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Abstract 

Network-on-Chip (NoC) has been proposed as an interconnection framework for connecting large 

number of cores for a System-on-Chip (SoC). Assuming a mesh-based NoC, we investigate application 

mapping and NoC configuration optimization using a hybrid optimization scheme. Out technique, Hybrid 

Discrete Particle Swarm Optimization (HDPSO), combines Tabu-search, communication volume based 

core swapping, and swarm intelligence. We employ a Tabu-list to discourage swarm particles to re-visit the 

explored search space and propose an alternative route towards the intended movement direction. In each 

iteration of swarm, a sub-swarm containing configuration solutions (sub-particles) searches for optimal 

configuration for the parent particle (mapping solution). Optimization goals include minimum average 

communication latency, power, area, credit loop latency, and maximum average link duty factor. The 

proposed technique is tested for well-known multimedia application core graphs and several large synthetic 

cores-graphs. It was found that on average our hybrid scheme generates high quality NoC mapping and 

configuration solutions when compared to some existing stochastic optimization techniques. 
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Chapter 1 

Introduction 

To meet complex functions support, minimum area, and small power consumption demands of 

embedded devices, System-on-a-Chip (SoC) designers are squeezing multiple and more complex Silicon 

Intellectual Properties (SIPs) onto a single chip. However, major design challenges while integrating 

multiple SIPs include reducing chip area and power consumption while maintaining high performance 

specifications. To deal with interconnection complexity, abstraction and regularity of interconnection 

architecture is required. Network-on-Chips (NoCs) have emerged recently as viable interconnection 

alternative instead of buses. NoCs provide high data bandwidth, high network throughput, multiple 

transactions per cycle, and scalability.  

Traditionally, SIPs or cores were mapped using static bus architectures eg. AMBA, AXI, STBus 

etc. A conventional non-hierarchical bus architecture is shown in Figure 1.1(a). Slaves (S) are SIPs which 

respond to requests or commands of Masters (M) SIPs on the bus. Since there are multiple masters, bus 

access is controlled through a component called arbiter (A). Usually, bus masters are Central Processing 

Units (CPUs) and Direct Memory Accessors (DMAs) while slaves are peripherals, I/Os, and memories.  
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Bus architecture has many drawbacks when increasing the number of SIP blocks on the SoC. Since 

bus is a collection of wires, only one core can use those wires to communicate to another core. The core 

which initiates the signals and generates control signals is called a bus master. At a time, only one master 

and one slave can communicate with each other. This is to ensure that there are no short-circuits because 

one core has pulled the signal low while the other core pulls it high. While two cores are communicating 

with each other, other cores might also be waiting for bus access and precious time is being wasted.  

Secondly, every SIP block attached in bus adds a parasitic capacitance degrading the data signal 

integrity. This is a huge issue in bus architectures that do not use tri-state buffers to disconnect cores which 

are not communicating. For example, Avalon bus architecture uses multiplexers as switching component 

rather than tri-state buffers. This increases parasitic capacitance as more SIPs are added onto the bus. 

Thirdly, data bandwidth in bus-based systems is limited and is shared among all IPs attached 

because only one transaction can occur in a single clock cycle. If there is contention for bus-access, lower 

priority masters are forced to wait until higher priority masters have completed their transaction. This is 

true even if the master A wants to talk to slave C and master B wants to talk to slave D. This can cause a 

starvation condition in which masters with low priority never get access to resources. To tackle this issue, 

SoC designers are forced design and install custom hardware to detect starvation condition. 

Lastly, bus arbitration logic delay grows as more number of masters are added onto bus. [1] The 

decision tree of who should get the bus access grows as more bus nodes are added and so does the arbitration 

logic, area occupancy, and power consumption. This large arbitration ladder logic increases critical path 

delay which in turn reduces the maximum operational frequency and degrades the performance.  

A typical on-chip network architecture is shown in Figure 1.1(b). Label ‘C’ signifies SIP Cores and 

are connected to other SIPs through Routers labelled ‘R’. NoC allows core’s signals to be packetized and 

transmitted over fabric of switches and routers. Packetization of data also allows each channel’s bandwidth 

to be shared among multiple sources using Virtual Channels (VCs). 

NoCs improve throughput, are easily scalable, and allow multiple transactions to occur in a clock 

cycle. However, NoCs still need to overcome several challenges such as significant static and dynamic 

power consumption, large chip area occupied by network hardware, traffic congestion, and high data 

transfer latencies. Network resources also need to be managed efficiently in order to avoid expensive design 

costs while keeping the networks performance maximum.  
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There are three NoC optimization metrics we will be addressing in this work, average 

communication latency, power, and area. We will be using a library of pre-synthesized NoC router 

components and information about application (CoreGraph) to optimize these metrics. The architecture of 

these pre-synthesized router components are discussed by Oveis-Gharan and Khan [2, 3, 4, 5, 6, 7]. These 

pre-synthesized components are imported into our tool and their power and area metrics are presented in 

Section 4.10.1. Our optimization method is a hybrid of well-known stochastic techniques Discrete Particle 

Swarm Optimization (DPSO) [8] and Tabu-Search (TS) [9]. However, we have modified the underlying 

DPSO algorithm significantly to cater to our NoC mapping and configuration solution space. DPSO 

algorithm will be discussed in detail in chapter 3. 

 

Power consumption is composed of two sub-components, static and dynamic. Static (leakage) 

power consumption is mainly due to reverse-bias leakage between diffused regions and the substrate of 

transistors. This power consumption is due to the small current leaking through a transistor even-though 

depletion region is thick and present. Useful analogy is to imagine a water tap which was left little open 

and water droplets are still falling. Like in the water tap, a lot of force is required to close the tap completely, 

high voltage needs to be applied to the gate of the transistor to close it completely. However, this high 

voltage is not available to the transistor (VSS and VDD) because modern chips and cores operate at around 

1.1V or even lower subject to the operating frequency requirement and the technology cell library 

specification.  

 
 

(a) (b) 

Figure 1.1 (a) Bus-based interconnection architecture (b) network-based on-chip 

interconnection. 
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Dynamic (switching) power consumption is calculated by adding transient power and capacitive-

load power consumption. Dynamic power consumption is due to the current that flows only when the 

transistors of the devices are switching from one logic state to another. This power is consumed in charging 

external load capacitance and is dependent on switching frequency. Dynamic power consumption increases 

when more data transfers or transactions occur among network nodes/routers. One way to reduce dynamic 

power consumption in NoCs is to place SIPs which communicate with high volume near each other at 

minimum hop distance. In this work, we use the worst-case dynamic power for each router component. 

This is calculated by simulating sending of toggling bits through the input ports of the component. 

Flit buffers are major contributors to network static power consumption [10]. Flit buffers are 

essentially Static Random Access Memories (SRAMs) used to store small data units called flow control 

units (flits) in the router input ports. As technology process nears submicron level, static power 

consumption gains major share in total power consumption [10]. SRAMs are major shareholders of chip 

area because 1 D-flip-flop holds 1 bit and we need 8 of those to store just 1 byte. For example, if the flit 

size is 128-bits and the buffer depth is 4 flits for each input port, a 4x4 mesh NoC will have total 

128×4×5×16 = 40,960 flops. On top of that, all modern ASICs have Memory Built-In Self-Test 

(MBIST) components inserted for each D-flip-flop. This further increase the chip area requirement even-

though MBIST hardware is redundant in normal functional mode of the chip. Hence, it is becoming crucial 

to choose right amount of flit buffers in an on-chip network to reduce NoC power and area.  

1.1 Motivation 

Three major VLSI hardware trends compel us to do research on NoC optimization tools. The first 

is increased usage of NoCs on SoCs and microcontrollers for IoT. SoC designers are realizing that there is 

simply no better way to integrate large number of cores onto a single chip rather than a NoC. Each core’s 

designer can request a throughput from SoC team and be assured that the throughput is going to be available 

no matter how many cores are being added on the chip level. Because each additional core brings with itself 

more network throughput, bandwidth is not shared, unless two or more cores are trying to communicate 

with the same core. Yesterday’s researches often predicted that NoC usage will become a reality in future. 

The future is here and it is looking bright for NoCs. The second is lack of optimization tools that optimize 

for heterogeneous SoCs which are often required to operate on wide variety of operating modes involving 

multiple cores on a chip. There is a need for optimization tool which co-optimizes NoC mapping and NoC 

configuration, takes into consideration multi-modal application, and uses a stochastic optimization 

technique. The third reason is that most of the NoC optimization tools do not use pre-synthesized router 
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components to optimize NoC latency, power, and area. NoC area and power can be more accurately 

measured once the values for real synthesized components is available. Existing tools often try to use 

parametric equations to predict the area and power of a NoC before synthesis and those can sometimes be 

far-off from real values. Due to these reasons, we have proposed a C++ based tool which performs 

optimization of NoC area, power, and latency by using library of pre-synthesized router components. 

1.2 Objectives & Contributions 

Our main contributions include combining exploration abilities of particle swarm with exploitation 

abilities of traffic-load directed swapping (Section 3.3.6.4), development of linear particle deflection 

mechanism (Section 3.3.4) based on Tabu memory which is well-suited for NoC mapping problem space, 

combining particles and sub-particles to form con-joined search space for mapping and synthesis problems 

(Section 4.8), defining workflow for NoC mapping and configuration optimization (Section 4.1), and 

proposing a stopping criteria based on the average mapping solution distances and swarm divergence factor 

(Section 3.3.7). All in all, the resulting optimization tool is based on Hybrid Discrete Particle Swarm 

Optimization (HDPSO) method and is tested for some synthetic and real-life applications yielding 

promising results (Section 4.10).  

1.3 Thesis Structure 

The remaining thesis is organized as follows. Chapter 2 provides an introductory background on 

on-chip networks. We introduce some basic NoC topologies and how their routing mechanisms work. 

Secondly, NoC Packet structure and micro-architecture of a typical NoC router is discussed. Thirdly, past 

works in NoC mapping and configuration domain will be discussed.  

In Chapter 3, we define NoC mapping, which is the first half of optimization problem. We also 

discuss how an application is parsed into CoreGraph suitable for input into our optimization tool. We 

describe the inner workings and algorithm of particle solution space. We also discuss the tool turning 

parameters and propose optimization stopping criteria. We conclude the chapter with experiment on 

synthetic and real applications and present results from the tool while comparing it against traditional DPSO 

and other methods.  

In Chapter 4, we characterize NoC configuration problem and propose a sub-swarm technique to 

solve it. We also propose design constraints which allows the tool to restrict to interesting router 

configuration solutions. Additionally, we also list and detail NoC component libraries we used for 
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optimization. We compare our sub-swarm with un-optimized configuration results and provide the 

improvement metrics achieved. Chapter 5 concludes the thesis and provides future direction for future 

work. 
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Chapter 2 

Overview 

2.1 NoC Topologies 

NoC allows SIPs or modules to be connected in any topology with aid of on-chip routers. Popular 

on-chip network topologies are 2D Mesh, Hypercube, Torus, and Butterfly. An 𝑛-dimensional radix-𝑘 

torus, or 𝑘-ary 𝑛-cube, consists of 𝑁 = 𝑘𝑛 nodes arranged in an 𝑛-dimensional cube with 𝑘 nodes along 

each dimension. Each node in the topology is assigned an 𝑛-digit radix-𝑘 address {𝑎𝑛−1, … , 𝑎0} and is 

connected by a pair of channels (one in each direction) to all nodes with addresses that differ by ±1(𝑚𝑜𝑑 𝑘) 

in exactly one of the address digit [11]. 

Popular NoC topologies being used by the researchers include ring, butterfly, hypercube, mesh, 

torus, tree, custom-mesh, star, and fully-connected as shown in Figure 2.1. In figure 2.1, ‘R’ signifies a 

Router (node with a local core attached), and ‘S’ indicates a switch (a node with no core attached to itself). 

We consider a 2-D mesh topology for this work and modify it according to the application needs such that 

it ends up becoming a custom-mesh type topology Figure 2.1g after optimization.  

A ring topology (Figure 2.1a) has advantages of containing very few links and 2 data paths to a 

specific router i.e. clock-wise and anti-clock wise. However, each router is connected to only 2 other 
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routers. Therefore, most of the remaining cores are at greater than 1 hop distance away. A ring topology is 

rarely used in NoC because of low radix, the fact that wires are cheap (in terms of area and power) on the 

chip, and high hop-count and latency for routers which are on the other side of the ring.  

A butterfly topology (Figure 2.1b) has frequently communicating cores placed near each other 

while cores that communicate less frequently are placed at more hop distance. The Figure 2.1b shows a 

folded perspective of butterfly topology. However, butterfly topology can have very congested routers 

which can increase latency of the network and is difficult to scale because addition of each core onto the 

network not only requires addition of a router (as with all topologies), it requires addition of more switches. 

Hypercube topology (Figure 2.1c) is a very interesting topology for 3D Integrated Circuits (ICs) as 

it allows components on the top and bottom silicon layers to be incorporated into the mesh network. 

However, this means that each router will have 2 additional input and output ports compared to a mesh 

topology which increases the complexity of the network. In case of 2D ICs, this topology increases the 

interconnection complexity posing difficulty in floor-planning and increases router size (increased power 

and area consumption) while not presenting significant trade-off advantages in network latency. 

2-D Mesh network topology (Figure 2.1d) has regularity of design, increased network throughput 

with addition of any new node, and alternative routes to destinations providing fault-tolerance A 2D-mesh 

network has a router connected to each core and each router connected to four other routers..  

2D-torus network topology (Figure 2.1e) has the same advantages as a mesh network and some 

more. A 2D-mesh network is often congested in the center because the radix of the boundary routers is low, 

radix 2 for corners and radix 3 for routers that are at boundary but not corners. The torus topology removed 

this problem by making the topology circularly symmetrical which increases the radix of boundary routers 

and increases possible data paths. Disadvantages include increased chip area and power compared to mesh 

network due to addition of input and output ports on the boundary routers. 

Tree topology (Figure 2.1f) is good for small applications which have groups of cores which 

communicate among themselves in high volume (Locality). Tree topology can take advantage of locality 

and place highly communicating cores under the same tree node while less frequently communicating cores 

in different branches. As the application size grows, tree structure can grow exponentially as addition of 1 

core can cause root structure to grow too in order meet the increased throughput demand. However, this 

topology is widely in use in todays SoCs because it supports hierarchical approach which block designers, 

core designers, and SoC integration designers take while designing ASICs. The block-level designers can 
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design a router for their internal sub-components and have one link installed in it for communicating with 

the upper core level logic. The core-level designers may design a router for their internal blocks and have 

one link installed in it for communicating with the upper SoC level logic. 

For an application specific mesh topology when a specific static routing mechanism (eg. XY-

routing) is chosen and fixed, there tends to be some links in the mesh network which never get used. So, 

the chip designers can remove the links and the associated hardware to reduce area occupied by the NoC 

and NoC power consumption. What results after this, is a custom mesh-like topology (Figure 2.1g). In this 

topology all links which never get used are removed and the routers area and power is greatly reduced. This 

topology is very interesting for applications containing heterogeneous cores. Unless the design contains N 

number of processing units (multicore CPUs) or N number of compute units (SIMD/GPU workgroups), 

there are always some links in the mesh network that can be trimmed off. Almost all real-word applications 

contain heterogeneous cores and there is a need to customize a popular homogenous-friendly mesh topology 

to become heterogeneous.   

Every core in a star topology (Figure 2.1h) is at most 2 hop distances away from any other core. 

However, it is rarely used in a NoC because of poor scalability. Every additional core requires addition of 

a local router and expanding the central router. Applications with more than 10 cores require a huge central 

router increasing the chip area and power requirements. Additionally, central router is very congested as all 

the traffic must pass through it. 

Fully connected mesh network (Figure 2.1i) is a perfect topology in terms of latency as the hop 

distance from any core to another is just 1. However, it is a nightmare for floor planning and does not scale 

well with application. Each additional core requires addition of another router and modification of all other 

routers as well (to accommodate one more input and output port).  
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On-chip mesh network and torus network are shown in Figure 2.2. Each core is placed at a tile in 

the topology. A tile is an empty seat or place in the network at a specific location in which a core can be 

connected. Each core is then connected to its appropriate Network Interface Unit (NIU) and NIUs are 

connected to routers marked as R in Figure 2.2. 

 

 
 

 

(a) (b) (c) 

   

 

 

 

(d) (e) (f) 

   

 
 

 

(g) (h) (i) 

Figure 2.1 (a) Ring (b) Butterfly (c) Hypercube (d) Mesh (e) Torus (f) Binary Tree (g) Custom Mesh-

Type (h) Star (i) Fully-Connected Topology. 
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2.2 NoC Packet Structure 

Bus transactions signals from SIPs are converted into packets by Network Interface Unit (NIU) 

before sending it to NoC fabric. NIU is also responsible for setting the priority of the packet and in case of 

transaction, it makes sure that no other data reaches the core until the transaction is complete. It also 

deconstructs the in-coming packets and generates appropriate signals for the core to understand. NIUs can 

be different for each core according to the interface signals they have. For example, a core with Advanced 

eXtensible Interface (AXI) bus interface will require a NIU that converts AXI bus signals into network 

packets. Usually theses are standard NIUs and its Register Transfer Level (RTL) hardware can be generated 

by a synthesis tool easily. A conventional NIU contains Generic Core Interface (GCI), Packet Maker (PM), 

Packet Disassembler (PD), and Asynchronous FIFOs for buffering and Clock Domain Crossing (CDC) 

synchronization [12]. Any core specific wrapper can communicate with the GCI with simple predefined 

handshaking signals to initiate read and write to and from NoC. PM assembles packets for the network and 

places them in order in the PM memory from where an asynchronous FIFO can take it out and send to the 

network. PD takes packets from the asynchronous FIFO and decodes them into signals for the GCI. Since 

on-chip network might be operating at a different clock/frequency than the core, there is need for 

asynchronous FIFOs to allow different read and different write speed. Synchronization blocks and buffers 

are added to the control signals to remove CDC and meta-stability issues.  

