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ABSTRACT 

Optimization Models for Distribution Planning and Operation 

Kamran Masteri Farahani 

Doctor of Philosophy 

Electrical and Computer Engineering 

Ryerson University, 2018 

Smart grid technologies, renewables, energy storage devices and electric vehicles are going to 

characterize the next generation distribution systems. It is important to note that inclusion of electric 

vehicles and renewables, inherently due to their natural power profile, result in distribution systems 

having a peaky load profile with lower asset utilization factors. Optimal planning and operation of 

distribution systems are important aspects and should consider this changing paradigm. 

This thesis aims to develop new solutions for optimal planning and operation of distribution systems 

considering these new technologies and their implications. The thesis specifically aims to use new 

techniques such as complementarity in conjunction with classical optimization techniques to 

develop new algorithms for optimal planning and operation of distribution systems. The proposed 

work includes the following. Two new distribution planning algorithms are proposed that include 

the installation and optimal sizing of Battery Energy Storage System units in addition to traditional 

assets, such as feeders and transformers. It incorporates plan and asset lifetimes as a means of 

establishing the minimum total annualized costs of new and replacement assets, operation and 
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maintenance, and customer interruptions. For a fair comparison, all costs reflect the current year and 

are annualized over a specific study period. Even though the second technique has the same base as 

the first method, it is a multi-objective algorithm that uses fuzzy optimization technique to handle 

multiple contradicting objectives that cannot be combined into a single objective as they are in 

different units. This method has been developed due to the lack of certainty in how to calculate 

customer interruption cost in literature. It was proven in both methods that Battery Energy Storage 

System could be a more economical option compared to expensive underground feeders. Then in 

order to realize Smart Radial Distribution System of the future, a real-time optimal reconfiguration 

algorithm is proposed, which uses a classical nonlinear optimization technique and guarantees an 

optimal solution in the least time. The method optimizes the system loss and is based upon a 

complementarity technique that transforms a set of discontinuous solution spaces into a single 

continuously differentiable solution space, thus enabling the use of classical nonlinear optimization 

techniques without resorting to heuristics. The method is tested on 33-bus and 69-bus systems and 

the results are better or matching the other methods available in literature while it is significantly 

faster.  
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CHAPTER 1 

INTRODUCTION 

The major components of an electric power system are generation, bulk transmission system, 

transmission system stations, distribution system, distribution system substations and primary 

feeders. The transmission system consists of a network of three-phase transmission lines, 

transformers, shunt and series capacitors and transmission substations. Typical transmission 

voltages range from 115 kV up to 765 kV. The distribution system consists of step-down 

transformers, substations, switching capacitors, voltage regulators, and distribution system lines. 

Typical distribution system voltages range from 4 kV to 69 kV.  

While this arrangement and configuration is typical, every power system design and implementation 

arises from requirements of load profile, geography, available energy resources, investments, 

planning philosophy, operational philosophy, etc. This is specific to each case.  

Each distribution substation will serve one or more primary feeders. The feeders are usually radial, 

with the exception where the ring topology is used for higher reliability. A radial topology means 

that there is only one path for power to flow from the distribution substation to users or vice versa 

[1], Fig 1.1. 

A typical distribution system will be composed of one or more distribution substations consisting of 

one or more feeders. Components of the feeder may consist of the following: 

• Main Feeder 

• Bus 

• Transformers 
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• Shunt Capacitor Banks 

• Switches 

• Voltage Regulators 

• Protection Devices 

Feeders are usually segregated into several sections connected through switches and reclosers. Each 

feeder section may have several lines connected to it through switches. Feeders run along streets, 

mostly as overhead lines, and supply distribution transformers that step the voltage down to the 

secondary distribution level (120 to 480 V). From these transformers, energy flows through 

secondary mains and services conductors to supply power directly to customer loads. In some cases, 

underground feeders are used for power distribution where it is difficult to use an overhead system. 

In congested areas such as cities and towns, the cables are laid below the ground surface. Though 

the initial investment is significantly more compared to that of overhead lines, the maintenance 

required is much less compared to the overhead system. The higher cost of underground feeders is 

mostly due to the high cost of trenching, conduits, cables, manholes and other special equipment. 

There are disadvantages to using underground feeders in distribution systems.  Even though there is 

only a rare chance of faults occurring in an underground system, it is very difficult to locate the fault 

point and its repair is difficult and expensive. The more important issue with underground feeders 

is that  expansion for new loads is not possible and can only be met by installation of new lines. For 

the severely congested cities in North America, these disadvantages are going to be an enormous 

planning and operating concern, especially with the increase in popularity of Electric Vehicles (EV) 

and renewable energy sources. 
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The penetration of electric vehicles, energy storage and renewable sources such as wind and solar 

into distribution systems has been growing steadily in recent years and is anticipated to grow at a 

fast pace in the future. In contrast, in the past, distribution systems were largely passive with only 

loads. These changes are transforming distribution systems to be active. Active loads, renewable 

generation and electric mobility have large economic implications and hence it makes it imperative 

that distribution systems function with a high reliability. In the past, only transmission systems 

required a high degree of reliability as they were generation connected. Slowly, but steadily, 

distribution system utilities are embracing smart grid technologies to make their systems more 

reliable, cost-effective and green. 

Consequently, major efforts have been devoted to developing reliable and cost-effective operation 

of distribution systems (DS). The Electric energy distribution business entails sourcing electric 

energy from transmission stations and distributing it to customers in the most cost-effective and 

reliable manner while minimizing capital and operational costs. Accordingly, utilities look to 

minimize the sum of annual amortized capital costs and annual operating costs per unit of delivered 

energy, while meeting required reliability of service and quality of supply standards. 

It is observed that as the ratio of peak to off-peak power flow increases, total operating and capital 

costs also increase. This is accentuated with renewables that drive off-peak power flow to a very 

low value.  

One of the recent solutions to increase reliability and increase cost-effectiveness of distribution 

systems is to use Energy Storage (ES). That is due to the technological advances that enable ESS 

units to offer several services and a decrease in their prices. The cost of ESS is likely to decrease 

even more over the coming years to make them more attractive for use in distribution systems. 

Energy storage can also play a vital role in enabling distribution systems to serve electricity to 
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Electric Vehicles (EV), which creates issues due to sudden load growth in concentrated areas and 

peaky load profiles. Further, ESS units could be used to increase the profit margins of wind and 

solar farm owners by providing arbitrage type services. In some cases, a hybrid solution of new 

feeders and Energy Storage Systems (ESS) may cost less than just using new feeders.  

 

 

Fig. 1.1 Distribution System in the Presence of Renewables, EVs and ESSs 

 

 

 

 

 

 

MV Load 
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Bank H
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1.1 EFFECT OF RENEWABLES AND ELECTRIC VEHICLES ON LOAD PROFILES 

 

Electric vehicles and renewable generators have typical electricity consumption patterns. Taking an 

extreme case, electric cars such as Tesla with fast chargers can charge in 30 minutes, taking up to 

60 kWh of energy. It equals about 120 kW power requirement. Contrasting this need with a 2 kW 

peak demand for a home in Ontario with Natural Gas heating and 18 kW peak demand for a home 

with electric base board type heating, EVs of this type represent a high peak for a very short duration. 

To understand the effect of renewables and EVs on the load profile of DS, an example is shown that 

considers a three-bus electrical distribution system with an energy storage device as shown in Fig.1.2. 

Bus #1 is the substation. The two loads, Load #1 and Load #2, are connected at Bus #2 and Bus #3 

respectively. In general, the load profile in a day may vary as shown in Fig. 1.3 where  Pavg is the 

average demand at the substation in a day considering load and connected generation. Pmax is the 

peak substation demand in a day. The ratio of Pavg / Pmax quantifies the utilization factor.   

and is the ratio which significantly influences the opportunity for energy arbitrage using batteries.  

In a peaky load profile, the utilization factor is low and vice versa. 
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Fig. 1.2 Sample System with Energy Storage System 

 

Ordinarily, without Energy Storage (ES), feeder size should be equal to or more than Pmax to 

satisfactorily supply connected demand on the feeder. If Energy Storage is connected, it will benefit 

from arbitrage opportunity, which is the shaded region. This shaded region is a function of Pavg and 

Pmax.  

In fact, if Pavg is close to Pmax, there is no energy arbitrage opportunity and there will be no use of 

Energy Storage. In such a case, the feeder needs to be sized to equal or greater than Pmax. 

Section 
#1 

Section 
#2 

Load 2 
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Z02 

Load 1 

Feeder Source: Substation 

 Bus 2 

 Bus 3 

Energy 
storage 
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Fig. 1.3 Load Profile of a Day 

As the ratio Pavg / Pmax reduces (that is, as Pmax gets larger), the shaded region in Fig. 1.3 will increase. 

If Energy Storage is considered, a large sized Energy Storage Unit will be required and the feeder 

size will be reduced to Pavg. Hence, it may be concluded that the area under the Pavg line determines 

the feeder size. The shaded region will determine the magnitude of the energy arbitrage opportunity. 

The sizes of batteries and feeders also depend on load patterns.  

There is an opportunity to consider two options, (1) only feeders of the size Pmax, and, (2) feeders of 

size Pavg and energy storage units that have a capacity to store and supply the shaded region.  

 

P 
(M

W
) 

Time (hours) 

Area of shaded region relates to size 
of Battery ES. Pmax 

Pavg 

Pavg relates to feeder size. 
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Hence, if the cost of energy storage is significantly low and feeders have a low utilization factor 

(Pavg / Pmax), then an economic case may be made to install energy storage with lower feeder 

capacities. 

1.2 OPPORTUNITY TO PLAN WITH ES AS A COST-EFFECTIVE SOLUTION 

Good voltage regulation is the most important factor in a distribution system for delivering quality 

service to consumers. For this purpose, careful consideration is required for the design of new 

feeders and distribution networks. Further, in the last two decades, distributed generations at low 

voltage have become pervasive. The rate of transition to EV is on the rise. These changes have 

transformed distribution systems to be active with load, generation and energy storage in contrast to 

the past, where distribution systems were largely passive or load consuming entities. These factors 

require a robust distribution system with a high degree of reliability. Accordingly, planners are 

working to evolve newer planning tools. Distribution planning has recently returned to a golden age, 

with researchers and engineers challenged to develop planning techniques suitable to current and 

future distribution systems. [2] 

Today’s electricity delivery system provides high quality and highly reliable power to customers at 

the least cost. More than a century of development has led to a large, interconnected system that 

brings power from central station generators via transmission and distribution to customers. 

Renewable energy sources at the distribution level are encouraged as they reduce pollution and are 

pervasive. Connecting new renewables to feeders may require feeder upgrades depending upon the 

situation. The usual process for utilities is to minimize the cost for feeder and other asset upgrades 

such that the resulting upgraded system can connect new renewable sources while maintaining 

system performance within standards. The model is called the feeder investment model that accounts 

for feeder capital costs and maintenance costs accrued via loading. The issues of intermittency and 
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increase in system cost could be mitigated by planning to have energy storage solutions at 

appropriate locations. As battery energy storage systems are now an important part of many 

renewable energy systems, the selection of battery size also becomes an important task as it has a 

major influence on the reliability and cost of the system. A large energy storage system would clearly 

improve the system reliability but is usually not justified due to high overall cost. Therefore, a trade-

off always exists between reliability and cost. This project deals with deployment of battery energy 

storage solutions in distribution networks which have variable loads and renewable energy sources. 

Through this deployment, a distribution system could schedule and use a set of distributed energy 

storage units connected to different locations, deferring major capital investments and lowering costs 

for all customers. 

Energy Storage Systems are typically very expensive in capital, operation, and maintenance costs. 

However, the installation costs of energy storage have declined by almost 50% in the last decade. 

They are expected to decrease further in the future.  

Meanwhile large distribution utilities recognize that the purpose of their asset planning program is 

to maximize the value they provide to their stakeholders as measured in terms of its focus on 

customer service, asset renewal, and consistent financial performance. Asset planning comprises the 

tools by which utilities evaluate spending proposals to identify those that provide the best value. At 

its core, asset planning is about evaluation, justification, and prioritization of spending programs. 

Some utilities such as Toronto Hydro-Electric System Limited (THESL) are constantly looking for 

new methods to operate and move forward from the traditional techniques. In fact, they are on the 

path to becoming an industry-leading asset management utility. Their adoption of the feeder 

investment model is evidence of such leadership.  

Basically, the Feeder Investment Model (FIM) is a risk-based economic model for identifying the 
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economically optimal intervention timing for aging assets. This model considers all the costs 

associated with the system and does life cycle analysis. The expected outputs from this model would 

be the optimal replacement time for assets and the minimum life cycle cost. When used with 

renewable resources, energy storage can increase their usability of photovoltaic and wind generated 

electricity by making this generation coincident with peak load demand. The energy storage devices 

can store power/energy during off-peak periods and discharge it during peak load periods. This 

enhances the utilization of network infrastructure, resulting in the deferment of system upgrades to 

later years, which may reduce the feeder investment cost. In this work, the proposed FIM is 

constructed by also considering energy storage devices. 

1.3 CURRENT DS PLANNING METHODS 

To meet their business needs, distribution utilities must develop the least costly asset solution 

possible. On the other hand, a battery energy storage system (BESS) is a useful method of enabling 

the incorporation of renewable resources and electric transit. However, current asset planning 

methods employed by distribution utilities fail to include BESS as a possible asset. 

The distribution system asset (DSA) planning algorithms evaluate a variety of possibilities and then 

select the least costly asset upgrade option. Despite the sophistication of these DSA planning 

algorithms and their outstanding performance, the advent of new smart grid tools such as microgrids 

and energy storage systems has resulted in a need to explore new algorithms and DSA planning 

paradigms. Connection of new renewables and electric vehicles to distribution systems in the future 

will require feeder upgrades. The common practice is for utilities to minimize their costs for feeder 

and other asset upgrades, so that the resulting upgraded system is able to handle the connection of 

new renewable sources and electric vehicles, while maintaining system performance within 
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applicable standards. Meeting this goal requires careful consideration of the design of new feeders 

and distribution systems [3]. 

The main component of the DSA planning methods used by several utilities is the so-called Feeder 

Investment Model (FIM), which is a risk-based economic model for identifying the economically 

optimal plan for incorporating new assets and replacing aging ones. For fair comparison of the cost 

of various plan options, the practice is to consider the annualized costs of new and replacement 

assets (feeders, transformers, etc.), operation and maintenance, and customer interruptions over a 

planning period that reflects the current year. The resulting new or upgraded distribution system 

must connect new loads and/or generation while satisfying performance standards at the lowest 

annualized cost [4]. As shown in Fig. 1.4, the optimization must be based on the minimization of 

two competing cost curves: the annualized capital cost and the annualized risk cost. The annualized 

risk cost includes the cost of customer interruptions as well as the costs of operation and maintenance. 

As one can see from these curves, the risk cost increases when the year of intervention increases, as 

the probability of fails increases when the investment is postponed. On the other hand, the capital 

cost decreases when the year of intervention increases, as the investment is postponed. 

Presently, the optimal asset planning algorithms used by utilities do not consider the use of battery 

energy storage systems and the current objective function of their algorithm looks like the following:  

                   𝑓'( 𝑆𝐹, 𝑁𝑌 + 𝑓/0( 	𝑁𝑌 + 𝑓-.- 𝑆𝐹𝐸, 𝑆𝐹, 𝑁𝑌                (1.1) 

where 𝑓'(  is capital cost of feeders, 𝑓/0(  is maintenance cost of feeders and 𝑓-.-  represents the 

customer interruption costs.  

 
2.  
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Fig. 1.4 Representation of the Equivalent Annual Costs 

 

1.4 RECENT DEVELOPMENTS OF DS PLANNING WITH ES 

Renewable energy sources, such as wind and solar, have large potential to replace conventional 

fossil fuels and to reduce greenhouse gas emissions worldwide. However, both solar photovoltaic 

(PV) and wind electric generations, which have uncertainty in nature, may cause large reverse power 

flows, especially during off-peaks, from where they are installed back to transformer stations. 

Besides, with rapid development in electric vehicles (EV), there is potentially a large amount of 

demand that will appear in distribution systems. These new generation sources and demands will 

heavily increase the operational burden of distribution systems. Utilities are seeking proper tools to 

upgrade their distribution systems to adopt more renewables and to supply higher demand.  
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In traditional ways, transformers and lines (major components of a feeder) are added on feeders to 

supply additional demand. These asset additions are usually very expensive. With recent 

advancements in energy storage technologies, battery energy storage systems (BESS) appear to be 

an option for utilities to consider in their system upgrades. California seeks to install 186 GWh/22 

GW of BESS to enable its 85% penetration of renewable generation [28]. The Northwest Power 

Pool will need up to 10 GWh/1 GW of BESS by 2019 to balance 14.4 GW of installed wind 

generation [29]. However, choosing locations and sizes of BESS in distribution networks is still a 

challenge.  

The literature includes proposals for the sizing of energy storage (ES) in the context of active 

distribution systems and distributed generation (DG), but the methods suggested are based mainly 

on the adoption of trial-and-error approaches. In [5] - [7], this approach involves the investigation 

of a number of predetermined ES sizes and consideration of a variety of control schemes. The 

optimal size is achieved based on the existence of the correct level of trade-off between the cost of 

the ES facility and the operational costs [5], [6] or the volume of curtailment [7]. Although trial-

and-error approaches may be feasible and practical, given the existing combinations of power and 

energy capacities, they cannot encompass the exploration of a large search space. Adequately 

covering such a search space becomes even more challenging when multiple ES units are considered 

simultaneously. The research in [8] discusses the reduction of curtailment of renewable distributed 

generation (DG), specifically wind farms, simultaneously with the management of congestion and 

voltages through the introduction of a planning framework for determining the minimum storage 

sizes (power and energy) at multiple locations in distribution networks. However, this study fails to 

consider DSA planning or the economics of asset planning.  
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The authors of [9] presented an active-reactive optimal power flow (A-R-OPF) for distribution 

systems with embedded wind generation and battery units based on a fixed-length charge and 

discharge cycle for the daily operation of battery units. In a further study [10], the same authors 

discussed a flexible battery management system whereby higher profits could be achieved than with 

a fixed-operation strategy for the use of battery units. This topic was also explored in [11], with the 

goal of ensuring both practical and optimal operational strategies, which was accomplished based 

on consideration of a flexible A-R-OPF with a flexible on-load-tap-changer (OLTC) control system. 

