
APPLICATION MAPPING AND NOC CONFIGURATION USING HYBRID PARTICLE

SWARM OPTIMIZATION

by

Muhammad Obaidullah

B.Sc. Electrical Engineering, Abu Dhabi University, U.A.E, 2014

A thesis presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Applied Science

in the program of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2017

© Muhammad Obaidullah, 2017

 ii

AUTHOR'S DECLARATION FOR ELECTRONIC SUBMISSION OF A THESIS

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any

required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this thesis to other institutions or individuals for the purpose of

scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by other means, in total

or in part, at the request of other institutions or individuals for the purpose of scholarly research.

I understand that my thesis may be made electronically available to the public

 iii

Application Mapping and NoC Configuration

Using Hybrid Particle Swarm Optimization

Master of Applied Science, 2017

Muhammad Obaidullah

Electrical and Computer Engineering

Ryerson University

Abstract

Network-on-Chip (NoC) has been proposed as an interconnection framework for connecting large

number of cores for a System-on-Chip (SoC). Assuming a mesh-based NoC, we investigate application

mapping and NoC configuration optimization using a hybrid optimization scheme. Out technique, Hybrid

Discrete Particle Swarm Optimization (HDPSO), combines Tabu-search, communication volume based

core swapping, and swarm intelligence. We employ a Tabu-list to discourage swarm particles to re-visit the

explored search space and propose an alternative route towards the intended movement direction. In each

iteration of swarm, a sub-swarm containing configuration solutions (sub-particles) searches for optimal

configuration for the parent particle (mapping solution). Optimization goals include minimum average

communication latency, power, area, credit loop latency, and maximum average link duty factor. The

proposed technique is tested for well-known multimedia application core graphs and several large synthetic

cores-graphs. It was found that on average our hybrid scheme generates high quality NoC mapping and

configuration solutions when compared to some existing stochastic optimization techniques.

 iv

Acknowledgements

Foremost, I would like to express my sincere gratitude to my supervisor Dr. Gul N. Khan. His

guidance helped me during the time of research and writing of this thesis. It was fantastic to have the

opportunity to work with such a supporting, cheering, and experienced person. He paved my way

throughout my study and helped me make crucial decisions in my academic life. He consistently allowed

my work to be my own work, but steered me in the right direction whenever he thought I needed it. I could

not have imagined having a better advisor and mentor for my MASc study. It has been a period of intense

learning for me, not only in the scientific arena, but also on a personal level.

A very special gratitude goes to Ryerson University, Faculty of Engineering & Architectural

Science (FEAS), and Ontario Graduate Scholarship (OGS) for helping and providing the funding for the

work.

I would also like to thank my siblings: Mamuna, Abdur Rab, Fatima, and Aisha, who have provided

me moral and emotional support in my life. I am grateful to my father Rashid Manzur, for supporting me

spiritually throughout writing this thesis and my life in general. I am also grateful to my other family

members and friends who have supported me along the way.

Last but not the least, I would like to thank my life-coach, my mother Kausar Rashid. She was

always there for me. She taught me never to give up. No matter how hard the journey became, she

encouraged me to try harder and keep moving forward.

Thanks for all your encouragement! This would not have been possible without you.

Muhammad Obaidullah

 v

Dedicated to

my mother

Kausar Rashid

 vi

Table of Contents

Author’s Declaration …………………………..…………………...…..…………………….… ii

Abstract ………………………..………………………………………..……………………… iii

Acknowledgements ……………………………………………………..……………………… iv

Dedication ….………………………………….………………………..……………………….. v

List of Tables …………………………………………………………………………………… xi

List of Figures….…………………………….………………………..……………………..… xii

Chapter 1 Introduction... 1

1.1 Motivation ... 4

1.2 Objectives & Contributions .. 5

1.3 Thesis Structure .. 5

Chapter 2 Overview .. 7

2.1 NoC Topologies .. 7

2.2 NoC Packet Structure .. 11

2.2.1 Flow Control Unit (flit) .. 12

2.2.2 Physical Transfer Unit (phit) .. 12

2.3 Flow Control ... 13

2.3.1 STALL-GO Flow Control .. 13

2.3.2 T-Error Flow Control.. 14

 vii

2.3.3 ACK/NACK Flow Control ... 14

2.3.4 Credit-based Flow Control ... 15

2.4 Routing Mechanisms .. 15

2.4.1 Starvation .. 15

2.4.2 Dead-locks .. 16

2.4.3 Live-locks ... 16

2.4.4 Deterministic Routing... 16

2.4.4.1 Dimension ordered routing (X-Y) or (Y-X) .. 16

2.4.4.2 Destination-Tag Routing ... 17

2.4.5 Oblivious Routing .. 18

2.4.6 Adaptive Routing .. 19

2.4.6.1 Load Balanced Adaptive Routing ... 19

2.4.6.2 Fully Adaptive Routing ... 19

2.4.6.3 Minimal Adaptive Routing ... 20

2.5 NoC router micro-architecture .. 20

2.5.1 Crossbar .. 21

2.5.2 Input port .. 21

2.5.3 Arbiter... 22

2.6 NoC Mapping ... 22

2.6.1 State-of-the-Art Mapping tools .. 25

2.6.1.1 Deterministic Techniques.. 25

 viii

2.6.1.2 Stochastic Techniques ... 26

2.7 NoC Configuration ... 28

2.7.1 State-of-the-art NoC Configuration Tools and Work-flows 28

Chapter 3 Optimal NoC Mapping using HDPSO .. 31

3.1 Introduction ... 31

3.2 Problem Definition ... 34

3.3 HDPSO Algorithm .. 35

3.3.1 A HDPSO Particle .. 35

3.3.2 Initial Population Generation .. 38

3.3.3 Particle Movement (Applying Swap Moves) ... 39

3.3.4 Tabu-List and Particle Reflection ... 41

3.3.5 Communication Volume based Optimization .. 45

3.3.6 Evolution of Particles ... 46

3.3.6.1 Inertia Stage (Stage A) .. 47

3.3.6.2 Local Convergence Stage (Stage B) .. 47

3.3.6.3 Swarm Convergence Stage (Stage C) ... 48

3.3.6.4 Traffic Load Optimization Stage (Stage D) .. 48

3.3.7 Stopping Criteria .. 48

3.3.8 Dynamic Tuning Parameters .. 50

3.3.8.1 Inverse exponential self-confidence and exponential swarm confidence 51

3.3.8.2 Inverse exponential self-confidence and remaining swarm confidence 52

 ix

3.3.9 Particle Cost Pre-calculation .. 52

3.4 Experimental Results for NoC Mapping (Particles) ... 53

3.5 Summary ... 63

Chapter 4 Optimal NoC Configuration using Sub-swarm ... 64

4.1 Introduction ... 64

4.2 Problem Definition ... 69

4.2.1 Constraints .. 73

4.3 Configuration Solution Space ... 73

4.4 Router Sub-component Library Representation ... 75

4.4.1 Library .. 76

4.4.2 Component ... 76

4.4.3 Configuration .. 77

4.4.4 Design ... 77

4.4.5 Property .. 78

4.5 A Sub-particle (Configuration Solution) .. 78

4.6 Configuration for Topology .. 79

4.7 Initial Configuration Heuristics .. 81

4.8 Sub-Swarm Movement ... 82

4.8.1 Mapping Edges to Links ... 84

4.8.2 Buffer Size Optimization .. 85

 x

4.8.2.1 Conventional Virtual Channel (CVC) ... 85

4.8.2.2 Dynamically Allocated Multi-Queues (DAMQ) ... 86

4.9 Convergence and Stopping Criteria .. 87

4.10 NoC Configuration Results ... 87

4.10.1 Input Library ... 88

4.10.1.1 Crossbar Library ... 88

4.10.1.2 Arbiter Library .. 88

4.10.1.3 Input Port Library .. 89

4.11 Summary ... 98

Chapter 5 Conclusion ... 99

References ….…………………………….………………………..……………………….… 101

Glossary ….…………………………….…………………………..……………..………...… 106

 xi

List of Tables

Table 2.1 Flow control protocols at a glance .. 13

Table 3.1 Application core-graphs used as benchmark .. 54

Table 3.2 Execution Time Comparison of Benchmark CoreGraphs .. 57

Table 3.3 Traditional DPSO vs HDPSO results for 32, 64, and 128 core synthetic application core-graphs

 .. 61

Table 4.1 Negative Universal IDs (uIds) and their meanings. .. 78

Table 4.2 Crossbar input library properties .. 88

Table 4.3 Arbiter input library properties ... 88

Table 4.4 LLD input port library properties ... 89

Table 4.5 ViChaR input port library properties .. 90

Table 4.6 EDVC-FRW input port library properties .. 91

Table 4.7 EDVC-FW input port library properties ... 92

Table 4.8 Area/Power for PIP and MPEG4 in optimal, generous, and minimal configurations 93

 xii

List of Figures

Figure 1.1 (a) Bus-based interconnection architecture (b) network-based on-chip interconnection. 3

Figure 2.1 (a) Ring (b) Butterfly (c) Hypercube (d) Mesh (e) Torus (f) Binary Tree (g) Custom Mesh-Type

(h) Star (i) Fully-Connected Topology. .. 10

Figure 2.2 (a) A 3 x 3 2D mesh NoC (b) A 3 x 3 torus NoC. ... 11

Figure 2.3 Packet, flit, and phit relationship. .. 12

Figure 2.4 Stall-Go flow control. .. 14

Figure 2.5 T-Error flow control. ... 14

Figure 2.6 Ack/Nack flow control. ... 15

Figure 2.7 Clockwise and Anti-clockwise dead-lock situations. .. 16

Figure 2.8 X-Y routing mechanism for 3 different source and destination packets. 17

Figure 2.9 Routing in 4-ary 2-fly butterfly NoC topology.. 18

Figure 2.10 Oblivious routing mechanism. ... 18

Figure 2.11 NoC router micro-architecture. .. 21

Figure 2.12 NoC design workflow and this work’s targeted workflow. ... 23

Figure 2.13 Mapping possibilities for a 2 by 2 mesh NoC with 4 cores. .. 24

Figure 2.14 Black box analogy of NoC mapping tool. ... 25

Figure 2.15 Æthereal NoC configuration and mapping workflow. .. 29

Figure 3.1 DPSO Search spaces – particles reach sub-optimal solutions ... 32

Figure 3.2 HDPSO Algorithm. ... 32

 xiii

Figure 3.3 Application with multiple modes of operation (AM). ... 35

Figure 3.4 A HDPSO particle structure for MPEG-4 decoder. ... 37

Figure 3.5 Determining distance between particles (particle A & B). .. 39

Figure 3.6 Identifying the chosen swap move. ... 40

Figure 3.7 Complex swap moves. ... 41

Figure 3.8 Reflection of particles from the explored search space. .. 42

Figure 3.9 HDPSO vs DPSO particle cost variations for mapping of MPEG4 decoder. 43

Figure 3.10 Reflection of a Tabu-ed swap (2,4) move. .. 44

Figure 3.11 Reflection of a swap (2, 4) with respect to y-axis. .. 44

Figure 3.12 Communication Volume based core swapping. .. 46

Figure 3.13 Local Convergence Stage (Stage B) path decider. .. 47

Figure 3.14 Global cost for same confidence - DPSO vs. HDPSO. .. 50

Figure 3.15 Inverse exponential self-confidence and exponential swarm-confidence. 52

Figure 3.16 Inverse exponential self-confidence and remaining swarm-confidence. 52

Figure 3.17 Particle cost pre-calculation. .. 53

Figure 3.18 Communication cost normalized to NMAP cost. .. 54

Figure 3.19 Cost improvement DPSO vs. HDPSO. .. 56

Figure 3.20 Traffic patterns used to evaluate the HDPSO based NoC mapping (a) Bit-reversal, (b) Neighbor

(c) Tornado (d) Transpose (e) Shuffle (f) Stencil. .. 59

Figure 3.21 HDPSO generated optimal (a) 3×4 (b) 4×4 NoC mapping of MPEG4 decoder. 62

Figure 3.22 HDPSO generated optimal (a) 3×4 (b) 4×4 NoC mapping of VOP decoder. 62

 xiv

Figure 4.1 CAD system architecture for NoC synthesis ... 65

Figure 4.2 Typical NoC synthesis workflow. ... 66

Figure 4.3 (a) Segregated search space optimization workflow (b) combined search space optimization. 67

Figure 4.4 The proposed hybrid workflow for NoC mapping and configuration. 68

Figure 4.5 Inner workings of the mapping and configuration HDPSO algorithm. 69

Figure 4.6 (a) Average duty factor and buffer penalty relationship (b) Average duty factor and configuration

cost relationship. ... 73

Figure 4.7 NoC Configuration solution space. ... 74

Figure 4.8 NoC Configuration library XML element hierarchy. .. 75

Figure 4.9 Library element hierarchy and relationship. .. 75

Figure 4.10 A library element defined in XML format. ... 76

Figure 4.11 A component element defined in XML format. .. 77

Figure 4.12 Internal structure of a sub-particle. .. 79

Figure 4.13 Identification of un-used input ports.. 80

Figure 4.14 Determining distance between sub-particles (configuration solutions). 81

Figure 4.15 Initial Configuration heuristics. ... 82

Figure 4.16 HDPSO sub-particle movement algorithm. ... 83

Figure 4.17 Link traffic volume calculation. .. 84

Figure 4.18 Link stress estimation. ... 84

Figure 4.19 CVC input port architecture. ... 85

Figure 4.20 Determining minimum number of buffers required. ... 86

 xv

Figure 4.21 DAMQ VC input port architecture. ... 87

Figure 4.22 Power and area % savings observed when comparing HDPSO optimized configuration to un-

optimized generous configuration. .. 94

Figure 4.23 NoC coregraphs (a) MPEG4 (b) 16-core VOPD (c) DVOPD (d) PIP. 95

Figure 4.24 NoC configuration and mapping solutions (a) MPEG4 (b) VOPD (c) DVOPD (d) PIP. 96

Figure 4.25 Cost improvements due to configuration optimization.. 98

 1

Chapter 1

Introduction

To meet complex functions support, minimum area, and small power consumption demands of

embedded devices, System-on-a-Chip (SoC) designers are squeezing multiple and more complex Silicon

Intellectual Properties (SIPs) onto a single chip. However, major design challenges while integrating

multiple SIPs include reducing chip area and power consumption while maintaining high performance

specifications. To deal with interconnection complexity, abstraction and regularity of interconnection

architecture is required. Network-on-Chips (NoCs) have emerged recently as viable interconnection

alternative instead of buses. NoCs provide high data bandwidth, high network throughput, multiple

transactions per cycle, and scalability.

Traditionally, SIPs or cores were mapped using static bus architectures eg. AMBA, AXI, STBus

etc. A conventional non-hierarchical bus architecture is shown in Figure 1.1(a). Slaves (S) are SIPs which

respond to requests or commands of Masters (M) SIPs on the bus. Since there are multiple masters, bus

access is controlled through a component called arbiter (A). Usually, bus masters are Central Processing

Units (CPUs) and Direct Memory Accessors (DMAs) while slaves are peripherals, I/Os, and memories.

 2

Bus architecture has many drawbacks when increasing the number of SIP blocks on the SoC. Since

bus is a collection of wires, only one core can use those wires to communicate to another core. The core

which initiates the signals and generates control signals is called a bus master. At a time, only one master

and one slave can communicate with each other. This is to ensure that there are no short-circuits because

one core has pulled the signal low while the other core pulls it high. While two cores are communicating

with each other, other cores might also be waiting for bus access and precious time is being wasted.

Secondly, every SIP block attached in bus adds a parasitic capacitance degrading the data signal

integrity. This is a huge issue in bus architectures that do not use tri-state buffers to disconnect cores which

are not communicating. For example, Avalon bus architecture uses multiplexers as switching component

rather than tri-state buffers. This increases parasitic capacitance as more SIPs are added onto the bus.

Thirdly, data bandwidth in bus-based systems is limited and is shared among all IPs attached

because only one transaction can occur in a single clock cycle. If there is contention for bus-access, lower

priority masters are forced to wait until higher priority masters have completed their transaction. This is

true even if the master A wants to talk to slave C and master B wants to talk to slave D. This can cause a

starvation condition in which masters with low priority never get access to resources. To tackle this issue,

SoC designers are forced design and install custom hardware to detect starvation condition.

Lastly, bus arbitration logic delay grows as more number of masters are added onto bus. [1] The

decision tree of who should get the bus access grows as more bus nodes are added and so does the arbitration

logic, area occupancy, and power consumption. This large arbitration ladder logic increases critical path

delay which in turn reduces the maximum operational frequency and degrades the performance.

A typical on-chip network architecture is shown in Figure 1.1(b). Label ‘C’ signifies SIP Cores and

are connected to other SIPs through Routers labelled ‘R’. NoC allows core’s signals to be packetized and

transmitted over fabric of switches and routers. Packetization of data also allows each channel’s bandwidth

to be shared among multiple sources using Virtual Channels (VCs).

NoCs improve throughput, are easily scalable, and allow multiple transactions to occur in a clock

cycle. However, NoCs still need to overcome several challenges such as significant static and dynamic

power consumption, large chip area occupied by network hardware, traffic congestion, and high data

transfer latencies. Network resources also need to be managed efficiently in order to avoid expensive design

costs while keeping the networks performance maximum.

 3

There are three NoC optimization metrics we will be addressing in this work, average

communication latency, power, and area. We will be using a library of pre-synthesized NoC router

components and information about application (CoreGraph) to optimize these metrics. The architecture of

these pre-synthesized router components are discussed by Oveis-Gharan and Khan [2, 3, 4, 5, 6, 7]. These

pre-synthesized components are imported into our tool and their power and area metrics are presented in

Section 4.10.1. Our optimization method is a hybrid of well-known stochastic techniques Discrete Particle

Swarm Optimization (DPSO) [8] and Tabu-Search (TS) [9]. However, we have modified the underlying

DPSO algorithm significantly to cater to our NoC mapping and configuration solution space. DPSO

algorithm will be discussed in detail in chapter 3.

Power consumption is composed of two sub-components, static and dynamic. Static (leakage)

power consumption is mainly due to reverse-bias leakage between diffused regions and the substrate of

transistors. This power consumption is due to the small current leaking through a transistor even-though

depletion region is thick and present. Useful analogy is to imagine a water tap which was left little open

and water droplets are still falling. Like in the water tap, a lot of force is required to close the tap completely,

high voltage needs to be applied to the gate of the transistor to close it completely. However, this high

voltage is not available to the transistor (VSS and VDD) because modern chips and cores operate at around

1.1V or even lower subject to the operating frequency requirement and the technology cell library

specification.

(a) (b)

Figure 1.1 (a) Bus-based interconnection architecture (b) network-based on-chip

interconnection.

 4

Dynamic (switching) power consumption is calculated by adding transient power and capacitive-

load power consumption. Dynamic power consumption is due to the current that flows only when the

transistors of the devices are switching from one logic state to another. This power is consumed in charging

external load capacitance and is dependent on switching frequency. Dynamic power consumption increases

when more data transfers or transactions occur among network nodes/routers. One way to reduce dynamic

power consumption in NoCs is to place SIPs which communicate with high volume near each other at

minimum hop distance. In this work, we use the worst-case dynamic power for each router component.

This is calculated by simulating sending of toggling bits through the input ports of the component.

Flit buffers are major contributors to network static power consumption [10]. Flit buffers are

essentially Static Random Access Memories (SRAMs) used to store small data units called flow control

units (flits) in the router input ports. As technology process nears submicron level, static power

consumption gains major share in total power consumption [10]. SRAMs are major shareholders of chip

area because 1 D-flip-flop holds 1 bit and we need 8 of those to store just 1 byte. For example, if the flit

size is 128-bits and the buffer depth is 4 flits for each input port, a 4x4 mesh NoC will have total

128×4×5×16 = 40,960 flops. On top of that, all modern ASICs have Memory Built-In Self-Test

(MBIST) components inserted for each D-flip-flop. This further increase the chip area requirement even-

though MBIST hardware is redundant in normal functional mode of the chip. Hence, it is becoming crucial

to choose right amount of flit buffers in an on-chip network to reduce NoC power and area.

1.1 Motivation

Three major VLSI hardware trends compel us to do research on NoC optimization tools. The first

is increased usage of NoCs on SoCs and microcontrollers for IoT. SoC designers are realizing that there is

simply no better way to integrate large number of cores onto a single chip rather than a NoC. Each core’s

designer can request a throughput from SoC team and be assured that the throughput is going to be available

no matter how many cores are being added on the chip level. Because each additional core brings with itself

more network throughput, bandwidth is not shared, unless two or more cores are trying to communicate

with the same core. Yesterday’s researches often predicted that NoC usage will become a reality in future.