  

(a) (b) 

Figure 2.2 (a) A 3 x 3 2D mesh NoC (b) A 3 x 3 torus NoC. 
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A packet is composed of a header flit, some or no body flits, and a tail flit as shown in Figure 2.3. 

The header flit contains metadata about the packet. For example, source id, destination id, length of packet, 

and Virtual Channel (VC) id if VCs are used. Each flit can be broken down into Physical Transfer Units 

(phits) according to the physical interconnection bus width. Phits consist of bits which are transmitted 

through the interconnection fabric one clock cycle at a time.  

 

2.2.1 Flow Control Unit (flit) 

Network packets are broken down into flits so that arbitration and flow control can be done on each 

flit individually. For example, arbiter generates grant signals for a particular flit, a credit is generated for a 

particular flit, etc. When a grant signal is received for a flit, all bits in the flit must be transmitted from input 

port to the output port. Similarly, when an input port’s buffer becomes available, a credit is generated for 

the upstream router so that it can send another flit. Breaking down packets into flits presents several 

advantages because flit size is fixed as per the capability of routers to store them. A router can easily store 

flits in their input port buffers, whereas it is difficult to store the whole packet especially if the length is 

varying. Since memory is a huge consumer of chip area and power, it is better to keep buffer quantity as 

low as possible. We will be addressing optimization of these input port buffers in this work (Section 4.8.2). 

2.2.2 Physical Transfer Unit (phit) 

Phit is composed of bits which are transferred from one router’s output port to another router’s 

input port in one clock cycle. For those interconnection architectures where a flit size is larger than the phit 

size, multiple clock cycles are used to transmit one flit and the input port also contains a shift register to 

move the bits over as soon as next bits arrive. As soon as the shift register is full, the flit is latched into 

 

Figure 2.3 Packet, flit, and phit relationship. 
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FIFO and a request might be generated for the arbiter. Making phit size smaller than flit size requires less 

interconnection wires from the source output port to the destination input port. There is very little advantage 

in terms of chip area and power savings to reduce number of interconnection wires. Interconnection wires 

are easy to synthesize, they increase network throughput, and reduce clock cycles required to transmit data. 

On the other hand, decreasing interconnection wires will provide very little area and power savings. 

Additionally, if phit size is smaller than flit size, a shift register is required to shift the previous bits over 

and latch-in the next in-coming bits. Therefore, in this work, we assume flit size is equal to the phit size. 

2.3 Flow Control 

Flow control in a network basically defines set of rules to move data from the sender to the receiver. 

It is a protocol using which routers communicate with each other to transfer data. Flow control also involves 

routers informing other routers of its intentions and status by using meta-data and control links. Table 2.1 

shows buffering requirements and features of popular flow control protocols. 

 

2.3.1 STALL-GO Flow Control 

In this type of flow control, the receiver informs the sender whether it is ready to receive more data. 

This is a type of explicit flow control where the control decision is taken at the receiver's end. 

The router is modified to have two more signal wires other than phit length (Figure 2.4). One signal 

forward indicating presence of new data and another backward informing condition of input buffers either 

Filled('STALL') or Empty('GO'). If not enough buffer space is available in the next router/repeater, the stall 

signal is send to the previous router/repeater. 

Table 2.1 Flow control protocols at a glance 

Characteristic STALL/GO T-Error ACK/NACK CREDIT-BASED 

Buffer Area 2N+2 3N+2 3N+k 2N+2 

Logic Area Low High Medium Low 

Performance Good Good Depends Good 

Power (est.) Low Medium/High High Low 

Fault Tolerance Unavailable Partial Supported Unavailable 
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However, the main disadvantage of STALL/GO flow control is that no fault handling is done 

should any flit get corrupted. In case of a corrupted flit, the error handling task is delayed over to some 

higher-level protocol. 

2.3.2 T-Error Flow Control 

This type of flow control is similar to STALL-GO flow control except that an extra 

resynchronization stage is added between the end of the link and the receiving switch as shown in Figure 

2.5. T-Error flow control often increases the operating frequency of the link. This requires an additional 

resynchronization stage near the end of the link which is done with the help from combination of clock and 

delayed clock signals.  

 

2.3.3 ACK/NACK Flow Control 

In this type of flow control, a copy of the flit is kept at the sender's end and the flit is sent. If the 

receiver acknowledges that it received the packet, the flit is discarded and the next one is sent as before 

procedure. As shown in Figure 2.6, repeaters on the link can be simple registers while the number of buffer 

requirements for the sender and receiver side is 2N+k buffers to guarantee maximum throughput. N: 

Number of repeaters. 

 

Figure 2.4 Stall-Go flow control. 

 

Figure 2.5 T-Error flow control. 



 

 15 

 

It can be implemented in two ways, end-to-end and switch-to-switch. In end-to-end, the copies of 

flits are kept at the sender side and the final receiver acknowledges reception of flit. On the other hand, in 

switch-to-switch, the copies of flits are kept in any sending switch and the acknowledgement of flit received 

is sent back from the next switch. 

2.3.4 Credit-based Flow Control 

In this type of flow control, the sender keeps a count of the number of free flit buffers in each virtual 

channel in the receiver. Anytime the sender sends the flit to receiver, the count is decremented and it is 

incremented if the receiver consumes/forwards the packet further. One credit connection is required from 

the receiver router to the sender router. When the receiver pulls this signal high, this indicates to the sender 

that a packet just left receiver’s buffer and there is an empty space for it to send another packet. 

2.4 Routing Mechanisms 

Routing mechanisms determine how packets/flits move from source/sender to sink/destination. 

There are basically two categories of routing algorithms. A good routing algorithm must prevent any 

potential dead-lock, starvation, and live-lock situations of packets/flits in the network.  

2.4.1 Starvation 

Starvation is denying a core access to necessary resources. Routing starvation problem occurs when 

the routing algorithm services an area of routers heavily while neglecting another area. A routing algorithm 

might prefer to service cores on the right side of the mesh. So, the packets travelling east reach first and 

have higher priority than packets travelling west. This will cause starvation to the cores present on the left 

side of the mesh. 

 

Figure 2.6 Ack/Nack flow control. 
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2.4.2 Dead-locks 

Deadlock situation may arise in NoC when any circular waiting path is generated from the routing 

algorithm. Any waiting for acknowledgement or waiting for credit path which cycles back to the original 

router is a deadlock. For example, router 1 is waiting for acknowledgement/credit from router 2, router 2 

from router 3, router 3 from router 4, and router 4 from router 1 again. Two types of dependency cycles can 

be formed in a mesh network, clockwise and anti-clockwise; those are shown in Figure 2.7. To prevent any 

deadlock, at least one of the cyclic dependency must be broken. This is done by either creating virtual 

channels or by restricting the packet movement in a specific dimension/direction. 

 

2.4.3 Live-locks 

In this situation, flits keep travelling through the network in circle without reaching a destination. 

Because the flits do move instead of being stored in a buffer and not transmitted, as in dead-lock situation, 

we call it ‘live’-lock. Live-locks mainly occur when deterministic routing is not used or flits are allowed to 

take non-minimal paths to the destination.  

2.4.4 Deterministic Routing 

The route taken by the packet in reaching from source/sender to sink/destination is pre-determined 

and known. Each source and sink pair have a unique route which is constant throughout the run time. 

2.4.4.1 Dimension ordered routing (X-Y) or (Y-X) 

The flit first moves in one dimension and reaches the destination's row or column and then 

continues to move in other dimension to reach destination. In this type of routing, each router knows where 

 

Figure 2.7 Clockwise and Anti-clockwise dead-lock situations. 
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other routers are and can determine if the flit's destination lies at west, east, south or north of it. An example 

of X-Y dimension ordered routing is shown in Figure 2.8. Each flit first decides it needs to go east or west 

to reach the column of destination. Then it travels north or south to reach the row of destination. This way 

a packet which has travelled north or south, never takes east or west turn. Two turns become illegal to break 

the dead-lock situation. A packet travelling north/south will never take east turn and a packet travelling 

north/south will never take a west turn. 

 

2.4.4.2 Destination-Tag Routing 

Each packet from the sender/source to the receiver/sink is tagged with a destination address in the 

header. Based on this tag, the intermediate nodes/routers determine the path packet has to take using the 

routing table. An example of this type of routing is a 4-ary 2-fly butterfly network shown in Figure 2.9. 

 

Figure 2.8 X-Y routing mechanism for 3 different source and destination packets. 
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2.4.5 Oblivious Routing 

Oblivious literally means being "unaware of". In this type of routing, a packet is routed without 

regard for the current state of the network. If a packet is to be send from A to B, another node is chosen at 

random by the sender A and the packet is sent first to this randomly chosen node. Then this node forwards 

the packet to node B. The Figure 2.10 shows the process of oblivious routing. 

 

 
Figure 2.9 Routing in 4-ary 2-fly butterfly NoC topology. 

 

Figure 2.10 Oblivious routing mechanism. 
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This type of routing causes the load on all channels to distribute and spread out toward the network 

rather than sticking to one side of the network. The advantage of oblivious routing is that the channel loads 

and traffic patterns are linearly related. Hence it makes it easy to compute ideal throughput and traffic 

pattern from given channel load. [13] 

However, because the source router can select any intermediate router to send the message first to, 

the traffic is widespread over the whole network. To preserve locality of the network, the intermediate 

router is chosen from a defined region around the sender with minimal path. This known as minimal 

oblivious routing. 

2.4.6 Adaptive Routing 

Adaptive routing algorithms use information about the network in real-time to adapt and change 

how different packets are routed on the network. The major challenge in adaptive routing is the fact that 

the route for each packet is decided in real-time just before a packet is sent from one node to another which 

can cause live-locks. When a router receives a packet, it calculates the path to destination according to the 

algorithm hardware. 

2.4.6.1 Load Balanced Adaptive Routing 

The algorithm tries to equalize the traffic load on all the links equally. An example of load balanced 

adaptive routing is given in [14] where the authors try to balance the load by using Ant Colony Optimization 

(ACO). ACO is a biologically inspired from ant colonies and how they locate optimal paths by use of 

pheromones, attractants, and accumulation of paths. They propose a NoC version of ACO which was used 

extensively in Wide Area Networks and call it Regional ACO-based Cascaded Adaptive Routing (RACO-

CAR). This technique eliminates tables which contain redundant information, shares routing tables with 

neighboring routers and merge information, and cascades routing to distribute the load in the network. 

2.4.6.2 Fully Adaptive Routing 

This type of routing algorithm adapts to the congestion and blocking in the network and re-routes 

the packets away from congested or blocked areas. Liu et al. propose a fully adaptive routing algorithm 

called FreeRider [15]. A non-local adaptive congestion aware algorithm where the congestion information 

of whole network (non-local) is used to make routing decisions. Rather than using the Congestion 

Propagation Network (CPN) to propagate congestion information, but instead they propose to use free bits 
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in header flit to carry congestion information. This improves the throughput, shortens the latency, and 

reduces the power consumption. 

2.4.6.3 Minimal Adaptive Routing 

Minimal route searching algorithms look for the shortest/minimal path to the destination before 

sending each packet. Since it is a type of adaptive routing, this algorithm looks for congestion and prefers 

another route if it is of same hop distance. However, NIUs have to take care of out-of-order arrival of flits. 

2.5 NoC router micro-architecture 

A typical NoC router is composed of input ports, output ports, an arbiter, and a switch [16] shown 

in Figure 2.11. Minimum delay of the data path determines a maximum data frequency of the router. An 

arbiter delay dominates among the other critical path delays and determines the maximum frequency of the 

router (𝐹𝑚𝑎𝑥) [2]. When designing a router, minimization of latency while meeting bandwidth requirements 

is of utmost importance. Extensive amount of work has already been done in developing power and area 

efficient designs of arbiters, crossbars, and input ports [7, 4, 3, 2, 17, 5, 6, 16]. NoC router buffers are 

expensive in terms of power and area and constitute as fundamental variable in NoC optimization [18]. 

Oveis-Gharan and Khan have extensively compared existing router architectures with special focus on their 

EDVC organization [2]. We propose an algorithm to determine the optimal router components which results 

in an optimal performance NoC with lower area and power costs. 
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2.5.1 Crossbar 

Crossbar switch is an asynchronous combinatorial logic sub-component of the router which has 

multiple input buses and output buses. It allows any input bus to be connected to at most one output bus. 

This enables data to traverse through the crossbar to any output bus. To control which input bus is connected 

to which output bus, an input configuration bus is used. Crossbar is made up of many de-multiplexers 

(demux), where each demux is connected at the input to one of the input port of the crossbar, at the output 

to all router outputs, and  the mux selection  port is connected to configuration port from arbiter. If multi-

cast crossbars are used, data from 1 input port can stream to multiple output ports. However, tri-state buffers 

need to be added to solve fan-out problem. In this work, we will only consider crossbars and NoCs without 

multi-cast feature. 

2.5.2 Input port 

This is the major component in the router since it consumes majority of the power and takes up 

majority of the chip area. Input port is essentially composed of a FIFO (no Virtual Channel) or multiple 

FIFOs and multiplexers (in case of  >1 Virtual Channels). A D-Flip flop (primary 1-bit storage element) is 

made up multiple NAND and OR gates. While designing large storage elements, several flip-flops are 

 

Figure 2.11 NoC router micro-architecture. 
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arranged in an array and some fabrication fail components are added. Some of these components include 

flip-flop scanners to identify faulty flip-flops, and some design fuses to disconnect failed components 

permanently. Since 32 flip-flop are required to store 1 32-bit word, SRAM has large power consumption 

and takes up large chip area.  

Since FIFOs is a type of buffer and are essentially made up of D-flip flops, it is crucial to manage 

their size and organization to save chip area and power. Number of flits a FIFO can store is known as its 

depth. The router can have one pool of memory for all input ports, or each input port can have one pool of 

memory for each virtual channel. In each case, the depth/share of each input port or virtual channel can be 

static or dynamic.  

2.5.3 Arbiter 

Arbiter stores and decides the configuration to set for the crossbar. It manages flit requests coming 

from the input ports and grants them as per the arbitration scheme. Arbiter contains the main brains and 

logic for entire router. Arbitration scheme can be static (decided during design) or dynamic (decided as per 

congestion/traffic during run-time). It makes the output port status ‘free’ as soon as the tail flit traverses 

and makes its status ‘occupied’ before the header flit traverses through the crossbar. In this work, we will 

consider several fixed priority arbiters and use their synthesis libraries. 

2.6 NoC Mapping 

While designing any embedded system with top-down approach, the application is first broken 

down into tasks and their data dependencies. This is represented in the form of Task Graph (TG). Task 

graph is a Directed Acyclic Graph (DAG) in which nodes represent tasks and edges represent the data 

dependency and execution sequence. Tasks are grouped and assigned to hardware execution blocks such as 

CPU, DMA, GPU, co-processor, Accelerator etc. This is called Task assignment or task mapping shown as 

second optimization stage in Figure 2.12. This problem falls under Hardware-Software Co-design domain 

where the designer is still deciding on which task to execute on hardware and which task to execute using 

software (ie. CPU/co-processor). In this work, we are not addressing task mapping problem. We will be 

addressing core mapping and configuration problem shown as 3rd and 4th optimization stage in Figure 2.12 

NoC design workflow and this work’s targeted workflow. 
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After tasks are mapped onto hardware execution blocks/SIPs, the result is an Application Core 

Graph (ACG). An ACG is a DAG which contains hardware execution blocks/SIPs/Cores as nodes and their 

communication information in the form of edges connecting from one node to another. Assigning SIPs to 

locations (tiles) in a network topology is known as core mapping. Henceforth, we will be referring to core 

mapping problem as mapping problem. We define the NoC mapping as conversion of Application Core-

 

Figure 2.12 NoC design workflow and this work’s targeted workflow. 
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Graph (ACG) to a 2D-mesh NoC 𝑚(𝑥, 𝑦). The NoC mapping CAD tool determines a mapping 𝑚(𝑥, 𝑦) 

such that the overall NoC communication cost and energy are minimal. A mapping tool is efficient if it 

produces a minimum communication cost and energy NoC mapping solution with minimum number of 

iterations consuming least amount of compute time.  

NoC mapping solutions are combinations/arrangements of cores in an order which corresponds to 

the tiles of a topology. Mapping IP blocks or cores onto a NoC topology becomes complex (Figure 2.13), 

as the size of NoC (search space) grows factorially with increase in the number of cores and topology tiles. 

This is shown for a small application which contains 4 cores to map which results in 4! = 4×3×2×1 = 24 

possible mapping solutions out of which only one is optimal. The formula for size of the search space is 

given below: 

𝑆𝑖𝑧𝑒 𝑜𝑓 𝑆𝑒𝑎𝑟𝑐ℎ 𝑆𝑝𝑎𝑐𝑒 =  𝑛! 
( 1 ) 

 where 𝑛 is total number of cores in an application 

 

Application mapping for 2D-mesh NoC  is often considered as a constrained quadratic assignment 

problem of NP-hard complexity [19, 20, 21]. This means that the problem is not solvable in real time but it 

is verifiable in polynomial time. In other words, given a solution, we can check wether it is a good one or 

not but we cannot come up with a optimal solution within polynomial time. For example, we cannot directly 

 

Figure 2.13 Mapping possibilities for a 2 by 2 mesh NoC with 4 cores. 
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come up with a best core mapping for a large application in short time. However, if someone provides a 

core mapping to check, we can easily check its cost. These kind of problems are best solved using stochastic 

algorithms which try and check many promising solutions before reaching a final solution. 

Mapping is one of the major steps in NoC design where the cores are positioned onto topology 

nodes. It is crucial to choose an optimal mapping that results in minimal latency and energy consumption 

while maximizing the NoC bandwidth. A black box analogy of NoC mapping tool is shown in Figure 2.14. 

