Ryerson University

Digital Commons @ Ryerson

Theses and dissertations

1-1-2004

Modeling and simulation of reconfigurable systems
with applications to the polishing process

Qiang (John) Sun

Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations

b Part of the Mechanical Engineering Commons

Recommended Citation

Sun, Qiang (John), "Modeling and simulation of reconfigurable systems with applications to the polishing process" (2004). Theses and
dissertations. Paper 57.

This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by

an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/57?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

MODELING AND SIMULATION OF
RECONFIGURABLE SYSTEMS WITH
APPLICATIONS TO
THE POLISHING PROCESS

Qiang (John) Sun
MASec, Huazhong University of Science and Technology, Wuhan, Hubei, China, 1989

BEng, Huazhong University of Science and Technology, Wuhan, Hubei, China, 1986

A thesis
presented to Ryerson University
In partial fulfillment of the requirement for the degree of
Master of Applied Science
in the Program of
Mechanical Engineering
Toronto, Ontario, Canada, 2004

© Qiang (John) Sun 2004

i~i

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliotheque nationale
du Canada

Acquisisitons et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-94227-9
Our file Notre référence
ISBN: 0-612-94227-9

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this dissertation.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the
dissertation.

| Lol]

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de ce manuscrit.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Borrower's Page

Ryerson University requires the signatures of all persons using or photocopying this

thesis. Please sign below, and give address and date.

iii

Abstract

Modeling and Simulation of Reconfigurable Systems with

Applications to the Polishing Process

Qiang (John) Sun
MASc

Ryerson University, Toronto, Ontario, Canada

2004

This thesis presents a newly developed system for simulation and control of
reconfigurable machines and applications in the polishing process. A software package
is developed that consists of the Varying Topology Simulation and Control System
(VT-Sim) as well as the Polishing CAM (P-CAM) software system.

VT-Sim can simulate and control reconfigurable machines of serial or tree
structures. It is developed based on mechatronic modules, each of which has a graphic
user interface that can be connected to a physical module. The selected modules are
linked through a graph-based topology design platform to generate an assembled

system together with the equations for simulation and control.

P-CAM can simulate and generate CNC codes for the polishing process. The
roughness of the polished parts is simulated for selected polishing parameters. Once

satisfied, polishing tool paths can be generated and visualized.

Keywords: Reconfigurable, Kinematics, Multi-body System, Simulation, Control,

Topology Design, Modules, and Polishing.

iv

Acknowledgements

First of all, I would like to thank Dr. Fengfeng (Jeff) Xi, my supervisor, for his
magnificent instruction and help in a deep sense. Anytime when facing difficulties, I
knew I could count on his strong theoretical background, deep understanding and
excellent analytical ability. I am very proud of working under his supervision. I

sincerely appreciate his passion, knowledge, and foresight.

I would like to thank Dr. Chang Shu from the National Research Council of Canada
(NRC) for his generous help during the development of the algorithms for P-CAM
during my thesis work. I would like to acknowlege the full cooperation of Mr. Zhiwei
(Steven) Yang, a graduate student of Ryerson University and my classmate, in the
project. I am very proud of having such a wonderful partner. I would like to thank
Chinese visitor scholar, Professor Yongnan Xu, from East JiaoTong University for his

help.

I would also like to thank Mr. Ryan Shirley for assistance in the experimental set
up and Mr.Garreth Coelho for the connector design. Both are fourth year students in the

Department of Mechanical, Aerospace and Industrial Engineering of Ryerson

University.

I would like to give special thanks to my wife Susan, who has been so supportive

and encouraging throughout my thesis work.

I would like to express my gratitude to Ryerson University for its bounteous

scholarship.

Contents

DECLARATIONciiiiiiiinininininniisnnniniiseeissmssasniesmsasssssnes . Al
BORROWER'S PAGE.....cirencensinisnnsisisnnsssssessmsissssmsiisssssssssssssossssssssssss I
ABSTRACT v
ACKNOWLEDGEMENTScoiciiiereinnsimercsisssresssnsessessssssessssssasasssssesssnsssssrasssssnassssssassesssnssassssas A%
CONTENTS VI
FIGURES VI
TABLES IX
1 INTRODUCTION tresteterrres st satssabsasent s asasssb e as 1
1.1 BACKGROUNDcoiitiiictieteeeeiettioresreebesseeesteassenssesesesesasssessseesssesssssnaeessseenssansssansessssssseesesasens 1
1.2 OVERVIEW OF RELEVANT RESEARCHcccittiiiuieeritiecreeiinaessiressrasesnsseesscaeensenassnsaesssensssseesnns 2
1.3 ADVANTAGES OF THE DEVELOPED SYSTEMS......eiiuirituieeiruriieieenisirsenssnesnareeansseesassessoneeenaenaas 4
1.4 OUTLINE OF THESIS...0eiiiiiiiiiiiti ittt srit et s s s st snesbesae s ne 5

2 SYSTEM ARCHITECTURE 6
2.1 SYSTEM ARCHITECTUREoviiiiiieitieeaitieietteastreaerteeetreestessastesanssassstsseeestnesassessosssesstnsssnssnansess 6
2.2 MECHATRONIC IMODULESttieititeitecsieeettieseeesseesesesaerssssnsssssssesasasessssnssssssssessssessssasssssanns 7
2.3 TOPOLOGY GENERATION AND SYSTEM ASSEMBLYuvtiriiiiiirieriitrieeitriseereeseesseeestesennsesennes 10

3 KINEMATICS OF MULTI-BODY SYSTEMS 11
3.1 POSITION VECTORc.iiciircitinieiiiicte sttt estnsnst st een bt en s s enneesaes 12

3. 1.1 ROEGLION MAIFIX.....c..ceoiiiiiiiseeeeesieete ettt ettt sttt bbb b s s esee e st e enin 13
3.1.2 Angle Representations Of ROIGHION................cccccccvomniiniitiiiiiiiitit ittt 14

3.2 TRANSLATION AND ROTATIONc.cioiiiiirinireienenie st seeen e eseeaneeeensssese e sesnesssaensesenesnenes 16

3. 2.0 PUFE ROTALION ...ttt ettt ettt 16
3.2.2 General Motion of a Single Rigid Body........c......ccccccoiviimviiiiiiiniieioinss s 18
3.2.3 General Motion of Multiple BOQIESc..cccceeieiiiie i 19

3.3 VELOCITY ANALYSES ...eriieriririreeireene sttt eteese e s snebeee st saesresaeseeesion et sesatsueseessneseeneenesencs 21
3.3.1 Fixed Point Rotation of Single BOAY..................ccoooeiocviiioiieeee oo 21
3.3.2 General MOION.c..cccvooevieeieii et e 23
3.3.3 Multi-body SYStems..........ccoccccoieiiiiniriiieieiaeis i ettt 24
3.3.4 Angular Velocity of SUCCeSSIVe ROIGHIONSc.coevvivicriieeiieeeiiceeeeseeer e 24
3.3.5 Recursive MEthOdcccooviuivvriciiicieece ettt 25

3.4 ACCELERATION ANALYSIS ... uiitietrertiiteetietierteeesieeriostieissessesssostessesstesmssosesossonsssesaseeseereensesens 27
3.4.1 Angular Acceleration of SUccessive ROLQLIONS.cccoeeoveieiveeseceiieseeeseieeireea, 27
3.4.2 Multi-body SYSTEIM ...ttt et 28

4 KINEMATIC COMPUTATION METHOD FOR RECONFIGURABLE SYSTEMS ..30

vi

4.1 COORDINATES OF A SINGLE MODULEccctrietemrierinietieesesie e seiscssessssssonssnssns s
4.2 ZERO REFERENCE PLANEccotiiiiiiriieeriieesrine e s s snnssans s enae s sbassensnessnanes
4.3 SNAP POINT ..ottt ettt ettt eae st ebaset e st s ean e s e breenean e ameeessate st sasssbenbeens
4.4 PATH IMATRIX 1. vvivtiirierieteeeeotesesssessessessassessasssessessessessesmsenressseisossosaessnsssesnnssnnes

5 SOFTWARE DEVELOPMENT

5.1 SYSTEM REQUIREMENTScccccutterieurrersnareeeesaneressmeriesosueses osiassessssnansenssnnsanans
5.2 MODULE PLATFORM.cecttrtrmiitineiieeeeseessestiorcstiiisiasss e snssanssssnesbessesseessssnes
52,1 INPOGUCTION ...ttt e e
3.2.2 IMPIementation..................coiceiorccntiniiiicniiincee e
5.3 TOPOLOGY PLATFORM......uuttreiieriieeiicriieeeriueeesisreeesasentessonsensansasseeesessensaeesesssnes

5.3.1 Introduction

5.3.2 Toolbox IMplementation..................cc.cococeiuioeionicciiecie e
3.3.3 Topology Design Implementationcccccocuvvivainniinniciiiien,

5.4 SYSTEM ASSEMBLY AND SIMULATION PLATFORM
5.4.1 Introduction
5.4.2 Implementation

5.5 OPENGL PLATFORM CONFIGURATION IN VISUAL C++ ENVIRONMENT

6 EXAMPLES......cmicvercnenn

6.1 SIMULATION AND CONTROL OF SERIAL STRUCTURE
6.2 SIMULATION AND CONTROL OF TREE STRUCTURE
6.3. RECONFIGURATION DESIGN
6.4 MRR (MODULAR RECONFIGURABLE ROBOT)

7 APPLICATIONS FOR POLISHING

7.1 SELECTION OF A POLISHING AREA
7.2 PATH-PLANNING TASK
7.3 VIRTUAL PARALLEL PLANES CUTTING ALGORITHM
7.4 MIXED INTERPOLATION CURVE-FITTING METHOD
7.5 DIRECT PICKING CURVE-FITTING METHOD
7.6 P-CAM IMPLEMENTATION

8 CONCLUSIONS AND FUTURE WORK

8.1 CONCLUSIONS
8.2 FUTURE WORK
8.2.1 Theory Perspective
8.2.2 Implementation Perspective

REFERENCES

APPENDIX A EXAMPLE OF .OBJ FILE

APPENDIX B EXAMPLE OF .STL FILE

100

APPENDIX C SOME MATRIX DEFINITIONS

w102

vii

Figures

Figure 1-1: Reconfigurable robDOLS ..o s 3
Figure 2-1: System architeCture..............cccooeiviiimieie e 7
Figure 2-2: ModUIE STIUCLUIE ..ot 8
Figure 2-3: (a) Rotary module (b) Linear module........ccooooomiiiiiiiiiinnnnens 9
Figure 2-4: (a) Topology generation (b) System assembly 10
Figure 3-1: Multi-body SYStEIMcc.vcviiiiiiiiciiiiciniccsnirsss b, 11
Figure 3-2: POSIION VECLOT ... 12
Figure 3-3: The Theorem of Buler ..., 16
Figure 3-4: General Motion of a Single Rigid Body........cccocconiiivinn, 18
Figure 3-5: Vector Method...........ccooiriic e 19
Figure 4-1: Vector in two coordinates SyStem ... 31
Figure 4-2: Modules in Assembly Line platform ..., 32
Figure 4-3: Snap point between two adjacent modules...........ooocoovcvcivinincncn, 34
Figure 4-4: (a) Original connection (b) reconfigured connection 36
Figure 4-5: Module Change.............cccovveiiririnieeeessessneeeses s cerseeseesesessecsseees 39
Figure 4-6: Tree structure reconfiguration designccoeceveriviircernenceninninenns 40
Figure 4-7: Serial structure reconfiguration designcooeveninirrercncncnicencnes 4?2
Figure 5-1: Drag & DIOD o.o.coveereee ettt nen e ssenes 49
Figure 5-2: The flow chart for drawing linker............cooevevrireennienenineennennne 50
Figure 5-3: Draw the HNKETccocooeiiiieeeccee e srenes 50
Figure 5-4: The flow chart of analyzing topology structure on assembly line

PIALTOTIN. ...t 53
Figure 5-5: The flow char of deciding which branch is the trunk.........c....cc.cc...c.... 53
Figure 5-6: The flow chart of drawing each module one by one. ... 54
Figure 5-7: SUpPOTL (€ SITUCHUTEcoovieieiririiieeerieeeessseeeas s sassie s seenee s 54
Figure 5-8: In function OnCreate() ..., 56
Figure 5-9: Function of drawing. ... 57
Figure 6-1: Robot configured in serial StrUCIUIEo.cvreiriecniermnirneece s 59
Figure 6-2: Robot configured in tree Structurecoccovvievcrevirinnivecnnnencencncnene 60
Figure 6-3: (a) Connector on module i-1 (b) Connector on module I................. 61
Figure 6-4: RecONfigUIation ..o 63
Figure 6-5: Serial structure reconfiguration............c.ccvvecnnineiiniccinrnnerecenennee 64
Figure 6-6: Tree structure reconfiguration ...t 65
Figure 6-7: MRR design, simulation and controlcccccoovvveivceiceriieoerirseiens 67
Figure 7-1: OpenGL picking mode sometimes selects the wrong triangle, here the

front one is wanted, but it picks the one behind............cccoooervviineinncies 69
Figure 7-2: P is either inside or outside the triangle...........ccccooeveveiiiviinirns 73
Figure 7-3: Calculated path along selected surface...........occccovvvriennnninncnceenn 76
Figure 7-4: The intersecting point of a line and a plane..............coccccoevveivirennnn. 77
Figure 7-5: A group of parallel planes cutting a series of triangles..........c..c.c...c.... 79
Figure 7-6: Interpolate points among the points derived from cutting.................... 82

viii

Tables

Table 2-1: Layer COMLENTS.c.ooriririreieiecierenciecirin e es et ene s 6
Table 3-1: Ry, and by, of different kinematic pairS...........cccoovvcveeicirinscreeerinneneenns 21
Table 3-2: Time derivative of Ry, and by, for different kinematic pairs.................. 26

ix

1 Introduction

1.1 Background

Reconfigurable machines are perhaps the ultimate intelligent machines that human beings
can ever dream of. Ideally, such machines would autonomously change their topological
configurations to respond quickly to environment changes and meet task variances. Looking
back at the history of machines, it has gone through a mechanization phase and an automation
phase, and now is moving toward the autonomy phase. The mechanization phase began with
the industrial revolution in 1770 when machines started to replace the physical labor work. For
the next 200 years, the effort was spent on improving machine efficiency and lifetime by
mechanical means. With the advent of electronics and computer technology in the 1950s,
automation commenced with the application of electronics and computer systems to control
machines. With the development of robots, smart sensors and intelligent systems, researchers

are now striving for autonomous reconfigurable systems.