The future is here and it is looking bright for NoCs. The second is lack of optimization tools that optimize

for heterogeneous SoCs which are often required to operate on wide variety of operating modes involving

multiple cores on a chip. There is a need for optimization tool which co-optimizes NoC mapping and NoC

configuration, takes into consideration multi-modal application, and uses a stochastic optimization

technique. The third reason is that most of the NoC optimization tools do not use pre-synthesized router

 5

components to optimize NoC latency, power, and area. NoC area and power can be more accurately

measured once the values for real synthesized components is available. Existing tools often try to use

parametric equations to predict the area and power of a NoC before synthesis and those can sometimes be

far-off from real values. Due to these reasons, we have proposed a C++ based tool which performs

optimization of NoC area, power, and latency by using library of pre-synthesized router components.

1.2 Objectives & Contributions

Our main contributions include combining exploration abilities of particle swarm with exploitation

abilities of traffic-load directed swapping (Section 3.3.6.4), development of linear particle deflection

mechanism (Section 3.3.4) based on Tabu memory which is well-suited for NoC mapping problem space,

combining particles and sub-particles to form con-joined search space for mapping and synthesis problems

(Section 4.8), defining workflow for NoC mapping and configuration optimization (Section 4.1), and

proposing a stopping criteria based on the average mapping solution distances and swarm divergence factor

(Section 3.3.7). All in all, the resulting optimization tool is based on Hybrid Discrete Particle Swarm

Optimization (HDPSO) method and is tested for some synthetic and real-life applications yielding

promising results (Section 4.10).

1.3 Thesis Structure

The remaining thesis is organized as follows. Chapter 2 provides an introductory background on

on-chip networks. We introduce some basic NoC topologies and how their routing mechanisms work.

Secondly, NoC Packet structure and micro-architecture of a typical NoC router is discussed. Thirdly, past

works in NoC mapping and configuration domain will be discussed.

In Chapter 3, we define NoC mapping, which is the first half of optimization problem. We also

discuss how an application is parsed into CoreGraph suitable for input into our optimization tool. We

describe the inner workings and algorithm of particle solution space. We also discuss the tool turning

parameters and propose optimization stopping criteria. We conclude the chapter with experiment on

synthetic and real applications and present results from the tool while comparing it against traditional DPSO

and other methods.

In Chapter 4, we characterize NoC configuration problem and propose a sub-swarm technique to

solve it. We also propose design constraints which allows the tool to restrict to interesting router

configuration solutions. Additionally, we also list and detail NoC component libraries we used for

 6

optimization. We compare our sub-swarm with un-optimized configuration results and provide the

improvement metrics achieved. Chapter 5 concludes the thesis and provides future direction for future

work.

 7

Chapter 2

Overview

2.1 NoC Topologies

NoC allows SIPs or modules to be connected in any topology with aid of on-chip routers. Popular

on-chip network topologies are 2D Mesh, Hypercube, Torus, and Butterfly. An 𝑛-dimensional radix-𝑘

torus, or 𝑘-ary 𝑛-cube, consists of 𝑁 = 𝑘𝑛 nodes arranged in an 𝑛-dimensional cube with 𝑘 nodes along

each dimension. Each node in the topology is assigned an 𝑛-digit radix-𝑘 address {𝑎𝑛−1, … , 𝑎0} and is

connected by a pair of channels (one in each direction) to all nodes with addresses that differ by ±1(𝑚𝑜𝑑 𝑘)

in exactly one of the address digit [11].

Popular NoC topologies being used by the researchers include ring, butterfly, hypercube, mesh,

torus, tree, custom-mesh, star, and fully-connected as shown in Figure 2.1. In figure 2.1, ‘R’ signifies a

Router (node with a local core attached), and ‘S’ indicates a switch (a node with no core attached to itself).

We consider a 2-D mesh topology for this work and modify it according to the application needs such that

it ends up becoming a custom-mesh type topology Figure 2.1g after optimization.

A ring topology (Figure 2.1a) has advantages of containing very few links and 2 data paths to a

specific router i.e. clock-wise and anti-clock wise. However, each router is connected to only 2 other

 8

routers. Therefore, most of the remaining cores are at greater than 1 hop distance away. A ring topology is

rarely used in NoC because of low radix, the fact that wires are cheap (in terms of area and power) on the

chip, and high hop-count and latency for routers which are on the other side of the ring.

A butterfly topology (Figure 2.1b) has frequently communicating cores placed near each other

while cores that communicate less frequently are placed at more hop distance. The Figure 2.1b shows a

folded perspective of butterfly topology. However, butterfly topology can have very congested routers

which can increase latency of the network and is difficult to scale because addition of each core onto the

network not only requires addition of a router (as with all topologies), it requires addition of more switches.

Hypercube topology (Figure 2.1c) is a very interesting topology for 3D Integrated Circuits (ICs) as

it allows components on the top and bottom silicon layers to be incorporated into the mesh network.

However, this means that each router will have 2 additional input and output ports compared to a mesh

topology which increases the complexity of the network. In case of 2D ICs, this topology increases the

interconnection complexity posing difficulty in floor-planning and increases router size (increased power

and area consumption) while not presenting significant trade-off advantages in network latency.

2-D Mesh network topology (Figure 2.1d) has regularity of design, increased network throughput

with addition of any new node, and alternative routes to destinations providing fault-tolerance A 2D-mesh

network has a router connected to each core and each router connected to four other routers..

2D-torus network topology (Figure 2.1e) has the same advantages as a mesh network and some

more. A 2D-mesh network is often congested in the center because the radix of the boundary routers is low,

radix 2 for corners and radix 3 for routers that are at boundary but not corners. The torus topology removed

this problem by making the topology circularly symmetrical which increases the radix of boundary routers

and increases possible data paths. Disadvantages include increased chip area and power compared to mesh

network due to addition of input and output ports on the boundary routers.

Tree topology (Figure 2.1f) is good for small applications which have groups of cores which

communicate among themselves in high volume (Locality). Tree topology can take advantage of locality

and place highly communicating cores under the same tree node while less frequently communicating cores

in different branches. As the application size grows, tree structure can grow exponentially as addition of 1

core can cause root structure to grow too in order meet the increased throughput demand. However, this

topology is widely in use in todays SoCs because it supports hierarchical approach which block designers,

core designers, and SoC integration designers take while designing ASICs. The block-level designers can

 9

design a router for their internal sub-components and have one link installed in it for communicating with

the upper core level logic. The core-level designers may design a router for their internal blocks and have

one link installed in it for communicating with the upper SoC level logic.

For an application specific mesh topology when a specific static routing mechanism (eg. XY-

routing) is chosen and fixed, there tends to be some links in the mesh network which never get used. So,

the chip designers can remove the links and the associated hardware to reduce area occupied by the NoC

and NoC power consumption. What results after this, is a custom mesh-like topology (Figure 2.1g). In this

topology all links which never get used are removed and the routers area and power is greatly reduced. This

topology is very interesting for applications containing heterogeneous cores. Unless the design contains N

number of processing units (multicore CPUs) or N number of compute units (SIMD/GPU workgroups),

there are always some links in the mesh network that can be trimmed off. Almost all real-word applications

contain heterogeneous cores and there is a need to customize a popular homogenous-friendly mesh topology

to become heterogeneous.

Every core in a star topology (Figure 2.1h) is at most 2 hop distances away from any other core.

However, it is rarely used in a NoC because of poor scalability. Every additional core requires addition of

a local router and expanding the central router. Applications with more than 10 cores require a huge central

router increasing the chip area and power requirements. Additionally, central router is very congested as all

the traffic must pass through it.

Fully connected mesh network (Figure 2.1i) is a perfect topology in terms of latency as the hop

distance from any core to another is just 1. However, it is a nightmare for floor planning and does not scale

well with application. Each additional core requires addition of another router and modification of all other

routers as well (to accommodate one more input and output port).

 10

On-chip mesh network and torus network are shown in Figure 2.2. Each core is placed at a tile in

the topology. A tile is an empty seat or place in the network at a specific location in which a core can be

connected. Each core is then connected to its appropriate Network Interface Unit (NIU) and NIUs are

connected to routers marked as R in Figure 2.2.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.1 (a) Ring (b) Butterfly (c) Hypercube (d) Mesh (e) Torus (f) Binary Tree (g) Custom Mesh-

Type (h) Star (i) Fully-Connected Topology.

 11

2.2 NoC Packet Structure

Bus transactions signals from SIPs are converted into packets by Network Interface Unit (NIU)

before sending it to NoC fabric. NIU is also responsible for setting the priority of the packet and in case of

transaction, it makes sure that no other data reaches the core until the transaction is complete. It also

deconstructs the in-coming packets and generates appropriate signals for the core to understand. NIUs can

be different for each core according to the interface signals they have. For example, a core with Advanced

eXtensible Interface (AXI) bus interface will require a NIU that converts AXI bus signals into network

packets. Usually theses are standard NIUs and its Register Transfer Level (RTL) hardware can be generated

by a synthesis tool easily. A conventional NIU contains Generic Core Interface (GCI), Packet Maker (PM),

Packet Disassembler (PD), and Asynchronous FIFOs for buffering and Clock Domain Crossing (CDC)

synchronization [12]. Any core specific wrapper can communicate with the GCI with simple predefined

handshaking signals to initiate read and write to and from NoC. PM assembles packets for the network and

places them in order in the PM memory from where an asynchronous FIFO can take it out and send to the

network. PD takes packets from the asynchronous FIFO and decodes them into signals for the GCI. Since

on-chip network might be operating at a different clock/frequency than the core, there is need for

asynchronous FIFOs to allow different read and different write speed. Synchronization blocks and buffers

are added to the control signals to remove CDC and meta-stability issues.

(a) (b)

Figure 2.2 (a) A 3 x 3 2D mesh NoC (b) A 3 x 3 torus NoC.

 12

A packet is composed of a header flit, some or no body flits, and a tail flit as shown in Figure 2.3.

The header flit contains metadata about the packet. For example, source id, destination id, length of packet,

and Virtual Channel (VC) id if VCs are used. Each flit can be broken down into Physical Transfer Units

(phits) according to the physical interconnection bus width. Phits consist of bits which are transmitted

through the interconnection fabric one clock cycle at a time.

2.2.1 Flow Control Unit (flit)

Network packets are broken down into flits so that arbitration and flow control can be done on each

flit individually. For example, arbiter generates grant signals for a particular flit, a credit is generated for a

particular flit, etc. When a grant signal is received for a flit, all bits in the flit must be transmitted from input

port to the output port. Similarly, when an input port’s buffer becomes available, a credit is generated for

the upstream router so that it can send another flit. Breaking down packets into flits presents several

advantages because flit size is fixed as per the capability of routers to store them. A router can easily store

flits in their input port buffers, whereas it is difficult to store the whole packet especially if the length is

varying. Since memory is a huge consumer of chip area and power, it is better to keep buffer quantity as

low as possible. We will be addressing optimization of these input port buffers in this work (Section 4.8.2).

2.2.2 Physical Transfer Unit (phit)

Phit is composed of bits which are transferred from one router’s output port to another router’s

input port in one clock cycle. For those interconnection architectures where a flit size is larger than the phit

size, multiple clock cycles are used to transmit one flit and the input port also contains a shift register to

move the bits over as soon as next bits arrive. As soon as the shift register is full, the flit is latched into

Figure 2.3 Packet, flit, and phit relationship.

 13

FIFO and a request might be generated for the arbiter. Making phit size smaller than flit size requires less

interconnection wires from the source output port to the destination input port. There is very little advantage

in terms of chip area and power savings to reduce number of interconnection wires. Interconnection wires

are easy to synthesize, they increase network throughput, and reduce clock cycles required to transmit data.

On the other hand, decreasing interconnection wires will provide very little area and power savings.

Additionally, if phit size is smaller than flit size, a shift register is required to shift the previous bits over

and latch-in the next in-coming bits. Therefore, in this work, we assume flit size is equal to the phit size.

2.3 Flow Control

Flow control in a network basically defines set of rules to move data from the sender to the receiver.

It is a protocol using which routers communicate with each other to transfer data. Flow control also involves

routers informing other routers of its intentions and status by using meta-data and control links. Table 2.1

shows buffering requirements and features of popular flow control protocols.

2.3.1 STALL-GO Flow Control

In this type of flow control, the receiver informs the sender whether it is ready to receive more data.

This is a type of explicit flow control where the control decision is taken at the receiver's end.

The router is modified to have two more signal wires other than phit length (Figure 2.4). One signal

forward indicating presence of new data and another backward informing condition of input buffers either

Filled('STALL') or Empty('GO'). If not enough buffer space is available in the next router/repeater, the stall

signal is send to the previous router/repeater.

Table 2.1 Flow control protocols at a glance

Characteristic STALL/GO T-Error ACK/NACK CREDIT-BASED

Buffer Area 2N+2 3N+2 3N+k 2N+2

Logic Area Low High Medium Low

Performance Good Good Depends Good

Power (est.) Low Medium/High High Low

Fault Tolerance Unavailable Partial Supported Unavailable

 14

However, the main disadvantage of STALL/GO flow control is that no fault handling is done

should any flit get corrupted. In case of a corrupted flit, the error handling task is delayed over to some

higher-level protocol.

2.3.2 T-Error Flow Control

This type of flow control is similar to STALL-GO flow control except that an extra

resynchronization stage is added between the end of the link and the receiving switch as shown in Figure

2.5. T-Error flow control often increases the operating frequency of the link. This requires an additional

resynchronization stage near the end of the link which is done with the help from combination of clock and

delayed clock signals.

2.3.3 ACK/NACK Flow Control

In this type of flow control, a copy of the flit is kept at the sender's end and the flit is sent. If the

receiver acknowledges that it received the packet, the flit is discarded and the next one is sent as before

procedure. As shown in Figure 2.6, repeaters on the link can be simple registers while the number of buffer

requirements for the sender and receiver side is 2N+k buffers to guarantee maximum throughput. N:

Number of repeaters.

Figure 2.4 Stall-Go flow control.

Figure 2.5 T-Error flow control.

 15

It can be implemented in two ways, end-to-end and switch-to-switch. In end-to-end, the copies of

flits are kept at the sender side and the final receiver acknowledges reception of flit. On the other hand, in

switch-to-switch, the copies of flits are kept in any sending switch and the acknowledgement of flit received

is sent back from the next switch.

2.3.4 Credit-based Flow Control

In this type of flow control, the sender keeps a count of the number of free flit buffers in each virtual

channel in the receiver. Anytime the sender sends the flit to receiver, the count is decremented and it is

incremented if the receiver consumes/forwards the packet further. One credit connection is required from

the receiver router to the sender router. When the receiver pulls this signal high, this indicates to the sender

that a packet just left receiver’s buffer and there is an empty space for it to send another packet.

2.4 Routing Mechanisms

Routing mechanisms determine how packets/flits move from source/sender to sink/destination.

There are basically two categories of routing algorithms. A good routing algorithm must prevent any

potential dead-lock, starvation, and live-lock situations of packets/flits in the network.

2.4.1 Starvation

Starvation is denying a core access to necessary resources. Routing starvation problem occurs when

the routing algorithm services an area of routers heavily while neglecting another area. A routing algorithm

might prefer to service cores on the right side of the mesh. So, the packets travelling east reach first and

have higher priority than packets travelling west. This will cause starvation to the cores present on the left

side of the mesh.

Figure 2.6 Ack/Nack flow control.

 16

2.4.2 Dead-locks

Deadlock situation may arise in NoC when any circular waiting path is generated from the routing

algorithm. Any waiting for acknowledgement or waiting for credit path which cycles back to the original

router is a deadlock. For example, router 1 is waiting for acknowledgement/credit from router 2, router 2

from router 3, router 3 from router 4, and router 4 from router 1 again. Two types of dependency cycles can

be formed in a mesh network, clockwise and anti-clockwise; those are shown in Figure 2.7. To prevent any

deadlock, at least one of the cyclic dependency must be broken. This is done by either creating virtual

channels or by restricting the packet movement in a specific dimension/direction.

2.4.3 Live-locks

In this situation, flits keep travelling through the network in circle without reaching a destination.

Because the flits do move instead of being stored in a buffer and not transmitted, as in dead-lock situation,

we call it ‘live’-lock. Live-locks mainly occur when deterministic routing is not used or flits are allowed to

take non-minimal paths to the destination.

2.4.4 Deterministic Routing

The route taken by the packet in reaching from source/sender to sink/destination is pre-determined

and known. Each source and sink pair have a unique route which is constant throughout the run time.

2.4.4.1 Dimension ordered routing (X-Y) or (Y-X)

The flit first moves in one dimension and reaches the destination's row or column and then

continues to move in other dimension to reach destination. In this type of routing, each router knows where

Figure 2.7 Clockwise and Anti-clockwise dead-lock situations.

 17

other routers are and can determine if the flit's destination lies at west, east, south or north of it. An example

of X-Y dimension ordered routing is shown in Figure 2.8. Each flit first decides it needs to go east or west

to reach the column of destination. Then it travels north or south to reach the row of destination. This way

a packet which has travelled north or south, never takes east or west turn. Two turns become illegal to break

the dead-lock situation. A packet travelling north/south will never take east turn and a packet travelling

north/south will never take a west turn.

2.4.4.2 Destination-Tag Routing

Each packet from the sender/source to the receiver/sink is tagged with a destination address in the

header. Based on this tag, the intermediate nodes/routers determine the path packet has to take using the

routing table. An example of this type of routing is a 4-ary 2-fly butterfly network shown in Figure 2.9.

Figure 2.8 X-Y routing mechanism for 3 different source and destination packets.

 18

2.4.5 Oblivious Routing

Oblivious literally means being "unaware of". In this type of routing, a packet is routed without

regard for the current state of the network. If a packet is to be send from A to B, another node is chosen at

random by the sender A and the packet is sent first to this randomly chosen node. Then this node forwards

the packet to node B. The Figure 2.10 shows the process of oblivious routing.

Figure 2.9 Routing in 4-ary 2-fly butterfly NoC topology.

Figure 2.10 Oblivious routing mechanism.

 19

This type of routing causes the load on all channels to distribute and spread out toward the network

rather than sticking to one side of the network. The advantage of oblivious routing is that the channel loads

and traffic patterns are linearly related. Hence it makes it easy to compute ideal throughput and traffic

pattern from given channel load. [13]

However, because the source router can select any intermediate router to send the message first to,

the traffic is widespread over the whole network. To preserve locality of the network, the intermediate

router is chosen from a defined region around the sender with minimal path. This known as minimal

oblivious routing.

2.4.6 Adaptive Routing

Adaptive routing algorithms use information about the network in real-time to adapt and change

how different packets are routed on the network. The major challenge in adaptive routing is the fact that

the route for each packet is decided in real-time just before a packet is sent from one node to another which

can cause live-locks. When a router receives a packet, it calculates the path to destination according to the

algorithm hardware.

2.4.6.1 Load Balanced Adaptive Routing

The algorithm tries to equalize the traffic load on all the links equally. An example of load balanced

adaptive routing is given in [14] where the authors try to balance the load by using Ant Colony Optimization

(ACO). ACO is a biologically inspired from ant colonies and how they locate optimal paths by use of

pheromones, attractants, and accumulation of paths. They propose a NoC version of ACO which was used

extensively in Wide Area Networks and call it Regional ACO-based Cascaded Adaptive Routing (RACO-

CAR). This technique eliminates tables which contain redundant information, shares routing tables with

neighboring routers and merge information, and cascades routing to distribute the load in the network.

2.4.6.2 Fully Adaptive Routing

This type of routing algorithm adapts to the congestion and blocking in the network and re-routes

the packets away from congested or blocked areas. Liu et al. propose a fully adaptive routing algorithm

called FreeRider [15]. A non-local adaptive congestion aware algorithm where the congestion information

of whole network (non-local) is used to make routing decisions. Rather than using the Congestion

Propagation Network (CPN) to propagate congestion information, but instead they propose to use free bits

 20

in header flit to carry congestion information. This improves the throughput, shortens the latency, and

reduces the power consumption.

2.4.6.3 Minimal Adaptive Routing

Minimal route searching algorithms look for the shortest/minimal path to the destination before

sending each packet. Since it is a type of adaptive routing, this algorithm looks for congestion and prefers

another route if it is of same hop distance. However, NIUs have to take care of out-of-order arrival of flits.

