Chapter 4.

The effectiveness of the widget-based UI was quantitatively and qualitatively evaluated in a user

study. Users overwhelmingly preferred the widget-based blob region grow tool. The widget-

controlled blob tool performed satisfactorily and was the second most preferred geometric

109

selection technique after the screen brush. Observations and feedback from the user study

showed that participants had trouble positioning the blob tool in depth and identifying the blob’s

axis of rotation. This implied that the widget handles for translation and rotation weren’t

providing enough control and visual depth cue and therefore may have negatively impacted

results. Improvement to the widget handle design is planned in future work. The advantage of

widgets for manipulating the blob is that they are data independent and can be applied to any

volume image and any selection scenario. In addition, they are a simple and convenient

mechanism for exploring a volume by controlling the position and size of the preview blob.

Finally, they are also a powerful UI for precisely controlling and steering a region-grow blob.

Surface brushes, on the other hand, are somewhat data dependent and therefore noise sensitive as

they slide around on data iso-surfaces. One is often forced to switch back and forth between

sliding on data iso-surfaces or a painting plane depending on the selection scenario. When to

perform this mode switching is often not apparent. The screen brush is a simple and effective

selection tool for many selection scenarios. However, there are also many selection scenarios

where it is difficult or impossible to find a view that allows for the separation of target regions

and surrounding regions. In addition, the screen brush is best suited for selection only and unlike

the blob tool, is not amenable to volume exploration due to its lack of depth control and its heavy

dependence on volume rotation.

The experiments performed in this thesis attempt to demonstrate the effectiveness of a system for

generating effective contextual views by providing multiple, intuitive ROI selection tools that

can be combined in a serial fashion. The tools are coherently based around the use of a super-

ellipsoid and a single unifying widget-based interface. The blend-able super-ellipsoid blobs

110

complement a transfer function based UI in a volume rendering system by supporting separate,

and potentially simpler, TFs for the region inside the blobs and for the context region outside.

Feedback from participants is promising, and further improvements and additional capabilities

can be made to increase the usability and flexibility of the system.

5.2 Future Work

5.2.1 Improved Widget Handles

Figure 62: The translation, rotation, and scale widget handles provided in Unreal Engine 4.

The user study in Chapter 4 suggested that the widget handles weren’t providing enough ease of

use, positioning control and visual depth cue and this may have negatively impacted the

performance of the blob tool. In particular, users had trouble positioning the blob in depth and

rotating it. Game engine and 3D modelling software designers have had many years of

experience and design iterations to address a similar object positioning problem in 3D views. For

111

example, the transformation widget used in Unreal Engine 4 (Figure 62) is a possible

replacement to the widget handle design in this thesis, especially for blob rotation. The rotation

handle suggests its operation and the required mouse movements are easy to perform. In general,

the advantages of a widget-based UI, demonstrated in part by its widespread and continued use

in virtually all 3D modeling and game engine software, warrant further investigation into

alternative handle designs.

5.2.2 Transfer Function Editor

Currently our system uses two sliders to determine the minimum and maximum visible voxel

intensity range. These two sliders represent a simple step function in the alpha channel, with

anything outside the range set to 0 and everything within it set to 1. While the simplicity of our

current implementation allows users to quickly create contextual views, it also limits the

flexibility of our system. Although potentially time consuming, the ability to create custom

transfer functions gives users the ability to finely tune voxel visibility rules to handle any

situation and potentially improve selection algorithm performance. For ideas, the transfer

function editors of other popular medical volume rendering software like 3D slicer, ImageVis3D,

and LiveVolume were evaluated. The transfer function editor used in LiveVolume was chosen

for its simple and intuitive design and future implementations of our transfer function editor will

emulate its design.

112

5.2.3 Accumulation Grid Super-Ellipsoid Field

Figure 63: An illustration of using the gradient of the blob field values for normals versus using

the gradient of grid values in the accumulation grid. The left two images show the normals

produced at the boundaries of a blob. The right two images show the boundary normals

produced by the values in the accumulation grid.

One issue with the accumulation grid is that the super-ellipsoid parameters and associated

parametric equations that define a ROI are not currently utilized to compute an accurate normal

vector for voxels on the boundary of a selected ROI. In the current implementation, normal

vectors for these boundary voxels are roughly approximated from the binary values of the

accumulation grid and results in the blocky appearance shown in the right most images in Figure

63. However, each voxel within the accumulation grid also stores an ID of the blob (or blended

blobs) associated with it. In future work, to conserve the normals shown on the left most images

in Figure 63, the blob parameters associated with an ID will be used to calculate accurate normal

vectors for voxels inside an object (i.e. not surface voxels) that are on blob boundaries.