According to [12], the unique advantages of renewable DG sources have led to their increased 

penetration in active distribution networks. However, the incorporation of non-dispatchable DGs 

such as wind turbines raises questions about the risk of uncertainty and power quality issues within 

distribution networks. Such problems could be eliminated by the appropriate application of ES units, 

and in fact, a method for optimizing the allocation and economic operation of ES devices in a low-

voltage microgrid system was presented in [13]. In [14], the authors investigated the use of a genetic 

algorithm (GA) optimization technique to solve a multiple objective function for evaluating the 

economic impact of energy-storage-specific costs on the net present value of ES installations in 

distribution substations. To minimize the costs of power system assets and improve system voltage 

profiles through the siting and sizing of storage units, while including consideration of the 

uncertainty associated with wind power production, a hybrid multi-objective particle swarm 

optimization (HMOPSO) approach was proposed in [15]. The authors of [16] examined methods for 

determining optimal energy storage system operation to increase the value of wind-power generation. 

In [17], the researchers presented a probabilistic approach for ES sizing and siting in distribution 

systems in order to improve the reliability of distribution systems. Their algorithm is dependent on 

load shedding and it does not compare the cost of ES with the cost of upgrading other assets. 
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Additional research, such as the work presented in [18] and [19], has been focused on sizing ES 

units for isolated microgrid applications. The optimization of the cost and arbitrage benefits of ES 

installation was discussed in [20] with respect to the costs of system upgrades and energy losses. 

The primary goal was to determine the optimal size, location, and operation of the storage units to 

be installed, so that the total system costs would be minimized and system benefits maximized. The 

work was based on the use of a combination of linear programming and a GA, coupled with a fixed 

planning period problem. Therefore, the algorithm was not designed to look for the optimal number 

of useful years for the assets and instead uses an assumed number to base the search for a solution 

to the planning problem. The methods proposed in [18] - [20] do not consider green field systems 

where there is no existing structure and in cases where the system requires additional feeder 

upgrades, it fails to account for the added feeder in the power balance equations. In [21], the authors 

discuss future demands on the grid structure. They claimed that a simple answer will be insufficient 

for addressing the operation of new smart technologies and that planning and operation processes 

must also be adapted to the new demands. Their conclusion was that the integration of decentralized 

energy resources in distribution networks extends beyond technical questions and requires a holistic 

integrative approach on a variety of levels.  

The study presented in [22] investigates how information from vulnerability analyses and existing 

maintenance management systems can be combined with details about threats to establish indicators 

of vulnerability in power lines.  

Much work has been done on the sizing and siting of BESS in distribution systems, and numerous 

applications of BESS are considered. These applications, such as energy arbitrage in transmission 

systems [25], power flow optimization with peak shaving [26], frequency [27] and voltage [28] 

support, as well as overcrowding management [25] - [29] have been studied. Sizing BESS in the 
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context of active distribution systems with distributed generators (DG) is proposed in [30]. Tools 

are developed to optimally size a set of BESS with prediction errors in the forecast of the renewable 

sources. 

In addition to sizing BESS, work was done to alleviate the detrimental impacts of short-term wind 

power and load fluctuations [31] and high penetration PV [32] in distribution systems. Capacity 

expansion of BESS through the time span that can result in significant cost saving is illustrated in 

[33] and [34]. Factors such as reliability criteria together with the investment and the operation costs 

are considered. A bilevel program that determines the optimal location and size of storage devices 

to perform the spatiotemporal energy arbitrage is developed in [35]. This method aims to 

simultaneously reduce the system-wide operating cost and the cost of investments in BESS while 

ensuring that merchant storage devices collect sufficient profits to fully recover their investment 

cost. The research in [36] to [40] discusses advantages and other aspects of BESS. However, none 

of the above literature considers the impact of BESS on distribution system reliability. 

This review of the literature thus reveals that several methods have been devised for developing 

an optimal plan for BESS in distribution systems. However, none of these methods integrates BESS 

into the distribution system asset planning algorithms in a way that allows utilities to evenly compare 

several plan options with and without BESS based on an evaluation of the annualized costs of the 

asset plans.  
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1.5 BESS MODEL USED IN PLANNING AND EVOLUTION OF BATTERY TECHNOLOGY 

Energy storage systems can be used in distribution systems by utilities for several applications. Some 

of these applications and advantages are as below: 

• Enabling the integration of renewable energy sources;  

• Improving the reliability of distribution systems by providing back up power; 

• Deferring the upgrade of assets in distribution systems;  

It should be mentioned that the choice of a certain energy storage technology over others, is mostly 

dependent on the application and economics of the particular situation. In this study, the goal is 

planning of DS using ESS, which means improving the reliability of distribution systems, and 

deferring the expensive asset upgrades.  

For this purpose, batteries are selected as the candidate storage technologies since their power and 

discharge time capacities are suitable for the application under study. The capacity model of 

Lithium-Ion batteries treats the battery as a tank of charge, removing and adding charge as needed, 

assuming that positive power implies discharging from the battery. The battery is only allowed to 

discharge to the user-specified minimum state-of-charge and stays within user-specified rates of 

current charge and discharge. Capacity relates to battery energy through the voltage. Power relates 

to energy by calculating how much energy is transferred over a period of time. 

In this dissertation, the model of battery energy storage is from a planning perspective. Hence, 

simple models are used that consider power conversion system efficiency and self-discharge on an 
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hourly basis. Transient, electro-chemical and thermal modeling is not a part of this dissertation. A 

simple schematic is provided in Fig. 1.5 for reference. 

 

Fig. 1.5 Battery Power Conversion System Efficiency and Self-Discharge Schematic 

The lithium-ion battery technology is been around for around half a century and has taken over the 

electronics industry and is on the verge of entering the transportation industry and the utility grid. 

With the advancement of technology in manufacturing of batteries, it is safe to predict a massive 

drop in the battery prices in the near future, Fig. 1.6.  

 

Fig. 1.6 Battery Price Prediction [74] 
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1.6 OPPORTUNITY TO RECONFIGURE AND IMPROVE SYSTEM PERFORMANCE 

Smart Grid technologies enable reconfiguration of distribution systems in real-time to enable 

improved performance and reduced losses. With increase in EVs and renewables, and them causing 

a peaky load profile, it is the best to use the concept of reconfiguration in real-time to best operate 

distribution systems. Feeder reconfiguration can be used to solve different objectives. For example, 

the service restoration to disconnected areas and/or the minimization of active power losses. 

Therefore, applying a reconfiguration could provide solutions for real-time emergency situations as 

well as increase reliability and power quality.  

Since reconfiguration involves switching of circuits, it is a mixed integer nonlinear optimization 

challenge. It has a set of solution spaces which are nonlinear in nature. Typically, reconfiguration is 

a complicated problem to solve, since the number of solution iterations grow exponentially with the 

number of available tie switches, leading to a time consuming, very difficult mathematical 

computation effort to achieve the optimal configuration. 

The analysis of a distribution feeder is important to an engineer in order to determine the existing 

operating conditions of a feeder, and to be able to consider “what if” scenarios of future changes to 

the feeder. For example, it is essential to know the location and status (i.e. on/off) of shunt capacitors 

and their reactive power rating. Shunt capacitor banks including fixed and switched banks are used 

on primary feeders to reduce voltage drop, reduce power losses, and improve power factors. 

Capacitors are typically switched off during the night for light loads and switched on during the day 

for heavy loads.  

In the case of existing switches, besides their locations, it is important to know their normal 

open/close status. To reduce the duration of interruptions due to transient faults, such as lightning, 

overhead feeders can be protected by automatic reclosing devices. [41]  
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To further reduce the duration and extent of customer interruptions, switches are installed at selected 

intervals along radial feeders. In the case of a permanent fault, one or more switches open to isolate 

the fault. In addition, normally open tie switches to adjacent feeders are incorporated, so that during 

emergencies, healthy sections of a feeder can be tied to the adjacent feeder supplied by a different 

source. Spare capacity is often allocated to feeders to prevent overloads during such emergencies. 

Many utilities have also installed automatic fault locating equipment and remote control switches at 

intervals along radial lines, so that faulted sections of a feeder can be isolated and healthy sections 

reenergized rapidly from a dispatch center [42] – [43]. 

As it mentions before, primary distribution includes two basic systems:  

• Radial 

• Mesh (i.e. interconnected) 

The mesh system is used where high service reliability is important. The feeder loops around a load 

area and returns to the distribution substation, especially providing two-way feed from the 

substation. The size of the feeder conductors, which are kept the same through the ring, is usually 

selected to carry the entire load connected to the loop, including future load growth. Then switches 

are used to reduce customer interruptions which are the focus of this study. The ring is normally 

operated with the open switch and power to a customer at any one time is supplied through a single 

path from the distribution substation. 

1.7 CURRENT OPTIMAL RECONFIGURATION METHODS 

Optimization theory and algorithms play a key role in reconfiguration problems. Many optimization 

methods have been used to make the problem of reconfiguration more reliable and faster. However, 
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all these methods were limited to Heuristic and Genetic algorithms due to the open/close nature of 

switches which turns the problem into a mixed integer algorithm. 

1.7.1 Heuristic Methods and Genetic Algorithm  

The evolution usually starts from a population of randomly generated individuals and is an iterative 

process. The population in each iteration is called a generation. In each generation, the fitness of 

every individual in the population is evaluated; the fitness is usually the value of the objective 

function in the optimization problem being solved. The more fit individuals are stochastically 

selected from the current population, and each individual's genome is modified (recombined and 

possibly randomly mutated) to form a new generation. The new generation of candidate solutions is 

then used in the next iteration of the algorithm. Commonly, the algorithm terminates when either a 

maximum number of generations has been produced, or a satisfactory fitness level has been reached 

for the population. 

Initially many individual solutions are (usually) randomly generated to form an initial population. 

The population size depends on the nature of the problem, but typically contains several hundreds 

or thousands of possible solutions. Traditionally, the population is generated randomly, allowing the 

entire range of possible solutions (the search space). Occasionally, the solutions may be "seeded" in 

areas where optimal solutions are likely to be found. This generational process is repeated until a 

termination condition has been reached. Common terminating conditions are: 

• A solution is found that satisfies minimum criteria 

• A fixed number of generations is reached 

• The allocated budget (computation time/money) is reached 

• The highest-ranking solution's fitness is reaching or has reached a plateau such that successive 

iterations no longer produce better results 
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1.7.2 Nonlinear Optimization versus Genetic Algorithms  

Although all the referred papers have found optimal solutions, all of them were forced to use 

intelligent algorithms due to the zero-one state nature of switches. The discontinuous nature of 

solution space deprives benefits of a typical optimal power flow algorithm. Some of the 

disadvantages of using these kinds of intelligent techniques are explained in [44] and [45]:  

• Repeated fitness function evaluation for complex problems is often the most prohibitive and 

limiting segment of artificial evolutionary algorithms. Finding the optimal solution to 

complex high dimensional, multimodal problems often requires very expensive fitness 

function evaluations. In real world problems such as structural optimization problems, a single 

function evaluation may require several hours to several days of complete simulation. Typical 

optimization methods cannot deal with such types of problem. In this case, it may be necessary 

to forgo an exact evaluation and use an approximated fitness that is computationally efficient. 

It is apparent that amalgamation of approximate models may be one of the most promising 

approaches to convincingly use GA to solve complex real-life problems. 

• Genetic algorithms do not scale well with complexity. That is, where the number of elements 

which are exposed to mutation is large there is often an exponential increase in search space 

size. 

• The "better" solution is only in comparison to other solutions. As a result, the stop criterion is 

not clear in every problem. 

• In many problems, GAs may tend to converge towards local optima or even arbitrary points 

rather than the global optimum of the problem. This means that it does not "know how" to 

sacrifice short-term fitness to gain longer-term fitness. The likelihood of this occurring 
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depends on the shape of the fitness landscape: certain problems may provide an easy ascent 

towards a global optimum; others may make it easier for the function to find the local optima.  

• GAs cannot effectively solve problems in which the only fitness measure is a single 

right/wrong measure (like decision problems), as there is no way to converge on the solution.  

These disadvantages limit the practicality of these intelligence-based techniques in real-time 

applications.  In general, evolutionary algorithm and artificial intelligence techniques are useful only 

when no other classical method is available. 

1.8 RECENT DEVELOPMENTS OF DS RECONFIGURATION METHODS 

Smart radial distribution system of the future will provide improved performance, reliability, and 

flexibility to best connect new elements such as renewable generators, energy storage, electric 

vehicles, etc. smart radial distribution system using a distribution management system (DMS) will 

be able to optimally reconfigure the system in real-time to improve performance and provide a 

highly reliable service.In a future setting, smart radial distribution system would have breakers and 

switches that are remotely controlled via DMS taking optimal settings from the optimal 

reconfiguration algorithm. It is necessary to have optimal reconfiguration algorithms that can 

function in real-time to benefit from the smart radial distribution system infrastructure. It is also 

necessary to develop optimal reconfiguration algorithms that are reliable and efficient which do not 

depend upon heuristics. 

Electric utilities may reconfigure their network such that total system losses are minimized and 

voltage profile is satisfactory. 

Optimal reconfiguration requires that one breaker or tie switch in every loop is opened, such that the 

set of closed breakers result in a radial topology which results in minimum losses and a satisfactory 
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voltage profile. An optimization algorithm for optimal reconfiguration shall consider all possible 

combinations and scenarios of where one switch can be opened in every loop. This problem is a 

combinatorial challenge and its complexity increases exponentially with the number of switches. 

Further, examining the solution domain, which is undertaken in the next section, it is evident that 

the solution space is discontinuous. 

 Literature review shows that many researchers have attempted different optimization techniques and 

have found the optimal solution for published examples. However, limitations in classical linear and 

nonlinear optimization techniques preclude them from being successfully used for this optimization 

challenge. Hitherto, all attempts are restricted to optimizing using heuristic techniques such as 

evolutionary programming, genetic algorithms, etc. 

Several methods [46] to [64] have been utilized in an effort to solve this mixed-integer non-linear 

program using genetic algorithms. The research in [46] and [47] has been successful in finding an 

optimal solution using fuzzy genetic and harmony search algorithms. A fuzzy controlled real coded 

genetic algorithm was used in [48] to solve the reconfiguration problem. Two controllers had been 

used to adaptively adjust the crossover and mutation probabilities based on the fitness function. An 

efficient codification to solve the distribution network reconfiguration for the loss reduction problem 

is reported in [49]; however, they are still using evolutionary algorithms and are not benefiting from 

using a regular NLP. Mendes et al. [50] used evolutionary algorithm to address the particular case 

of reconfiguration after an outage caused by the loss of a single branch of the network. The work in 

[51] claims that a multi-objective evolutionary algorithm (EA) based on subpopulation tables 

adequately models several objectives and constraints, enabling a better exploration of the search 

space.  Research in [52] presents a novel charged system search (CSS) algorithm, the particle 

moving evaluation mechanism CSS (PMEM-CSS), for determining the switching strategy to solve 
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the distribution system loss minimization problems. In [53], a novel optimization method that 

provides an error bound on the solution quality is found. Thus, the obtained solution quality can be 

evaluated in comparison to the global optimal solution. Instead of using local updates, a highly 

compressed search space is constructed using a binary decision diagram, and the optimization 

problem is reduced to a shortest path-finding problem.   

A non-revisiting genetic algorithm (NrGA) is used to determine distribution network 

configuration for loss reduction [54]. By advocating binary space partitioning (BSP) to divide the 

search space and employing a novel BSP tree archive to store all the solutions that have been 

explored before, a new solution is generated by genetic algorithms (GA), and can mutate an 

alternative unvisited solution. The main contribution of [55] is the presentation of GA with two 

network encodings, capable of representing only radial connected solutions without demanding a 

planar topology or any specific genetic operator. In [56], the GA was successfully applied to the loss 

minimization reconfiguration problem. In the proposed algorithm, strings consist of sectionalizing 

switch status or radial configurations, and the fitness function represents the total system losses and 

penalty value for voltage drop and current capacity violations. In [57], an effective approach based 

on the particle swarm optimization with integer coded is presented to determine the switch operation 

schemes for feeder reconfiguration. Fuzzy adaptation of evolutionary programming has been also 

implemented [58].  Ant colony search-based loss minimization for reconfiguration of distribution 

systems is used in [59]. In [60], the same problem is solved using GA. To enhance its ability to 

explore the solution space, efficient genetic operators are developed.  

The algorithm in [61] is based on a heuristic rule and fuzzy multi-objective approach and it has 

been tested on a 69-bus system to solve the network reconfiguration problem. While the work 

reported in literature has found optimal solutions, evolutionary computations and genetic algorithms 
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were always used due to the zero-one state nature of switches. The solution space is always 

discontinuous and does not derive the benefits of a typical optimal power flow algorithm. Some of 

the disadvantages of using such techniques are explained in [62] and [63]. In research [64], the 

problem of reconfiguration of distribution systems considering the presence of distributed 

generation is modeled as a mixed-integer linear programming (MILP) problem. It was possible to 

create a robust mathematical model that is equivalent to the mixed-integer non-linear programming 

model, and guarantees convergence to optimality using classical optimization techniques. The 

routine is tested and validated on real power system. 

In summary, there is no guarantee for finding optimal solutions in a finite amount of time when 

using GA. In addition, parameter tuning is mostly accomplished by trial-and-error and there is no 

absolute assurance that GA will find a global optimum at all. One of the other disadvantages of GA 

is that it cannot assure constant optimization response time. Furthermore, the difference between the 

shortest and longest optimization response time is much larger than with conventional optimization 

methods. Such properties limit the practicality of these techniques in real-time applications.  In 

general, GA and artificial intelligence techniques are valuable only for offline solutions or when no 

other classical method is available. Hence, it is evident that use of current optimal reconfiguration 

algorithms for smart radial distribution system in DMS is not possible and requires new techniques 

amenable for real-time applications. 
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1.9 MOTIVATION 

1.9.1 Need for New Methods of DS Planning with ES 

On reviewing the distribution system landscape, it is evident that renewables and electric vehicles 

will be integrated in a large scale with distribution systems. It is also evident that they will cause a 

peaky load profile, which leads to a poor utilization factor of distribution system assets.  

On reviewing literature on distribution system planning and problems due to renewables and EVs 

as pointed out in sections 1.1 to 1.5, it is beneficial to include ES storage into DS planning algorithms 

and consider ES alongside with feeders and transformers. This is true especially when utilization 

factors are low for assets with a peaky load profile.  