2.5 NoC router micro-architecture

A typical NoC router is composed of input ports, output ports, an arbiter, and a switch [16] shown

in Figure 2.11. Minimum delay of the data path determines a maximum data frequency of the router. An

arbiter delay dominates among the other critical path delays and determines the maximum frequency of the

router (𝐹𝑚𝑎𝑥) [2]. When designing a router, minimization of latency while meeting bandwidth requirements

is of utmost importance. Extensive amount of work has already been done in developing power and area

efficient designs of arbiters, crossbars, and input ports [7, 4, 3, 2, 17, 5, 6, 16]. NoC router buffers are

expensive in terms of power and area and constitute as fundamental variable in NoC optimization [18].

Oveis-Gharan and Khan have extensively compared existing router architectures with special focus on their

EDVC organization [2]. We propose an algorithm to determine the optimal router components which results

in an optimal performance NoC with lower area and power costs.

 21

2.5.1 Crossbar

Crossbar switch is an asynchronous combinatorial logic sub-component of the router which has

multiple input buses and output buses. It allows any input bus to be connected to at most one output bus.

This enables data to traverse through the crossbar to any output bus. To control which input bus is connected

to which output bus, an input configuration bus is used. Crossbar is made up of many de-multiplexers

(demux), where each demux is connected at the input to one of the input port of the crossbar, at the output

to all router outputs, and the mux selection port is connected to configuration port from arbiter. If multi-

cast crossbars are used, data from 1 input port can stream to multiple output ports. However, tri-state buffers

need to be added to solve fan-out problem. In this work, we will only consider crossbars and NoCs without

multi-cast feature.

2.5.2 Input port

This is the major component in the router since it consumes majority of the power and takes up

majority of the chip area. Input port is essentially composed of a FIFO (no Virtual Channel) or multiple

FIFOs and multiplexers (in case of >1 Virtual Channels). A D-Flip flop (primary 1-bit storage element) is

made up multiple NAND and OR gates. While designing large storage elements, several flip-flops are

Figure 2.11 NoC router micro-architecture.

 22

arranged in an array and some fabrication fail components are added. Some of these components include

flip-flop scanners to identify faulty flip-flops, and some design fuses to disconnect failed components

permanently. Since 32 flip-flop are required to store 1 32-bit word, SRAM has large power consumption

and takes up large chip area.

Since FIFOs is a type of buffer and are essentially made up of D-flip flops, it is crucial to manage

their size and organization to save chip area and power. Number of flits a FIFO can store is known as its

depth. The router can have one pool of memory for all input ports, or each input port can have one pool of

memory for each virtual channel. In each case, the depth/share of each input port or virtual channel can be

static or dynamic.

2.5.3 Arbiter

Arbiter stores and decides the configuration to set for the crossbar. It manages flit requests coming

from the input ports and grants them as per the arbitration scheme. Arbiter contains the main brains and

logic for entire router. Arbitration scheme can be static (decided during design) or dynamic (decided as per

congestion/traffic during run-time). It makes the output port status ‘free’ as soon as the tail flit traverses

and makes its status ‘occupied’ before the header flit traverses through the crossbar. In this work, we will

consider several fixed priority arbiters and use their synthesis libraries.

2.6 NoC Mapping

While designing any embedded system with top-down approach, the application is first broken

down into tasks and their data dependencies. This is represented in the form of Task Graph (TG). Task

graph is a Directed Acyclic Graph (DAG) in which nodes represent tasks and edges represent the data

dependency and execution sequence. Tasks are grouped and assigned to hardware execution blocks such as

CPU, DMA, GPU, co-processor, Accelerator etc. This is called Task assignment or task mapping shown as

second optimization stage in Figure 2.12. This problem falls under Hardware-Software Co-design domain

where the designer is still deciding on which task to execute on hardware and which task to execute using

software (ie. CPU/co-processor). In this work, we are not addressing task mapping problem. We will be

addressing core mapping and configuration problem shown as 3rd and 4th optimization stage in Figure 2.12

NoC design workflow and this work’s targeted workflow.

 23

After tasks are mapped onto hardware execution blocks/SIPs, the result is an Application Core

Graph (ACG). An ACG is a DAG which contains hardware execution blocks/SIPs/Cores as nodes and their

communication information in the form of edges connecting from one node to another. Assigning SIPs to

locations (tiles) in a network topology is known as core mapping. Henceforth, we will be referring to core

mapping problem as mapping problem. We define the NoC mapping as conversion of Application Core-

Figure 2.12 NoC design workflow and this work’s targeted workflow.

 24

Graph (ACG) to a 2D-mesh NoC 𝑚(𝑥, 𝑦). The NoC mapping CAD tool determines a mapping 𝑚(𝑥, 𝑦)

such that the overall NoC communication cost and energy are minimal. A mapping tool is efficient if it

produces a minimum communication cost and energy NoC mapping solution with minimum number of

iterations consuming least amount of compute time.

NoC mapping solutions are combinations/arrangements of cores in an order which corresponds to

the tiles of a topology. Mapping IP blocks or cores onto a NoC topology becomes complex (Figure 2.13),

as the size of NoC (search space) grows factorially with increase in the number of cores and topology tiles.

This is shown for a small application which contains 4 cores to map which results in 4! = 4×3×2×1 = 24

possible mapping solutions out of which only one is optimal. The formula for size of the search space is

given below:

𝑆𝑖𝑧𝑒 𝑜𝑓 𝑆𝑒𝑎𝑟𝑐ℎ 𝑆𝑝𝑎𝑐𝑒 = 𝑛!
(1)

 where 𝑛 is total number of cores in an application

Application mapping for 2D-mesh NoC is often considered as a constrained quadratic assignment

problem of NP-hard complexity [19, 20, 21]. This means that the problem is not solvable in real time but it

is verifiable in polynomial time. In other words, given a solution, we can check wether it is a good one or

not but we cannot come up with a optimal solution within polynomial time. For example, we cannot directly

Figure 2.13 Mapping possibilities for a 2 by 2 mesh NoC with 4 cores.

 25

come up with a best core mapping for a large application in short time. However, if someone provides a

core mapping to check, we can easily check its cost. These kind of problems are best solved using stochastic

algorithms which try and check many promising solutions before reaching a final solution.

Mapping is one of the major steps in NoC design where the cores are positioned onto topology

nodes. It is crucial to choose an optimal mapping that results in minimal latency and energy consumption

while maximizing the NoC bandwidth. A black box analogy of NoC mapping tool is shown in Figure 2.14.

2.6.1 State-of-the-Art Mapping tools

2.6.1.1 Deterministic Techniques

Jiang et al. have proposed to use a tree based branch-and-bound search technique to find all the

combinations of possible solutions for a hybrid switched network [22]. During the execution of algorithm,

each link in the hybrid network is permutated either to be circuit or packet switched. Finally, the best

switching technique for each link is found. For deterministic algorithms, time to reach an optimal solution

increases factorially with the solution space. Their methodology also consumes more time as compared to

NMAP [23], NormalBB [21], and DPSO [24] techniques. Another popular deterministic technique is Mixed

Integer Linear Program (MILP), which depends on iterations of linear equations of integers to solve the

Figure 2.14 Black box analogy of NoC mapping tool.

 26

optimization problem. Bender has proposed an MILP model which determines optimal mapping based on

execution time, processor cost, and communication cost [25].

2.6.1.2 Stochastic Techniques

Among the multi-dimensional or large search space evolutionary algorithms, the Genetic

Algorithm (GA) is an interesting alternative to produce near-optimal solutions. Morgan et al. have used

GA to optimize NoC mapping with a complex cost function involving power, chip-area, latency, and

reliability [20]. GA based optimization techniques are compared extensively with other popular

optimization techniques by Sahu and Chattopadhyay [26] and found that GA algorithm is not suitable for

NoC mapping solution space since it converges using a single point rather than two or three reference points

as in particle swarm (ie. local-best and global-best).

Yang et al. have presented an accelerated simulated annealing (SA) technique, which initially

executes a few iterations in branch-and-bound method to reach a temperature called 𝑡𝑘 and then iterates

through the temperatures using traditional SA algorithm [27]. As opposed to other mapping algorithms,

their 𝑡𝑘-SA technique focuses on generating better initial heuristics. However, their algorithm has been

applied only to homogeneous NoC cores.

In Tabu Search (TS) techniques, a short-term memory is used to remember the previously visited

solution space and put a "Tabu" on them, meaning the algorithm is forbidden to visit that space again. Tino

and Khan have employed Tabu search to map application cores to an application specific NoC topology

[28]. They intend to optimize power, and performance where the NoC performance is evaluated based on

the dynamic factors such as contention. Each time a new solution is generated, it is analyzed by invoking

the floor-planner that minimizes the wire length and area along with providing the power consumption. The

newly proposed solution is accepted and memorized if it is present in the neighborhood or in the Aspiration

list but not in the Tabu list. The algorithm stops as soon as it finds a solution that satisfies the stopping

criteria. However, there may be other solutions, which result in lower power and area consumption.

Nedjah et al. have proposed a structured representation of the task graph and IP library [29, 30].We

use similar XML representations as input to our tool. Task assignment problem, in which tasks are mapped

onto IPs, precedes mapping problem. Previous mapping tools first come up with an optimum assignment

and then find optimal mapping for it. On the other hand, their technique uses several assignment solutions

instead of one to generate several mappings, which allows them to trade-off the design objectives of interest.

The cost function is composed of hardware area, execution time (deadline criteria), and power consumption.

 27

In assignment and mapping optimization, they use well-known GA algorithm type NSGA-II, CAFES, and

micro-GA to compare the results. microGA worked better in saving the chip area and power up to 80% but

at the cost of higher application (tasks) execution time of up to 600%. However, it can explore more search

space in less amount of time as compared to NSGA-II.

Particle swarm optimization is a population-based technique inspired by social behavior of a group

of animals that was developed in 1995 by Eberhart and Kennedy [8]. Each particle is a candidate solution

and new solutions are generated based on the particle’s own best-found optimal solution (local best) and

swarm’s best optimal solution (global best) [24]. Transformation from an old solution to a new solution is

known as particle movement. It has more exploitation capabilities and more stable as compared to Genetic

Algorithm (GA). This is because in GA, new offspring (current solution) depends just on its parent(s)

(previous solution), but in DPSO a new solution depends on its local best and global best. In the beginning

of DPSO algorithm, particles spawn in different promising search space regions. As the algorithm iterates

or progresses through time, the particle moves in the search space looking for optimal solution. It also

remembers its previous best fit positions, while learning from the past experiences of other particles. The

quality of a particle is evaluated based on its fitness such as cost. We are proposing an extended formulation

for our HDPSO based NoC mapping methodology.

As with all the stochastic optimization techniques, the DPSO might not find the optimal solution

as it does not search the entire search space. Probability of catching an optimal solution mainly depends on

the initial heuristics that place the search agents (or particles) in the search space. A good heuristic algorithm

might place particles in some promising regions of the search space and find an optimal solution early. In

most of the applications, DPSO particles spend a large amount of time exploring the regions of space

already explored by themselves or by the other particles. This causes the algorithm to waste time and

iterations in determining the cost of the same solution again and again.

In the past, there have been many modifications done to the baseline DPSO algorithm to improve

or cater to a specific application. On such attempt was done by Li et al. [31] where they have proposed an

improved particle swarm optimization algorithm which embeds a repulsion operator and local searching

operator for each particle to induce swarm diversity and local refinement. This repulsion operator is

enhanced and used in our tabu-ed reflection mechanism described in Section 3.3.4. They have used an XY

routing mechanism and optimize the NoC for either communication power consumption or communication

delay due to link load. However, their algorithm does not perform multi-objective optimization resulting in

 28

a solution with optimal communication power and delay. We have adopted a similar formulation for our

HDPSO based NoC mapping methodology.

2.7 NoC Configuration

In addition to NoC mapping, next major steps in designing NoC include finding paths for the traffic

flows while reserving resources across the NoC and determining NoC architectural parameters, such as the

data width of the links, buffer sizes used in the router, and frequency of operation [32]. After cores are

mapped to their respective nodes in topology, each communication edge in the core graph has to be assigned

a physical path (links) with a bandwidth high-enough to support it. Then the resources along these paths

are reserved to support edges communicating through them. Resources should be allocated generously to

be able to support the collective bandwidth required by the edges communicating along the path, but at the

same time to have minimum chip area and power consumption. These conflicting requirements give rise to

the configuration optimization of NoC. Since there are many different possibilities (combinations) of

architectural parameters that can satisfy a given application bandwidth on a given topology, there is a need

to find an optimal solution. On the same lines of NoC mapping, NoC configuration solution space also

grows factorially with an increase in the number of cores and library component options available.

Therefore, there is a need to employ a stochastic technique to consider promising solutions rather than

developing a deterministic methodology.

2.7.1 State-of-the-art NoC Configuration Tools and Work-flows

NoC mapping and configuration are two separate but linked optimization problems, which have an

input-output relationship. NoC mapping optimization produces input for the NoC configuration

optimization. NoC mapping optimization problem has been exhaustively researched and various

optimization techniques have been employed [19, 33, 20, 21, 24, 32].

Æthereal design flow for NoC synthesis was proposed by Philips/NXP research along with

Goossens et al. [34]. It offers operational design flow to dimension and generate application specific NoC

instances and configurations [35]. Æthereal design flow, as shown in Figure 2.15, incorporates two

optimization loops, one for NoC mapping and another for NoC configuration. In this design flow, only

buffer sizes are optimized. Stergiou et al. have proposed another NoC synthesis oriented design library

called Xpipes Lite which aids in automatic generation of heterogeneous NoCs [36].

 29

NoCTweak [37] is a highly parameterized NoC simulator which can simulate some embedded or

synthetic traffics including (uniform random, tornado, shuffle, hotspot, etc.) for large network sizes. It

combines usage of cycle-accurate SystemC models of routers along with router RTL coded in VHDL and

synthesized using 65nm CMOS standard cell library. The simulator reports packet delay, network

throughput, average power of router and each of its components, global clock tree and PLL, and energy

consumption per packet. However, it does not allow NoC designers to expand the RTL library and provide

their own custom router sub-components. The tool can only simulate for 65 nm technology as it was coded

using models of 65 nm components.

Another major drawback is that while it does provide energy and power information of the NoC, it

does not allocate or configure the routers so that the network occupies minimum chip area and consumes

minimum power. Buffer sizes in the tool are modifiable manually when starting the simulator but it modifies

the buffer depth for all routers in the network. This homogenous increase in buffer depth help just uniform

random traffic but critical power and area savings opportunities are missed if the application does not have

a traffic pattern of uniform random. NoCTweak allows custom applications to be imported and simulated,

however it only performs mapping of the application using NMAP [23] optimization technique. NMAP is

a good stochastic technique but further researches have outperformed it on many fronts [26].

Figure 2.15 Æthereal NoC configuration and mapping workflow.

 30

Intelligent buffer merging technique is presented by Tsai et al. [38] where each routers input port

load is calculated by using a traffic matrix and mapping the coregraph edges onto physical links. This edge-

to-link mapping gives rise to a bandwidth constraint which should be satisfied by the input port

configuration algorithm. Since they consider adaptive routing mechanism, data from a single source core

can arrive from two input ports (two routes) and put into the same buffer. The edge-to-link mapping

algorithm is improved and used in our configuration HDPSO algorithm described in section 4.8.1.

 31

Chapter 3

Optimal NoC Mapping using HDPSO

3.1 Introduction

PSO [8] is an optimization method that optimizes a problem by first coming up with random

solutions and then iteratively improving them by using basic equation of motions (ie. distance, velocity,

and acceleration of particles). A candidate solution is called a particle and the all-time best candidate

solution is known as global-best particle. Collection of particles which are linked together by common

global best-particle is called a swarm.

DPSO is used for optimization of a discrete search space. A discrete search space implies that the

solution is a combination, a permutation or a quantized quantity. For NoC mapping, the search space

represents all the combinations of cores mapped to different tiles. Therefore, DPSO can be used to find the

optimal mapping of cores to a suitable size 2D-mesh NoC. Traditionally, DPSO for NoC mapping starts

with an initial population (particle) generated through some heuristic method to predict promising regions

of the search space. Then the iterations cause the particle to evaluate its current cost and swarm the best

global cost. The operation of a typical DPSO mechanism is shown in Figure 3.1.

 32

A major issue with the DPSO based methodology is the particles that waste the computing

resources and time while staying in the previously explored solution space rather than exploring the un-

chartered solution space. We propose a hybrid discrete particle swarm optimization methodology that

overcomes this shortcoming. In our mechanism, we add the concept of Tabu-search to discourage the

particles (or search agents) to pass through the solution space that has been already explored. The overall

detail of our methodology having four stages is presented in Figure 3.2.

Figure 3.1 DPSO Search spaces – particles reach sub-optimal solutions

Figure 3.2 HDPSO Algorithm.

 33

In each iteration, a particle’s new position is calculated based on three of particle’s own properties

and one global swarm property. Consider the position of the particle at iteration k i.e. p
k
= <p

k1
, p

k2
,

p
k3

…p
kn

> where p
kn

 represents a tile and n indicates the tile number. The iterative formulation for the

HDPSO particle is given in the following equation:

𝑝𝑘+1=

(

𝐶𝑖𝑛𝑒𝑟𝑡𝑖𝑎 × 𝐼
⨁

𝐶𝑠𝑒𝑙𝑓−𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 × (𝑝𝑘 ⟶ 𝑙𝑜𝑐𝑎𝑙𝑏𝑒𝑠𝑡)

⨁
𝐶𝑠𝑤𝑎𝑟𝑚−𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 × (𝑝𝑘 ⟶ 𝑔𝑙𝑜𝑏𝑎𝑙𝑏𝑒𝑠𝑡)

⨁

𝐶𝑙𝑜𝑎𝑑−𝑜𝑝𝑡 × (𝑝𝑘 ⟶ 𝑙𝑜𝑎𝑑𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑))

 × 𝑝𝑘
(2)

 where 𝑝𝑘+1 and 𝑝𝑘 represent next generation and current particle core

arrangements respectively

 𝑎 → 𝑏 is a sequence of swaps applied on components of a to transform it to b

(see Figure 3.5)

⊕ is a fusion operator. For two sequences a and b. 𝑎 ⊕ 𝑏 is the sequence in

which the sequence of swap of a is followed by sequence of swaps of b

𝐶𝑖𝑛𝑒𝑟𝑡𝑖𝑎 is inertia constant that determines the particle’s willingness to stay at

the current solution or move on to another solution

𝐶𝑠𝑒𝑙𝑓−𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 is self-confidence that determines the particle’s willingness to

move closer to the local best

𝐶𝑠𝑤𝑎𝑟𝑚−𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 is swarm confidence that controls the particle’s willingness

to move to the global best solution

𝐶𝑙𝑜𝑎𝑑−𝑜𝑝𝑡 is the communication volume optimization coefficient that controls

the optimization of particle’s communication volume list

𝐼 are the Identity swaps such as swap(1,1), swap(2,2)…… swap(n,n).

𝑙𝑜𝑐𝑎𝑙𝑏𝑒𝑠𝑡 is the previous local best core arrangement of the particle

𝑔𝑙𝑜𝑏𝑎𝑙𝑏𝑒𝑠𝑡 is the swarm best core arrangement

𝑙𝑜𝑎𝑑𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 represents the core arrangement after applying communication

volume optimization on 𝑝𝑘

 34

In each iteration, the particle might take a step towards a random new location, local best, global

best, communication volume optimum mapping or a combination of these. A particle falls through a ladder

of decision points where a random number is generated and it is decided whether the particle should take

the path or not. The decision is biased by inertia constant 𝐶𝑖𝑛𝑒𝑟𝑡𝑖𝑎, self-confidence 𝐶𝑠𝑒𝑙𝑓−𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒, swarm

confidence 𝐶𝑠𝑤𝑎𝑟𝑚−𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒, and communication volume optimization coefficient value 𝐶𝑙𝑜𝑎𝑑−𝑜𝑝𝑡. The

details of the main steps of our HDPSO based NoC mapping methodology are presented in this section.

The stages are basically core swaps depending on various parameters such as random inertia, self-

confidence, swarm confidence and communication volume optimization. These are described later in the

Evolution of Swarm Particle (solution) in Section 3.3.6.