 

2.6.1 State-of-the-Art Mapping tools 

2.6.1.1 Deterministic Techniques 

Jiang et al. have proposed to use a tree based branch-and-bound search technique to find all the 

combinations of possible solutions for a hybrid switched network [22]. During the execution of algorithm, 

each link in the hybrid network is permutated either to be circuit or packet switched. Finally, the best 

switching technique for each link is found. For deterministic algorithms, time to reach an optimal solution 

increases factorially with the solution space. Their methodology also consumes more time as compared to 

NMAP [23], NormalBB [21], and DPSO [24] techniques. Another popular deterministic technique is Mixed 

Integer Linear Program (MILP), which depends on iterations of linear equations of integers to solve the 

 

Figure 2.14 Black box analogy of NoC mapping tool. 
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optimization problem. Bender has proposed an MILP model which determines optimal mapping based on 

execution time, processor cost, and communication cost [25]. 

2.6.1.2 Stochastic Techniques 

Among the multi-dimensional or large search space evolutionary algorithms, the Genetic 

Algorithm (GA) is an interesting alternative to produce near-optimal solutions.  Morgan et al. have used 

GA to optimize NoC mapping with a complex cost function involving power, chip-area, latency, and 

reliability [20]. GA based optimization techniques are compared extensively with other popular 

optimization techniques by Sahu and Chattopadhyay [26] and found that GA algorithm is not suitable for 

NoC mapping solution space since it converges using a single point rather than two or three reference points 

as in particle swarm (ie. local-best and global-best). 

Yang et al. have presented an accelerated simulated annealing (SA) technique, which initially 

executes a few iterations in branch-and-bound method to reach a temperature called 𝑡𝑘 and then iterates 

through the temperatures using traditional SA algorithm [27]. As opposed to other mapping algorithms, 

their 𝑡𝑘-SA technique focuses on generating better initial heuristics. However, their algorithm has been 

applied only to homogeneous NoC cores. 

In Tabu Search (TS) techniques, a short-term memory is used to remember the previously visited 

solution space and put a "Tabu" on them, meaning the algorithm is forbidden to visit that space again. Tino 

and Khan have employed Tabu search to map application cores to an application specific NoC topology 

[28]. They intend to optimize power, and performance where the NoC performance is evaluated based on 

the dynamic factors such as contention. Each time a new solution is generated, it is analyzed by invoking 

the floor-planner that minimizes the wire length and area along with providing the power consumption. The 

newly proposed solution is accepted and memorized if it is present in the neighborhood or in the Aspiration 

list but not in the Tabu list. The algorithm stops as soon as it finds a solution that satisfies the stopping 

criteria. However, there may be other solutions, which result in lower power and area consumption. 

Nedjah et al. have proposed a structured representation of the task graph and IP library [29, 30].We 

use similar XML representations as input to our tool. Task assignment problem, in which tasks are mapped 

onto IPs, precedes mapping problem. Previous mapping tools first come up with an optimum assignment 

and then find optimal mapping for it. On the other hand, their technique uses several assignment solutions 

instead of one to generate several mappings, which allows them to trade-off the design objectives of interest. 

The cost function is composed of hardware area, execution time (deadline criteria), and power consumption. 
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In assignment and mapping optimization, they use well-known GA algorithm type NSGA-II, CAFES, and 

micro-GA to compare the results. microGA worked better in saving the chip area and power up to 80% but 

at the cost of higher application (tasks) execution time of up to 600%. However, it can explore more search 

space in less amount of time as compared to NSGA-II. 

Particle swarm optimization is a population-based technique inspired by social behavior of a group 

of animals that was developed in 1995 by Eberhart and Kennedy [8].  Each particle is a candidate solution 

and new solutions are generated based on the particle’s own best-found optimal solution (local best) and 

swarm’s best optimal solution (global best) [24]. Transformation from an old solution to a new solution is 

known as particle movement. It has more exploitation capabilities and more stable as compared to Genetic 

Algorithm (GA). This is because in GA, new offspring (current solution) depends just on its parent(s) 

(previous solution), but in DPSO a new solution depends on its local best and global best. In the beginning 

of DPSO algorithm, particles spawn in different promising search space regions. As the algorithm iterates 

or progresses through time, the particle moves in the search space looking for optimal solution. It also 

remembers its previous best fit positions, while learning from the past experiences of other particles. The 

quality of a particle is evaluated based on its fitness such as cost. We are proposing an extended formulation 

for our HDPSO based NoC mapping methodology. 

As with all the stochastic optimization techniques, the DPSO might not find the optimal solution 

as it does not search the entire search space. Probability of catching an optimal solution mainly depends on 

the initial heuristics that place the search agents (or particles) in the search space. A good heuristic algorithm 

might place particles in some promising regions of the search space and find an optimal solution early. In 

most of the applications, DPSO particles spend a large amount of time exploring the regions of space 

already explored by themselves or by the other particles. This causes the algorithm to waste time and 

iterations in determining the cost of the same solution again and again. 

In the past, there have been many modifications done to the baseline DPSO algorithm to improve 

or cater to a specific application. On such attempt was done by Li et al. [31] where they have proposed an 

improved particle swarm optimization algorithm which embeds a repulsion operator and local searching 

operator for each particle to induce swarm diversity and local refinement. This repulsion operator is 

enhanced and used in our tabu-ed reflection mechanism described in Section 3.3.4. They have used an XY 

routing mechanism and optimize the NoC for either communication power consumption or communication 

delay due to link load. However, their algorithm does not perform multi-objective optimization resulting in 
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a solution with optimal communication power and delay. We have adopted a similar formulation for our 

HDPSO based NoC mapping methodology. 

2.7 NoC Configuration 

In addition to NoC mapping, next major steps in designing NoC include finding paths for the traffic 

flows while reserving resources across the NoC and determining NoC architectural parameters, such as the 

data width of the links, buffer sizes used in the router, and frequency of operation [32]. After cores are 

mapped to their respective nodes in topology, each communication edge in the core graph has to be assigned 

a physical path (links) with a bandwidth high-enough to support it. Then the resources along these paths 

are reserved to support edges communicating through them. Resources should be allocated generously to 

be able to support the collective bandwidth required by the edges communicating along the path, but at the 

same time to have minimum chip area and power consumption. These conflicting requirements give rise to 

the configuration optimization of NoC. Since there are many different possibilities (combinations) of 

architectural parameters that can satisfy a given application bandwidth on a given topology, there is a need 

to find an optimal solution. On the same lines of NoC mapping, NoC configuration solution space also 

grows factorially with an increase in the number of cores and library component options available. 

Therefore, there is a need to employ a stochastic technique to consider promising solutions rather than 

developing a deterministic methodology.  

2.7.1 State-of-the-art NoC Configuration Tools and Work-flows 

NoC mapping and configuration are two separate but linked optimization problems, which have an 

input-output relationship. NoC mapping optimization produces input for the NoC configuration 

optimization. NoC mapping optimization problem has been exhaustively researched and various 

optimization techniques have been employed [19, 33, 20, 21, 24, 32].  

Æthereal design flow for NoC synthesis was proposed by Philips/NXP research along with 

Goossens et al. [34]. It offers operational design flow to dimension and generate application specific NoC 

instances and configurations [35].  Æthereal design flow, as shown in Figure 2.15, incorporates two 

optimization loops, one for NoC mapping and another for NoC configuration. In this design flow, only 

buffer sizes are optimized. Stergiou et al. have proposed another NoC synthesis oriented design library 

called Xpipes Lite which aids in automatic generation of heterogeneous NoCs [36].  



 

 29 

 

NoCTweak [37] is a highly parameterized NoC simulator which can simulate some embedded or 

synthetic traffics including (uniform random, tornado, shuffle, hotspot, etc.) for large network sizes. It 

combines usage of cycle-accurate SystemC models of routers along with router RTL coded in VHDL and 

synthesized using 65nm CMOS standard cell library. The simulator reports packet delay, network 

throughput, average power of router and each of its components, global clock tree and PLL, and energy 

consumption per packet. However, it does not allow NoC designers to expand the RTL library and provide 

their own custom router sub-components. The tool can only simulate for 65 nm technology as it was coded 

using models of 65 nm components.  

Another major drawback is that while it does provide energy and power information of the NoC, it 

does not allocate or configure the routers so that the network occupies minimum chip area and consumes 

minimum power. Buffer sizes in the tool are modifiable manually when starting the simulator but it modifies 

the buffer depth for all routers in the network. This homogenous increase in buffer depth help just uniform 

random traffic but critical power and area savings opportunities are missed if the application does not have 

a traffic pattern of uniform random. NoCTweak allows custom applications to be imported and simulated, 

however it only performs mapping of the application using NMAP [23] optimization technique. NMAP is 

a good stochastic technique but further researches have outperformed it on many fronts [26]. 

 

Figure 2.15 Æthereal NoC configuration and mapping workflow. 
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Intelligent buffer merging technique is presented by Tsai et al. [38] where each routers input port 

load is calculated by using a traffic matrix and mapping the coregraph edges onto physical links. This edge-

to-link mapping gives rise to a bandwidth constraint which should be satisfied by the input port 

configuration algorithm. Since they consider adaptive routing mechanism, data from a single source core 

can arrive from two input ports (two routes) and put into the same buffer. The edge-to-link mapping 

algorithm is improved and used in our configuration HDPSO algorithm described in section 4.8.1. 

 

 

 

  



 

 31 

 

Chapter 3 

Optimal NoC Mapping using HDPSO 

3.1 Introduction 

PSO [8] is an optimization method that optimizes a problem by first coming up with random 

solutions and then iteratively improving them by using basic equation of motions (ie. distance, velocity, 

and acceleration of particles). A candidate solution is called a particle and the all-time best candidate 

solution is known as global-best particle. Collection of particles which are linked together by common 

global best-particle is called a swarm.  

DPSO is used for optimization of a discrete search space. A discrete search space implies that the 

solution is a combination, a permutation or a quantized quantity. For NoC mapping, the search space 

represents all the combinations of cores mapped to different tiles. Therefore, DPSO can be used to find the 

optimal mapping of cores to a suitable size 2D-mesh NoC. Traditionally, DPSO for NoC mapping starts 

with an initial population (particle) generated through some heuristic method to predict promising regions 

of the search space. Then the iterations cause the particle to evaluate its current cost and swarm the best 

global cost. The operation of a typical DPSO mechanism is shown in Figure 3.1. 
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A major issue with the DPSO based methodology is the particles that waste the computing 

resources and time while staying in the previously explored solution space rather than exploring the un-

chartered solution space. We propose a hybrid discrete particle swarm optimization methodology that 

overcomes this shortcoming. In our mechanism, we add the concept of Tabu-search to discourage the 

particles (or search agents) to pass through the solution space that has been already explored. The overall 

detail of our methodology having four stages is presented in Figure 3.2. 

 

 

Figure 3.1 DPSO Search spaces – particles reach sub-optimal solutions 

 

Figure 3.2 HDPSO Algorithm. 



 

 33 

In each iteration, a particle’s new position is calculated based on three of particle’s own properties 

and one global swarm property. Consider the position of the particle at iteration k i.e. p
k
= <p

k1
, p

k2
, 

p
k3

…p
kn

> where p
kn

 represents a tile and n indicates the tile number. The iterative formulation for the 

HDPSO particle is given in the following equation: 

𝑝𝑘+1= 

(

 
 
 
 
 

𝐶𝑖𝑛𝑒𝑟𝑡𝑖𝑎  × 𝐼
⨁

𝐶𝑠𝑒𝑙𝑓−𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒  × (𝑝𝑘 ⟶ 𝑙𝑜𝑐𝑎𝑙𝑏𝑒𝑠𝑡)

⨁
𝐶𝑠𝑤𝑎𝑟𝑚−𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒  × (𝑝𝑘 ⟶ 𝑔𝑙𝑜𝑏𝑎𝑙𝑏𝑒𝑠𝑡)

⨁

𝐶𝑙𝑜𝑎𝑑−𝑜𝑝𝑡   × (𝑝𝑘 ⟶ 𝑙𝑜𝑎𝑑𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑) )

 
 
 
 
 

   ×  𝑝𝑘          
( 2 ) 

  where 𝑝𝑘+1  and 𝑝𝑘  represent next generation and current particle core 

arrangements respectively 

 𝑎 → 𝑏 is a sequence of swaps applied on components of a to transform it to b 

(see Figure 3.5) 

⊕ is a fusion operator. For two sequences a and b. 𝑎 ⊕ 𝑏 is the sequence in 

which the sequence of swap of a is followed by sequence of swaps of b 

𝐶𝑖𝑛𝑒𝑟𝑡𝑖𝑎 is inertia constant that determines the particle’s willingness to stay at 

the current solution or move on to another solution 

𝐶𝑠𝑒𝑙𝑓−𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 is self-confidence that determines the particle’s willingness to 

move closer to the local best 

𝐶𝑠𝑤𝑎𝑟𝑚−𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 is swarm confidence that controls the particle’s willingness 

to move to the global best solution 

𝐶𝑙𝑜𝑎𝑑−𝑜𝑝𝑡 is the communication volume optimization coefficient that controls 

the optimization of particle’s communication volume list 

𝐼 are the Identity swaps such as swap(1,1), swap(2,2)…… swap(n,n). 

𝑙𝑜𝑐𝑎𝑙𝑏𝑒𝑠𝑡 is the previous local best core arrangement of the particle 

𝑔𝑙𝑜𝑏𝑎𝑙𝑏𝑒𝑠𝑡 is the swarm best core arrangement 

𝑙𝑜𝑎𝑑𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑  represents the core arrangement after applying communication 

volume optimization on 𝑝𝑘 
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In each iteration, the particle might take a step towards a random new location, local best, global 

best, communication volume optimum mapping or a combination of these. A particle falls through a ladder 

of decision points where a random number is generated and it is decided whether the particle should take 

the path or not. The decision is biased by inertia constant 𝐶𝑖𝑛𝑒𝑟𝑡𝑖𝑎, self-confidence 𝐶𝑠𝑒𝑙𝑓−𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒,  swarm 

confidence 𝐶𝑠𝑤𝑎𝑟𝑚−𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒, and communication volume optimization coefficient value 𝐶𝑙𝑜𝑎𝑑−𝑜𝑝𝑡. The 

details of the main steps of our HDPSO based NoC mapping methodology are presented in this section. 

The stages are basically core swaps depending on various parameters such as random inertia, self-

confidence, swarm confidence and communication volume optimization. These are described later in the 

Evolution of Swarm Particle (solution) in Section 3.3.6. 

3.2 Problem Definition 

We define the NoC mapping of an Application CoreGraph (ACG), 𝐴𝐶𝐺(𝐴𝑀) onto a 2D-mesh 

NoC, 𝑚(𝑥, 𝑦). The NoC mapping CAD tool determines a mapping 𝑚(𝑥, 𝑦) such that the overall NoC 

communication cost are minimal. A mapping tool is efficient if it produces a minimum communication cost 

NoC mapping solution with minimum number of iterations consuming least amount of compute time.  To 

simplify the mapping problem, X-Y routing technique is assumed along with round-robin arbitration for 

determining the cost parameters. We assume a regular mesh topology where the cost for the mapping 

solution or particle (𝑃𝐶𝑜𝑠𝑡) can be defined as: 

  𝑃𝐶𝑜𝑠𝑡 = ∑ ∑ 𝑉𝑜𝑙(𝑒𝑖) × 𝐻𝑜𝑝𝐶𝑜𝑢𝑛𝑡(𝑒𝑖)

𝑠𝑖𝑧𝑒(𝑒)

𝑗=0

𝑠𝑖𝑧𝑒(𝐴𝑀)

𝑖=0

 
( 3 ) 

 where 𝑒 is the collection of edges in a core graph, 

𝑉𝑜𝑙(𝑒𝑖) is the communication volume (MB/s) on edge i, 

𝐻𝑜𝑝𝐶𝑜𝑢𝑛𝑡(𝑒𝑖) is the hop distance between two communicating cores (or vertices). 

𝑠𝑖𝑧𝑒(𝐴𝑀) indicates the number of application modes 

 

An application can have many modes of operation and in each mode of operation, SoC has different 

communication characteristics among cores. A low-power mode often reduces the communication volume 

among cores and that can be represented by a separate coregraph. In other words, a single application can 

have many coregraphs. Additionally, in some application modes, not all cores might be active or 

operational. The inactive cores might be power-collapsed in order to save power and reduce battery 

consumption. These power-collapsed cores are no longer in the coregraph (because they do not consume 
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or produce network traffic) but the router is still operational to allow data transit. An example of one such 

multi-modal application is shown in Figure 3.3. AM 1,2,3, and 4 are low/high performance modes, while 

in AM 5, core 2 is power collapsed, and in AM 6 cores 3 and 6 are power collapsed. 

For a given mapping, we apply cost formula to each mode (coregraph) and sum the results together 

to get total cost. The resulting sum cost gives equal weight to all application modes. Since not all application 

modes are operational at all times, NoC designer might decide to optimize NoC cost more for one 

application mode than other. This can be taken care of by providing the cost_weight parameter along with 

each application mode (coregraph). This parameter will be used to normalize the cost of each application 

mode before summing all costs.  

 

3.3 HDPSO Algorithm 

3.3.1 A HDPSO Particle 

An HDPSO particle is a candidate solution which contains possible arrangement of cores mapped 

to a 2D-mesh NoC. The overall cost is evaluated and calculated for each particle to determine whether the 

 

Figure 3.3 Application with multiple modes of operation (AM). 
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particle represents a better solution than the current global best solution. A particle stores its current cost, 

previous local best cost and core arrangement as well as the particle ID. As the particle moves and if it 

encounters a core arrangement (mapping) which has lower cost than its previous local best cost, it 

overwrites the previous best cost with the newly found cost and stores this new core arrangement as the 

previous local best core arrangement. This is incorporated in “Update Local Costs” function in Figure 3.2. 