Without existing methods and means for optimal planning of distribution systems, considering 

feeders and energy storage assets, it is not possible to develop least cost distribution system plans. 

A new formulation and algorithm will enable distribution system planners to plan for the least cost 

asset solutions considering ES as well, in addition to regular distribution system assets such as lines 

and transformers. This is the first motivation for this thesis.  

 

1.9.2 Need for New Methods of DS Reconfiguration 

New smart grid technologies are enabling real-time control and reconfiguration of distribution 

system networks. When the loads on adjacent feeders have peaky load profiles and those peaks are 

not time-coincident, then reconfiguration provides an invaluable method to minimize losses and 

reduce burden on feeders and other distribution system assets.  
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The problem of turning switches on and off is a mixed integer nonlinear optimization challenge. 

This challenge requires mixed integer nonlinear optimization solvers which are typically not robust. 

Hence, a lack of conventional real-time mixed integer nonlinear optimization methods precludes use 

of optimal reconfiguration methods for operational purposes.  

This creates the second motivation for this work.  

1.10 OBJECTIVES OF THE THESIS 

With the falling cost of renewables, wind and solar sources are being integrated in enormous 

amounts into electric grids.  At the same time, because of the developments in electric vehicles and 

the popularity of them, there is an additional load demand that needs to be addressed. Therefore, as 

outlined in the motivation section, there is an absolute need for innovative algorithms to plan and 

operate modern distribution systems. For these reasons and motivations, the following objectives 

have been chosen for this dissertation:  

1) A new Feeder Investment Model (FIM) and algorithm will be developed in the context of 

Distribution System Asset (DSA) planning that takes into consideration Battery Energy Storage 

Systems (BESS) in addition to conventional assets, such as feeders and transformers. It will 

consider a distribution system characterized by new and existing variable loads such as electric 

vehicles and intermittent renewable energy sources. The algorithm is also capable of calculating 

the optimal number of years for asset use before their replacement is required.  

2) Typical feeder investment model considers asset costs in addition to operational and 

maintenance costs. These operation and maintenance costs consider costs due to SAIDI (system 

average interruption duration index) and Customer Interruption Costs (CIC). The CIC values are 

determined via a survey and hence are always  an inaccurate value.  
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The second objective is to address the conflicting objectives of minimizing asset costs and SAIDI 

for the system. A new fuzzy logic algorithm will be developed that considers two contradicting 

objectives in different units. It tries to reduce the asset cost in dollars per year while minimizing 

the SAIDI measured in minutes per year. In such a case, the SAIDI doesn’t need to be translated 

into a dollar amount using approximate values of CIC. In other words, the algorithm maximizes 

the reliability while the cost is being minimized at the same time. This method takes into 

consideration the incorporation of energy storage systems in addition to conventional assets, 

such as feeders and transformers, into a distribution network characterized by new and existing 

variable loads and intermittent renewable energy sources. 

3) The third objective is to develop a new optimal reconfiguration technique for smart distribution 

systems using complementarity constraints. The use of complementarity constraints transforms 

the set of discrete nonlinear solution spaces into one single solution space such that conventional 

Nonlinear Programming (NLP) techniques can be used for solving the challenge of optimal 

reconfiguration of Radial Distribution Systems (RDS) in real-time.  

 

1.11 SUMMARY OF CHAPTERS 

This dissertation is organized in the following chapters: 

In Chapter 2, a new DSA planning algorithm that includes the installation and optimal sizing of 

BESS units in addition to traditional assets, such as feeders and transformers is proposed and 

demonstrated. It incorporates plan and asset lifetimes as a means of establishing the minimum total 

annualized costs of new and replacement assets, operation and maintenance, and customer 

interruptions. The algorithm is successfully validated on 3-bus and 33-bus distribution systems.  
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In Chapter 3, a multi-objective FIM planning algorithm with contradicting objectives of System 

Average Interruption Duration Index (SAIDI) minimization measured in minutes per year and cost 

minimization measured in dollars per year is proposed. This method is a multi-objective algorithm 

that uses fuzzy optimization technique to handle multiple contradicting objectives that cannot be 

combined into a single objective as they are in different units.  The objectives are translated into 

fuzzy satisfaction functions and their minimum is maximized to determine the optimal solution. The 

proposed algorithm is successfully demonstrated on a 33-bus distribution system.  

In Chapter 4, a real-time optimal reconfiguration algorithm which uses a classical nonlinear 

optimization technique is demonstrated. Using complementarity, the nonlinear mixed integer 

optimization challenge of optimal reconfiguration with discontinuous solution space is transformed 

into a nonlinear optimization challenge with continuous solution space. This transformation allows 

the use of classical nonlinear optimization solvers that are robust, guaranteeing the optimal solution 

while being suitable for real-time application. This is successfully demonstrated on 7-bus, 33-bus 

and 69-bus distribution systems and the results are compared with those available in literature with 

respect to solution time, accuracy in results and robustness of the proposed algorithm and the 

superiority of the proposed technique has been verified. 

In Chapter 5, conclusions and possible future research directions are presented.   

1.12 CONCLUSION 

This chapter introduced the challenge of planning and operating new distribution systems in the 

presence of a peaky load profile due to growth of EVs and renewables.  A literature review was 

presented for planning techniques when using BESS and also operating techniques through 
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reconfiguration. The research objectives were also presented along with chapter wise summary. The 

results and accomplishments will be presented and discussed in the chapters that follow. 
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CHAPTER 2 

A MODEL FOR DISTRIBUTION SYSTEM ASSET PLANNING 

INCLUDING BATTERY ENERGY STORAGE 

This review of the literature in the previous chapter reveals that several methods have been devised 

for developing an optimal plan for BESS in distribution systems. However, none of these methods 

integrates BESS into the distribution system asset planning algorithms in a way that allows utilities 

to evenly compare several plan options with and without BESS based on an evaluation of the 

annualized costs of the asset plans.  

With the objective of overcoming these limitations, a new Feeder Investment Model (FIM) in the 

context of Distribution System Asset (DSA) algorithms has been proposed that takes into 

consideration the incorporation of energy storage systems in addition to conventional assets, such 

as feeders and transformers, into a distribution network characterized by new and existing variable 

loads and intermittent renewable energy sources. The algorithm is also capable of calculating the 

optimal number of years before asset replacement is required.  

A further consideration is that load characteristics, such as the load factor, significantly influence 

the extent of the benefits to be derived from the use of BESS. For the purposes of the work described 

in this research, the load factor is defined as the ratio between the average demand and the peak 

demand, which is influenced by the nature of the load and generation patterns of renewable resources 

connected to the system.  
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A final factor is that the inclusion of BESS in a distribution system affects the costs associated 

with the entire plan, i.e., operation and maintenance costs and customer impact costs. These aspects 

have been explored in the proposed DSA planning algorithm, which is designed for determining 

plan life and includes consideration of the costs of both new and end-of-life replacement assets in 

addition to the costs of operation, maintenance, and customer interruptions. All costs are computed 

for the entire plan life and reflect those for the present year annualized over the planning period. 

These annualized planning costs enable a fair comparison of a variety of DSA plans with and without 

BESS. The proposed DSA planning method is constrained by limits on bus voltages, feeder 

capacities, BESS unit capacities and bus-power balance equations for the entire distribution system. 

The method has been tested on a Canadian distribution system feeder that was simplified into a 3-

bus system and on the IEEE 33-bus system. 

2.1 Problem Formulation of FIM with BESS 

A DS asset plan typically for a greenfield is to minimize the total asset cost to supply forecasted 

demand while meeting all equipment limits and prevalent standards. Typically, this planning 

formulation annualizes all cost so that they may be effectively compared. 

This section introduces the proposed DSA planning formulation and algorithm that integrates 

planning for traditional assets, such as feeders and transformers, with the incorporation of new BESS 

units while optimizing the size of the BESS. The algorithm also determines a plan life based on 

consideration of the life of various assets. The objective function minimizes the total annualized cost 

comprising the costs of new and replacement assets, the costs of operation and maintenance, and the 

costs associated with customer interruptions. The formulation is constrained by limits on bus 
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voltages, feeder capacities, BESS unit capacities and the bus-power balance equations. The problem 

formulation and its constraints are given below: 

 

2.1.1 Objective Function 

The objective function (2.1) searches for the best size of the BESS and number of required feeders 

while minimizing the total costs of the annualized asset solution, as set out below: 

𝑓'( 𝑆𝐹, 𝑁𝑌 + 𝑓) 𝑃𝐵,𝑁𝑌 + 𝑓*+,) 𝑃𝐵,𝑁𝑌 		+ 𝑓/0( 	𝑁𝑌 + 𝑓/0) 	𝑁𝑌 + 𝑓-.- 𝑆𝐹𝐸, 𝑆𝐹, 𝑁𝑌  

	(2.1) 

The total cost in (2.1) comprises two main segments. Capital costs and risk costs, referring to Fig. 

1.4.  

 

2.1.2 Annualized Capital Costs 

The capital cost includes the followings: feeder costs (2.2); BESS unit costs (2.3); BESS unit 

replacement costs (2.4) and (2.5); feeder maintenance costs (2.6); BESS maintenance costs (2.7); 

and customer interruption costs (2.8) and (2.9). The detailed formulation for each is explained down 

below. 

The annualized costs of new feeder sections are computed as follows: 

𝑓'(	 𝑆𝐹, 𝑁𝑌 = 	
𝑟 1 + 𝑟 HI

1 + 𝑟 HI − 1
∙ 𝐾𝐹M ∙ 𝑁𝐶M . 𝑆𝐹M

HN

MOP

																															 2.2  

where 𝐾𝐹M is the feeder cost constant, 𝑁𝐶M is the number of feeder circuits, and 𝑆𝐹M is the peak flow 

of the feeder.  
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The term * PQ* RS

PQ* RSTP
 annualizes the cost for the present year based on consideration of a plan life of 

NY years and an interest rate of r. (Detailed explanation can be found in Appendix A).  

The annualized cost of the BESS units is calculated as follows: 

𝑓)	 𝑆𝐵, 𝑁𝑌	 =
𝑟 1 + 𝑟 HI

1 + 𝑟 HI − 1
∙ 𝐾𝐵𝑃 ∙ 𝑃𝐵% + 𝐾𝐵𝐸 ∙ 𝑃𝐵%

HU

VOP

																									(2.3) 

where	𝐾𝐵𝑃 and 𝐾𝐵𝐸 correspond to the cost constants for power and energy, respectively, of the 

BESS units, and 𝑃𝐵% and 𝐸𝐵% are the respective optimized power and energy capacities of the BESS 

unit at bus i. 

In this formulation, the replacement of the BESS units due to degradation is based on the following 

justification (2.5). Given the current state of the technology, feeder life is usually several times that 

of BESS units. In the DSA planning formulation, 𝑁𝑌 is the total number of useful years and is 

determined optimally, with the longest-lasting asset assumed to be the feeders. It is therefore 

necessary to make use of several BESS units during the life of a feeder. 𝑁𝑅 represents the number 

of replacements, and 𝐵𝑌 indicates the useful life time of one BESS unit:  

𝑁𝑅 = 𝑁𝑌 𝐵𝑌																																																																								(2.4) 

The annualized cost of replacing the BESS units is then given as: 

𝑓*+,) 𝑆𝐵,𝑁𝑌 = 	
𝑟 1 + 𝑟 HI

1 + 𝑟 HI − 1
∙

𝐾𝐵𝑃𝑅 ∙ 𝑃𝐵% + 𝐾𝐵𝐸𝑅 ∙ 𝐸𝐵%
1 + 𝑟 Z	∙	)I

H[

ZOP

HU

VOP

										(2.5) 

where 𝐾𝐵𝑃𝑅  and 𝐾𝐵𝐸𝑅  correspond to the replacement cost constants for BESS unit power and 

energy, respectively.  
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2.1.3 Annualized Risk and Maintenance Cost 

The annualized feeder maintenance cost is as follows: 

𝑓/0]	 𝑁𝑌 =
𝑟 1 + 𝑟 HI

1 + 𝑟 HI − 1
∙

𝐾/]^ 1 + 𝐾/]
Z

1 + 𝑟 Z 	
HI

ZOP

																																										(2.6) 

where 𝐾/]^ is the present initial maintenance cost of the feeders, and 𝐾/] is the growth rate for 

maintenance costs.  

Considering both maintenance and replacement, the annualized maintenance cost of the BESS 

units is calculated as follows: 

𝑓/0)	 𝑁𝑌 = 	
𝐾)] 1 + 𝐾)` Z

1 + 𝑟 ZQV∙)I

)ITP

ZOP

	
H[TP

VO^

+
𝐾)] 1+𝐾)` Z

1 + 𝑟 ZQH[∙)I

HIT
H[∗)I

ZOP

																																		(2.7) 

where 𝐾)] is the initial present maintenance cost of the BESS units, and 𝐾)` is the growth rate for 

maintenance costs. The first part of the equation deals with the maintenance cost of BESS and the 

second part of (3.7) calculated the maintenance cost of the BESS replacement. 

 

2.1.3.1 SAIDI and Customer Interruption Cost Calculation  

Planning from the customer’s perspective, the customer’s net annual cost must be minimized. This 

includes two components: (1) asset and energy costs, and, (2) CIC. The plan must minimize the total 

cost for customers. Hence, minimizing CIC concurrently with minimizing asset costs is very 

important. 

Feeder interruptions and their resulting impact on reliability and costs to the customers are a function 

of feeder usage. If a feeder is always lightly loaded, then it provides the greatest reliability with the 

lowest customer interruption costs. Conversely, feeders that are heavily loaded at all times are 

associated with the lowest reliability levels and the highest customer interruption costs. This 



37 
 

phenomenon can be investigated by computing the reliability at each loading level, and then 

multiplying the result by the probability of the feeder being at that loading level to obtain a weight 

for each result. This calculation is then repeated for each feeder, ranging from light peak loading to 

heavy peak loading. The final result indicates the relationship of the level of reliability, expressed 

in terms of the System Average Interruption Duration Index (SAIDI), to the ratio of the peak load 

divided by the feeder capacity. The customer interruption cost can then be estimated from the 

computation of the SAIDI value for a feeder section as a function of the peak load. The SAIDI per 

feeder circuit value can be computed as follows, based on [65]. (More details about the derivation 

of (2.8) and constant values of A, B and C can be found in Appendix A):  

SAIDI	 𝑆𝐹𝐸, 𝑆𝐹 = 	
𝐴

max
k

𝑆𝐹Mk
𝑁𝐶M. 𝑆𝐹𝐸M

l

+ 𝐵
max
k

𝑆𝐹Mk
𝑁𝐶M ∙ 𝑆𝐹𝐸M

+ 𝐶

𝑁𝐶M
																																				(2.8) 

The annual Customer Interruption Cost (CIC) is computed as follows [25]: 

𝑓-.-	 𝑆𝐹, 𝑁𝑌 = 	
𝑟 1 + 𝑟 HI

1 + 𝑟 HI − 1
∙

SAIDI	(𝑆𝐹𝐸, 𝑆𝐹) ∙ 𝐾𝑟 1 + 𝐾𝑟* HI

𝑁𝐶M ∙ 1 + 𝑟 Z

HN

MOP

HI

ZOP

																 2.9  

Eqs. (2.2) to (2.9) are the computations for the objective function expressed in (2.1). 𝑁𝑌 is a variable 

whose value is optimally determined as part of the solving of this formulation. 

 

2.1.4 Constraints and Boundaries 

The proposed DSA planning formulation minimizes the objective function (2.1) while satisfying 

the following constraints imposed by the network model and equipment limits. The equations that 

model the energy in the BESS units make the formulation inter-temporal and establish the resulting 

complexity of the solution space. 
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Since the feeders are in parallel, the new upgraded line admittance is equal to the previous 

admittance multiplied by the number of upgraded feeders:  

𝑦MM = 𝑦M. 𝑁𝐶M																																																																							(2.10) 

The complex bus-wise power balance equation is computed for time t as follows: 

𝑆𝐷Vk + 𝑆𝐿Vk 𝑉Vk, 𝛿Vk, 𝑦MM − 𝑆𝐺Vk − 𝑆𝐵Vk = 0																																							(2.11) 

where 𝑆𝐺 is the vector of the bus-wise apparent power generation, 𝑆𝐷 is the vector of the bus-wise 

apparent power loads, and 𝑆𝐿(𝑉, 𝛿) is the vector of the apparent power injected from the buses into 

the connected lines. 𝑆𝐵 is the vector of the apparent power of the BESS units. (For more detailed 

derivation, refer to equations A.1 and A.2 in Appendix A). 

The power flow in feeder segment l between buses i and j at time t is computed as follows: 

𝑆𝐹M − 𝑉Vk∠𝛿Vk ∙ 𝑉Vk∠𝛿Vk − 𝑉sk∠𝛿sk ∙ 𝑦MM∠𝜃M
∗ = 0																												(2.12) 

The energy in BESS unit i at time t can be computed as follows: 

𝐸𝐵Vk = 𝐻𝑇k ∙ max	(𝑃𝐵Vk ∙ 𝐾v,
𝑃𝐵Vk
𝐾v

) + 𝐸𝐵V,kTP ∙ 𝐾w																														(2.13) 

where 𝐾v  models the efficiency of the power conversion system, and 𝐾w  accounts for any self-

discharge.  

In addition, the sum of the energy stored and retrieved from a BESS unit is constrained to equal zero 

over the study period, with 𝑃𝐵 being the vector of the active power of the BESS unit. 

𝐻𝑇k. 𝑃𝐵Vk

Hx

kOP

= 0			; 𝑖 = 1,2…𝑁𝑋																																													(2.14) 

The formulation is also subject to the following boundaries: 

Limits on the bus voltage magnitudes:  

𝑉 ≤ 𝑉Vk ≤ 𝑉																																																																																		 2.15  
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Limits on complex power generated by the sources: 

𝑆𝐺V ≤ 𝑆𝐺Vk ≤ 𝑆𝐺V																																																																								(2.16) 

BESS power limits: 

𝑆𝐵 	≤ 𝑆𝐵Vk ≤ 𝑆𝐵				𝑖 = 1,2…𝑁𝑋																																												(2.17) 

 

Complex line flow limits: 

𝑆𝐹Mk ≤ 𝑆𝐹M																																																																																		(2.18) 

 

Solving the optimization formulation (2.1), detailed in (2.10) to (2.18) above, enables the 

minimization of the annualized DSA investment cost and the determination of the optimal number 

of years for the best asset life. 