3.2 Problem Definition

We define the NoC mapping of an Application CoreGraph (ACG), 𝐴𝐶𝐺(𝐴𝑀) onto a 2D-mesh

NoC, 𝑚(𝑥, 𝑦). The NoC mapping CAD tool determines a mapping 𝑚(𝑥, 𝑦) such that the overall NoC

communication cost are minimal. A mapping tool is efficient if it produces a minimum communication cost

NoC mapping solution with minimum number of iterations consuming least amount of compute time. To

simplify the mapping problem, X-Y routing technique is assumed along with round-robin arbitration for

determining the cost parameters. We assume a regular mesh topology where the cost for the mapping

solution or particle (𝑃𝐶𝑜𝑠𝑡) can be defined as:

 𝑃𝐶𝑜𝑠𝑡 = ∑ ∑ 𝑉𝑜𝑙(𝑒𝑖) × 𝐻𝑜𝑝𝐶𝑜𝑢𝑛𝑡(𝑒𝑖)

𝑠𝑖𝑧𝑒(𝑒)

𝑗=0

𝑠𝑖𝑧𝑒(𝐴𝑀)

𝑖=0

(3)

 where 𝑒 is the collection of edges in a core graph,

𝑉𝑜𝑙(𝑒𝑖) is the communication volume (MB/s) on edge i,

𝐻𝑜𝑝𝐶𝑜𝑢𝑛𝑡(𝑒𝑖) is the hop distance between two communicating cores (or vertices).

𝑠𝑖𝑧𝑒(𝐴𝑀) indicates the number of application modes

An application can have many modes of operation and in each mode of operation, SoC has different

communication characteristics among cores. A low-power mode often reduces the communication volume

among cores and that can be represented by a separate coregraph. In other words, a single application can

have many coregraphs. Additionally, in some application modes, not all cores might be active or

operational. The inactive cores might be power-collapsed in order to save power and reduce battery

consumption. These power-collapsed cores are no longer in the coregraph (because they do not consume

 35

or produce network traffic) but the router is still operational to allow data transit. An example of one such

multi-modal application is shown in Figure 3.3. AM 1,2,3, and 4 are low/high performance modes, while

in AM 5, core 2 is power collapsed, and in AM 6 cores 3 and 6 are power collapsed.

For a given mapping, we apply cost formula to each mode (coregraph) and sum the results together

to get total cost. The resulting sum cost gives equal weight to all application modes. Since not all application

modes are operational at all times, NoC designer might decide to optimize NoC cost more for one

application mode than other. This can be taken care of by providing the cost_weight parameter along with

each application mode (coregraph). This parameter will be used to normalize the cost of each application

mode before summing all costs.

3.3 HDPSO Algorithm

3.3.1 A HDPSO Particle

An HDPSO particle is a candidate solution which contains possible arrangement of cores mapped

to a 2D-mesh NoC. The overall cost is evaluated and calculated for each particle to determine whether the

Figure 3.3 Application with multiple modes of operation (AM).

 36

particle represents a better solution than the current global best solution. A particle stores its current cost,

previous local best cost and core arrangement as well as the particle ID. As the particle moves and if it

encounters a core arrangement (mapping) which has lower cost than its previous local best cost, it

overwrites the previous best cost with the newly found cost and stores this new core arrangement as the

previous local best core arrangement. This is incorporated in “Update Local Costs” function in Figure 3.2.

The size of the particle determines the number of tiles available in the 2D-mesh NoC. Core arrangement is

a vector representing the mapping of each core to a tile position in the NoC mesh. The structure of the

particle is versatile and any NoC topology can be mapped by employing the same particle structure. Figure

3.4 shows a hybrid DPSO particle structure and an arbitrary mapping for MPEG4 core graph mapped to a

4x4 mesh NoC. The coregraph of MPEG4 contains just 12 cores. In order to map the coregraph to a square

mesh NoC, 4 dummy cores (ie. core id. 12, 13, 14, and 15) are added. Their cost is neither calculated nor

affects the optimization method. In fact, it was observed that these dummy cores were pushed to the corners

of the mesh by optimization tool as it can be seen in the possible solution in Figure 3.4. This is because the

corner tiles have minimum number of paths to other cores. In other word, corner cores have less neighbors.

The particle holds the current cost (ie. 3567.00 in Figure 3.4) of the core arrangement. After each

iteration, current arrangement of cores is evaluated and the resulting communication cost is placed in

current cost of the particle.

 37

Figure 3.4 A HDPSO particle structure for MPEG-4 decoder.

 38

3.3.2 Initial Population Generation

In our HDPSO based mapping, first an application core graph is imported for NoC mapping, where

the number of swarm particles varies with the size of particle (or solution). Particles are spawned in each

root branch with the first NoC tile assigned to the core with the same ID as the ID of the swarm particle.

For example, particle 12 will have 12th core mapped to the first (0th) tile. It ensures that all the initial particles

are spaced away from each other as well as in different solution space areas. Starting by generating

completely random initial solutions could place them in the same area and in close-proximity. By using a

fixed first tile for initial solution, we ensure that the initial solutions are at least separated by first

combination. The other remaining cores are mapped randomly to random tiles. It also ensures that bigger

application core graphs have more search agents or particles to search different search space areas. The

pseudo code of the initial population generation method is given below.

As with all stochastic algorithms, different initial conditions produce different results and can

sometimes help the algorithm reach optimal solution faster. However, intelligent initial population

heuristics can consume time and are finding partial solution to the problem by using deterministic method.

As application size grows, so does the time complexity of the initial placement deterministic algorithm

which destroys the whole purpose of using a stochastic algorithm. To support both large and small solutions

spaces, we have used a simple initial population placement algorithm given in Algorithm 1.

Algorithm 1: Initial Population Generation

Input: non-negative integer no_of_particles

Output: vector of particle objects vector<Particle> population

1. vector<Particle> population

// Iterate over all the particles

2. for i = 0; i < no_of_particles; i++ do

3. vector<int> initial_condition(PARTICLE_SIZE, -99)

// Map the first tile to Core i

4. initial_condition[0] = i

// Create particle object with initial condition

5. Particle p(I, PARTICLE_SIZE, initial_condition)

 // Add particle object to the population

6. population.push_back(p)

7. end

8. return population

 39

3.3.3 Particle Movement (Applying Swap Moves)

In every iteration of a traditional DPSO method, a particle compares its current cost with its

previous found best cost (local best) and swarm found best cost (global best) to determine the new position.

However, in the NoC mapping problem, exact locations of particles in search space is not known. Distances

between particles can be defined as number of swap moves required to make them equal as shown in Figure

3.5. In HDPSO, the new position of a particle is determined by comparing its current core arrangement 𝑝𝑘

with the previous local best core arrangement 𝑙𝑏𝑒𝑠𝑡, global best core arrangement 𝑔𝑏𝑒𝑠𝑡, and communication

volume optimization applied core arrangement 𝑓𝑏𝑒𝑠𝑡. This comparison results in a vector of swap moves

which can be applied to particle A, for bringing it closer to the other particle B i.e. to. reduce the distance

between particles A and B. However, all the swap moves are not applied directly in one iteration to avoid

the particles to hop in the search space and might miss a potentially optimal solution. Instead, we choose a

random swap move (chosen swap move) from the list of swap moves.

In the next step, the chosen swap move is applied onto a copy of the particle A and saved as

temporary particle T. The swap move is not applied to the original particle A as it might result in a Tabu-

ed particle (or solution). Tabu list is searched for any previous particle which has the same core arrangement

Figure 3.5 Determining distance between particles (particle A & B).

 40

as of particle T. If a match is found (the particle T is Tabu-ed), the chosen swap move is reflected and this

step is repeated. If no match is found (particle T is not Tabu-ed) then the chosen swap move is applied to

the original particle A. The whole process is illustrated in Figure 3.6.

In addition to the traditional swap move, we also propose more complex moves (see Figure 3.7)

including transpose, horizontal shuffle, vertical shuffle, column swap, and row swap. A transpose move

can only be applied to square mesh networks and it has an effect similar to that of matrix transpose.

Horizontal and vertical shuffles nudge cores to 𝑛 positions right or down respectively. Row swap and

column swap moves exchange two columns or swaps. Each of these proposed moves can be represented in

terms of smaller swap moves. In this work, we do not use these complex moves.

Figure 3.6 Identifying the chosen swap move.

 41

3.3.4 Tabu-List and Particle Reflection

A short-term memory called Tabu-list is used to keep track of the previously visited search space

areas and prevents the particles to enter the Tabu-ed zone. For large 2D-mesh NoCs having a large search

space, the number of particles as well as iterations required to reach the optimal NoC mapping (solution)

will grow. This will consume a large memory for the Tabu-list as more iterations are executed. Therefore,

we keep the Tabu-list small and proportional to the number of particles as well as the number of iterations.

In this way, the Tabu-list is operated as a short-term memory for the previously tried solutions. The size of

tabu memory is not dependent on number of application modes. Size of the Tabu-list is determined by the

following equation:

Figure 3.7 Complex swap moves.

 42

𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡𝑠𝑖𝑧𝑒 = 𝜏.𝑁𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠. 𝑁𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠. 𝑁𝑡𝑖𝑙𝑒𝑠 (4)

 where 0 ≤ 𝜏 ≤ 1 is a tuning parameter chosen by the designer according to

the computing system capabilities and its memory capacity. For this work, we

consider 𝜏 = 1

𝑁𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 is the number of particles in search space

𝑁𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 is the number of iterations to remember the particle position for

𝑁𝑡𝑖𝑙𝑒𝑠is the number of tiles in each particle/mapping solution

Tabu literally means sacred or forbidden. In our proposed algorithm, solution points in the search

space already visited by the particles are forbidden for them to visit again. We propose a reflection

mechanism around the Tabu-ed search area as shown in Figure 3.8. The reflection mechanism ensures that

all the particles that are not Tabu-ed will determine their moves. If the move is indeed Tabu-ed, then it

proposes an alternative move. However, particles in swarm optimization should be allowed to enter the

Tabu-ed area to support convergence towards the optimal solution. Therefore, a particle is allowed to apply

the move on itself if all reflections are tried and all were either tabu-ed or invalid.

After evaluating the new cost by the swarm particle, Tabu-list is appended with this new application

mapping (core arrangement). It is quite common for the DPSO particles to show an oscillating behavior

between two or more NoC mapping solutions. Swarm particles can get stuck in such situations and may

remain in the barrier of similar costs for two different core mappings. A short-term Tabu memory is kept

Figure 3.8 Reflection of particles from the explored search space.

 43

at the global level to remember the previously explored solution space or previously tried core mapping

arrangements to prevent such oscillation behavior. When a proposed move results in a core mapping that

has been already identified, the current iteration is not wasted. We intend to move such particles to explore

the un-explored regions of the search space. The particles are moved by a random movement that can also

be on the Tabu-list and huge amount of time would be spent on determining a random move that is not on

the Tabu-list. Keeping particles in the Tabu-list for the past iterations make our HDPSO algorithm stable

as particles do not try new core arrangements unless it is new. Variation of current cost in a DPSO particle

is high as DPSO does not remember the previously tried solutions. On the other hand, HDPSO particle cost

is stable due to the Tabu-list that keeps a list of previously tried solution as shown in Figure 3.9. These

results indicate much lower level of oscillations. Lower oscillation reduce the number of computations

performed in each iteration, thereby reducing the execution time.

We propose a particle reflection methodology to divert the particles towards un-explored search

space areas instead of just random moves. Reflection refers to a change in the direction of the proposed

move of a particle where one of the cores to swap remains the same but the other core changes. If a move

is to result in an already explored mapping, a different move is proposed for the particle. Considering a 3x3

Figure 3.9 HDPSO vs DPSO particle cost variations for mapping of MPEG4 decoder.

0

2000

4000

6000

8000

10000

12000

14000

16000

800 900 1000 1100 1200 1300 1400

P
a
rt

ic
le

 C
u

rr
en

t
C

o
st

No. of Iteration

DPSO

HDPSO

 44

2D tiled NoC given in Figure 3.10. If the particle is trying to swap for tile 2 and 4 and the resulting mapping

is Tabu-ed i.e. on the Tabu-list, then the move is reflected to perform the swap for NoC tile 4 and 8 as

shown in Figure 3.10. The reflected-move is the reflection of the original move with respect to y-axis.

When a proposed move is predicted to result in a core arrangement already tried (i.e. Tabu-ed), the

particle can be reflected in four ways. For a 3x3 mesh NoC some typical reflections are given below.

𝑀𝑜𝑣𝑒𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 signifies the move which a particle makes to get closer to global best, local best,

communication volume optimized solution, or just inertia. 𝑀𝑜𝑣𝑒𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑 means that the proposed original

move has resulted in a core-arrangement (solution) which has already been tried and therefore another new

untried move is proposed.

Figure 3.10 Reflection of a Tabu-ed swap (2,4) move.

Figure 3.11 Reflection of a swap (2, 4) with respect to y-axis.

 45

i. Reflection in 𝑥-axis: for 𝑀𝑜𝑣𝑒𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = 𝑠𝑤𝑎𝑝(2, 4)

𝑀𝑜𝑣𝑒𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑(𝑥 − 𝑎𝑥𝑖𝑠) = 𝑠𝑤𝑎𝑝(4,0)

ii. Reflection in 𝑦-axis: for 𝑀𝑜𝑣𝑒𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = 𝑠𝑤𝑎𝑝(2,4)

𝑀𝑜𝑣𝑒𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑(𝑦 − 𝑎𝑥𝑖𝑠) = 𝑠𝑤𝑎𝑝(4,8)

iii. Reflection in line 𝑦 = 𝑥: for 𝑀𝑜𝑣𝑒𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = 𝑠𝑤𝑎𝑝(1,4)

𝑀𝑜𝑣𝑒𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑(𝑥 − 𝑎𝑥𝑖𝑠) = 𝑠𝑤𝑎𝑝(4,3)

iv. Reflection in line 𝑦 = −𝑥: for 𝑀𝑜𝑣𝑒𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = 𝑠𝑤𝑎𝑝(1,4)

𝑀𝑜𝑣𝑒𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑(𝑥 − 𝑎𝑥𝑖𝑠) = 𝑠𝑤𝑎𝑝(4,5)

3.3.5 Communication Volume based Optimization

We have devised an intelligent methodology to swap a near core that has smaller communication

volume between itself and the source core with a far core, which has larger communication volume with

source. After an application is imported for optimal NoC mapping, all the edges are arranged in ascending

communication volume and placed in a vector list as shown in Figure 3.12 for a particular case. Each time

a particle is evolved, hop distances for each of these edges is updated. The ascent in the hop distance means

that the current edge, X has more communication volume than the previous edge Y but the cores of edge X

are farther apart from each other than the Y edge. The working detail of the traffic optimization stage is

shown in Figure 3.12 and listed below.

Step 1. Generate a list of arranged communication edges with the ascending communication

volume.

Step 2. Find the edges with an ascending hop count that has the same source id. In Figure 3.12, X

and Y edges (1 → 2 and 1 → 8) have the same source core 1, and Y has higher

communication volume and hop count than edge X.

Step 3. Swap the destination cores of these two edges. In Figure 3.12, core 8 should be closer to

core 1 rather than core 2 because it has higher communication volume.

 46

Step 4. Test if the swap move results in a Tabu-ed core arrangement. If it does, then try all the

reflections. If the reflections are not possible or result is a Tabu-ed core arrangement, then

apply the original move.

Step 5. Go to Step 2 until the end of edge list.

3.3.6 Evolution of Particles

In the first iteration of our HDPSO methodology, the cost for all the particles is calculated and then

overall local best and global best costs are determined. In later iterations of the optimization, a swarm

particle passes through four stages as shown earlier in Figure 2. Before each stage begins, a particle decides

to go through that stage or not using stage path decider. This stage path decider is based on biased random

number generator. A stage path decider which is biased by self-confidence parameter 𝑐𝑠𝑒𝑙𝑓−𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 is

shown in Figure 3.13.

Figure 3.12 Communication Volume based core swapping.

 47

Stages that a particle may or may not go through, depending on path decider, are given below in

sequence. Due to the nature of path decider, a particle may not go through any stage or may go through all

of them. So in essence, a particle may not move at all or move to a maximum of 4 distance (4 swap moves)

in one iteration.

3.3.6.1 Inertia Stage (Stage A)

In this stage, first it is decided whether to apply a random swap move or not. The move is based on

the inertia probability constant, 𝐶𝑖𝑛𝑒𝑟𝑡𝑖𝑎. The identification of a random swap move is also illustrated in

Figure 5.

1. If the decision is made to generate the random swap move then verify that the resulting core map

is Tabu-ed or not.

2. Try reflections if the resulting core mapping belongs to the Tabu-list.

3. If the reflections are not possible or they result in a Tabu-ed core arrangement, then apply the

original random swap move.

3.3.6.2 Local Convergence Stage (Stage B)

In this stage, it is decided whether to converge to a local best core mapping or not. The move is

based on a self-confidence probability, 𝐶𝑠𝑒𝑙𝑓−𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒. If yes, then generate a list of swap moves by

comparing the local best core mapping and the current core mapping represented by the swarm particle.

1. Select a random swap move to apply from the list generated. If the move results in a Tabu-ed core

arrangement, then try reflections.

Figure 3.13 Local Convergence Stage (Stage B) path decider.

 48

2. If all the reflections are not possible or result in a Tabu-ed core arrangement, then apply the original

random move.

3.3.6.3 Swarm Convergence Stage (Stage C)

In this stage, it is determined whether the solution (swarm particle) converges to a global best core

arrangement or not. The move is based on a swarm-confidence probability, 𝐶𝑠𝑤𝑎𝑟𝑚−𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒.

1. Generate a list of swap moves by comparing the global best core arrangement and current core

arrangement of the particle.

2. Select one random swap move to apply from the list generated in the earlier step.

3. Test if the move results in a Tabu-ed core arrangement. If yes, then try reflections. If all reflections

are not possible or result in a Tabu-ed core arrangement, apply the original random move.

3.3.6.4 Traffic Load Optimization Stage (Stage D)

In the final stage, it is decided whether to optimize the mapping by applying communication

volume based core swaps or not. The decision is based on the load optimization probability, 𝐶𝑙𝑜𝑎𝑑−𝑜𝑝𝑡. A

random number is generated between 0 and 100 and checked against load optimization probability. If the

number generated is less than the probability, then communication volume based core swaps are applied.

The algorithm of this stage is explained in Section 3.3.5.

Our HDPSO based NoC mapping process can be terminated after executing a fixed number of

iterations or after a pre-determined number of swarm particles have converged to a common mapping.

3.3.7 Stopping Criteria

It is observed that the swarm particles of DPSO converge to an optimal point in search space near

the end of optimization. It is at this point, the particles have settled and optimization need not continue. To

detect this situation and stop the optimization loop, diversity factor proposed by Silva and Bastos-Filho

[39] is modified and used. First, an average distance of each particle from other particles is calculated using

the following equation.

𝑑𝑖 =
1

𝑁 − 1
∑ 𝑑𝑖𝑠𝑡(𝑝𝑖, 𝑝𝑗)

𝑁

𝑗=1,𝑗≠𝑖

(5)

 49

 where N is the number of particles.

𝑑𝑖𝑠𝑡() returns the number of swap moves required to make particle i equals to

particle j.

𝑑𝑚𝑖𝑛 and 𝑑𝑚𝑎𝑥 are the maximum and minimum average distances respectively.

Since NoC mapping problem is a discrete combinatorial problem, Euclidean distance formula

cannot be applied to get distance between two particles. Instead distance between two particles is given by

the number of swap moves require to make both particles same as shown in Figure 3.5 Determining distance

between particles (particle A & B).. Then diversity factor of each particle is calculated using the equation

below:

𝐷𝐹𝑖 =
𝑑𝑖 − 𝑑𝑚𝑖𝑛

𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛

(6)

 where 𝐷𝐹𝑖 is the diversity factor of particle 𝑖.

𝑑𝑖 is the average distance of particle 𝑖 to other particles.

𝑑𝑚𝑖𝑛 and 𝑑𝑚𝑎𝑥 are the maximum and minimum average distances respectively.

Optimization loop can be stopped when the following criteria given in the following equation is

met:

𝜛 ≤
1

𝑁
∑𝐷𝐹𝑖

𝑁

𝑖=1

(7)

 where N is the number of particles.

𝜛 is an empirically selected stopping diversity factor.