Research into reconfigurable systems is primarily conducted in two fields, namely robotics
and manufacturing. In the robotics area, a number of interesting modular re-configurable
robots have been put forward, which may be classified into three categories: self-assembly,
self-configuring and manual-configuring. Self-assembly robots are the robots with the highest
level of reconfigurability because they are able to detach from and attach into a robotic system
automatically. For example, a Mechanical Engineering Laboratory in Japan developed a
self-assembly robotic system that uses electro-magnetic disks as the basic units that can attract
and repel each other through computer control for automatic reconfiguration [1].
Self-configuring robots cannot perform self-assembly. However, they can fulfill
reconfiguration after a robotic system is assembled with some form of manual assistance. For
example, robotic cubes were developed in the United Kingdom with an embedded active
driving mechanism [2]. Once attached manually, these cubes can slide on each other’s faces for
reconfiguration. Since the cubes are made in different sizes and can be combined together, the

robot is called the fractal shape-changing robot. The manual-configuring robots are in fact

1

modular robots. They can only be reconfigured with some form of manual assistance. The
modular units are built with the embedded controllers and the host computer has the capability
to quickly recognize new configurations and then achieve the objective of system control.

Research work includes the studies at Stanford [3] and Carnegie Mellon University [4].

In the manufacturing area, research has focused on reconfigurable machine tools and
reconfigurable manufacturing systems. A three-axis reconfigurable machine tool has been
developed at the University of Michigan that can be customized to machine a family of three
different parts [5]. In 2001, Xi et al. proposed a reconfigurable parallel kinematics machine [6].
Research in reconfigurable manufacturing systems involves in quick re-arrangement of

machine stations for a production line.

1.2 Overview of Relevant Research

A modular system is the best way to realize reconfiguration for practical use. The
techniques for developing reconfigurable systems include varying topology structure design,
kinematics and dynamics computation. A modular reconfigurable system consists of functional
modules and individual links. A number of modules have been developed and Figure 1-1

shows several examples of reconfigurable robots and modules, including

(1) Crystalline Atomic Unit Modular Self-reconfigurable Robot [7].
(2) Atomic Modutlar Unit [7].

(3) Modular 4-legged spider [8].

(4) Modular robotic wrist [9].

(5) Rotary Module [10].

(6) Modular robot [11].

(7) Telecube module [12].

(8) Modular and reconfigurable joint module [13].
(9) Wrist Module [11].

(10) Polypod five-legged spider with 38 modules [14].

&)

() (7 ity &

Figure 1-1: Reconfigurable robots

In terms of software, at the beginning, simulation software with a predefined module
library was developed in the 1980s[16]. At that time, most modules must be derived manually,
and the module library became too large and inflexible. Later on, a model was developed that
could describe a modular system as a combination of joint modules and link modules [16].
Recently, a number of techniques were developed for kinematics and dynamic model
generation [16]. For example, a framework to automate the model generation procedure for
modular robot was derived in 1993 [16]. This framework consists of three parts: a component
database, a graph-based representation of modular robot geometry termed as Assembly
Incidence Matrix (AIM), and geometry-independent modeling techniques for kinematics and
dynamics analysis [16]. In 1997, a computer-aided simulation approach for mechanisms with
time-varying topology was reported [18]. This methodology applies a computer-aided dynamic
analysis of mechanisms with intermittent contact joints, and it also uses relative coordinates
and transformed matrix formalism. In 1998, the automatic generation of motion equations
using “branch coordinates” was developed [15]. In 2000, a dynamics computation of
structure-varying kinematics chains with human figures application was presented [19].

3

The systems reported in the literature have helped to establish the concept of joint and link
modules. A joint module is treated as a functional component being a node in a topology
structure. A link module is treated as an interface for linking different joint modules. Based on

this framework, kinematics and dynamics can be generated using graph theory.

However, all these theories have not been fully put into practical use, the reason being that,
until, now a unified standard for joint and link module did not exist in industries. Another

reason is lack of systematic varying topology-based design and simulating capabilities.

To solve this problem, modeling and simulation systems need to be developed for
reconfigurable system design. The intended system should identify commonly used basic
modules and provide a means to simulate and control reconfigurable systems assembled by
selected modules. As mentioned before, though such a system was not available, some
groundwork was done in the literature. Since the main idea of developing reconfigurable
systems is based on the use of modular components as building blocks, various modules were
proposed for simulation. However, these proposed modules are the traditional mechanical
components, i.e., joints and links. Moreover, reconfigurable systems naturally are varying
topology systems. When a reconfigurable system changes its topological configurations,
constraints and system mobility will change accordingly. In the literature, research has been
carried out for modeling varying topology systems; linear graph theory was proposed for
symbolically automatic equation generation [15]; recursive methods were proposed for
numerically automatic equation generation [16][17]; a computer-aided simulation approach

was used for mechanism simulation with time-varying topology [18].

1.3 Advantages of the Developed Systems

So far, most reconfigurable systems have been developed based on an ad hoc approach due
to the lack of effective simulation tools. The work reported in this thesis attempts to address

this problem.

The software packages developed include the Varying Topology Simulation and Control
System (VT-Sim) and the Polishing CAM software system (P-CAM). The first package can be

4

used to design, simulate and control reconfigurable machines with serial and tree structures.
The second package simulates polishing surface roughness and generate tool path. The
VT-Sim is based on mechatronic modules, each having a graphic user interface (GUI) that can
be connected to a physical motion module including a motor and mechanical moving parts.
This system can be used for any machine or robot that require quick task-forward building,
design modification or updating. It can also be well adapted to industrial situation by
constructing different task-sets using similar modules. It is suitable for pre-CAD conceptual
design, as well as for rapid physical prototyping and control implementation. In this package,
two commonly used mechatronic modules have been developed, namely, a rotary module and
linear module. The former is used for reconfigurable robots and the latter for reconfigurable
machine tools. Once modules are selected, they are linked through a graph-based topology
platform to generate an assembled system along with the equations of motion for simulation

and control.

The P-CAM is a CAM software system for polishing purposes. It is used for polishing path
planning, polishing tool parameters selecting, polishing area selecting, CNC code generating,

polishing procedure and result simulating, etc.

1.4 Outline of Thesis

Chapter 2 introduces the system architecture of the software. Chapter 3 describes the basic
kinematics theories. Chapter 4 introduces the important concepts and theories used in the
reconfigurable system. Chapter 5 presents the software development process. Chapter 6
provides case studies. Chapter 7 is about path planning algorithms and methodologies used in
the polishing procedure. Conclusions and recommendations for future work are presented in

Chapter 8.

2 System Architecture

In this chapter, first the whole system structure is described. Next, the mechatronic
modules are presented. Then, the zero reference plane (ZRP) method is introduced. Finally, the

graph method is applied for system equation generation and assembly.

2.1 System Architecture

Figure 2-1 shows the architecture of the system developed for topology design, simulation
and control of reconfigurable machines. Designed as a four-tier structure [33], it has Data
Service Layer, Human/Machine Interface Layer (HMI), Application Layer, and 1/O Hardware
Layer. Table 2-1 lists the contents for each layer. The data service layer stores configuration
files that are created using the proposed system or by the user defined configurations written in
the conventional linear graph format. The HMI layer provides a means for the user to select
modules based on required applications, then construct the required topology and assemble the
system. The application layer allows the user to select and execute simulation, control and/or
perform design synthesis. The current 1/O hardware layer provides connections to physical
systems through serial/parallel ports or control cards. It can be expanded to have embedded
modules with Internet connection. In the following sections, details are provided on module

creation, topology generation, system assembly and implementation.

Table 2-1: Layer contents

Layers Contents

Data Service
HMI
Applica;ion

170
Hardware

e

A

1/0 Hardware

Figure 2-1: System architecture

2.2 Mechatronic Modules

The complete module structure is shown in Figure 2-2 [49]. A module has two parts,
mechanical (computer model) and control (GUI) [50]. In the mechanical portion, there are two
different motions, i.e. linear and rotary [51]. There are three different power systems: electrical,
hydraulic, and pneumatic. In the control portion, there are different I/O modes and different
control methods for selection. The modules provided are scalable and expandable, and have a

standard I/O interface for control implementation.

Intranet

&
®

1l

,,,,wmm

Figure 2-2: Module structure

As mentioned before, two motion modules are considered in this study, namely, rotary and
linear. The former is widely used in robots and the latter in machine tools. These two modules
are designed as mechatroinc modules, and as such each module has a mechanical part (top) and
a control part (bottom), as shown in Figure 2-3(a) and (b). The mechanical part represents the
physical model of the motion system including a driving system and a driven system. For the
rotary module, the driving system is the motor represented by the cylinder and the driven

system is the link represented by the rectangular cube. For the linear module, the driving

system is the linear motor represented by the rectangular cube, and the driven system is the

moving carriage represented by the cube. The sizes of the two motion modules are scalable.

Linesri~configure
Angle Position

¥ 000000 12 BOOOD
0.00000 0. 00000
7 0. 00000 §1t 0oDo0

o véfyi};c:onfigum
Angle Pogition
X 0. 00000 2 80000
0. J0000 0. 00000

7 0.00000 0. 50000

Botion Setw Hotion Set
5% Yel P&m: 0% ¢ w&fe npkcc
;0, 0000 ju 0000 ; ga:} 0000 ;n,ams ;

Figure 2-3: (a) Rotary module (b) Linear module

The control part of the module has two components: input boxes and input buttons. The
input boxes are used to define the module’s position and orientation (the top six boxes), as well
as to input the joint variable (the bottom three boxes). The initial values given in the top six
boxes define the initial position and orientation of a module, which is referred to as the zero
reference plane (ZRP) in this study. The system to be simulated and controlled is initially
defined at the ZRP. In other words, the initial values used to define all the modules for that
system are given in the same global coordinates. Moreover, the bottom input box allows the

user to input the joint variable value, including displacement, velocity and acceleration.

It should be noted that the ZRP is the configuration at which all the motorized joint
variables are zero. Once the motors start to move, the positions and orientations of the modules
will change. By using the ZRP, the user can make his/her own choice to select a configuration
at the ZRP and then define all the modules with respect to the same global coordinates. This is

a much easier way to construct a system, compared to the relative coordinates used in the

conventional software. As explained later, the computational method is developed based on the

ZRP.

The input buttons are used to execute joint motion commands. Pressing the “+" and
“-* buttons executes the forward and backward joint motion, respectively. Pressing the “Loop™
button starts the continuous motion. The “Control” button allows the user to select different

control methods based on different power systems.

2.3 Topology Generation and System Assembly

After the required modules are identified, design, simulation and control of a
reconfigurable machine are carried out first through topology generation and then system
assembly and simulation platform (or assembly line) [52]. As shown in Figure 2-4(a), system
topology is generated using a graph representation. In Figure 2-4(a), the small block is the
ground; the rotary modules and the linear modules can also be found in the figure. When click
on each module, it will open two windows as shown in Figure 2-3. By connecting modules
using arrowhead lines, a system will be assembled as shown in Figure 2-4(b) and the kinematic
equations will be automatically generated for simulation and control. The assembled system
shown in Figure 2-4(b) corresponds to the topology graph shown in Figure 2-4(a). If a system
needs to be reconfigured, the user can add or delete modules and reconnect them. A new
system will be re-assembled and new kinematic equations will be generated for simulation and

control.

3
=

,i%oi ary
& 4 ke * P

K fatary
W t
b L ¥ - .

! ;
/ivi EEETH ,f:
3 X 4;‘ /
’ _/t jness ¥
4

Figure 2-4: (a) Topology generation {(b) System assembly

10

3 Kinematics of Multi-body Systems

This chapter provides the basic theory on the kinematics of multi-body systems, including
position and orientation analysis, velocity analysis and acceleration analysis. As shown in
Figure 3-1, the system under study can be considered as a group of bodies and joints. The
kinematics computation includes the position and orientation, velocity, and acceleration of
each body and joint [53]. The challenge is to compute the position and orienation, velocity, and
acceleration at any position at any time for any configuration. This chapter starts with the

theory on a single body and then expands to that of multiple bodies.

i Xi o
Jointn

Joint i

s

. Z
¥ Joint 2

Figure 3-1: Multi-body system

3.1 Position Vector

The position of a point in space is represented by a vector and some of the basic vectors are

given below:

(1) Unit vector is a directional vector that has a length as 1.

(2) Bound vector is fixed at a specific point, such as position vector or a velocity vector.

(3) Sliding vector extends from one arbitrary point to another, such as angular velocity vector.
In general, vector components can be expressed as

v=[vi, va, vi] ' (3.1

As shown in Figure 3-2, a position vector in terms of the frame axes is expressed as:
v=viet+ Vvae +Vvie;s (3.2a)
or v=Ey (3.2b)

where E = [e e; e3]. In the Cartesian coordinate system, E = [x, y, z], and x, y, z are the unit
vectors along x, y, and z axes relatively, that is, x =[1, 0, 0] T y=[0,1,01", z=[0,0, 1

A
ea3 e3

€1 e
e’

Figure 3-2: Position vector

12

3.1.1 Rotation Matrix

In a robotic system, there are two types of coordinates systems, global and local. The
former is for the whole system, and the latter is for a single body . A rotation matrix is used to
express the difference between two coodinate systems. As shown in Figure 3-2, in the global

frame {e,, e,, €;}, the position vector is expressed as
vV = vie+ vaer + vies (3.3)
In the local frame {e’|, €5, €';}, the same position can be expressed as
v=v e+ v,e,+vse, (3.4)
Since it is the same vector, eqn. (3.3) should be equal to eqn. (3.4), that is
E'v=Ev (3.5)
where E', v, E, and v are defined as in eqn. (3.2). This leads to
y=RV (3.0)
where R is the rotation matrix given as
R=E"E (3.7)

Since e;is orthogonal to ej, then eje;j= 8 =1, for i =j; e;e;= 0, for i #j. Hence, E is orthogonal,

andE' =g,

R is in fact defined by the dot product of two unit vectors, i.e., the direction cosine. It is also
called the tensor product, defined as
ee, ee, ee
R=(EQE’) = |e,e', e,e', e,e, 3.8

'
e3e 1 e3e 2 e3e 3

If the order is reversed, it becomes

where
R'=E"E
Obviously

R, :RT:R.I

3.1.2 Angle Representations of Rotation

(3.9)

(3.10)

G3.11)

In terms of pitch, roll, and yaw angel (PRY) [25], the three individual rotation matrices can

be given as:

0 0
R(®,)=|0 cosO, —sinf,
0 sinB, cosO,

I cosb, 0 sind,]
R (6y) = 0 1 0
-sinf, 0 cosb,
[cosD, —sin®, 0]
R(©,)=|sinB, cos6, O
0 0 I

Then the resulting rotation matrix in the global frame is given as [25]:
R=R(©)R(®,)R 6,
If the order is reversed, it will become the rotation matrix in the local frame
R'=R"'(0,) R"(0,) R (0,)

Expanding eqn. (3.15), it leads to the explicit expression for the rotation matrix as

14

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

cosb cosb, —cos sinf, sinf
R =| sinf sinb cosh, +cosd sinB, —sinb sinb sin0, +cosd cosd, ~—sind cosd,

—cost,sind cosB, +sind sind, cosd sind sinb, +sinB cosd, cosd, cosO,

(3.17)

Eqn. (3.17) is used to compute the rotation matrix for given three angles. The PRY angles can

be determined for given R
0y = cos™ ((ra3+r33)')
0, = cos"(rgg/cosey) (3.18)
0,= cos“(rl 1/cos0y)

where ry;- —sin0, cosd . r33- cosB cosd, . ryj= cosd cosh, .