 

2.2 Solution Algorithm  

As previously mentioned, the proposed DSA planning formulation and algorithm includes 

planning for traditional assets, such as feeders and transformers, as well as for the addition of new 

BESS units while optimally sizing BESS units. It is important to clarify that the proposed model as 

previously presented in (2.1), (2.10) to (2.18) is a Mixed Integer Nonlinear problem (MINLP). This 

optimization method was implemented in the MATLAB programming language using OPTI 

Toolbox and an interior-point algorithm. 
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 2.3 Test Results and Discussions 

In this section, the proposed method is applied in two different systems. A 3-bus simplified 

Canadian system and IEEE 33-bus system. Also, the economic data is presented. The details are 

given in the following sections. 

2.3.1 Economic Data 

The systems were analyzed in the context of undergrounded urban systems with critical 

infrastructure for which customer interruption costs are significant. Based on the Final Report by 

InfraSource Technology [66], the assumed costs are as shown in Table 2.1.  

The real-estate cost for both BESS and feeders is not considered in the algorithm, but in cases that 

the price of real-estate is considered crucial in the planning process, it can be added to the algorithm 

as a constant in equations (2.2) and (2.3). 
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Table 2.1 Feeder and BESS Costs (US$) 

Item Value 

𝐾𝐹 – Underground Feeder cost coefficient ($/MVA) US$1,350,000 

𝐾𝐵𝐸 - Energy cost coefficient for a lithium-ion battery BESS unit ($/MWh) US$100,000 

𝐾𝐵𝑃 - Power cost coefficient for a lithium-ion battery BESS unit ($/MW) US$300,000 

Customer interruption cost ($/minute) US$40,000 

Underground feeder maintenance cost ($/year) US$9,000 

BESS maintenance cost ($/year) US$1,000 

BESS replacement period (years) 10 

Replacement Cost for Battery Power Capacity ($/MW)  US$210,000 

Replacement Cost for Battery Energy Capacity per ($/MWh)  US$70,000 

Interest rate (per year) 5 % 

Power Conversion Efficiency of BESS 88% 

Efficiency of the battery in BESS 90% 

 

2.3.2 Simplified Canadian Distribution System Data (3-bus) 

A simplified Canadian distribution system with three buses as depicted in Fig. 2.1 is considered 

for this work. The voltage at feeder source is set as 1.03 per unit, based on the nominal voltage of 

27.6kV. The equivalent impedances and loads are listed in Table 2.2 and Table 2.3.  
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Fig. 2.1 3-bus Network  

 

Table 2.2 Impedances in the Network in 27.6 kV 

 R (Ω) X (Ω) 
Feeder Planning 

Load Limit (MVA)  

Z03 2.3 6.2 20 

Z04 0.4 0.9 20 

 

Table 2.3 Loads in the Network in 27.6 kV 

 PD (MW) Power Factor 

Load #1 12 95% 

Load #2 7 95% 

 

Load 2 

Z03 

Z04 

Load 1 

Substation 

 Bus 2 

 Bus 3 
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The base values used in this work are listed in Table 2.4. 

Table 2.4 Base Values for 27.6kV System 

Voltage base 27.6 kV 

Power base 10 MVA 

Impedance base 76.1 Ω 

 

By applying these base values, per unit values of voltage, power and impedances are calculated. 

The load flow is solved using Newton-Raphson technique and the results obtained are recorded in     

Table 2.5.  

Table 2.5 Voltage Solutions from Load Flow 

Buses V (per unit) 

Bus #1 1.03Ð 0.00 0  

Bus #2 1.02Ð -0.01 0  

Bus #3 1.01Ð -0.01 0  

 

The active and reactive powers supplied from feeder source are 19.13 MW and 5.9 MVAr 

respectively. The line flow through the circuit is given in Table 2.6. 
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Table 2.6 Line Flow of the 3-bus System 

 Line flow per circuit (MVA) Feeder Planning Load Limit (MVA)  

Section #1 19.9 20 

  Section #2 7.2 20 

 

The network integrated with energy storage device is shown in Fig. 2.2. In this work, Lithium-ion 

batteries are used as the energy storage device. 

 

 

Fig. 2.2 System with BESS and PV 

 

A PV generator with 30 MW of rated power is connected to Bus #3. To check the method 

performance, the load and generation scenarios were divided in three zones as follows: 

a. 25 % peak load (as a light load) and 90 % PV generation – Time Zone 1 (5 hours) 

Load 2 

Z03 

Z04 

Load 1 

Slack Bus 

 Bus 2 

 Bus 3 

PV generator  

BESS 

 
G 
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b. 60 % peak load and 60 % PV generation – Time Zone 2 (6 hours) 

c. 100 % peak load and 0 % PV generation – Time Zone 3 (13 hours) 

The load and generation values for each region are provided in Table 2.7 and they present the 

worst case scenario of one day (24 hours), where PD stands for Power Demand and PV for 

Photovoltaic generation. 

 

Table 2.7 Power Demand (PD) and PV Generation (PV) Values for Each Time Zone 

 Time Zone 1 

5 hours 

Time Zone 2 

6 hours 

Time Zone 3 

13 hours 

PD (MW) 4.7  

(25 % peak load) 

11.4  

(60 % peak load) 

19  

(100 % peak load) 

PV (MW) 27 (90 % PV) 18 (60 % PV) 0 (0 % PV) 
 

 

The power flow problem is solved, and the results for the varied load profiles and PV generation 

are listed in Table 2.8 and Table 2.9. 
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Table 2.8 Voltage Solutions for Each Time Zone 

 Voltage Solutions (per unit) 

 Time Zone 1 

5 hours 

Time Zone 2 

6 hours 

Time Zone 3 

13 hours 

Bus #1 1.03Ð0.00o 1.03Ð0.000 o 1.03Ð0.000 o 

Bus #2 1.03Ð0.070o 1.02Ð0.020o 0.99Ð-0.060o 

Bus #3 1.03Ð0.150o 1.02Ð0.070o 0.98Ð-0.080o 

 

Table 2.9 Line Flows for Each Time Zone 

 Line Power Flows Per Circuit (MVA) Feeder 

Capacity 

(MVA)  

 Time zone 1  

5 hours 

Time zone 2  

6 hours  

Time zone 3  

13 hours 

Z01 22.3* 7.5 19.9 20 

Z02 25.2* 13.8 7.3 20 

Note: (*) Overload 

It should be noted that feeder sections 1 and 2, during Time Zone 1, are overloaded above the 20 

MVA rated capacity. From the power flow results given in Table 2.9, an appreciable increase in the 

line flow above the feeder capacity can be observed in feeder sections Z01 and Z02 as the load 

profile and PV generation vary. The feeder section therefore requires upgrades. The PD and PV 

variations and line flows at different time zones are plotted in Fig. 2.3. 
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Fig. 2.3 Time vs. Load and Generation in Section #1 and Section #2 

 

2.3.2.1 Optimal Planning of a Canadian Distribution System 

For the work presented in this thesis, a lithium-ion battery BESS unit was used. The proposed 

DSA optimal planning formulation with BESS units was solved for the cases listed below. For each 

case, the proposed method establishes the optimal plan that results in the lowest total amortized 

annual cost solution. The data used for this optimization problem are provided in Table 2.1 to Table 

2.3.  

The two cases for which the optimization problem is solved are as follows: 
 

• Case I: Conventional DSA planning model that considers only feeders (i.e., no BESS units) 

• Case II: Proposed DSA planning model that considers feeders and BESS units 
•  
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 The line power flow results and the maximum number of feeders required for each case are listed 

in Table 2.10. 

Table 2.10 Total Line Power Flow in the Feeders for the 3-Bus System Cases 

 Branch Total Line Power Flow in All Circuits 

(MVA) 

Feeder  

Capacity per 

Circuit 

(MVA) 

Number  

of  

Circuits 

Required 

Time Zone 1  

5 hours 

Time Zone 2  

6 hours  

Time Zone 

3  

13 hours 

Case I  

(No 

BESS) 

Z01 22.3 7.5 19.9 20 2 

Z02 25.2 13.9 7.3 20 2 

Case II  

(with 

BESS) 

Z01 17 7.2 18.3 20 1 

Z02 20 13.4 5.7 20 1 

 

 

 

In case I, with no consideration of BESS units, during Time Zone 1, the line flow exceeds the 

feeder planning limit in the first feeder section. Therefore, an additional feeder is required in that 

section. The real and reactive power supplied from feeder source are listed in Table 2.11. The 

directions of flows can be seen in Fig. 2.4. 
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Table 2.11 Power Supplied from Feeder Source - Case I 

 Time zone 1 Time zone 2 Time zone 3 

PG (MW) -22.2 -6.6 19.0 

QG (MVAr) 1.6 3.6 6.0 

 

 

 

Fig. 2.4 Power Flows in Feeders with No Battery ES – Case I 
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 From a financial perspective, the estimated optimal number of years is 45. The total amortized 

annual cost for creating and operating this solution is US$ 3,512,855/year, which is composed of 

the following costs:  
 

Annualized Feeder Upgrade Costs:            US$ 3,043,553 

Annualized Customer Interruption Costs:  US$ 446,983 

Annualized Feeder Maintenance Costs:     US$ 22,319 

Total annualized Costs:                              US$ 3,512,855 
 

In case II, with the existence of BESS units, the line flow is within the feeder planning limit during 

all the time zones for both sections, so that additional feeders are not required. For case II, the power 

supplied from the feeder source is shown in Table 2.12, and the optimal BESS unit energy and power 

for each time zone to meet load requirements and to maintain the line power flow within the feeder 

capacity are as listed in Table 2.13. The negative sign in Table 2.13 means that the BESS is charging. 

The BESS unit power and energy capacities planned for case II are 5.22 MW and 22.98 MWh, 

respectively.  

Table 2.12 Power Supplied from Feeder Source - Case II 

 Time zone 1 Time zone 2 Time zone 3 
PG (MW) 17.0 6.1 17.6 
QG (MVAR) 1.4 3.7 5.0 

 

Table 2.13 BESS Power and Energy for Case II 

 Time Zone 1 Time Zone 2 Time Zone 3 

BESS Power (MW) -5.22 -0.44 1.40 

BESS Energy (MWh) 22.98 22.98 0 



51 
 

For Case II, the directions of flows can be seen in Fig. 2.5 with the presence of BESS. 

 

Fig. 2.5 Power Flows in Feeders with Battery ES – Case II 

Power efficiency and battery energy efficiency for each time zone are shown in Fig. 2.6, assuming 

the efficiency is 88%. 
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Fig. 2.6 Battery ES Energy and Power Efficiency – Case II 
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The estimated financially optimal number of years is 46. The total amortized annual cost for 

creating and operating this solution comes to US$ 894,718/year, which is composed of the following 

costs:  
 

Annualized Feeder Upgrade Costs: US$ 0  

Annualized Customer Interruption Costs:        US$ 400,544 

Annualized Feeder Maintenance Costs:           US$ 15,001 

Annualized BESS Costs:                                  US$ 280,132 

Annualized Battery Replacement Costs:          US$ 194,289 

Annualized Battery Maintenance Costs:          US$ 4,752 

Total annualized Costs:                                    US$ 894,718 
 

It can be concluded, for this specific case, that the cost associated with planning to connect BESS 

units is lower than the cost in the other case, in which the addition of two feeders is required. Hence, 

for the 3-bus Canadian system presented, using the DSA planning tool and minimizing the 

equivalent annual costs avoids the requirement to upgrade the feeders.  

 

2.3.2.2 Sensitivity Analysis for the Canadian Distribution System 

This section presents a sensitivity analysis of the proposed method with respect to costs and other 

critical aspects. In general, the load profile may vary on a daily basis, which affects the results. The 

average demand at the substation for one day considering the load and generation is indicated as 

Pavg.  
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The peak demand at the substation for one day is denoted as Pmax. The Pavg and Pmax values are 

computed as follows: 
 

𝑃/~� = max
kOP:Hx

𝑟𝑒𝑎𝑙 𝑆𝐷Vk − 𝑆𝐺Vk

H)

VOP

																																															(2.19) 

𝑃~`� = 𝑟𝑒𝑎𝑙
1
𝐻𝑇kHx

kOP
𝑆𝐷Vk − 𝑆𝐺Vk

H)

VOP

Hx

kOP

																																												(2.20) 

 

For the purposes of analysis, the loading of the 3-bus Canadian system was altered by varying the 

Pavg/Pmax ratio, which significantly influences the potential for BESS units to be chosen as assets.   

The DSA planning model was solved considering an aggregated 24-hour period divided into three 

time zones. The sensitivity analysis involved three scenarios, as explained below. It is important to 

highlight that none of the scenarios include PV. 

1) Study Condition: Pavg Kept Constant, Pmax Increased:    

In this case, the value of Pavg is kept constant at 15.8 MW, and the value of Pmax is gradually 

increased from 19 MW to 28.5 MW, so that the Pavg/Pmax ratio decreases from 0.83 to 0.55. The 

results are presented in Fig. 2.7 showing the annual prices for the planning period. It can be seen in 

the figure that when Pavg is constant, the opportunity for the effective use of BESS increases with an 

increase in Pmax. For this case, the BESS varies from 10.2 MVA to 0 MVA and there is a higher 

arbitrage opportunity for BESS when the Pavg/Pmax ratio decreases. Table 2.14 shows the load profile 

at each time zone for points 0.55 and 0.83. 
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Fig. 2.7 Loading Factor versus Costs of Feeders and BESS for Constant Pavg Value and Varied 

Pmax Value. 
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2) Study Condition: Pavg Varied, Pmax Kept Constant:  

In this sensitivity analysis, the value of Pavg is increased from 22.8 MW to 39.9 MW, while the 

value of Pmax is kept constant at 45.6 MW, which causes the Pavg/Pmax ratio to vary from 0.5 to 0.88. 

The results are presented in Fig. 2.8. With increases in the value of Pavg, the optimal BESS size 

varies in the range of 8.06 MVA to 0 MVA, at the same time the optimal feeder size varies from 40 

MVA (2 feeders) to 60 MVA (3 feeders) for section #1, and remains constant at 20 MVA (1 feeder) 

for section #2. The increase in the value of Pavg demands a larger feeder capacity and a smaller BESS 

capacity. As long as the Pavg value is within the feeder capacity of a circuit, the feeder cost is constant. 

When the Pavg value exceeds the feeder capacity of one circuit, another circuit is added, resulting in 

a discrete increase in feeder costs. 

 

Fig. 2.8 Loading Factor versus Costs of the Feeders and BESS for a Constant Pmax Value and 

Varied Pavg Value. 
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3) Sensitivity Analysis with the BESS Costs:  

To explore further the proposed DSA planning method, the BESS unit cost constants KBP ($/MW) 

and KBE ($/MWh) were varied and added together, and the corresponding changes in the system 

costs were determined. As referenced from the Sandia Electricity Storage Handbook [67], the 

maximum KBP and KBE values were chosen as US$ 800,000/MW and US$ 800,000/MWh. 

Because it is expected in the future that the cost constants of BESS decrease, the KBP and KBE 

values are varied in this analysis, and an optimal plan is developed for each cost point using the 

proposed DSA planning algorithm. The total annual costs of the feeders and BESS units were 

obtained, which are shown in Fig. 2.9. Battery price prediction for future can be seen in Fig. 1.6. 
 

 

 

Fig. 2.9 Cost of Utilizing BESS and Feeders versus the BESS Cost Coefficient 
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As one can see in Fig. 2.9, starting from the right side of the figure, the BESS unit is not utilized 

for values of KBP and KBE higher than US$ 1,800,000, because in this case the usage of extra 

feeders is more economical. For lower values of KBP and KBE, starting from US$ 1,200,000 up to 

US$ 1,800,000, the BESS unit is utilized, which is reflected in the reduced feeder cost. The same 

effect can be seen for values of KBE and KBP less than US$ 1,200,000. In the figure, since the 

number of circuits in a feeder section changes as an integer in the model, the graph shows step 

changes. 

 
 

4) Sensitivity Analysis with the Feeder Cost:  

In all the analysis prepared so far, it has been assumed that the feeders were underground and 

therefore the feeder prices were assumed high. In this analysis, to show the capability of the proposed 

DSA planning method, the feeder cost constant KF ($/MVA) is lowered, and the corresponding 

changes in the system costs is shown in Fig. 2.10. When the cost of utilizing feeders become less 

than US$ 1,000,000 per MVA the proposed algorithm will not choose the BESS as an option and it 

will only increase the number of feeders. 
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Fig. 2.10 Cost of Utilizing BESS and Feeders versus the Feeder Cost Coefficient 

2.3.3 Optimal Planning for the IEEE 33-bus Distribution System 

The proposed algorithm was also tested on the IEEE 33-bus system (Appendix B). The feeder 

capacity for the IEEE 33-bus system is assumed to be 5 MVA. A 7 MVA PV generator and one 

BESS unit are connected at bus #24. The load and PV power variations for each time zone are listed 

in Table 2.15. 
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Table 2.15 Power Demand (PD) and PV Generation (PV) for Each Time Zone in %. 

 Bus # 
Time Zone 1 

8 hours 

Time Zone 2 

8 hours 

Time Zone 3 

8 hours 

PD 2 - 33 20 % peak load 50 % peak load 100 % peak load 

PV 24 100 % PV 50 % PV 0 % PV 

 

The optimization results for the IEEE 33-bus system are shown in Table 2.16, Table 2.17, and 

Table 2.18, which assist with comparison of two cases:  

• Case I: with feeders only and no BESS units  

• Case II: with both feeders and BESS units.  