Choosing a random swap move from a list of moves results in slow progression towards the desired

solution space region while exploring it. This is evident from the global cost comparison presented in Figure

3.14 for our HDPSO algorithm with the DPSO for a 3-mode 17-core application. In HDPSO, swarm

particles take small steps towards the local or global best core arrangement rather than a sudden stride as

shown in Figure 3.14. In the same number of iterations, HDPSO finds a better and lower cost arrangement

faster than the traditional DPSO. Our HDPSO methodology executes about 50% faster and it has around

20% better cost as compared to DPSO. By allowing smaller swap movements, the HDPSO algorithm steps

 50

gradually towards the best cost rather than sudden jumps seen in DPSO. This also allows the HDPSO

method to explore more parts of the search space, which enhances the chance of finding a better solution

than the DPSO technique.

3.3.8 Dynamic Tuning Parameters

Self-confidence can be a static constant or dynamically calculated variable. In the case of static,

the particle movement core can access this variable from a register and move on ahead with the calculation

of velocity and acceleration. On the other hand, if the self-confidence needs to be dynamically calculated

at run-time, it can depend on the global cost and the number of iterations. Some researchers have found a

constant self-confidence by trial-and-error [27]. This means that the particle moves to local maxima with a

probability of 4%. However, the self- confidence can be dynamically tuned over the course of optimization

iterations by using the following equation:

Figure 3.14 Global cost for same confidence - DPSO vs. HDPSO.

2500

3000

3500

4000

4500

5000

5500

6000

1
2
7

5
3

7
9

1
0
5

1
3
1

1
5
7

1
8
3

2
0
9

2
3
5

2
6
1

2
8
7

3
1
3

3
3
9

3
6
5

3
9
1

4
1
7

4
4
3

4
6
9

4
9
5

5
2
1

5
4
7

5
7
3

5
9
9

6
2
5

6
5
1

6
7
7

7
0
3

7
2
9

7
5
5

7
8
1

G
lo

b
al

 C
o

st

of Iteration

DPSO Cost HDPSO Cost

 51

𝐶𝑠𝑒𝑙𝑓 = 𝜓(𝑒
−
𝐼𝑐𝑢𝑟𝑟 × ∅
𝑇𝑖𝑡𝑒𝑟.)×𝜚 (

𝑐𝑙𝑜𝑐𝑎𝑙 − 𝑐𝑔𝑙𝑜𝑏𝑎𝑙

𝑐𝑙𝑜𝑐𝑎𝑙
)

(8)

 where 𝑇𝑖𝑡𝑒𝑟. is the total number of iterations to be executed

𝐼𝑐𝑢𝑟𝑟 is the current iteration number

∅ is the plummeting factor

𝜓 is designer chosen factor which determines the dependence of self-confidence on

number of iteration

𝜚 is a designer’s chosen factor, which determines the dependence of self-confidence

on particle’s cost quality

𝑐𝑙𝑜𝑐𝑎𝑙 and 𝑐𝑔𝑙𝑜𝑏𝑎𝑙 are is the local and global best costs respectively

For example, 𝑇𝑖𝑡𝑒𝑟. = 50, ∅ = 4, 𝜓 = 1, and 𝜚 = 0 gives us:

𝐶𝑠𝑒𝑙𝑓 = 𝑒
−
𝐼𝑐𝑢𝑟𝑟×4
50

(9)

It can be observed from the above equations that the data dependency on global variables increases

when dynamic self-confidence values are to be calculated at runtime. However, if static self-confidence

values are used, the data dependency is reduced and each particle movement can perform faster calculations.

The dynamic self-confidence can be used to influence (particles) search-agents to depend more and

more on global optima as the algorithm approach to its conclusion. This effect is similar to the one used in

Simulated Annealing where randomly exploring the search space is encouraged in the beginning but

discouraged near the end of the algorithm. As the algorithm progresses, the particles are given less and less

self-confidence so that the algorithm moves towards the global maxima. The equation can also be modified

to give more and more overall swarm confidence as the iterations progress. We proposed two different ways

to formulate dynamic self-confidence and dynamic swarm confidence.

3.3.8.1 Inverse exponential self-confidence and exponential swarm confidence

In this formulation, the self-confidence and swarm confidence only depend on the current number

of iteration as shown in Figure 3.15.

 52

3.3.8.2 Inverse exponential self-confidence and remaining swarm confidence

Self-confidence depends on the current iteration number where swarm confidence depends on the

difference between 100% and self-confidence as shown in Figure 13.

3.3.9 Particle Cost Pre-calculation

When a particle moves to a new solution, changed edges are marked and only those costs are

recalculated rather than calculating costs for entire coregraph again. This saves some computational time

and makes the HDPSO algorithm faster compared to other DPSO algorithm. The mechanism is depicted in

Figure 3.17.

Figure 3.15 Inverse exponential self-confidence and exponential swarm-confidence.

Figure 3.16 Inverse exponential self-confidence and remaining swarm-confidence.

 53

3.4 Experimental Results for NoC Mapping (Particles)

We have implemented a traditional DPSO and our HDPSO methodologies by using the formulation

presented in this work. Both methodologies are employed to map synthetic and real application core graphs.

by employing dual core i7 CPU running at 2.4 GHz having 8GB memory. Picture in Picture (PIP), MPEG4

Decoder (MPEG4), Video Object Plane Decoder (VOPD), and Dual Video Object Plane Decoder

(DVOPD) are some of the typical core graphs used earlier to evaluate NoC mapping optimization [4]. Table

3.1 lists some of the previously employed benchmark core-graphs that are also used for comparison. The

overall communication cost is determined for our HDPSO methodology to compare with some past NoC

mapping techniques and the results are presented in Figure 3.18.

Figure 3.17 Particle cost pre-calculation.

 54

In the graphical bars presentation of Figure Figure 3.18, the communication cost is normalized with

the NMAP NoC mapping methodology [23] widely referred by researchers. HDPSO performs similar or

better than all the mapping techniques including DPSO [24], GMAP [20], LMAP [40] and PSMAP [41].

Figure 14 shows the communication cost for VOPD, MPEG4 and PIP application mapping using HDPSO,

GMAP, DPSO, PSMAP and LMPAP methods. HDPSO performs better or comparable in terms of

communication cost. It is noticed that HDPSO does tend to increase time to determine the mapping solution

but it reaches a stable global cost twice as fast as the standard DPSO.

Table 3.1 Application core-graphs used as benchmark

Name Cores
Application

Modes
Edges

PIP 8 1 8
MPEG4 12 1 13
VOPD 16 1 15

DVOPD 26 1 32
DVOPD + MPEG4 38 2 45

Core Graph 1 17 3 52
Core Graph 2 29 4 92
Core Graph 3 39 5 205

Figure 3.18 Communication cost normalized to NMAP cost.

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

VOPD MPEG4 PIP

N
o

rm
al

iz
ed

 C
o

m
m

u
n
ic

at
io

n
 C

o
st

Applications

HDPSO GMAP DPSO PSMAP LMAP

 55

We have implemented the DPSO-based mapping algorithm proposed by Sahu et al. [24, 42] to

thoroughly evaluate and compare our HDPSO methodology. The NoC mappings are generated by using

DPSO and HDPSO techniques for some well-known application core-graphs given in Table 3.1.

Additionally, several synthetic application task graphs Core Graph 1, 2 and 3 are generated with random

(non-uniform) traffic by using our custom core-graph generator that incorporate TGFF (Task Graphs For

Free) pseudo-random task graph generator tools [43]. Uniform random traffic is not useful for evaluating

the application mapping quality as any mapping will result in the same cost.

TGFF generates pseudo-random task graphs which can be taken as coregraphs if we assume that

only one task is mapped to a single core. TGFF also generates hard and soft deadlines but they are ignored

when parsing taskgraphs to coregraphs. Simple random task graphs were generated from the tgff library

and converted to xml format. The communication volume was kept in between 30 and 900 Mbits/s. TGFF

also takes in parameter tg_cnt which is basically to control the number of task graphs to generate per

application. We assume each task graph as a separate application mode. Additionally, the minimum number

of tasks per task graph (average, multiplier) is kept at 0.4. This means that at least 40% of the cores are

used in all application modes.

NoC mapping results for all the typical and synthetic applications are presented in Figure 3.18 and

Figure 3.19. Our HDPSO method reports similar or better optimal cost as compared to DPSO and other

past techniques. The results presented in Figure 3.19 indicate a cost improvement for our HDPSO method

with respect to DPSO. It is observed that generally for small and single mode applications, HDPSO and

DPSO perform equally well in optimization. However, as the number of cores, edges, and modes increase,

HDPSO produces 10% to 60% better communication cost (lower BW * Hop Count).

DPSO based NoC mapping tool produces comparable NoC mapping for PIP, MPEG4, VOPD, and

DVOPD application coregraphs as these applications has only 8-to-26 coregraphs. However, HDPSO

performs better for DVOPD+MPEG4 (mode-2) and synthetic application coregraphs having 17-39 cores

(see Figure 15). Therefore, we have generated larger synthetic coregraphs, by using some well-known and

popular realistic traffic patterns (e.g. bit-reversal, Tornado, Transpose, Shuffle, Stencil, etc.) having 32, 64

and 128 cores. Then these synthetic coregraphs are used for NoC mapping to compare our HDPSO with

the latest DPSO-based method. These synthetic traffic patterns contain characteristics and features which

are commonly present in real world applications. For example, communicating pairs in Bit-reversal,

Tornado and Transpose traffic, ring communication pattern in Neighbor and Shuffle traffic, and

dimension/array arithmetic in Stencil.

 56

In Table 3.2, execution times of DPSO and HDPSO are compared for the applications given in

table 1. It was noted that HDPSO found better mapping solutions for DVOPD+MPEG4, CoreGraph 1,

CoreGraph 2, and CoreGraph3 at the cost of memory overhead and 5-11% more time. It did not find better

solutions than DPSO in case of PIP, MPEG4, VOPD, and DVOPD because the solution found by both

methods (HDPSO and DPSO) in these applications is already MILP optimal. There is no better solution to

find for these applications.

For our results in Table 3.2, the number of particles was equal to the number of tiles. Therefore, as

the size of application grew, the demand for tabu-ed memory grew non-linearly (ie. with a power of 2).

It was found empirically that a short-term memory which remembers just 60 past iterations is

enough to discourage particles to oscillate and go back and forth between already explored solutions.

However, integer is not needed for applications with number of cores less than 256 (8-bit char will do). To

support larger coregraphs, our tool keeps the core ids in integer data format and hence we use that

estimation. Application with 32, 64, and 128 cores will have tabu memory requirement of 311.04 Kbytes,

983.04 Kbytes, and 4976.64 Kbytes respectively.

For example, tabu-ed memory size in PIP can be calculated by 9×9×32×60 = 155,520 𝐵𝑖𝑡𝑠 and

for Core Graph 3 it can be calculated by 49×49×32×60 = 4,609,920 𝐵𝑖𝑡𝑠. Network for the memory size

Figure 3.19 Cost improvement DPSO vs. HDPSO.

 57

calculation is assumed to be a square mesh. Therefore, for Core Graph 3, 39 cores fit into 7 by 7 (49 core)

mesh NoC.

We also built a tool to generate synthetic traffic patterns using well-known traffic formulae called

CoreGraph generator (CGG). The coregraphs given in Table 3.3 are generated by CGG. CGG creates a

coregraph xml file ready for consumption into our HDPSO tool. It takes in the traffic pattern option and

size of coregraph to generate as parameters. Then iterates through each source edge, creates an edge

originating from that source core, and applies the traffic pattern formula to determine edge’s destination

core. The tool assumes that the cores are mapped with respect to their ids (ie. core 0 on the top-left, core 1

next to core 0 on the right, and core N at the bottom-right). HDPSO is expected to detect these traffic

patterns and map them in another recognizable pattern. For example, communicating pairs in transpose and

bit-reversal traffic are placed at 1 hop distance in an optimal solution after tool run. This helps evaluate the

tool and helps in identifying tuning parameters.

Synthetic traffic can be divided into two major categories named random and permutation. Random

(uniform) is where each core sends the same amount of data to every other core in the network. From

mapping perspective, uniform random traffic is not useful for evaluating the mapping tool as any mapping

will result in the same cost. Random (non-uniform) is where each core sends data to one or several random

Table 3.2 Execution Time Comparison of Benchmark CoreGraphs

Name Method
Time
(min)

Tabu-ed
Memory
(Kbytes)

PIP
DPSO 0.3960 N/A

HDPSO 0.4263 19.44

MPEG4
DPSO 0.3509 N/A

HDPSO 0.4915 61.44

VOPD
DPSO 0.3318 N/A

HDPSO 0.4193 61.44

DVOPD
DPSO 0.7442 N/A

HDPSO 0.7678 311.04

DVOPD + MPEG4
DPSO 1.1963 N/A

HDPSO 1.2023 576.24

Core Graph 1
DPSO 0.3305 N/A

HDPSO 0.3466 150.00

Core Graph 2
DPSO 0.4091 N/A

HDPSO 0.4490 311.04

Core Graph 3
DPSO 0.8165 N/A

HDPSO 0.8949 576.24

 58

destinations. Random (non-uniform) traffic pattern is used in the synthetic core graphs (Coregraph 1,

Coregraph 2 and Coregraph 3) employed earlier and results for those were presented in Figure 3.18.

Permutation is where the destination address is a permutation function of source address. To generate

permutation traffic, each core in the network is assigned a binary address and then the permutation function

is applied to each core (source) to produce resulting destination address. Each source sends data only to one

destination. There are two sub sets of permutation i.e. bit and digit permutation. In bit permutation traffic,

the destination core address is computed by permutating or selectively complimenting the bits of the source

address. Digit permutations are done by permutating digits of source address to calculate destination digits.

Digit permutations can only be applied to n-digit, radix-k numbers for example 𝑘-ary 𝑛-mesh networks.

Bit reversal traffic is shown in Figure 3.20 (a) and it is generated by reversing the order of source

address bits to generate destination address. It generates pairs of bi-directionally communicating cores

which the mapping tool should place near each other. A traffic type which best tests locality exploitation

of the mapping tool is the neighbor traffic shown in Figure 3.20 (b). In this type of traffic, each source

communicates with a core in the next column and next row. The optimum solution reduces majority of the

hop count from 2 to 1 of each neighboring core pair. Tornado traffic is shown in Figure 3.20 (c) that is

designed to test the mesh and torus networks. The optimum solution finds pairs in the network and places

them in proximity. The Transpose traffic is shown in Figure 3.20 (d) where source cores talk to the core on

the other side of the diagonal line. It creates pairs of communicating cores and the optimum mapping should

place these pairs near each other.

Fast Fourier Transforms (FFTs) and sorting applications have shuffle type traffic patterns, which

is shown in Figure 3.20 (e). There are communication localities in the traffic, which need that the relevant

cores should be placed in proximity to each other. For example, in Figure 3.20 (e), some cores form a

communicating ring and they need to be placed in a 2×2 mesh square in the network to have communicating

cores just 1 hop count away from each other. Signal and image processing applications often have traffic

patterns that are known as Stencil shown in Figure 3.20 (f). Some relevant applications include FIR filtering,

2D convolution.

We have investigated the conventional DPSO mapping technique [5, 18] along with our HDPSO

methodology for the synthetic traffic patterns shown in Figure 3.20 and for 32, 64 and 128 core applications.

The comparative results for all the synthetic core graphs with various traffic pattern are presented in Table

3.3. Our HDPSO based mapping shows considerable improvement in cost for large networks. The cost

improvement ranges from 15% to 216%. Results for the Neighbor, Tornado and Shuffle traffic patterns are

 59

particularly better (i.e. 23% to 216% improvement) as these traffic patterns contain ring communication

structure which can easily be exploited by traffic optimization stage of HDPSO method (i.e. stage D

described in Section 3.3.6.4).

It is also observed that the DPSO method settled relatively quickly (in fewer number of iterations)

on the final solution as compared to our HDPSO. Even though HDPSO employs Tabu-list and needs to

check for Tabu-ed moves in each iteration, which should increase the time taken per iteration, DPSO and

HDPSO still have comparable execution times to find an optimal solution. The main reason is the capability

of our HDPSO method that remembers the previous iteration costs of each particle and if the particle does

not move, the cost is not recalculated while DPSO recalculates the cost in each iteration. HDPSO

methodology also consumes more memory than DPSO because it remembers the tried core arrangements

(or swarm particles data) for 60 iterations. However, HDPSO takes less number of overall iterations to

reach an optimal solution since it looks for more regions of the search space and progresses using multiple

(1→4) swap moves per iteration.

Like all the stochastic techniques, tuning parameters play a major role in how well the optimization

tool performs for a given input. We have used static confidence values (tuning parameters) to generate all

the results in this section. It was found that particle inertia of 0.4, self-confidence of 0.2, swarm confidence

Figure 3.20 Traffic patterns used to evaluate the HDPSO based NoC mapping (a) Bit-reversal, (b)

Neighbor (c) Tornado (d) Transpose (e) Shuffle (f) Stencil.

 60

of 0.3, and load optimization constant of 0.4 works best in reaching an optimal solution much faster. In this

way, the confidence values are empirically chosen. It can be observed from the results presented in Table

3 that the tuning parameters we chose empirically, usually favor NoC mapping to meshes that contain 64

cores because the improvement is better for those and then it bounces back for larger networks.

The HDPSO based NoC mapping tool also automatically selects a 2D-mesh size that is based on

the number of cores of the application core-graph, however, the mesh size can also be selected manually.

In the case of MPEG4 decoder, the mesh size is automatically selected as 4x4, but the application can also

fit to a 3x4 size mesh NoC. The NoC mappings generated by HDPSO methodology is shown in Figure 17

for 3x4 mesh. The communication costs for MPEG4 mapped onto a 3x4 2D mesh is 3772 as compared to

3567 for a 4x4 mesh mapping shown in Figure 3.21.

In Figure 3.20, it can be observed that the bit reversal, transpose, and shuffle traffic patterns have

bi-directional edges. One bi-directional edge is counted as 2 directional edges in Table 3.3. For example,

in case of bit-reversal, the reverse of core 1 ie. 0b 00001 is core 16 ie. 0b 10000 and vice versa. One edge

is from core 1 to 16 and another edge is from core 16 to 1. If a core’s id is palindrome, it does not have an

edge. There are total 8 palindromes in 5-bit addresses (32 cores see table 3 bit-reversal). Therefore, there

are 32 − 8 = 24 edges in 32-core bit-reversal application.

For results in Table 3.3, it was observed that HDPSO and DPSO both settled on a solution after

1000 iterations on average. The times reported in the table are for 2000 iterations.

 61

Table 3.3 Traditional DPSO vs HDPSO results for 32, 64, and 128 core synthetic application core-

graphs

T
ra

ff
ic

C
o

re
s

E
d

g
es

Method

Time

Taken

(min)

Cost

T
a

b
u

M
em

o
ry

(K
B

y
te

s)

B
it

 R
ev

er
sa

l 32 24
DPSO 0.41 3000

311.04
HDPSO 0.41 2600

64 56
DPSO 2.53 32000

983.04
HDPSO 2.55 20000

128 112
DPSO 35.23 116400

4976.64
HDPSO 36.55 75600

N
ei

g
h
b
o
r 32 31

DPSO 0.71 6900
311.04

HDPSO 0.72 5600

64 64
DPSO 6.20 22800

983.04
HDPSO 6.22 17000

128 127
DPSO 106.06 76200

4976.64
HDPSO 107.28 59200

T
o
rn

ad
o
 36 36

DPSO 0.52 5600
311.04

HDPSO 0.52 4000

64 64
DPSO 4.23 18400

983.04
HDPSO 4.25 12800

128 128
DPSO 76.40 142400

4976.64
HDPSO 74.32 45000

S
h
u
ff

le

32 32
DPSO 0.45 7000

311.04
HDPSO 0.43 5200

64 64
DPSO 4.35 44800

983.04
HDPSO 4.37 17400

128 128
DPSO 7.66 95800

4976.64
HDPSO 7.82 60800

T
ra

n
sp

o
se

 32 30
DPSO 0.44 6000

311.04
HDPSO 0.45 5000

64 56
DPSO 4.33 17200

983.04
HDPSO 4.30 10800

128 126
DPSO 5.29 78200

4976.64
HDPSO 4.99 60200

S
te

n
ci

l

32 69
DPSO 0.50 34800

311.04
HDPSO 0.48 27200

64 154
DPSO 4.86 129200

983.04
HDPSO 4.85 88000

128 329
DPSO 111.95 445800

4976.64
HDPSO 112.08 366800

 62

(a) (b)

Figure 3.21 HDPSO generated optimal (a) 3×4 (b) 4×4 NoC mapping of MPEG4 decoder.