Alternatively, Euler angles can be used, namely ¢ about z, 8 about x, \ about z. The rotation

matrix is expressed as
R =R(9) R(®) R(y) (3.19)
with the expanded form as
cosycos@ —cosfsin@siny —sinycos@—cosOsinpcosy sinOsing

R =| cosysin@+cosBcos@siny —sinysing +cosOcospcosy —sinBcosg

sin O sin y sinfBcosy cos 0

(3.20)
Likewise, for given R, the Euler angles can be deteremined as
0= COS-l(r33)
o= cos'](—rg.g/sine) (3.21)

W= cos”! (r23/sin@)

15

where r33-c0s0, 3= sinfcosy, ry3- —sin0coso.

3.2 Translation and Rotation

The movement of a body in space may be described by rotation or translation or both. They

will be discussed one by one, starting from the pure rotation of a single body.

3.2.1 Pure Rotation

The theorem of Euler [25] declares that a fixed point rotation about rotation axis e with

angle 0 is expressed as Re = e. As shown in Figure 3-3, it assumes that when the body rotates,

Figure 3-3: The Theorem of Euler

the vector on the body changes from b’ to b. Vector b can be considered as the projection by the

following three vectors.

Axis Expression Projection

1 e eb’
2 (b~ (e-b)e)/r, r= b’ — (e-b’)e|cosOr
3 (e X b)r sinOr

Then vector b is expressed as

b = (e-b’)e + cosOB(b’ — (e-b’)e) + sinbB(e X b’)

or

b = cosOb’ + (1-cosO)(e-b’)e + sinB(e X b’)

Define the following [25]

(e-b)e = (e®e)b’

Note that

tr(u®v) = u-v

and

vect (u®@v)=u X v

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

where () and vecr(.) are the trace and vector operation of a vector [Appendix C]. Then

b=Rb’
This leads to

R = cos6I + (1-cos0)(e®e) + sind €

17

(3.27)

(3.28)

0 = ¢
where I is the identity matrix. € is defined as, for e =[e; e; €3] ", €= ¢ 0 €443 xb

- ¢ 0

=€ b. Eqn. (3.28) is for the determination of R for given rotation axis and the associated angle.
It can be shown

t(R) =1+ 2cos0 (3.29)
and
vect(R) = esinf (3.30)
Hence, for given rotation matrix R, the rotation axis and angle can be determined by
0 = cos™ ((tr(R)- 1)/2) (3.31)

e = vect(R)/sinf (3.32)
3.2.2 General Motion of a Single Rigid Body

As shown in Figure 3-4, the general motion of a single body is the combination of rotation

and translation [20]

p=Rb +h=h+Rb

Figure 3-4: General Motion of a Single Rigid Body

18

where R, as defined before, is the rotation matrix representing body rotation, and h is the vector
representing the translation. The reversion of the two terms in eqn. (3.33) means that the order

of rotation and translation is not important. It is obvious that when h is null, eqn. (3.33) reduces

to pure rotation.

Figure 3-5 shows the vector of each body in a multi-body system:

Pu+1

Figure 3-5: Vector Method

3.2.3 General Motion of Multiple Bodies

The general motion of multiple boides is computed based on the repeated use of eqn. (3.33).

As shown in Figure 3-4, the positions from the first body to the ith body can be expressed as:

for the first body [21]

19

p1=b, + Roi(b'+h'y) (3.34)
for the second body
P2=bo + Ry [(b'1+ W) + Riz2 (b2 + h'2)] = pi + R Rya(b’2 + ') (3.35)
and so on, for the ith body
pi = bRy [(b'+h')) ... +Riii(b’i + h')] = pii + Rei(b’; + b)) (3.36)

It is worth noting that eqn. (3.36) represents a recursive method for computing the

positions of a multi-body system, because p;is computed based on p.;.
Likewise, the rotation matrix can also be computed in a recursve fashion as
Roi = RoiRi2 ... Ri.j; = Roi Ry (3.37)

where R, represents the rotation from the ith body to the global frame. In eqn. (3.37), R,, is

computed by Ry
In general, the position and orienation of the tip of a n-body system can be expressed as

[22]

p= R, (b +) (3.38)

t=1

R, =[IR, (3.39)

Furthermore, it should be noted that R and b may have static part and motion part
R =R R, (3.40)
b = bs+ bm (3'41)

where Ry and bs are defined according to the configuration set-up; Ry, and by, are related to

active joints, i.e. motors. In terms of different kinematic pairs, they may be expressed

20

differently, as shown in {23] Table 3-1. The static part can be expressed as
R;=R«RyR,, (3.42)
bs = byx +byy +b,z (3.43)

where Ry, Ry and R; are the rotation about x, y and z axis of the configuration set up; by, by, and

b, are the translation along x, y and z axis of the configuration set up.

Table 3-1: R, and by, of different kinematic pairs

Joint Ry bn
Revolute . .

Prismatic

3.3 Velocity Analysis

After the position is determined, the next issue is to determine the velocity. This is the topic

of this section beginning with the single body and then expands to multiple bodies.

3.3.1 Fixed Point Rotation of Single Body

As explained before, for pure rotation, b=Rb’ or b’ = R'b. The velocity of b is obtained

by taking time derivative as (note that b’ is constant in the body (local) frame)

b=R b =RR'b=0b (3.44)

where Q= R R" is defined as the angular-velocity tensor, and the angular velocity of the body

is defined as

o = vect(Q2) (3.45)

21

Apparently, the following holds.

Since RR" = 1, it appears

from which it is found that

Hence, the following holds,

R =OR=0 XR (3.46)
RR"+RR"=0 (3.47)
Q=-0' (3.48)
b=w X b (3.49)

If the axis of rotation is known, it can also be shown that [25]

Ifb is moving, the velocity becomes

b=e-® (3.50)

b=Rb+Rb=0 Xb+RDH (3.51)

The angular velocity can be related to the rate of the rotation angles, such as PRY and Euler

angles. Based on the sequence of rotation, the angular velocity can be considered as the

combination of an individual rotation axis times the time rate of the change of the angle about

that axis. For PRY, it can be expressed as

®=[6,00]"+R.[06, 0]"+RR,[006,] (3.52)

which results in

0= 0, (3.53)

22

where

1 0 sinb,
O, =0 coB, -—sind cosh
0 s, cosd, cosd,

y (3.54)

and
0 =[6.6,6,]" (3.55)

For the Euler angles, it can be expressed as

o= 05 (3.56)
where
0 cosp sinBsing
®. =10 sing -—sinBcosy (3.57)
I 0 coso
and
0 =100 y]' -58)

Note that in general, except planar motion, rotation angles are not integrable from the

angule velocity, due to the nonlinearity of ®.

3.3.2 General Motion

Recall that the equation for general motion p = Rb’ + h, and if b’ is fixed, taking the time

derivate leads to

p = oXb+ h (3.59)

where © X b is the relative velocity, and h presents the reference velocity.

23

If b is moving, then the above equation becomes

p=0 Xb+Rb +h
3.3.3 Multi-body Systems
Recall that the position of a n-body system is expressed as

pl7+[= ZROIb'i = zbl
i=0 i=0

and the orientation as

on G-
i=!

(3.60)

As it can be seen, the dertvation of the velocity requires the angular velocity of successive

rotations.

3.3.4 Angular Velocity of Successive Rotations

First, for two successive rotations, the following holds
Ry = Rg Ryp
Taking the time derivative leads to

R()z: R01Rl2 + Ro) RIZ

which can be re-written as

R, Ry’ Rp=R,, Ry’ Ry R+ Ry R,

By post multiplying R ¢,", the above equation becomes

24

3.61)

(3.62)

(3.63)

R,, ROZTZRm ROIT+ROIR|2 Ry Roi' (3.64)

According to [25]

Roi (12) Roi" =Q» (3.65)
then eqn. (3.64) is equal to
Qp = Qo +Q (3.66)
By using the following expression
vect (Q2)= vect (Q o) + vect(Q2) (3.67)
the following relation holds
®02 =M 01 + 012 (3.68)
or
o =0 + o (3.69)

In general, the angular velocity of the nth body can be considered as the combination of the

individual angular velocity of each of the preceeding bodies, that is
On = 0, (3.70)
1=0

The angular velocity can be computed recursively

O =01 + 0.1 (3.71)
3.3.5 Recursive Method

Recall that the recursive method for position and orientation is given as

Pi = Pi-1 T Roi.ib'icy

25

Roi = RoiRi2 Riii= Rei.i Ry

Taking the time derivative leads to
vi=viit+ o X b+ Reii b, (3.72)

0 =0i.1 T O

Recall that R = RiR,,, and b = b + by, then
R=Rs R, (3.73)
b=b 3.74)

The time derivative of R, and by, for different kinematic pairs are shown in Table 3-2 [25].

Table 3-2: Time derivative of Ry, and by, for different kinematic pairs

R bm’ b

"

Revolute ®i-1i =y ; Zi ,Z=Roi1(Riii)s i 8 10

Prismatic 0 s Zi

Qili o Zi Z
i1 = Roi-1(Rii)s Py 0,
oi.1i = Roi-i(Ri.1i)s P o,

Let

£ =1 for Revolute, Cylinder, Sphere, Universal; = 0 for Prismatic
and
n = | for Prismatic, Cylinder; = 0 for Revolute, Sphere, Universal
Then, the recursive method is given as
vi=vi t o X bag+tn Sz (3.75)

26

where v; is the velocity at the tip of the i- 1th body. The angular velocity of the ith body is given

as

0= ®i.1 & 0 (3.76)

3.4 Acceleration Analysis

3.4.1 Angular Acceleration of Successive Rotations

Consider two successive rotations

Rp>= Ro1R 2 3.77)
The first time derivative is
Ro:= Roi Riz + Ryi Ro (3.78)
which leads to
Qo> = Qo1 + Q2 (3.79)
Since
vect (Qu) = vect (Qo1) + vect (12) (3.80)
then
o2 = o1 + ®12 (3.81)

Taking the time derivative of the above equation leads to the angular acceleration

ay = ay +ah (3.82)

Another way of doing this is to take the second time derivative of the rotation matrices

27

Ro = RotRn + Ro Rz + Ro Riz+ Ry Rz (3.83)

By post multiplying R 02" on the both sides of the above equation

Ro R T=(R0|R12 + Ro Riz + Ro Ri +Ro Riz) R T (3.84)

and then using the angular acceleration tensor, it leads to more interesting results

Qpp = Q1 +Q> (3.85)
and
aoy= o1 +ah (3.86)
Q2n=Q%+2QuQ+Q % (3.87)
which shows
o2 X W= o1 X ®o1 +2 g1 X 0oz + ®12X @2 (3.88)

3.4.2 Multi-body System

Now here comes the work on the multi-body system. First from the velocity expression

Vi =Viaq + 01 X bii+ Roig bli—l (3.89)
Wi = O + Oy (3.90)
taking the second time derivative of equation (3.89) leads to
ai = ai.1 + @.1 X bi.y + oi X (i1 X b)+2(0i1 X Roig b'i~1)+ Roi b’i—l 3.91)
a=a.,+a.; (3.92)

When considering only the revolute and prismatic joints, it leads to

28

vi=vi+® X b+ 1 S, Z; (393)

;= ;i S Mi-1j (3.94)
Taking the second time derivative

ai= a1+ 8. Xbiy+ o X (0 Xbi) + 12euX S, z+ S, z] (3.95)

ai=a.,+% a.; (3.96)

29

4 Kinematic Computation Method for Reconfigurable Systems

Based on the basic theory described in the preceeding Chapter, a kinematic computation
method is devleoped for reonfigurable systems. This method is based on the zero-reference

plane (ZRP) and the path matrix from the linear grapy theory.

4.1 Coordinates of a Single Module

As mentioned in chapter one, a reconfigurable robot is made up of a number of modules. To
simulate the movement of a reconfigurable robot, the first step is to define appropriate
coordinates of all the points on each module at any moment. As mentioned in the previous
chapter, a body in space is defined by position and orienetation and its movement is described
by translation and rotation. The translation computation is relatively simple because it requires
only addition and subtraction. However, the rotation computation is relatively complicated

because it involves the transformation of body coordinate systems.

For the complete motion representation, each module is designed to have three components,
namely, geometric coordinates in the local (body-fixed) frame, initial coordinates and motion
coordinates. Figure 4-1 shows a module in both local and global coordinates. The geometric
coordinates are used to define the geometry of a module [56][57]. The initial coordinates are
expressed with respect to the global frame and set as the zero-reference plane (ZRP) where all
the motion coordinates are zero. This way, modules are uniformly expressed with respect to a
single frame (global frame) and it makes it easier for the user to visualize and set up [55][58].
The motion coordinates are used to present the module’s motion status. The initial
configuration for each module can be set through the module graphic user interface as shown in
Figure 2-3, where on the top, three angle and three position input boxes are used for initial
configuration setting and at the bottom, the position input box is the motion coordinate. In this

paper, initial configurations are called static part.

30

y »

Figure 4-1: Vector in two coordinates system

Mathematically, the geometric coordinates are expressed as
P’i:[p’“, p’m] (4])

where P’; contains a set of points representing the geometry of the ith module in the local frame.

After set-up for the initial configuration, a point in the ith module can be expressed as
pi= h; + R, p’i (42)

where subscript s indicates the static part that is defined by configuration set-up. When the

module starts to move, the coordinates become
pi=h, + R Ry, (p’; + Ehy) 4.3)

where subscript m indicates the moving part, and & is a Boolean operator, 0 for the rotary
module and 1 for the linear module. Note that both the rotary and linear module are single axis,

hence the motion part is expressed as
R = Ry, ((1-€)6;) 4.4)
he= [0, 0, 6,]" (4.5)

31

where 9,; is the motion coordinate.

4.2 Zero Reference Plane

Figure 4-2 shows the installation status of each module. This figure can give the picture of

the relationship between each module.

Figure 4-2: Modules in Assembly Line platform

Here the mathematic expression of this relationship is discussed below.

The kinematics equation of a module involves two parts: static and motion. Again the
static part is related to configuration set-up and the motion is related to the joint motion. In this
thesis, a new kinematics computation method based on the zero-reference plane (ZRP) is
derived. The derivation involves only the rotation of the rotary module, as the translation of the
linear module is straightforward. Now, for the 1*' rotary module, its total rotation matrix is a

combination of the static and moving part, that is

32

Rl = RsIle (46)

where the first rotation matrix results from initial set up and the second one from the motion.