The following observations are based on the results: 

In case I (no BESS), the loading on the feeders is higher, and the lowest estimated life cycle cost 

is US$ 37,439,588 which is composed of the following costs:  
 

Annualized Feeder Costs:                                US$ 30,052,000 

Annualized Customer Interruption Costs:       US$ 7,368,200 

Annualized Feeder Maintenance Costs:          US$ 19,388 

Total annualized Costs:                                   US$ 37,439,588 
 

The results of this case with no BESS are documented in Table 2.16 and indicate that two 

additional circuit feeders are needed to eliminate the overload of Sections #1 and #2 during Time 

Zone 2. 
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Table 2.16 Total Line Power Flow for the 33-Bus System – Case I 

Section # 

Line Power Flow (MVA) Feeder 

Capacity 

(MVA) 

Maximum # 

of Feeders 

Required 

Time 

Zone 1 

Time 

Zone 2 

Time 

Zone 3 

1 1.7523     6.1742     3.9558  5 2 

2  1.5495      5.4628      3.4990 5 2 

3-32 <5 <5 <5 5 1 

 

In case II (with BESS), an optimal plan is developed whereby no additional feeders are necessary 

and only one BESS unit is sized, as one can see in Table 2.17. The minimum cost of the annual asset 

plan is calculated to be US$ 36,509,475 which is composed of the following costs:  
 

Annualized Feeder Upgrade Costs:            US$ 29,000,000 

Annualized Customer Interruption Costs:  US$ 7,402,000 

Annualized Feeder Maintenance Costs:     US$ 19,037 

Annualized BESS Costs:                            US$ 47,011 

Annualized Battery Replacement Costs:    US$ 40,219 

Annualized Battery Maintenance Costs: US$ 1,208 

Total annualized Costs:                              US$ 36,509,475 
 

 

Table 2.18 shows the energy and power in the BESS unit when it is optimally sized for 0.6744 

MW and 3.9562 MWh.  
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Table 2.17 Total Line Power Flow for the 33 Bus System – Case II 

Section # 

Line Power Flow (MVA) Feeder 

Capacity 

(MVA) 

Maximum # of 

Feeders 

Required 

Time 

Zone 1 

Time 

Zone 2 

Time 

Zone 3 

1 3.4785     3.7586     3.7091 5 1 

2 3.0696     3.2494     3.2494 5 1 

3-32 <5 <5 <5 5 1 

 

Table 2.18 Battery Power and Energy for Case II – 33-Bus System 

 Time Zone 1 Time Zone 2 Time Zone 3 

Battery Power (MW) -0.5034     0.6744    -0.0824 

Battery Energy (MWh) 3.9562 0 1.2178 

 

From these results, it is clear that the proposed DSA planning method is able to include BESS 

units and additional feeder circuits into the problem solution. The proposed method considers a 

myriad of options to select the least costly annual asset plan. It compares the options evenly based 

on an evaluation of the total annual asset costs for delivering energy to the connected customers. 
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2.4 Chapter Summary 

As more intermittent generation, such as PV generation, and uncertain loads, such as Electric 

Vehicles, are integrated into expensive urban distribution systems, new solutions must be included 

into the Distribution System Asset (DSA) planning process. Battery Energy Storage Systems (BESS) 

have the potential to technically facilitate the integration of these technologies. In addition, as the 

cost of BESS is expected to decrease in the following years, this can also be an economic solution, 

especially in urban centers, where the installation of new feeders may be quite costly. Therefore, in 

this thesis a new model for the DSA planning process was proposed, which includes the possibility 

of installing BESS as a solution to integrate new loads and generators.  

Based on the analyses presented here, one can see that the proposed model is flexible, 

automatically selecting the installation of new feeders and/or BESS while optimally sizing the BESS. 

In addition, the results show that in the presence of high penetration of PV systems and large 

differences between the average power and the peak power, there is a higher arbitrage opportunity 

for BESS, mainly in costly underground systems. 

As a next step, a fuzzy method has been used due to the lack of certainty in how to calculate 

customer interruption cost in literature. Most of the research in this area is not practical as 

unreasonable values of customer interruption costs are used for translating SAIDI values in minutes 

per year to dollars per year. While the proposed algorithm minimizes SAIDI for the upgraded system, 

it does not depend on the customer interruption cost for optimization.  
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CHAPTER 3 

A FUZZY OPTIMIZATION MODEL FOR DISTRIBUTION 

SYSTEM ASSET PLANNING WITH ENERGY STORAGE 

Most DSA planning tools fail to include Battery Energy Storage Systems (BESS) as an asset 

solution for systems with high penetration of renewable energy sources. In addition, minimizing the 

investment cost and maximizing the reliability performance, which can be measured by the System 

Average Interruption Duration Index (SAIDI), are contradicting objectives. With a large investment, 

the system will have a small SAIDI, and vice versa. The distribution system reliability is contrary 

to customer interruptions, which are quantified by SAIDI [17] and [20]. A single cost function, 

including customer interruption cost, is used in such works. However, a trade-off always exists 

between reliability and cost. Use of a single objective may lead the problem into an infeasible zone, 

resulting in failure to come to a solution, especially for large complex systems.  

With the objective of overcoming these limitations and the fact that the amount of SAIDI and the 

customer interruption cost incorporated with it is always imprecise and subjective, this work presents 

a new fuzzy logic algorithm that considers two contradicting objectives in different units. It tries to 

reduce the asset cost in dollars per year while minimizing the SAIDI measured in minutes per year. 

In such a case, the SAIDI doesn’t need to be translated into dollar amount.  

In this thesis, a multi-objective algorithm that uses fuzzy optimization technique to handle these 

contradicting objectives is proposed. The algorithm includes traditional types of assets as well as 
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energy storage systems. One of the main advantages of the proposed method is that the Customer 

Interruption Costs are not explicitly necessary, as these values cannot be precisely determined for 

all loads. In the tool, the annual investment cost and SAIDI are minimized, and the optimal size of 

the energy storage is obtained. Its performance is demonstrated on a 33-bus distribution system and 

the results are compared with other method available in the literature and the results are discussed 

in the following sections. 

 

3.1 Fuzzy Optimization 

Traditional optimization techniques and methods have been successfully applied for years to solve 

problems with a well-defined structure/configuration, sometimes known as hard systems. Such 

optimization problems are usually well formulated by crisply specific objective functions and 

specific systems of constraints, and solved by precise mathematics. Unfortunately, real world 

situations are often not deterministic. There exist various types of uncertainties in social, industrial 

and economic systems, such as randomness of occurrence of events, imprecision and ambiguity of 

system data and linguistic vagueness, which could be caused by errors of measurement, deficiency 

in history and statistical data, insufficient theory, incomplete knowledge expression, and the 

subjectivity and preference of human judgement. Such types of uncertainty are categorized as 

fuzziness. It deals with the situation where the information cannot be valued sharply. This type of 

fuzziness is usually represented by membership functions which reflect the decision-maker’s 

subjectivity and preferences on the objects. This method is useful when a problem cannot be 

formulated and solved effectively by traditional mathematics-based optimization techniques nor 

probability-based stochastic optimization approaches. However, fuzzy set theory which was 
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developed by Zadeh in the 1960’s and fuzzy optimization techniques provide a useful and efficient 

tool for modelling and optimizing such systems. Modelling and optimization under a fuzzy 

environment is called fuzzy modelling and fuzzy optimization. 

3.2 Problem Formulation 

This thesis proposes a method, where the problem is modeled as a multi-objective optimization 

model with contradicting objectives of SAIDI minimization and total cost minimization. Fuzzy 

optimization was used to handle these multiple objectives, which cannot be directly combined into 

a single objective function without using hard to estimate CIC (customer interruption cost) values. 

This method has value due to the lack of certainty in how to calculate the CIC values, mainly in 

residential feeders. Indeed, most of the research in this area has been conducted by using the CIC 

values to translate SAIDI values from minutes per year to dollars per year. In the proposed method, 

this is not necessary, as the algorithm minimizes SAIDI directly for the upgraded system. This 

section introduces the formulation of the proposed algorithm that has a multi-objective function and 

is capable of planning for traditional assets such as feeders and transformers with the incorporation 

of new BESS units while optimizing the size and the location of the BESS. The algorithm also 

determines a plan life, based on consideration of the life of various assets. The total cost comprises 

the costs of new and replacement assets and the costs of operation and maintenance. SAIDI is the 

system average for interruption of supply to customers measured in minutes per year. To ensure the 

practical application of the solution, the formulation is constrained by limits on bus voltages, feeder 

capacities, BESS unit capacities and the bus-power balance equations. The objective function and 

its constraints are given below. 
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3.2.1 Objective Function 

In this work, fuzzy optimization technique is used. The multiple objectives of conventional multi-

objective challenge are translated into fuzzy satisfaction functions, one for each objective. This 

allows expression of each objective on its own scale without the requirement of conversion to 

common units. Thereafter, the minimum of these satisfaction functions is maximized. 

In other words, the objective function maximizes the satisfaction of fuzzy functions of objective 

functions of total cost and SAIDI without requirement for conversion. 

 

3.2.1.1 Total Cost Calculation 

TC(x) comprises feeder costs, BESS unit costs, BESS unit replacement costs, feeder maintenance 

costs, and BESS maintenance costs as set out below, 𝑁𝑌 is a variable whose value is optimally 

determined as part of the solving of this formulation. Although the following equations are identical 

to the ones in Chapter 2, the description is repeated for each equation: 

 

𝑇𝐶(𝑥) = 𝑓'( 𝑆𝐹, 𝑁𝑌 + 𝑓) 𝑆𝐵,𝑁𝑌 + 𝑓*+,) 𝑆𝐵,𝑁𝑌 		+ 𝑓/0( 	𝑁𝑌 + 𝑓/0) 	𝑁𝑌 						(3.1) 
 

In the above equation, the total cost comprises of feeder costs, BESS unit costs, BESS unit 

replacement costs, feeder maintenance costs and BESS maintenance costs. 

The annualized costs of new feeder sections are computed as follows: 

𝑓'(	 𝑆𝐹, 𝑁𝑌 = 	
𝑟 1 + 𝑟 HI

1 + 𝑟 HI − 1
∙ 𝐾𝐹M ∙ 𝑁𝐶M . 𝑆𝐹M

HN

MOP

																															 3.2  
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where 𝐾𝐹M is the feeder cost constant, 𝑁𝐶M is the number of feeder circuits, and 𝑆𝐹M is the peak flow 

of the feeder.  

The annualized cost of the BESS units is calculated as follows: 

𝑓)	 𝑆𝐵, 𝑁𝑌	 =
𝑟 1 + 𝑟 HI

1 + 𝑟 HI − 1
∙ 𝐾𝐵𝑃 ∙ 𝑃𝐵% + 𝐾𝐵𝐸 ∙ 𝑃𝐵%

HU

VOP

																									(3.3) 

where	𝐾𝐵𝑃  and 𝐾𝐵𝐸  correspond to the cost constants for power and energy respectively of the 

BESS units, and 𝑃𝐵% and 𝐸𝐵% are the respective optimized power and energy capacities of the BESS 

unit at bus i.  

𝑁𝑅 represents the number of replacements, and 𝐵𝑌 indicates the useful life time of one BESS unit:  

 

𝑁𝑅 = 𝑁𝑌 𝐵𝑌																																																																								(3.4) 

The annualized cost of replacing the BESS units is then given as: 

𝑓*+,) 𝑆𝐵,𝑁𝑌 = 	
𝑟 1 + 𝑟 HI

1 + 𝑟 HI − 1
∙

𝐾𝐵𝑃𝑅 ∙ 𝑃𝐵% + 𝐾𝐵𝐸𝑅 ∙ 𝐸𝐵%
1 + 𝑟 Z	∙	)I

H[

ZOP

HU

VOP

										(3.5) 

where 𝐾𝐵𝑃𝑅  and 𝐾𝐵𝐸𝑅  correspond to the replacement cost constants for BESS unit power and 

energy, respectively.  

The annualized feeder maintenance cost is as follows: 

𝑓/0]	 𝑁𝑌 =
𝑟 1 + 𝑟 HI

1 + 𝑟 HI − 1
∙

𝐾/]^ 1 + 𝐾/]
Z

1 + 𝑟 Z 	
HI

ZOP

																																										(3.6) 

where 𝐾/]^ is the present initial maintenance cost of the feeders, and 𝐾/] is the growth rate for 

maintenance costs.  

Considering maintenance for the BESS unit and its replacement, the annualized maintenance cost 

of the BESS units is calculated as follows: 
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𝑓/0)	 𝑁𝑌 = 	
𝐾)] 1 + 𝐾)` Z

1 + 𝑟 ZQV∙)I

)ITP

ZOP

	
H[TP

VO^

+
𝐾)] 1+𝐾)` Z

1 + 𝑟 ZQH[∙)I

HIT
H[∗)I

ZOP

																																		(3.7) 

where 𝐾)] is the initial present maintenance cost of the BESS units, and 𝐾)` is the growth rate for 

maintenance costs. The first part of the equation deals with the maintenance cost of BESS and the 

second part of (3.7) calculated the maintenance cost of the BESS replacement. 

3.2.1.2 SAIDI Minimization 

The SD(X) in (3.8) stands for System Average Interruption Duration Index (SAIDI). Originally if 

a feeder is always lightly loaded, then it provides the greatest reliability with the lowest customer 

interruption costs. However, feeders that are heavily loaded at all times are associated with the 

lowest reliability levels and the highest customer interruption duration. This phenomenon can be 

investigated by computing the reliability at each loading level, and then multiplying the result by 

the probability of the feeder being at that loading level to obtain a weight for each result. This 

calculation is then repeated for each feeder, ranging from light-peak loading to heavy-peak loading. 

The final result indicates the relationship of the level of reliability, expressed in terms of SAIDI, to 

the ratio of the peak load divided by the feeder capacity. The customer interruption cost can then be 

estimated from the computation of the SAIDI value for a feeder section as a function of the peak 

load. The SAIDI-per-feeder-circuit value can be computed as follows, based on [65]. (More detailed 

explanation in Appendix A):  

 

SD	 𝑋 =
𝐴

max
k

𝑆𝐹Mk
𝑁𝐶M. 𝑆𝐹M

l

+ 𝐵
max
k

𝑆𝐹Mk
𝑁𝐶M ∙ 𝑆𝐹M

+ 𝐶

𝑁𝐶M
×	𝑁𝐿	×	𝑁𝑌																								(3.8) 
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It is known historically that the reliability of residential branches is not highly sensitive to loading. 

This is because the branch is heavily loaded only for a few hours per year. The situation is different 

for commercial/industrial (C&I) feeders. However, with the emergence of Electric Vehicles, some 

of the residential branches are heavily loaded for longer periods.  

3.2.2 Fuzzy Set of Objective Function 

Fuzzy satisfaction functions help describe satisfaction of an objective. Considering multiple 

objectives, the fuzzy optimization technique determines the minimum of all satisfaction functions 

and maximizes it. The satisfaction functions for the conflicting objectives are defined between 0 and 

1 as shown in Fig. 3.1 and Fig. 3.2 for Total Cost (TC(x)) and SAIDI (SD(x)), respectively.  

 

Fig. 3.1 Fuzzy Satisfaction Functions of Total Cost (TC) 
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Fig. 3.2 Fuzzy Satisfaction Functions of SAIDI (SD) 

 
 
𝜇�- 𝑋 	is a fuzzy member for total cost 𝑇𝐶 𝑥 	and is shown in (3.9): 

𝜇�- 𝑋 = 	
𝑇𝐶 − 	𝑇𝐶 𝑋
𝑇𝐶 − 𝑇𝐶

																																																																					(3.9) 

where 𝑇𝐶 and 𝑇𝐶 are maximum and minimum values of 𝑇𝐶 𝑥 	described in (3.1). 

Also with the definition of SD(X), the fuzzy satisfaction function for SAIDI can be defined as below. 

𝜇'�(𝑥) is a fuzzy satisfaction function for SAIDI and is shown in (3.10): 

 

𝜇'�(𝑥) = 	
𝑆𝐷 − 	𝑆𝐷(𝑋)
𝑆𝐷 − 𝑆𝐷

																																																																					(3.10) 

where 𝑆𝐷 and 𝑆𝐷 are maximum and minimum values of 𝑆𝐷(𝑋) described in (3.8). 
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3.2.3 Objective Definition 

The multi-objective function is limited by a set of rules and constraints that are explained below. 

The satisfaction function for the objective is defined as: 𝜇�)� 

This is lesser than or equal to all other satisfaction functions as it equals the least of all satisfaction 

functions.  

Therefore: 

𝜇�)� ≤ 	𝜇�-																																																																					(3.11) 

𝜇�)� ≤ 	𝜇'�																																																																					(3.12) 

The final objective function is then defined as below: 

Objective:	Max		𝜇�)�																																																																						(3.13) 

 

The objective (3.13) searches for the maximum 𝜇�)� which is a contradicting combination of 

𝜇�-		or 	𝜇'�	while keeping them independent from each other. In Fig. 3.1 and Fig. 3.2, the algorithm 

finds the minimum values of  𝜇�-		and 	𝜇'�	while maximizing the objective function pushes those 

values to be as close as possible to 𝑇𝐶 and 𝑆𝐷. 

 

3.2.4 Constraints and Boundaries 

All the equations in this section are identical to Chapter 2 but are repeated here to help the flow 

of the thesis. (More detailed explanation in Appendix A). 

Since the feeders are in parallel, the new upgraded line admittance is equal to the previous 

admittance multiplied by the number of upgraded feeders:  

 

𝑦MM = 𝑦M. 𝑁𝐶M																																																																							(3.14) 
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The complex bus-wise power balance equation is computed for time t as follows: 

𝑆𝐷Vk + 𝑆𝐿Vk 𝑉Vk, 𝛿Vk, 𝑦MM − 𝑆𝐺Vk − 𝑆𝐵Vk = 0																																							(3.15) 

where 𝑆𝐺 is the vector of the bus-wise apparent power generation, 𝑆𝐷 is the vector of the bus-wise 

apparent power loads, and 𝑆𝐿(𝑉, 𝛿) is the vector of the apparent power injected from the buses into 

the connected lines. 𝑆𝐵 is the vector of the apparent power of the BESS units. (For more detailed 

derivation, refer to equations A.1 and A.2 in Appendix A). 

The power flow in feeder segment l between buses i and j at time t is computed as follows: 

𝑆𝐹M − 𝑉Vk∠𝛿Vk ∙ 𝑉Vk∠𝛿Vk − 𝑉sk∠𝛿sk ∙ 𝑦MM∠𝜃M
∗ = 0																												(3.16) 

 

The energy in BESS unit i at time t can be computed as follows: 

𝐸𝐵Vk = 𝐻𝑇k ∙ max	(𝑃𝐵Vk ∙ 𝐾v,
𝑃𝐵Vk
𝐾v

) + 𝐸𝐵V,kTP ∙ 𝐾w																														(3.17) 

where 𝐾v  models the efficiency of the power conversion system, and 𝐾w  accounts for any self-

discharge.  

In addition, the sum of the energy stored and retrieved from a BESS unit is constrained to equal zero 

over the study period, with 𝑃𝐵 being the vector of the active power of the BESS unit. 