The size of the particle determines the number of tiles available in the 2D-mesh NoC. Core arrangement is 

a vector representing the mapping of each core to a tile position in the NoC mesh. The structure of the 

particle is versatile and any NoC topology can be mapped by employing the same particle structure. Figure 

3.4 shows a hybrid DPSO particle structure and an arbitrary mapping for MPEG4 core graph mapped to a 

4x4 mesh NoC. The coregraph of MPEG4 contains just 12 cores. In order to map the coregraph to a square 

mesh NoC, 4 dummy cores (ie. core id. 12, 13, 14, and 15) are added. Their cost is neither calculated nor 

affects the optimization method. In fact, it was observed that these dummy cores were pushed to the corners 

of the mesh by optimization tool as it can be seen in the possible solution in Figure 3.4. This is because the 

corner tiles have minimum number of paths to other cores. In other word, corner cores have less neighbors.  

The particle holds the current cost (ie. 3567.00 in Figure 3.4) of the core arrangement. After each 

iteration, current arrangement of cores is evaluated and the resulting communication cost is placed in 

current cost of the particle. 
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Figure 3.4 A HDPSO particle structure for MPEG-4 decoder. 
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3.3.2 Initial Population Generation 

In our HDPSO based mapping, first an application core graph is imported for NoC mapping, where 

the number of swarm particles varies with the size of particle (or solution). Particles are spawned in each 

root branch with the first NoC tile assigned to the core with the same ID as the ID of the swarm particle. 

For example, particle 12 will have 12th core mapped to the first (0th) tile. It ensures that all the initial particles 

are spaced away from each other as well as in different solution space areas. Starting by generating 

completely random initial solutions could place them in the same area and in close-proximity. By using a 

fixed first tile for initial solution, we ensure that the initial solutions are at least separated by first 

combination. The other remaining cores are mapped randomly to random tiles. It also ensures that bigger 

application core graphs have more search agents or particles to search different search space areas. The 

pseudo code of the initial population generation method is given below. 

As with all stochastic algorithms, different initial conditions produce different results and can 

sometimes help the algorithm reach optimal solution faster. However, intelligent initial population 

heuristics can consume time and are finding partial solution to the problem by using deterministic method. 

As application size grows, so does the time complexity of the initial placement deterministic algorithm 

which destroys the whole purpose of using a stochastic algorithm. To support both large and small solutions 

spaces, we have used a simple initial population placement algorithm given in Algorithm 1. 

 

Algorithm 1: Initial Population Generation 

Input:  non-negative integer no_of_particles 

Output: vector of particle objects vector<Particle> population 

1. vector<Particle> population 

// Iterate over all the particles 

2. for i = 0; i < no_of_particles; i++ do 

3.   vector<int> initial_condition(PARTICLE_SIZE, -99) 

// Map the first tile to Core i 

4.        initial_condition[0] = i 

// Create particle object with initial condition 

5.        Particle p(I, PARTICLE_SIZE, initial_condition)  

 // Add particle object to the population 

6.        population.push_back(p) 

7. end 

8. return population 
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3.3.3 Particle Movement (Applying Swap Moves) 

In every iteration of a traditional DPSO method, a particle compares its current cost with its 

previous found best cost (local best) and swarm found best cost (global best) to determine the new position. 

However, in the NoC mapping problem, exact locations of particles in search space is not known. Distances 

between particles can be defined as number of swap moves required to make them equal as shown in Figure 

3.5. In HDPSO, the new position of a particle is determined by comparing its current core arrangement 𝑝𝑘 

with the previous local best core arrangement 𝑙𝑏𝑒𝑠𝑡, global best core arrangement 𝑔𝑏𝑒𝑠𝑡, and communication 

volume optimization applied core arrangement 𝑓𝑏𝑒𝑠𝑡. This comparison results in a vector of swap moves 

which can be applied to particle A, for bringing it closer to the other particle B i.e. to. reduce the distance 

between particles A and B. However, all the swap moves are not applied directly in one iteration to avoid 

the particles to hop in the search space and might miss a potentially optimal solution. Instead, we choose a 

random swap move (chosen swap move) from the list of swap moves. 

 

In the next step, the chosen swap move is applied onto a copy of the particle A and saved as 

temporary particle T. The swap move is not applied to the original particle A as it might result in a Tabu-

ed particle (or solution). Tabu list is searched for any previous particle which has the same core arrangement 

 

Figure 3.5 Determining distance between particles (particle A & B). 
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as of particle T. If a match is found (the particle T is Tabu-ed), the chosen swap move is reflected and this 

step is repeated. If no match is found (particle T is not Tabu-ed) then the chosen swap move is applied to 

the original particle A. The whole process is illustrated in Figure 3.6. 

 

In addition to the traditional swap move, we also propose more complex moves (see Figure 3.7) 

including transpose, horizontal shuffle, vertical shuffle, column swap, and row swap. A transpose move 

can only be applied to square mesh networks and it has an effect similar to that of matrix transpose. 

Horizontal and vertical shuffles nudge cores to 𝑛 positions right or down respectively. Row swap and 

column swap moves exchange two columns or swaps. Each of these proposed moves can be represented in 

terms of smaller swap moves. In this work, we do not use these complex moves. 

 

Figure 3.6 Identifying the chosen swap move. 
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3.3.4 Tabu-List and Particle Reflection 

A short-term memory called Tabu-list is used to keep track of the previously visited search space 

areas and prevents the particles to enter the Tabu-ed zone. For large 2D-mesh NoCs having a large search 

space, the number of particles as well as iterations required to reach the optimal NoC mapping (solution) 

will grow. This will consume a large memory for the Tabu-list as more iterations are executed. Therefore, 

we keep the Tabu-list small and proportional to the number of particles as well as the number of iterations. 

In this way, the Tabu-list is operated as a short-term memory for the previously tried solutions. The size of 

tabu memory is not dependent on number of application modes. Size of the Tabu-list is determined by the 

following equation: 

 

Figure 3.7 Complex swap moves. 
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𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡𝑠𝑖𝑧𝑒 = 𝜏.𝑁𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠. 𝑁𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠. 𝑁𝑡𝑖𝑙𝑒𝑠 ( 4 ) 

 where 0 ≤  𝜏 ≤ 1 is a tuning parameter chosen by the designer according to 

the computing system capabilities and its memory capacity. For this work, we 

consider 𝜏 = 1 

𝑁𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 is the number of particles in search space 

𝑁𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 is the number of iterations to remember the particle position for 

𝑁𝑡𝑖𝑙𝑒𝑠is the number of tiles in each particle/mapping solution 

 

Tabu literally means sacred or forbidden. In our proposed algorithm, solution points in the search 

space already visited by the particles are forbidden for them to visit again. We propose a reflection 

mechanism around the Tabu-ed search area as shown in Figure 3.8. The reflection mechanism ensures that 

all the particles that are not Tabu-ed will determine their moves. If the move is indeed Tabu-ed, then it 

proposes an alternative move. However, particles in swarm optimization should be allowed to enter the 

Tabu-ed area to support convergence towards the optimal solution. Therefore, a particle is allowed to apply 

the move on itself if all reflections are tried and all were either tabu-ed or invalid. 

 

After evaluating the new cost by the swarm particle, Tabu-list is appended with this new application 

mapping (core arrangement). It is quite common for the DPSO particles to show an oscillating behavior 

between two or more NoC mapping solutions. Swarm particles can get stuck in such situations and may 

remain in the barrier of similar costs for two different core mappings. A short-term Tabu memory is kept 

 

Figure 3.8 Reflection of particles from the explored search space. 
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at the global level to remember the previously explored solution space or previously tried core mapping 

arrangements to prevent such oscillation behavior. When a proposed move results in a core mapping that 

has been already identified, the current iteration is not wasted. We intend to move such particles to explore 

the un-explored regions of the search space. The particles are moved by a random movement that can also 

be on the Tabu-list and huge amount of time would be spent on determining a random move that is not on 

the Tabu-list. Keeping particles in the Tabu-list for the past iterations make our HDPSO algorithm stable 

as particles do not try new core arrangements unless it is new. Variation of current cost in a DPSO particle 

is high as DPSO does not remember the previously tried solutions. On the other hand, HDPSO particle cost 

is stable due to the Tabu-list that keeps a list of previously tried solution as shown in Figure 3.9. These 

results indicate much lower level of oscillations. Lower oscillation reduce the number of computations 

performed in each iteration, thereby reducing the execution time. 

 

We propose a particle reflection methodology to divert the particles towards un-explored search 

space areas instead of just random moves. Reflection refers to a change in the direction of the proposed 

move of a particle where one of the cores to swap remains the same but the other core changes. If a move 

is to result in an already explored mapping, a different move is proposed for the particle. Considering a 3x3 

 

Figure 3.9 HDPSO vs DPSO particle cost variations for mapping of MPEG4 decoder. 
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2D tiled NoC given in Figure 3.10. If the particle is trying to swap for tile 2 and 4 and the resulting mapping 

is Tabu-ed i.e. on the Tabu-list, then the move is reflected to perform the swap for NoC tile 4 and 8 as 

shown in Figure 3.10. The reflected-move is the reflection of the original move with respect to y-axis.  

 

 

When a proposed move is predicted to result in a core arrangement already tried (i.e. Tabu-ed), the 

particle can be reflected in four ways. For a 3x3 mesh NoC some typical reflections are given below. 

𝑀𝑜𝑣𝑒𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙  signifies the move which a particle makes to get closer to global best, local best, 

communication volume optimized solution, or just inertia. 𝑀𝑜𝑣𝑒𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑 means that the proposed original 

move has resulted in a core-arrangement (solution) which has already been tried and therefore another new 

untried move is proposed. 

 

Figure 3.10 Reflection of a Tabu-ed swap (2,4) move. 

 

Figure 3.11 Reflection of a swap (2, 4) with respect to y-axis. 
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i. Reflection in 𝑥-axis: for 𝑀𝑜𝑣𝑒𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = 𝑠𝑤𝑎𝑝(2, 4) 

𝑀𝑜𝑣𝑒𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑(𝑥 − 𝑎𝑥𝑖𝑠) = 𝑠𝑤𝑎𝑝(4,0) 

ii. Reflection in 𝑦-axis:  for 𝑀𝑜𝑣𝑒𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = 𝑠𝑤𝑎𝑝(2,4) 

𝑀𝑜𝑣𝑒𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑(𝑦 − 𝑎𝑥𝑖𝑠) = 𝑠𝑤𝑎𝑝(4,8) 

iii. Reflection in line 𝑦 = 𝑥: for 𝑀𝑜𝑣𝑒𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = 𝑠𝑤𝑎𝑝(1,4) 

𝑀𝑜𝑣𝑒𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑(𝑥 − 𝑎𝑥𝑖𝑠) = 𝑠𝑤𝑎𝑝(4,3) 

iv. Reflection in line 𝑦 = −𝑥: for 𝑀𝑜𝑣𝑒𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = 𝑠𝑤𝑎𝑝(1,4) 

𝑀𝑜𝑣𝑒𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑(𝑥 − 𝑎𝑥𝑖𝑠) = 𝑠𝑤𝑎𝑝(4,5) 

 

3.3.5 Communication Volume based Optimization 

We have devised an intelligent methodology to swap a near core that has smaller communication 

volume between itself and the source core with a far core, which has larger communication volume with 

source. After an application is imported for optimal NoC mapping, all the edges are arranged in ascending 

communication volume and placed in a vector list as shown in Figure 3.12 for a particular case. Each time 

a particle is evolved, hop distances for each of these edges is updated. The ascent in the hop distance means 

that the current edge, X has more communication volume than the previous edge Y but the cores of edge X 

are farther apart from each other than the Y edge. The working detail of the traffic optimization stage is 

shown in Figure 3.12 and listed below.   

Step 1. Generate a list of arranged communication edges with the ascending communication 

volume.  

Step 2. Find the edges with an ascending hop count that has the same source id. In Figure 3.12, X 

and Y edges ( 1 → 2  and 1 → 8 ) have the same source core 1, and Y has higher 

communication volume and hop count than edge X. 

Step 3. Swap the destination cores of these two edges. In Figure 3.12, core 8 should be closer to 

core 1 rather than core 2 because it has higher communication volume. 
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Step 4. Test if the swap move results in a Tabu-ed core arrangement. If it does, then try all the 

reflections. If the reflections are not possible or result is a Tabu-ed core arrangement, then 

apply the original move. 

Step 5. Go to Step 2 until the end of edge list. 

 

3.3.6 Evolution of Particles 

In the first iteration of our HDPSO methodology, the cost for all the particles is calculated and then 

overall local best and global best costs are determined. In later iterations of the optimization, a swarm 

particle passes through four stages as shown earlier in Figure 2. Before each stage begins, a particle decides 

to go through that stage or not using stage path decider. This stage path decider is based on biased random 

number generator. A stage path decider which is biased by self-confidence parameter 𝑐𝑠𝑒𝑙𝑓−𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 is 

shown in Figure 3.13.  

 

Figure 3.12 Communication Volume based core swapping. 
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Stages that a particle may or may not go through, depending on path decider, are given below in 

sequence. Due to the nature of path decider, a particle may not go through any stage or may go through all 

of them. So in essence, a particle may not move at all or move to a maximum of 4 distance (4 swap moves) 

in one iteration. 

3.3.6.1 Inertia Stage (Stage A) 

In this stage, first it is decided whether to apply a random swap move or not. The move is based on 

the inertia probability constant, 𝐶𝑖𝑛𝑒𝑟𝑡𝑖𝑎. The identification of a random swap move is also illustrated in 

Figure 5. 

1. If the decision is made to generate the random swap move then verify that the resulting core map 

is Tabu-ed or not.  

2. Try reflections if the resulting core mapping belongs to the Tabu-list. 

3. If the reflections are not possible or they result in a Tabu-ed core arrangement, then apply the 

original random swap move. 

3.3.6.2 Local Convergence Stage (Stage B) 

In this stage, it is decided whether to converge to a local best core mapping or not. The move is 

based on a self-confidence probability, 𝐶𝑠𝑒𝑙𝑓−𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒. If yes, then generate a list of swap moves by 

comparing the local best core mapping and the current core mapping represented by the swarm particle.  

1. Select a random swap move to apply from the list generated. If the move results in a Tabu-ed core 

arrangement, then try reflections. 

 

Figure 3.13 Local Convergence Stage (Stage B) path decider. 
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2. If all the reflections are not possible or result in a Tabu-ed core arrangement, then apply the original 

random move. 

3.3.6.3 Swarm Convergence Stage (Stage C) 

In this stage, it is determined whether the solution (swarm particle) converges to a global best core 

arrangement or not. The move is based on a swarm-confidence probability, 𝐶𝑠𝑤𝑎𝑟𝑚−𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒. 

1. Generate a list of swap moves by comparing the global best core arrangement and current core 

arrangement of the particle. 

2. Select one random swap move to apply from the list generated in the earlier step. 

3. Test if the move results in a Tabu-ed core arrangement. If yes, then try reflections. If all reflections 

are not possible or result in a Tabu-ed core arrangement, apply the original random move.  

3.3.6.4 Traffic Load Optimization Stage (Stage D) 

In the final stage, it is decided whether to optimize the mapping by applying communication 

volume based core swaps or not. The decision is based on the load optimization probability, 𝐶𝑙𝑜𝑎𝑑−𝑜𝑝𝑡. A 

random number is generated between 0 and 100 and checked against load optimization probability. If the 

number generated is less than the probability, then communication volume based core swaps are applied. 

The algorithm of this stage is explained in Section 3.3.5. 

Our HDPSO based NoC mapping process can be terminated after executing a fixed number of 

iterations or after a pre-determined number of swarm particles have converged to a common mapping.  

3.3.7 Stopping Criteria 

It is observed that the swarm particles of DPSO converge to an optimal point in search space near 

the end of optimization. It is at this point, the particles have settled and optimization need not continue. To 

detect this situation and stop the optimization loop, diversity factor proposed by Silva and Bastos-Filho 

[39] is modified and used. First, an average distance of each particle from other particles is calculated using 

the following equation. 

𝑑𝑖 =
1

𝑁 − 1
∑ 𝑑𝑖𝑠𝑡(𝑝𝑖, 𝑝𝑗)

𝑁

𝑗=1,𝑗≠𝑖

 
( 5 ) 
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 where N is the number of particles. 

𝑑𝑖𝑠𝑡() returns the number of swap moves required to make particle i equals to 

particle j. 

𝑑𝑚𝑖𝑛 and 𝑑𝑚𝑎𝑥 are the maximum and minimum average distances respectively.  

 

Since NoC mapping problem is a discrete combinatorial problem, Euclidean distance formula 

cannot be applied to get distance between two particles. Instead distance between two particles is given by 

the number of swap moves require to make both particles same as shown in Figure 3.5 Determining distance 

between particles (particle A & B).. Then diversity factor of each particle is calculated using the equation 

below: 

𝐷𝐹𝑖 =
𝑑𝑖 − 𝑑𝑚𝑖𝑛

𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛 
 

( 6 ) 

 where 𝐷𝐹𝑖 is the diversity factor of particle 𝑖. 

𝑑𝑖 is the average distance of particle 𝑖 to other particles. 

𝑑𝑚𝑖𝑛 and 𝑑𝑚𝑎𝑥 are the maximum and minimum average distances respectively. 

 

Optimization loop can be stopped when the following criteria given in the following equation is 

met: 

𝜛 ≤
1

𝑁
∑𝐷𝐹𝑖

𝑁

𝑖=1

 
( 7 ) 

 where N is the number of particles. 

𝜛 is an empirically selected stopping diversity factor.  