For the 2™ rotary module, it is
R>=RiR2= RRniRs12Rm2 4.7)

where Ry; is the rotation matrix from module 2 to module 1. At the initial configuration

without any motion, i.e., ZRP, the following holds
R:2 = RgIRg)2 (4.8)
Substituting eqn. (4.7) into eqn. (4.8) to eliminate R, yields
R; =RR' RoRm (4.9)

Following the same approach, it can be shown that the following recursive algorithm holds

for computing the rotation matrix for each module with respect to the global frame.

Ri = R R R Ry, (4.10)

4.3 Snap Point

Once all modules are set up, they must be connected together as a multi-body system for
simulation and control. This is accomplished by a series of snap points. A snap point is the
point on the end of each module at which the next module is connected. As shown in Figure 4-3,
the snap point can also be regarded as the common point between two adjacent modules. In
other words, the end of the i-1 module provides a reference point for the beginning of the ith

module. Mathematically, it is expressed as

$i=h+Roi(h’; ... (WiotRisia(h’ R k) 4.11)

33

Figure 4-3: Snap point between two adjacent modules

where apostrophe indicates that the vector is with respect to the local frame and h; = his + & hyy;
represents translation. Based on eqn. (4.11), snap points can be computed recursively. To show

this, the snap points for the first three modules are discussed.
s =h (4.12)
s;=h; +Ryh’, =h+hy=s; + hy (4.13)
$3= h; + Ry (W2 +R5h°3) = hy + Ro '+ Ro Rioh’s = hi+ hot hs=s; + hs (4.14)
From eqns. (4.12)- (4.14), it can be concluded that the following recursive algorithm holds
$i= s +h (4.15)
where
hi=Rh’; (4.16)

Note that R;=R,; and R; = R;R)> ... Ri,j;. Rjis computed recursively. In general, the snap

point computation can be expressed as

s.=%'h, (4.16)

k
h, = HR_i-lj h; (4.17)

34

k

Si = Z Ry, hii

K=1 j=I

(4.18)

where h;’ represents the jth module in local coordinates, and s; is the vector representing its snap

point, and hy is the vector representing the kth module in the global coordinates.
If using matrices as defined below:
M; =R Ry
Ai= (Rsi Ru) Ry’ = MiRy'

B =]]A

-
=0
Ci =BiR;
Di= Ci Ry, = BiR;i Ry
then the successive rotation matrices can be expressed as
R; =R¢ Ry = C Ry =Dy
R>= (Ry; Rmi) Ryi” (R2 Rm2)= A1 (Rg2 Ri2)=B2 (Rg2 Rin2)= D2

R3=(Rsi Rm1) Ry (Ry2 Ri2) R’ (Ry3 Ris)= A1 Az (Rgs Rin3)=B3 (Rg3 Riz)= D

For the ith module, it is

4.4 Path Matrix

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

The kinematics equations can be generated for a system with the defined sequence of the

connecting modules. However, for a reconfigurable system, this sequence is subject to change

and so is the number of modules. To account for this change, the path matrix [27] is applied.

35

A path matrix is used to define the connectivity of the bodies in matrix form as below

B, B, B,
11 117,

T=0 1 1}, (4.28)
00 17,

where the rows correspond to the joints as indicated by letter J; the columns correspond to the
bodies as indicated by letter B; and the subscript number indicates the body number. The
component values of the matrix are either | or 0. T;; = 1 if joint / is in the route from B; to B;,

meaning that the motion of body B; contributes to that of body B.. If not in the route, T;; = 0.

The matrix given in eqn. (4.28) is for the original system shown in Figure 4-4(a). The
diagonal values are | indicating that the joints are associated with their own bodies.
Furthermore, T\, =1, as joint 1 is in the route to body 2. T1;=1 and Ty =1 as joint | and 2 are in
the route to body 3. The rest are zero. If the original system in Figure 4-4(a) is reconfigured to

the system shown in Figure 4-4(b), then the path matrix of eqn. (4.28) is changed to

J
J (4.29)
J

Figure 4-4: (a) Original connection (b) reconfigured connection

By re-ordering the matrix of eqn. (4.29) into an upper triangle form, it becomes

36

B, B, B

(4.30)

S =

k.

oy G e
w

The sequence of the body indicated by the column headings in the matrix of eqn. (4.30) is
the true sequence for the reconfigured system. In general, the relationship between the path

matrix and the snap points can be expressed
S=T'H (4.31)

where S =[s'}, s'5, ... s",]" are the snap points with the number indicating the true sequence of
the system; and H = [hTI, hTz, th]T are the vector of each body with the number indicating

the body number.

In the light of eqn.(4.31), the snap points of the original system can be determined as

S, 1 0 O0fh, h,
s,|=[1 1 Ojth,|=| h, +h, (4.32)
S, 1 1 1jh, h, +h, +h,
For the reconfigured system it becomes
S, 1 0 Ofh, h,
s, |={1 1 O}h,|=| h,+h, (4.33)
S, 1 1 1|h, h, +h, +h,

Note that the order of matrix H is changed according to the new path matrix and matched

with the column headings.

Hence, the utilization of the path matrix provides a means to relate the true sequence of the
bodies for simulation and control of a reconfigurable system. In the software design, as shown
in Figure 4-5(a), each module is assigned a body number the first time when it is selected in the
original sequence. Following the linear graph representation, as shown in Figure 4-5(a), the

module (box) represents a body, and the arrowhead line represents a joint. By linking the

37

bodies using the arrowhead lines, a path matrix is created. Then the method given in eqn. (4.33)
is used to compute the snap points according to the true sequence. As shown in example of
Figure 4-7, the body numbers remain the same after the first selection, but their connections
can be reconfigured. The system assembly and equations are generated based on the path
matrix. The software can also handle addition and deletion of modules. In Figure 4-7, the
original module sequence is 1-2-3-4-5, and the reconfigured module sequence is 3-1-4-5-6.

Module 2 is deleted and module 6 is added.

W S ,.w/s"i nEar
’(/Wﬂ ary e)
" "
. |
- TR

|
!
4
L

Linear ‘
4 @{mﬂ ary
4 P

5 7

3

\A Z
(/

| .,
g_ﬁ{i’%ui ary ¢
[3

(a) A serial design including module 0,1,2,3

Assemblytis . A
Aszenbler

(b)

(b) Corresponding simulation

38

Topology

()
st ary »-—J ?M BrY
* e 5
\‘&
i‘\‘
/%A seatr " p
4 "
b
5,

K
i
Y A
\{ ot ary
o3 «

3

Assersbler

(c) Module 1 has been changed to 5

(d)

(d) Relative simulation

Figure 4-5: Module change

(a) F/ﬂm #ey
<8 .
;’J ‘X\
p s \\“
S i/§.§ neay
Lingar s 1
3 3
\
, 3
5, k1
}
'\
‘
Mot ary
&

(a) A tree design including module 0,1,2,3,4

39

Assembly Line
Assembler

)

X,

Priat ar

<
|

. P
%@/mey

Assembler
(d)

ﬁ

(d) Relative simulation
Figure 4-6: Tree structure reconfiguration design

40

(@) / Rt ary
@ 1 ‘N
\\"»V,\ / Linear
2

,Fiﬂisﬂy
SR g
E‘&/Uﬂam ;(j

4

(a) Original system topology

(b) Original system assembly

(¢) Revised system topology

41

|

e
T

ot

(d) Revised system assembly
Figure 4-7: Serial structure reconfiguration design

42

5 Software Development

In this chapter, the work on the software development based on the method described in
the preceeding chapter is provided. Detailed methodology to realize system functions is also

introduced as well as software development environment, system requirments and features.

5.1 System Requirements

Since this research aims at developing a software package that can be used to control
reconfigurable robots, this software package should be applicable to real-time control. Since
robots under control are reconfigurable, the software package should be designed to
accommodate robot reconfiguration. It should also have a graphic interface for each module

with graphic display of the module, and can be connnected to the control interface.

Based on the requirements mentioned above, software itself should be based on module
design. For this reason, an object-oriented programming tool, Microsoft Visual C++, is used

for this development.

The software system consists of three main parts, (1) Module Platform, (2) System

Topology Platform, and (3) System Assembly and Simulation Platform.

5.2 Module Platform

5.2.1 Introduction

The interface of each module includes two parts: the Display Unit (monitor) and the

Control Unit as shown in Figure 2-3.

The Display Unit uses 3D animation to visualize the actual movement of the module.
OpenGL library is used to realize the real-time 3D animation. The module seen in the Display

Unit includes a static part and a motion part.

43

The Control Unit has a standard GUI containing buttons including Plus, Minus, Loop, Stop,
Zoom In, Zoom Out, Go and edit boxes for inputting and displaying position and orientation

data.

The module itself is module-based. Physically, each module consists of 6 files, including a
static .obj file, a motion .obj file, a configuration file, an icon, a material file and an EXE file.
The static .obj file stores the data about the shape and size of the static part; the motion .obj file
stores the data about the shape and size of the motion part; the parameters of the module, such
as snap point position, moving frequency, initial coordinate angles and positions, moving style
and step, etc, are stored in the configuration file; the icon is used to represent the module; the
material file stores the data about the materials and colors of both the static and motion parts,

and can be changed by users; the EXE file is the application file that runs the module.

5.2.2 Implementation

The major technologies include communication, 3D drawing and .obj file used in the

construction of the module platform.

As mentioned above, each module has a control unit and a display unit as standard interface.
Once a button in the control unit is clicked, all calculations are carried out, and the result is sent
to the display unit. There is a communication protocol between the two units. This protocol
supports transmission of the characters and numbers. Windows WM COPYDATA message is
applied to realize data transmission. The following codes show how WM COPYDATA [28] is

used.

TCHAR szBuffer[100];
strepy(szBuffer,str);

int nBuf = strlen(szBuffer)+1;
COPYDATASTRUCT cds;
cds.dwData = Type;

cds.cbData = nBuf * sizeof(TCHAR);
cds.ipData = szBuffer;

HWND hWnd = NULL;

44

pWnd->SendMessage(WM_COPYDATA,(WPARAM)WWnd,(LPARAM)&cds);
where str is the data string to be transferred; pWnd is the window-handle-pointer of the display
unit; Type (such as 1,2,3...) means different types of data. In the WM_COPYDATA processing

function, the display unit will decode the str according to the value of Type and act accordingly.

Here is an example of an .obj file.

v -0.60000 0.600000 0.500000
v -0.60000 -0.60000 0.500000

usemtl red
f1234
usemtl red
f87635

“v” stands for vertex. The three numbers following “v” are the coordinates of the vertex.
“f” stands for facet. The group of numbers following “f” is the ID numbers of all the vertexes

of this facet. “red” is the color code, which is represented with a value in a .mtl file.

The display unit reads vertex’ coordinates from .obj file and the color value from .mtl file.
Then it uses g/Color3f{) to set current color and uses g/Vertex3f(xi, yi, z i) to draw the polygon.

All these polygons will compose the static and the motion part.

The basic drawing function is [45]:

glBegin(GL_POLYGON);
glVertex3fixl, yl, zI);

glVertex3f(xi, yi, z i);
glEnd(),

(xi, yi. zi) is the i th vector’s coordinates.

45

5.3 Topology Platform

5.3.1 Introduction

The topology platform includes a toolbox that contains icons of basic controls, such as
Static Base, Add Linker, Delete Linker, and those of sample modules such as linear module,
rotary module as well as the modules that can be added by the users. Toolbox supports Drag &
Drop, and its interface can accommodate added modules. When the user adds modules to the

system, the toolbox will be able to extract the icons for the added modules and display them.

The topology platform also has a topology design window that supports Drag & Drop. By
using standard symbols to represent the modules, and the topology linkers (arrows) to represent
the topology relationships between the modules, this graphic-based platform supports any
topology structure including open loop and close loop. Modules can be added, deleted, so can
topology linkers. By assigning each module with an ID number, all the modules can be

identified.

Each symbol containing the icon, name and ID of the module, can be moved, enlarged,
and shrunk in all directions. Topology linkers can follow the changes of the symbols. When a
module is deleted, all its linkers disappear. The platform has vertical and horizontal scroll bars
that can correspond to the position of the module symbol; it also has size scaling ability to

accommodate the different size requirement.

A right click on the symbol would cause a menu to pop up, the menu contains such items as

b 13 bh) .

“delete module”, “open control unit”, “close control unit”, “close display unit”, “reopen

display unit”

5.3.2 Toolbox Implementation

Here are the main techniques used in the toolbox.

46

(1) To display icons:

To extract the module icons, a Windows API function is used [29]:
cExtracticon(AfxGetlnstanceHandle(), T(name),0).

This function extracts the icons from EXE or ICO files. To display the icons, use the

following function [30]:
CDC->Drawlcon(lefi, top,app->hlcon) to show it at position of (left, top).

(2) To popup hint information:

When the mouse is moved onto the icon, a hint window will popup and show the
information about the module. The functions shown below are used to create and display such

a hint window [31]:

BOOL b=m_ToolTip.Create(this, TTS_ ALWAYSTIP);
b=m_ToolTip.AddTool(this,ID FILE MRU FILE]);
this-> EnableToolTips(true);
m_ToolTip.Activate(irue);
m_ToolTip.UpdateTipText("module” this,0);

(3) To show the status of the current module:

When the mouse is moved onto the icon, a 3D frame will appear to show the module as the
current one. To create a 3D frame, a black and a white pen are created. The codes are as the
following [32]:

CPen Pen,Penli,Pen2;
Pen.CreatePen(PS _SOLID, 1,RGB(0,0,0)),//black pen
Penl.CreatePen(PS SOLID,I1,RGB(255,255,255)),//white pen

When the mouse is moved onto the icon, first, the white pen is used to draw the left and the
top edges of the frame, and then the black pen is used to draw the right and the bottom [33].

hDC->MoveTo(lefi,top);
hDC-> LineTo(right,top);
hDC->MoveTo(lefi,top);
hDC-> LineTo(left, bottom);

Similarly, a clear pen is created to clear the frame when the mouse is moved away from the

icon [34]:

47

COLORREF color = ::GetSysColor(COLOR_3DFACE),//clear pen

(4) Cursors changing:

When you drag an icon and move it, a [Ej will appear to show that the module is dragged
and moved [35].

SetCursor(AfxGetApp() ->LoadCursor(IDC_MYCURSOR));

The codes above are used to load and show the cursor. And the codes are used to set the

cursor to normal:

SetCursor(AfxGetApp() -> LoadStandardCursor(IDC_ARROW)),

When you click on the icon, the cursor is set to a cross shape to show that you have selected
the module.