𝐻𝑇k. 𝑃𝐵Vk

Hx

kOP

= 0			; 𝑖 = 1,2…𝑁𝑋																																													(3.18) 

The formulation is also subject to the following boundaries: 

Limits on the bus voltage magnitudes:  

𝑉 ≤ 𝑉Vk ≤ 𝑉																																																																																		 3.19  

Limits on complex power generated by the sources: 
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𝑆𝐺V ≤ 𝑆𝐺Vk ≤ 𝑆𝐺V																																																																								(3.20) 

BESS power limits: 

𝑆𝐵 	≤ 𝑆𝐵Vk ≤ 𝑆𝐵				𝑖 = 1,2…𝑁𝑋																																												(3.21) 

Complex line flow limits: 

𝑆𝐹Mk ≤ 𝑆𝐹M																																																																																		(3.22) 

 

Solving the optimization formulation (3.1) to (3.13), based on the above constraints (3.14) to (3.22), 

enables the minimization of the annualized investment cost and the determination of the optimal 

number of years for the best asset life while minimizing SAIDI. 
 

3.3 Solution Algorithm 

As previously mentioned, the proposed planning formulation and algorithm includes a multi-

objective function and it chooses the best planning option using the list of traditional assets and also 

BESS.  Optimally sizing the BESS units makes the results more practical. It is important to clarify 

that the proposed model is a Mixed Integer Nonlinear problem (MINP) using OPTI Toolbox in 

MATLAB Programming language. This optimization method was implemented using interior-point 

algorithm method and it has Fuzzy Logic structure.  
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3.4 Results and Discussion 

The analyzed systems are undergrounded urban systems with critical infrastructure for which 

customer interruption costs are significant, although for the proposed algorithm, it is not necessary 

to assign a value to customer interruption cost. This will yield more accurate results, as all the 

studies that have calculated the SAIDI amount based on customer interruption cost are either 

outdated or have used wide approximations in their method. 

3.4.1 Economic Data 

The economic data (Table 3.1) used for this work is identical to the Table 2.1 in Chapter 2, only 

without the Customer Interruption Cost. Both tables are based on the Final Report by InfraSource 

Technology [66]. 

Table 3.1 Feeder and BESS Costs (US$) 

Item Value 

𝐾𝐹 – Underground Feeder cost coefficient ($/MVA) $1,350,000 

𝐾𝐵𝐸 - Energy cost coefficient for a battery ($/MWh) $90,000 

𝐾𝐵𝑃 - Power cost coefficient for a battery ($/MW) $300,000 

Underground feeder maintenance cost ($/year) $9,000 

BESS maintenance cost ($/year) $1,000 

BESS replacement period (years) 10 

Replacement Cost for Battery Power Capacity ($/MW)  $210,000 

Replacement Cost for Battery Energy Capacity ($/MWh)  $70,000 

Interest rate (per year) 5 % 
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3.4.2 IEEE 33-Bus Distribution System Data  

The proposed method was validated through implementation on the IEEE 33-bus test system shown 

in Fig. 3.3. The detailed data for the 33-bus radial distribution system is in Appendix B. The feeder 

capacity for the system is assumed to be 5 MVA. The load active and reactive values as well as the 

feeder data are taken from [68].  

 

Fig. 3.3 IEEE 33-Bus System 

 

Justification of  𝑆𝐷 and 𝑆𝐷: 

The 𝑇𝐶  and 𝑇𝐶  are set to be respectively $0 and $200,000 and the  𝑆𝐷 and 𝑆𝐷 are set to be 

respectively 512 and 1,036 hours.  

At 0% loading, SAIDI is at a minimum and using (9) and multiplying the number of SAIDI to the 

number of branches (NL=32) and number of years (NY=20) the feeders are assumed to last under 

100% loading condition, one can calculate 𝑆𝐷 as follows:  
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SD =
𝐴 0
𝑁𝐶M. 𝑆𝐹M

l
+ 𝐵 0

𝑁𝐶M ∙ 𝑆𝐹M
+ 𝐶

𝑁𝐶M
×	𝑁𝐿	×	𝑁𝑌 = 512	ℎ𝑜𝑢𝑟𝑠 

 

Therefore, 𝑆𝐷 equal to 512 hours and is used for analysis of the proposed method.  

On the other hand, at 100% loading, 𝑆𝐷 is being calculated in the following manner, assuming 

number of circuits is equal to 1 and emergency rating is 1.5: 

SD =
𝐴 1
1 ∗ 1.5

l
+ 𝐵 1

1 ∗ 1.5 + 𝐶
1

×	𝑁𝐿	×	𝑁𝑌 = 1036	ℎ𝑜𝑢𝑟𝑠 

In the proposed algorithm	SD has been 1036 hours as the maximum SAIDI.  
 

To check the method performance, the load scenarios were divided in three zones as follows: 

• 40 % peak load (as a light load) - Time Zone 1 (5 hours) 

• 140 % peak load (Very heavy load) - Time Zone 2 (6 hours) 

• 90 % peak load - Time Zone 3 (13 hours) 

The load and generation values for each region are provided in Table 3.2, where PD stands for Power 

Demand. 

Table 3.2 System Power Demand (PD) Values for Each Time Zone 

 Time Zone 1 

5 hours 

Time Zone 2 

6 hours 

Time Zone 3 

13 hours 

PD 

(MW) 

1.4860 

(40 % peak load) 

5.2010 

(140 % peak load) 

3.3435 

(90 % peak load) 
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Then the algorithm solves the planning for two different cases. For each case, the proposed method 

establishes the optimal plan that results in the lowest total amortized annual cost solution.  
 

• Case I: Conventional planning model that considers only feeders (i.e., no BESS units) 

• Case II: Proposed planning model that considers feeders and BESS units. 

In case I (no BESS), the loading on the feeders is higher, and the lowest estimated life cycle cost 

is US$ 902,009 which is composed of the following costs:  

Annualized Feeder Upgrade Costs:             US$ 884,900 

Annualized Feeder Maintenance Costs:     US$ 17,109 

Total annualized Costs:                              US$ 902,009 

The results of this case are documented in Table 3.3 and indicate that two additional circuit feeders 

are needed to eliminate the overload of Sections #1 and #2 during Time Zone 2. Also, the total 

SAIDI is 902.0446 hours for the whole planning period. The fuzzy satisfaction factors,  𝜇�-	and 

	𝜇'�	 are calculated to be 0.0980 and equal.  

In case II (with BESS), an optimal plan is developed whereby no additional feeders are necessary 

and only one BESS unit is sized, as one can see in Table 3.4 and Table 3.5 The fuzzy satisfaction 

values, µC and µS are 0.3523 and the total SAIDI for the length of planning years is 647.72 hours.  
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The minimum cost of the annual asset plan is calculated to be US$ 178,700 which is composed of 

the following costs:  
 

Annualized Feeder Upgrade Costs:          US$ 0 

Annualized Feeder Maintenance Costs:   US$ 13,744 

Annualized BESS Costs:                          US$ 114,413 

Annualized Battery Replacement Costs:  US$ 49,187 

Annualized Battery Maintenance Costs:  US$ 1,356 

Total annualized Costs:                            US$ 178,700 
 

 

Table 3.5 shows the energy and power in the BESS unit. It is optimally sized for 1.45 MW and 

10.98 MWh. 
 

Table 3.3 Total Line Power Flow for the IEEE 33-Bus System – Case I 

Section # 

Line Power Flow (MVA) Feeder 

Capacity 

(MVA) 

Maximum # of 

Feeders 

Required 

Time 

Zone 1 

Time 

Zone 2 

Time 

Zone 3 

1 1.7523 6.1738 3.9557 5 2 

2 1.5495 5.4625 3.4989 5 2 

3-32 <5 <5 <5 5 1 
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Table 3.4 Total Line Power Flow for the IEEE 33-Bus System – Case II 

Section # 

Line Power Flow (MVA) Feeder 

Capacity 

(MVA) 

Maximum # of 

Feeders 

Required 

Time 

Zone 1 

Time 

Zone 2 

Time 

Zone 3 

1 2.8671 4.9983 4.4405 5 1 

2 2.6638 4.3101 3.9800 5 1 

3-32 <5 <5 <5 5 1 

 

 

Table 3.5 Battery Power and Energy for the IEEE 33 Bus System – Case II 

 Time Zone 1 Time Zone 2 Time Zone 3 

Battery Power (MW) -1.2173 1.4526 -0.5498 

Battery Energy (MWh) 11.0474 0.0383 6.3239 

 

From these results, it is clear that with the use of the proposed planning method, BESS can be 

investigated as a viable asset for system planning. There are a few advantages in using BESS based 

on the above results. First, for this case, it is more economical since it is the least costly option. 

Second, the number of SAIDI is much lower while using a BESS unit. The reason for that is the 

relaxation of the loading percentage of the feeders in the presence of the BESS during heavy loading. 
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3.4.3 Sensitivity Analysis for the 33-Bus Distribution System 

As was previously mentioned, the proposed algorithm uses fuzzy optimization technique. It 

provides a means to optimize two conflicting objectives that are on different scales and cannot be 

combined. In other words, it is not necessary to accurately calculate the cost of interruption, which 

is a challenging task. The following studies are only possible due to the characteristics of fuzzy sets 

and are not achievable through any other method.  

One of the objectives to be minimized is 	𝜇'�	 which is explained in (3.10). In this sensitivity 

Analysis, the value of SD is being varied in Case II (with BESS). The effect of this variation is 

shown in Fig. 3.4 and Table 3.6. 

In this study 𝑆𝐷 remained constant at 1,000 hours and SD increased from 0 to 900 hours.  The 

value of SD(X) will increase as a result. That happens because the method maximizes (3.13) by 

getting µSD as close as possible to 1. According to (3.10) as 𝑆𝐷 and SD becomes closer to each other, 

the denominator becomes smaller and therefore the value of µSD will become higher. At the same 

time NY will increase as well, because the number of years depends on the SD(X). The size and the 

present cost of the BESS remains unchanged for all the SD values. However, TC(X) decreases as 

SD increases. The reason is that since there is not much room to optimize SD(X), the objective 

function puts TC(X) as priority and starts minimizing it by adding more years to the project. It should 

be mentioned that the BESS units must be replaced every 10 years, which is the reason behind the 

discontinuity in the TC(X) at year 13 and year 23. Basically, after the year 10 and the year 20, the 

replacement cost of BESS has been added to the costs.  
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Fig. 3.4 Sensitivity Analysis Based on SD Variation 

Table 3.6 Sensitivity Analysis on SD for 33-bus System 

SD SD(X) TC(X) NY µSD & µTC 

0 254.1893 $        254,200 8 0.7458 

100 301.036 $         223,400 9 0.7766 

300 423.6684 $         246,700 13 0.8233 

500 573.6849 $         204,400 18 0.8526 

700 739.1271 $         209,800 23 0.8695 

900 912.0965 $         192,400 28 0.8789 
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In the second sensitivity analysis, the 𝑆𝐷 and 𝑆𝐷 remain constant at 1,036 hours and 512 hours, 

respectively, whereas, the value of 𝑇𝐶 is varied from $ 200,000 up to $ 500,000 with 𝑇𝐶 equal to 

$ 0. The effects of this variation are shown in Fig. 3.5 and Table 3.7. As 𝑇𝐶 increases from $ 200,000 

to $ 500,000, the optimal value of TC(x) increases, so that the solution will become more expensive. 

That is a consequence of NY becoming shorter. SD(x) also decreases as 𝑇𝐶 and TC(x) become higher 

which is due to the nature of fuzzy method and two contradicting objectives of the algorithm. This 

study is specifically essential for the distribution companies that have tighter limits on their yearly 

capital expenditures.  

 

Fig. 3.5 Sensitivity Analysis Based on 𝑇𝐶 Variation 
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Table 3.7 Sensitivity Analysis on 𝑇𝐶 for 33-bus System 

𝑇𝐶 SD(X) TC(X) NY µSD & µTC 

$      200,000 647.7239 $          178,700 19 0.3523 

$      300,000 497.8992 $          207,500 15 0.5021 

$      400,000 415.6073 $          232,100 12 0.5844 

$      500,000 364.1388 $          254,700 11 0.6359 
 

 

3.4.4 Sensitivity Analysis for the 33-Bus Distribution System 

 
 

In this section, a comparison between the proposed method and one method recently published in 

literature is presented. The algorithm used for comparison is described in [22] and [25], which will 

be called Method 2. The annualized upgrade cost determined by both methods are shown in Table 

3.8.  

As one can see, the result obtained by the proposed method is slightly below the one determined 

by Method 2, as the allocated battery is slightly smaller. However, the main advantage of the 

proposed method is that the exact Customer Interruption Cost is not necessary, as SAIDI information 

is included as a fuzzy satisfaction function. This is relevant as this type of information is not readily 

and accurately available for the distribution planning engineers, mainly when dealing with 

residential feeders.  
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Table 3.8 Result Comparison – 33-Bus System 

Method 
Battery Power (MW)/ 

Energy (MWh) 

Total Annualized 

Upgrade Cost 

Proposed Method with 

BESS 

1.45 MW 

10.98 MWh  
$ 178,700 

Method 2  

[22] & [25] 

1.45 MW 

10.99 MWh 
 $ 180,030 

 

3.5   Chapter Summary  
 

Besides a technical solution, the usage of Battery Energy Storage Systems (BESS) to enable high 

integration of renewable energy sources (e.g., solar and wind generation) and new loads (e.g., 

electric vehicles) is an economic question. This possibility must be included into Distribution 

System Asset (DSA) planning methods. To contribute to this issue, this thesis proposed a method, 

where the problem was modeled as a multi-objective optimization model with contradicting 

objectives of SAIDI minimization and total cost minimization. Fuzzy optimization was used to 

handle these multiple objectives, which cannot be directly combined into a single objective function 

without using hard to estimate CIC (customer interruption cost) values. This method has value due 

to the lack of certainty in how to calculate the CIC values, mainly in residential feeders. Indeed, 

most of the research in this area has been conducted by using the CIC values to translate SAIDI 

values from minutes per year to dollars per year. In the proposed method, this is not necessary, as 

the algorithm minimizes SAIDI directly for the upgraded system. The algorithm can plan for 

traditional assets such as feeders and transformers as well as the incorporation of BESS units. The 
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algorithm was successfully validated on the IEEE 33-bus distribution system and the results were 

compared with a recent method published in the technical literature and shown to be superior. As 

the technology advances, the cost of BESS is expected to decrease in the following years, so that the 

proposed model can be useful especially in urban centers, where the installation of new feeders is 

costly. 

 To address operational aspects of distribution systems and minimizing losses, a complementarity 

method for reconfiguration of distribution systems in real-time is proposed in the next chapter.  
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CHAPTER 4 

REAL-TIME SMART DISTRIBUTION SYSTEM 

RECONFIGURATION USING COMPLEMENTARITY 

 

Assuming that a new distribution system has been planned considering the least cost option, how 

to optimally operate this distribution system using a reliable optimization algorithm is discussed in 

this chapter. In this research, a new algorithm that can accomplish this task is proposed. 

In North America, most power distribution systems are designed and operated as radial circuits. 

The radial circuit has a single power source feeding a network of downstream feeders.    

Smart Radial Distribution Systems of the future will have improved reliability, performance and 

flexibility in operation by using SCADA operable breakers and algorithms such as optimal 

reconfiguration in real-time in their distribution management systems while considering the 

protection design limitations. However, today, optimal reconfiguration algorithms are largely 

academic because of challenges such as: they depend upon heuristic techniques that require repeated 

runs and are not suitable for real-time applications, they do not guarantee an optimal solution, and 

finally, they do not provide insight into solution space. 

Electric utilities may reconfigure their network such that total system losses are minimized and 

voltage profile is satisfactory. Optimal reconfiguration requires that one breaker or tie switch in 
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every loop is opened, such that the set of closed breakers results in a radial topology which results 

in minimum losses and a satisfactory voltage profile. An optimization algorithm for optimal 

reconfiguration shall consider all possible combinations and scenarios where one switch can be 

opened in every loop. This problem is a combinatorial challenge and its complexity increases 

exponentially with the number of switches. Further, examining the solution domain, which is 

undertaken in the next section, it is evident that the solution space is discontinuous. 

 Literature review shows that many researchers have attempted different optimization techniques and 

have found the optimal solution for published examples. However, limitations in classical linear and 

nonlinear optimization techniques preclude them from being successfully used for this optimization 

challenge. Hitherto, all attempts are restricted to optimizing using heuristic techniques such as 

evolutionary programming, genetic algorithms, etc. 

To realize smart radial distribution system of the future, a real-time optimal reconfiguration 

algorithm is proposed, which uses a classic nonlinear optimization technique and guarantees an 

optimal solution in the least time. The method is based upon a complementarity technique that 

transforms discontinuous solution spaces into continuous, enabling use of classical nonlinear 

optimization techniques without resorting to heuristics. 

This is successfully demonstrated on 7-bus, IEEE 33-bus and IEEE 69-bus distribution systems.  

The results are compared with those available in literature with respect to solution time, accuracy in 

results and robustness of the proposed algorithm and demonstrate the superiority of the proposed 

technique.  

4.1 Problem Formulation without Complementarity  
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The formulation commonly used for reconfiguration without complementarity technique is as 

follows:   

 𝛹𝑀V   =1 or 0, for i=1, 2... N                    (4.1) 

When a branch is switched in and another is switched out in a loop, the solution space is no longer 

continuous. The variable 𝛹𝑀V  that defines the status of a switch as to whether it is open/close 

assumes discrete states of zero or one.  

The following constraint confirms that the system stays radial at all times:  

																																																																	 𝛹𝑀V

H

VOP

= 𝑁𝐿 − 𝑁𝐵 + 1																																																										(4.2) 

Total power loss of the network is the summation of all bus power injections. Minimizing this 

summation is the objective function: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒:	𝑃N��� = 𝑃N 𝑉, 𝛿 																																																				(4.3)
H)

VOP

 

 

The network is presented by calculating the YB: 

 

YB = [YI].[I-[ΨM]]. [YL].[YI]T                                              (4.4) 

 

Using the Y-BUS matrix, the power balance equations for buses can be written as follows: 

 

PG –  PD  – PL (V, d, YB) = 0                          (4.5) 

 

QG –  QD – QL (V, d, YB) = 0                          (4.6) 
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The problem has a discontinuous solution space since switches assume only discrete values of zero 

or one. Therefore, classical optimization methods are not suitable for the following formulation and 

researches were limited to use heuristic methods.  