(a) (b)

Figure 3.22 HDPSO generated optimal (a) 3×4 (b) 4×4 NoC mapping of VOP decoder.

 63

3.5 Summary

A new method of optimization was discussed which increases the efficiency of the traditional

DPSO algorithm by tabu-ing parts of search areas to particles which have been just visited. Since the search

space was of combinatorial discrete nature, deflection technique was used to encourage particles to explore

more of search space before converging to the optimal solution. If search space was of continuous nature,

other methods such as Bezier curve would be used to force the particle to curve around the tabu-ed area.

If a swap move results in a solution which is already tried, proposed moves are deflected in all

other directions until there is no other way other than to allow the original move. This causes the algorithm

to explore more of the search space before converging onto the global best solution. The results were

benchmarked against popular applications PIP, MPEG-4, VOPD, and DVOPD and it was found that

HDPSO performs significantly better than other optimization algorithms. Standard DPSO based method

has also been implemented for NoC mapping and quality of the results is compared with our HDPSO based

mapping. It was found that HDPSO performs 15% to 216% better than traditional DPSO technique. Our

tool also performed better in particular for traffic patterns which contain ring communication structure such

as Neighbor, Tornado, and Shuffle traffic patterns. It is also concluded that remembering the past solutions

and proposing new solutions by our HDPSO algorithm enables it to produce better mapping solutions.

 64

Chapter 4

Optimal NoC Configuration using Sub-swarm

4.1 Introduction

In addition to NoC mapping, next major steps in designing NoC include finding paths for the traffic

flows while reserving resources across the NoC and determining NoC architectural parameters, such as the

data width of the links, buffer sizes used in the router, and frequency of operation [6]. After cores are

mapped to their respective nodes in topology, each communication edge in the core graph has to be assigned

a physical path (links) with a bandwidth high-enough to support it. Then the resources along these paths

are reserved to support edges communicating through them. Resources should be allocated generously to

be able to support the collective bandwidth required by the edges communicating along the path, but at the

same time to have minimum chip area and power consumption. These conflicting requirements give rise to

the configuration optimization of NoC. Since there are many different possibilities (combinations) of

architectural parameters that can satisfy a given application bandwidth on a given topology, there is a need

to find an optimal solution. On the same lines of NoC mapping, NoC configuration solution space also

grows factorially with an increase in the number of cores and library options available. Therefore, there is

a need to employ a stochastic technique to consider promising solutions rather than developing a

deterministic methodology.

 65

We propose a Hybrid Discrete Particle Swarm Optimization (HDPSO) based tool that takes an

Application Core Graph (ACG) and network component libraries and provides an optimal application

specific NoC design. Our proposed NoC design tool uses stochastic searching techniques to first generate

random particles (solutions) called initial heuristic particles and then iteratively moves the particles around

the search space to explore other solutions.

 Our main contributions include the development of an intelligent memory-based hybrid particle

multi-swarm optimization technique which combines exploration abilities of particle swarm with

exploitation abilities of force directed swapping. Additionally, we introduce multiple swarms to search

configurations and mapping search space separately. We assume a library of synthesized router sub-

components is provided. We have developed a new technique by combining the NoC mapping optimization

problem with the architectural configuration for a cooperative solution search.

The overall architecture of our proposed system is shown in Figure 4.1. The Application

Communication Graph consisting of a core graph for each application along with communication cost

model, area library, and power library is fed to the system. Finally, the system produces a core-to-tile map,

link configurations, router configurations, optimal NoC area, power, and communication cost. Core-to-tile

map points to where a particular core is to be located in the 2D-mesh. The proposed tool explores to provide

the best configuration which results in optimal communication cost, power, and chip area.

Figure 4.1 CAD system architecture for NoC synthesis

 66

The resulting design contains description of routers, topology graph, and link configurations.

Topology graph consists of link IDs, router IDs and their connections. Each link configuration consists of

link width and maximum virtual channels (VCs) operating on the link. Router configuration comprises of

SRAM buffer depth (in case of dynamic VC organization), VC buffer depth (in case of static VC

organization), type of arbiter used in each router, arbiter size, crossbar switch size, type of flow control,

and estimated router area and power consumption. A router (by extension a NoC) can be designed by

choosing a flow control technique, the number of VCs for each input port, buffer organization, switch

design, and pipelining strategy while abiding by the target clock frequency and power budgets. The buffer

size, microarchitecture design and number of VCs for the router can be determined for the router when

provided with the network topology, application graph, some architecture specific parameters, and

probability distributions of packet properties. These parameters must be designed in such a way that optimal

performance is achieved at minimal area and power costs.

Generally, NoC mapping and configuration are categorized as ‘segregated search space

optimization’ and ‘combined search space optimization’ as depicted in Figure 4.3a and Figure 4.3b

respectively. Segregated search space NoC optimization is the most commonly used and tend to first

generate an optimal NoC mapping based on power, area, throughput, etc. and then choose the network

components to work optimally with the mapping based on the network performance. However, such a

Figure 4.2 Typical NoC synthesis workflow.

 67

segregated search space approach has several disadvantages. The results obtained from the mapping stage

might no longer be optimal after network configuration. We believe that mapping and configuration

optimization problems of NoC are closely related to each other. An optimal result must be picked after

performance verification of mapping and configuration solution pairs.

 Æthereal performs application specific NoC synthesis as depicted in Figure 4.3a [8]. It has two

optimization loops of buffer sizing and smallest mesh. Smallest mesh loop is responsible for generating a

topology and a mapping for the given ACG. The buffer-sizing loop resizes the buffers in each router for

the generated NoC map and topology. Combining the search spaces of mapping and configuration together

and looking for optimal mapping/configuration as one optimal solution may find more optimal solutions

rather than the segregated solution spaces. Yet, this approach widens the scope of search space and may

result in spending time in finding configurations for non-promising mappings. Regardless of the cost of

mapping, its configuration is found. Moreover, many explored solutions might not meet the design

constraints and get rejected during performance verification stage after wasting lot of time.

We propose to combine NoC mapping and configuration optimization problems by use of swarms

and sub-swarms. This will obviously cause bigger search space dimensions than pure mapping or pure

synthesis search space, but should result in more optimal final solution as explained earlier. This kind of

approach provides us with two advantages over traditional swarm optimization. It can be observed that the

communication cost of a candidate solution depends on the communication volume of an edge which is

(a) (b)

Figure 4.3 (a) Segregated search space optimization workflow (b) combined search space

optimization.

 68

extracted from the input core graph and hop count for that edge which is extracted from the mapping

solution itself. Since, this cost can be calculated before configuration, it is a better idea to do partial

calculation of particle cost (𝑃𝐶𝑜𝑠𝑡) before moving to NoC configuration. This partial cost drives the main

swarm and configuration cost (𝐶𝑜𝑛𝑓.𝑐𝑜𝑠𝑡) drives the sub-swarm.

Figure 4.4 The proposed hybrid workflow for NoC mapping and configuration.

 69

4.2 Problem Definition

As we described earlier, when the number of NoC cores grow, the solution space explodes and

there is a need for some optimization tools to find the optimal solution. An embedded application can be

represented by an Application Core Graph (ACG). ACG comprises of collection of application modes

(𝐴𝑀 ∈ 𝐴𝐶𝐺). Where each 𝐴𝑀 = 𝐺{𝐶, 𝐸} is composed of collection of cores (vertices) 𝐶 and collection of

edges (unidirectional links) 𝐸. Moreover, each directed edge is denoted by 𝑒𝑖 = 𝑣𝑖(𝑐𝑗, 𝑐𝑘) ∈ 𝐸 where 𝑐𝑗 is

core 𝑗, 𝑐𝑘 is core 𝑘, 𝑣𝑖 is the maximum volume of communication that can occur between j and k cores in

Mega-bits/sec. The objective is to configure the NoC in such a way that the total communication cost,

power consumption, and total chip area occupied by the NoC is minimal. NoC design optimization problem

is of multi-dimensional nature, where the first step is to identify the number of dimensions of the search

space. There are multiple objectives of this optimization problem as given below:

Figure 4.5 Inner workings of the mapping and configuration HDPSO algorithm.

 70

• Minimize hop count between frequently communicating cores across one or multiple mode

application.

• Minimize static and dynamic power consumption of NoC routers and links.

• Minimize the chip area occupied by routers and links.

• Minimize buffer penalty

• Minimize credit loop latency

• Maximize duty factor on links

We assume a regular mesh topology with XY routing mechanism. We also assume that Virtual

Channel (VC) buffers are part of the input ports of the router. We define the cost for the configuration

solution or sub-particle (𝐶𝑜𝑛𝑓𝑖𝑔.𝑐𝑜𝑠𝑡) as:

𝐶𝑜𝑛𝑓𝑖𝑔.𝑐𝑜𝑠𝑡 = (𝛼𝑃𝐶𝑜𝑠𝑡 + 𝛽𝑁𝑜𝐶𝑝𝑜𝑤𝑒𝑟 + 𝛾𝑁𝑜𝐶𝑎𝑟𝑒𝑎). 𝜆𝐵𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (10)

 where 𝛼, 𝛽, 𝛾, 𝜆 are tuning parameters for dependency of total cost on the particle cost

(𝑃𝑐𝑜𝑠𝑡), power of NoC (𝑁𝑜𝐶𝑝𝑜𝑤𝑒𝑟), area occupied by NoC (𝑁𝑜𝐶𝑎𝑟𝑒𝑎) of NoC, and

Buffer Depth Penalty (𝐵𝑝𝑒𝑛𝑎𝑙𝑡𝑦) respectively.

Particle cost (𝑃𝑐𝑜𝑠𝑡) is given by:

𝑃𝑐𝑜𝑠𝑡 = ∑ ∑ 𝑉𝑜𝑙𝑢𝑚𝑒(𝑒𝑖)×𝐻𝑜𝑝𝐶𝑜𝑢𝑛𝑡(𝑒𝑖)

𝑠𝑖𝑧𝑒(𝐸)

𝑖=1

𝑠𝑖𝑧𝑒(𝐴𝑀)

𝑗=1

(11)

 where edge i (𝑒𝑖 ∈ 𝐸), 𝑉𝑜𝑙𝑢𝑚𝑒(𝑒𝑖) is the communication volume in MB/s on edge i,

𝐻𝑜𝑝𝐶𝑜𝑢𝑛𝑡(𝑒𝑖) represent the hop distance between two cores.

Power cost of the NoC can be estimated by using following equation:

𝑁𝑜𝐶𝑝𝑜𝑤𝑒𝑟 = ∑ 𝑃(𝑅𝑖)

𝑠𝑖𝑧𝑒(𝑅)

𝑖=1

+ ∑ 𝑃(𝐿𝑗)

𝑠𝑖𝑧𝑒(𝐿)

𝑗=1

(12)

 where R and L are the collection of all routers and links,

Router 𝑅𝑖 ∈ 𝑅 and Link 𝐿𝑗 ∈ 𝐿,

𝑃(𝐿𝑗) & 𝑃(𝑅𝑖) are power consumption of Link j & Router i.

Since the router components can be roughly modularized into three types namely crossbar, arbiter,

and input ports, the router power consumption can be found by adding the power consumption of all the

router components given in the library:

 71

𝑃(𝑅𝑖) = 𝑃(𝐴𝑖) + 𝑃(𝐶𝑖) + ∑ 𝑃(𝐼𝑘)

𝑠𝑖𝑧𝑒(𝐼)

𝑘=1

(13)

 𝑃(𝐴𝑖) and 𝑃(𝐶𝑖) are the power consumed by the arbiter and crossbar switch of Router i,

𝐼 is the collection of input ports of Router i,

𝑃(𝐼𝑘) is the power consumed by k input port of Router i.

Chip area for the solution or particle is found as following:

𝐴𝑁𝑜𝐶 = ∑ 𝐴(𝑅𝑖)

𝑠𝑖𝑧𝑒(𝑅)

𝑖=1

+ ∑ 𝐴(𝐿𝑗)

𝑠𝑖𝑧𝑒(𝐿)

𝑗=1

(14)

 where R and L are the collection of all routers and links,

Router i (𝑅𝑖 ∈ 𝑅) and link j (𝐿𝑗 ∈ 𝐿),

𝐴(𝐿𝑗) & 𝐴(𝑅𝑖) represent the chip area of Link j & Router i.

The area of a router can be determined from a library by looking into the architectural feature areas

of router as follows:

𝐴(𝑅𝑖) = 𝐴(𝐴𝑖) + 𝐴(𝐶𝑖) + ∑ 𝐴(𝐼𝑘)

𝑠𝑖𝑧𝑒(𝐼)

𝑘=1

(15)

 where 𝐴(𝐴𝑖) and 𝐴(𝐶𝑖) are the chip areas of arbiter and crossbar switch of Router i,

𝐼 is collection of input ports and 𝐴(𝐼𝑘) is the area of k input ports of Router i.

When the flow of data suddenly starts after being blocked, the downstream router needs to inform

the upstream router to send more data. This is done through credits. However, credits take time to travel

back to the upstream router. Additionally, after receiving credits, data takes time to reach the downstream

router. The total time for the credits to reach back upstream router and the time it takes for data to reach

downstream data is known as credit loop latency 𝑡𝑐𝑟𝑡. For this time, link bandwidth at the downstream

router is not being utilized.

The credit loop latency 𝑡𝑐𝑟𝑡, expressed in flit times, gives a lower bound on the number of flit

buffers needed on the upstream side for the channel to operate at full bandwidth, without credit stalls [44].

Since each flit needs one buffer and the buffers cannot be recycled until their tokens traverse the credit

loop, if there are fewer than 𝑡𝑐𝑟𝑡 buffers, the supply of buffers will be exhausted before the first credit is

returned.

 72

The credit loop latency 𝑡𝑐𝑟𝑡 in flit times is given by:

𝑡𝑐𝑟𝑡 = 𝑡𝑓 + 𝑡𝑐 + 2𝑇𝑤 + 1 (16)

 where 𝑡𝑓 is the flit pipeline delay, 𝑡𝑐 is the credit pipeline delay, and 𝑇𝑤 is the one-

way wire delay (we assume this to be 1)

If 𝐵(𝑓𝑙𝑜𝑤𝑗) is the number of buffers available to data flow 𝑓𝑙𝑜𝑤𝑗 in the input port, to calculate

average buffers allocated to all data flows in a link (𝐵𝑎𝑣𝑔. (𝑙𝑖𝑛𝑘𝑖))following equation is used:

𝐵𝑎𝑣𝑔. (𝑙𝑖𝑛𝑘𝑖) =
∑ 𝐵(𝑓𝑙𝑜𝑤𝑗)
𝑁𝐹𝑙𝑜𝑤𝑠(𝑙𝑖𝑛𝑘 𝑖)
𝑗= 1

𝑁𝐹𝑙𝑜𝑤𝑠(𝑙𝑖𝑛𝑘 𝑖)

(17)

 where 𝑁𝐹𝑙𝑜𝑤𝑠(𝑙𝑖𝑛𝑘 𝑖) is the number of data flows going through 𝑙𝑖𝑛𝑘𝑖

To calculate link duty factor (𝑑𝑓) for 𝑙𝑖𝑛𝑘𝑖, following equation is employed:

𝑑𝑓(𝑙𝑖𝑛𝑘𝑖) = 𝑚𝑖𝑛 (1 ,
𝐵𝑎𝑣𝑔. (𝑙𝑖𝑛𝑘𝑖)

𝑡𝑐𝑟𝑡
)

(18)

The duty factor of the data flow will be 1 as long as there are enough buffered flits to hide the credit

loop latency. To calculate average duty factor for a configuration solution, following equation is used:

𝑑𝑓𝑎𝑣𝑔. =
∑ 𝑑𝑓(𝑙𝑖𝑛𝑘𝑖)
𝑁𝑙𝑖𝑛𝑘𝑠
𝑖=1

𝑁𝑙𝑖𝑛𝑘𝑠

(19)

 where 𝑁𝑙𝑖𝑛𝑘𝑠 is the number of total links in the network

Using the duty factor (𝑑𝑓), we determine the buffer penalty to be as following:

𝐵𝑝𝑒𝑛𝑎𝑙𝑡𝑦 =
1

𝑑𝑓𝑎𝑣𝑔.
 (20)

Figure 4.6 shows how buffer penalty and configuration cost are affected by average duty factor. If

𝑑𝑓𝑎𝑣𝑔. is below 1, the sum 𝛼𝑃𝐶𝑜𝑠𝑡 + 𝛽𝑁𝑜𝐶𝑝𝑜𝑤𝑒𝑟 + 𝛾𝑁𝑜𝐶𝑎𝑟𝑒𝑎 is multiplied by inverse of 𝑑𝑓𝑎𝑣𝑔. which has

huge impact on the cost. In other words, 𝑑𝑓𝑎𝑣𝑔 is inversely proportional to configuration cost.

 73

4.2.1 Constraints

Any configuration and mapping solution should not be allowed to take the link utilization above 1.

Link utilization above 1 means that the link required throughput is higher than the link bandwidth. The Link

Utilization is given by:

𝐿𝑖𝑛𝑘𝑢𝑡𝑖𝑙. =
∑ 𝑉𝑜𝑙𝑢𝑚𝑒(𝑒𝑖)
𝑁𝑓
𝑖=1

𝐿𝑤𝑖𝑑𝑡ℎ×𝐿𝑓𝑟𝑒𝑞
≤ 1

(21)

 where ∑ 𝑉𝑜𝑙𝑢𝑚𝑒(𝑒𝑖)
𝑁𝑓
𝑖=1

 is the amount of data flowing through the link or in other

words, sum of all data flows through the link

𝐿𝑤𝑖𝑑𝑡ℎ is the width in bits of the communication link

𝐿𝑓𝑟𝑒𝑞 is the operating frequency of the link

4.3 Configuration Solution Space

Since mapping and configuration optimization solutions are closely related to each other, we

propose to search configuration search space simultaneously as mapping solution space is being searched.

This is done by the mechanism of sub-swarm and sub-particles. Each particle has a sub-swarm which

contains a fixed number of sub-particles. These sub-particles are possible configuration solutions.

Whenever a particle moves (ie. finds new mapping solution), the sub-swarm is notified and all sub-particles

are destroyed and then re-spawned. In each iteration of mapping optimization (ie. particles), several

(a) (b)

Figure 4.6 (a) Average duty factor and buffer penalty relationship (b) Average duty factor and

configuration cost relationship.

 74

iterations of sub-particles are run. This particle-to-sub-particle iteration ratio is controlled by a parameter

set before runtime.

The configuration solution space size depends on number of cores, number of router component

configurations available, and mapping solutions space. The configuration solution space size is given as:

𝐶𝑜𝑛𝑓. 𝑆𝑜𝑙.𝑠𝑖𝑧𝑒 = (𝑁𝑐𝑜𝑟𝑒𝑠 . ((5. 𝑁𝑖𝑝𝑟𝑡.𝑐𝑜𝑛𝑓𝑠.) + 𝑁𝑐𝑟𝑜𝑠𝑠.𝑐𝑜𝑛𝑓𝑠. + 𝑁𝑎𝑟𝑏.𝑐𝑜𝑛𝑓𝑠.)) .𝑀𝑎𝑝. 𝑆𝑜𝑙.𝑠𝑖𝑧𝑒 (22)

 where 𝑁𝑐𝑜𝑟𝑒𝑠 is the number of cores in the coregraph

𝑁𝑖𝑝𝑟𝑡.𝑐𝑜𝑛𝑓𝑠. is the number of input port configurations in the library

𝑁𝑐𝑟𝑜𝑠𝑠.𝑐𝑜𝑛𝑓𝑠. is the number of crossbar configurations in the library

𝑁𝑎𝑟𝑏.𝑐𝑜𝑛𝑓𝑠. is the number of arbiter configurations in the library

𝑀𝑎𝑝. 𝑆𝑜𝑙.𝑠𝑖𝑧𝑒 is the number of mapping solutions in solution space

As a particle encounters new mapping solutions, potential configurations solutions are tried on it

by sub-particles in sub-swarm. A sub-swarm is tied to a mapping solution or particle. As particle moves

around, so does the sub-swarm. By nature of DPSO algorithm, mapping particles stay in a mapping solution

for a longer duration if the solution is good. This increase in time allows sub-particles to penetrate deeper

into configuration solutions space and look for more solutions. All in all, more configuration solutions will

be explored for good mapping solutions.

Figure 4.7 NoC Configuration solution space.