SetCursor(AfxGetApp() ->LoadStandardCursor(IDC_CROSS));

5.3.3 Topology Design Implementation

Here are some of the key techniques for the topology design:
(1) Module presentation and Drag & Drop:

When a module is added to the platform, an ID number will be assigned to it. A frame with
the module’s name, ID and icon will be used to represent the module. The function Create Pen()
is used to create two pens to draw the frame. A CBRUSH object is defined to draw the
background of the frame. When added, the module is set as current. An outside frame with 8

small squares and slash lines presents the module’s current status.
The codes below defined the CBRUSH object that is used to draw the out frame [36]:
CBrush Brush(HS _BDIAGONAL,RGB(100,100,100)),

Similarly, another CBRUSH object is used to draw 8 small squares.

48

Users can drag and drop a module symbol, move it or change its size as shown in Figure 5-1.
When users move the mouse into the frame or on any one of the outside 8 squares, the codes
below will change the cursor to remind the users that the symbol is ready for Drag & Drop or

size change [37]:

SetCursor(AfxGetApp() ->LoadCursor(IDC_MYCURSOR));
SetCursor(AfxGetApp() -> LoadStandardCursor(StandardCursor));

Figure 5-1: Drag & Drop

During the operation, a dashed line frame will follow the mouse movement to show the

changing process. The codes for the dashed line frame are shown as below [38]:

hDC->SelectObject(GetStockObject(WHITE_PEN));
hDC->SetROP2(R2_XORPEN);
hDC->MoveTo(lefi,bottom);
m=(int)(DragRT.bottom-DragRT.top)/4;
y=bottom;
Sfor (k=0 k<=m;k=k+1)
{
hDC->LineTo(DragRT lefty-2);
hDC->MoveTo(DragRT.lefi,y-4);
y=y-4;
/

XORPEN method is used to draw and then clear the dashed line frame.

(2) To draw and delete topology linkers:

A arrow represents a topology linker between two modules as shown in Figure 5-3. The key
problem in drawing the arrow is how to determine its start and end points. The start point falls

on one of the four midpoints of the first symbol’s four edges. Similarly, the end point coincides

49

with one of the four midpoints of the second symbol’s four edges. The principle is that the

length of the arrow should be the shortest. The process is as shown in Figure 5-2:

Rotary
AN
N
N Mo W
2‘ Linecar
o Wy

Figure 5-3: Draw the linker

To delete a linker, the program will create a new arrow whose color is the same as the

background, and then draw the new arrow to cover the old one.

(3) To open a module’s control unit:

50

This means running the .EXE file of the module. The following function is used [39]:
WinExec(MyModuleName, SW _SHOW);

API function WinExec is used to call the module’s .EXE file. MyModuleName is the path
and name of the .EXE file.

(4) To close a module’s control unit:

That means to close the application of the module. It just needs to send a WM CLOSE
message to the control unit window [40].
pwndfn]->SendMessage(WM CLOSE,0,0);

pwnd/n] is the control unit’s CWnd handle.
(5) To close a module’s monitor:

The programe just needs to use Show Window method to hide the display unit [41].

pDisplayUnitWnd->ShowWindow(SW _HIDE);
pDisplayUnitWnd is the display unit’s CWnd handle pointer.

(6) To open the monitor:
Use the same function as above but with the opposite parameter [42]:
pDisplayUnitWnd->ShowWindow(SW_SHOW);
(7) To popup the menu when right-clicking:

Some menu functions are used as below [43][44]:

menu. LoadMenu(IDR MENU CONTROL);

pPopup = menu.GetSubMenu(0);

ASSERT(pPopup != NULL);
pPopup->TrackPopupMeru(TPM LEFTALIGN|TPM_RIGHTBUTTON,point.x,

point.y,this);
Function LoadMenu() is used to load the assigned menu. TrackPopupMenu() is used to

activate and display it.

51

5.4 System Assembly and Simulation Platform

5.4.1 Introduction

Simulation is carried out in the same window where the system assembly is performed.
This platform provides the operation preview before the system is physically reconfigured.
When the user inputs position and orientation data, the system will refresh the display to show
a new system after reconfiguration. By analyzing the topology structure, it can show chain and
tree (open loop) system and the trace of the motion. With the concept of snap point, all modules
are located at corresponding positions of the topology structure. When the window is opened, it
will analyze topology structure and generate strings representing the branches. After the
validation check, the trunk will be displayed and then the rest branches. If any button on any
module’s control unit is pressed, through complicated communication protocol, the
corresponding changes will be seen on the platform immediately. The trunk’s trace is displayed

in the 3D space.

5.4.2 Implementation

Supporting chain and tree structure is the key technique in the system assembly and

simulation platform (or assembly line).

The basic principle of the assembly line doing simulation is similar to that of the module
platform and it also uses OpenGL library. When a module is added into the topology, it is given
an ID number. The assembly line will use this ID to communicate with every module. When
this module has been linked with another one, a string like “1&2” will be made. So all linkers
are presented by a string such as “1&2, 2&3, 1&4, 2&5...”. When the assembly line is loaded,
it will check to see if all the module’s control units are opened and if everyone is linked. After
that comes the most important step: analyzing the whole topology’s tree structure and

generating every branch’s organ as shown in Figure 5-4.

52

Figure 5-4: The flow chart of analyzing topology structure on assembly line platform

Every branch gets a string like “1&3&5&2&6...”. In the mean time, the program will
calculate the coordinates of all snap points according to the topology structure. Now it will

decide which branch is the trunk, as shown in Figure 5-5.

Figure 5-5: The flow char of deciding which branch is the trunk.

The drawing process is as shown in Figure 5-6:

53

Figure 5-6: The flow chart of drawing each module one by one.
To support the tree structure, the key is to get the inlet point for each branch.

The formula of snap point has been deducted in chapter 4. For each branch, the first module
is somewhere on the trunk or on another branch. Because the coordinates of all the snap points
have been calculated, the installation position of the first module on the branch can be obtained,
and therefore the rest modules on that branch can be drawn one by one. In this way, all the
modules in the topology can be drawn, and the 3D movements simulation of all the modules

can be done, as shown in Figure 5-7.

Figure 5-7: Support tree structure

54

The assembly line also uses WM COPYDATA to receive data from each module. At any
moment, if users want to change a module’s position and orientation, they just need to input the
relative parameters and click on the GO button in the control unit. Through WM COPYDATA
message, all module’s position and orientation data will be sent to the assembly line. The latter

will refresh the display.

5.5 OpenGL platform Configuration in VISUAL C++

Environment

The entire Software package is developed in the environment of Visual C++ and OpenGL.
To make the two work together, some configuration of VC++ has to be changed to

accommodate OpenGL.
(1) In function OnCreate():

Figure 5-8 shows the necessary settings [45].

Figure 5-8: In function OnCreate()

(2) DrawAll() is used for drawing objects with the help of call-list method to accelerate the
display speed of OpenGL since each object is been displayed once. The movement simulation

of the objects is realized by means of call-list.

Figure 5-9 shows an example in the P-CAM:

Figure 5-9: Function of drawing.

(3) In function OnPaint()[46}:

glPushMatrix();

glTranslated(0.0,0.0,-2.0);

glRotated(m _xRotate, 1.0, 0.0, 0.0);

glRotated(m_yRotate, 0.0, 1.0, 0.0);
giScalefim_ScaleX*m_ScaleXFactor,m_ScaleY*m_ScaleYFactor,m ScaleZ*m_Sca

leZFactor),
glPopMatrix();
SwapBuffers(dc.m _ps.hdc);

(4) In function OnSize()[47]:

aspect = (GLdouble)windW/(GLdouble)windH;
glViewport(windW/3,0,windW,windH);
giMatrixMode(GL_PROJECTION),
glLoadldentity();
glOrtho(-1,1,-1,1,0,20.0),//ortho mode
giMatrixMode(GL_MODELVIEW),;
glLoadldentity();
glDrawBuffer(GL_BACK);

(5) In function OnMouseMove()[48]:
iffm_LeftButtonDown)

s
¢

CSize rotate = m_LefiDownPos - point;
m_LeftDownPos = point;

m_yRotate -= rotate.cx;

m_xRotate -= rotate.cy;
InvalidateRect{NULL,FALSE);

N~

(6) In function OnLButtonDown():
m_LeftButtonDown = TRUE;
m_LefiDownPos = point;

57

6 Examples

Based on the aforementioned architecture and algorithms, the software has been developed
using VC++ and Open GL, and has been tested to control a Robix RCS-6 [23], which is a small
educational robot that can be readily disassembled and assembled by hand. Three examples of
topology reconfiguration are also shown below. The first two are for simulation and control of
serial structure and tree structure, respectively. The third is for reconfiguration design. The
software has also been successfully connected with Kollmorgen Corporation’s industrial
modules. Examples are provided to show that the software has been implemented to control a
reconfigurable robot called Modular Reconfigurable Robot (MRR). With this software, a
computer model can be easily created. The simulation is carried out with screen display. The

robot control is done through a serial port.

6.1 Simulation and Control of Serial Structure

Figure 6-1(a) depicts the Robix RCS-6 configured as a 4 degrees-of-freedom (DOF) robot.
The configuration shown is a serial structure. Figure 6-1(b) shows the corresponding
assembled model in the computer. Figure 6-1(c) shows the topology graph. To control the
robot, commands are issued through the software, and the robot is running synchronously with

the computer model.

(@)

(a) Robot

58

(b

(b) Computer model

|

NLom -
\Q‘/h&mdm efe [
/Mt;:i 4i efle g 3 1 -
ii - p

|
* |

5
2)
kY
3,
i

k“x / Wodul efe
/iv?r,uiui & o 1,
3

(c) Topology graph

Figure 6-1: Robot configured in serial structure

6.2 Simulation and Control of Tree Structure

Figure 6-2(a) depicts the Robix RCS-6 configured in a tree structure with two branches.
Figure 6-2(b) shows the corresponding assembled model in computer. Figure 6-2(c) shows the
topology graph. For the configuration shown in Figure 6-2(a), the two arms are approaching
each other and finally meet to realize automatic reconfiguration. Furthermore, Figure 6-3

shows the design of the connector, which connects two modules using magnets.

59

(@)

(a) Robot

(b)

(© i #

W e *
* Mudnl ¢ Ho
oy ..
T W > AN

‘e L
I?ﬂis v &({Rol sy
s

(24

%
\

) Mo Al s ranch 2
Branchj\ /wmmg /;’“‘ i P /3

&
i

k!

/M;-dmeﬂa /
“l?&é{)ﬂs;l i F 5
¥

(c) Topology graph

Figure 6-2: Robot configured in tree structure

60

Figure 6-3: (a) Connector on module i-1 (b) Connector on module 1

6.3. Reconfiguration Design

The developed system can be used for reconfiguration design and synthesis. It allows
addition/deletion of modules as well as re-ordering. Figure 6-4(a) shows the topology graph of
the first design, and the module number order is 1, 2, 3, 4, 5. Figure 6-4(b) is the corresponding
assembled model. Figure 6-4(c) shows the revised version of the first design. In this case,
module 2 is deleted and module 6 is added. The module number order is changed to 3, 1, 4. 5, 6.
Figure 6-4(d) is the corresponding assembled model with track display. In the mean time, the
topology design platform can be used to delete, add or change modules; the assembly line can
simulate the result relatively. Figure 6-5(a) shows one serial structure design. Figure 6-3(b) is
the corresponding simulation. In Figure 6-5(c), the first linear module has been changed to a
rotary module. Figure 6-5(d) is the relative simulation. The unchanged modules keep their
order as 0, 2,3.4, but 1 has been changed to 5. Figure 6-6(a) shows a tree structure machine.
Figure 6-6(b) is the simulation of the design. In Figure 6-6(c), the first linear module 1 has been
changed to a rotary module 5. Figure 6-6(d) is the corresponding simulation. The unchanged

modules still keep their order as 0, 2,3.,4.

61

Hotary
Xy p e 3

yi,iilﬂa! '
4

o

(a) Original system topology

| Asserably Line

ERrS]
"/Li aear b
AL

”» -
)

1 C/ﬁm ary |
G ’5

(c) Revised system topology

62

Ausenbly Ling

(d)

(d) Revised system assembly
Figure 6-4: Reconfiguration

1
Linear i
4 {Qnt BYY
§ & .2
S:“ ‘1'(;

3

e

-\{/!‘tm’. ary 1
&3

(a) A serial design including module 0,1,2,3,4

Assembly Ling . 4
Sssembier

(b)

(b) Corresponding simulation

63

| (©

. ot «
(/ Fot ary “WW"Y’ arary
= i

o b

‘\(\
/L% wear :
4
S,

- s
Flut ary
3 "
s =g
\s Wy
N 7
5, /
\ /
S Mot arw

3

Assembly Lme
Agsembder

(d)

(d) Relative simulation

Figure 6-5: Serial structure reconfiguration

B kY
'/J %
;’J “/i_ir'mm
/ Lingar 4 1
3 4
‘ﬂv‘ (“
Y §
X,\ \
\\ |

5

Al
/Rntaw
IR i

(a) A tree design including module 0,1,2,3,4

64

Bssembly Line
Ksvembler

(b)

/
]

H

/U ne 8y
3

(d) Relative simulation

Figure 6-6: Tree structure reconfiguration

65

6.4 MRR (Modular Reconfigurable Robot)

To test on an industrial robot, the software has been integrated together with the modules of

Kollmorgen Corporation (MC series products) to control a modular reconfigurable robot

(MRR).

Figure 6-7(a) shows the robot. Figure 6-7(b) shows the relative simulation in assembly line.
Figure 6-7(c) depicts the robot’s topology design that is a serial structure with 4 modules.
Three are rotary and one is linear. The software can control and synchronously simulate the

module’s movements, and it works with the hardware perfectly.

(a) The MRR with Kollmorgen Corporation’s modules

(b) Corresponding simulation

66

s ot WC? Fot ay

/M{ZU nesr /
s ~

E

e {M€3ﬁut ar
A
g ——

(c) Topology design

Figure 6-7: MRR design, simulation and control

67

7 Applications for Polishing

Since reconfigurable robots are mainly considered for polishing applications, this thesis
also includes the development of path planning for robotic polishing. A CAM software is also

developed to perform the following functions:

(1) Select polishing tools.

(2) Load a CAD model for the part to be polished.
(3) Select a polishing area.

(4) Generate polishing path.

(5) Simulate polishing process.

(6) Generate tool path files.

7.1 Selection of a Polishing Area

Generally only certain areas, not the whole part needs to be polished. Therefore, the first
step is to pick the desired polishing area. In P-CAM system, the geometric data of the part to be
polished is stored in .stl file, which consists of a group of triangles. These triangles provides
surface meshing of the part. P-CAM system can load the .stl file and display the work on the
screen. After that, comes the task of selecting the desired surface to polish. So far, P-CAM
software supports two methodologies for surface selection. One is OpenGL picking mode.
Another one is the self-developed precise picking mode. In general, the OpenGL picking mode
is good enough for this job. But because .stl file contains a large number of triangles,
sometimes it will cause inaccuracy. For example, as shown in Figure 7-1, one of the front
triangles needs to be picked, but OpenGL picks out the one behind. To alleviate this problem an
accurate picking methodology has been developed. However, the OpenGL picking mode can
suit various kinds of incoming unit shapes, not just triangles, it also operates with high speed.
Considering the advantage and disadvantages, it still remaines as one basic choice. Based on

68

the analysis above, a sele-developed accurate picking mode has been developed and it is

introduced here.

olishing CAM Software :
Fie Yiew Tools Operabtion Sslect Help

FFO HeT P

=101 x|

ROHE§

Ready T aum

Figure 7-1: OpenGL picking mode sometimes selects the wrong triangle, here the front one

is wanted, but it picks the one behind.