113

References

[1] P. Ljung, J. Kruger, E. Groller, M. Hadwiger, C. Hansen and A. Ynnerman, "State of the

Art in Transfer Functions for Direct Volume Rendering," Computer Graphics Forum, vol.

35, pp. 669-691, 2016.

[2] F. Heckel, O. Konrad, H. Hahn and H. Peitgen, "Interactive 3d medical image

segmentation with energy-minimizing implicit functions," Computers & Graphics, vol. 35,

no. 2, pp. 275-287, 2011.

[3] G. Hamarneh, J. Yang, C. Mcintosh and M. Langille, "3D live-wire-based semi-automatic

segmentation of medical images," in SPIE Medical Imaging: Image Processing 5747,

2005.

[4] M. Aliroteh and T. McInerney, "Sketchsurfaces: Sketch-line initialized deformable

surfaces for efficient and controllable interactive 3d medical image segmentation," in

Advances in Visual Computing. ISVC07. Lecture Notes in Computer Science, 2007.

[5] L. Faynshteyn and T. McInerney, "Context-preserving volumetric data set exploration

using a 3d painting metaphor," in Advances in Visual Computing. ISVC 2012. Lecture

Notes in Computer Science, 2012.

[6] G. Bonneau, T. Ertl and G. Nielson, "Generalizing Focus+Context Visualization," in

Scientific visualization: The visual extraction of knowledge from data, G. Bonneau, T. Ertl

and G. M. Nielson, Eds., Springer, 2006, pp. 305-327.

[7] H. Chen, F. Samavati and M. Sousa, "GPU-based point radiation for interactive volume

sculpting and segmentation," Visual Computer, vol. 24, no. 7, pp. 689-698, 2008.

[8] "LiveVolume," [Online]. Available: www.livevolume.com. [Accessed 1 june 2017].

[9] Developers, The community of Slicer, "3DSlicer," [Online]. Available: www.slicer.org.

[Accessed 2017].

[10] M. Hadwiger, P. Ljung, C. R. Salama and T. Ropinski, "Advanced Illumination

Techniques for GPU volume raycasting," in ACM Siggraph Asia 2008 courses, Singapore,

2008.

114

[11] K. Engel, M. Kraus and T. Ertl, "High-quality pre-integrated volume rendering using

harware-accelerated pixel shading," in ACM SIGGRAPH/EUROGRAPHICS workshop on

Graphics Hardware - HWWS'01, 2001.

[12] Computing, NIH/NIGMS Center for Integrative Biomedical, "ImageVis3D," [Online].

Available: http://www.sci.utah.edu/cibc/software/41-imagevis3d.html. [Accessed 24

November 2011].

[13] Pixmeo, "OsiriX DICOM Image Library," [Online]. Available: http://www.osirix-

viewer.com. [Accessed 24 November 2011].

[14] S. Song, Y. Zheng and Y. He, "A review of Methods for Bias Correction in Medical

Images," Biomedical Engineering Review, vol. 1, no. 1, 2017.

[15] J. Kniss, G. Kindlmann and C. Hansen, "Multidimensional transfer functions for interactive

volume rendering," IEEE Transactions on Visualization and Computer Graphics, vol. 8,

no. 3, pp. 270-285, 2002.

[16] G. Kindlmann, R. Whitaker, T. Tasdizen and T. Moller, "Curvature-based transfer

functions for direct volume rendering: methods and applications," in 14th IEEE Conference

on Visualization (VIS'03), Seattle, WA, USA, 2003.

[17] M. Haidacher, D. Patel, S. Bruckner, A. Kanitsar and M. E. Groller, "Volume visualization

based on statistical transfer-function spaces," in Pacific Visualization Symposium

(PacificVis'10), Taipei, 2010.

[18] C. Correa and M. Kwan-Liu, "Size-based Transfer Functions: A New Volume Exploration

Technique," IEEE Transactions on Visualization and Computer Graphics, vol. 14, no. 6,

pp. 1380-1387, 2008.

[19] F. Y. Tzeng and K. L. Ma, "A cluster-space visual interface for arbitrary dimensional

classification of volume data," in Eurographics VGTC Symposium on Visualization

(VisSim'04), Norkoping, Sweden, 2004.