 

Choosing a random swap move from a list of moves results in slow progression towards the desired 

solution space region while exploring it. This is evident from the global cost comparison presented in Figure 

3.14 for our HDPSO algorithm with the DPSO for a 3-mode 17-core application. In HDPSO, swarm 

particles take small steps towards the local or global best core arrangement rather than a sudden stride as 

shown in Figure 3.14. In the same number of iterations, HDPSO finds a better and lower cost arrangement 

faster than the traditional DPSO. Our HDPSO methodology executes about 50% faster and it has around 

20% better cost as compared to DPSO. By allowing smaller swap movements, the HDPSO algorithm steps 
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gradually towards the best cost rather than sudden jumps seen in DPSO. This also allows the HDPSO 

method to explore more parts of the search space, which enhances the chance of finding a better solution 

than the DPSO technique. 

 

3.3.8 Dynamic Tuning Parameters 

Self-confidence can be a static constant or dynamically calculated variable. In the case of static, 

the particle movement core can access this variable from a register and move on ahead with the calculation 

of velocity and acceleration. On the other hand, if the self-confidence needs to be dynamically calculated 

at run-time, it can depend on the global cost and the number of iterations. Some researchers have found a 

constant self-confidence by trial-and-error [27]. This means that the particle moves to local maxima with a 

probability of 4%. However, the self- confidence can be dynamically tuned over the course of optimization 

iterations by using the following equation: 

 

 

 

 

 

Figure 3.14 Global cost for same confidence - DPSO vs. HDPSO. 
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𝐶𝑠𝑒𝑙𝑓 = 𝜓(𝑒
−
𝐼𝑐𝑢𝑟𝑟 × ∅
𝑇𝑖𝑡𝑒𝑟. )×𝜚 (

𝑐𝑙𝑜𝑐𝑎𝑙 − 𝑐𝑔𝑙𝑜𝑏𝑎𝑙

𝑐𝑙𝑜𝑐𝑎𝑙
) 

( 8 ) 

 where 𝑇𝑖𝑡𝑒𝑟. is the total number of iterations to be executed 

𝐼𝑐𝑢𝑟𝑟 is the current iteration number 

∅ is the plummeting factor 

𝜓 is designer chosen factor which determines the dependence of self-confidence on 

number of iteration 

𝜚 is a designer’s chosen factor, which determines the dependence of self-confidence 

on particle’s cost quality 

𝑐𝑙𝑜𝑐𝑎𝑙 and 𝑐𝑔𝑙𝑜𝑏𝑎𝑙 are is the local and global best costs respectively 

 

For example, 𝑇𝑖𝑡𝑒𝑟. = 50, ∅ = 4, 𝜓 = 1, and 𝜚 = 0 gives us: 

𝐶𝑠𝑒𝑙𝑓 = 𝑒
−
𝐼𝑐𝑢𝑟𝑟×4
50  

( 9 ) 

It can be observed from the above equations that the data dependency on global variables increases 

when dynamic self-confidence values are to be calculated at runtime. However, if static self-confidence 

values are used, the data dependency is reduced and each particle movement can perform faster calculations. 

The dynamic self-confidence can be used to influence (particles) search-agents to depend more and 

more on global optima as the algorithm approach to its conclusion. This effect is similar to the one used in 

Simulated Annealing where randomly exploring the search space is encouraged in the beginning but 

discouraged near the end of the algorithm. As the algorithm progresses, the particles are given less and less 

self-confidence so that the algorithm moves towards the global maxima. The equation can also be modified 

to give more and more overall swarm confidence as the iterations progress. We proposed two different ways 

to formulate dynamic self-confidence and dynamic swarm confidence. 

3.3.8.1 Inverse exponential self-confidence and exponential swarm confidence 

In this formulation, the self-confidence and swarm confidence only depend on the current number 

of iteration as shown in Figure 3.15. 
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3.3.8.2 Inverse exponential self-confidence and remaining swarm confidence 

Self-confidence depends on the current iteration number where swarm confidence depends on the 

difference between 100% and self-confidence as shown in Figure 13. 

 

3.3.9 Particle Cost Pre-calculation 

When a particle moves to a new solution, changed edges are marked and only those costs are 

recalculated rather than calculating costs for entire coregraph again. This saves some computational time 

and makes the HDPSO algorithm faster compared to other DPSO algorithm. The mechanism is depicted in 

Figure 3.17. 

 

Figure 3.15 Inverse exponential self-confidence and exponential swarm-confidence. 

 

Figure 3.16 Inverse exponential self-confidence and remaining swarm-confidence. 
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3.4 Experimental Results for NoC Mapping (Particles) 

We have implemented a traditional DPSO and our HDPSO methodologies by using the formulation 

presented in this work. Both methodologies are employed to map synthetic and real application core graphs. 

by employing dual core i7 CPU running at 2.4 GHz having 8GB memory. Picture in Picture (PIP), MPEG4 

Decoder (MPEG4), Video Object Plane Decoder (VOPD), and Dual Video Object Plane Decoder 

(DVOPD) are some of the typical core graphs used earlier to evaluate NoC mapping optimization [4]. Table 

3.1 lists some of the previously employed benchmark core-graphs that are also used for comparison. The 

overall communication cost is determined for our HDPSO methodology to compare with some past NoC 

mapping techniques and the results are presented in Figure 3.18. 

 

Figure 3.17 Particle cost pre-calculation. 
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In the graphical bars presentation of Figure Figure 3.18, the communication cost is normalized with 

the NMAP NoC mapping methodology [23] widely referred by researchers. HDPSO performs similar or 

better than all the mapping techniques including DPSO [24], GMAP [20], LMAP [40] and PSMAP [41]. 

Figure 14 shows the communication cost for VOPD, MPEG4 and PIP application mapping using HDPSO, 

GMAP, DPSO, PSMAP and LMPAP methods. HDPSO performs better or comparable in terms of 

communication cost. It is noticed that HDPSO does tend to increase time to determine the mapping solution 

but it reaches a stable global cost twice as fast as the standard DPSO. 

 

Table 3.1 Application core-graphs used as benchmark 

Name Cores 
Application 

Modes 
Edges 

PIP 8 1 8 
MPEG4 12 1 13 
VOPD 16 1 15 

DVOPD 26 1 32 
DVOPD + MPEG4 38 2 45 

Core Graph 1 17 3 52 
Core Graph 2 29 4 92 
Core Graph 3 39 5 205 

 

 

Figure 3.18 Communication cost normalized to NMAP cost. 
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We have implemented the DPSO-based mapping algorithm proposed by Sahu et al. [24, 42] to 

thoroughly evaluate and compare our HDPSO methodology. The NoC mappings are generated by using 

DPSO and HDPSO techniques for some well-known application core-graphs given in Table 3.1. 

Additionally, several synthetic application task graphs Core Graph 1, 2 and 3 are generated with random 

(non-uniform) traffic by using our custom core-graph generator that incorporate TGFF (Task Graphs For 

Free) pseudo-random task graph generator tools [43]. Uniform random traffic is not useful for evaluating 

the application mapping quality as any mapping will result in the same cost.  

TGFF generates pseudo-random task graphs which can be taken as coregraphs if we assume that 

only one task is mapped to a single core. TGFF also generates hard and soft deadlines but they are ignored 

when parsing taskgraphs to coregraphs. Simple random task graphs were generated from the tgff library 

and converted to xml format. The communication volume was kept in between 30 and 900 Mbits/s. TGFF 

also takes in parameter tg_cnt which is basically to control the number of task graphs to generate per 

application. We assume each task graph as a separate application mode. Additionally, the minimum number 

of tasks per task graph (average, multiplier) is kept at 0.4. This means that at least 40% of the cores are 

used in all application modes.  

NoC mapping results for all the typical and synthetic applications are presented in Figure 3.18 and  

Figure 3.19. Our HDPSO method reports similar or better optimal cost as compared to DPSO and other 

past techniques. The results presented in Figure 3.19 indicate a cost improvement for our HDPSO method 

with respect to DPSO. It is observed that generally for small and single mode applications, HDPSO and 

DPSO perform equally well in optimization. However, as the number of cores, edges, and modes increase, 

HDPSO produces 10% to 60% better communication cost (lower BW * Hop Count). 

DPSO based NoC mapping tool produces comparable NoC mapping for PIP, MPEG4, VOPD, and 

DVOPD application coregraphs as these applications has only 8-to-26 coregraphs. However, HDPSO 

performs better for DVOPD+MPEG4 (mode-2) and synthetic application coregraphs having 17-39 cores 

(see Figure 15). Therefore, we have generated larger synthetic coregraphs, by using some well-known and 

popular realistic traffic patterns (e.g. bit-reversal, Tornado, Transpose, Shuffle, Stencil, etc.) having 32, 64 

and 128 cores. Then these synthetic coregraphs are used for NoC mapping to compare our HDPSO with 

the latest DPSO-based method. These synthetic traffic patterns contain characteristics and features which 

are commonly present in real world applications. For example, communicating pairs in Bit-reversal, 

Tornado and Transpose traffic, ring communication pattern in Neighbor and Shuffle traffic, and 

dimension/array arithmetic in Stencil.  
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In Table 3.2, execution times of DPSO and HDPSO are compared for the applications given in 

table 1. It was noted that HDPSO found better mapping solutions for DVOPD+MPEG4, CoreGraph 1, 

CoreGraph 2, and CoreGraph3 at the cost of memory overhead and 5-11% more time. It did not find better 

solutions than DPSO in case of PIP, MPEG4, VOPD, and DVOPD because the solution found by both 

methods (HDPSO and DPSO) in these applications is already MILP optimal. There is no better solution to 

find for these applications. 

For our results in Table 3.2, the number of particles was equal to the number of tiles. Therefore, as 

the size of application grew, the demand for tabu-ed memory grew non-linearly (ie. with a power of 2).  

It was found empirically that a short-term memory which remembers just 60 past iterations is 

enough to discourage particles to oscillate and go back and forth between already explored solutions. 

However, integer is not needed for applications with number of cores less than 256 (8-bit char will do). To 

support larger coregraphs, our tool keeps the core ids in integer data format and hence we use that 

estimation. Application with 32, 64, and 128 cores will have tabu memory requirement of 311.04 Kbytes, 

983.04 Kbytes, and 4976.64 Kbytes respectively. 

For example, tabu-ed memory size in PIP can be calculated by 9×9×32×60 = 155,520 𝐵𝑖𝑡𝑠 and 

for Core Graph 3 it can be calculated by 49×49×32×60 = 4,609,920 𝐵𝑖𝑡𝑠. Network for the memory size 

 

Figure 3.19 Cost improvement DPSO vs. HDPSO. 
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calculation is assumed to be a square mesh. Therefore, for Core Graph 3, 39 cores fit into 7 by 7 (49 core) 

mesh NoC. 

 

We also built a tool to generate synthetic traffic patterns using well-known traffic formulae called 

CoreGraph generator (CGG). The coregraphs given in Table 3.3 are generated by CGG. CGG creates a 

coregraph xml file ready for consumption into our HDPSO tool. It takes in the traffic pattern option and 

size of coregraph to generate as parameters. Then iterates through each source edge, creates an edge 

originating from that source core, and applies the traffic pattern formula to determine edge’s destination 

core. The tool assumes that the cores are mapped with respect to their ids (ie. core 0 on the top-left, core 1 

next to core 0 on the right, and core N at the bottom-right). HDPSO is expected to detect these traffic 

patterns and map them in another recognizable pattern. For example, communicating pairs in transpose and 

bit-reversal traffic are placed at 1 hop distance in an optimal solution after tool run. This helps evaluate the 

tool and helps in identifying tuning parameters. 

Synthetic traffic can be divided into two major categories named random and permutation. Random 

(uniform) is where each core sends the same amount of data to every other core in the network. From 

mapping perspective, uniform random traffic is not useful for evaluating the mapping tool as any mapping 

will result in the same cost. Random (non-uniform) is where each core sends data to one or several random 

Table 3.2 Execution Time Comparison of Benchmark CoreGraphs 

Name Method 
Time 
(min) 

Tabu-ed 
Memory 
(Kbytes) 

PIP 
DPSO 0.3960 N/A 

HDPSO 0.4263 19.44 

MPEG4 
DPSO 0.3509 N/A 

HDPSO 0.4915 61.44 

VOPD 
DPSO 0.3318 N/A 

HDPSO 0.4193 61.44 

DVOPD 
DPSO 0.7442 N/A 

HDPSO 0.7678 311.04 

DVOPD + MPEG4 
DPSO 1.1963 N/A 

HDPSO 1.2023 576.24 

Core Graph 1 
DPSO 0.3305 N/A 

HDPSO 0.3466 150.00 

Core Graph 2 
DPSO 0.4091 N/A 

HDPSO 0.4490 311.04 

Core Graph 3 
DPSO 0.8165 N/A 

HDPSO 0.8949 576.24 
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destinations. Random (non-uniform) traffic pattern is used in the synthetic core graphs (Coregraph 1, 

Coregraph 2 and Coregraph 3) employed earlier and results for those were presented in Figure 3.18. 

Permutation is where the destination address is a permutation function of source address. To generate 

permutation traffic, each core in the network is assigned a binary address and then the permutation function 

is applied to each core (source) to produce resulting destination address. Each source sends data only to one 

destination. There are two sub sets of permutation i.e.  bit and digit permutation. In bit permutation traffic, 

the destination core address is computed by permutating or selectively complimenting the bits of the source 

address. Digit permutations are done by permutating digits of source address to calculate destination digits. 

Digit permutations can only be applied to n-digit, radix-k numbers for example 𝑘-ary 𝑛-mesh networks.  

Bit reversal traffic is shown in Figure 3.20 (a) and it is generated by reversing the order of source 

address bits to generate destination address. It generates pairs of bi-directionally communicating cores 

which the mapping tool should place near each other. A traffic type which best tests locality exploitation 

of the mapping tool is the neighbor traffic shown in Figure 3.20 (b). In this type of traffic, each source 

communicates with a core in the next column and next row. The optimum solution reduces majority of the 

hop count from 2 to 1 of each neighboring core pair. Tornado traffic is shown in Figure 3.20 (c) that is 

designed to test the mesh and torus networks. The optimum solution finds pairs in the network and places 

them in proximity. The Transpose traffic is shown in Figure 3.20 (d) where source cores talk to the core on 

the other side of the diagonal line. It creates pairs of communicating cores and the optimum mapping should 

place these pairs near each other. 

Fast Fourier Transforms (FFTs) and sorting applications have shuffle type traffic patterns, which 

is shown in Figure 3.20 (e). There are communication localities in the traffic, which need that the relevant 

cores should be placed in proximity to each other. For example, in Figure 3.20 (e), some cores form a 

communicating ring and they need to be placed in a 2×2 mesh square in the network to have communicating 

cores just 1 hop count away from each other. Signal and image processing applications often have traffic 

patterns that are known as Stencil shown in Figure 3.20 (f). Some relevant applications include FIR filtering, 

2D convolution. 

We have investigated the conventional DPSO mapping technique [5, 18] along with our HDPSO 

methodology for the synthetic traffic patterns shown in Figure 3.20 and for 32, 64 and 128 core applications. 

The comparative results for all the synthetic core graphs with various traffic pattern are presented in Table 

3.3. Our HDPSO based mapping shows considerable improvement in cost for large networks. The cost 

improvement ranges from 15% to 216%. Results for the Neighbor, Tornado and Shuffle traffic patterns are 
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particularly better (i.e. 23% to 216% improvement) as these traffic patterns contain ring communication 

structure which can easily be exploited by traffic optimization stage of HDPSO method (i.e. stage D 

described in Section 3.3.6.4).  

 

It is also observed that the DPSO method settled relatively quickly (in fewer number of iterations) 

on the final solution as compared to our HDPSO. Even though HDPSO employs Tabu-list and needs to 

check for Tabu-ed moves in each iteration, which should increase the time taken per iteration, DPSO and 

HDPSO still have comparable execution times to find an optimal solution. The main reason is the capability 

of our HDPSO method that remembers the previous iteration costs of each particle and if the particle does 

not move, the cost is not recalculated while DPSO recalculates the cost in each iteration. HDPSO 

methodology also consumes more memory than DPSO because it remembers the tried core arrangements 

(or swarm particles data) for 60 iterations. However, HDPSO takes less number of overall iterations to 

reach an optimal solution since it looks for more regions of the search space and progresses using multiple 

(1→4) swap moves per iteration. 

Like all the stochastic techniques, tuning parameters play a major role in how well the optimization 

tool performs for a given input. We have used static confidence values (tuning parameters) to generate all 

the results in this section. It was found that particle inertia of 0.4, self-confidence of 0.2, swarm confidence 

 

Figure 3.20 Traffic patterns used to evaluate the HDPSO based NoC mapping (a) Bit-reversal, (b) 

Neighbor (c) Tornado (d) Transpose (e) Shuffle (f) Stencil. 
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of 0.3, and load optimization constant of 0.4 works best in reaching an optimal solution much faster. In this 

way, the confidence values are empirically chosen. It can be observed from the results presented in Table 

3 that the tuning parameters we chose empirically, usually favor NoC mapping to meshes that contain 64 

cores because the improvement is better for those and then it bounces back for larger networks. 

The HDPSO based NoC mapping tool also automatically selects a 2D-mesh size that is based on 

the number of cores of the application core-graph, however, the mesh size can also be selected manually. 

In the case of MPEG4 decoder, the mesh size is automatically selected as 4x4, but the application can also 

fit to a 3x4 size mesh NoC. The NoC mappings generated by HDPSO methodology is shown in Figure 17 

for 3x4 mesh. The communication costs for MPEG4  mapped onto a 3x4 2D mesh is 3772 as compared to 

3567 for a 4x4 mesh mapping shown in Figure 3.21. 

In Figure 3.20, it can be observed that the bit reversal, transpose, and shuffle traffic patterns have 

bi-directional edges. One bi-directional edge is counted as 2 directional edges in Table 3.3. For example, 

in case of bit-reversal, the reverse of core 1 ie. 0b 00001 is core 16 ie. 0b 10000 and vice versa. One edge 

is from core 1 to 16 and another edge is from core 16 to 1. If a core’s id is palindrome, it does not have an 

edge. There are total 8 palindromes in 5-bit addresses (32 cores see table 3 bit-reversal). Therefore, there 

are 32 − 8 = 24 edges in 32-core bit-reversal application. 