69

This methodology involves the following steps:

(1) Calculate the equation of the straight line that contains the mouse-clicking point and
spreads from z =-o° to z=2°,

(2) Calculate all triangles equations.

(3) Calculate all the intersection coordinates of the line with every single triangle plane.

(4) Determine whether every intersection point is located within the triangle.

(5) Ignore all the triangles whose points are located outside.

(6) From the remaining two triangles, select the nearest one to the viewpoint.

Here are the details:
(1) The explicit expression of a straight line in the space:

Let pi(x1, Y1, Z1), p2(X 2, Y2, Z2) be the terminal points or two arbitrary points on the line,

then the line's equation is [26]:

X=X]+t(X2-X1) 7.1)
y=yitt(yyn) (7.2)
Z=Z1+t(Zz-Z1) (73)

where t is the slope parameter, ranging from 0 to 1.

To calculate the equation of the line, p; and p> must be known. How to obtain the

coordinates of p;. p2. when clicking the mouse? The idea is to employ the OpenGL function

int gluUnProject(GLdouble winx, GLdouble winy, GLdouble winz,
const GLdouble modelMatrix[16], const GLdouble projMatrix[16],
const GLint viewport[4], GLdouble * objx, GLdouble * objy,
GLdouble * objz),

70

This function maps window coordinates (screen coordinates) to object coordinates. Among
the parameters, winx, winy, winz are the X, y, z coordinates of the point to transfer in the
OpenGL window, the outcome, objx, objy, objz are the actual object coordinates. In OpenGL
frame, z=0 and z=1 can be used to present the direction from near to far, say, the straight line
from the viewpoint to infinity. When clicking on one triangle on the screen, LbuttonDown
mouse event will be activated and the x, y value can be captured within OnLButtonDown
message processing function and apply them as winx, winy. If gluUnProject is run twice with
the same winx,winy and z=0,z=1, the actual p;_p, will be obtained from relative objx,objy,objz.

Furthermore, the straight line’s equation can be obtained.

(2) Generally, a plane containing three points pi(X1,¥1,21), P2(X2.¥25Z2)s P3(X3.Y3.Z3) can be

expressed as:

X = X;+s(Xo- X1) H(x3- X1) (7.4)
y =yits(y2- y1) H(y3- yi) (7.5)
2= z21+8(Z2- 21) H(23- 71) (7.6)

From eqns. (7.4) and (7.5) the following equations can be deducted:

(y2-y1) (X -x1) = s(y2- y1) (X2- X3) +t(X3~ X1) (¥2- Y1) (7.7)

(y-y») (x2- x1) = s(y2- y1) (x2- x1) H(y3- y1) (X2- Xi1) (7.8)

Subtract eqn. (7.7) from (7.8) yields:

(y- yi) (o= x1)- (y2- y1) (x =X) =t y3~ y1) (x2- X1)- (X3- X1) (y2- ¥ (7.9)

Hence
{ = (Y-y) (X, -X)=(¥,-y)(X-X,) }
(Y5 -y (X -X)-(X5-x) (Y, -y)) (7.10)
Also from eqgns. (7.4) and (7.5):
(ys-y0) (x-x1) =s(ys- y1) (Xo- X1) H(X3- X1) (y3- y1) (7.11)

71

(Y- y1) (x3- X1) = s(y2- y1) (X3= X1) H(y3- ¥1) (X3- X1) (7.12)

Subtract eqn.(7.11) from (7.12) yields:

(y-¥1) (X3 X0)- (y3- yi) (X =X1) = s[(y2- ¥1) (X3- X1) - (y3- y1) (x2- x1)] (7.13)

Hence

S:I: ()"YI)(X3'xl)'(Y3'YI)(X'X1)
(yz'y1)(x3'x1)'(y3'y1)(xz'X|) (714)

Use the equation for sand t in eqn.(7.10) and eqn.(7.14), then

(z-z1) [(y3- y1) (X- X1)- (X3- X1) (y2- YO I= (Z2- 21) [(y3- Y1) (X~ X0)- (X3- X1) (Y- Y1)+ (z3- 2))
[Cy-y1) (Xo- x1)- (x-x1) (y2- y1)] (7.15)

Z [(ys-y0) (%= x0)- (X3-x1) (y2- YO I- 21 [(y3-y1) (Xo- x0)- (X3 X1) (Y2~ YOI= (z2- 1) (y3- Y1)
X=(22- 1) (y3- Y1) Xi~(22- Z1) (X3~ X1) yH(Z2- Z1) (X3- X1) Y1+ (23- 1) (X2~ X1) Y-(Z3- 21) (X2- X))

yi- (Z3- 1) (y2- yv) x+(z3-21) (y2- Y1) X (7.16)

z [(ys-y) (x2- X0)- (X3- X0) (Y2- YOI [(y3-y1) (x2- X1) 21- (X3- X1) (y2- Y1) Z1 = X [(22- 21) (y3-
y1) = (z3-21) (y2- Y1) 1 Ty [(23- 21) (Xo- X1) ~(Z2- 1) (X3- X)]H- (Z2- 1) (y3- y)xiHz2- 1) (X3-
X)) Yi-(z3- 21)) (x0- X1) y1 H(z3- 7)) (y2- Y1) xi] (7.17)

X [(z2-21) (y3- Y1) - (Z3- 21) (y2- Y1) 1 Y [(23- 21) (Xo- X1) (22~ 21) (X3- X)) + Z [-(y3- yi) (X2~
Xt (x3- x1) (Y- YOI (22- 21) (y3- yi)+ (23- 21) (y2- y1) IxiH(z2- z1) (xa- X1) -(Z3- 21) (X2~
DI yi- [(ys-y) (x-x) - (x3- X)) (y2- Yyl z1}=0 (7.18)

Let
A= (z2-21) (¥3-¥1) - (z3-21) (Y2~ y1) (7.19)
B = (z3- 2)) (X2~ X1) - (Z2- 21) (X3- X)) (7.20)
C=-(ysy1) (xo= X))+ (Xa- x1) (y2- y1) (7.21)

72

D =1[-(z2- 2)) (y3- yD*+ (z5- 21)) (y2- y1) [xiH(z2- 1) (x3- X1) =(z3- 21) (X~ X1)] y1- [(y3- Y1) (%o
x1) = (x3-x1) (y2-ynl z1 (7.22)

Then the equation of the plane containing three known points can be written as:
Ax+By+Cz+D=0 (7.23)

(3) Till now all the triangle’s equations can be calculated, at the same time, as the straight line’s
equation can be obtained, all the intersection coordinates of the line penetrating every single
triangle plane can be calculated. Because there are 4 equations for 4 unknown parameters x, y,

z, t, the exact result can be derived.

(4) Suppose that p;, p2, po are the three vertices of a triangle, arranged counter clockwise. Let
the intersection point be p as shown in Figure 7-2. If p lies inside the triangle, it has to be lying
on the left side of all three edges of the triangle. Here, the meaning of “lying on the left side” of
an edge is, for example, if one looks down the first edge p; p2 on the triangle plane, the point p
should be on the left side of the line defined by p; p,. Similarly, p should lie on the left side of
the line defined by p2 po and po p1. Before determining whether every intersection point is

located within the triangle, it is vital to determine whether a point lies on the left side of a line.

P>

Po

P1

Figure 7-2: P is either inside or outside the triangle

This task can be implemented by the following computation [26]:

1) Make a vector

Vi=pi-Po (7.24)

73

2) Make another vector

V2=p-Po (7.25)

3) Compute the cross product
v=v; X v (726)

4) Compare v with the normal of the triangle plane n, if the dot product v.n is positive, then

p is on the left side of the line pop,, otherwise p is on the right side of pop;.

Now, where does the normal of every triangle come from? It is from the .stl file that stores

all values of the triangle’s vertex and normal.

The .stl file is derived from Solidworks — a commercial CAD software package. The
triangle normal direction is unpredictable, because the output procedure is automatically
executed by Solidworks and nothing can be done to affect the direction of the normal. So every
dot product v.n is unpredictable. Sometimes a positive result could mean that the point is on the
left side of the edge; sometimes a negative one could mean the same thing. However, one thing
is certain: if the point is outside, the results of v.n must be 1 positive and 2 negative, or |
negative and 2 positive, but they could not be all negative or all positive. So if the results are all

positive or all negative, it is inside.

(5) Having decided whether the mouse-clicking point is inside or outside each triangle, ignore

all the triangles where the point is located outside and one will find only just two left.

(6) From the remaining two triangles, pick the one closer to the viewpoint. Each judgment

calculation will return a t value, the smaller t is preferred.

7.2 Path-planning Task

Prior to actual polishing, a pre-derived path should be generated to guide the polishing head

movement. The path consists of a group of parallel curves with equal intervals on the selected

74

surface. On each curve a series of points are evenly distributed with a calculated distance apart,
as shown in Figure 7-3. The default interval between the curves is 80% of the polishing head’s
width. This is to ensure a 20% overlapping space between 2 curves. The 20% overlapping
space is for the consideration of good polishing quality. On each curve, the polishing head will
move from one point to the next according to the coordinates of the points. At the same time,
the polishing tool will rotate at a certain speed. After finishing one curve, it will move to the

next till the whole job is done.

In order to move the polishing head smoothly, a group of equally spaced points along the
curves is needed. So the path-planning procedure is very precise and can only be done by

means of computer programming, and the core is the algorithm to be described below.

75

olishing CAM Software Systen . . =101
Fie Yiew Tool Cperation Select Help

EF¥o Hed?

FoYop:
s

ROHED NIYX
Y ETTE

Ready : MNLIM

Figure 7-3: Calculated path along selected surface

76

First, a group of virtual parallel planes is used to cut the surface to generate the curves that
contain a set of discrete points. Of course these points are not equally spaced due to the shape
of the surface. Second, by applying a curve-fitting algorithm, the uniformly distributed points

are derived.

Now come the algorithm and the techniques. This method can be employed to other
applications that need precise curve fitting. Two feasible algorithms corresponding to different
parts and surfaces have been developed. One is the mixed interpolation curve-fitting method,

and the other is the direct picking curve-fitting method.

7.3 Virtual Parallel Planes Cutting Algorithm

This procedure will produce the outcome of a set of parallel curves. Each is made up of a
series of discrete points that are unequally distributed. The next step, curve fitting, is based on

these points. First comes the situation of a single plane cutting a line.

Suppose that the plane’s normal is n and on it is an arbitrary point P as shown in Figure 7-4.

The equation for the plane is the dot product as [26]:

(X-P).n=0 (7.27)

Figure 7-4: The intersecting point of a line and a plane
where X is an arbitrary point’s vector on the plane.

Now, suppose that the line segment is defined by the starting and ending points Q and E.

The equation for the line in parameter form is [26]:

71

XH)=Q+t(E-Q)=Q+tw (7.28)
where
w=E-Q (7.29)
Substituting X (t) into the equation for the plane, the following equation can be obtained:
Q+tw-P)n=0 (7.30)
Solving for t gives
t=(P-Q)n)/w.n (7.31)

Therefore, if'tis between 0 and 1, the segment intersects the plane. The intersecting point is

at

Q+(((P- Q)n) /w.nm)w (7.32)

For implementation, three points (ng, n;, ny) can be used to represent the plane. The unit

normal of the plane n can be computed by
n = ((n;-n) X (m2-no)) / (|ny-no| X {nz-mo|) (7.33)

The three points (ng, n;, ny) can also be used to make a cutting triangle. Then if the
intersecting points lie inside the triangle, a point on the polishing path is generated. Otherwise,

ignore the intersecting point.

Recursively, if using a plane to cut every single triangle's three edges, there will be two
points that lic on the edges, and the third one is outside of the triangle and can be ignored. With
the iterative procedure, a group of parallel planes can produce the desired points by cutting the

triangles, as shown in Figure 7-5.

78

Figure 7-5: A group of parallel planes cutting a series of triangles

7.4 Mixed Interpolation Curve-fitting Method

In general, two methods are used to deal with the curve-fitting problem: regression and
interpolation. An nth-order polynomial can be applied to cover all the points. By adding more
points, the size of n can be increased. However, increasing n would mean increased difficulties
in solving the equation. The bigger the value of n, the more difficult it is to solve the equation

(sometimes almost impossible), and it will bring about larger residual errors.

As for interpolation, cubic spline interpolation can be used for every 4 points. Theoretically,
this method is highly accurate with little round-off error. Hence, all cubic curves will bring out
a series of bends. The accumulative bends will decrease the accuracy and increase the
opportunity of aberrance. If originally 4 points can build a straight line, the unnecessary bend

of the cubic spline will not lead to an accurate result.

To meet this challenge, a solution in this thesis is laid out as the combination of regression

and cubic spline interpolation. It involves the steps shown as below:

(1) The first 4 points on the curve are picked out and are expressed by a cubic equation as:

y=ax’ +bx’ +cx+d (7.34)

79

Where a, b, ¢ d are coefficients. Now here are the 4 points for the 4 coefficients. By solving

the equation the coefficients can be determined.

(2) Using the principle of regression, another point can be added and the relative y value can be
calculated. An error tolerance value is also set, and the least squares method is used to
check if the residual error brought by the new point lies within the limit of the tolerance. If
it dose, add another new point and make the iteration continue till it reaches the point when

the error is beyond the tolerance. Now the interval of this equation can be obtained.

(3) Select another 4 points and repeat step 2, and continue the iteration. A series of cubic
equation with known intervals can be obtained. In the case of less than 4 points left on the
curve after these steps, beware that the ending point of the any segment is also the starting
point of the next adjoining segment, only the case that 3 and 2 points are left exist. Here

comes the situation where 3 points are left.

(4) If there 3 points are left on the curve, which can not construct a cubic equation because of

not enough coordinates to get 4 coefficients, a quadratic is used to represent the situation:

y=ax’ +bx+c (7.35)

Now there are 3 points for 3 coefficients, it’s easy to solve the equation to get the

coefficients.

(5) In the case of 2 points left, a quadratic is still used as in step 4 for the sake of accuracy. But
since there is one condition short, another one needs to be added. The joint of 2 segments
should have the same tangent value to keep the curve smooth. According to this idea,
calculate the first order derivative from the last segment’s equation at the joint, ie, t, let t be

equal to the first order derivative ast =2 a X x + b, x is the joint’s coordinate. Now there are

3 conditions for 3 constants.