 75

4.4 Router Sub-component Library Representation

The router components are synthesized separately using synthesis tools such as Synopsys Design

Compiler and using various technology size libraries. Router component area and power parameters are

converted into EXtensible Markup Language (XML) format.

The hierarchical relationship of the elements is shown in Error! Reference source not found. and

 REF _Ref491140696 \h Figure 4.9. A router can have up to 1 component of type ‘Crossbar’ of any

available configuration. It may also have up to 1 component of type ‘Arbiter’ of any available configuration.

Finally, it may have up to 5 components of type ‘Input Port’ of any available configuration.

When any library is imported into the tool, each component and configuration pair (regardless of

the component type) receives a unique id (uId). This uId is used throughout the configuration process and

Figure 4.8 NoC Configuration library XML element hierarchy.

Figure 4.9 Library element hierarchy and relationship.

 76

iterations. Each configuration solution (sub-particle) is an array of uIds. Detailed structure of a sub-particle

is described in Section 4.5.

4.4.1 Library

A library is a database of components. It is represented by <library> xml element which contains

several <component> elements. When the tool runs, several different libraries can be imported into the

solution space using the import library button. The tool forms one library out of all the components present

in libraries to be imported by use of merge_library function. This selective importing of libraries allows

the designer to choose specific target libraries of router components and reduce solution space for the

configuration HDPSO sub-swarm algorithm.

4.4.2 Component

A component element defines a parameterizable entity in the router. Arbiter, Input Port, and

Crossbar are three types of router components supported in HDPSO tool. Each router can have up to 5 input

ports in the solution space. Each of these 5 input ports can be of any component of type ‘Input Port’ and

any configuration. A detailed component xml definition is shown in Figure 4.11.

Figure 4.10 A library element defined in XML format.

 77

4.4.3 Configuration

A configuration is one combination of parameters in a parameterizable hardware module. For

example, a hardware module contains two parameters FIFO_DEPTH and BUS_WIDTH. If

FIFO_DEPTH can be 1,4, or 8 and BUS_WIDTH can be 16, 32, or 64, then total configurations will be

9. This representation of configuration allows designers to automate synthesis of different configuration of

modules and input into the optimization tool.

4.4.4 Design

A design represents all properties or synthesis results from one technology library. Designs can be

of type ‘ASIC’ or ‘FPGA’. In case of ASIC, technology library size which was used to synthesize

components should be passed. In case of FPGA, the component was synthesized using FPGA compilers

and the device name for which it was synthesized should be passed. The tool is capable of optimizing NoC

for FPGAs or ASICs. Reducing area and power in case of ASICs and reducing logic elements used in case

of FPGAs.

μ

μ

μ

Figure 4.11 A component element defined in XML format.

 78

4.4.5 Property

Property element is the basic element which stores a data value such as dynamic power, static

power, registers, and frequency along with their units. When objects are created from parsing the input

library xml, all property elements are copied over to the appropriate object properties.

4.5 A Sub-particle (Configuration Solution)

A sub-particle holds a single configuration solution named current_configuration. It also holds

current_cost which is sum of communication cost, static power, dynamic power, and area of current

configuration solution multiplied by buffer penalty. Besides that, it also holds local_best_cost,

local_best_configuration, mapping, parent_particle_id, static and dynamic power, area, and

communication cost separately. The internal structure of the sub-particle is shown in Figure 4.12.

The array current_configuration holds universal IDs (uId) of component configurations. A uId is

kept as an integer so that –ve values are permissible and components which are redundant can be

represented by negative values. Allowed –ve uIds and what they represent is shown in Table 4.1. When a

sub-particle is initialized, all uIds are set to undecided (ie. -4). Then the sub-swarm goes through

configuration for topology stage (described in Section 4.6) where redundant components are marked and

solutions are looked for only those components which are necessary.

Table 4.1 Negative Universal IDs (uIds) and their meanings.

uId Meaning

0 NULL. Just initialized.

-1 This component is used but no configuration is mapped yet.

-2 This component is never used (due to application mapping).

-3 This component is not needed at all (due to topology).

-4
Undecided. It is not yet determined whether this component

is need nor not.

 79

4.6 Configuration for Topology

When sub-particles (configuration solutions) are created based on the current parent particle

(mapping solutions), the edge routers are identified and their outward input ports are marked as not needed

as shown in Figure 4.13. It is to signal the swarm to ignore any optimal configuration for these input ports,

e.g. east and north input port is not needed for the first router at the top left corner of the mesh. Then all the

router input ports which participate in moving any traffic are marked. To accomplish this, each edge’s

source and destination location is identified and then packet path (XY routing) is followed while marking

resources used on the way. After all the input ports are marked, the remaining input ports are marked as

‘not needed’ because no traffic edges pass through them. Configuration solutions for these input ports are

not explored.

Finally, each router is checked whether it has any useful input port. If all the input ports of a router

are marked as ‘no edge passing’ then it is marked as ‘dummy’ router and configuration for this router is not

explored/optimized. It occurs when the number of cores is less than the number of tiles available in the

topology. All such markings ensure that maximum time is spent on calculating optimal configuration for

active and useful entities. Distances are calculated (as shown in Figure 4.14), and swap moves performed

are also calculated ignoring the redundant entities, where the terms N, S, E, W, and L signify North, South,

Figure 4.12 Internal structure of a sub-particle.

 80

East, West, and Local input port configuration IDs respectively. While A and C stand for Arbiter and

Crossbar configuration ID. The entire initialization algorithm pseudo-code is given in Algorithm 2.

Figure 4.13 Identification of un-used input ports.

Algorithm 2: Sub-particle initialization

Input: vector of sub-particle objects sub_pars

 vector of integer mapping

 vector of edges coregraph

 component library lib

Output: vector of initialized sub-particle objects sub_pars

// Iterate over all the sub-particles

for i = 0; i < sub_pars.size(); i++ do

// Mark corner and edge routers to not have input ports which are not needed due to topology

markCornerRouters(sub_pars, mapping, coregraph);

// Mark input ports which do not have any traffic passing through

markTrafficRoutes(sub_pars, mapping, coregraph);

// Mark remaining routers as no edges are passing

markNoTrafficRoutes(sub_pars, mapping, coregraph);

// Mark dummy routers

markDummyRouters(sub_pars, mapping, coregraph);

// Configure routers with random configurations

assignRandomConfigurations(sub_pars, mapping, coregraph, lib);

end

return sub_pars

 81

4.7 Initial Configuration Heuristics

Each main mapping particle is the possessor of a sub-swarm. At each iteration of the main particle,

sub-swarm performs several iterations. The number of sub-swarm iterations per main swarm iteration is

determined by the designer using trial-and-error and then set before running the algorithm. After

construction of each main particle, sub-swarm is created and linked to the parent particle. After all the

traffic routes are marked and useful entities are identified (as discussed in Section 4.3), random

configuration IDs are selected from the available list of components. This process is depicted in Figure

4.15. This random initial heuristic placement does affect the final solution but ensures that particles are

well-separated initially. Every component and its configuration is assigned a unique ID, which is the unique

configuration of a component and its type. It is evident in Figure 4.14 that the ID 4 and 6 can only be

assigned to a crossbar due to its type. Similarly, N, S, E, W and L can only contain IDs of type input port.

Figure 4.14 Determining distance between sub-particles (configuration solutions).

 82

4.8 Sub-Swarm Movement

In each iteration of sub-particle, it may go through none or all 3 stages of optimization (ie. inertia,

self-confidence, and swarm-confidence). In each stage, 1 move is applied to the particle which changes the

mapping solution. This means that the sub particles need to start finding configuration solutions for this

new mapping solution. Therefore, old sub-particles are destroyed, and new sub-particles are formed. The

complete movement algorithm is depicted in Figure 4.16. A promising configuration that the sub-swarm

might have found is kept in global memory of the main swarm. So, at the end of optimization if there are

no other better solutions, the best global solution is given as optimal solution.

Tabu-ed memory is not kept and tabu-ed algorithm is not applied for sub-particles because there is

no reflection mechanism and it incurs huge run time.

Figure 4.15 Initial Configuration heuristics.

 83

Figure 4.16 HDPSO sub-particle movement algorithm.

 84

4.8.1 Mapping Edges to Links

Figure 4.17 Link traffic volume calculation.

Figure 4.18 Link stress estimation.

 85

4.8.2 Buffer Size Optimization

4.8.2.1 Conventional Virtual Channel (CVC)

In CVC architecture, a physical link supports several virtual channels that are multiplexed across

the physical link as shown in Figure 4.19. Each virtual channel has its own buffer space, therefore there

should be at least 2 buffers for each data flow. In our methodology, we have assumed virtual channels equal

to the number of edges passing through the link. This ensures that each data path always gets assigned a

virtual channel. Number of edges passing through a physical link is also known as data flows. Data flows

can share a physical link.

Since header flits allow the data flows to save their space in the arbitration queue, they should be

allowed to send at least the header flit through router. This is the reason for allowing at least 1 buffer space

to write 1 flit. However, in the same clock cycle, a flit should also be allowed to traverse out. We assume

that the output ports are not buffered. This is the reason for 2nd buffer space. While the flit is being written

into FIFO, another flit is being read for the output.

Figure 4.19 CVC input port architecture.

 86

4.8.2.2 Dynamically Allocated Multi-Queues (DAMQ)

Coregraph provides information about how much (on-average) data travels over a period of 1

second, however it does not provide information on when does the data travel. For example, the data from

one flow might travel within 1st 300 ms of a second while data from other flow traverses during 400ms to

800ms mark in a second. If the data traversal does not overlap, the buffering requirement is maximum of

all flows. If the data traversal overlaps, the buffering requirement is sum of buffering requirement of both

data flows. Time division of data flows can reduce the buffering requirements for architectures where VCs

are dynamically allocated.

Figure 4.21 illustrates a 4-VC DAMQ input port where the addresses of flits are kept in a linked

list table. The linked list table records the flit addresses per their VC-ID and in a First-Come-First-Serve

(FCFS) basis.

Figure 4.20 Determining minimum number of buffers required.

 87

4.9 Convergence and Stopping Criteria

The design of the algorithm is such that if the main particle stays at the current mapping solution

for a long period of time, more iterations are run for its sub-swarm that is looking for configuration

solutions. However, when the main particle moves from one location to another, it carries with it its sub-

swarm too and all the sub-particles explore the configurations for this new mapping. Commonly, the swarm

particles of DPSO converge to an optimal point in search space near the end of optimization. It means that

the particles have settled and optimization need not to continue. To detect this situation and stop the

optimization, a normalized diversity factor is used that detects the average distance of the particles and sub-

particles and stops the iterations if it is less that a certain threshold. The threshold we found empirically to

work best was 5. This distance is calculated using the method shown in Figure 4.14. The number of

configuration differences between the solutions is the distance between the sub-particles.

4.10 NoC Configuration Results

We have implemented our multi-swarm Hybrid DPSO based methodology (HDPSO) by using the

formulation presented in this paper. The computer system for optimization has a quad-core Intel i7 CPU

running at 2.7 GHz with 16GB RAM. The NoC links and the router components library used are based on

90nm technology. The area and power consumption values are determined by having a Verilog design of

NoC routers and its components such as input-ports having buffer of 4 slots with 1-4 dynamic VCs, crossbar

switch, VC allocators and arbiters. The channel link width is equal to the flit size of 16-bits and the overall

router and target NoC architecture is based on EDVC methodology presented by Oveis-Gharan and Khan

Figure 4.21 DAMQ VC input port architecture.

 88

[11]. The models which our tool uses is parametric and no simulation is performed while optimization.

The EDVC router and its components’ Verilog designs are synthesized by using the Synopsys design

compiler.

4.10.1 Input Library

4.10.1.1 Crossbar Library

4.10.1.2 Arbiter Library

Table 4.2 Crossbar input library properties

Configuration Flit Size Designs Property Value

128-bit wide 128

ASIC
(32nm)

Supply Voltage 0.85 V

Frequency 100 MHz

Area 6499 𝜇𝑚2

Static Power 121 𝜇𝑊

Dynamic Power 6 𝜇𝑊

FPGA
(Cyclone IV)

Logic Elements 256

Registers 0

16-bit wide 16

ASIC
(90 nm)

Supply Voltage 1.2 V

Frequency 200 MHz

Area 2502 𝜇𝑚2

Static Power 611 𝜇𝑊

Dynamic Power − 𝜇𝑊

FPGA
(Stratix III)

Logic Elements 160

Registers 0

Table 4.3 Arbiter input library properties

Configuration Flit Size Designs Property Value

2-slots
#VC = 4

VC Depth = 2 flits
128

ASIC
(32nm)

Supply Voltage 0.85 V

Frequency 100 MHz

Area 14274 𝜇𝑚2

Static Power 644 𝜇𝑊

Dynamic Power 202 𝜇𝑊

FPGA
(Cyclone IV)

Logic Elements 2682

Registers 280

4-slots
#VC = 4

VC Depth = 4 flits
16

ASIC
(90 nm)

Supply Voltage 1.2 V

Frequency 200 MHz

Area 28380 𝜇𝑚2

Static Power 1904 𝜇𝑊

Dynamic Power − 𝜇𝑊

FPGA
(Stratix III)

Logic Elements 1116

Registers 240

 89

4.10.1.3 Input Port Library

Table 4.4 LLD input port library properties

Configuration Flit Size Designs Property Value

4-slots
#VC = 4

VC Depth = 4 flits
16

ASIC
(90 nm)

Supply Voltage 1.2 V

Frequency 200 MHz

Area 5809 𝜇𝑚2

Static Power 218 𝜇𝑊

Dynamic Power − 𝜇𝑊

FPGA
(Stratix III)

Logic Elements 95

Registers 112

8-slots
#VC = 4

VC Depth = 8 flits
16

ASIC
(90 nm)

Supply Voltage 1.2 V

Frequency 200 MHz

Area 10328 𝜇𝑚2

Static Power 370 𝜇𝑊

Dynamic Power − 𝜇𝑊

FPGA
(Stratix III)

Logic Elements 180

Registers 204

16-slots
#VC = 4

VC Depth = 16 flits
16

ASIC
(90 nm)

Supply Voltage 1.2 V

Frequency 200 MHz

Area 19813 𝜇𝑚2

Static Power 688 𝜇𝑊

Dynamic Power − 𝜇𝑊

FPGA
(Stratix III)

Logic Elements 332

Registers 388

32-slots
#VC = 4

VC Depth = 32 flits
16

ASIC
(90 nm)

Supply Voltage 1.2 V

Frequency 200 MHz

Area 39147 𝜇𝑚2

Static Power 1306 𝜇𝑊

Dynamic Power − 𝜇𝑊

FPGA
(Stratix III)

Logic Elements 670

Registers 764

 90

Table 4.5 ViChaR input port library properties

Configuration Flit Size Designs Property Value

4-slots
#VC = 4

VC Depth = 4 flits
16

ASIC
(90 nm)

Supply Voltage 1.2 V

Frequency 200 MHz

Area 6646 𝜇𝑚2

Static Power 319 𝜇𝑊

Dynamic Power − 𝜇𝑊

FPGA
(Stratix III)

Logic Elements 75

Registers 132

8-slots
#VC = 4

VC Depth = 8 flits
16

ASIC
(90 nm)

Supply Voltage 1.2 V

Frequency 200 MHz

Area 21274 𝜇𝑚2

Static Power 1236 𝜇𝑊

Dynamic Power − 𝜇𝑊

FPGA
(Stratix III)

Logic Elements 306

Registers 392

16-slots
#VC = 4

VC Depth = 16 flits
16

ASIC
(90 nm)

Supply Voltage 1.2 V

Frequency 200 MHz

Area 48463 𝜇𝑚2

Static Power 2968 𝜇𝑊

Dynamic Power − 𝜇𝑊

FPGA
(Stratix III)

Logic Elements 548

Registers 896

32-slots
#VC = 4

VC Depth = 32 flits
16

ASIC
(90 nm)

Supply Voltage 1.2 V

Frequency 200 MHz

Area 109849 𝜇𝑚2

Static Power 6989 𝜇𝑊

Dynamic Power − 𝜇𝑊

FPGA
(Stratix III)

Logic Elements 1183

Registers 2040

 91

Table 4.6 EDVC-FRW input port library properties

Configuration Flit Size Designs Property Value

4-slots
#VC = 4

VC Depth = 4 flits
16

ASIC
(90 nm)

Supply Voltage 1.2 V

Frequency 200 MHz

Area 4991 𝜇𝑚2

Static Power 106 𝜇𝑊

Dynamic Power − 𝜇𝑊

FPGA
(Stratix III)

Logic Elements 83

Registers 107

8-slots
#VC = 4

VC Depth = 8 flits
16

ASIC
(90 nm)

Supply Voltage 1.2 V

Frequency 200 MHz

Area 9524 𝜇𝑚2

Static Power 150 𝜇𝑊

Dynamic Power − 𝜇𝑊

FPGA
(Stratix III)

Logic Elements 206

Registers 186

16-slots
#VC = 4

VC Depth = 16 flits
16

ASIC
(90 nm)

Supply Voltage 1.2 V

Frequency 200 MHz

Area 19448 𝜇𝑚2

Static Power 240 𝜇𝑊

Dynamic Power − 𝜇𝑊

FPGA
(Stratix III)

Logic Elements 441

Registers 340

32-slots
#VC = 4

VC Depth = 32 flits
16

ASIC
(90 nm)

Supply Voltage 1.2 V

Frequency 200 MHz

Area 40716 𝜇𝑚2

Static Power 413 𝜇𝑊

Dynamic Power − 𝜇𝑊

FPGA
(Stratix III)

Logic Elements 964

Registers 646

 92

Table 4.8 shows the results for some well-known benchmark core-graphs for comparison purposes.

Picture in Picture (PIP), MPEG-4 Decoder (MPEG4), and Video Object Plane Decoder (VOPD) are some

of the typical core graphs used earlier to evaluate NoC mapping techniques. We are also presenting the

mapping of these core-graphs to suitable size 2D NoCs in Fig. 5. The PIP, MPEG4, VOPD and DVOPD

core graphs are given in the survey paper by Sahu et al. [26]. The cost for our HDPSO based optimized

NoC mapping and configuration solution is compared with non-optimized solutions for the NoC mapping

of same core-graphs. In non-optimized method, all the routers used have four input ports with four VCs per

input port slots, where for our HDPSO optimized solutions, routers have different number of virtual

channels and input ports depending on the number of edges to each core and the volume of traffic among

different cores.