For results in Table 3.3, it was observed that HDPSO and DPSO both settled on a solution after 

1000 iterations on average. The times reported in the table are for 2000 iterations. 
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Table 3.3 Traditional DPSO vs HDPSO results for 32, 64, and 128 core synthetic application core-

graphs 
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DPSO 0.41 3000 
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HDPSO 0.41 2600 

64 56 
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HDPSO 2.55 20000 

128 112 
DPSO 35.23 116400 

4976.64 
HDPSO 36.55 75600 

N
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g
h
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r 32 31 

DPSO 0.71 6900 
311.04 

HDPSO 0.72 5600 

64 64 
DPSO 6.20 22800 

983.04 
HDPSO 6.22 17000 

128 127 
DPSO 106.06 76200 

4976.64 
HDPSO 107.28 59200 
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o
  36 36 

DPSO 0.52 5600 
311.04 

HDPSO 0.52 4000 

64 64 
DPSO 4.23 18400 

983.04 
HDPSO 4.25 12800 

128 128 
DPSO 76.40 142400 

4976.64 
HDPSO 74.32 45000 
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32 32 
DPSO 0.45 7000 

311.04 
HDPSO 0.43 5200 

64 64 
DPSO 4.35 44800 

983.04 
HDPSO 4.37 17400 

128 128 
DPSO 7.66 95800 

4976.64 
HDPSO 7.82 60800 
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 32 30 
DPSO 0.44 6000 

311.04 
HDPSO 0.45 5000 

64 56 
DPSO 4.33 17200 

983.04 
HDPSO 4.30 10800 

128 126 
DPSO 5.29 78200 

4976.64 
HDPSO 4.99 60200 
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32 69 
DPSO 0.50 34800 

311.04 
HDPSO 0.48 27200 

64 154 
DPSO 4.86 129200 

983.04 
HDPSO 4.85 88000 

128 329 
DPSO 111.95 445800 

4976.64 
HDPSO 112.08 366800 
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(a) (b) 

Figure 3.21 HDPSO generated optimal (a) 3×4 (b) 4×4 NoC mapping of MPEG4 decoder. 

 

 

(a) (b) 

Figure 3.22 HDPSO generated optimal (a) 3×4 (b) 4×4 NoC mapping of VOP decoder. 
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3.5 Summary 

A new method of optimization was discussed which increases the efficiency of the traditional 

DPSO algorithm by tabu-ing parts of search areas to particles which have been just visited. Since the search 

space was of combinatorial discrete nature, deflection technique was used to encourage particles to explore 

more of search space before converging to the optimal solution. If search space was of continuous nature, 

other methods such as Bezier curve would be used to force the particle to curve around the tabu-ed area.  

If a swap move results in a solution which is already tried, proposed moves are deflected in all 

other directions until there is no other way other than to allow the original move. This causes the algorithm 

to explore more of the search space before converging onto the global best solution. The results were 

benchmarked against popular applications PIP, MPEG-4, VOPD, and DVOPD and it was found that 

HDPSO performs significantly better than other optimization algorithms. Standard DPSO based method 

has also been implemented for NoC mapping and quality of the results is compared with our HDPSO based 

mapping. It was found that HDPSO performs 15% to 216% better than traditional DPSO technique.  Our 

tool also performed better in particular for traffic patterns which contain ring communication structure such 

as Neighbor, Tornado, and Shuffle traffic patterns. It is also concluded that remembering the past solutions 

and proposing new solutions by our HDPSO algorithm enables it to produce better mapping solutions. 
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Chapter 4 

Optimal NoC Configuration using Sub-swarm 

4.1 Introduction 

In addition to NoC mapping, next major steps in designing NoC include finding paths for the traffic 

flows while reserving resources across the NoC and determining NoC architectural parameters, such as the 

data width of the links, buffer sizes used in the router, and frequency of operation [6]. After cores are 

mapped to their respective nodes in topology, each communication edge in the core graph has to be assigned 

a physical path (links) with a bandwidth high-enough to support it. Then the resources along these paths 

are reserved to support edges communicating through them. Resources should be allocated generously to 

be able to support the collective bandwidth required by the edges communicating along the path, but at the 

same time to have minimum chip area and power consumption. These conflicting requirements give rise to 

the configuration optimization of NoC. Since there are many different possibilities (combinations) of 

architectural parameters that can satisfy a given application bandwidth on a given topology, there is a need 

to find an optimal solution. On the same lines of NoC mapping, NoC configuration solution space also 

grows factorially with an increase in the number of cores and library options available. Therefore, there is 

a need to employ a stochastic technique to consider promising solutions rather than developing a 

deterministic methodology.  
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We propose a Hybrid Discrete Particle Swarm Optimization (HDPSO) based tool that takes an 

Application Core Graph (ACG) and network component libraries and provides an optimal application 

specific NoC design. Our proposed NoC design tool uses stochastic searching techniques to first generate 

random particles (solutions) called initial heuristic particles and then iteratively moves the particles around 

the search space to explore other solutions. 

 Our main contributions include the development of an intelligent memory-based hybrid particle 

multi-swarm optimization technique which combines exploration abilities of particle swarm with 

exploitation abilities of force directed swapping. Additionally, we introduce multiple swarms to search 

configurations and mapping search space separately. We assume a library of synthesized router sub-

components is provided. We have developed a new technique by combining the NoC mapping optimization 

problem with the architectural configuration for a cooperative solution search. 

The overall architecture of our proposed system is shown in Figure 4.1. The Application 

Communication Graph consisting of a core graph for each application along with communication cost 

model, area library, and power library is fed to the system. Finally, the system produces a core-to-tile map, 

link configurations, router configurations, optimal NoC area, power, and communication cost. Core-to-tile 

map points to where a particular core is to be located in the 2D-mesh. The proposed tool explores to provide 

the best configuration which results in optimal communication cost, power, and chip area. 

 

 

Figure 4.1 CAD system architecture for NoC synthesis 
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The resulting design contains description of routers, topology graph, and link configurations. 

Topology graph consists of link IDs, router IDs and their connections. Each link configuration consists of 

link width and maximum virtual channels (VCs) operating on the link. Router configuration comprises of 

SRAM buffer depth (in case of dynamic VC organization), VC buffer depth (in case of static VC 

organization), type of arbiter used in each router, arbiter size, crossbar switch size, type of flow control, 

and estimated router area and power consumption. A router (by extension a NoC) can be designed by 

choosing a flow control technique, the number of VCs for each input port, buffer organization, switch 

design, and pipelining strategy while abiding by the target clock frequency and power budgets. The buffer 

size, microarchitecture design and number of VCs for the router can be determined for the router when 

provided with the network topology, application graph, some architecture specific parameters, and 

probability distributions of packet properties. These parameters must be designed in such a way that optimal 

performance is achieved at minimal area and power costs. 

 

Generally, NoC mapping and configuration are categorized as ‘segregated search space 

optimization’ and ‘combined search space optimization’ as depicted in Figure 4.3a and Figure 4.3b 

respectively. Segregated search space NoC optimization is the most commonly used and tend to first 

generate an optimal NoC mapping based on power, area, throughput, etc. and then choose the network 

components to work optimally with the mapping based on the network performance. However, such a 

 

Figure 4.2 Typical NoC synthesis workflow. 
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segregated search space approach has several disadvantages. The results obtained from the mapping stage 

might no longer be optimal after network configuration. We believe that mapping and configuration 

optimization problems of NoC are closely related to each other. An optimal result must be picked after 

performance verification of mapping and configuration solution pairs. 

 Æthereal performs application specific NoC synthesis as depicted in Figure 4.3a [8]. It has two 

optimization loops of buffer sizing and smallest mesh. Smallest mesh loop is responsible for generating a 

topology and a mapping for the given ACG. The buffer-sizing loop resizes the buffers in each router for 

the generated NoC map and topology. Combining the search spaces of mapping and configuration together 

and looking for optimal mapping/configuration as one optimal solution may find more optimal solutions 

rather than the segregated solution spaces. Yet, this approach widens the scope of search space and may 

result in spending time in finding configurations for non-promising mappings. Regardless of the cost of 

mapping, its configuration is found. Moreover, many explored solutions might not meet the design 

constraints and get rejected during performance verification stage after wasting lot of time. 

 

We propose to combine NoC mapping and configuration optimization problems by use of swarms 

and sub-swarms. This will obviously cause bigger search space dimensions than pure mapping or pure 

synthesis search space, but should result in more optimal final solution as explained earlier. This kind of 

approach provides us with two advantages over traditional swarm optimization. It can be observed that the 

communication cost of a candidate solution depends on the communication volume of an edge which is 

 

 

(a) (b) 

Figure 4.3 (a) Segregated search space optimization workflow (b) combined search space 

optimization. 
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extracted from the input core graph and hop count for that edge which is extracted from the mapping 

solution itself. Since, this cost can be calculated before configuration, it is a better idea to do partial 

calculation of particle cost (𝑃𝐶𝑜𝑠𝑡) before moving to NoC configuration. This partial cost drives the main 

swarm and configuration cost (𝐶𝑜𝑛𝑓.𝑐𝑜𝑠𝑡) drives the sub-swarm. 

 

 

Figure 4.4 The proposed hybrid workflow for NoC mapping and configuration. 
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4.2 Problem Definition 

As we described earlier, when the number of NoC cores grow, the solution space explodes and 

there is a need for some optimization tools to find the optimal solution. An embedded application can be 

represented by an Application Core Graph (ACG). ACG comprises of collection of application modes 

(𝐴𝑀 ∈ 𝐴𝐶𝐺). Where each 𝐴𝑀 = 𝐺{𝐶, 𝐸} is composed of collection of cores (vertices) 𝐶 and collection of 

edges (unidirectional links) 𝐸. Moreover, each directed edge is denoted by 𝑒𝑖 = 𝑣𝑖(𝑐𝑗, 𝑐𝑘) ∈ 𝐸 where 𝑐𝑗 is 

core 𝑗, 𝑐𝑘 is core 𝑘, 𝑣𝑖 is the maximum volume of communication that can occur between j and k cores in 

Mega-bits/sec. The objective is to configure the NoC in such a way that the total communication cost, 

power consumption, and total chip area occupied by the NoC is minimal. NoC design optimization problem 

is of multi-dimensional nature, where the first step is to identify the number of dimensions of the search 

space. There are multiple objectives of this optimization problem as given below: 

 

Figure 4.5 Inner workings of the mapping and configuration HDPSO algorithm. 
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• Minimize hop count between frequently communicating cores across one or multiple mode 

application. 

• Minimize static and dynamic power consumption of NoC routers and links. 

• Minimize the chip area occupied by routers and links. 

• Minimize buffer penalty 

• Minimize credit loop latency 

• Maximize duty factor on links 

We assume a regular mesh topology with XY routing mechanism. We also assume that Virtual 

Channel (VC) buffers are part of the input ports of the router. We define the cost for the configuration 

solution or sub-particle (𝐶𝑜𝑛𝑓𝑖𝑔.𝑐𝑜𝑠𝑡) as: 

𝐶𝑜𝑛𝑓𝑖𝑔.𝑐𝑜𝑠𝑡 = (𝛼𝑃𝐶𝑜𝑠𝑡 + 𝛽𝑁𝑜𝐶𝑝𝑜𝑤𝑒𝑟 + 𝛾𝑁𝑜𝐶𝑎𝑟𝑒𝑎). 𝜆𝐵𝑝𝑒𝑛𝑎𝑙𝑡𝑦 ( 10 ) 

 where 𝛼, 𝛽, 𝛾, 𝜆 are tuning parameters for dependency of total cost on the particle cost 

(𝑃𝑐𝑜𝑠𝑡), power of NoC (𝑁𝑜𝐶𝑝𝑜𝑤𝑒𝑟), area occupied by NoC (𝑁𝑜𝐶𝑎𝑟𝑒𝑎) of NoC, and 

Buffer Depth Penalty (𝐵𝑝𝑒𝑛𝑎𝑙𝑡𝑦) respectively. 

Particle cost (𝑃𝑐𝑜𝑠𝑡) is given by: 

𝑃𝑐𝑜𝑠𝑡 = ∑ ∑ 𝑉𝑜𝑙𝑢𝑚𝑒(𝑒𝑖)×𝐻𝑜𝑝𝐶𝑜𝑢𝑛𝑡(𝑒𝑖)

𝑠𝑖𝑧𝑒(𝐸)

𝑖=1

𝑠𝑖𝑧𝑒(𝐴𝑀)

𝑗=1

 
( 11 ) 

 where edge i (𝑒𝑖 ∈ 𝐸), 𝑉𝑜𝑙𝑢𝑚𝑒(𝑒𝑖) is the communication volume in MB/s on edge i, 

𝐻𝑜𝑝𝐶𝑜𝑢𝑛𝑡(𝑒𝑖) represent the hop distance between two cores. 

Power cost of the NoC can be estimated by using following equation: 

𝑁𝑜𝐶𝑝𝑜𝑤𝑒𝑟 = ∑ 𝑃(𝑅𝑖)

𝑠𝑖𝑧𝑒(𝑅)

𝑖=1

+ ∑ 𝑃(𝐿𝑗)

𝑠𝑖𝑧𝑒(𝐿)

𝑗=1

 
( 12 ) 

 where R and L are the collection of all routers and links, 

Router  𝑅𝑖 ∈ 𝑅 and Link  𝐿𝑗 ∈ 𝐿, 

𝑃(𝐿𝑗) & 𝑃(𝑅𝑖) are power consumption of Link j & Router i. 

Since the router components can be roughly modularized into three types namely crossbar, arbiter, 

and input ports, the router power consumption can be found by adding the power consumption of all the 

router components given in the library: 
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𝑃(𝑅𝑖) = 𝑃(𝐴𝑖) + 𝑃(𝐶𝑖) + ∑ 𝑃(𝐼𝑘)

𝑠𝑖𝑧𝑒(𝐼) 

𝑘=1

 
( 13 ) 

 𝑃(𝐴𝑖) and 𝑃(𝐶𝑖) are the power consumed by the arbiter and crossbar switch of Router i, 

𝐼 is the collection of input ports of Router i, 

𝑃(𝐼𝑘) is the power consumed by k input port of Router i. 

Chip area for the solution or particle is found as following: 

𝐴𝑁𝑜𝐶 = ∑ 𝐴(𝑅𝑖)

𝑠𝑖𝑧𝑒(𝑅)

𝑖=1

+ ∑ 𝐴(𝐿𝑗)

𝑠𝑖𝑧𝑒(𝐿)

𝑗=1

 
( 14 ) 

 where R and L are the collection of all routers and links, 

Router i (𝑅𝑖 ∈ 𝑅) and link j (𝐿𝑗 ∈ 𝐿), 

𝐴(𝐿𝑗) & 𝐴(𝑅𝑖) represent the chip area of Link j & Router i. 

The area of a router can be determined from a library by looking into the architectural feature areas 

of router as follows:  

𝐴(𝑅𝑖) = 𝐴(𝐴𝑖) + 𝐴(𝐶𝑖) + ∑ 𝐴(𝐼𝑘)

𝑠𝑖𝑧𝑒(𝐼) 

𝑘=1

 
( 15 ) 

 where 𝐴(𝐴𝑖) and 𝐴(𝐶𝑖) are the chip areas of arbiter and crossbar switch of Router i, 

𝐼 is collection of input ports and 𝐴(𝐼𝑘) is the area of k input ports of Router i. 

  

When the flow of data suddenly starts after being blocked, the downstream router needs to inform 

the upstream router to send more data. This is done through credits. However, credits take time to travel 

back to the upstream router. Additionally, after receiving credits, data takes time to reach the downstream 

router. The total time for the credits to reach back upstream router and the time it takes for data to reach 

downstream data is known as credit loop latency 𝑡𝑐𝑟𝑡. For this time, link bandwidth at the downstream 

router is not being utilized.  

The credit loop latency 𝑡𝑐𝑟𝑡, expressed in flit times, gives a lower bound on the number of flit 

buffers needed on the upstream side for the channel to operate at full bandwidth, without credit stalls [44]. 

Since each flit needs one buffer and the buffers cannot be recycled until their tokens traverse the credit 

loop, if there are fewer than 𝑡𝑐𝑟𝑡 buffers, the supply of buffers will be exhausted before the first credit is 

returned. 
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The credit loop latency 𝑡𝑐𝑟𝑡 in flit times is given by: 

𝑡𝑐𝑟𝑡 = 𝑡𝑓 + 𝑡𝑐 + 2𝑇𝑤 + 1 ( 16 ) 

 where 𝑡𝑓 is the flit pipeline delay, 𝑡𝑐 is the credit pipeline delay, and 𝑇𝑤 is the one-

way wire delay (we assume this to be 1) 

If 𝐵(𝑓𝑙𝑜𝑤𝑗) is the number of buffers available to data flow 𝑓𝑙𝑜𝑤𝑗 in the input port, to calculate 

average buffers allocated to all data flows in a link (𝐵𝑎𝑣𝑔. (𝑙𝑖𝑛𝑘𝑖))following equation is used: 

𝐵𝑎𝑣𝑔. (𝑙𝑖𝑛𝑘𝑖) =  
∑ 𝐵(𝑓𝑙𝑜𝑤𝑗)
𝑁𝐹𝑙𝑜𝑤𝑠(𝑙𝑖𝑛𝑘 𝑖)
𝑗= 1

𝑁𝐹𝑙𝑜𝑤𝑠(𝑙𝑖𝑛𝑘 𝑖)
 

( 17 ) 

 where 𝑁𝐹𝑙𝑜𝑤𝑠(𝑙𝑖𝑛𝑘 𝑖) is the number of data flows going through 𝑙𝑖𝑛𝑘𝑖 

To calculate link duty factor (𝑑𝑓) for 𝑙𝑖𝑛𝑘𝑖, following equation is employed: 

𝑑𝑓(𝑙𝑖𝑛𝑘𝑖) = 𝑚𝑖𝑛 (1  ,
𝐵𝑎𝑣𝑔. (𝑙𝑖𝑛𝑘𝑖)

𝑡𝑐𝑟𝑡
) 

( 18 ) 

The duty factor of the data flow will be 1 as long as there are enough buffered flits to hide the credit 

loop latency. To calculate average duty factor for a configuration solution, following equation is used: 

𝑑𝑓𝑎𝑣𝑔. =
∑ 𝑑𝑓(𝑙𝑖𝑛𝑘𝑖)
𝑁𝑙𝑖𝑛𝑘𝑠
𝑖=1

𝑁𝑙𝑖𝑛𝑘𝑠
 

( 19 ) 

 where 𝑁𝑙𝑖𝑛𝑘𝑠 is the number of total links in the network 

Using the duty factor (𝑑𝑓), we determine the buffer penalty to be as following:  

𝐵𝑝𝑒𝑛𝑎𝑙𝑡𝑦 =
1

𝑑𝑓𝑎𝑣𝑔.
 ( 20 ) 

Figure 4.6 shows how buffer penalty and configuration cost are affected by average duty factor. If 

𝑑𝑓𝑎𝑣𝑔. is below 1, the sum 𝛼𝑃𝐶𝑜𝑠𝑡 + 𝛽𝑁𝑜𝐶𝑝𝑜𝑤𝑒𝑟 + 𝛾𝑁𝑜𝐶𝑎𝑟𝑒𝑎 is multiplied by inverse of 𝑑𝑓𝑎𝑣𝑔. which has 

huge impact on the cost. In other words, 𝑑𝑓𝑎𝑣𝑔 is inversely proportional to configuration cost.  
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4.2.1 Constraints 

Any configuration and mapping solution should not be allowed to take the link utilization above 1. 