(6) After finishing all steps above, a group of cubic equations and possibly 1 quadratic with

known intervals can be obtained. All segments can be represented in terms of a matrix as:

80

Yi =Ai X; (7.36)

where i is the jth interval, and

Yo
¥

y | (7.37)

3 2
). SETHEED TR SA

3 2
X2 X2 X, |1

X =| ° o (7.38)

3 2
X'im X im X, 1

m

a

A | D (7.39)
[}
d

Now the principle of interpolation is used to generate the equally spaced points. Because
the difference (d) between two terminals (1 & n) of a curve is known, the interval of the equally
spaced points can be calculated as d*I/n. Now the ith interpolated point’s coordinate can be set
as xo+ti*d*1/n, where i=0,1,2...n-1, x; is the starting point’s coordinates. With the interpolated
point’s coordinate, it can be determined in which segment the point falls. And then, after the A
coefficients from the matrix are determined, the corresponding y value can be computed.

Recursively, the target of generating equally spaced points can be achieved.

In this method, because fewer cubic equations are used than in “pure” cubic spline

interpolation, the curve will be flatter and the residual error is smaller. This method is more

81

accurate, but computationally intensive as it involves many matrix transformations and the use

of numerical methods.

7.5 Direct Picking Curve-fitting Method

In some cases, when the size of the triangles is relatively small, which means .stl file
possesses higher accuracy and the number of the triangles is larger, or the selected surface is
relatively flat, the method of directly picking equally spaced points from the triangles is highly
accurate, and will promise good polishing quality. The idea of interpolation is employed to

achieve this.

After cutting the triangles with parallel planes, unequally spaced points on the curves along
the selected surface are obtained. Each point is on the edge of a triangle. In order to achieve
equally spaced points, points need to be interpolated along the x direction at a computed

interval. So this methodology is also a kind of interpolation, as shown in Figure 7-6.

Interpolate points

Cutting plane

Points derive
/

from cutting

Triangles

Figure 7-6: Interpolate points among the points derived from cutting

In the figure a plane cuts a group of triangles and generates intersection points with
unequally spaced intervals. Then a series of equally spaced points are interpolated among them.
As in the section above, the ith interpolation point's x coordinates is Xo+d*i*l/n, where
i=0,1,2...n-1, X is the start point’s x coordinate, n is the number of the points on the curve. The
z coordinate of the point is determined by the parallel plane's z coordinate that is set by the user.

So the key turns to the computation of the point's y coordinates.

82

Because the interpolated point is located on the triangle plane, the following equation is

produced:
Ax+BytCz+D=0

Every triangle's equation can be calculated using the method mentioned in section 7.1. In
the equation, x, z are known, A, B, C, D are already calculated, so y can be derived.

Recursively, all the equally spaced points can be generated.

7.6 P-CAM Implementation

Basically, the system is a SDI (Single Document Interface) application. The client area is
used for OpenGL platform. The .stl file describing the part to be polished is loaded and

displayed in the client region. Users can select either the whole surface or just an area to polish.

The .stl file comes from SolidWorks. In .stl file, the object is constructed with a group of

triangles.

Here is a piece of .stl file.

Jacet normal -1.000000e+000 0.000000e+000 0.000000e+000
outer loop
vertex 0.000000e+000 0.000000e+000 5.000000e+001
vertex 0.000000e+000 5.000000e+001 5.000000e+001
vertex 0.000000e+000 0.000000¢+000 0.000000e+000
endloop
endfacet

The three numbers following the keyword “normal’ are the triangle normal vector’s x, y, z
coordinates. The three numbers following the keyword “vertex” are the triangle vertex’ x, y, z

coordinates. A structure is set to deposit the triangle’s parameters.

In the client region, the object is outlined by triangles. Users need to pick two triangles to

form the area for polish. The picking process can be done by mouse clicking. After the two

&3

triangles are picked, the program will seek the IDs of the triangles between the selected two. The

two selected triangles, together with the ones between them, make up the desired surface.

After the surface is selected, and the "Show path" button is clicked, the program showa the
suggested polishing path. The next step is to select a triangle, one of whose vertexes will be the
engaging point. Then the program will automatically choose the vertex that is closest to the
first polishing point. As a CAM application, the software is able to do 3-axis and 5-axis
simulation to verify the validity of the path planning. In order to visualize polishing results
precisely, a simple color-computation algorithm is applied to simulate the roughness with a

twinkling star.

If the user is satisfied with the outcome, the path data can be saved to a CNC file for

machines to guide the tool. .
Here are the key points of the software implementation:
(1) Multi toolbars:

The system possesses three toolbars located at the left, right and normal position of the
client region. They represent the main operation, environment operation and selection-related

operation respectively.
To achieve this goal, in function:
int CMainFrame::OnCreate(LPCREATESTRUCT IpCreateStruct):

Create function instead of CreateEx is used.

m_wndToolBar.SetBorders(i, 1, 1, 1);
if (!m_wndToolBar.Create(this, WS_CHILD | WS_VISIBLE | CBRS_TOP
| CBRS GRIPPER | CBRS TOOLTIPS | CBRS FLYBY |
CBRS SIZE DYNAMIC) ||!m_wndToolBar.LoadToolBar(IDR_MAINFRAME))
{
TRACEO("Failed to create toolbar\n”);

return-1; // fail to create

14
S

m_wndToolBar.ModifyStyle(0, TBSTYLE FLAT);

84

The parameters CBRS TOP can be changed to CBRS RIGHT or CBRS LEFT to decide the

position of the toolbar.

The following codes will actually dock the toolbar.

m_wndToolBar. EnableDocking(CBRS ALIGN ANY);
EnableDocking(CBRS ALIGN_ANY);
DockControlBar(&m_wndToolBar),

(2) Property sheet and pages:

The property sheet has two property pages. The first page is used for polishing tool
selection and polishing parameters input. The second is for system configuration. The sheet

class comes from CPropertySheet. Two pages are classes derived from CpropertyPage.

The codes below are used to add property pages to the property sheet and display them:

CMyPropertySheet sheet("Option");
CPagel pagel;

CPage?2 page2;

sheet. AddPage(&pagel);

sheet. AddPage(&page2),

int result=sheet. DoModal();

As for every page, in Ondpply() function, the program decides every page’s job once
Apply Now button is clicked. Due to the different content in OnApply() function, each single
page can perform a different job for the system. And the new page can be added for new

requirements at any time to expand the system function.

Once a page job is done, the property sheet will receive the message from the page. and the

sheet activates the next page through OnNotify() function.

BOOL CMyPropertySheet::OnNotify(WPARAM wParam, LPARAM [Param,
LRESULT* pResult)

5
¢

// TODO: Add your specialized code here and/or call the base class
CPolishCADApp *app = (CPolishCADApp *)AfxGetApp();
app->ActivePageNo=GetActivelndex()+1,
app=NULL;

return CPropertySheet::OnNotify(wParam, IParam, pResult);

/

85

To enable/disable the Apply Now button, call the member function SerModified(). The
parameter TRUE will enable the button, while FALSE will disable it.

The image button technique is used in page 1 to enable easy polishing tool selection.
When the mouse is moved onto the tool image, a hand-shaped cursor would emerge. When the
image is clicked on, the corresponding radio button below the image will be checked to show

that this tool is selected.

To realize this function, a group of picture-controls containing the tool images are added to
page 1. Through ClassWizard, member variables are assigned to every single picture-control.
In mouse-event-processing function OnMouseMove(), the hand-shaped cursor is loaded

through the following codes:
m_hCursor = AfxGetApp()->LoadCursor(IDC_CURSOR_HAND);

Then the program will identify the mouse’s position. If it is within a picture, the cursor will
be set to a hand shape.

m_PictureCone.GetWindowRect(&rect2),;
ScreenToClient(&rect2);
if((PtInRect(&rect2,point)))
/
IsCone=true;

SetCursor(m_hCursor);

/
After mouse clicking, the reaction will be made by Onl ButtonDowny().

if{IsCone)

{
CheckRadioButton(IDC_RADIO _CYLINDER,IDC RADIO _CONE,

DC _RADIO _CONE);
OnRadioCone();

4
S

(3) .Stl file loading indication

Loading .stl file, especially large .stl file, could be time-consuming. Therefore, it is

necessary to give the procedure an indicator - a progress bar. Here, a popular way is used to putt

86

the progress bar onto the status bar dynamically. Two challenges in realizing this function are,

how to get the pointer of the status bar and how to create the progress bar dynamically.

The function AfxGetMainWnd() is used to get the pointer of the status bar:

CstatusBar *
pStatusBar=(CStatus Bar*) AfxGetMainWnd()->GetDescendantWindow(AFX_IDW
_STATUS BAR);

And function Create is used to create the progress bar:

CRect rect;

rect.left = 60,

rect.right = rect.left + 300;

recttop = 5;

rect.bottom = rect.top + 10;

m_ProgressCtrl.Create(WS_CHILD, rect, pStatusBar, ID_ PROGRESSCTRL);

(4) Dynamic Icons:

A motion icon is designed for the CAM program. The icon looks like a tool polishing an
object continuously. Actually this icon is not one piece, but is made up of a group of static icons
emerging by turns. A timer is set to control the interval between their appearances. The codes
in time-event-processing function OnTimer()are:

#define ICON_COUNTS 7
static icons[] =
{
IDI ICONI, IDI ICON2, IDI ICON3, IDI ICON4, IDI _ICONS,

IDI ICONS®, IDI ICONG
I
static int index = 0;
HICON hicon = AfxGetApp()->Loadlcon(icons[index++%ICON_COUNTS]);
AfxGetMainWnd()->SendMessage(WM _SETICON, (WPARAM)ICON BIG,
(LPARAM)hicon);

return;

At the end of each interval, the message WM SETICON is sent to the program to change

the static icons so that they would emerge by turn to form a dynamic icon.
(5) Set the background color of dialogs:

To unify the background color of all dialogs in the software, in

87

CPolishCADApp: :Initlnstance(), use the following code:

SetDialogBkColor(RGB(255,233,195), RGB (0,0,0));

88

8 Conclusions and Future Work

8.1 Conclusions

Based on the methods introduced in this thesis, a new software package is developed for
simulation and control of reconfigurable machines and for CAM application in a polishing
procedure. The software package is a combination of kinematics, dynamic model generation,
practical simulation, design, and control functions. Summarized in the following are the major

contributions.
(1) A computational method based on the zero reference plane (ZRP) is developed.

Almost all existing methods use relative coordinate systems, in which a body is defined
relative to the preceding body. With the zero reference plane (ZRP), all the bodies are
defined with respect to a single global coordinate system. This theoretical development

makes it possible to model modular reconfigurable systems quickly and easily.
(2) The concept of the snap point is introduced.

The concept of snap point is introduced, i.e., the ith module is installed on the snap point of
the i-I1th module. This concept makes it easier to construct a standardized computational

method for modeling all the modules.
(3) Based on the path matrix, a computational method is developed for reconfiguration.

The path matrix theory gives a vital way to achieve system reconfiguration. When modules
are changed, or deleted or added, the path matrix can effectively relate the indices of the

modules to their sequence in the assembled system.
(4) The methodology for polishing area selection is developed.

This methodology, which is the first of its kind, includes two algorithms, one is for the

triangle plane equation calculation, and the other is for computation of the intersection

89

point of a line and a triangle plane. It also includes a method for deciding whether a point is
within a triangle or not. This methodology makes it possible to select an area, not the whole

part, for polishing.
(5) The methodology for path-planning is developed.

This methodology is the first one in the field of polishing. It includes an algorithm for
virtual parallel-planes cutting that generates parallel curves, which are made up of
unequally spaced points. It also contains a mixed interpolation curve-fitting method that
derives from the combination of 2 principles, cubic interpolation and regression. It includes

a direct picking curve-fitting method for obtaining equally spaced points as well.

Based on all the methodologies mentioned above, a lot of contributions are made for the

implementation.
(1) A new viewpoint about the module structure is provided.

Because the concept of snap point is introduced, the modules in the V7-Sim are not
physically divided as joint modules and link modules any more. Instead, a highly
modularized new architecture based on the snap point concept is designed for the module
platform. In V7-Sim, each module has two parts, the mechanical part (computer model) and
the control part (GUI). All the modules are scalable and expandable with standard 1/0

interface for control implementation. Therefore, the module’s adaptability is promised.
(2) A four-tier structure is designed for V7-Sim.

Within the four-tier structure, the data service layer, the 1°" layer, is designed to stores
configuration files because the data in these files are easy to set according to global
coordinates. The 2" layer, the HMI layer, is designed to provide users with ability to
construct the required topology and to assemble the machines because ZRP and global
coordinates provide the coordinates calculation for the construction and assembling. The
3" layer is the application layer that allows users to execute such functions as simulation,

control and design synthesis. This is as a result of the path matrix calculation which

90

provides the precise postion for each module. The 4" and last layer, the I/0 hardware layer,
provides connections to physical systems through serial/parallel ports or control cards

because the module selection can be performed based on a path matrix calculation.
(3) The VT-Sim has a powerful topology design platform .

On this platform, easy system construction and reconfiguration can be done. It employs the
path matrix calculation to perform versatile functions including module re-ordering, adding,

deleting and changing.

(4) The ¥v7-Sim has an assembly line platform that can perform 3D animation simulation with

track display.

This platform uses global coordinates and ZRP to calculate each module’s position and
orientation. It uses snap points to assemble the whole machine and to perform real-time
simulation. It is easy to connect V'7-Sim to industrial modules through the API library. This

ability makes it easy to modify and test various design plans.
(5) The P-CAM is designed as an effective tool for polishing application.

It can select a desired surface from the part that needs to be polished based on the
methodology for polishing area selection. It generates and displays the polishing path to
control the movement of the polishing head according to the methodology of path planning.
The P-CAM can visually simulate the 3-axis and 5-axis polishing procedure and the

finished roughness. It can also generate a standard CNC outcome.

8.2 Future Work

8.2.1 Theory Perspective

(1) Develop a collision-prevention algorithm for the assembly line platform

91

This will make the system more functional, especially with remote control and multiple

robots used in space exploration.

(2) Support close loop

(3) Develop an automatic-enumerating and weeding-out algorithm for the topology design
platform. This will enable the system to list out all the possible module arrangements and

pick out the best one tallying with need.
(4) Develop a surface-identify algorithm

This will enable the system to distinguish the specific surfaces consisting of triangles.
(5) Develop a precise roughness computation algorithm

This will enable the system to output the theoretical polishing results.

8.2.2 Implementation Perspective

(1) Improve adaptability

So far, this software supports the .obj file format. The data in .obj file must be input by
users manually. For simple geometric objects, it is no problem. But for large, complex
modules, it is time consuming and complicated. The system needs an assistant tool that is
able to convert various file formats into .obj file. These formats are usually exported from
CAD software such as Solidworks. After the assistant tool is developed, users can design
sophisticated parts with CAD software, save data to some kind of format, and then convert

it into .obj file.
(2) Improve the graphic interface

Organize the GUI level more efficiently and more professionally so that the future system

has a more friendly human-machine interface.