[20] F. Y. Tzeng, E. B. Lum and K. L. Ma, "An intelligent system approach to higher-

dimensional classification of volume data," IEEE Transactions on Visualization and

Computer Graphics, vol. 11, no. 3, pp. 273-284, 2005.

115

[21] J. Diepstraten, D. Weiskopf and T. Ertl, "Transparency in Interactive Technical

Illustrations," Computer Graphics Forum, vol. 21, no. 3, pp. 317-325, 2002.

[22] J. Kruger, J. Schneider and R. Westermann, "ClearView: An Interactive Context

Preserving Hotspot Visualization Technique," IEEE Transactions on Visualization and

Computer Graphics, vol. 12, no. 5, pp. 941-948, 2006.

[23] S. Bruckner, S. Grimm, A. Kanitsar and M. E. Gröller, "Illustrative Context-Preserving

Exploration of Volume Data," IEEE Transactiuons on Visualization and Computer

Graphics, vol. 12, no. 6, pp. 1559-1569, 2006.

[24] C. Correa and K. Ma, "The occlusion spectrum for volume classification and

visualization," IEEE Transactions on Visualization and Computer Graphics, vol. 15, no. 6,

pp. 1465-1472, 2009.

[25] J. Zhou, A. Döring and K. Tönnies, "Distance Based Enhancement for Focal Region Based

Volume Rendering," in Bildverarbeitung für die Medizin 2004, Berlin, 2004.

[26] I. Viola and E. Gröller, "Smart Visibility in Visualization," in First Eurographics

Conference on Computational Aesthetics in Graphics, Visualization and Imaging, Girona,

Spain, 2005.

[27] E. Monclus, J. Dıaz, I. Navazo and P. Vazquez, "The virtual magic lantern: an interaction

metaphor for enhanced medical data inspection," in The 16th ACM Symposium on Virtual

Reality Software and technology, Kyoto, Japan, 2009.

[28] Y. Luo, J. Guitián, E. Gobbetti and F. Marton, "Context preserving focal probes for

exploration of volumetric medical datasets," in 2009 International Conference on

Modelling the Physiological Human (3DPH'09), 2009.

[29] T. Ropinski, F. Steinicke and K. Hinrichs, "Tentative results in focus-based medical

volume visualization," in 5th International Symposium on Smart Graphics (SG06), 2005.

[30] A. Tappenbeck, B. Preim and V. Dicken, "Distance-based transfer function design:

Specification methods and applications," in Simulation and Visualization (SimVis06), 2006.

[31] C. Kirmizibayrak, "Interactive Volume Visualization and Editing Methods for Surgical

Applications," Washington, DC, 2005.

116

[32] M. Burns, M. Haidacher, W. Wein, I. Viola and E. Gröller, "Feature emphasis and

contextual cutaways for multimodal medical visualization," in 9th Joint Eurographics/

IEEE VGTC conference on Visualization (EUROVIS'07), Aire-la-Ville, Switzerland, 2007.

[33] S. Bruckner and M. Gröller, "Volumeshop: an interactive system for direct volume

illustration," in 16th IEEE Conference on Visualization (VIS'05), Baltimore, MD, 2005.

[34] N. Radeva, L. Levy and J. Hahn, "Generalized Temoral Focus+Context Framework for

Improved Medical Data Exploration," Journal of Digital Imaging, vol. 27, pp. 207-219,

2014.

[35] A. Norouzi, M. Rahim, A. Altameem, T. Saba, A. Ehsani Rad, A. Rehman and M. Uddin,

"Medical Image Segmentation Methods, Algorithms and Applications," IETE Technical

Review, vol. 31, pp. 199-213, 2014.

[36] T. McInerney and D. Terzopoulos, "Deformable models in medical image analysis: A

survey," Medical Image Analysis, vol. 1, no. 2, pp. 91-108, 1996.

[37] E. Smistad, T. Falch, M. Bozorgi, A. Elster and F. Lindseth, "Medical image segmentation

on GPUs - A comprehensive review," Medical Image Analysis, vol. 20, no. 1, pp. 1-18,

2015.

[38] S. Owada, F. Nielsen and T. Igarashi, "Volume catcher," in 2005 Symposium on Interactive

3D Graphics and Games (I3D'05), New York, NY, 2005.

[39] G. Pintilie and T. McInerney, "Interactive Cutting of the Skull for Craniofacial Surgical

Planning," in IASTED Biomedical Engineering (BioMed2003), 2003.