Link utilization above 1 means that the link required throughput is higher than the link bandwidth. The Link 

Utilization is given by: 

𝐿𝑖𝑛𝑘𝑢𝑡𝑖𝑙.  =
∑ 𝑉𝑜𝑙𝑢𝑚𝑒(𝑒𝑖)
𝑁𝑓
𝑖=1

𝐿𝑤𝑖𝑑𝑡ℎ×𝐿𝑓𝑟𝑒𝑞
≤ 1 

( 21 ) 

 where ∑ 𝑉𝑜𝑙𝑢𝑚𝑒(𝑒𝑖)
𝑁𝑓
𝑖=1

 is the amount of data flowing through the link or in other 

words, sum of all data flows through the link 

𝐿𝑤𝑖𝑑𝑡ℎ is the width in bits of the communication link 

𝐿𝑓𝑟𝑒𝑞 is the operating frequency of the link 

 

4.3 Configuration Solution Space 

Since mapping and configuration optimization solutions are closely related to each other, we 

propose to search configuration search space simultaneously as mapping solution space is being searched. 

This is done by the mechanism of sub-swarm and sub-particles. Each particle has a sub-swarm which 

contains a fixed number of sub-particles. These sub-particles are possible configuration solutions. 

Whenever a particle moves (ie. finds new mapping solution), the sub-swarm is notified and all sub-particles 

are destroyed and then re-spawned. In each iteration of mapping optimization (ie. particles), several 

 

  

(a) (b) 

 

Figure 4.6 (a) Average duty factor and buffer penalty relationship (b) Average duty factor and 

configuration cost relationship. 
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iterations of sub-particles are run. This particle-to-sub-particle iteration ratio is controlled by a parameter 

set before runtime.   

The configuration solution space size depends on number of cores, number of router component 

configurations available, and mapping solutions space. The configuration solution space size is given as: 

𝐶𝑜𝑛𝑓. 𝑆𝑜𝑙.𝑠𝑖𝑧𝑒 = (𝑁𝑐𝑜𝑟𝑒𝑠 . ((5. 𝑁𝑖𝑝𝑟𝑡.𝑐𝑜𝑛𝑓𝑠.) + 𝑁𝑐𝑟𝑜𝑠𝑠.𝑐𝑜𝑛𝑓𝑠.  + 𝑁𝑎𝑟𝑏.𝑐𝑜𝑛𝑓𝑠.)) .𝑀𝑎𝑝. 𝑆𝑜𝑙.𝑠𝑖𝑧𝑒 ( 22 ) 

 where 𝑁𝑐𝑜𝑟𝑒𝑠 is the number of cores in the coregraph 

𝑁𝑖𝑝𝑟𝑡.𝑐𝑜𝑛𝑓𝑠. is the number of input port configurations in the library 

𝑁𝑐𝑟𝑜𝑠𝑠.𝑐𝑜𝑛𝑓𝑠. is the number of crossbar configurations in the library 

𝑁𝑎𝑟𝑏.𝑐𝑜𝑛𝑓𝑠. is the number of arbiter configurations in the library 

𝑀𝑎𝑝. 𝑆𝑜𝑙.𝑠𝑖𝑧𝑒 is the number of mapping solutions in solution space 

 

As a particle encounters new mapping solutions, potential configurations solutions are tried on it 

by sub-particles in sub-swarm. A sub-swarm is tied to a mapping solution or particle. As particle moves 

around, so does the sub-swarm. By nature of DPSO algorithm, mapping particles stay in a mapping solution 

for a longer duration if the solution is good. This increase in time allows sub-particles to penetrate deeper 

into configuration solutions space and look for more solutions. All in all, more configuration solutions will 

be explored for good mapping solutions. 

 

 
Figure 4.7 NoC Configuration solution space. 
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4.4 Router Sub-component Library Representation 

The router components are synthesized separately using synthesis tools such as Synopsys Design 

Compiler and using various technology size libraries. Router component area and power parameters are 

converted into EXtensible Markup Language (XML) format. 

The hierarchical relationship of the elements is shown in Error! Reference source not found. and 

 REF _Ref491140696 \h Figure 4.9. A router can have up to 1 component of type ‘Crossbar’ of any 

available configuration. It may also have up to 1 component of type ‘Arbiter’ of any available configuration. 

Finally, it may have up to 5 components of type ‘Input Port’ of any available configuration. 

 

 

When any library is imported into the tool, each component and configuration pair (regardless of 

the component type) receives a unique id (uId). This uId is used throughout the configuration process and 

 

Figure 4.8 NoC Configuration library XML element hierarchy. 

 

Figure 4.9 Library element hierarchy and relationship. 
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iterations. Each configuration solution (sub-particle) is an array of uIds. Detailed structure of a sub-particle 

is described in Section 4.5. 

4.4.1 Library 

A library is a database of components. It is represented by <library> xml element which contains 

several <component> elements. When the tool runs, several different libraries can be imported into the 

solution space using the import library button. The tool forms one library out of all the components present 

in libraries to be imported by use of merge_library function. This selective importing of libraries allows 

the designer to choose specific target libraries of router components and reduce solution space for the 

configuration HDPSO sub-swarm algorithm.  

 

4.4.2 Component 

A component element defines a parameterizable entity in the router. Arbiter, Input Port, and 

Crossbar are three types of router components supported in HDPSO tool. Each router can have up to 5 input 

ports in the solution space. Each of these 5 input ports can be of any component of type ‘Input Port’ and 

any configuration. A detailed component xml definition is shown in Figure 4.11. 

Figure 4.10 A library element defined in XML format. 
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4.4.3 Configuration 

A configuration is one combination of parameters in a parameterizable hardware module. For 

example, a hardware module contains two parameters FIFO_DEPTH and BUS_WIDTH. If 

FIFO_DEPTH can be 1,4, or 8 and BUS_WIDTH can be 16, 32, or 64, then total configurations will be 

9. This representation of configuration allows designers to automate synthesis of different configuration of 

modules and input into the optimization tool. 

4.4.4 Design 

A design represents all properties or synthesis results from one technology library. Designs can be 

of type ‘ASIC’ or ‘FPGA’. In case of ASIC, technology library size which was used to synthesize 

components should be passed. In case of FPGA, the component was synthesized using FPGA compilers 

and the device name for which it was synthesized should be passed. The tool is capable of optimizing NoC  

for FPGAs or ASICs. Reducing area and power in case of ASICs and reducing logic elements used in case 

of FPGAs. 

μ

μ

μ

Figure 4.11 A component element defined in XML format. 
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4.4.5 Property 

Property element is the basic element which stores a data value such as dynamic power, static 

power, registers, and frequency along with their units. When objects are created from parsing the input 

library xml, all property elements are copied over to the appropriate object properties.  

4.5 A Sub-particle (Configuration Solution) 

A sub-particle holds a single configuration solution named current_configuration. It also holds 

current_cost which is sum of communication cost, static power, dynamic power, and area of current 

configuration solution multiplied by buffer penalty. Besides that, it also holds local_best_cost, 

local_best_configuration, mapping, parent_particle_id, static and dynamic power, area, and 

communication cost separately. The internal structure of the sub-particle is shown in Figure 4.12. 

The array current_configuration holds universal IDs (uId) of component configurations. A uId is 

kept as an integer so that –ve values are permissible and components which are redundant can be 

represented by negative values. Allowed –ve uIds and what they represent is shown in Table 4.1. When a 

sub-particle is initialized, all uIds are set to undecided (ie. -4). Then the sub-swarm goes through 

configuration for topology stage (described in Section 4.6) where redundant components are marked and 

solutions are looked for only those components which are necessary.  

 

Table 4.1 Negative Universal IDs (uIds) and their meanings. 

uId Meaning 

0 NULL. Just initialized. 

-1 This component is used but no configuration is mapped yet. 

-2 This component is never used (due to application mapping). 

-3 This component is not needed at all (due to topology). 

-4 
Undecided. It is not yet determined whether this component 

is need nor not. 
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4.6 Configuration for Topology 

When sub-particles (configuration solutions) are created based on the current parent particle 

(mapping solutions), the edge routers are identified and their outward input ports are marked as not needed 

as shown in Figure 4.13. It is to signal the swarm to ignore any optimal configuration for these input ports, 

e.g. east and north input port is not needed for the first router at the top left corner of the mesh. Then all the 

router input ports which participate in moving any traffic are marked. To accomplish this, each edge’s 

source and destination location is identified and then packet path (XY routing) is followed while marking 

resources used on the way. After all the input ports are marked, the remaining input ports are marked as 

‘not needed’ because no traffic edges pass through them. Configuration solutions for these input ports are 

not explored. 

Finally, each router is checked whether it has any useful input port. If all the input ports of a router 

are marked as ‘no edge passing’ then it is marked as ‘dummy’ router and configuration for this router is not 

explored/optimized. It occurs when the number of cores is less than the number of tiles available in the 

topology. All such markings ensure that maximum time is spent on calculating optimal configuration for 

active and useful entities. Distances are calculated (as shown in Figure 4.14), and swap moves performed 

are also calculated ignoring the redundant entities, where the terms N, S, E, W, and L signify North, South, 

 

Figure 4.12 Internal structure of a sub-particle. 
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East, West, and Local input port configuration IDs respectively. While A and C stand for Arbiter and 

Crossbar configuration ID. The entire initialization algorithm pseudo-code is given in Algorithm 2. 

 

 

 

Figure 4.13 Identification of un-used input ports. 

Algorithm 2: Sub-particle initialization 

Input:   vector of sub-particle objects sub_pars 

     vector of integer mapping  

     vector of edges coregraph 

  component library lib 

Output: vector of initialized sub-particle objects sub_pars 

// Iterate over all the sub-particles 

for i = 0; i < sub_pars.size(); i++ do 

// Mark corner and edge routers to not have input ports which are not needed due to topology 

markCornerRouters(sub_pars, mapping, coregraph); 

// Mark input ports which do not have any traffic passing through 

markTrafficRoutes(sub_pars, mapping, coregraph); 

// Mark remaining routers as no edges are passing 

markNoTrafficRoutes(sub_pars, mapping, coregraph); 

// Mark dummy routers 

markDummyRouters(sub_pars, mapping, coregraph); 

// Configure routers with random configurations 

assignRandomConfigurations(sub_pars, mapping, coregraph, lib); 

end 

return sub_pars 
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4.7 Initial Configuration Heuristics 

Each main mapping particle is the possessor of a sub-swarm. At each iteration of the main particle, 

sub-swarm performs several iterations. The number of sub-swarm iterations per main swarm iteration is 

determined by the designer using trial-and-error and then set before running the algorithm. After 

construction of each main particle, sub-swarm is created and linked to the parent particle. After all the 

traffic routes are marked and useful entities are identified (as discussed in Section 4.3), random 

configuration IDs are selected from the available list of components. This process is depicted in Figure 

4.15. This random initial heuristic placement does affect the final solution but ensures that particles are 

well-separated initially. Every component and its configuration is assigned a unique ID, which is the unique 

configuration of a component and its type. It is evident in Figure 4.14 that the ID 4 and 6 can only be 

assigned to a crossbar due to its type. Similarly, N, S, E, W and L can only contain IDs of type input port.  

 

 

Figure 4.14 Determining distance between sub-particles (configuration solutions). 
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4.8 Sub-Swarm Movement 

In each iteration of sub-particle, it may go through none or all 3 stages of optimization (ie. inertia, 

self-confidence, and swarm-confidence). In each stage, 1 move is applied to the particle which changes the 

mapping solution. This means that the sub particles need to start finding configuration solutions for this 

new mapping solution. Therefore, old sub-particles are destroyed, and new sub-particles are formed. The 

complete movement algorithm is depicted in Figure 4.16. A promising configuration that the sub-swarm 

might have found is kept in global memory of the main swarm. So, at the end of optimization if there are 

no other better solutions, the best global solution is given as optimal solution. 

Tabu-ed memory is not kept and tabu-ed algorithm is not applied for sub-particles because there is 

no reflection mechanism and it incurs huge run time.  

 

Figure 4.15 Initial Configuration heuristics. 
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Figure 4.16 HDPSO sub-particle movement algorithm. 
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4.8.1 Mapping Edges to Links 

 

 

 

 

Figure 4.17 Link traffic volume calculation. 

 

Figure 4.18 Link stress estimation. 
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4.8.2 Buffer Size Optimization 

4.8.2.1 Conventional Virtual Channel (CVC)  

In CVC architecture, a physical link supports several virtual channels that are multiplexed across 

the physical link as shown in Figure 4.19. Each virtual channel has its own buffer space, therefore there 

should be at least 2 buffers for each data flow. In our methodology, we have assumed virtual channels equal 

to the number of edges passing through the link. This ensures that each data path always gets assigned a 

virtual channel. Number of edges passing through a physical link is also known as data flows. Data flows 

can share a physical link.  

 

Since header flits allow the data flows to save their space in the arbitration queue, they should be 

allowed to send at least the header flit through router. This is the reason for allowing at least 1 buffer space 

to write 1 flit. However, in the same clock cycle, a flit should also be allowed to traverse out. We assume 

that the output ports are not buffered. This is the reason for 2nd buffer space. While the flit is being written 

into FIFO, another flit is being read for the output.  

 

Figure 4.19 CVC input port architecture. 
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4.8.2.2 Dynamically Allocated Multi-Queues (DAMQ) 

Coregraph provides information about how much (on-average) data travels over a period of 1 

second, however it does not provide information on when does the data travel. For example, the data from 

one flow might travel within 1st 300 ms of a second while data from other flow traverses during 400ms to 

800ms mark in a second. If the data traversal does not overlap, the buffering requirement is maximum of 

all flows. If the data traversal overlaps, the buffering requirement is sum of buffering requirement of both 

data flows. Time division of data flows can reduce the buffering requirements for architectures where VCs 

are dynamically allocated. 

Figure 4.21 illustrates a 4-VC DAMQ input port where the addresses of flits are kept in a linked 

list table. The linked list table records the flit addresses per their VC-ID and in a First-Come-First-Serve 

(FCFS) basis.  

 

 

Figure 4.20 Determining minimum number of buffers required. 
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4.9 Convergence and Stopping Criteria 

The design of the algorithm is such that if the main particle stays at the current mapping solution 

for a long period of time, more iterations are run for its sub-swarm that is looking for configuration 

solutions. However, when the main particle moves from one location to another, it carries with it its sub-

swarm too and all the sub-particles explore the configurations for this new mapping. Commonly, the swarm 

particles of DPSO converge to an optimal point in search space near the end of optimization. It means that 

the particles have settled and optimization need not to continue. To detect this situation and stop the 

optimization, a normalized diversity factor is used that detects the average distance of the particles and sub-

particles and stops the iterations if it is less that a certain threshold. The threshold we found empirically to 

work best was 5. This distance is calculated using the method shown in Figure 4.14. The number of 

configuration differences between the solutions is the distance between the sub-particles. 

4.10 NoC Configuration Results 

We have implemented our multi-swarm Hybrid DPSO based methodology (HDPSO) by using the 

formulation presented in this paper. The computer system for optimization has a quad-core Intel i7 CPU 

running at 2.7 GHz with 16GB RAM. The NoC links and the router components library used are based on 

90nm technology. The area and power consumption values are determined by having a Verilog design of 

NoC routers and its components such as input-ports having buffer of 4 slots with 1-4 dynamic VCs, crossbar 

switch, VC allocators and arbiters. The channel link width is equal to the flit size of 16-bits and the overall 

router and target NoC architecture is based on EDVC methodology presented by Oveis-Gharan and Khan 

 

Figure 4.21 DAMQ VC input port architecture. 
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[11].  The models which our tool uses is parametric and no simulation is performed while optimization. 

The EDVC router and its components’ Verilog designs are synthesized by using the Synopsys design 

compiler.  