(3) Improve the module platform

92

Let the platform support multiple direction movement modules such as the universal joint

or the sphere joint. Modify the GUI level of the module platform.

(4) Develop acceleration and dynamics computation

So far the kinematics calculation involves velocity and angular velocity computation. The

future development can include acceleration and dynamics computation.
(5) Develop inverse calculation
(6) Support other file formats in polishing application besides .stl

Support more formats, especially those that can save data in terms of surface units, so that

users can select the surfaces directly.

(7) Build a reconfigurable polishing machine

93

References

[1]

2]

(3]

[4]

[5]

[6]

[7]

18]

191

K. Tomita, S. Murata, E. Yoshida, H. Kurokawa, and S. Kokaji. “Reconfiguration
Method for a Distributed Mechanical System”, Distributed Autonomous Robotic System,

V. 2, pp. 17-25, 1996.

J. Michael. “Fractal Shape Changing Robot Construction Theory & Application Note™

-

Robodyne Cybernetics Ltd, 1995.

M. Yim. “Locomotion with a Unit-modular Re-configurable Robot”, Ph.D. Thesis,

Stanford University, 1994.

C. Unsal, H. Kiliccote, M. Patton, and P. Khosla. “Motion Planning for a Modular

Self-Reconfiguring Robotic System”, Distributed Autonomous Robotic Systems, 4, 2000.

Y .M. Moon, and S. Kota. “Generalized Kinematic Modeling Method for Re-configurable
Machine Tools”, Proceedings of the 1998 ASME Design Engineering Technical
Conference, 1998.

F. Xi, M. Verner, and R. Andrew. “A Reconfigurable Hexapod System — Preliminary
Results”, CD-ROM Proceedings of the 2000 Japan-USA Symposium Special Session on
Modular and Reconfigurable Controllers for Flexible Automation, Ann Arbor, July,
2000.

hitp://www.mit.edu/~vona/xtal/xtal.html.

http://www?2.parc.com/spl/projects/modrobots/chain/polybot/index.html.

http://www.esit.com/automation/mrw-new.html

[10] http://155.69.254.10/users/risc/www/mod-intro.html.

[11] http://www.ntu.edu.sg/mpe/Research/Projects/ChenlMing/P2/modrob.html.

[12} http://www?2.parc.com/spl/projects/modrobots/lattice/telecube/index.htmi.

94

[13]

[14]

[13]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

http://www.esit.com/automation/mrj-new.html.

http://www?2.parc.com/spl/projects/modrobots/chain/polypod/index.html.

J. McPhee. “Automatic Generation of Motion Equations for Planar Mechanical Systems
Using the New Set of Branch Coordinates”, Mechanism and Machine Theory, V. 33, No.
6, pp- 805-823, 1998.

.M. Chen and G.L. Yang. “Automatic Model Generation for Modular Reconfigurable
Robot Dynamics”, ASME Journal of Dynamic Systems, Measurement, and Control, V.
120. September, pp 346-352,1998.

Y.Q. Fei, X.F. Zhao, and L.B. Song. “A Method for Modular Robots Generating
Dynamics Automatically”, Robotica V. 19. pp. 59-66, 2001.

D. Wang, C. Conti, P. Dehombreux and O. Verlinden. “A Computer-Aided Simulation
Approach for Mechanisms with Time-Varying Topology”, Computer & Structure, V. 64.
No.1-4, pp. 519-530, 1997.

Yoshihiko Nakamura and Katsu Yamane , "Dynamics Computation of Structure-Varying
Kinematic Chains and Its Application to Human Figures," IEEE Transactions on

Robotics and Automation, Vol. 16, No2, April 2000.

Shang You, Cheng YanTao, "OpenGL graphical program design”, Waterresources
publication, 2001.

Fengfeng Xi, Wanzhi Han, Marcel Verner and Andrew Ross “Development of a
sliding-leg tripod as an add-on device for manufacturing”, Robotica (2001) volume 19.

pp- 285-294.
R.L. Huston. “Multibody Dyanmics”, Butterworth-Heinemann, 1990.
* ROBIX RCS-6 Robot Construction Set”, Advanced Design Inc. 1998.

F. Xi, and R.G. Fenton. “Computational Analysis of Robot Kinematics, Dynamics and

95

[25]

[26]

[27]

[28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Control Using the Algebra of Rotations”, JEEE Transactions on Systems, Man, and

Cybernetics, Vol. 24, No. 6, pp. 936-942, 1994.

Fengfeng Xi, "Computational Dynamics lecture notes", c2003.

Mintian Ni,Liangzhi Wu, "Computer graphics", Beiling University publication ,c1999.
R.L. Huston. “Multibody Dyanmics”, Butterworth-Heinemann, 1990.

Chris H. Pappas and William H. Murray, III, " Visual C++6: the complete reference",
Berkeley, Calif. : Osborne/McGraw-Hill, ¢1998.

Laura B. Draxler, " Windows programming under the hood of MFC : with a quick tour of

Visual C++ tools", Upper Saddle River, NJ : Prentice Hall PTR, ¢1998.
Timothy Tompkins," Practical Visual C++ 6", Que,1999.

Chao C. Chien," Professional Software Development With Visual C++ 6.0 & MFC"
Charles River Media, 2002.

Nigel Quinnin," Codeguru.com Visual C++ Goodies", Que, 2003.

C. Li, F. Xi, and A. Macwan, “Optimal Module Selection for Preliminary Design of
Reconfigurable Machine Tools”, ASME Journal of Manufacturing Science and

Engineering, submitted, 2003.
John Swanke," Visual C++ MFC Programming by Example", R&d Books, 1999.

Nik Lever, " Realtime 3D Character Animation with Visual C++", Butterworth

Heinemann, 2001.
Ed Mitchell,” Secrets of the Visual C - C++ Masters", Sams, 1993.
Steven Holzner," Visual C++ Programming”, Brady Publishing,1994.

Charles Wright, Jamsa Media Group," 1001 Visual C++ Programming Tips", Jamsa

96

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

Press, 2000.
Keith Bugg," Debugging Visual C++ Windows",CMP Books, 1998.
Alex Leavens," Visual C++: A Developer's Guide", IDG Books Worldwide, 1995.

Microsoft Corporation Staff,” Microsoft Visual C++ MFC Library Reference",Microsoft
Press,‘ 1997.

MICHAEL J YOUNG," Mastering Visual C++ 6", Sybex, 1998.

Lars Klander," Core Visual C++ 6.0", Prentice Hall Professional, 1999.

Chris H. Pappas,” The Visual C++ Handbook",McGraw-Hill Ryerson, Limited, 1994.
"The OpenGL Programming Guide - The Redbook". www.opengl.org.2003.

Dave Shreiner," OpenGL(R) Reference Manual: The Official Reference Document to

OpenGL". www.opengl.org.2003.

Richard S. Wright Jr.," OpenGL SuperBible, Second Edition", Waite Group Press,
December 1999.

Georg Glaeser, Hellmuth Stachel,” Open Geometry: Opengl + Advanced Geometry",

Springer-Verlag Telos,1999.

K. Kotay, C. McGray, D. Rus, M. Vona," The Self-reconfiguring Robotic Molecule:
Design and Control Algorithms", WAFR 1998,

R. Sinha, C.J.J. Paredis, and P.K. Khosla, “Behavioral Model Composition in
Simulation-Based Design,” in Proceedings of the 35th Annual Simulation Symposium,

San Diego, CA, April 14-18, 2002.

A. Diaz-Calderon, C.J.J. Paredis, P. K. Khosla. "Organization and Selection of
Reconfigurable Models", in Proceedings of the Winter Simulation Conference 2000,
Orlando, Florida, December 10-13, 2000.

97

[52]

[53]

[54]

[53]

[56]

[57]

[58]

A. Diaz-Calderon, C. J. J. Paredis, and P. K. Khosla, "A composable simulation
environment for mechatronic systems." in Proceedings of the SCS 1999 European

Simulation Symposium, Erlangen, Germany, October 1999,

K. Dixon, J. Dolan,W. Huang, C. Paredis, P. Khosla, "RAVE: A Real and Virtual
Environment for Multiple Mobile Robot Systems," in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS'99), Kyongju, Korea,
October 17-21, 1999.

A. Diaz-Calderon, C.J.J. Paredis, P.K. Khosla, "On the Synthesis of the System Graph for
3D Mechanics," in Proceedings of 18th the American Control Conference, San Diego,

CA, June 2-4, 1999.

A. Diaz-Calderon, C.J.J. Paredis, P.K. Khosla, "A Modular Composable Software
Architecture for the Simulation of Mechatronic Systems," in Proceedings of DETCYS,
Computers in Engineering Conference, paper no. DETCY98/CIE-5704, Atlanta, GA,
September 13-16, 1998.

A. Diaz-Calderon, C.J.J. Paredis, P. K. Khosla. "Reconfigurable models: a modeling
paradigm to support simulation-based design", SCS Summer Computer Simulation

Conference, Vancouver, British Columbia, Canada, July 2000.

R. Sinha, C.JJ. Paredis, and P.K. Khosla, "Kinematics Support for Design and
Simulation of Mechatronic Systems," Proceedings of the 4th IFIP Working Group 5.2
Workshop on Knowledge Intensive CAD, Parma, Italy, May 22-24, 2000.

L. Chen, F. Xi, and A. Macwan. "Optimal Module Selection for Designing
Reconfigurable Machining Systems", 2003 Annals of CIPR, Accepted.

98

Appendix A Example of .obj file

mtllib ModuleBaseMotion.mil
v -0.60000 0.600000 0.500000
v -0.60000 -0.60000 0.500000
v 2.600000 -0.60000 0.500000
v 2.600000 0.600000 0.500000
v -0.60000 0.600000 0.000000
v -0.60000 -0.60000 0.000000
v 2.600000 -0.60000 0.000000
v 2.600000 0.600000 0.000000
usemt! redl

f1234

usemt! red

f8765

usemtl red?2

f4378

usemtl red3

f5148

usemtl red4

5621

usemt! red5

f2673

99

Appendix B Example of .stl file

solid cube
Jacet normal -1.000000e+000 0.000000e+000 0.000000e+000
outer loop
vertex 0.000000e+000 0.000000e+000 5.000000e+001
vertex 0.000000e+000 5.000000e+001 5.000000e+001
vertex 0.000000e+000 0.000000e+000 0.000000e+000
endloop
endfacet
Jacet normal -1.000000e+000 0.000000e+000 0.000000e+000
outer loop
vertex 0.000000e+000 0.000000e+000 0.000000e+000
vertex 0.000000e+000 5.000000e+001 5.000000e+001
vertex 0.000000e+000 5.000000e+001 0.000000e+ 000
endloop
endfacet
Jacet normal 0.000000e+000 -1.000000e+000 0.000000¢+000
outer loop
vertex 5.000000e+001 0.000000e+000 5.000000e+001
vertex 0.000000e+000 0.000000e+000 5.000000e+001
vertex 5.000000e+001 0.000000e+000 0.000000e+000
endloop
endfacet
facet normal 0.000000e+000 -1.000000e+000 0.000000¢+000
outer loop
vertex 5.000000e+001 0.000000e+000 0.000000e+000
vertex 0.000000e+000 0.000000e+000 5.000000¢+001
vertex 0.000000e+000 0.000000e+000 0.000000e+000
endloop
endfacet
facet normal 1.000000e+000 0.000000e+000 0.000000e+000
outer loop
vertex 5.000000e+001 5.000000e+001 5.000000e+001
vertex 5.000000e+001 0.000000e+000 5.000000e+001
vertex 5.000000e+001 5.000000e+001 0.000000e+000
endloop
endfacet
Sfacet normal 1.000000e+000 0.000000e+000 0.000000e+000
outer loop
vertex 5.000000e+001 5.000000e+001 0.000000e+000
vertex 5.000000e+001 0.000000e+000 5.000000e+001
vertex 5.000000e+001 0.000000e+000 0.000000e+000
endloop

100

endfacet
Jacet normal 0.000000e+000 1.000000e+000 0.000000e+000
outer loop
vertex 0.000000e+000 5.000000e+001 5.000000e+001
vertex 5.000000e+001 5.000000e+001 5.000000e+001
vertex 0.000000e+000 5.000000e+001 0.000000e+000
endloop
endfacet
Jacet normal 0.000000e+000 1.000000e+000 0.000000e+000
outer loop
vertex 0.000000e+000 5.000000e+001 0.000000e+000
vertex 5.000000e+001 5.000000e+001 5.000000e+001
vertex 5.000000e+001 5.000000e+001 0.000000e+000
endloop
endfacet
Jacet normal 0.000000¢+000 0.000000e+000 1.000000e+000
outer loop
vertex 5.000000e+001 0.000000e+000 5.000000e+001
vertex 5.000000e+001 5.000000e+001 5.000000e+001
vertex 0.000000e+000 0.000000e+000 5.000000e+001
endloop
endfacet
Sacet normal 0.000000e+000 0.000000e+000 1.000000e+000
outer loop
vertex 0.000000e+000 0.000000e+000 5.000000¢+001
vertex 5.000000e+001 5.000000e+001 5.000000e+001
vertex 0.000000e+000 5.000000e+001 5.000000e+001
endloop
endfacet
Jacet normal 0.000000e+000 0.000000e+000 -1.000000e+000
outer loop
vertex 5.000000e+001 5.000000e+001 0.000000e+000
vertex 5.000000e+001 0.000000e+000 0.000000e+000
vertex 0.000000e+000 5.000000e+001 0.000000e+000
endloop
endfacet
facet normal 0.000000e+000 0.000000e+000 -1.000000e+000
outer loop
vertex 0.000000e+000 5.000000e+001 0.000000¢+000
vertex 5.000000e+001 0.000000e+000 0.000000e+000
vertex 0.000000e+000 0.000000e+000 0.000000e+000
endloop
endfacet
endsolid

101

APPENDIX C Some Matrix Definitions

(1) The trace of the matrix:

For a matrix R with dimension of mxm shown as:

rl 1 rlZ o rl m-1 rl "
Fa Fapo e Py Fym
R =
rm~l 1 rm—]Z rm—lm—l rm—lm
L r ml rmZ rmm—l rmm n
the trace of R is defined as:
"
rRy=>r,
f=i

(8) The vector of the matrix:
For a matrix R with dimension of 3x3 shown as:
hy Fa hs

R=\r, r r

Py Py Py

the vector of R is defined as:

vect(R) =

102

	Ryerson University
	Digital Commons @ Ryerson
	1-1-2004

	Modeling and simulation of reconfigurable systems with applications to the polishing process
	Qiang (John) Sun
	Recommended Citation