4.2 Complementarity  

In this work, in search of making optimal reconfiguration suitable for real-time use, recent work 

on complementarity [69] and [70] is utilized. Using complementarity, the nonlinear mixed integer 

optimization challenge of optimal reconfiguration with discontinuous solution space is transformed 

into a nonlinear optimization challenge with continuous solution space. This transformation allows 

the use of classical nonlinear optimization solvers that are robust, guaranteeing the optimal solution 

while being suitable for real-time application.  

Accordingly, it is proposed to use complementarity constraints and transform the solution space 

such that conventional NLP techniques can be used for solving the challenge of optimal 

reconfiguration of smart radial distribution system in real-time.  

Consider the example shown in the problem (P1) with the following objective function:  

 

Maximize:  

(3x1 – 2)3 + (5x2 – 1)3                                  (4.7) 

 

Subject to:             

                                                                      0 ≤ xi ≤ 1   "  i=1, 2                         (4.8) 

 

    x1 × x2  = 0                   (4.9) 
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The problem is formulated such that only one of the two variables can assume a non-zero value 

for a feasible solution. Hence, use of classical optimization techniques is not possible. This is true 

when we model the optimal reconfiguration challenge in distribution systems. 

 
Considering the problem in (4.7) to (4.9), since the result becomes infeasible for a solution other 

than at points (0, 0 ≤ x2 ≤ 1) and (0 ≤ x1 ≤ 1, 0), the formulation is restated as problem (P2) [69]- 

[70]:  

 

Maximize: 

 (3x1 − 2)3 + (5 x2 −1)3 – M × x1 × x2              (4.10) 

 

The penalty factor, M, is an arbitrary large number, which is used to ensure that the multiplication 

of x1 and x2 will be zero. Therefore, solutions which do not satisfy the constraints will be 

disregarded.  

This objective in (4.10) is plotted in Fig. 4.1 with M=100, where it is evident that the optimal solution 

is x1=0 and x2=1.  

Despite the fact that the x1 and x2 are both continuous variables limited between 0 and 1, using 

complementarity constraints and theory, the result will always yield a discrete solution.  

Hence, the problem in (4.7) to (4.9) with discontinuous solution space that could not be handled by 

classical optimization techniques is now transformed into the form in (4.10) whereby it is continuous 

and solvable using classical optimization techniques. 
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Fig. 4.1 Solution Space for a Sample Problem (P1) 

 

 

4.2.1 Switches and Complementarity 

In this work, it is proposed to model the status of switches by continuous variables limited between 

0 and 1, where 0 indicates that the switch is closed and 1 indicates that the switch is open. For the 

sake of argument, let there be a set of switches in a loop and their status be represented by the 

continuous variables ΨMi constrained by: 

 

0 ≤ 𝛹𝑀V   ≤ 1, for i=1, 2... N                    (4.11) 
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 If only one switch, ΨMi, can be open in the loop, then complementarity constraints dictate that the 

following must be true for a feasible solution: 

 

𝛹𝑀V ∙ 𝛹𝑀s = 0	"	𝑖, 𝑗 = 1, 2, . . , 𝑁	and	𝑖	 ≠ 	𝑗																																														(4.12)     

       

Considering the objective of minimizing losses in a distribution system as a function of switch 

status (𝛹𝑀V), it can be stated that: 

Minimize: f (𝛹𝑀V)                       (4.13) 

Subject to the constraint for radial structure which is implemented through (4.12). 

The problem in (4.12) and (4.13) has a discontinuous solution space as in (4.7) to (4.9). Just as the 

problem in (4.7) to (4.9) was recast in (4.10), the problem in (4.12) and (4.13) is recast as below in 

(4.14) whereby it becomes a continuous solution space which is differentiable and classical 

optimization technique can be used to find an optimal solution: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒:					𝑓 𝛹𝑀V + 	𝑀 ∙ 𝛹𝑀V ∙ 𝛹𝑀s
s£VV

																																																						(4.14) 

 

Accordingly, in the next section the reconfiguration of radial distribution systems is formulated 

using complementarity constraints. 
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4.3 Proposed Problem Formulation 

4.3.1 Loss Formula 

Consider a radial distribution system (RDS) with NB buses. The objective is to minimize the total 

active-power loss. In the proposed algorithm, the loss is defined as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒:	𝑃N��� = 𝑃N 𝑉, 𝛿 																																																																(4.15)
H)

VOP

 

where PL is the net active-power injected by the ith bus into the connected lines and VÐd is the vector 

of voltage phasors. 

4.3.2 Network Representation 

 Let the RDS have NL lines and [YL] be a diagonal line admittance matrix of dimension NL∙NL. Let 

[YI] be the bus incidence matrix. Let [ΨM] be a diagonal matrix with elements corresponding to 

switches where ones indicate open and zeros indicate otherwise.  For the ith line segment, if there is 

a switch, ΨMi is equal to one if the switch is open, and equal to zero if the switch is closed. 

Accordingly, the system admittance matrix in the bus frame of reference, the Y-BUS, can be 

computed as below: 

 

YB = [YI].[I-[ΨM]]. [YL].[YI]T                                              (4.16) 

 

Using the Y-BUS matrix, Bus Power Balance equations may be computed as below and it has been 

illustrated in Fig. 2: 
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PG –  PD  – PL (V, d, YB) = 0                          (4.17) 

 

QG –  QD – QL (V, d, YB) = 0                          (4.18) 

 

Fig. 4.2 PL and QL are Sum of Power Flowing from the Bus into Connected Lines 

 

where PG and QG are vectors of bus-wise active and reactive power generations, PD and QD are 

vectors of bus-wise active and reactive power loads and PL(V,d,YB) and QL(V,d,YB) are vectors of 

active and reactive powers injected from buses into respective connected lines. 

 

4.3.3 Network Radial Structure – Complementarity Constraints 

 Let a RDS have NS loops. Let NS(s) be a set of line indices comprising the sth loop. Writing 

complementarity constraint functions, one may write using (4.9) as below: 

 

ΨMi × ΨMj = 0  "i ≠ j, i Î NS(s), j Î NS(s)               (4.19) 

 

The formulation (4.15) to (4.19) describes the optimal reconfiguration challenge which has a 

discontinuous solution space and cannot be solved using classical optimization techniques. Hence, 

PD + j QD 

PG + j QG 

PL+ j QL 

1 
2 
3 

N 
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we use complementarity technique to transform (4.15) to (4.19) in the following text such that it has 

a continuous solution space and therefore classical optimization techniques can be used. 

 

4.3.4 Complete Formulation 

The complete objective function for the optimization (4.20) is created as below using (4.15) to 

(4.19). 

Minimize: 

å åå
= ¹ÎÎ=

ú
û

ù
ê
ë

é
××+=

NS

1s ji NS(s),j NS(s),i
ji

NB

1i
L MMM)(V,P  ΨΨδf å å

= Î
ú
û

ù
ê
ë

é
-×+

NS

1s

2

NS(s)i
iM1M Ψ (4.20) 

 

The first term in the objective function (å
=

NB

1i
L )(V,P δ ) represents the active-power loss of the system 

which is meant to be minimized.  

The second term ( å å
= ¹ÎÎ

ú
û

ù
ê
ë

é
××

NS

1s ji NS(s),j NS(s),i
ji MMM ΨΨ ), when minimized, ensures that the product of switch 

states equals zero in each loop which means only one switch per loop has a non-zero value.  

The third term ( å å
= Î

ú
û

ù
ê
ë

é
-×

NS

1s

2

NS(s)i
iM1M Ψ ), ensures that the only non-zero state of a switch in the loop 

equals to 1, while the square avoids negative values.  

In view of that, the global minimum of the second and third terms are both zero. 

The objective (4.20) is subject to: 

(1) Power Balance Equations: (4.17) and (4.18),  
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(2) Voltage Limits:                     

   𝑉 ≤ 𝑉Vk ≤ 𝑉																																																																						 4.21  

(3) Limits on ΨM:  
 

 0 < ΨM < 1                                          (4.22) 
 
This formulation can be readily solved using a classical nonlinear optimization solver. 
 
 

4.4 Results and Discussions 

The proposed methodology was tested on 7-bus, IEEE 33-bus and IEEE 69-bus systems. The 7-bus 

system is solved using both the proposed method, as well as GA method for direct comparison 

purposes. The IEEE 33-bus and IEEE 69-bus systems are solved using only the proposed method, 

and then the results are compared with various solution techniques available in the literature.  

 

4.4.1 The 7-bus System 

The system has only one loop as shown in Fig. 4.3 and the system data are given in Table 4.1. 

 

Fig. 4.3 Schematic of the 7-bus System 

 

 

7 6 5 4 3 2 1 

G 
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Table 4.1 Data for 7-bus System (12.66 kV) 

Branch # From Bus To Bus 
Resistance  
(Per unit) 

Reactance  
(Per unit) 

Load at To 
Bus (MVA) 

1 1 2 0.0922 0.0407 0.10 + j 0.06 

2 2 3 0.4930 0.2510 0.09 + j 0.04 

3 3 4 0.3660 0.1864 0.09 + j 0.04 

4 4 5 0.3811 0.1941 0.12 + j 0.08 

5 5 6 0.1872 0.6188 0.06 + j 0.03 

6 6 7 1.7114 1.2351 0.06 + j 0.02 

7 7 1 1.0300 0.7400 0 

 

4.4.1.1 Result of Proposed Method Using Complementarity 

After optimization using (4.16), (4.17), (4.18), (4.20), (4.21) and (4.22) the optimal switch to open 

is determined to be at branch 5, which is located between buses 5 and 6. Fig. 4.4 shows the voltage 

profile before and after optimization. 
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Fig. 4.4 Voltages of Each Individual Bus: 7-bus System 

Fig. 4.5 shows the comparison of active-power flow of each branch before and after optimization. 

Before optimization, the tie-line 7 is open, so there is no power flowing into that branch. However, 

the result after optimization shows that there is no power flow in branch 5 since the switch is open 

at this branch. Also, it can be seen that the amount of flow has been decreased after optimization 

which is a sign of minimized loss. 
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Fig. 4.5 Comparison of Active-Power Flow of Each Branch Before and After Optimization: 7-bus 

System 

 

Table 4.2 compares the total system active-power loss  before and after optimal reconfiguration 

using the proposed algorithm of nonlinear optimization technique with complementarity constraints. 

Table 4.2 Comparison of Base Case and Optimal Solution 

Case System Active-power Loss (kW) 
Worst Voltage  

(per unit) 
Open Branch 

Original 0.77 0.9972 Branch 7 

Proposed 0.57 0.9980 Branch 5 
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4.4.2 The IEEE 33-bus System 

This distribution system has been widely used in research and literature for the purpose of 

reconfiguration [47]. The system has 5 loops. The number of switches in those 5 loops is respectively 

6, 4, 5, 4 and 5 totaling to 24 switches. In each loop, only one switch must be open so that radial 

structure is preserved while the total active-power loss of the system is minimized. The active-power 

loss of the system before reconfiguration is 0.211 MW and the minimum system voltage is 0.9038 

per unit. Fig. 4.6 shows the schematic and the data can be found in Appendix B. 

 

 
 

Fig. 4.6 Single Line Diagram of the 33-bus System 

 
 

The dotted lines represent the open branches before optimization. The open branches in the base-

case (before optimization) are: 33, 34, 35, 36 and 37. After the system is optimized by the proposed 
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complementarity algorithm, the best configuration determined open branches as: 7, 9, 14, 32 and 37.  

The bus voltages for this test system are limited between 0.9 to 1.05 per unit. A comparison 

between voltage profiles of base case and optimal solution is given in Fig. 4.7.  The voltage profile 

after optimization is significantly improved. Also, Fig. 4.8 shows a comparison between the active-

power flow of each branch for the base and optimized cases. 

 

Fig. 4.7 Voltages of Each Individual Bus: IEEE 33-bus System 
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Fig. 4.8 Comparison of Active-Power Flow of Each Branch Before and After Optimization: IEEE 

33-bus System 

It is evident that the optimally reconfigured system has a better voltage solution and lighter loads 

flowing through lines. 

 Table 4.3 compares the running time and the total system active-power loss between the base 

case and optimal case. Also, in order to demonstrate performance of the proposed method, several 

other solutions published in literature have been compared in the table based on the same IEEE 33-

bus system. The worst voltage shows a big improvement compare to the base case and the voltage 

profile is also better than any other method shown in the table.  
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Table 4.3 Comparison of Base Case and Optimal Solution for IEEE 33-bus System 

 Base 
Case 

Optimal Reconfiguration 

HSA [47] GA [56] RGA [71] ITS [72] Proposed 
Method 

Open 
Branches 

33,34, 
35,36,37 

7, 10, 14, 36, 
37 

7,9,14,32,3
7 

7,9, 14, 32, 
37 

7,9, 14, 36, 
37 7,9,14, 32,37 

Worst 
Voltage (p.u.) 0.9038 0.9342 0.929 0.931 0.921 0.9378 

Active-power 
Loss 

(MW) 
0.211 0.139-0.195 0.141-

0.202 
0.139-
0.198 

0.139-
0.196 0.139 

CPU  
Time(s) -- 7.2 19.1 13.8 8.1 6.37 

Runs -- 200 200 200 200 1 
 
The penalty factor “M” used for this system was 1000.  

In addition, It should be noted that GA and other heuristic optimization methods may not yield the 

optimal solution consistently, and they normally require several trial runs before an optimal solution 

is reached. Hence the CPU time of 7.2 seconds from the Harmony Search Algorithm [47] is not 

consistent and is achieved by solving the problem 200 times. However it can be seen from the above 

table that the computation time of the proposed method is always 6.37 seconds which is faster than 

any other method available in literature. This new method makes it possible to reach the optimum 

result in only one try. The proposed solution method is suitable for real-time application with smart 

radial distribution system and it becomes more obvious when we compare the complete time 
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required to solve. 

4.4.3 The IEEE 69-bus System 

The single line diagram is shown in Fig. 4.9 and the data of the system is published in [61] and 

available in Appendix B. The system has 5 tie-switches located at branches 69, 70, 71, 72 and 73.  

 

 

Fig. 4.9 Single Line Diagram of The IEEE 69-bus System 

The active-power loss of the system before reconfiguration is 0.22495 MW and the minimum 

system voltage is 0.9092 per unit. After optimally reconfiguring this system using the proposed 

method, the total active-power loss is minimized and the voltage profile is improved. The optimal 

solution is provided in Table 4.4.   

The voltage profiles of the base case and optimized solution are portrayed in Fig. 4.10. The worst 

voltage after optimization is 0.95.  

Similarly, Fig. 4.11 shows branch-wise active-power flow solutions in MW, before and after 

optimization. Comparing the base-case and optimal solution, it is clear that the optimized solution 

has been much improved. The result is compared to the Fuzzy Multi-Objective Optimization [61] 
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and Particle Swarm Optimization Algorithm [73] in Table 4.4. While the proposed method has found 

a better solution with regards to active-power loss and minimum bus voltage, it only took 33.9 

seconds and one execution for it to reach the optimum result. On the other hand, it takes 800 seconds 

for PSO in [73] to obtain its best results. 

 

Table 4.4 Comparison of Base Case and Optimal Solution for IEEE 69-bus System 

 Base Case 
Optimal Reconfiguration 

Fuzzy MO [61] PSO [73] Proposed Method 

Open 

Branches 

69, 70, 71, 

72, 73 
56, 70, 63, 69, 14 59, 71, 62, 70, 15 57, 70, 61, 69, 12 

Worst 

Voltage 

(p.u.) 

0.9092 0.9483 0.94247 0.95 

Active-power 

Loss 

(MW) 

0.22495 0.0996 0.099635 0.09877 

CPU  

Time(s) 
-- Not Available 8 33.9 

Runs -- 200 100 1 
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Fig. 4.10 Voltages of Each Individual Bus: IEEE 69-bus System 

 

 

Fig. 4.11 Comparison of Active-Power Flow of Each Branch Before and After Optimization: IEEE 
69-bus System 
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The proposed method changes the way network reconfiguration was approached hitherto. 

Literature shows that heuristic methods are predominantly used which renders the solution methods 

unsuitable for real-time use. With the advent of smart grid technologies, enabling real-time 

management of smart radial distribution systems via DMS (distribution management systems) using 

real-time optimal reconfiguration type algorithms can bring benefits such as improved reliability, 

performance and efficiency. 

To enable real-time performance, a complementarity technique is used to transform the mixed 

integer nonlinear optimization challenge of optimal reconfiguration with discontinuous solution 

space into a problem with a continuous solution space. This transformation allows solution(s) via an 

ordinary nonlinear programming technique. In addition, benefits are: 

• Single shot solution. 

• Fast solution in seconds for real-time use. 

• Use of a classical nonlinear optimization technique. 

• Easy extension to an optimal power flow type algorithm. 

4.5 Chapter Summary 

In this work, the discontinuous solution space is transformed into a continuous one using 

complementarity technique whereby conventional NLP optimization techniques can be used making 

the method suitable for real-time applications. The proposed method opens doors to the use of other 

methods and concepts of optimal power flow such as nodal pricing being applied to RDS.  

The proposed method is demonstrated on standard IEEE test systems where it produces the same or 

even better results, but in much shorter time than that required by heuristic methods. Optimal 

solutions obtained in 33-bus and 69-bus systems were compared with published results and shown 
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to be comparable or better in accuracy, time and robustness.   

One interesting comparison could be held between deterministic and heuristic optimization routines 

when solving the problem of distribution system reconfiguration. Deterministic methods are known 

for lack of ability to converge to global minima all the time. However, convergence to the suboptimal 

solution obtained by these methods is much faster and much more robust than heuristics techniques. 

On the other hand, although heuristic algorithms are capable of reaching a global minimum solution, 

the convergence time is much longer and nearly uncertain. Due to the stochastic nature of heuristic 

algorithms, indefinite numerical experimentation is typically required before a satisfactory solution 

is obtained. Therefore, heuristic optimization is unsuitable for online and real-time solutions of the 

present problem because of such drawbacks.  
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

 

General conclusions and the key contributions of this dissertation work are summarized in this 

chapter. Recommended future research in power system optimization studies as it relates to this 

dissertation is also discussed. The book [73] was immensely valuable in learning the fundamentals 

of power system optimization and acquire the knowledge of different techniques of optimization. 