4.10.1 Input Library 

4.10.1.1 Crossbar Library 

 

4.10.1.2 Arbiter Library 

 

Table 4.2 Crossbar input library properties 

Configuration Flit Size Designs Property Value 

128-bit wide 128 

ASIC 
(32nm) 

Supply Voltage 0.85 V 

Frequency 100 MHz 

Area 6499 𝜇𝑚2 

Static Power 121 𝜇𝑊 

Dynamic Power 6 𝜇𝑊 

FPGA 
(Cyclone IV) 

Logic Elements 256 

Registers 0 

16-bit wide 16 

ASIC 
(90 nm) 

Supply Voltage 1.2 V 

Frequency 200 MHz 

Area 2502 𝜇𝑚2 

Static Power 611 𝜇𝑊 

Dynamic Power − 𝜇𝑊 

FPGA 
(Stratix III) 

Logic Elements 160 

Registers 0 

 

Table 4.3 Arbiter input library properties 

Configuration Flit Size Designs Property Value 

2-slots 
#VC = 4 

VC Depth = 2 flits 
128 

ASIC 
(32nm) 

Supply Voltage 0.85 V 

Frequency 100 MHz 

Area 14274 𝜇𝑚2 

Static Power 644 𝜇𝑊 

Dynamic Power 202 𝜇𝑊 

FPGA 
(Cyclone IV) 

Logic Elements 2682 

Registers 280 

4-slots 
#VC = 4 

VC Depth = 4 flits 
16 

ASIC 
(90 nm) 

Supply Voltage 1.2 V 

Frequency 200 MHz 

Area 28380 𝜇𝑚2 

Static Power 1904 𝜇𝑊 

Dynamic Power − 𝜇𝑊 

FPGA 
(Stratix III) 

Logic Elements 1116 

Registers 240 
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4.10.1.3 Input Port Library 

 

Table 4.4 LLD input port library properties 

Configuration Flit Size Designs Property Value 

4-slots 
#VC = 4 

VC Depth = 4 flits 
16 

ASIC 
(90 nm) 

Supply Voltage 1.2 V 

Frequency 200 MHz 

Area 5809 𝜇𝑚2 

Static Power 218 𝜇𝑊 

Dynamic Power − 𝜇𝑊 

FPGA 
(Stratix III) 

Logic Elements 95 

Registers 112 

8-slots 
#VC = 4 

VC Depth = 8 flits 
16 

ASIC 
(90 nm) 

Supply Voltage 1.2 V 

Frequency 200 MHz 

Area 10328 𝜇𝑚2 

Static Power 370 𝜇𝑊 

Dynamic Power  − 𝜇𝑊 

FPGA 
(Stratix III) 

Logic Elements 180 

Registers 204 

16-slots 
#VC = 4 

VC Depth = 16 flits 
16 

ASIC 
(90 nm) 

Supply Voltage 1.2 V 

Frequency 200 MHz 

Area 19813 𝜇𝑚2 

Static Power 688 𝜇𝑊 

Dynamic Power  − 𝜇𝑊 

FPGA 
(Stratix III) 

Logic Elements 332 

Registers 388 

32-slots 
#VC = 4 

VC Depth = 32 flits 
16 

ASIC 
(90 nm) 

Supply Voltage 1.2 V 

Frequency 200 MHz 

Area 39147 𝜇𝑚2 

Static Power 1306 𝜇𝑊 

Dynamic Power  − 𝜇𝑊 

FPGA 
(Stratix III) 

Logic Elements 670 

Registers 764 
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Table 4.5 ViChaR input port library properties 

Configuration Flit Size Designs Property Value 

4-slots 
#VC = 4 

VC Depth = 4 flits 
16 

ASIC 
(90 nm) 

Supply Voltage 1.2 V 

Frequency 200 MHz 

Area 6646 𝜇𝑚2 

Static Power 319 𝜇𝑊 

Dynamic Power − 𝜇𝑊 

FPGA 
(Stratix III) 

Logic Elements 75 

Registers 132 

8-slots 
#VC = 4 

VC Depth = 8 flits 
16 

ASIC 
(90 nm) 

Supply Voltage 1.2 V 

Frequency 200 MHz 

Area 21274 𝜇𝑚2 

Static Power 1236 𝜇𝑊 

Dynamic Power  − 𝜇𝑊 

FPGA 
(Stratix III) 

Logic Elements 306 

Registers 392 

16-slots 
#VC = 4 

VC Depth = 16 flits 
16 

ASIC 
(90 nm) 

Supply Voltage 1.2 V 

Frequency 200 MHz 

Area 48463 𝜇𝑚2 

Static Power 2968 𝜇𝑊 

Dynamic Power  − 𝜇𝑊 

FPGA 
(Stratix III) 

Logic Elements 548 

Registers 896 

32-slots 
#VC = 4 

VC Depth = 32 flits 
16 

ASIC 
(90 nm) 

Supply Voltage 1.2 V 

Frequency 200 MHz 

Area 109849 𝜇𝑚2 

Static Power 6989 𝜇𝑊 

Dynamic Power  − 𝜇𝑊 

FPGA 
(Stratix III) 

Logic Elements 1183 

Registers 2040 
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Table 4.6 EDVC-FRW input port library properties 

Configuration Flit Size Designs Property Value 

4-slots 
#VC = 4 

VC Depth = 4 flits 
16 

ASIC 
(90 nm) 

Supply Voltage 1.2 V 

Frequency 200 MHz 

Area 4991 𝜇𝑚2 

Static Power 106 𝜇𝑊 

Dynamic Power − 𝜇𝑊 

FPGA 
(Stratix III) 

Logic Elements 83 

Registers 107 

8-slots 
#VC = 4 

VC Depth = 8 flits 
16 

ASIC 
(90 nm) 

Supply Voltage 1.2 V 

Frequency 200 MHz 

Area 9524 𝜇𝑚2 

Static Power 150 𝜇𝑊 

Dynamic Power  − 𝜇𝑊 

FPGA 
(Stratix III) 

Logic Elements 206 

Registers 186 

16-slots 
#VC = 4 

VC Depth = 16 flits 
16 

ASIC 
(90 nm) 

Supply Voltage 1.2 V 

Frequency 200 MHz 

Area 19448 𝜇𝑚2 

Static Power 240 𝜇𝑊 

Dynamic Power  − 𝜇𝑊 

FPGA 
(Stratix III) 

Logic Elements 441 

Registers 340 

32-slots 
#VC = 4 

VC Depth = 32 flits 
16 

ASIC 
(90 nm) 

Supply Voltage 1.2 V 

Frequency 200 MHz 

Area 40716 𝜇𝑚2 

Static Power 413 𝜇𝑊 

Dynamic Power  − 𝜇𝑊 

FPGA 
(Stratix III) 

Logic Elements 964 

Registers 646 
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Table 4.8 shows the results for some well-known benchmark core-graphs for comparison purposes. 

Picture in Picture (PIP), MPEG-4 Decoder (MPEG4), and Video Object Plane Decoder (VOPD) are some 

of the typical core graphs used earlier to evaluate NoC mapping techniques. We are also presenting the 

mapping of these core-graphs to suitable size 2D NoCs in Fig. 5. The PIP, MPEG4, VOPD and DVOPD 

core graphs are given in the survey paper by Sahu et al. [26]. The cost for our HDPSO based optimized 

NoC mapping and configuration solution is compared with non-optimized solutions for the NoC mapping 

of same core-graphs. In non-optimized method, all the routers used have four input ports with four VCs per 

input port slots, where for our HDPSO optimized solutions, routers have different number of virtual 

channels and input ports depending on the number of edges to each core and the volume of traffic among 

different cores. 

Table 4.7 EDVC-FW input port library properties 

Configuration Flit Size Designs Property Value 

4-slots 
#VC = 4 

VC Depth = 4 flits 
16 

ASIC 
(90 nm) 

Supply Voltage 1.2 V 

Frequency 200 MHz 

Area 4674 𝜇𝑚2 

Static Power 108 𝜇𝑊 

Dynamic Power − 𝜇𝑊 

FPGA 
(Stratix III) 

Logic Elements 78 

Registers 97 

8-slots 
#VC = 4 

VC Depth = 8 flits 
16 

ASIC 
(90 nm) 

Supply Voltage 1.2 V 

Frequency 200 MHz 

Area 8687 𝜇𝑚2 

Static Power 162 𝜇𝑊 

Dynamic Power  − 𝜇𝑊 

FPGA 
(Stratix III) 

Logic Elements 174 

Registers 174 

16-slots 
#VC = 4 

VC Depth = 16 flits 
16 

ASIC 
(90 nm) 

Supply Voltage 1.2 V 

Frequency 200 MHz 

Area 17016 𝜇𝑚2 

Static Power 263 𝜇𝑊 

Dynamic Power  − 𝜇𝑊 

FPGA 
(Stratix III) 

Logic Elements 324 

Registers 327 

32-slots 
#VC = 4 

VC Depth = 32 flits 
16 

ASIC 
(90 nm) 

Supply Voltage 1.2 V 

Frequency 200 MHz 

Area 34295 𝜇𝑚2 

Static Power 457 𝜇𝑊 

Dynamic Power  − 𝜇𝑊 

FPGA 
(Stratix III) 

Logic Elements 727 

Registers 632 
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Table 4.8 Area/Power for PIP and MPEG4 in optimal, generous, and minimal configurations 

Name Cores 
Mesh 
Size 

Particle 
Cost 

Method #Buffers/VC 
Input Port 

Architecture 

NoC 
Area 

(𝝁𝒎𝟐) 

NoC 
Power 
(𝝁𝑾) 

Buffer 
Penalty 

Total 
Configuration 

Cost 

PIP 8 3 x 3 640 

Generous 8 

LLD 376152 24824 

1 

401616 

ViChar 470416 32560 503616 

EDVC-FRW 363176 22168 385984 

EDVC-FW 353944 22280 376864 

HDPSO Varying 

LLD 344519 23760 

1 

368919 

ViChar 368020 26141 394801 

EDVC-FRW 331445 21860 353945 

EDVC-FW 325853 21902 348395 

Minimal 4 

LLD 340000 23608 1.04 378817 

ViChar 470416 32560 

1 

503616 

EDVC-FRW 363176 22168 385984 

EDVC-FW 353944 22280 376864 

MPEG4 12 4 x 4 3567 

Generous 8 

LLD 574556 37606 

1 

615729 

ViChar 726898 50076 780541 

EDVC-FRW 554288 33402 591257 

EDVC-FW 539603 33582 576752 

HDPSO Varying 

LLD 533885 36238 

1 

573690 

ViChar 595246 41823 640636 

EDVC-FRW 513491 33006 550064 

EDVC-FW 503486 33096 540149 

Minimal 4 

LLD 533885 36238 1.06 608111 

ViChar 595246 41823 

1 

640636 

EDVC-FRW 513491 33006 550064 

EDVC-FW 503486 33096 540149 

VOPD 16 4 x 4 4425 

Generous 8 

LLD 834928 52608 

1 

891961 

ViChar 1111024 75008 1190457 

EDVC-FRW 802544 45536 852505 

EDVC-FW 777384 45856 827665 

HDPSO Varying 

LLD 795598 51282 

1 

851305 

ViChar 891604 61253 957282 

EDVC-FRW 734549 44876 783850 

EDVC-FW 717189 45046 766660 

Minimal 4 

LLD 834928 52608 1.08 963318 

ViChar 1111024 75008 1.02 1214266 

EDVC-FRW 802544 45536 1.02 869555 

EDVC-FW 777384 45856 1.02 844218 

DVOPD 26 6 x 6 22962 

Generous 8 

LLD 1248048 67408 

1 

1338418 
ViChar 1961984 124448 2109394 

EDVC-FRW 1183504 51536 1258002 
EDVC-FW 1124864 52336 1200162 

HDPSO Varying 

LLD 1238912 67080 

1 

1328954 
ViChar 1372730 87564 1483256 

EDVC-FRW 1003900 49780 1076642 
EDVC-FW 964950 50162 1038074 

Minimal 4 

LLD 958832 57680 1.06 1101842 
ViChar 1025792 65760 

1 
1114514 

EDVC-FRW 893392 48720 965074 
EDVC-FW 868032 48880 939874 
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It can be seen from the input libraries of input port that the increase in power is not steep as 

compared to increase in area when more buffer slots are added to the input port. This is one of the reasons 

why power savings are relatively small than area savings in Figure 4.22. Overall, ViChar input port saw the 

most improvement. This was because higher number of VC slots in ViChar resulted in almost exponential 

increase in input port area and power. On average, power savings for real world applications ranged from 

1 - 43% and area savings ranged from 22 – 44 %. 

 

Figure 4.22 Power and area % savings observed when comparing HDPSO optimized configuration to 

un-optimized generous configuration. 
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(a) (b) 

 

 

 

(c) (d) 

Figure 4.23 NoC coregraphs (a) MPEG4 (b) 16-core VOPD (c) DVOPD (d) PIP. 
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(a) (b) 

 

 

 

(c) (d) 
 

Figure 4.24 NoC configuration and mapping solutions (a) MPEG4 (b) VOPD (c) DVOPD (d) PIP. 
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In order to give equal weightage to area, power, and communication cost, 𝛼, 𝛽, 𝑎𝑛𝑑 𝛾 were all set 

to 1. It is observed that the applications with lower edges-to-cores ratio (e.g. MPEG4) have better cost 

improvement due to configuration. This is also shown in Figure 4.25. This was due to the fact that more of 

the input ports could be eliminated if there are less edges in the application. The improvement with regards 

to the chip-area is in the range of 30-120%, and power improvement varies from 8-40%. Overall, the total 

cost improvement is in the range of 20-110%. The optimized NoC mappings of MPEG4, VOPD, DVOPD 

and PIP are presented in Figure 4.24 and these are based on NoC configuration and mapping achieved by 

following our HDPSO methodology. The green or small rectangular boxes signify the input ports and the 

number beside it represents the number of virtual channels needed for efficient implementation. Due to the 

use of smaller and simpler application core graphs, the VCs required at any of the input port is less than a 

maximum of four VCs. The NoC chip area and power are saved by using less number of input ports and 

fewer virtual channels. 

After each iteration of mapping optimization, several iterations of configuration optimization are 

run in order to try different configurations on the mapping solution. The combined results from two swarms 

are used to determine next position of main (mapping) particles and sub-particles (configuration). The 

solution with the best overall cost is selected and given as optimal solution after the swarm has converged 

onto a relatively small space (determined by the swarm divergence factor). It was observed that the 

applications with lower edges-to-cores ratio had better cost improvement and the solution had a look of 

mesh topology but in reality was a custom-mesh topology (See Figure 2.1g). This was due to uneven 

distribution of input ports and router. We intend to expand our library of pre-synthesized routers and include 

optimization for virtual channel buffer depth. 
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4.11 Summary 

After each iteration of mapping optimization, several iterations of configuration optimization are 

run in order to try different configurations on the mapping solution. The combined results from two swarms 

are used to determine next position of main (mapping) particles and sub-particles (configuration). The 

solution with the best overall cost is selected and given as optimal solution after the swarm has converged 

onto a relatively small space (determined by the swarm divergence factor). It was observed that the 

applications with lower edges-to-cores ratio had better cost improvement and the solution had a look of 

mesh topology but in reality was a custom topology. This was due to uneven distribution of input ports and 

router. We also performed optimization for virtual channel buffer depth during the configuration 

optimization. A push-pull force was established between average duty factor of NoC links and buffer depth 

in order to keep the performance of the network high while reducing NoC power and area. 

 

  

 

Figure 4.25 Cost improvements due to configuration optimization. 
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Chapter 5 

Conclusion 

A Hybrid Swarm Optimization method is presented for NoC mapping, which increases the 

efficiency of traditional discrete particle swarm optimization based mapping. It has a Tabu-ing of search 

points that swarm particles have visited. Since the search space was of combinatorial discrete nature, 

deflection technique is used to encourage the swarm particles to explore much more of the solution space 

before converging to the optimal solution. If the search space is of continuous nature, then other methods 

such as Bezier curve would have been employed to force the particle to curve around the Tabu-ed area. 

If a swap move results in a solution which is already tried (i.e. Tabu-ed), the proposed moves are 

deflected in the other directions until there is no other way to allow the original move. This causes the 

algorithm to explore more of the search space before converging onto the global best solution. The HDPSO 

based NoC mapping is employed for various popular applications PIP, MPEG-4, VOPD, and DVOPD as 

well as large synthetic traffic patterns and our HDPSO methodology performs better than other comparable 

NoC mapping algorithms. 

Standard DPSO based method has also been implemented for NoC mapping and quality of the 

results is compared with our HDPSO based mapping. It was found that HDPSO performs 15% to 216% 

better than traditional DPSO technique.  Our tool performed better in particular for traffic patterns which 
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contain ring communication structure such as Neighbor, Tornado, and Shuffle traffic patterns. It is also 

concluded that remembering the past solutions and proposing new solutions by our HDPSO algorithm 

enables it to produce better mapping solutions. 

A new Hybrid Multi-Swarm Optimization (HDPSO) method is presented for NoC mapping and 

configuration, which increases the efficiency of traditional discrete particle swarm optimization and uses a 

library of pre-synthesized router components. Since there are two optimization problems, multi-swarm 

method was used to explore each solution space. Due to combinatorial discrete nature of the search space, 

deflection technique is used to encourage the swarm particles to explore much more of the solution space 

before converging to the optimal solution. 
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Glossary 

 

2D  2 Dimensional 

3D  3 Dimensional  

ACG  Application Core Graph 

AM  Application Mode 

AV  Audio-Video  

CG  Core Graph 

CGG  Core Graph Generator 

CPN  Congestion Propagation Network 

DPSO  Discrete Particle Swarm Optimization  

DVOPD Dual Video Object Plane Decoder  

GA  Genetic Algortihm 

HDPSO Hybrid Discrete Particle Swarm Optimization  

IP  Intellectual Property 

MPEG  Moving Picture Experts Group 

MWD  Multi-Window Display  

NoC  Network-on-Chip 

PSO  Particle Swarm Optimization 

PIP  Picture-in-Picture 
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SA  Simulated Annealing 

SIP  Silicon Intellectual Property 

SoC  System-on-Chip 

TGFF  Task Graphs For Free  

VOPD  Video Object Plane Decoder 