Table 4.7 EDVC-FW input port library properties

Configuration Flit Size Designs Property Value

4-slots
#VC = 4

VC Depth = 4 flits
16

ASIC
(90 nm)

Supply Voltage 1.2 V

Frequency 200 MHz

Area 4674 𝜇𝑚2

Static Power 108 𝜇𝑊

Dynamic Power − 𝜇𝑊

FPGA
(Stratix III)

Logic Elements 78

Registers 97

8-slots
#VC = 4

VC Depth = 8 flits
16

ASIC
(90 nm)

Supply Voltage 1.2 V

Frequency 200 MHz

Area 8687 𝜇𝑚2

Static Power 162 𝜇𝑊

Dynamic Power − 𝜇𝑊

FPGA
(Stratix III)

Logic Elements 174

Registers 174

16-slots
#VC = 4

VC Depth = 16 flits
16

ASIC
(90 nm)

Supply Voltage 1.2 V

Frequency 200 MHz

Area 17016 𝜇𝑚2

Static Power 263 𝜇𝑊

Dynamic Power − 𝜇𝑊

FPGA
(Stratix III)

Logic Elements 324

Registers 327

32-slots
#VC = 4

VC Depth = 32 flits
16

ASIC
(90 nm)

Supply Voltage 1.2 V

Frequency 200 MHz

Area 34295 𝜇𝑚2

Static Power 457 𝜇𝑊

Dynamic Power − 𝜇𝑊

FPGA
(Stratix III)

Logic Elements 727

Registers 632

 93

Table 4.8 Area/Power for PIP and MPEG4 in optimal, generous, and minimal configurations

Name Cores
Mesh
Size

Particle
Cost

Method #Buffers/VC
Input Port

Architecture

NoC
Area

(𝝁𝒎𝟐)

NoC
Power
(𝝁𝑾)

Buffer
Penalty

Total
Configuration

Cost

PIP 8 3 x 3 640

Generous 8

LLD 376152 24824

1

401616

ViChar 470416 32560 503616

EDVC-FRW 363176 22168 385984

EDVC-FW 353944 22280 376864

HDPSO Varying

LLD 344519 23760

1

368919

ViChar 368020 26141 394801

EDVC-FRW 331445 21860 353945

EDVC-FW 325853 21902 348395

Minimal 4

LLD 340000 23608 1.04 378817

ViChar 470416 32560

1

503616

EDVC-FRW 363176 22168 385984

EDVC-FW 353944 22280 376864

MPEG4 12 4 x 4 3567

Generous 8

LLD 574556 37606

1

615729

ViChar 726898 50076 780541

EDVC-FRW 554288 33402 591257

EDVC-FW 539603 33582 576752

HDPSO Varying

LLD 533885 36238

1

573690

ViChar 595246 41823 640636

EDVC-FRW 513491 33006 550064

EDVC-FW 503486 33096 540149

Minimal 4

LLD 533885 36238 1.06 608111

ViChar 595246 41823

1

640636

EDVC-FRW 513491 33006 550064

EDVC-FW 503486 33096 540149

VOPD 16 4 x 4 4425

Generous 8

LLD 834928 52608

1

891961

ViChar 1111024 75008 1190457

EDVC-FRW 802544 45536 852505

EDVC-FW 777384 45856 827665

HDPSO Varying

LLD 795598 51282

1

851305

ViChar 891604 61253 957282

EDVC-FRW 734549 44876 783850

EDVC-FW 717189 45046 766660

Minimal 4

LLD 834928 52608 1.08 963318

ViChar 1111024 75008 1.02 1214266

EDVC-FRW 802544 45536 1.02 869555

EDVC-FW 777384 45856 1.02 844218

DVOPD 26 6 x 6 22962

Generous 8

LLD 1248048 67408

1

1338418
ViChar 1961984 124448 2109394

EDVC-FRW 1183504 51536 1258002
EDVC-FW 1124864 52336 1200162

HDPSO Varying

LLD 1238912 67080

1

1328954
ViChar 1372730 87564 1483256

EDVC-FRW 1003900 49780 1076642
EDVC-FW 964950 50162 1038074

Minimal 4

LLD 958832 57680 1.06 1101842
ViChar 1025792 65760

1
1114514

EDVC-FRW 893392 48720 965074
EDVC-FW 868032 48880 939874

 94

It can be seen from the input libraries of input port that the increase in power is not steep as

compared to increase in area when more buffer slots are added to the input port. This is one of the reasons

why power savings are relatively small than area savings in Figure 4.22. Overall, ViChar input port saw the

most improvement. This was because higher number of VC slots in ViChar resulted in almost exponential

increase in input port area and power. On average, power savings for real world applications ranged from

1 - 43% and area savings ranged from 22 – 44 %.

Figure 4.22 Power and area % savings observed when comparing HDPSO optimized configuration to

un-optimized generous configuration.

 95

(a) (b)

(c) (d)

Figure 4.23 NoC coregraphs (a) MPEG4 (b) 16-core VOPD (c) DVOPD (d) PIP.

 96

(a) (b)

(c) (d)

Figure 4.24 NoC configuration and mapping solutions (a) MPEG4 (b) VOPD (c) DVOPD (d) PIP.

 97

In order to give equal weightage to area, power, and communication cost, 𝛼, 𝛽, 𝑎𝑛𝑑 𝛾 were all set

to 1. It is observed that the applications with lower edges-to-cores ratio (e.g. MPEG4) have better cost

improvement due to configuration. This is also shown in Figure 4.25. This was due to the fact that more of

the input ports could be eliminated if there are less edges in the application. The improvement with regards

to the chip-area is in the range of 30-120%, and power improvement varies from 8-40%. Overall, the total

cost improvement is in the range of 20-110%. The optimized NoC mappings of MPEG4, VOPD, DVOPD

and PIP are presented in Figure 4.24 and these are based on NoC configuration and mapping achieved by

following our HDPSO methodology. The green or small rectangular boxes signify the input ports and the

number beside it represents the number of virtual channels needed for efficient implementation. Due to the

use of smaller and simpler application core graphs, the VCs required at any of the input port is less than a

maximum of four VCs. The NoC chip area and power are saved by using less number of input ports and

fewer virtual channels.

After each iteration of mapping optimization, several iterations of configuration optimization are

run in order to try different configurations on the mapping solution. The combined results from two swarms

are used to determine next position of main (mapping) particles and sub-particles (configuration). The

solution with the best overall cost is selected and given as optimal solution after the swarm has converged

onto a relatively small space (determined by the swarm divergence factor). It was observed that the

applications with lower edges-to-cores ratio had better cost improvement and the solution had a look of

mesh topology but in reality was a custom-mesh topology (See Figure 2.1g). This was due to uneven

distribution of input ports and router. We intend to expand our library of pre-synthesized routers and include

optimization for virtual channel buffer depth.

 98

4.11 Summary

After each iteration of mapping optimization, several iterations of configuration optimization are

run in order to try different configurations on the mapping solution. The combined results from two swarms

are used to determine next position of main (mapping) particles and sub-particles (configuration). The

solution with the best overall cost is selected and given as optimal solution after the swarm has converged

onto a relatively small space (determined by the swarm divergence factor). It was observed that the

applications with lower edges-to-cores ratio had better cost improvement and the solution had a look of

mesh topology but in reality was a custom topology. This was due to uneven distribution of input ports and

router. We also performed optimization for virtual channel buffer depth during the configuration

optimization. A push-pull force was established between average duty factor of NoC links and buffer depth

in order to keep the performance of the network high while reducing NoC power and area.

Figure 4.25 Cost improvements due to configuration optimization.

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4

PIP

MPEG4

VOPD

DVOPD

Total Cost Improvement

Power Improvement

Area Improvement

 99

Chapter 5

Conclusion

A Hybrid Swarm Optimization method is presented for NoC mapping, which increases the

efficiency of traditional discrete particle swarm optimization based mapping. It has a Tabu-ing of search

points that swarm particles have visited. Since the search space was of combinatorial discrete nature,

deflection technique is used to encourage the swarm particles to explore much more of the solution space

before converging to the optimal solution. If the search space is of continuous nature, then other methods

such as Bezier curve would have been employed to force the particle to curve around the Tabu-ed area.

If a swap move results in a solution which is already tried (i.e. Tabu-ed), the proposed moves are

deflected in the other directions until there is no other way to allow the original move. This causes the

algorithm to explore more of the search space before converging onto the global best solution. The HDPSO

based NoC mapping is employed for various popular applications PIP, MPEG-4, VOPD, and DVOPD as

well as large synthetic traffic patterns and our HDPSO methodology performs better than other comparable

NoC mapping algorithms.

Standard DPSO based method has also been implemented for NoC mapping and quality of the

results is compared with our HDPSO based mapping. It was found that HDPSO performs 15% to 216%

better than traditional DPSO technique. Our tool performed better in particular for traffic patterns which

 100

contain ring communication structure such as Neighbor, Tornado, and Shuffle traffic patterns. It is also

concluded that remembering the past solutions and proposing new solutions by our HDPSO algorithm

enables it to produce better mapping solutions.

A new Hybrid Multi-Swarm Optimization (HDPSO) method is presented for NoC mapping and

configuration, which increases the efficiency of traditional discrete particle swarm optimization and uses a

library of pre-synthesized router components. Since there are two optimization problems, multi-swarm

method was used to explore each solution space. Due to combinatorial discrete nature of the search space,

deflection technique is used to encourage the swarm particles to explore much more of the solution space

before converging to the optimal solution.

 101

References

[1] T. Bjerregaard and S. Mahadevan, "A Survey of Research and Practices of Network-on-chip," ACM

Comput. Surveys, vol. 38, no. 1, pp. 1-51, June 2006.

[2] M. Oveis-Gharan and G. N. Khan, "Efficient Dynamic Virtual Channel Organization and

Architecture for NoC Systems," IEEE Trans. on VLSI Syst., vol. 24, no. 2, pp. 465-478, February

2016.

[3] M. Oveis-Gharan and G. N. Khan, "Dynamic virtual channel and index-based arbitration based

Network on Chip router architecture," in Proc. Inter. Conf. on High Perf. Comput. & Sim. (HPCS),

Innsbruck, Austria, 2016, pp. 96-103.

[4] M. Oveis-Gharan and G. N. Khan, "Adaptive VC Organization and Arbitration for Efficient NoC

Design," in Proc. 10th Int. Symp. on Emb. Multicore/Many-core SoCs (MCSoC), Lyon, France, 2016,

pp 31-38.

[5] M. Oveis-Gharan and G. N. Khan, "Packet-based Adaptive Virtual Channel Configuration for NoC

Systems," Procedia Comput. Sc., vol. 34, no. Complete, pp. 552-558, January 2014.

[6] M. Oveis-Gharan and G. N. Khan, "Statically adaptive multi FIFO buffer architecture for network on

chip," Microprocessors and Microsystems, vol. 39, no. 1, pp. 11-26, 2015.

[7] M. Oveis-Gharan and G. N. Khan, "A Novel Virtual Channel Implementation Technique for Multi-

core On-chip Communication," in Proc. 3rd Workshop on App. for Multi-Core Arch. (WAMCA), New

York, USA, 2012, pp. 36-41.

[8] J. Kennedy and R. Eberhart, "Particle Swarm Optimization," in Proc. of IEEE Int. Conf. on Neural

Networks, Perth, Australia, 1995, pp 1942-1948.

[9] F. Glover, "Tabu Search," Journal on Comput., no. 1, pp. 190-206, 1989.

[10] X. Chen and L.-S. Peh, "Leakage Power Modeling and Optimization in Interconnection Networks,"

in Proc. Int. Symp. on Low Power Elec. and Design, Seoul, South Korea, 2003, pp. 90-95.

 102

[11] W. Dally and B. P. Towles, "Buffered Flow Control," in Principles and Practices of Interconnection

Networks, 1st ed., San Francisco, CA, USA: Morgan Kaufmann, 2003, pp. 233-256.

[12] S. P. Singh, S. Bhoj, D. Balasubramanian, T. Nagda, D. Bhatia and P. Balsara, "Network interface

for NoC based architectures," Int. Journal of Electronics, vol. 94, no. 5, pp. 531-547, May 2007.

[13] W. Dally and B. P. Towles, "Adaptive Routing," in Principles and Practices of Interconnection

Networks, 1st ed., San Francisco, CA, USA: Morgan Kaufmann, 2003, pp. 189-196.

[14] E.-J. Chang, H.-K. Hsin, C.-H. Chao, S.-Y. Li and A.-Y. Wu, "Regional ACO-Based Cascaded

Adaptive Routing for Traffic Balancing in Mesh-Based Network-on-Chip Systems," IEEE Trans.

Comput., vol. 64, no. 3, pp. 868-875, March 2015.

[15] S. Liu, T. Chen, L. Li, X. Li, M. Zhang, C. Wang, H. Meng, X. Zhou and Y. Chen, "FreeRider: Non-

Local Adaptive Network-on-Chip Routing with Packet-Carried Propagation of Congestion

Information," IEEE Trans. on Parallel and Distributed Sys., vol. 26, no. 8, pp. 2272-2285, August

2015.

[16] J. Kim, C. Nicopoulos and D. Park, "A gracefully degrading and energy-efficient modular router

architecture for on-chip networks," in Proc. 33rd International Symposium on Computer

Architecture, Boston, MA, USA, 2006, pp. 4-15.

[17] M. Oveis-Gharan and G. N. Khan, "Index-based round-robin arbiter for NoC routers," in Proc. IEEE

CS Symp. on VLSI, Montpellier, France, 2015, pp. 62-67.

[18] A. Jalabert, S. Murali, L. Benini and G. D. Micheli, "Xpipes Compiler: a tool for instantiating

application specific networks on chip," in Proc. of DATE Conf., Paris, France, 2004, pp. 884-889.

[19] G. Leary, K. Mehta and K. S. Chatha, "Performance and resource optimization of NoC router

architecture for master and slave IP cores," in Proc. of Int. Conf. on Hardware/Software Codesign

and Sys. Synthesis (CODES+ISSS), Salzburg, Austria, 2007, pp. 155-160.

[20] A. A. Morgan, H. Elmiligi, M. W. El-Kharashi and F. Gebali, "Unified multi-objective mapping and

architecture customization of networks-on-chip," IET Computer & Digital Techniques, vol. 7, no. 6,

pp. 282-293, 2013.

 103

[21] J. Hu and R. Marculescu, "Energy-aware mapping for tile-based NoC architectures under

performance constraints," in Proc. ASP-DAC, Kitakyushu, Japan, 2003, pp. 233-239.

[22] G. Jiang, Z. Li, F. Wang and S. Wei, "Mapping of Embedded Applications on Hybrid Networks-on-

Chip with Multiple Switching Mechanisms," IEEE Embedded Sys. Letters, vol. 7, no. 2, pp. 59-62,

June 2015.

[23] S. Murali and G. De Micheli, "Bandwidth-constrained mapping of cores onto NoC architectures,"

Proc. DATE Conf. and Exhibition, February 2004, pp. 896-901.

[24] P. Sahu, T. Shah, K. Manna and S. Chattopadhyay, "Application Mapping Onto Mesh-Based

Network-on-Chip Using Discrete Particle Swarm Optimization," IEEE Trans. on VLSI Sys., vol. 22,

no. 2, pp. 300-312, February 2014.

[25] A. Bender, "MILP based task mapping for heterogeneous multiprocessor systems," in Proc. of EURO-

DAC, Geneva, Switzerland, 1996, pp. 190-197.

[26] P. K. Sahu and S. Chattopadhyay, "A survey on Application Mapping Strategies for Network-on-

Chip design," Journal of Sys. Arch., vol. 59, no. 1, pp. 60-76, January 2013.

[27] B. Yang, L. Guang, T. Santti and J. Plosila, "T(K)-SA: Accelerated Simulated Annealing Algorithm

for Application Mapping on Networks-on-chip," in Proc. 14th Annual Conf. on Genetic and

Evolutionary Comp., New York, NY, USA, 2012, pp. 1191-1198.

[28] A. Tino and G. Khan, "Power and Performance Tabu Search Based Multicore Network-on-Chip

Design," in Proc. 39th Int. Conf. on Parallel Proc. Workshops (ICPPW), 2010, pp. 74-81.

[29] N. Nedjah, M. V. C. de Silva and L. de M. Mourelle, "Customized computer-aided application

mapping on NoC infrastructure using multi-objective optimization," Journal of Sys. Arch., vol. 57,

pp. 79-94, 2011.

[30] N. Nedjah, M. V. C. de Silva and L. de M. Mourelle, "Preference-based multi-objective evolutionary

algorithms for power-aware application mapping on NoC platforms," Expert Sys. with App., vol. 39,

pp. 2771-2782, 2012.

 104

[31] Z. Li, Y. Liu and M. Cheng, "Solving NoC mapping problem with improved particle swarm

algorithm," in Proc. of Int. Conf. on Advanced Comp. Intelligence (ICACI), Hangzhou, China, 2013,

pp. 12-16.

[32] S. Mirjalili and S. Hashim, "A new hybrid PSOGSA algorithm for function optimization," in Proc.

Int. Conf. on Comp. and Info. App. (ICCIA), 2010, pp. 374-377.

[33] Y. Z. Tei, M. N. Marsono, N. Shaikh-Husin and Y. W. Hau, "Performance and resource optimization

of NoC router architecture for master and slave IP cores," in Proc. of IEEE Int. Symp. Circuits and

Systems, Beijing, China, 2013, pp. 1228-1231.

[34] K. Goossens, J. Dielissen, O. P. Gangwal, S. G. Pestana, A. Radulescu and E. Rijpkema, "A design

flow for application-specific networks on chips with guaranteed performance to accelerate SoC

design and verification," in Proc. of DATE Conference, Munich, Germany, 2005, pp. 1182-1187.

[35] L. Benini and G. D. Micheli, “Tools for NoC Design Analysis and Synthesis of NoCs Present tools

(Bones, Xpipes) and future outlook”, Networks on Chips, San Francisco, CA, USA: Morgan

Kaufmann, 2006.

[36] S. Stergiou, F. Angiolini, S. Carta, L. Raffo, D. Bertozzi and G. D. Micheli, "Xpipes Lite: a synthesis

oriented design library for networks on chips," in Proc. of DATE Conference, Munich, Germany,

2005, pp. 1188-1193.

[37] A. T. Tran and B. M. Baas, "NoCTweak: a Highly Parameterizable Simulator for Early Exploration

of Performance and Energy of Networks On-Chip," in Technical Report of VLSI Computation Lab,

ECE Department, Davis, CA, USA, 2012, pp. 1-12.

[38] K.-l. Tsai, H.-t. Chen and Y.-A. Lin, "Power and Area Efficiency NoC Router Design for Application-

Specific SoC by Using Buffer Merging and Resource Sharing," Tans. on Design Automation of Elec.

Sys., vol. 19, no. 4, pp. Art. 36, Aug. 2014.

[39] D. R. C. Silva and C. J. A. Bastos-Filho, "A Multi-Objective Particle Swarm Optimizer Based on

Diversity," in Proc. 2nd Int. Conf. on Intel. Sys. and App. , Venice, Italy, 2013, pp. 109-114.

[40] J. Hu and R. Marculescu, "Energy- and performance-aware mapping for regular NoC architectures,"

Trans. on CAD of Integ. Circuits and Syst., vol. 24, no. 4, pp. 551-562, April 2005.

 105

[41] P. K. Sahu, N. Shah, K. Manna and S. Chattopadhyay, "A new application mapping algorithm for

mesh based Network-on-Chip design," in Proc. IEEE India Conf. (INDICON), Kolkata, India, 2010,

pp. 1-4.

[42] P. K. Sahu, P. Venkatesh, S. Gollapalli and S. Chattopadhyay, "Application mapping onto Mesh

Structured Network-on-Chip Using Particle Swarm Optimization," in Proc. IEEE Comp. Soc. Symp.

on VLSI (ISVLSI), Chennai, India, 2011, pp. 335-336.

[43] R. P. Dick, D. L. Rhodes and W. Wolf, "TGFF: Task Graphs For Free," in Proc. Int. Workshop

Hardware/Soft. Codesign (CODES), Washington, USA, 1998, pp. 97-101.

[44] W. Dally and B. P. Towles, "Closing the Loop with Credits," in Principles and Practices of

Interconnection Networks, 1st ed., San Francisco, CA, USA: Morgan Kaufmann, 2003, pp. 233-256.

[45] V. Palaniveloo, J. Ambrose and A. Sowmya, "Improving GA-Based NoC Mapping Algorithms Using

a Formal Model," Proc. IEEE Comp. Soc. Ann. Symp. on VLSI (ISVLSI), 2014, pp. 344-349.

[46] T. Bjerregaard and S. Mahadevan, "A Survey of Research and Practices of Network-on-chip," ACM

Comput. Surv., vol. 38, no. 1, pp. 1-51, June 2006.

[47] Y. Liu, Y. Ruan, Z. Lai and W. Jing, "Energy and thermal aware mapping for mesh-based NoC

architectures using multi-objective ant colony algorithm," Proc. 3rd Int. Conf. on Comp. Research

and Dev. (ICCRD), vol. 3, pp. 407-411, 11-13 March 2011.

[48] F. Samman, T. Hollstein and M. Glesner, "Pipeline control-path effects on area and performance of

a wormhole-switched network-on-chip," Intl. Jour. of Electrical, Computer, Energetic, Electronic,

and Communication Engineering, vol. 4, pp. 951-959, 2009.

[49] H. T. Kung and K. Chang, "Receiver-oriented adaptive buffer allocation in credit-based flow control

for ATM networks," in Proc. Comp. and Comm. Soc. Bringing Info. to People, Boston, MA, USA,

1995, pp. 239-252.

 106

Glossary

2D 2 Dimensional

3D 3 Dimensional

ACG Application Core Graph

AM Application Mode

AV Audio-Video

CG Core Graph

CGG Core Graph Generator

CPN Congestion Propagation Network

DPSO Discrete Particle Swarm Optimization

DVOPD Dual Video Object Plane Decoder

GA Genetic Algortihm

HDPSO Hybrid Discrete Particle Swarm Optimization

IP Intellectual Property

MPEG Moving Picture Experts Group

MWD Multi-Window Display

NoC Network-on-Chip

PSO Particle Swarm Optimization

PIP Picture-in-Picture

 107

SA Simulated Annealing

SIP Silicon Intellectual Property

SoC System-on-Chip

TGFF Task Graphs For Free

VOPD Video Object Plane Decoder