5.1 Conclusion and Major Contributions 

The following targets have been achieved and are presented below as key research contributions: 

1)  A new FIM model for the DSA planning process was proposed, which includes the possibility of 

installing BESS as a solution to integrate new loads and generators. Based on the analyses presented 

here, one can see that the proposed model is flexible, automatically selecting the installation of new 

feeders and/or BESS while optimally sizing the BESS. In addition, the results show that in the 

presence of high penetration of PV systems and large differences between the average power and 

the peak power, there is a higher arbitrage opportunity for BESS, mainly in costly underground 

systems. For a 3-Bus simplified Canadian system, it was shown in Table 2.12 that the BESS with 

the 5.22 MW and 22.98MWh size is a more economical choice than using an additional feeder. Also, 

using the proposed algorithm on the 33-Bus system resulted in choosing a BESS with the optimized 

size shown in Table 2.18 as the more cost-effective option. A planning with BESS costs $36,509,475 
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million dollars while planning with an additional feeder would cost $37,439,588 million dollars. 

From these results, it is clear that the proposed DSA planning method is able to include BESS units 

and additional feeder circuits into the asset planning solution. The proposed method considers the 

myriad of options to select the least costly annual asset plan. It compares the options evenly based 

on an evolution of the total annual asset costs for delivering energy to the connected customers. 

2)  Based on the created FIM model, the proposed method is a multi-objective algorithm with 

contradicting objectives of SAIDI minimization and total cost minimization. Fuzzy optimization is 

used to handle multiple objectives that cannot be combined into a single objective.  This method has 

been used due to the lack of certainty in how to calculate customer interruption cost in literature. 

Most of the research in this area is not practical, as unreasonable values of customer interruption 

costs are used for translating SAIDI values in minutes per year to dollars per year. While the 

proposed algorithm minimizes SAIDI for the upgraded system, it does not depend on the customer 

interruption cost for optimization. Therefore, the results are more reliable compared to the existing 

theories and models. Testing the following method on the 33-Bus system shows that the BESS is 

the cheaper option compare to additional feeders. The optimal size of the BESS unit as given in 

Table 3.5 is 1.45 MW and 11.04 MWh, while the total planning cost of using BESS is $178,700 

compare to $902,009 when using an extra feeder. Also, the proposed method was compared to 

recently published method in literature in Table 3.8 which shows that the proposed method is 

superior.   

3)  To enable real-time performance in operating distribution systems, a complementarity technique 

is used to transform the mixed integer nonlinear optimization challenge of optimal reconfiguration 

with discontinuous solution space into a problem with a continuous solution space. This 

transformation allows solution(s) via an ordinary nonlinear programming technique. Table 4.2 
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shows that the complementarity method works on a simple 7-Bus system. Then for more 

complicated systems, the proposed method was tested on 33-Bus and 69-Bus system which had 

more loops and switches. For 33-Bus system, Table 4.4 shows that the proposed method needs only 

6.37 seconds and a single run to achieve the optimum result, while the closest method in literature 

needs at least 7.2 seconds for each run and 200 runs which is equivalent of 1,440 seconds. Also, for 

the 69-Bus system, Table 4.5 indicates that the proposed algorithm needs 33.9 seconds and a single 

run to reach the optimum point, while the available methods in literature need 8 seconds for each 

run and a minimum of 100 runs, which is equal to 800 seconds. Although heuristic algorithms in 

literature can reach a global minimum solution, the convergence time is much longer and very 

uncertain. Due to the stochastic nature of heuristic algorithms, indefinite numerical experimentation 

is typically required before a satisfactory solution is obtained. On the other hand, the proposed 

method produces the same or even better results than heuristic methods in a much shorter time using 

a single run.   

Overall, these algorithms and methods are very practical for real market applications. Many 

electrical distribution companies, such as Toronto Hydro-Electric System Limited (THESL) in 

Ontario, are seeking new methods to manage planning and operating of their assets. The proposed 

techniques are a big step towards that path.  

  



113 
 

5.2 Recommendations 

A number of future directions for related research activities could be explored: 

1) Linearization of the formulation which needs extensive math work, would give the algorithms in 

Chapter 2 and 3 a direct proof and also make them significantly faster. 

2) The complementarity method can be applied to the planning algorithms and FIM.  

3) The possibility of mixing different energy storage devices in the grid, for example using a 

flywheel in conjunction with lithium-ion battery. These devices have different life time and 

maintenance characteristics that may optimize the total cost further when used together.  
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APPENDIX A 

FUNDAMENTALS AND TECHNIQUES 

A.1 POWER BALANCE EQUATIONS 

DISTRIBUTION NETWORK CONSTRAINTS MUST BE ENFORCED IN THE PLANNING AND 

OPERATING PROBLEMS TO PROVIDE A NETWORK FEASIBLE SOLUTION. POWER 

BALANCE EQUATIONS, AS DISCUSSED BELOW, ARE THE BASIS FOR 

DEVELOPING THE CONSTRAINTS.  

FIG. A.1 SHOWS THE NET POWER INJECTION OF A PRACTICAL BUS IN A POWER 

DISTRIBUTION SYSTEM. THE NET POWER INJECTION FROM THE BUS INTO THE 

CONNECTED LINES, WHICH IS THE FUNCTION OF BUS VOLTAGE PHASE ANGLES 

AND MAGNITUDES, MUST BE EQUAL TO TOTAL POWER GENERATION 

SUBTRACTED FROM THE TOTAL DEMAND ON THE BUS. TO SOLVE THESE 

BALANCE EQUATIONS, REACTIVE POWER GENERATIONS, LINE POWER FLOWS, 

AND BUS VOLTAGE PHASE ANGLES AND MAGNITUDES CAN BE CALCULATED.  

( ) ( ) i  θδδ.Y.V VV,PL ijji

NB

j
ijjii "--= å cosd

                 
(A.1) 
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( ) ( ) i  θδδ.Y.V VV,QL ijji

NB

j
ijjii "--= å sind                  (A.2) 

In equations (A.1) and (A.2), V is voltage magnitude of the ith bus, and d is the corresponding 

voltage phase angle. Yij is an element of the bus admittance matrix Y, and qij is the phase angle of 

Yij. After solving the power balance equations, bus voltage and reactive power generation can be 

obtained. SLi is the apparent power injected from the buses into the connected lines.  

 

Fig. A.1 Net Power Injected into The Distribution System by the ith Bus 

THESE POWER BALANCE EQUATIONS ARE CALLED AC POWER BALANCE EQUATIONS AND 

CONSIDER BOTH REAL AND REACTIVE POWERS. THESE POWER BALANCE 

EQUATIONS CAN BE SOLVED BY USING LOAD FLOW METHODS.  

 

 

SLi(v, d) = SGi - SDi 
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A.2 DERIVATION OF ANNUITY FORMULA WITH INTEREST RATE (PENALTY 

FACTOR)  

THE PRESENT WORTH (PW) OF A CONSTANT ANNUITY (AN), FOR NY PERIODS IS: 

PW =	
𝐴𝑁

(1 + 𝑟)
+

𝐴𝑁
(1 + 𝑟)l

+ ⋯+
𝐴𝑁

1 + 𝑟 HI 																																														(𝐴. 3) 

The discount factor can be defined as: 

a = 	
1

(1 + 𝑟)
																																																																											(𝐴. 4) 

substituting it into the (A.3): 

PW = 	AN. (a + al + a¨ + ⋯+ aHI)																																														(𝐴. 5) 

To simplify this formula, aNY+1, aNY+2 and so on will be added to (A.5), and then subtract all the 

added terms: 

a + al + a¨ + ⋯+ aHI + aHIQP + aHIQl + ⋯ − aHIQP + aHIQl + ⋯ 							(𝐴. 6) 

The (A.6) can be rewritten as: 

𝑎 1 + a + al + a¨ + ⋯ − aHIQP 1 + a + al + a¨ + ⋯ 																												(𝐴. 7) 
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Note that the infinite number of terms in each of the brackets is the same. To Simplify, a Random 

Number (RN) is used: 

𝑅𝑁 = 1 + a + al + a¨ + ⋯ 																																																							(𝐴. 8) 

Now, observe that RN = 1 + a.RN, which mean that: 

𝑅𝑁 =	
1

1 − 𝑎
																																																																										(𝐴. 9) 

Therefore, the expression 

1 + a + al + a¨ + ⋯+ aHI = 𝑎. 𝑅𝑁 − 𝑎HIQP. 𝑅𝑁 =
𝑎

1 − 𝑎
−
𝑎HIQP

1 − 𝑎
																	(𝐴. 10) 

Now, replace a with the discount factor 1/(1 + r) and simplify to get: 

𝑎. 𝑅𝑁 − 𝑎HIQP. 𝑅𝑁 =
1
𝑟
(1 −

1
1 + 𝑟 HI)																																																			(𝐴. 11) 

By replacing the expression in the bracket in (A.5) with what was achieved in (A.11), the following 

equation is created: 

𝑃𝑊 =
𝐴𝑁
𝑟
(1 −

1
1 + 𝑟 HI)																																																										(𝐴. 12) 

which is the annuity formula. 

Annuity:	
AN
PW

, r%,NY = PW.
r 1 + r ®¯

1 + r ®¯ − 1
= AN																																								(𝐴. 13) 
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A.3 SAIDI AND CUSTOMER INTERRUPTION COST DERIVATION  

It is known historically that the reliability of residential branches is not highly sensitive to loading. 

This is because the branch in only heavily loaded for a few hours per year. The situation is different 

for commercial/industrial (C&I) feeders. However, with the emergence of Electric Vehicles, right 

now some of the residential branches are heavily loaded every day. It can be seen in Fig. A.2 that 

branches loaded at 90% of rating have an SAIDI of 1.4 hours, while feeders loaded at 100% of rating 

have an SAIDI of 1.9 hours.  
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Fig. A.2 Variation of SAIDI (hour/year) versus Branch Loading Percentage '(
'(w

   

Based on the trend line of the figure above, and knowing that (y = SAIDI) and (x= '(
'(w

 ) , it can be 

concluded that:  

A=0.0366,  

B=-0.1134, 

C=1.275 

Therefore, the equation (2.8) becomes as follows for each circuit at each specific time zone: 

SAIDI	 𝑆𝐹𝐸, 𝑆𝐹 = 	
𝐴

max
k

𝑆𝐹Mk
𝑁𝐶M. 𝑆𝐹𝐸M

l

+ 𝐵
max
k

𝑆𝐹Mk
𝑁𝐶M ∙ 𝑆𝐹𝐸M

+ 𝐶

𝑁𝐶M
																																				(2.8) 

APPENDIX B 

DATA OF TEST SYSTEMS 

B.1 IEEE 33-bus System  

The detailed transmission system data can be found in Table B.1, B.2 and B.3. The price data of 

CEG and WEG data are listed in the following tables. The system is tested for the OPF algorithm in 

Chapter 3.  
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Table B.1 Data for IEEE 33-bus System 

Branch # From 
Bus 

To Bus Resistance   
(per unit) 

Reactance    
(per unit) 

Load at To Bus   

(MW) 

Load at To Bus 

(MVAr) 

1 1 2 0.0922 0.047 0.1 0.06 

2 2 3 0.493 0.2511 0.09 0.04 

3 3 4 0.366 0.1864 0.12 0.08 

4 4 5 0.3811 0.1941 0.06 0.03 

5 5 6 0.819 0.707 0.06 0.02 

6 6 7 0.1872 0.6188 0.2 0.1 
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Branch # From 

Bus 

To Bus Resistance   

(per unit) 

Reactance    

(per unit) 

Load at To Bus   

(MW) 

Load at To Bus 

(MVAr) 

7 7 8 1.7114 1.2351 0.2 0.1 

8 8 9 1.03 0.74 0.06 0.02 

9 9 10 1.044 0.74 0.06 0.02 

10 10 11 0.1966 0.065 0.045 0.03 

11 11 12 0.3744 0.1238 0.06 0.035 

12 12 13 1.468 1.155 0.06 0.035 

13 13 14 0.5416 0.7129 0.12 0.08 

34 9 15 2 2 0.06 0.01 

15 15 16 0.7463 0.545 0.06 0.02 

16 16 17 1.289 1.721 0.06 0.02 

17 17 18 0.732 0.574 0.09 0.04 

18 2 19 0.164 0.1565 0.09 0.04 

19 19 20 1.5042 1.3554 0.09 0.04 

33 8 21 2 2 0.09 0.04 

21 21 22 0.7089 0.9373 0.09 0.04 

22 3 23 0.4512 0.3083 0.09 0.05 

23 23 24 0.898 0.7091 0.42 0.2 

24 24 25 0.896 0.7011 0.42 0.2 

25 6 26 0.203 0.1034 0.06 0.025 

26 26 27 0.2842 0.1447 0.06 0.025 

27 27 28 1.059 0.9337 0.06 0.02 
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Branch # From 

Bus 

To Bus Resistance   

(per unit) 

Reactance    

(per unit) 

Load at To Bus   

(MW) 

Load at To Bus 

(MVAr) 

37 25 29 0.5 0.5 0.12 0.07 

29 29 30 0.5075 0.2585 0.2 0.6 

30 30 31 0.9744 0.963 0.15 0.07 

31 31 32 0.3105 0.3619 0.21 0.1 

32 32 33 0.341 0.5302 0.06 0.04 

35 22 12 2 2 - - 

14 14 15 0.591 0.526 - - 

20 20 21 0.4095 0.4784 - - 

28 28 29 0.8042 0.7006 - - 

36 18 33 0.5 0.5 - - 

 

B.2 IEEE 69-bus System 

Table B.2 shows the bus data and Table B.3 shows the branch data. 

Table B.2 Bus Data for IEEE 69-bus System 

Bus Number Load (MW) Load (MVAr) 

1 0 0 

2 0 0 

3 0 0 
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Bus Number Load (MW) Load (MVAr) 
4 0 0 

5 0 0 

6 0.0026 0.0022 

7 0.0404 0.03 

8 0.075 0.054 

9 0.03 0.022 

10 0.028 0.019 

11 0.145 0.104 

12 0.145 0.104 

13 0.008 0.005 

14 0.008 0.0055 

15 0 0 

16 0.0455 0.03 

17 0.06 0.035 

18 0.06 0.035 

19 0 0 

20 0.001 0.0006 

21 0.114 0.081 

22 0.005 0.0035 

23 0 0 

24 0.028 0.02 

25 0 0 
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Bus Number Load (MW) Load (MVAr) 
26 0.014 0.01 

27 0.014 0.01 

28 0.026 0.0186 

29 0.026 0.0186 

30 0 0 

31 0 0 

32 0 0 

33 0.014 0.01 

34 0.0095 0.014 

35 0.006 0.004 

36 0 0 

37 0.026 0.01855 

38 0 0 

39 0.024 0.017 

40 0.024 0.017 

41 0.0012 0.001 

42 0 0 

43 0.006 0.0043 

44 0 0 

45 0.03922 0.0263 

46 0.03922 0.0263 

47 0 0 
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Bus Number Load (MW) Load (MVAr) 
48 0.079 0.0564 

49 0.3847 0.2745 

50 0.3847 0.2745 

51 0.0405 0.0283 

52 0.0036 0.0027 

53 0.00435 0.0035 

54 0.0264 0.019 

55 0.024 0.0172 

56 0 0 

57 0 0 

58 0 0 

59 0.1 0.072 

60 0 0 

61 1.244 0.888 

62 0.032 0.023 

63 0 0 

64 0.227 0.162 

65 0.059 0.042 

66 0.018 0.013 

67 0.018 0.013 

68 0.028 0.02 

69 0.028 0.02 
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Table B.3 Branch Data for IEEE 69-bus System 

Branch # From To Resistance (per unit) Reactance (per unit) 

1 1 2 0.0005 0.0012 

2 2 3 0.0005 0.0012 

3 3 4 0.0015 0.0036 

4 4 5 0.0251 0.0294 

5 5 6 0.366 0.1864 

6 6 7 0.3811 0.1941 

7 7 8 0.0922 0.047 

8 8 9 0.0493 0.0251 

9 9 10 0.819 0.2707 

10 10 11 0.1872 0.0619 

11 11 12 0.7114 0.235 

12 12 13 1.03 0.34 

13 13 14 1.044 0.345 

14 14 15 1.058 0.3496 

15 15 16 0.1966 0.065 

16 16 17 0.3744 0.1238 

17 17 18 0.0047 0.0016 

18 18 19 0.3276 0.1083 

19 19 20 0.2106 0.069 
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Branch # From To Resistance (per unit) Reactance (per unit) 
20 20 21 0.3416 0.1129 

21 21 22 0.014 0.0046 

22 22 23 0.1591 0.0526 

23 23 24 0.3463 0.1145 

24 24 25 0.7488 0.2475 

25 25 26 0.3089 0.1021 

26 26 27 0.1732 0.0572 

27 27 28 0.0044 0.0108 

28 28 29 0.064 0.1565 

29 29 30 0.3978 0.1315 

30 30 31 0.0702 0.0232 

31 31 32 0.351 0.116 

32 32 33 0.839 0.2816 

33 33 34 1.708 0.5646 

34 34 35 1.474 0.4873 

35 36 37 0.064 0.1565 

36 37 38 0.1053 0.123 

37 38 39 0.0304 0.0355 

38 39 40 0.0018 0.0021 

39 40 41 0.7283 0.8509 

40 41 42 0.31 0.3623 

41 42 43 0.041 0.0478 
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Branch # From To Resistance (per unit) Reactance (per unit) 
42 43 44 0.0092 0.0116 

43 44 45 0.1089 0.1373 

44 45 46 0.0009 0.0012 

45 4 47 0.0034 0.0084 

46 47 48 0.0851 0.2083 

47 48 49 0.2898 0.7091 

48 49 50 0.0822 0.2011 

49 8 51 0.0928 0.0473 

50 51 52 0.3319 0.1114 

51 9 53 0.174 0.0886 

52 53 54 0.203 0.1034 

53 54 55 0.2842 0.1447 

54 55 56 0.2813 0.1433 

55 56 57 1.59 0.5337 

56 57 58 0.7837 0.263 

57 58 59 0.3042 0.1006 

58 59 60 0.3861 0.1172 

59 60 61 0.5075 0.2585 

60 61 62 0.0974 0.0496 

61 62 63 0.145 0.0738 

62 63 64 0.7105 0.3619 

63 64 65 1.041 0.5302 



129 
 

Branch # From To Resistance (per unit) Reactance (per unit) 
64 11 66 0.2012 0.0611 

65 66 67 0.0047 0.0014 

66 12 68 0.7394 0.2444 

67 68 69 0.0047 0.0096 

68 3 36 0.0047 0.0096 
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