[40] L. Yu, K. Efstathiou, P. Isenberg and I. T, "Efficient structure-aware selection techniques

for 3D point cloud visualization with 2DOF input," IEEE Transactions on Visualization

and Computer Grpahics, vol. 18, no. 12, pp. 2245-2254, 2012.

[41] G. Shan, M. Xie, Y. Gao and X. Chi, "Interactive visual exploration of halos in large-scale

cosmology simulation," Journal of Visualization, vol. 17, no. 3, pp. 145-156, 2014.

[42] A. Falcão and J. Udupa, "A 3D generalization of user-steered live wire segmentation,"

Medical Image Analysis, vol. 4, no. 4, pp. 389-402, 2000.

117

[43] T. McInerney and Y. Shih, "Sketch-line interactions for 3d image visualization," in

Advances in Visual Computing, Lecture Notes in Computer Science, 2012.

[44] T. Igarashi, S. Matsuoka and H. Tanaka, "Teddy: a sketching interface for freeform

design," in ACM SIGGGRAPH 2007 courses, New York, 2007.

[45] D. Weiskopf, K. Engel and T. Ertl, "Interactive clipping techniques for texture-based

volume visualization and volume shading," IEEE Transactions on Visualization and

Computer Graphics, vol. 9, no. 3, pp. 298-312, 2003.

[46] R. Huff, C. Dietrich, L. Nedel, C. Freitas, J. Comba and S. Olabarriaga, "Erasing, digging

and clipping in volumetric datasets with one or two hands," in Virtual Reality Continuum

and its Applications (VRCIA), 2006.

[47] O. Bernhard, B. Preim and A. Littmann, "Virtual resection with a deformable cutting

plane," in Proceedings of Simulation und Visualisierung, Magdeburg, Germany, 2004.

[48] M. McGuffin, L. Tancau and R. Balakrishnan, "Using deformations for browsing

volumetric data," in IEEE Visualization, 2003.

[49] C. Correa, D. Silver and M. Chen, "Constrained illustrative volume deformation,"

Computer Graphics, vol. 34, no. 4, pp. 370-377, 2010.

[50] A. Birkeland and I. Viola, "View-dependent peel-away visualization for volumetric data,"

in Spring conference on computer graphics (SCCG), 2009.

[51] V. Soltészova, M. Termeer and M. Gröller, "Advanced volume painting with game

controllers," in 25th Spring Conference on Computer Graphics (SCCG'09), Budmerice,

Slovakia, 2009.

[52] H. Guo and X. Yuan, "Local WYSIWYG volume visualization," in IEEE Pacific

Visualization Symposium (PacificVis 2013), 2013.

[53] H. Chen, F. Samavati, M. Sousa and J. Mitchell, "Sketch-based volumetric seeded region

growing," in Third Eurographics conference on Sketch-based Interfaces and Modeling

(SBM'06), Aire-la-ville, Switzerland, 2006.

[54] K. Shoemake, "Arcball: a user interface for specifying three-dimensional orientation using

a mouse," in Graphics Interface (GI 92), 1992.

118

[55] D. Norman, The Design of Everyday Things: Revised and Expanded Edition, Basic Books,

2013.

[56] G. Wyvill, C. McPheeters and B. Wyvill, "Data structure for soft objects," The Visual

Computer, vol. 2, no. 4, pp. 227-234, 1986.

[57] M. Tigges, M. Carpendale and B. Wyvill, "Generalized distance metrics for implicit

surface modelling," in Tenth Western Computer Graphics Symposium, 1999.

[58] A. Ricci, "A constructive geometry for computer graphics," The Computer Journal, vol.

16, no. 2, pp. 157-160, 1973.

[59] L. Yu, K. Efstathiou, P. Isenberg and T. Isenberg, "CAST: Effective and Efficient User

Interaction for Context-Aware Selection in 3D Particle Clouds," IEEE Trans. Vis. Comput.

Graph., vol. 22, no. 1, pp. 886-895, 2016.

[60] American Psychological Association, "Publication manual of the American Psychological

Association (6th ed.)," APA, Washington, DC, 2010.

[61] S. Zachow, E. Gladilin, R. Sader and H. Zeilhofer, "Draw and cut: intuitive 3D osteotomy

planning on polygonal bone models," in Computer Assisted Radiology and Surgery, 2003.

[62] M. Christie, P. Olivier and J. Normand, "Camera control in computer graphics," Computer

Graphics Forum, vol. 27, pp. 2197-2218, 2008.

